[go: up one dir, main page]

WO2008052959A1 - Dispositif d'entraînement pour une presse d'injection - Google Patents

Dispositif d'entraînement pour une presse d'injection Download PDF

Info

Publication number
WO2008052959A1
WO2008052959A1 PCT/EP2007/061596 EP2007061596W WO2008052959A1 WO 2008052959 A1 WO2008052959 A1 WO 2008052959A1 EP 2007061596 W EP2007061596 W EP 2007061596W WO 2008052959 A1 WO2008052959 A1 WO 2008052959A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
injection
rotor
motor
drive device
Prior art date
Application number
PCT/EP2007/061596
Other languages
German (de)
English (en)
Inventor
Klaus Oberndorfer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008052959A1 publication Critical patent/WO2008052959A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5024Drive means therefor screws rotated by the coaxial rotor of an electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5028Drive means therefor screws axially driven by the coaxial rotor of an electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/504Drive means therefor electric motors for rotary and axial movement of the screw being coaxial with the screw
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the present invention relates to a drive device for an injection molding machine with a metering motor including a first shaft driven by it and an injection motor including a second shaft driven by it, wherein the first shaft is fixedly connected to the second shaft.
  • the mass inertia of the motors or spindles has an effect.
  • more energy must be put into the rotation of the motor-spindle combination than the linear movement of the axis itself. This is particularly important for the injection axis.
  • electric machines have still not reached the speeds and accelerations of hydraulic solutions.
  • the aim is to achieve injection speeds above 300 mm / s or even above 500 mm / s even with fully electric injection molding machines.
  • an injection unit for an injection molding machine is known.
  • the two electric motors for the rotational movement and the axial movement are arranged with their axes in alignment with the axis of the worm.
  • At least one the two electric motors is designed as a hollow shaft motor.
  • document DE 11 2004 001 254 T5 shows a drive device for an injection molding machine in which the injection drive part is decoupled from the metering drive part.
  • the decoupling takes place by means of corresponding thrust bearings.
  • the injection engine drives a shaft whose movement is converted by an axially flanged spindle nut into an axial movement.
  • the object of the present invention is to propose a fully electric drive device for an injection molding machine which has increased acceleration values.
  • the spindle nut is arranged axially outside the rotor of the injection engine, the rotor can be formed with a smaller diameter, so that its moment of inertia decreases.
  • both drive motors have a common shaft, which not only reduced manufacturing and assembly costs are guaranteed over decoupled drives, but also the injection accuracy is significantly improved, because it eliminates bearing clearance.
  • the first shaft is designed in one piece with the second shaft. Also thereby the production cost is reduced and also thereby the accuracy of the A ⁇ injection process can be increased.
  • the metering motor and the injection engine are each designed as a hollow shaft motor.
  • the spatial extent of the drive unit can be reduced overall.
  • the absence of transmission elements also has an advantageous effect, since no abrasion particles can arise, as is the case, for example, with belt drives.
  • the rotor of the metering motor can drive the first shaft via spline wedging. Thereby, the axial movement is performed only by the shaft and not from the rotor of the Do ⁇ siermotors. Consequently, the axial inertia of the drive device is reduced.
  • the rotor of the dosing motor can also be fastened directly on the first shaft. This makes it possible to reduce the diameter of the rotor of the metering and thus its moment of inertia. For this case, it is favorable if the stator of the metering motor is longer than the rotor of the metering motor by the maximum injection path. This can ensure that the torque generation is uniform over the entire injection path.
  • the stators of the two motors are constructed with the same individual sheets. This can be realized, for example, when the rotor of the metering motor is mounted directly on the shaft and the stator of the metering motor can be realized with the same reduced diameter as the stator of the injection motor.
  • the stators of the two motors can then be built on the modular principle. Conveniently, the rotors of the two motors are constructed with the same individual magnets. This is particularly easy to implement when the rotors of the two drive motors have the same outer diameter. This also allows the modular principle apply.
  • an injection screw of the injection molding machine can be fixedly connected to the first and second shaft.
  • the injection screw is even formed integrally with two shafts. Due to the lack of clutch plays can in turn increase the injection accuracy.
  • FIG. 1 is a schematic diagram of a drive device for an injection molding machine according to the prior art and Figure 2 is a schematic diagram of a drive device according to the invention for an injection molding machine.
  • the reproduced in Figure 1 structure corresponds in principle to that structure of the drive unit, which is known from the document DE 43 44 335 Al. Only the dosing motor and the injection motor are interchanged in their axial arrangement.
  • the reproduced in the FIG drive unit for a screw S of an injection molding machine thus consists of a metering D and an injection engine E.
  • the metering D has a stator SD and radially inside thereof a rotor RD.
  • For torque transmission from the rotor RD to a first shaft portion Wl is one between them both components arranged Dahlierekekeilung VZ.
  • the metering D is designed as a hollow shaft motor and provides the rotational movement of the shaft Wl or screw S.
  • the injection engine E is also designed as a hollow shaft motor and consists of a stator SE and a rotatably mounted therein rotor RE.
  • rotor RE Radially inside the rotor RE is a spindle nut SM, with the aid of which the rotational movement of the rotor RE is converted into an axial movement of a shaft section W2 movable therein.
  • the two shaft sections Wl and W2 are parts of a common shaft W.
  • the worm S is coupled to the end face of the shaft W.
  • the shaft W and the screw S are shown in one piece in FIG.
  • the accommodation of the necessary Dahlierekekeilung VZ in the rotor RD of the metering D and the spindle nut SM in the rotor RE of the injection engine requires a large hollow shaft diameter. This forcibly increases the moment of inertia of the motors and limits the acceleration of the motors accordingly.
  • the metering D ' is designed as a hollow shaft motor. It has a stator, SD 'and a rotor RD'.
  • the rotor RD ' rotatably drives the shaft W' in the shaft section Wl '.
  • An injection motor E 'arranged axially behind it in a shaft section W2' has a stator SE 'and a rotor RE'.
  • a spindle nut SM ' is not arranged radially inside the rotor RE' here, but axially outside the rotor RE 'in a shaft section W3' of the shaft W '.
  • the inner diameter of the rotor RE ' is smaller than the outer diameter of the spindle nut SM'.
  • the smaller hollow shaft diameter allows a smaller shaft height, thus a lower moment of inertia and ultimately a faster acceleration of the axle. This manifests itself in particular in a faster ramp-up time.
  • the metering motor D 'and the injection engine E' have a common shaft W '.
  • This consists here of firmly connected waves or wave sections Wl ', W2' and W3 'together. They are either firmly connected to each other or formed together in one piece.
  • a screw S' is firmly coupled on the front side of the shaft W '.
  • the screw S 'with the shaft W' is integrally connected.
  • the drive according to the invention can also be equipped with the metering motor D of FIG. 1, including the multi-tooth wedging.
  • the exemplary embodiment of FIG. 2 is further optimized here in order to achieve the same hollow-shaft diameter of the metering motor D 'and the injection motor E'.
  • the connection V between the rotor RD 'and the shaft section Wl' is rotationally fixed and axle-fixed and can be realized, for example, by shrinking.
  • the rotor RD 'of the dosing motor D' performs the axial movement of the shaft W 'with. So that the efficiency of the metering motor is not changed during the axial movement, the stator SD 'of the metering motor D' is increased by the length L ', which is required as the maximum injection path.
  • the particular advantage of this structure is that due to the same hollow shaft diameter for the two motors D ', E' the same individual sheets and individual magnets can be used. Thus, the two motors can be built according to the modular principle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention vise à augmenter l'accélération de l'axe d'une presse d'injection. A cet effet, il est prévu un dispositif d'entraînement avec un moteur de dosage (D'), y compris un premier arbre (W1') entraîné par celui-ci, et avec un moteur d'injection (E'), y compris un deuxième arbre (W2') entraîné par celui-ci. Le premier arbre (W1') est fixement relié au deuxième arbre (W2'). De plus, un écrou de broche (SM') est fixé en solidarité de rotation axialement à l'extérieur du rotor (RE') du moteur d'injection (E') sur ce rotor (RE'), pour entraîner le deuxième arbre (W2'). Le fait de prévoir l'écrou de broche (SM') à l'extérieur du rotor (RE') permet un diamètre d'arbre creux plus petit, et donc un moment d'inertie réduit et par suite une accélération accrue de l'arbre (W').
PCT/EP2007/061596 2006-10-31 2007-10-29 Dispositif d'entraînement pour une presse d'injection WO2008052959A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006051445.9 2006-10-31
DE102006051445 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008052959A1 true WO2008052959A1 (fr) 2008-05-08

Family

ID=39111595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/061596 WO2008052959A1 (fr) 2006-10-31 2007-10-29 Dispositif d'entraînement pour une presse d'injection

Country Status (1)

Country Link
WO (1) WO2008052959A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012482B4 (de) * 2009-03-12 2013-10-17 Karl Hehl Spritzgießeinheit für eine Spritzgießmaschine zur Verarbeitung von Kunststoffen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162053A2 (fr) * 2000-06-07 2001-12-12 Krauss-Maffei Kunststofftechnik GmbH Unité d'injection pour machine à mouler par injection
EP1293325A2 (fr) * 2001-09-14 2003-03-19 Sumitomo Heavy Industries, Ltd. Machine de moulage par injection électrique
EP1600665A1 (fr) * 2004-05-24 2005-11-30 Hans-Peter Canonica Mécanisme de réglage à moteur électrique
EP1674233A1 (fr) * 2003-10-16 2006-06-28 Sumitomo Heavy Industries, Ltd. Dispositif de moulage par injection electrique et procede de moulage l'utilisant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162053A2 (fr) * 2000-06-07 2001-12-12 Krauss-Maffei Kunststofftechnik GmbH Unité d'injection pour machine à mouler par injection
EP1293325A2 (fr) * 2001-09-14 2003-03-19 Sumitomo Heavy Industries, Ltd. Machine de moulage par injection électrique
EP1674233A1 (fr) * 2003-10-16 2006-06-28 Sumitomo Heavy Industries, Ltd. Dispositif de moulage par injection electrique et procede de moulage l'utilisant
EP1600665A1 (fr) * 2004-05-24 2005-11-30 Hans-Peter Canonica Mécanisme de réglage à moteur électrique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012482B4 (de) * 2009-03-12 2013-10-17 Karl Hehl Spritzgießeinheit für eine Spritzgießmaschine zur Verarbeitung von Kunststoffen
US8672669B2 (en) 2009-03-12 2014-03-18 Renate KEINATH Electric motor drive unit for an injection molding machine for processing plastics

Similar Documents

Publication Publication Date Title
DE3416938C2 (de) Von einem Elektromotor angetriebenes, eine Längsbewegung ausführendes Stellglied
EP0706461B1 (fr) Unite d'entrainement
DE19841159C2 (de) Antriebsanordnung für ein Kraftfahrzeug
WO2019011505A1 (fr) Système d'entraînement pour l'entraînement d'un essieu électrique
WO2006114390A1 (fr) Mecanisme d'entrainement combine dote d'un moteur a reluctance hybride
WO2011141236A2 (fr) Dispositif d'entraînement pour mouvements rotatif et linéaire à inerties découplées
DE102012206144A1 (de) Antriebsvorrichtung für einen Kraftwagen
DE4341166A1 (de) Drehantriebs-Vorrichtung für die Welle einer Werkzeugmaschine
WO2007057313A1 (fr) Machine de moulage de matiere synthetique par injection dotee d'un entrainement direct lineaire-rotatif integre
DE102012206142A1 (de) Antriebsvorrichtung für einen Kraftwagen
EP1861236B1 (fr) Systeme d'entrainement pour une unite de plastification d'une machine de moulage par injection
DE102012210170A1 (de) Motor-Getriebe-Einheit
EP1627727B1 (fr) Presse rotative pour comprimés
WO2011079982A2 (fr) Entraînement électrique à transmission à vis sans fin
DE102006049327A1 (de) Rollenantriebssystem mit Schwingungsdämpfung
EP1910707B1 (fr) Mecanisme de commande pour des instruments, pourvu d'un engrenage planetaire
WO2005122366A1 (fr) Dispositif d'entrainement
DE10158870A1 (de) Redundante elektrische Antriebsvorrichtung, insbesondere zum Antrieb eines Ruders an einem Schiff
DE102006007438B3 (de) Antrieb für eine Maschine zum Kunststoff-Plastifizieren und -Einspritzen
EP1722461A1 (fr) Entrainement éléctrique
DE102004056209A1 (de) Linear verschiebbarer Rotationsantrieb für eine Kunststoffspritzmaschine
EP2654526B1 (fr) Machine à café entièrement automatique à entraînement encapsulé
WO2008052959A1 (fr) Dispositif d'entraînement pour une presse d'injection
DE102008041335A1 (de) Lenkgetriebe und damit ausgestattete Servolenkung
EP3493370B1 (fr) Dispositif d'entraînement ainsi que dispositif d'entraînement d'essieu pour un véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821956

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07821956

Country of ref document: EP

Kind code of ref document: A1