[go: up one dir, main page]

WO2008050625A1 - Antibacterial ceramic product, ceramic surface treatment agent, and method for production of antibacterial ceramic product - Google Patents

Antibacterial ceramic product, ceramic surface treatment agent, and method for production of antibacterial ceramic product Download PDF

Info

Publication number
WO2008050625A1
WO2008050625A1 PCT/JP2007/070076 JP2007070076W WO2008050625A1 WO 2008050625 A1 WO2008050625 A1 WO 2008050625A1 JP 2007070076 W JP2007070076 W JP 2007070076W WO 2008050625 A1 WO2008050625 A1 WO 2008050625A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
ceramic
metal
surface treatment
treatment agent
Prior art date
Application number
PCT/JP2007/070076
Other languages
French (fr)
Japanese (ja)
Inventor
Kohei Shimoda
Issei Okada
Kenji Miyazaki
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2008050625A1 publication Critical patent/WO2008050625A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation

Definitions

  • Antibacterial ceramic products are antibacterial ceramic products, ceramic surface treatment agents, and methods of manufacturing antibacterial ceramic products
  • the present invention relates to an antibacterial ceramic product provided with antibacterial properties on the surface of ceramic products represented by ceramic products such as sanitary ware and Japanese and Western tableware, and a ceramic industry used for manufacturing the antibacterial ceramic products.
  • the present invention relates to a surface treatment agent and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent.
  • Antibacterial agents for imparting antibacterial properties to the surface of ceramic products include metals such as silver, copper, tin and zinc (hereinafter, these metals may be collectively referred to as "antibacterial metals") Is used. These antibacterial metals function as a catalyst, change oxygen dissolved in water to active oxygen, and suppress the growth of fungi and fungi by the action of the changed active oxygen. It is known that antibacterial properties are exhibited by the so-called oligodynamic effect. When antibacterial properties are imparted to the surface of ceramic products using the antibacterial metal, the substrate of ceramic products is considered in consideration of maintaining good antibacterial properties for as long as possible. In general, an antibacterial metal is contained in the glaze layer formed on the surface of the unglazed product or the like, or in the substrate itself.
  • Patent Document 1 in order to prevent the antibacterial metal from being eroded by the melt of the glaze component during firing, the antibacterial metal is supported on hydroxyapatite to form composite particles. After forming and adding the composite particles to the glaze, the glaze is applied to the surface of the substrate and baked to form a glaze layer containing an antibacterial metal. Further, in Patent Document 2, for the same purpose, an antibacterial metal ion is contained in a calcium phosphate compound to form composite particles, and after adding the composite particles to the glaze, the glaze is added to the surface of the substrate. It is described that a glaze layer containing an antibacterial metal is formed by applying and baking.
  • Patent Document 3 an inorganic pigment as composite particles retaining an antibacterial metal is added to a glaze, and the glaze is applied to the surface of the substrate and then baked to obtain an antibacterial agent. Contains metallic A glaze layer is formed, or the inorganic pigment is added to the clay or magnetic earth that is the basis of the ceramic product base. After the ceramic clay is molded into the shape of the ceramic product, it is baked and applied to the base itself. It describes that an antibacterial metal is contained. Further, in Patent Document 4, silver oxide, metallic silver, or an arbitrary silver compound is added to the lower paint, and the surface of the ceramic product base or the glaze layer formed on the surface is added using the lower paint. Antibacterial by drawing a sketch on the surface, adding silver oxide or the like to the glaze, and applying the glaze to the surface of the substrate or the glaze layer formed on the surface and baking. It describes the formation of a rough sketch or glaze layer containing a functional metal!
  • Patent Document 1 JP-A-5-201747 (Claim 1, Paragraph [0007], Paragraph [0010])
  • Patent Document 2 JP-A-6-127975 (Claim 1, Paragraphs [0008] to [0009]
  • Patent Document 3 Japanese Patent Laid-Open No. 7-233334 (Claims 1, 2, Paragraph [0009], Paragraph [0025])
  • Patent Document 4 Japanese Patent Laid-Open No. 7-196384 (Claims;! To 8, Paragraph [ 0014])
  • An object of the present invention is to provide a novel antibacterial ceramic industry that can obtain sufficient antibacterial properties even when the amount of the antibacterial metal used is less than the current amount because the use efficiency of the antibacterial metal is high.
  • An object of the present invention is to provide a product, a ceramic surface treatment agent that can be used for producing the antibacterial ceramic product, and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent. Means for solving the problem
  • the antibacterial property of the antibacterial metal based on the oligodynamic effect described above is the antibacterial exposed on the surface of the glaze layer in the case of a ceramic product to be manufactured, for example, a ceramic product having a glaze layer
  • the contact area between the conductive metal and water increases, and the contact area tends to increase as the particle size of the antibacterial metal decreases and the specific surface area increases.
  • all of the conventional ceramic products have a large particle size of the antibacterial metal exposed on the surface and a small specific surface area, so the utilization efficiency of the antibacterial metal is low. Not enough antibacterial properties to meet the amount of antibacterial metal used.
  • the invention according to claim 1 is an antibacterial ceramic product characterized in that metal nanoparticles containing at least silver and having an average particle diameter of 200 nm or less are present on the surface!
  • the inventor exposes as many metal nanoparticles having an average particle diameter of 200 nm or less as described above to the surface of ceramic products as much as possible, thereby improving the utilization efficiency of the antibacterial metal constituting the metal nanoparticles.
  • a ceramic surface treatment agent in which metal nanoparticles with a 90% cumulative diameter D force S l 50 nm or less of particle size distribution are colloidally dispersed in a dispersion medium,
  • the invention described in claim 2 is characterized in that a metal nanoparticle force colloidal dispersion having a 90% cumulative diameter D force S l of 50 nm or less of the particle size distribution is dispersed in the dispersion medium.
  • the antibacterial property due to the antibacterial metal is manifested only in the antibacterial metal exposed to the surface of the glaze layer and in contact with water if it is a ceramic product having a glaze layer, for example, Antibacterial metals present in the glaze layer and the like hardly contribute to imparting antibacterial properties. Therefore, in order to increase the utilization efficiency of antibacterial metals, the proportion of antibacterial metals that are not exposed on the surface of the glaze layer or the like is reduced as much as possible, and the proportion of antibacterial metals that are exposed on the surface is relatively increased. It is important.
  • the composite particles carrying antibacterial metals described in Patent Documents 1 to 3 described earlier, the silver oxide described in Patent Document 4, water-insoluble and poorly soluble silver compounds, and the like are glazes.
  • the composition of the glaze is constantly changing due to aggregation and sedimentation, the exposure amount and particle size of the antibacterial metal on the surface of the glaze layer formed using the glaze and the associated antibacterial performance There is also a problem that it varies easily for each ceramic product manufactured.
  • the water-soluble silver compound described in Patent Document 4 is uniformly dissolved in a glaze that is usually aqueous, and therefore does not cause aggregation or sedimentation.
  • a glaze that is usually aqueous, and therefore does not cause aggregation or sedimentation.
  • the silver atoms generated as a result of thermal decomposition of the silver compound are used as the nucleus of precipitation, and the silver atoms are successively deposited and the silver particles gradually grow. Therefore, particularly on the surface of the glaze layer, the silver particles are liable to be volatilized and lost by the heat of firing at a stage before growing to a sufficient size. Therefore, if the ratio of silver exposed on the surface of the glaze layer is reduced, the utilization efficiency of the silver as an antibacterial metal is greatly reduced.
  • the silver deposited in the glaze layer often causes the glaze layer to have a specific color.
  • the metal nanoparticles having a 90% cumulative diameter D force Sl of 50 nm or less of the particle size distribution are uniformly and stably present in the dispersion medium.
  • the ceramic surface treatment agent of the present invention When the ceramic surface treatment agent of the present invention is used in the manufacture of ceramic products as glazes or underpaints, it is difficult to agglomerate or settle. It is not necessary to frequently perform operations such as crushing aggregates and redispersing sediments, and even without performing the above operations, the exposure amount and particle size of the antibacterial metal and the antibacterial performance associated therewith It is possible to produce antibacterial ceramic products with a constant and.
  • the average particle diameter of the remaining metal nanoparticles The force is 3 ⁇ 400 nm or less, and as described above, the specific surface area and thus the contact area with water are Combined with the large size, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles in the antibacterial ceramic product can be improved more than before. Therefore, according to the ceramic surface treatment agent of the invention described in claim 2, it is possible to obtain sufficient antibacterial properties even if the amount of the antibacterial metal used is smaller than the current amount. In addition, it is possible to reliably prevent the glaze layer and the background from becoming a predetermined color and increasing the cost of ceramic products.
  • the antibacterial metal forming the metal nanoparticles among the antibacterial metals exemplified above, silver excellent in antibacterial property based on the oligodynamic effect is preferable. Therefore, the invention described in claim 3 is the ceramic surface treatment agent according to claim 2, wherein the metal nanoparticles contain at least silver. Further, when the dispersion medium is water, in order to maintain the colloidal dispersion of the metal nanoparticles in the dispersion medium more stably, the metal nanoparticles are coated with a dispersant having a hydrophilic group. In this state, it is preferably dispersed in a colloid.
  • the invention according to claim 4 is characterized in that the metal nanoparticles are colloidally dispersed in water as a dispersion medium in a state where they are coated with a dispersant having a hydrophilic group.
  • the degree of stabilization of the colloidal dispersion of the metal nanoparticles is the total amount of the metal nanoparticles settled after 24 hours from the preparation of the dispersion containing the metal nanoparticles. It is preferably 0.1% by weight or less. Therefore, the invention according to claim 5 uses a dispersion liquid in which the amount of sedimentation of the metal nanoparticles after the lapse of 24 hours after preparation is 0.1% by weight or less of the total amount of the metal nanoparticles. 5.
  • the invention according to claim 6 includes a step of baking at 800 to 1600 ° C. after coating the ceramic surface treatment agent according to any of claims 2 to 5 on the surface of the ceramic product.
  • the metal nanoparticle having an average particle diameter of 200 nm or less is formed on the surface simply by applying the ceramic surface treatment agent of the present invention to the surface of the ceramic product and firing in the temperature range. It is the ability to produce the antibacterial ceramic products of the present invention that are present with high productivity.
  • the invention's effect since the utilization efficiency of the antibacterial metal is high, a novel antibacterial ceramic industry that can obtain sufficient antibacterial properties even if the amount of the antibacterial metal used is less than the current amount. It is possible to provide a product, a ceramic surface treatment agent that can be used to produce the antibacterial ceramic product, and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent.
  • FIG. 1 is a scanning electron micrograph showing the surface on which silver nanoparticles are formed of the antibacterial ceramic product produced in Sample No. 2-3 of Example 2.
  • the ceramic surface treatment agent of the present invention used for producing the antibacterial ceramic product of the present invention is a gold having 90% cumulative particle size distribution D force of 50 nm or less in a dispersion medium.
  • the genus nanoparticles are colloidally dispersed.
  • the 90% cumulative diameter of metal nanoparticles, D force is limited to 50 nm or less.
  • the colloidal dispersion cannot be stably performed in the ceramic surface treatment agent, the ratio of metal nanoparticles exposed on the surface of the manufactured antibacterial ceramic product is reduced because it aggregates or settles.
  • the ceramic surface treatment agent containing metal nanoparticles having a large particle diameter it is difficult to make the average particle diameter of the metal nanoparticles formed on the surface of the antibacterial ceramic product 200 nm or less.
  • the antibacterial ceramic product has a small proportion of metal nanoparticles exposed on the surface of the antibacterial ceramic product, and the average particle diameter of the exposed metal nanoparticles exceeds 200 nm and the specific surface area is small. In this case, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles is reduced.
  • the 90% cumulative diameter D is preferably 40 nm or more even within the above range. Also, metal nanoparticles, grains
  • the median diameter D of the degree distribution is preferably lOOnm or less.
  • Particle size of metal nanoparticles in the present invention are the laser Doppler method.
  • the metal nanoparticles are one kind of antibacterial metal such as silver, copper, tin, zinc, etc. that can exhibit antibacterial properties by an oligodynamic effect, or two or more kinds.
  • antibacterial metal such as silver, copper, tin, zinc, etc.
  • it can also be formed from an alloy of one or more of the antibacterial metals with other metals.
  • the metal nanoparticles are made of silver and other antibacterial metals or alloys with other metals, considering the more effective expression of antibacterial properties due to silver, the silver content is It is preferably 50% by weight or more, particularly 80% by weight or more of the total amount of the alloy.
  • Examples of metals other than the antibacterial metal that form an alloy with silver include platinum, palladium, rhodium, iridium, nickel, and iron. Since these metals all have a higher melting point than silver, the melting point of the alloy is increased, and the metal nanoparticles are prevented from growing due to, for example, fusing due to heat during firing, and thus the antibacterial ceramic industry. It works to prevent the average particle size of the metal nanoparticles exposed on the surface of the product from becoming too large. In addition, the metal forms an alloy with silver, thereby preventing oxidation or so-called migration and maintaining the antibacterial property of silver for a long period of time.
  • the metal nanoparticles may have a composite structure in which the surface of core particles made of any metal is covered with a skin layer made of silver, an alloy containing silver, or the like.
  • the metal nanoparticles can be produced by various conventionally known methods such as a high temperature treatment method called an impregnation method, a liquid phase reduction method, and a gas phase method.
  • a high temperature treatment method called an impregnation method
  • a liquid phase reduction method for example, a water-soluble metal compound that is a source of metal ions forming the metal nanoparticles and a dispersant are dissolved in water.
  • a reducing agent may be added, and the metal ions may be preferably subjected to a reduction reaction with stirring for a certain period of time.
  • metal nanoparticles made of an alloy by a liquid phase reduction method two or more water-soluble metal compounds that form the alloy and are sources of at least two kinds of metal ions. May be used in combination.
  • the deposition of the core material particles and the deposition of the coating layer on the surface of the core material particles may be sequentially performed by a liquid phase reduction method.
  • the metal nanoparticles produced by the liquid phase reduction method are characterized by having a spherical or granular shape, a sharp particle size distribution, and a small particle size.
  • Examples of the water-soluble metal compound that is a source of metal ions include silver nitrate (I) [AgNO] and silver methanesulfonate [CH 2 SO Ag] in the case of silver.
  • silver nitrate (I) [AgNO] and silver methanesulfonate [CH 2 SO Ag] in the case of silver.
  • copper copper nitrate (II) [Cu (NO)]
  • tin chloride (IV) pentahydrate [SnCl ⁇ 5 ⁇ ] can be mentioned.
  • rhodium rhodium (III) chloride trihydrate [RhCl ⁇ 3 ⁇ 0], rhodium nitrate (III) solution [Rh (NO)] and the like can be mentioned.
  • iridium iridium chloride ( IIlKlrCl] etc.
  • nickel nickel chloride ( ⁇ ) hexahydrate [NiCl ⁇ 6 ⁇ 0], nickel nitrate ( ⁇ ) hexahydrate [Ni (NO) ⁇ 6 ⁇ 0], etc.
  • iron iron nitrate (III) hexahydrate, nonahydrate (Fe (NO) ⁇ 6 ⁇ 0, 9H O), iron chloride ( ⁇ ) tetrahydrate (FeCl ⁇ 4 ⁇ ⁇ ) , Iron sulfate ( ⁇ ) heptahydrate (FeSO ⁇ 7 ⁇ ⁇ ), acetylacetone iron (III) (Fe [CH (COCH)]) and the like.
  • any of various reducing agents capable of reducing metal ions and precipitating them as metal nanoparticles in a liquid phase reaction system can be used.
  • the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal ions (trivalent titanium ions, divalent cobalt ions, etc.).
  • transition metal ions trivalent titanium ions, divalent cobalt ions, etc.
  • the reduction of metal ions and the deposition rate should be slowed.
  • a reducing agent having a reducing power as weak as possible.
  • the reducing agent having a weak reducing power include alcohols such as methanol, ethanol, 2-propanol, and ascorbic acid, as well as ethylene glycol, glutathione, organic acids (taenoic acid, malic acid, Tartaric acid, etc.), reducing saccharides (glucose, galactose, mannose, funolectus, sucrose, manoletose, raffinose, starchy etc.), sugar alcohols (sorbitol, etc.), among others, reducing saccharides, Sugar alcohols as derivatives thereof are preferred.
  • the dispersant various dispersants are used that have a hydrophilic group, have good solubility in water, and can disperse precipitated metal nanoparticles in water. it can .
  • the dispersing agent coats the surface of the deposited metal nanoparticles to prevent aggregation of the metal nanoparticles and maintain the dispersion.
  • the liquid phase reaction system in which the metal nanoparticles are deposited is a starting point for preparing a ceramic surface treatment agent in a liquid phase state in which only impurities are removed without separating the metal nanoparticles from the reaction system. It can be used as a raw material.
  • the dispersant remains almost removed in the impurity removal step, and covers the surface of the metal nanoparticles in the prepared ceramic surface treatment agent as described above, thereby agglomerating. And can continue to function as a dispersant to maintain dispersion
  • Dispersion homogeneous IJi number average molecular weight ⁇ force 1000 to 800,000, particularly 2000 to 300,000 force S is preferable.
  • the number average molecular weight ⁇ is less than the above range, there is a possibility that the effect of maintaining the dispersion by preventing the aggregation of the metal nanoparticles by the dispersing agent may not be obtained.
  • the said range is exceeded, there exists a possibility that the handling at the time of the application
  • Hydrophilic groups introduced into the dispersant include oxygen-containing functional groups such as oxy group (— ⁇ —), hydroxy group (- ⁇ ), carboxy group (—COOH), amino group ( ⁇ ), imino group (> ⁇ ), Ammonium group (- ⁇ + )
  • Examples include nitrogen-containing functional groups such as 2 4, sulfur-containing yellow functional groups such as sulfanyl group (one SH), sulfandyl group (one S), and the like.
  • the dispersant may have one kind of the hydrophilic group, or two or more kinds.
  • Suitable dispersants include, for example, poval (polybulal alcohol), polyethylene oxide, polypropylene oxide, polyethyleneimine, polybulylpyrrolidone, polyalkane. Examples include thiol and maleic acid-based copolymers.
  • the dispersant can be added to the reaction system in the form of a solution dissolved in water or a water-soluble organic solvent.
  • the amount of the dispersing agent added is such that when the dispersing agent is subsequently used as a dispersing agent that coats the surface of the metal nanoparticles and prevents its aggregation in the ceramic surface treatment agent, the ceramic surface treatment
  • the content of the dispersant expressed as a percentage of the amount of metal nanoparticles, is preferably !!-20% by weight, in particular 8-8%, preferably 15% by weight. If the content of the dispersant is less than the above range, the effect of preventing the aggregation by covering the surface of the metal nanoparticles in the reaction system and in the ceramic surface treatment agent by the dispersant cannot be sufficiently obtained. ! / There is a risk.
  • the ceramic surface treatment agent is a glaze
  • an excessive dispersant is sintered in the glaze component contained in the glaze during firing. May be hindered to reduce the denseness of the formed glaze layer.
  • a base paint there is a risk that the density of the base picture formed, the adhesion to the glaze layer, and the like may be reduced.
  • the stirring speed, temperature, time, pH, etc. may be adjusted when the metal compound is reduced.
  • the pH of the reaction system is 7 to 13 considering the formation of metal nanoparticles with a 90% cumulative diameter D as small as possible.
  • a pH adjuster In order to adjust the pH of the reaction system to the above range, a pH adjuster is used.
  • the pH adjuster include various acids such as nitric acid and various alkalis such as ammonia depending on the pH value to be adjusted.
  • a ceramic surface treatment agent may be prepared by blending with a water-soluble organic solvent at a predetermined ratio, but as described above, a liquid-phase reaction system in which metal nanoparticles are precipitated is used. It is preferable to prepare a ceramic surface treatment agent using as a starting material. That is, gold
  • Ceramic table A ceramic surface treatment agent is prepared by blending other components constituting the surface treatment agent in a predetermined ratio. This method can prevent the generation of coarse and irregular particles due to the aggregation of metal nanoparticles.
  • Other components constituting the ceramic surface treatment agent include water-soluble organic solvents for adjusting the viscosity and vapor pressure of the ceramic surface treatment agent.
  • water-soluble organic solvent various organic solvents that are water-soluble can be used. Specific examples thereof include alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl ethyl ketone, ethylene glycol monomethino ethenore, ethylene glycol monomethino reetor and the like.
  • Daricol ethers and the like can be mentioned.
  • the addition amount of the water-soluble organic solvent is preferably 30 to 900 parts by weight per 100 parts by weight of the metal nanoparticles.
  • the addition amount is less than the above range, the effect of adjusting the viscosity or vapor pressure of the dispersion by adding the organic solvent may not be sufficiently obtained.
  • the above range is exceeded, it is possible to sufficiently swell the dispersant with water so that the metal nanoparticles coated with the dispersant do not cause aggregation in the ceramic surface treatment agent. Dispersing effect may be hindered.
  • the amount of sedimentation of the metal nanoparticles when the dispersion has been prepared for 24 hours after preparation is 0.1% by weight or less of the total amount of the metal nanoparticles.
  • the amount of sedimentation exceeds the above range, the metal nanoparticles tend to settle. Therefore, when a ceramic surface treatment agent is prepared using the dispersion, the proportion of metal nanoparticles exposed on the surface formed by firing the ceramic surface treatment agent is reduced, and the use efficiency of the antibacterial metal is reduced. There is a risk of lowering or poor appearance.
  • the amount of sedimentation of the metal nanoparticles is within the above range, the stability of the colloidal dispersion of the metal nanoparticles can be improved, and the colloidal dispersion can be more uniformly dispersed in the ceramic surface treatment agent. In addition, sedimentation can be prevented. Therefore, by increasing the proportion of metal nanoparticles exposed on the surface formed by firing the ceramic surface treatment agent, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles can be further improved. It becomes possible to make the appearance good.
  • the particle diameter of the metal nanoparticles and the coating amount of the dispersant may be adjusted. In general, the smaller the particle size of the metal nanoparticles, the greater the coating amount of the dispersant. The more you decrease, the more you can reduce the amount of sediment.
  • the method for producing an antibacterial ceramic product of the present invention is as follows. After applying the ceramic surface treatment agent of the present invention to the surface of the ceramic product, 800 ⁇ ; 1600 ° It includes a step of firing with C. Specifically, for example, using the ceramic surface treatment agent of the present invention as a glaze, it is applied to the surface of a ceramic product substrate or the surface of the glaze layer formed on the surface, or the ceramic surface treatment agent. Is used as a base paint to draw a rough sketch on the surface of the glaze layer formed on the surface of the ceramic product substrate, and then fired in the above temperature range to give metal nano particles with an average particle diameter of 200 nm or less to the surface. The antibacterial ceramic product of the present invention in which particles are present is produced.
  • the reason why the firing temperature is limited to 800 to 1600 ° C is as follows. That is, when the firing temperature is less than the above range, for example, when the ceramic surface treatment agent is a glaze, the glaze component cannot be sufficiently sintered, so that the density of the formed glaze layer may be reduced. There is. Further, in the case of a base paint, there is a risk that the density of the formed base sketch, the adhesion to the glaze layer, and the like may be reduced. On the other hand, when the firing temperature exceeds the above range, the metal nanoparticles exposed on the surface of the glaze layer and the lower paint are volatilized by the heat of firing and are easily lost.
  • the firing temperature depends on the type of glaze component, pigment, etc., but is 1000 to 1600 even within the above range. C, especially from 1150; It's about C.
  • the firing may be performed in an air atmosphere, or depending on the type of glaze or lower paint, it may be performed in an appropriate firing atmosphere such as a reducing atmosphere.
  • the firing time is set so that the average particle diameter of the metal nanoparticles formed on the surface of the ceramic product to be produced is 200 nm or less and imparts good antibacterial properties. , 20 minutes to 30 hours is preferred!
  • the antibacterial ceramic product of the present invention that can be manufactured by the above-described manufacturing method or the like has metal nanoparticles having an average particle diameter of 200 nm or less and containing at least silver on the surface. It is characterized by that.
  • the reason why the average particle diameter of the metal nanoparticles present on the surface is limited to 200 nm or less is as follows. That is, the average particle Within the above range, the utilization efficiency of the antibacterial metal forming the metal nanoparticles can be improved, and sufficient antibacterial properties commensurate with the amount of the antibacterial metal used can be obtained. For this reason, the amount of antibacterial metal used can be reduced, and for example, it is possible to reliably prevent the glaze layer and the background from becoming a predetermined color or increasing the cost of ceramic products. .
  • the average particle size is preferably 0.5 to 100 nm, and more preferably 0.5 to 50 nm, even within the above range.
  • the average particle size can be determined from the particle size by direct observation. Specifically, for example, particles of at least 10 metal nanoparticles obtained by observing the surface of an antibacterial ceramic product using a high-resolution SEM (scanning electron microscope) having an observation magnification of 10,000 times or more. The average value can be obtained from the diameter to obtain the average particle diameter.
  • Silver nitrate (I) as a metal compound is dissolved in pure water, ammonia water is added to adjust the pH of the solution to 10, and then maleic acid as a dispersant.
  • a copolymer (Crobacs (registered trademark) 400-21S manufactured by Nippon Kasei Co., Ltd., molecular weight: 9000, acid value: 10 OmgKOH / g) was added and dissolved, and then ethylene glycol as a reducing agent was purified.
  • a solution dissolved in water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was silver nitrate (I): 25 g / liter, maleic acid copolymer: 20 g / liter, reducing agent: 120 g / liter.
  • the reaction system was reacted at 85 ° C for 180 minutes with vigorous stirring at a force and stirring speed of lOOrpm to precipitate silver nanoparticles, and then diluted with pure water by ultrafiltration treatment.
  • the impurities were removed by repeating the above to obtain a dispersion liquid in which the silver nanoparticles were colloidally dispersed.
  • the 90% cumulative diameter D of the particle size distribution of the silver nanoparticles in the above dispersion is determined using the laser Doppler method.
  • the solid content concentration in the dispersion is 10% by weight, and the dispersion per 100 parts by weight of silver nanoparticles is The amount of the agent was 9 parts by weight.
  • the dispersion lOOOOg was collected in a glass container, and the glass container was allowed to stand for 24 hours in a thermostatic bath maintained at 25 ° C. in a state where the glass container was sealed with a polypropylene resin cap. The supernatant was removed with a dropper, and the sediment settled on the bottom of the glass container was collected, dried at 105 ° C for 3 hours, and weighed with a precision balance. The sedimentation amount was 0% of the total amount of silver nanoparticles. It was confirmed to be 03% by weight.
  • ⁇ Preparation of ceramic surface treatment agent 35.58 parts by weight of feldspar, 13.5 parts by weight of lime, 9.7 parts by weight of clay, and 40.2 parts by weight of silica sand as glaze components
  • feldspar 13.5 parts by weight of lime
  • silica sand 40.2 parts by weight of silica sand as glaze components
  • the previously prepared dispersion of silver nanoparticles is added to the slurry so that the ratio of silver nanoparticles in the total amount of solids is 0.02 wt%, and mixed to obtain a ceramic surface treatment agent.
  • a glaze was prepared.
  • the glaze it is expressed as a percentage of the amount of the dispersing agent relative to the amount of metal nanoparticles from the content of the dispersant obtained by performing TG-MASS analysis and the content of silver obtained by performing ICP analysis.
  • the content was determined to be 3.3% by weight.
  • Example 2 In accordance with the method described in Example 1, as shown in Table 1, five types of silver nanoparticle dispersions having different 90% cumulative diameter D of the particle size distribution of silver nanoparticles were prepared, and the silver nanoparticles were Dispersion
  • the glaze was prepared under the same conditions as in Example 1 to produce an antibacterial ceramic product, and then the sterilization rate was determined to evaluate the antibacterial property. The results are shown in Table 1.
  • the 90% cumulative diameter D of the particle size distribution of silver nanoparticles in the glaze was set to 150 nm or less.
  • a silver nanoparticle dispersion having 90 nm and a sedimentation amount of 0.06% by weight of the total amount of silver nanoparticles was prepared. Using the silver nanoparticle dispersion, the content of the dispersant was 1.2% by weight. After the preparation of the glaze, an antibacterial ceramic product was manufactured in the same manner as in Example 1 except that the firing conditions shown in Table 2 were used, and the antibacterial properties were evaluated by obtaining the sterilization rate. did. The results are shown in Table 2.
  • the 90% cumulative diameter D of the particle size distribution of the silver nanoparticles was 33.
  • Example 1 contains metal nanoparticles made of silver or a combination of silver and palladium, and 90% cumulative diameter of the particle size distribution of the metal nanoparticles D
  • a glaze having a dispersant content of 12.5 to 15.0 wt% is prepared, Using glaze, antibacterial ceramic products were produced under the same conditions as in Example 1, the sterilization rate was determined, and antibacterial properties were evaluated.
  • the dispersant polyacrylic acid (molecular weight 5000) was used. The results are shown in Table 4.
  • the silver content is preferably 50% by weight or more, particularly 80% by weight or more in the total amount of the alloy!

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Powder Metallurgy (AREA)

Abstract

Disclosed is a novel antibacterial ceramic product which has a high antibacterial metal use efficiency and therefore can provide a satisfactory antibacterial property even when the antibacterial metal is used in a reduced amount compared to a conventional one. Also disclosed is a ceramic surface treatment agent which can be used for the production of the antibacterial ceramic product. Further disclosed is a method for producing an antibacterial ceramic product by using the ceramic surface treatment agent. The antibacterial ceramic product has, on its surface, a metal nanoparticle which comprises at least silver and has an average particle diameter of 200 nm or less. The ceramic surface treatment agent comprises a metal nanoparticle dispersed in a dispersion medium in a colloidal form, wherein the metal nanoparticle has a 90% accumulated diameter (D90) in the particle size distribution of 150 nm or less. The method for producing the an antibacterial ceramic product comprises the steps of applying the ceramic surface treatment agent onto the surface of a ceramic product and firing the ceramic product at 800 to 1600˚C.

Description

明 細 書  Specification
抗菌性窯業製品、窯業表面処理剤、および抗菌性窯業製品の製造方法 技術分野  Antibacterial ceramic products, ceramic surface treatment agents, and methods of manufacturing antibacterial ceramic products
[0001] 本発明は、衛生陶器、和洋食器等の陶磁器製品に代表される窯業製品の表面に、 抗菌性を付与した抗菌性窯業製品と、前記抗菌性窯業製品を製造するために用い る窯業表面処理剤と、前記窯業表面処理剤を用いた抗菌性窯業製品の製造方法と に関するものである。  [0001] The present invention relates to an antibacterial ceramic product provided with antibacterial properties on the surface of ceramic products represented by ceramic products such as sanitary ware and Japanese and Western tableware, and a ceramic industry used for manufacturing the antibacterial ceramic products. The present invention relates to a surface treatment agent and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent.
背景技術  Background art
[0002] 窯業製品の表面に、抗菌性を付与するための抗菌剤としては、銀、銅、錫、亜鉛等 の金属(以下、これらの金属を「抗菌性金属」と総称する場合がある)が用いられる。こ れらの抗菌性金属は、そのイオンが触媒として機能して、水中に溶け込んでいる酸素 を活性酸素に変化させて、変化させた活性酸素の作用によって、菌ゃカビ等の繁殖 を抑制する、いわゆるオリゴジナミ一効果によって、抗菌性を発現することが知られて いる。前記抗菌性金属を用いて、窯業製品の表面に抗菌性を付与する場合には、で きるだけ長期間に亘つて、良好な抗菌性を持続させることを考慮して、窯業製品の素 地 (素焼き品等)の表面に形成する釉薬層や、あるいは、前記素地自体に、抗菌性 金属を含有させるのが一般的である。  [0002] Antibacterial agents for imparting antibacterial properties to the surface of ceramic products include metals such as silver, copper, tin and zinc (hereinafter, these metals may be collectively referred to as "antibacterial metals") Is used. These antibacterial metals function as a catalyst, change oxygen dissolved in water to active oxygen, and suppress the growth of fungi and fungi by the action of the changed active oxygen. It is known that antibacterial properties are exhibited by the so-called oligodynamic effect. When antibacterial properties are imparted to the surface of ceramic products using the antibacterial metal, the substrate of ceramic products is considered in consideration of maintaining good antibacterial properties for as long as possible. In general, an antibacterial metal is contained in the glaze layer formed on the surface of the unglazed product or the like, or in the substrate itself.
[0003] 例えば、特許文献 1には、抗菌性金属が、焼成時に、釉薬成分の溶融物によって侵 食されるのを防止するため、前記抗菌性金属を、ハイドロキシアパタイトに担持させて 複合粒子を形成し、前記複合粒子を釉薬に添加した後、前記釉薬を、素地の表面に 塗布し、焼成して、抗菌性金属を含む釉薬層を形成することが記載されている。また 、特許文献 2には、同様の目的で、抗菌性金属のイオンを、リン酸カルシウム化合物 に含有させて複合粒子を形成し、前記複合粒子を釉薬に添加した後、前記釉薬を、 素地の表面に塗布し、焼成して、抗菌性金属を含む釉薬層を形成することが記載さ れている。  [0003] For example, in Patent Document 1, in order to prevent the antibacterial metal from being eroded by the melt of the glaze component during firing, the antibacterial metal is supported on hydroxyapatite to form composite particles. After forming and adding the composite particles to the glaze, the glaze is applied to the surface of the substrate and baked to form a glaze layer containing an antibacterial metal. Further, in Patent Document 2, for the same purpose, an antibacterial metal ion is contained in a calcium phosphate compound to form composite particles, and after adding the composite particles to the glaze, the glaze is added to the surface of the substrate. It is described that a glaze layer containing an antibacterial metal is formed by applying and baking.
[0004] また、特許文献 3には、抗菌性金属を保持させた、複合粒子としての無機顔料を、釉 薬に添加し、前記釉薬を、素地の表面に塗布した後、焼成して、抗菌性金属を含む 釉薬層を形成したり、前記無機顔料を、窯業製品の素地のもとになる陶土や磁土に 添加し、前記陶土等を、窯業製品の形状に成型した後、焼成して、前記素地自体に 抗菌性金属を含有させたりすることが記載されている。さらに、特許文献 4には、酸化 銀、金属銀、もしくは任意の銀化合物を下絵具に添加し、前記下絵具を用いて、窯 業製品の素地の表面や、前記表面に形成した釉薬層の表面に下絵を描いて焼成し たり、前記酸化銀等を釉薬に添加し、前記釉薬を、素地の表面や、前記表面に形成 した釉薬層の表面に塗布して焼成したりすることで、抗菌性金属を含む下絵や釉薬 層等を形成することが記載されて!/、る。 [0004] Also, in Patent Document 3, an inorganic pigment as composite particles retaining an antibacterial metal is added to a glaze, and the glaze is applied to the surface of the substrate and then baked to obtain an antibacterial agent. Contains metallic A glaze layer is formed, or the inorganic pigment is added to the clay or magnetic earth that is the basis of the ceramic product base. After the ceramic clay is molded into the shape of the ceramic product, it is baked and applied to the base itself. It describes that an antibacterial metal is contained. Further, in Patent Document 4, silver oxide, metallic silver, or an arbitrary silver compound is added to the lower paint, and the surface of the ceramic product base or the glaze layer formed on the surface is added using the lower paint. Antibacterial by drawing a sketch on the surface, adding silver oxide or the like to the glaze, and applying the glaze to the surface of the substrate or the glaze layer formed on the surface and baking. It describes the formation of a rough sketch or glaze layer containing a functional metal!
特許文献 1 :特開平 5— 201747号公報 (請求項 1、段落 [0007]、段落 [0010]) 特許文献 2 :特開平 6— 127975号公報 (請求項 1、段落 [0008]〜[0009]) 特許文献 3 :特開平 7— 233334号公報 (請求項 1、 2、段落 [0009]、段落 [0025]) 特許文献 4 :特開平 7— 196384号公報 (請求項;!〜 8、段落 [0014])  Patent Document 1: JP-A-5-201747 (Claim 1, Paragraph [0007], Paragraph [0010]) Patent Document 2: JP-A-6-127975 (Claim 1, Paragraphs [0008] to [0009] Patent Document 3: Japanese Patent Laid-Open No. 7-233334 (Claims 1, 2, Paragraph [0009], Paragraph [0025]) Patent Document 4: Japanese Patent Laid-Open No. 7-196384 (Claims;! To 8, Paragraph [ 0014])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところ力 前記従来の窯業製品は、いずれも、抗菌性金属の利用効率が低いため、 抗菌性金属の使用量に見合う十分な抗菌性が得られず、高い抗菌性を得るために は、抗菌性金属の使用量を多くしなければならないため、例えば、釉薬層や下絵が 所定の色目にならなかったり(所定の色目より黒ずんだ色目になったりする場合が多 い)、窯業製品のコストアップに繋がったりするといつた問題を生じるおそれがある。  [0005] However, since all of the above conventional ceramic products have low utilization efficiency of antibacterial metals, sufficient antibacterial properties corresponding to the amount of antibacterial metals used cannot be obtained, and in order to obtain high antibacterial properties. Because the amount of antibacterial metal used must be increased, for example, the glaze layer or background may not have a predetermined color (often darker than the predetermined color), If it leads to cost increase, it may cause a problem.
[0006] 本発明の目的は、抗菌性金属の利用効率が高いため、前記抗菌性金属の使用量を 、現状より少なくしても、十分な抗菌性を得ることができる、新規な抗菌性窯業製品と 、前記抗菌性窯業製品を製造するために用いることができる窯業表面処理剤と、前 記窯業表面処理剤を用いた抗菌性窯業製品の製造方法とを提供することにある。 課題を解決するための手段  [0006] An object of the present invention is to provide a novel antibacterial ceramic industry that can obtain sufficient antibacterial properties even when the amount of the antibacterial metal used is less than the current amount because the use efficiency of the antibacterial metal is high. An object of the present invention is to provide a product, a ceramic surface treatment agent that can be used for producing the antibacterial ceramic product, and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent. Means for solving the problem
[0007] 抗菌性金属による、先に説明したオリゴジナミ一効果に基づく抗菌性は、製造される 窯業製品の表面、例えば、釉薬層を有する窯業製品であれば、前記釉薬層の表面 に露出した抗菌性金属と、水との接触面積が大きいほど強くなり、前記接触面積は、 抗菌性金属の粒子径が小さぐ比表面積が大きいほど、大きくなる傾向がある。ところ 力 発明者の検討によると、従来の窯業製品は、いずれも、その表面に露出している 抗菌性金属の粒子径が大きぐ比表面積が小さいため、抗菌性金属の利用効率が 低くなつて、使用した抗菌性金属の量に見合う、十分な抗菌性が得られないのである[0007] The antibacterial property of the antibacterial metal based on the oligodynamic effect described above is the antibacterial exposed on the surface of the glaze layer in the case of a ceramic product to be manufactured, for example, a ceramic product having a glaze layer The contact area between the conductive metal and water increases, and the contact area tends to increase as the particle size of the antibacterial metal decreases and the specific surface area increases. By the way According to the inventor's investigation, all of the conventional ceramic products have a large particle size of the antibacterial metal exposed on the surface and a small specific surface area, so the utilization efficiency of the antibacterial metal is low. Not enough antibacterial properties to meet the amount of antibacterial metal used.
Yes
[0008] そこで、発明者は、抗菌性金属の利用効率を高めるため、窯業製品の表面に露出す る抗菌性金属の粒子径の範囲を規定することを検討した結果、前記抗菌性金属が、 平均粒子径 200nm以下の金属ナノ粒子として、窯業製品の表面に存在していれば よいことを見出した。したがって、請求項 1に記載の発明は、表面に、少なくとも銀を 含む、平均粒子径 200nm以下の金属ナノ粒子が存在して!/、ることを特徴とする抗菌 性窯業製品である。  [0008] Therefore, as a result of examining the range of the particle diameter of the antibacterial metal exposed on the surface of the ceramic product in order to increase the utilization efficiency of the antibacterial metal, the inventor has It was found that metal nanoparticles with an average particle diameter of 200 nm or less should be present on the surface of ceramic products. Therefore, the invention according to claim 1 is an antibacterial ceramic product characterized in that metal nanoparticles containing at least silver and having an average particle diameter of 200 nm or less are present on the surface!
[0009] また発明者は、先に説明した平均粒子径 200nm以下の金属ナノ粒子を、窯業製品 の表面に、できるだけ多く露出させて、前記金属ナノ粒子を構成する抗菌性金属の 利用効率を、さらに高めることを検討した。その結果、分散媒中に、粒度分布の 90% 累積径 D 力 S l 50nm以下の金属ナノ粒子をコロイド分散させた窯業表面処理剤を、  [0009] Further, the inventor exposes as many metal nanoparticles having an average particle diameter of 200 nm or less as described above to the surface of ceramic products as much as possible, thereby improving the utilization efficiency of the antibacterial metal constituting the metal nanoparticles. We examined further enhancement. As a result, a ceramic surface treatment agent in which metal nanoparticles with a 90% cumulative diameter D force S l 50 nm or less of particle size distribution are colloidally dispersed in a dispersion medium,
90  90
釉薬層を形成するための釉薬や、下絵を形成するための下絵具等として用いればよ いことを見出した。したがって、請求項 2に記載の発明は、分散媒中に、粒度分布の 90%累積径 D 力 S l 50nm以下の金属ナノ粒子力 コロイド分散していることを特徴と  It has been found that it may be used as a glaze for forming a glaze layer or as a background paint for forming a sketch. Therefore, the invention described in claim 2 is characterized in that a metal nanoparticle force colloidal dispersion having a 90% cumulative diameter D force S l of 50 nm or less of the particle size distribution is dispersed in the dispersion medium.
90  90
する窯業表面処理剤である。  It is a ceramic surface treatment agent.
[0010] 抗菌性金属による抗菌性は、窯業製品の表面、例えば釉薬層を有する窯業製品で あれば、前記釉薬層の表面に露出して、水と接触可能な抗菌性金属においてのみ 発現し、釉薬層等の内部に存在する抗菌性金属は、抗菌性の付与には、殆ど寄与し ない。そのため、抗菌性金属の利用効率を高めるためには、釉薬層等の表面に露出 しない抗菌性金属の割合をできるだけ少なくして、相対的に、前記表面に露出する 抗菌性金属の割合を多くすることが肝要である。ところ力 先に説明した特許文献 1 〜3に記載された、抗菌性金属を担持した複合粒子や、特許文献 4に記載された酸 化銀、水に不溶性、難溶性の銀化合物等は、釉薬中で凝集しやすい上、凝集を生じ ると沈降を生じやすい。また、特許文献 4に記載された金属銀は、釉薬成分よりも比 重が大き!/、ため、やはり釉薬中で沈降を生じやす!/、。 [0011] そのため、これらの成分を含有する釉薬を用いて形成した釉薬層を有する従来の窯 業製品は、前記釉薬層の表面に露出しない抗菌性金属の割合が多くなりやすぐ先 に説明したように、表面に露出した抗菌性金属の粒子径が大きいことと相まって、前 記抗菌性金属の利用効率が大きく低下してしまう。また、前記のように、凝集したり沈 降したりしゃすい成分を含む釉薬を、窯業製品の製造に使用する場合には、力べ拌 して凝集物を解砕したり、沈降物を再分散させたりする操作を頻繁に行う必要がある 。しかも、それでもなお、凝集や沈降によって、釉薬の組成が刻々と変化するため、 前記釉薬を用いて形成した釉薬層の表面における、抗菌性金属の露出量や粒子径 と、それに伴う抗菌性能とが、製造した窯業製品ごとにばらつきやすいという問題もあ [0010] The antibacterial property due to the antibacterial metal is manifested only in the antibacterial metal exposed to the surface of the glaze layer and in contact with water if it is a ceramic product having a glaze layer, for example, Antibacterial metals present in the glaze layer and the like hardly contribute to imparting antibacterial properties. Therefore, in order to increase the utilization efficiency of antibacterial metals, the proportion of antibacterial metals that are not exposed on the surface of the glaze layer or the like is reduced as much as possible, and the proportion of antibacterial metals that are exposed on the surface is relatively increased. It is important. However, the composite particles carrying antibacterial metals described in Patent Documents 1 to 3 described earlier, the silver oxide described in Patent Document 4, water-insoluble and poorly soluble silver compounds, and the like are glazes. In addition to being easily aggregated, sedimentation is likely to occur when aggregation occurs. In addition, the silver metal described in Patent Document 4 has a specific gravity greater than that of the glaze component! [0011] Therefore, a conventional ceramic product having a glaze layer formed using a glaze containing these components has been described earlier because the proportion of antibacterial metals not exposed on the surface of the glaze layer increased. Thus, combined with the large particle size of the antibacterial metal exposed on the surface, the utilization efficiency of the antibacterial metal is greatly reduced. In addition, as described above, when a glaze containing agglomerated or settled or slushy components is used in the manufacture of ceramic products, the agglomerates are crushed by vigorous stirring, or the sediments are recycled. It is necessary to frequently perform operations such as dispersion. Moreover, since the composition of the glaze is constantly changing due to aggregation and sedimentation, the exposure amount and particle size of the antibacterial metal on the surface of the glaze layer formed using the glaze and the associated antibacterial performance There is also a problem that it varies easily for each ceramic product manufactured.
[0012] 一方、特許文献 4に記載された水溶性の銀化合物は、通常は水性である釉薬中に、 均一に溶解するため、凝集や沈降等は生じない。しかし、焼成した際に、前記銀化 合物が熱分解することで発生した銀の原子を析出の核として、次々と銀の原子が析 出して、銀粒子が徐々に成長するという経過を迪るため、特に、釉薬層の表面におい て、銀粒子が、十分な大きさに成長する前の段階で、焼成の熱によって揮発して、失 われてしまいやすい。そのため、釉薬層の表面に露出する銀の割合が少なくなつて、 前記銀の、抗菌性金属としての利用効率が大きく低下してしまう。また、釉薬層中に 析出した銀によって、前記釉薬層が所定の色目にならな力、つたりする場合も多い。 [0012] On the other hand, the water-soluble silver compound described in Patent Document 4 is uniformly dissolved in a glaze that is usually aqueous, and therefore does not cause aggregation or sedimentation. However, when firing, the silver atoms generated as a result of thermal decomposition of the silver compound are used as the nucleus of precipitation, and the silver atoms are successively deposited and the silver particles gradually grow. Therefore, particularly on the surface of the glaze layer, the silver particles are liable to be volatilized and lost by the heat of firing at a stage before growing to a sufficient size. Therefore, if the ratio of silver exposed on the surface of the glaze layer is reduced, the utilization efficiency of the silver as an antibacterial metal is greatly reduced. In addition, the silver deposited in the glaze layer often causes the glaze layer to have a specific color.
[0013] これに対し、請求項 2に記載の発明の窯業表面処理剤においては、粒度分布の 90 %累積径 D 力 S l 50nm以下の金属ナノ粒子が、分散媒中に、均一かつ安定的にコ  [0013] On the other hand, in the ceramic surface treatment agent of the invention according to claim 2, the metal nanoparticles having a 90% cumulative diameter D force Sl of 50 nm or less of the particle size distribution are uniformly and stably present in the dispersion medium. To
90  90
ロイド分散しており、凝集したり、沈降したりしにくいため、前記本発明の窯業表面処 理剤を、釉薬や下絵具等として、窯業製品の製造に使用した場合には、力べ拌して 凝集物を解砕したり、沈降物を再分散させたりする操作を頻繁に行う必要がない上、 前記操作を行わなくても、抗菌性金属の露出量や粒子径と、それに伴う抗菌性能と が一定した抗菌性窯業製品を製造することができる。  When the ceramic surface treatment agent of the present invention is used in the manufacture of ceramic products as glazes or underpaints, it is difficult to agglomerate or settle. It is not necessary to frequently perform operations such as crushing aggregates and redispersing sediments, and even without performing the above operations, the exposure amount and particle size of the antibacterial metal and the antibacterial performance associated therewith It is possible to produce antibacterial ceramic products with a constant and.
[0014] また、前記金属ナノ粒子は、焼成の熱に曝されても揮発して失われずに、製造後の 抗菌性窯業製品の表面に残留しやすいため、残留した金属ナノ粒子の平均粒子径 力 ¾00nm以下であって、先に説明したように比表面積、ひいては水との接触面積が 大きいことと相まって、前記抗菌性窯業製品における、金属ナノ粒子を構成する抗菌 性金属の利用効率を、これまでより向上することもできる。そのため、請求項 2に記載 の発明の窯業表面処理剤によれば、抗菌性金属の使用量を、現状より少なくしても、 十分な抗菌性を得ることが可能となる。また、釉薬層や下絵が所定の色目にならなか つたり、窯業製品のコストアップに繋がったりするのを、確実に防止することもできる。 [0014] Further, since the metal nanoparticles are not volatilized and lost even when exposed to the heat of firing, and remain on the surface of the manufactured antibacterial ceramic product, the average particle diameter of the remaining metal nanoparticles The force is ¾00 nm or less, and as described above, the specific surface area and thus the contact area with water are Combined with the large size, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles in the antibacterial ceramic product can be improved more than before. Therefore, according to the ceramic surface treatment agent of the invention described in claim 2, it is possible to obtain sufficient antibacterial properties even if the amount of the antibacterial metal used is smaller than the current amount. In addition, it is possible to reliably prevent the glaze layer and the background from becoming a predetermined color and increasing the cost of ceramic products.
[0015] 金属ナノ粒子を形成する抗菌性金属としては、先に例示した抗菌性金属の中でも、 オリゴジナミ一効果に基づく抗菌性に優れた銀が好ましい。したがって、請求項 3に 記載の発明は、金属ナノ粒子が、少なくとも銀を含んでいることを特徴とする請求項 2 に記載の窯業表面処理剤である。また、分散媒が水である場合に、金属ナノ粒子の 、分散媒中でのコロイド分散を、より安定的に維持するためには、前記金属ナノ粒子 、親水性基を有する分散剤によって被覆された状態で、コロイド分散しているのが 好ましい。したがって、請求項 4に記載の発明は、金属ナノ粒子が、親水性基を有す る分散剤によって被覆された状態で、分散媒としての水中にコロイド分散していること を特徴とする請求項 2または 3に記載の窯業表面処理剤である。 As the antibacterial metal forming the metal nanoparticles, among the antibacterial metals exemplified above, silver excellent in antibacterial property based on the oligodynamic effect is preferable. Therefore, the invention described in claim 3 is the ceramic surface treatment agent according to claim 2, wherein the metal nanoparticles contain at least silver. Further, when the dispersion medium is water, in order to maintain the colloidal dispersion of the metal nanoparticles in the dispersion medium more stably, the metal nanoparticles are coated with a dispersant having a hydrophilic group. In this state, it is preferably dispersed in a colloid. Therefore, the invention according to claim 4 is characterized in that the metal nanoparticles are colloidally dispersed in water as a dispersion medium in a state where they are coated with a dispersant having a hydrophilic group. The ceramic surface treatment agent according to 2 or 3.
[0016] 金属ナノ粒子の、コロイド分散の安定化の度合いとしては、前記金属ナノ粒子を含む 分散液を調製後、 24時間、経過した時点での、前記金属ナノ粒子の沈降量が、その 総量の 0. 1重量%以下であることが好ましい。したがって、請求項 5に記載の発明は 、調製後、 24時間、経過した時点での金属ナノ粒子の沈降量が、前記金属ナノ粒子 の総量の 0. 1重量%以下である分散液を用いて調製されたことを特徴とする請求項 2ないし 4のいずれかに記載の窯業表面処理剤である。また、請求項 6に記載の発明 は、窯業製品の表面に、請求項 2ないし 5のいずれかに記載の窯業表面処理剤を塗 布した後、 800〜; 1600°Cで焼成する工程を含むことを特徴とする抗菌性窯業製品 の製造方法である。前記本発明の製造方法によれば、本発明の窯業表面処理剤を 、窯業製品の表面に塗布して、前記温度範囲で焼成するだけで、表面に、平均粒子 径 200nm以下の金属ナノ粒子が存在している本発明の抗菌性窯業製品を、生産性 よく製造すること力でさる。 [0016] The degree of stabilization of the colloidal dispersion of the metal nanoparticles is the total amount of the metal nanoparticles settled after 24 hours from the preparation of the dispersion containing the metal nanoparticles. It is preferably 0.1% by weight or less. Therefore, the invention according to claim 5 uses a dispersion liquid in which the amount of sedimentation of the metal nanoparticles after the lapse of 24 hours after preparation is 0.1% by weight or less of the total amount of the metal nanoparticles. 5. The ceramic surface treatment agent according to claim 2, which is prepared. The invention according to claim 6 includes a step of baking at 800 to 1600 ° C. after coating the ceramic surface treatment agent according to any of claims 2 to 5 on the surface of the ceramic product. This is a method for producing an antibacterial ceramic product. According to the production method of the present invention, the metal nanoparticle having an average particle diameter of 200 nm or less is formed on the surface simply by applying the ceramic surface treatment agent of the present invention to the surface of the ceramic product and firing in the temperature range. It is the ability to produce the antibacterial ceramic products of the present invention that are present with high productivity.
発明の効果 [0017] 本発明によれば、抗菌性金属の利用効率が高いため、前記抗菌性金属の使用量を 、現状より少なくしても、十分な抗菌性を得ることができる、新規な抗菌性窯業製品と 、前記抗菌性窯業製品を製造するために用いることができる窯業表面処理剤と、前 記窯業表面処理剤を用いた抗菌性窯業製品の製造方法とを提供することができる。 図面の簡単な説明 The invention's effect [0017] According to the present invention, since the utilization efficiency of the antibacterial metal is high, a novel antibacterial ceramic industry that can obtain sufficient antibacterial properties even if the amount of the antibacterial metal used is less than the current amount. It is possible to provide a product, a ceramic surface treatment agent that can be used to produce the antibacterial ceramic product, and a method for producing an antibacterial ceramic product using the ceramic surface treatment agent. Brief Description of Drawings
[0018] [図 1]実施例 2の試料 No. 2— 3で製造した抗菌性窯業製品の、銀ナノ粒子が形成さ れた表面を示す走査型電子顕微鏡写真である。  [0018] FIG. 1 is a scanning electron micrograph showing the surface on which silver nanoparticles are formed of the antibacterial ceramic product produced in Sample No. 2-3 of Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 《窯業表面処理剤》 本発明の抗菌性窯業製品を製造するために用いる、本発明の 窯業表面処理剤は、分散媒中に、粒度分布の 90%累積径 D 力 50nm以下の金 [Ceramic surface treatment agent] The ceramic surface treatment agent of the present invention used for producing the antibacterial ceramic product of the present invention is a gold having 90% cumulative particle size distribution D force of 50 nm or less in a dispersion medium.
90  90
属ナノ粒子が、コロイド分散していることを特徴とするものである。金属ナノ粒子の、粒 度分布の 90%累積径 D 力 50nm以下に限定されるのは、前記範囲を超える、大き  The genus nanoparticles are colloidally dispersed. The 90% cumulative diameter of metal nanoparticles, D force is limited to 50 nm or less.
90  90
な金属ナノ粒子を含む窯業表面処理剤を、例えば、下絵具や釉薬として使用して、 窯業製品の素地の表面や、前記表面に形成した釉薬層の表面に塗布して焼成した としても、その表面に、平均粒子径 200nm以下の、微小な金属ナノ粒子が存在し、 つ、抗菌性金属の利用効率が高い、本発明の抗菌性窯業製品を製造できないた めである。  Even if a ceramic surface treatment agent containing various metal nanoparticles is applied to the surface of a ceramic product base or a glaze layer formed on the surface using, for example, a base paint or a glaze, This is because there are minute metal nanoparticles having an average particle diameter of 200 nm or less on the surface, and the antibacterial ceramic product of the present invention with high utilization efficiency of the antibacterial metal cannot be produced.
[0020] すなわち、 90%累積径 D が前記範囲を超える、粒子径の大きな金属ナノ粒子は、  [0020] That is, the 90% cumulative diameter D exceeds the above range, the metal nanoparticles having a large particle diameter,
90  90
窯業表面処理剤中で、安定にコロイド分散させることができず、凝集したり沈降したり しゃすいため、製造される抗菌性窯業製品の表面に露出する金属ナノ粒子の割合 が少なくなる。しかも前記粒子径の大きな金属ナノ粒子を含む窯業表面処理剤を用 いた場合には、抗菌性窯業製品の表面に形成される金属ナノ粒子の平均粒子径を 200nm以下にすることが困難である。そのため、抗菌性窯業製品の表面に露出する 金属ナノ粒子の割合が少ないことと、露出した金属ナノ粒子の平均粒子径が 200nm を超えて、比表面積が小さいこととが相まって、前記抗菌性窯業製品における、金属 ナノ粒子を構成する抗菌性金属の利用効率が低下するのである。なお、 90%累積 径 D は、前記範囲内でも 40nm以上であるのが好ましい。また、金属ナノ粒子の、粒 Since the colloidal dispersion cannot be stably performed in the ceramic surface treatment agent, the ratio of metal nanoparticles exposed on the surface of the manufactured antibacterial ceramic product is reduced because it aggregates or settles. Moreover, when the ceramic surface treatment agent containing metal nanoparticles having a large particle diameter is used, it is difficult to make the average particle diameter of the metal nanoparticles formed on the surface of the antibacterial ceramic product 200 nm or less. For this reason, the antibacterial ceramic product has a small proportion of metal nanoparticles exposed on the surface of the antibacterial ceramic product, and the average particle diameter of the exposed metal nanoparticles exceeds 200 nm and the specific surface area is small. In this case, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles is reduced. The 90% cumulative diameter D is preferably 40 nm or more even within the above range. Also, metal nanoparticles, grains
90 90
度分布のメジアン径 D は、 lOOnm以下であるのが好ましい。金属ナノ粒子の、粒度 分布の 90%累積径 D 、およびメジアン径 D は、本発明では、レーザードップラー法 The median diameter D of the degree distribution is preferably lOOnm or less. Particle size of metal nanoparticles In the present invention, the 90% cumulative diameter D and the median diameter D of the distribution are the laser Doppler method.
90 50  90 50
を応用した粒度分布測定装置を用いて測定される、金属ナノ粒子の粒度分布から求 めることとする。  It is determined from the particle size distribution of the metal nanoparticles measured using a particle size distribution measuring device applying the above.
[0021] 金属ナノ粒子は、先に説明したように、銀、銅、錫、亜鉛等の、オリゴジナミ一効果に よって抗菌性を発現することができる抗菌性金属の 1種単体、または 2種以上の合金 によって形成できる他、前記抗菌性金属の 1種または 2種以上と、他の金属との合金 によって形成することもできる。特に、先に説明したように、オリゴジナミ一効果に基づ く抗菌性に優れた銀単体、もしくは銀を含む合金によって金属ナノ粒子を形成するの が好ましい。金属ナノ粒子が、銀と、他の抗菌性金属や、他の金属との合金からなる 場合には、銀による抗菌性を、より有効に発現させることを考慮すると、銀の含有割 合は、合金の総量中の 50重量%以上、特に 80重量%以上であるのが好ましい。  [0021] As described above, the metal nanoparticles are one kind of antibacterial metal such as silver, copper, tin, zinc, etc. that can exhibit antibacterial properties by an oligodynamic effect, or two or more kinds. In addition to the above-mentioned alloy, it can also be formed from an alloy of one or more of the antibacterial metals with other metals. In particular, as described above, it is preferable to form the metal nanoparticles from a silver simple substance or an alloy containing silver having excellent antibacterial properties based on the oligodynamic effect. If the metal nanoparticles are made of silver and other antibacterial metals or alloys with other metals, considering the more effective expression of antibacterial properties due to silver, the silver content is It is preferably 50% by weight or more, particularly 80% by weight or more of the total amount of the alloy.
[0022] 銀と共に合金を形成する、抗菌性金属以外の他の金属としては、白金、パラジウム、 ロジウム、イリジウム、ニッケル、鉄等が挙げられる。これらの金属は、いずれも、銀より も融点が高いため、合金の融点を高めて、金属ナノ粒子が、焼成時の熱によって融 着する等して成長するのを抑制して、抗菌性窯業製品の表面に露出される金属ナノ 粒子の平均粒子径が大きくなり過ぎるのを防止する働きをする。また、前記金属は、 銀と合金を形成することで、酸化したり、いわゆるマイグレーションを生じたりするのを 防止して、長期間に亘つて、銀による抗菌性を維持する働きもする。なお、金属ナノ 粒子は、任意の金属からなる芯材粒子の表面を、前記銀や、銀を含む合金等からな る表皮層で被覆した複合構造を有してレ、てもよレ、。  [0022] Examples of metals other than the antibacterial metal that form an alloy with silver include platinum, palladium, rhodium, iridium, nickel, and iron. Since these metals all have a higher melting point than silver, the melting point of the alloy is increased, and the metal nanoparticles are prevented from growing due to, for example, fusing due to heat during firing, and thus the antibacterial ceramic industry. It works to prevent the average particle size of the metal nanoparticles exposed on the surface of the product from becoming too large. In addition, the metal forms an alloy with silver, thereby preventing oxidation or so-called migration and maintaining the antibacterial property of silver for a long period of time. The metal nanoparticles may have a composite structure in which the surface of core particles made of any metal is covered with a skin layer made of silver, an alloy containing silver, or the like.
[0023] 金属ナノ粒子は、含浸法と呼ばれる高温処理法や、液相還元法、気相法などの、従 来公知の種々の方法によって製造することができる。このうち、液相還元法によって 金属ナノ粒子を製造するためには、例えば、水に、金属ナノ粒子を形成する金属の イオンのもとになる水溶性の金属化合物と、分散剤とを溶解すると共に、還元剤を加 えて、好ましくは、力べ拌下、一定時間、金属のイオンを還元反応させればよい。また 、液相還元法によって、合金からなる金属ナノ粒子を製造するためには、前記合金を 形成する、少なくとも 2種の金属のイオンのもとになる、 2種以上の水溶性の金属化合 物を併用すればよい。さらに、複合構造を有する金属ナノ粒子を製造するためには、 芯材粒子の析出と、前記芯材粒子の表面への被覆層の析出とを、液相還元法によ つて、順に行えばよい。液相還元法によって製造される金属ナノ粒子は、形状が球状 ないし粒状で揃っていると共に、粒度分布がシャープで、しかも、粒子径が小さいと いう特徴を有している。 [0023] The metal nanoparticles can be produced by various conventionally known methods such as a high temperature treatment method called an impregnation method, a liquid phase reduction method, and a gas phase method. Among these, in order to produce metal nanoparticles by the liquid phase reduction method, for example, a water-soluble metal compound that is a source of metal ions forming the metal nanoparticles and a dispersant are dissolved in water. In addition, a reducing agent may be added, and the metal ions may be preferably subjected to a reduction reaction with stirring for a certain period of time. Further, in order to produce metal nanoparticles made of an alloy by a liquid phase reduction method, two or more water-soluble metal compounds that form the alloy and are sources of at least two kinds of metal ions. May be used in combination. Furthermore, in order to produce metal nanoparticles having a composite structure, The deposition of the core material particles and the deposition of the coating layer on the surface of the core material particles may be sequentially performed by a liquid phase reduction method. The metal nanoparticles produced by the liquid phase reduction method are characterized by having a spherical or granular shape, a sharp particle size distribution, and a small particle size.
[0024] 金属のイオンのもとになる、水溶性の金属化合物としては、例えば、銀の場合は、硝 酸銀 (I)〔AgNO〕、メタンスルホン酸銀〔CH SO Ag〕等が挙げられ、銅の場合は、硝 酸銅 (II)〔Cu(NO )〕、硫酸銅 (Π)五水和物〔CuSO · 5Η〇〕等が挙げられる。錫の場 合は、塩化スズ (IV)五水和物〔SnCl · 5Η〇〕等が挙げられ、亜鉛の場合は、塩化亜 鉛(ZnCl )、硫酸亜鉛七水和物(ZnSO · 7H O)、硝酸亜鉛六水和物〔Zn (NO ) · 6H O〕等が挙げられる。 白金の場合は、ジニトロジアンミン白金 (II) (Pt (NO ) (NH [0024] Examples of the water-soluble metal compound that is a source of metal ions include silver nitrate (I) [AgNO] and silver methanesulfonate [CH 2 SO Ag] in the case of silver. In the case of copper, copper nitrate (II) [Cu (NO)], copper sulfate (Π) pentahydrate [CuSO · 5Η〇] and the like can be mentioned. In the case of tin, tin chloride (IV) pentahydrate [SnCl · 5Η〇] can be mentioned. In the case of zinc, zinc chloride (ZnCl), zinc sulfate heptahydrate (ZnSO · 7H O) And zinc nitrate hexahydrate [Zn (NO 3) · 6H 2 O] and the like. In the case of platinum, dinitrodiammine platinum (II) (Pt (NO) (NH
) )、へキサクロ口白金 (IV)酸六水和物(H [PtCl ] · 6Η Ο)等が挙げられ、パラジウム の場合は、硝酸パラジウム (Π)硝酸溶液〔Pd(NO ) /H 0〕、塩化パラジウム (II)溶液〔 PdCl〕等が挙げられる。 )), Hexachloroplatinum (IV) acid hexahydrate (H [PtCl] · 6Η Ο), etc. In the case of palladium, palladium nitrate (Π) nitric acid solution [Pd (NO) / H 0] And palladium chloride (II) solution [PdCl].
[0025] ロジウムの場合は、塩化ロジウム(III)三水和物〔RhCl · 3Η 0〕、硝酸ロジウム(III)溶 液〔Rh(NO )〕等が挙げられ、イリジウムの場合は、塩化イリジウム (IIlKlrCl〕等が挙 げられる。ニッケルの場合は、塩化ニッケル (Π)六水和物〔NiCl · 6Η 0〕、硝酸ニッケ ル (Π)六水和物〔Ni(NO ) · 6Η 0〕等が挙げられ、鉄の場合は、硝酸鉄 (III)六水和物 、九水和物(Fe (NO ) · 6Η 0、 9H O)、塩化鉄 (Π)四水和物(FeCl ·4Η Ο)、硫酸 鉄 (Π)七水和物(FeSO · 7Η Ο)、ァセチルアセトン鉄 (III) (Fe〔CH (COCH )〕)等 が挙げられる。 In the case of rhodium, rhodium (III) chloride trihydrate [RhCl · 3Η0], rhodium nitrate (III) solution [Rh (NO)] and the like can be mentioned. In the case of iridium, iridium chloride ( IIlKlrCl] etc. In the case of nickel, nickel chloride (Π) hexahydrate [NiCl · 6Η 0], nickel nitrate (Π) hexahydrate [Ni (NO) · 6Η 0], etc. In the case of iron, iron nitrate (III) hexahydrate, nonahydrate (Fe (NO) · 6Η 0, 9H O), iron chloride (Π) tetrahydrate (FeCl · 4Η Ο) , Iron sulfate (七) heptahydrate (FeSO · 7Η Ο), acetylacetone iron (III) (Fe [CH (COCH)]) and the like.
[0026] 還元剤としては、液相の反応系中で、金属のイオンを還元して、金属ナノ粒子として 析出させることができる種々の還元剤が、いずれも使用可能である。前記還元剤とし ては、例えば、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、遷移金属の イオン(三価のチタンイオン、二価のコバルトイオン等)が挙げられる。ただし、析出さ せる金属ナノ粒子の、粒度分布の 90%累積径 D を、先に説明した 150nm以下の 範囲内でも、できるだけ小さくするためには、金属のイオンの還元、析出速度を遅く するのが有効であり、還元、析出速度を遅くするためには、できるだけ還元力の弱い 還元剤を、選択して使用することが好ましい。 [0027] 還元力の弱い還元剤としては、例えば、メタノール、エタノール、 2—プロパノール等 のアルコールや、あるいはァスコルビン酸等が挙げられる他、エチレングリコール、グ ルタチオン、有機酸類(タエン酸、リンゴ酸、酒石酸等)、還元性糖類(グルコース、ガ ラタトース、マンノース、フノレクトース、スクロース、マノレトース、ラフイノース、スタキ才ー ス等)、および糖アルコール類(ソルビトール等)等が挙げられ、中でも、還元性糖類 や、その誘導体としての糖アルコール類が好ましい。 [0026] As the reducing agent, any of various reducing agents capable of reducing metal ions and precipitating them as metal nanoparticles in a liquid phase reaction system can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal ions (trivalent titanium ions, divalent cobalt ions, etc.). However, in order to make the 90% cumulative diameter D of the metal nanoparticles to be deposited as small as possible even within the range of 150 nm or less as described above, the reduction of metal ions and the deposition rate should be slowed. Is effective, and in order to slow down the reduction and precipitation rate, it is preferable to select and use a reducing agent having a reducing power as weak as possible. [0027] Examples of the reducing agent having a weak reducing power include alcohols such as methanol, ethanol, 2-propanol, and ascorbic acid, as well as ethylene glycol, glutathione, organic acids (taenoic acid, malic acid, Tartaric acid, etc.), reducing saccharides (glucose, galactose, mannose, funolectus, sucrose, manoletose, raffinose, starchy etc.), sugar alcohols (sorbitol, etc.), among others, reducing saccharides, Sugar alcohols as derivatives thereof are preferred.
[0028] 分散剤としては、親水性基を有し、水に対して良好な溶解性を有すると共に、析出し た金属ナノ粒子を、水中に良好に分散させることができる種々の分散剤が使用できる 。前記分散剤は、反応系中で、析出した金属ナノ粒子の表面を被覆して、前記金属 ナノ粒子の凝集を防止し、分散を維持する働きをする。金属ナノ粒子を析出させた液 相の反応系は、前記反応系から金属ナノ粒子を分離せずに、不純物のみを除去した 液相の状態のままで、窯業表面処理剤を調製するための出発原料として使用するこ とができる。その際に、分散剤は、不純物の除去工程では殆ど除去されずに残存し て、調製された窯業表面処理剤中で、先に説明したように、金属ナノ粒子の表面を被 覆して、凝集を防止すると共に、分散を維持する分散剤として機能し続けることができ  [0028] As the dispersant, various dispersants are used that have a hydrophilic group, have good solubility in water, and can disperse precipitated metal nanoparticles in water. it can . In the reaction system, the dispersing agent coats the surface of the deposited metal nanoparticles to prevent aggregation of the metal nanoparticles and maintain the dispersion. The liquid phase reaction system in which the metal nanoparticles are deposited is a starting point for preparing a ceramic surface treatment agent in a liquid phase state in which only impurities are removed without separating the metal nanoparticles from the reaction system. It can be used as a raw material. At that time, the dispersant remains almost removed in the impurity removal step, and covers the surface of the metal nanoparticles in the prepared ceramic surface treatment agent as described above, thereby agglomerating. And can continue to function as a dispersant to maintain dispersion
[0029] 分散斉 IJiま、数平均分子量 Μπ力 1000〜800000、特に 2000〜300000であるの力 S 好ましい。数平均分子量 Μηが前記範囲未満では、前記分散剤による、金属ナノ粒 子の凝集を防止して、分散を維持する効果が十分に得られないおそれがある。また、 前記範囲を超える場合には、窯業表面処理剤の粘度が高くなりすぎて、素地表面へ の塗布等の際の取り扱いが容易でなくなるおそれがある。分散剤に導入する親水性 基としては、ォキシ基(—〇—)、ヒドロキシ基 ( - ΟΗ)、カルボキシ基 ( - COOH)等 の含酸素官能基や、アミノ基( ΝΗ )、イミノ基(〉 ΝΗ)、アンモニゥム基 (-ΝΗ +) [0029] Dispersion homogeneous IJi, number average molecular weight Μπ force 1000 to 800,000, particularly 2000 to 300,000 force S is preferable. When the number average molecular weight Μη is less than the above range, there is a possibility that the effect of maintaining the dispersion by preventing the aggregation of the metal nanoparticles by the dispersing agent may not be obtained. Moreover, when the said range is exceeded, there exists a possibility that the handling at the time of the application | coating to a base surface etc. may become easy because the viscosity of a ceramics surface treatment agent becomes high too much. Hydrophilic groups introduced into the dispersant include oxygen-containing functional groups such as oxy group (—〇—), hydroxy group (-基), carboxy group (—COOH), amino group (ΝΗ), imino group (> ΝΗ), Ammonium group (-ΝΗ + )
2 4 等の含窒素官能基、スルファニル基(一 SH)、スルファンジィル基(一 S )等の含硫 黄官能基等が挙げられる。分散剤は、前記親水性基を、 1種単独で有していてもよい し、 2種以上を有していてもよい。  Examples include nitrogen-containing functional groups such as 2 4, sulfur-containing yellow functional groups such as sulfanyl group (one SH), sulfandyl group (one S), and the like. The dispersant may have one kind of the hydrophilic group, or two or more kinds.
[0030] 好適な分散剤としては、例えば、ポバール(ポリビュルアルコール)、ポリエチレンォキ シド、ポリプロピレンォキシド、ポリエチレンィミン、ポリビュルピロリドン、ポリアルカン チオール、マレイン酸系共重合体等が挙げられる。分散剤は、水、または水溶性有 機溶媒に溶解した溶液の状態で、反応系に添加することもできる。分散剤の添加量 は、前記分散剤が、窯業表面処理剤中で、金属ナノ粒子の表面を被覆して、その凝 集を防止する分散剤として、引き続いて使用される場合、前記窯業表面処理剤中で の、分散剤の、金属ナノ粒子の量に対する百分率で表される含有率は;!〜 20重量% 、特に 8〜; 15重量%であるのが好ましい。分散剤の含有率が、前記範囲未満では、 分散剤による、反応系中、および窯業表面処理剤中で、金属ナノ粒子の表面を被覆 して、その凝集を防止する効果が十分に得られな!/、おそれがある。 [0030] Suitable dispersants include, for example, poval (polybulal alcohol), polyethylene oxide, polypropylene oxide, polyethyleneimine, polybulylpyrrolidone, polyalkane. Examples include thiol and maleic acid-based copolymers. The dispersant can be added to the reaction system in the form of a solution dissolved in water or a water-soluble organic solvent. The amount of the dispersing agent added is such that when the dispersing agent is subsequently used as a dispersing agent that coats the surface of the metal nanoparticles and prevents its aggregation in the ceramic surface treatment agent, the ceramic surface treatment The content of the dispersant, expressed as a percentage of the amount of metal nanoparticles, is preferably !!-20% by weight, in particular 8-8%, preferably 15% by weight. If the content of the dispersant is less than the above range, the effect of preventing the aggregation by covering the surface of the metal nanoparticles in the reaction system and in the ceramic surface treatment agent by the dispersant cannot be sufficiently obtained. ! / There is a risk.
[0031] また、例えば、窯業表面処理剤が釉薬である場合に、分散剤の含有率が、前記範囲 を超えると、焼成時に、過剰の分散剤が、釉薬中に含まれる釉薬成分の焼結を阻害 して、形成される釉薬層の緻密性を低下させるおそれがある。また、下絵具の場合は 、形成される下絵の緻密性や、釉薬層に対する密着性等を低下させるおそれがある 。金属ナノ粒子の、粒度分布の 90%累積径 D を調整するには、金属化合物、分散 [0031] Also, for example, when the ceramic surface treatment agent is a glaze, if the content of the dispersant exceeds the above range, an excessive dispersant is sintered in the glaze component contained in the glaze during firing. May be hindered to reduce the denseness of the formed glaze layer. Further, in the case of a base paint, there is a risk that the density of the base picture formed, the adhesion to the glaze layer, and the like may be reduced. To adjust the 90% cumulative diameter D of the particle size distribution of the metal nanoparticles, the metal compound, the dispersion
90  90
剤、還元剤の種類と配合割合とを調整すると共に、金属化合物を還元反応させる際 に、力べ拌速度、温度、時間、 pH等を調整すればよい。例えば、反応系の pHは、で きるだけ 90%累積径 D の小さい金属ナノ粒子を形成することを考慮すると、 7〜13  In addition to adjusting the type and mixing ratio of the agent and the reducing agent, the stirring speed, temperature, time, pH, etc. may be adjusted when the metal compound is reduced. For example, the pH of the reaction system is 7 to 13 considering the formation of metal nanoparticles with a 90% cumulative diameter D as small as possible.
90  90
であるのが好ましい。反応系の pHを、前記範囲に調整するためには、 pH調整剤が 使用される。 pH調整剤としては、調整する pH値に応じて、硝酸等の種々の酸や、ァ ンモユア等の種々のアルカリが挙げられる。  Is preferred. In order to adjust the pH of the reaction system to the above range, a pH adjuster is used. Examples of the pH adjuster include various acids such as nitric acid and various alkalis such as ammonia depending on the pH value to be adjusted.
[0032] 液相の反応系中に析出させた金属ナノ粒子は、口別、洗浄、乾燥、解砕等の工程を 経て、一旦、粉末状とした後、水と分散剤と、さらに必要に応じて、水溶性の有機溶 媒とを所定の割合で配合して、窯業表面処理剤を調製してもよいが、先に説明したよ うに、金属ナノ粒子を析出させた液相の反応系を出発原料として用いて、窯業表面 処理剤を調製するのが好ましい。すなわち、金 [0032] The metal nanoparticles precipitated in the liquid phase reaction system are subjected to steps such as mashing, washing, drying, and crushing, and then once powdered, water, a dispersant, and further necessary Accordingly, a ceramic surface treatment agent may be prepared by blending with a water-soluble organic solvent at a predetermined ratio, but as described above, a liquid-phase reaction system in which metal nanoparticles are precipitated is used. It is preferable to prepare a ceramic surface treatment agent using as a starting material. That is, gold
属ナノ粒子を析出させた後の、前記金属ナノ粒子と、金属ナノ粒子の表面を被覆す る分散剤と、反応に使用した水とを含む液相の反応系から、限外ろ過、遠心分離、水 洗、電気透析等の処理を行って、不純物を除去すると共に、必要に応じて、濃縮して 水を除去するか、逆に水を加えることで、金属ナノ粒子の濃度を調整した後、窯業表 面処理剤を構成する他の成分を、所定の割合で配合することによって、窯業表面処 理剤が調製される。この方法では、金属ナノ粒子の凝集による、粗大で不定形な粒 子の発生を防止することができる。 From the reaction system of the liquid phase containing the metal nanoparticles after the metal nanoparticles are precipitated, the dispersant for coating the surface of the metal nanoparticles, and the water used for the reaction, ultrafiltration and centrifugation After adjusting the concentration of the metal nanoparticles by removing impurities by performing treatments such as washing with water, electrodialysis, etc., and concentrating to remove water or adding water as needed. Ceramic table A ceramic surface treatment agent is prepared by blending other components constituting the surface treatment agent in a predetermined ratio. This method can prevent the generation of coarse and irregular particles due to the aggregation of metal nanoparticles.
[0033] 窯業表面処理剤を構成する他の成分としては、前記窯業表面処理剤の粘度や蒸気 圧を調整するための、水溶性の有機溶媒等が挙げられる。水溶性の有機溶媒として は、水溶性である種々の有機溶媒が使用可能である。その具体例としては、メタノー ノレ、エタノール、 2—プロパノール等のアルコール類、アセトン、メチルェチルケトン等 のケトン類、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエ 一テル等のダリコールエーテル類等が挙げられる。水溶性の有機溶媒の添加量は、 金属ナノ粒子 100重量部あたり、 30〜900重量部であるのが好ましい。添加量が、 前記範囲未満では、有機溶媒を添加することによる、分散液の粘度や蒸気圧を調整 する効果が十分に得られないおそれがある。また、前記範囲を超える場合には、水に よる、分散剤を十分に膨潤させて、前記分散剤で被覆された金属ナノ粒子を、窯業 表面処理剤中に、凝集を生じさせることなぐ良好に分散させる効果が阻害されるお それがある。 [0033] Other components constituting the ceramic surface treatment agent include water-soluble organic solvents for adjusting the viscosity and vapor pressure of the ceramic surface treatment agent. As the water-soluble organic solvent, various organic solvents that are water-soluble can be used. Specific examples thereof include alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl ethyl ketone, ethylene glycol monomethino ethenore, ethylene glycol monomethino reetor and the like. Daricol ethers and the like can be mentioned. The addition amount of the water-soluble organic solvent is preferably 30 to 900 parts by weight per 100 parts by weight of the metal nanoparticles. If the addition amount is less than the above range, the effect of adjusting the viscosity or vapor pressure of the dispersion by adding the organic solvent may not be sufficiently obtained. In addition, when the above range is exceeded, it is possible to sufficiently swell the dispersant with water so that the metal nanoparticles coated with the dispersant do not cause aggregation in the ceramic surface treatment agent. Dispersing effect may be hindered.
[0034] 前記分散液は、調製後、 24時間、経過した時点での金属ナノ粒子の沈降量が、前 記金属ナノ粒子の総量の 0. 1重量%以下であるのが好ましい。沈降量が、前記範囲 を超える場合には、金属ナノ粒子が沈降を生じやすくなる。そのため、前記分散液を 用いて窯業表面処理剤を調製した場合、前記窯業表面処理剤を焼成して形成され る表面に露出する金属ナノ粒子の割合が少なくなつて、抗菌性金属の利用効率が低 下したり、外観が悪くなつたりするおそれがある。これに対し、金属ナノ粒子の沈降量 力 前記範囲内であれば、前記金属ナノ粒子の、コロイド分散の安定性を向上して、 窯業表面処理剤中に、より一層、均一にコロイド分散させて、沈降等を防止すること ができる。そのため、前記窯業表面処理剤を焼成して形成される表面に露出する金 属ナノ粒子の割合を多くして、前記金属ナノ粒子を構成する抗菌性金属の利用効率 を、より一層、向上したり、その外観を良好なものとしたりすることが可能となる。沈降 量を調整するためには、金属ナノ粒子の粒子径ゃ、分散剤の被覆量を調整すればよ い。一般的には、金属ナノ粒子の粒子径を小さくするほど、また分散剤の被覆量を多 くするほど、沈降量を、小さくすること力 Sできる。 [0034] It is preferable that the amount of sedimentation of the metal nanoparticles when the dispersion has been prepared for 24 hours after preparation is 0.1% by weight or less of the total amount of the metal nanoparticles. When the amount of sedimentation exceeds the above range, the metal nanoparticles tend to settle. Therefore, when a ceramic surface treatment agent is prepared using the dispersion, the proportion of metal nanoparticles exposed on the surface formed by firing the ceramic surface treatment agent is reduced, and the use efficiency of the antibacterial metal is reduced. There is a risk of lowering or poor appearance. On the other hand, if the amount of sedimentation of the metal nanoparticles is within the above range, the stability of the colloidal dispersion of the metal nanoparticles can be improved, and the colloidal dispersion can be more uniformly dispersed in the ceramic surface treatment agent. In addition, sedimentation can be prevented. Therefore, by increasing the proportion of metal nanoparticles exposed on the surface formed by firing the ceramic surface treatment agent, the utilization efficiency of the antibacterial metal constituting the metal nanoparticles can be further improved. It becomes possible to make the appearance good. In order to adjust the amount of sedimentation, the particle diameter of the metal nanoparticles and the coating amount of the dispersant may be adjusted. In general, the smaller the particle size of the metal nanoparticles, the greater the coating amount of the dispersant. The more you decrease, the more you can reduce the amount of sediment.
[0035] 《抗菌性窯業製品の製造方法》 本発明の、抗菌性窯業製品の製造方法は、窯業製 品の表面に、前記本発明の窯業表面処理剤を塗布した後、 800〜; 1600°Cで焼成 する工程を含むことを特徴とするものである。具体的には、例えば、本発明の窯業表 面処理剤を釉薬として使用して、窯業製品の素地の表面や、前記表面に形成した釉 薬層の表面に塗布したり、前記窯業表面処理剤を下絵具として使用して、窯業製品 の素地の表面に形成した釉薬層の表面に下絵を描いたりした後、前記温度範囲で 焼成することによって、その表面に、平均粒子径 200nm以下の金属ナノ粒子が存在 する本発明の抗菌性窯業製品が製造される。  [0035] << Method for Producing Antibacterial Ceramics Product >> The method for producing an antibacterial ceramic product of the present invention is as follows. After applying the ceramic surface treatment agent of the present invention to the surface of the ceramic product, 800 ~; 1600 ° It includes a step of firing with C. Specifically, for example, using the ceramic surface treatment agent of the present invention as a glaze, it is applied to the surface of a ceramic product substrate or the surface of the glaze layer formed on the surface, or the ceramic surface treatment agent. Is used as a base paint to draw a rough sketch on the surface of the glaze layer formed on the surface of the ceramic product substrate, and then fired in the above temperature range to give metal nano particles with an average particle diameter of 200 nm or less to the surface. The antibacterial ceramic product of the present invention in which particles are present is produced.
[0036] 焼成の温度が 800〜; 1600°Cに限定されるのは、下記の理由による。すなわち、焼成 の温度が前記範囲未満では、例えば、窯業表面処理剤が釉薬である場合に、釉薬 成分を十分に焼結させることができないため、形成される釉薬層の緻密性が低下す るおそれがある。また、下絵具の場合は、形成される下絵の緻密性や、釉薬層に対 する密着性等が低下するおそれがある。一方、焼成の温度が前記範囲を超える場合 には、釉薬層や下絵具の表面に露出した金属ナノ粒子が、焼成の熱によって揮発し て、失われてしまいやすくなる。そのため、釉薬層の表面に露出する抗菌性金属の 割合が少なくなつて、その利用効率が低下してしまい、十分な抗菌性が得られない おそれがある。なお、焼成の温度は、釉薬成分、顔料等の種類にも依存するが、前 記範囲内でも 1000〜; 1600。C、特に 1150〜; 1300。C程度であるのカ好ましレヽ。焼 成は、大気雰囲気中で行っても良いし、釉薬や下絵具の種類によっては、還元性雰 囲気中等の、適宜の焼成雰囲気中で行なっても良い。また焼成の時間は、前記温度 範囲での焼成の場合、製造される窯業製品の表面に形成される金属ナノ粒子の平 均粒子径を 200nm以下として、良好な抗菌性を付与することを考慮すると、 20分〜 30時間であるのが好まし!/、。  [0036] The reason why the firing temperature is limited to 800 to 1600 ° C is as follows. That is, when the firing temperature is less than the above range, for example, when the ceramic surface treatment agent is a glaze, the glaze component cannot be sufficiently sintered, so that the density of the formed glaze layer may be reduced. There is. Further, in the case of a base paint, there is a risk that the density of the formed base sketch, the adhesion to the glaze layer, and the like may be reduced. On the other hand, when the firing temperature exceeds the above range, the metal nanoparticles exposed on the surface of the glaze layer and the lower paint are volatilized by the heat of firing and are easily lost. For this reason, if the proportion of the antibacterial metal exposed on the surface of the glaze layer is reduced, the utilization efficiency may be reduced, and sufficient antibacterial properties may not be obtained. The firing temperature depends on the type of glaze component, pigment, etc., but is 1000 to 1600 even within the above range. C, especially from 1150; It's about C. The firing may be performed in an air atmosphere, or depending on the type of glaze or lower paint, it may be performed in an appropriate firing atmosphere such as a reducing atmosphere. In addition, in the case of firing in the above temperature range, the firing time is set so that the average particle diameter of the metal nanoparticles formed on the surface of the ceramic product to be produced is 200 nm or less and imparts good antibacterial properties. , 20 minutes to 30 hours is preferred!
[0037] 《抗菌性窯業製品》 前記の製造方法等によって製造することができる、本発明の抗 菌性窯業製品は、表面に、少なくとも銀を含む、平均粒子径 200nm以下の金属ナノ 粒子が存在していることを特徴とするものである。表面に存在する金属ナノ粒子の平 均粒子径が 200nm以下に限定されるのは、下記の理由による。すなわち、平均粒子 径カ 前記範囲内であれば、金属ナノ粒子を形成する抗菌性金属の利用効率を向 上して、抗菌性金属の使用量に見合う十分な抗菌性を得ることができる。そのため、 抗菌性金属の使用量を少なくして、例えば、釉薬層や下絵が所定の色目にならなか つたり、窯業製品のコストアップに繋がったりするのを、確実に防止することが可能と なる。 [0037] <Antimicrobial ceramic product> The antibacterial ceramic product of the present invention that can be manufactured by the above-described manufacturing method or the like has metal nanoparticles having an average particle diameter of 200 nm or less and containing at least silver on the surface. It is characterized by that. The reason why the average particle diameter of the metal nanoparticles present on the surface is limited to 200 nm or less is as follows. That is, the average particle Within the above range, the utilization efficiency of the antibacterial metal forming the metal nanoparticles can be improved, and sufficient antibacterial properties commensurate with the amount of the antibacterial metal used can be obtained. For this reason, the amount of antibacterial metal used can be reduced, and for example, it is possible to reliably prevent the glaze layer and the background from becoming a predetermined color or increasing the cost of ceramic products. .
[0038] なお、前記平均粒子径は、さらに良好な抗菌性を得ることを考慮すると、前記範囲内 でも 0. 5〜; 100nm、特に 0. 5〜50nmであるのが好ましい。平均粒子径は、直接観 察法による粒子径から判定することができる。具体的には、例えば、観察倍率一万倍 以上の高分解能 SEM (走査型電子顕微鏡)等を用いて、抗菌性窯業製品の表面を 観察して求めた、少なくとも 10個の金属ナノ粒子の粒子径から、その平均値を求め て、平均粒子径とすることができる。  [0038] In consideration of obtaining better antibacterial properties, the average particle size is preferably 0.5 to 100 nm, and more preferably 0.5 to 50 nm, even within the above range. The average particle size can be determined from the particle size by direct observation. Specifically, for example, particles of at least 10 metal nanoparticles obtained by observing the surface of an antibacterial ceramic product using a high-resolution SEM (scanning electron microscope) having an observation magnification of 10,000 times or more. The average value can be obtained from the diameter to obtain the average particle diameter.
実施例 1  Example 1
[0039] 〈銀ナノ粒子分散液の合成〉 金属化合物としての硝酸銀 (I)を純水に溶解し、アンモ ユア水を加えて液の pHを 10に調整し、次いで、分散剤としてのマレイン酸系共重合 体〔日本化成 (株)製のクロバックス(登録商標) 400— 21S、分子量: 9000、酸価: 10 OmgKOH/g]を加えて溶解させた後、還元剤としてのエチレングリコールを純水に 溶解した溶液を添加して、液相の反応系を調製した。反応系における各成分の濃度 は、硝酸銀 (I) : 25g/リットル、マレイン酸系共重合体: 20g/リットル、還元剤: 120g /リットノレとした。  <Synthesis of Silver Nanoparticle Dispersion> Silver nitrate (I) as a metal compound is dissolved in pure water, ammonia water is added to adjust the pH of the solution to 10, and then maleic acid as a dispersant. A copolymer (Crobacs (registered trademark) 400-21S manufactured by Nippon Kasei Co., Ltd., molecular weight: 9000, acid value: 10 OmgKOH / g) was added and dissolved, and then ethylene glycol as a reducing agent was purified. A solution dissolved in water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was silver nitrate (I): 25 g / liter, maleic acid copolymer: 20 g / liter, reducing agent: 120 g / liter.
[0040] 前記反応系を、力、く拌速度 lOOrpmで力べ拌しながら 85°Cで 180分間、反応させて、 銀ナノ粒子を析出させた後、限外ろ過処理により、純水で希釈を繰り返して不純物を 除去して、前記銀ナノ粒子がコロイド分散した分散液を得た。前記分散液における、 銀ナノ粒子の、粒度分布の 90%累積径 D を、レーザードップラー法を応用した粒度  [0040] The reaction system was reacted at 85 ° C for 180 minutes with vigorous stirring at a force and stirring speed of lOOrpm to precipitate silver nanoparticles, and then diluted with pure water by ultrafiltration treatment. The impurities were removed by repeating the above to obtain a dispersion liquid in which the silver nanoparticles were colloidally dispersed. The 90% cumulative diameter D of the particle size distribution of the silver nanoparticles in the above dispersion is determined using the laser Doppler method.
90  90
分布測定装置〔日機装 (株)製のナノトラック(登録商標) UPA-EX150〕を用いて測 定した、前記銀ナノ粒子の粒度分布から求めたところ 45nmであった。また、銀ナノ粒 子の組成を、誘導結合高周波プラズマ発光分析装置〔(株)リガク製の CIROS— 120 〕を用いて測定したところ、銀の含有率が 100%であった。  It was 45 nm as determined from the particle size distribution of the silver nanoparticles measured using a distribution measuring device [Nanotrack (registered trademark) UPA-EX150 manufactured by Nikkiso Co., Ltd.]. Further, the composition of the silver nanoparticles was measured using an inductively coupled high-frequency plasma emission spectrometer [CIROS-120 manufactured by Rigaku Corporation], and the silver content was 100%.
[0041] また、分散液における固形分濃度は 10重量%、銀ナノ粒子 100重量部あたりの分散 剤の量は 9重量部であった。また、前記分散液 lOOOgをガラス容器に採取し、前記ガ ラス容器を、ポリプロピレン製の樹脂キャップによって密栓した状態で、 25°Cに保持さ れた恒温槽中で 24時間、静置した後、スポイトで上澄みを取り除いて、ガラス容器の 底に沈降した沈降物を採取し、 105°Cで 3時間、乾燥させて精密天秤で秤量したとこ ろ、沈降量は、銀ナノ粒子の総量の 0. 03重量%であることが確認された。 [0041] The solid content concentration in the dispersion is 10% by weight, and the dispersion per 100 parts by weight of silver nanoparticles is The amount of the agent was 9 parts by weight. Further, the dispersion lOOOOg was collected in a glass container, and the glass container was allowed to stand for 24 hours in a thermostatic bath maintained at 25 ° C. in a state where the glass container was sealed with a polypropylene resin cap. The supernatant was removed with a dropper, and the sediment settled on the bottom of the glass container was collected, dried at 105 ° C for 3 hours, and weighed with a precision balance.The sedimentation amount was 0% of the total amount of silver nanoparticles. It was confirmed to be 03% by weight.
[0042] 〈窯業表面処理剤の調製〉 釉薬成分としての、 35. 58重量部の長石と、 13. 5重量 部の石灰と、 9. 7重量部の粘土と、 40. 2重量部の珪砂とを、 100重量部の水と共に 混合し、遠心ボールミルで粉砕してスラリー化した。次いで、このスラリーに、固形分 の総量中の銀ナノ粒子の割合が 0. 02重量%となるように、先に調製した銀ナノ粒子 の分散液を加え、混合して、窯業表面処理剤としての釉薬を調製した。前記釉薬に ついて、 TG— MASS分析を行って求めた分散剤の含有量と、 ICP分析を行って求 めた銀の含有量とから、分散剤の、金属ナノ粒子の量に対する百分率で表される含 有率を求めたところ 3. 3重量%であった。  <Preparation of ceramic surface treatment agent> 35.58 parts by weight of feldspar, 13.5 parts by weight of lime, 9.7 parts by weight of clay, and 40.2 parts by weight of silica sand as glaze components Were mixed with 100 parts by weight of water and pulverized with a centrifugal ball mill to form a slurry. Next, the previously prepared dispersion of silver nanoparticles is added to the slurry so that the ratio of silver nanoparticles in the total amount of solids is 0.02 wt%, and mixed to obtain a ceramic surface treatment agent. A glaze was prepared. For the glaze, it is expressed as a percentage of the amount of the dispersing agent relative to the amount of metal nanoparticles from the content of the dispersant obtained by performing TG-MASS analysis and the content of silver obtained by performing ICP analysis. The content was determined to be 3.3% by weight.
[0043] 〈抗菌性窯業製品の製造〉 先に調製した釉薬を、タイル素地の表面に吹き付け塗布 し、乾燥させた後、電気炉を用いて、大気雰囲気中で 1200°Cに加熱して 30分間、 焼成して、釉薬層を有する抗菌性窯業製品のサンプルを製造した。そして、前記サ ンプルの、釉薬層の表面を、高分解能 SEM (走査型電子顕微鏡)を用いて撮影して 画像データを得、前記画像データを画像解析して、画像データ中に写された全ての 銀ナノ粒子の、個々の粒子径を求めると共に、その平均値を、平均粒子径として算出 したところ 30nmであった。  [0043] <Manufacture of antibacterial ceramic products> The glaze prepared above was sprayed onto the surface of the tile substrate, dried, and then heated to 1200 ° C in an air atmosphere using an electric furnace. A sample of antibacterial ceramic product with a glaze layer was produced by baking for a minute. Then, the surface of the glaze layer of the sample is photographed using a high-resolution SEM (scanning electron microscope) to obtain image data, the image data is subjected to image analysis, and all the images captured in the image data are captured. As a result of obtaining the individual particle diameters of the silver nanoparticles and calculating the average value as the average particle diameter, it was 30 nm.
[0044] 〈抗菌性評価〉 前記サンプルの、釉薬層の表面に、黄色ブドウ球菌の菌液 1ミリリット ルを滴下した後、滅菌ポリエチレンフィルムを載置して 25°Cで 24時間、静置した後、 式 (1) :  <Evaluation of antibacterial properties> After 1 ml of a bacterial solution of Staphylococcus aureus was dropped on the surface of the glaze layer of the sample, a sterilized polyethylene film was placed and allowed to stand at 25 ° C for 24 hours. After equation (1):
 Country
^^ (θ/ λ 対照生菌数—サンプル生菌数 γ 。。 ^^ (θ / λ control viable count—sample viable count γ.
滅 (。 ) = x 1 0 0 (1) によって滅菌率を求めたところ 99%を超えており、抗菌性は良好であった。 When the sterilization rate was determined by eradication (.) = X 1 0 0 (1) , it exceeded 99% and the antibacterial property was good.
実施例 2 実施例 1に記載の方法に準拠して、表 1に示すように、銀ナノ粒子の、粒度分布の 90 %累積径 D が異なる 5種の銀ナノ粒子分散液を調製し、前記銀ナノ粒子分散液を Example 2 In accordance with the method described in Example 1, as shown in Table 1, five types of silver nanoparticle dispersions having different 90% cumulative diameter D of the particle size distribution of silver nanoparticles were prepared, and the silver nanoparticles were Dispersion
90  90
用いて、実施例 1と同条件で釉薬を調製して抗菌性窯業製品を製造した後、滅菌率 を求めて、抗菌性を評価した。結果を表 1に示す。  The glaze was prepared under the same conditions as in Example 1 to produce an antibacterial ceramic product, and then the sterilization rate was determined to evaluate the antibacterial property. The results are shown in Table 1.
[表 1]  [table 1]
表 1  table 1
Figure imgf000017_0001
Figure imgf000017_0001
[0046] 表 1より、釉薬中での、銀ナノ粒子の、粒度分布の 90%累積径 D を 150nm以下とし [0046] From Table 1, the 90% cumulative diameter D of the particle size distribution of silver nanoparticles in the glaze was set to 150 nm or less.
90  90
たとき、抗菌性窯業製品の表面に形成される銀ナノ粒子の平均粒子径を 200nm以 下として、良好な抗菌性を付与できることが確認された。また、表 1の試料 No. 2 - 3 で製造した抗菌性窯業製品の表面を、走査型電子顕微鏡で観察したところ、図 1に 示すように、前記表面に、微細な銀ナノ粒子が形成されているのが確認された。 実施例 3  When the average particle size of silver nanoparticles formed on the surface of antibacterial ceramic products was 200 nm or less, it was confirmed that good antibacterial properties can be imparted. In addition, when the surface of the antibacterial ceramic product manufactured with Sample No. 2-3 in Table 1 was observed with a scanning electron microscope, fine silver nanoparticles were formed on the surface as shown in FIG. It was confirmed that Example 3
[0047] 実施例 1に記載の方法に準拠して、銀ナノ粒子の、粒度分布の 90%累積径 D が 80  [0047] Based on the method described in Example 1, the 90% cumulative diameter D of the particle size distribution of the silver nanoparticles was 80
90 nm、沈降量が、銀ナノ粒子の総量の 0. 06重量%である銀ナノ粒子分散液を調製し 、前記銀ナノ粒子分散液を用いて、分散剤の含有率が 1. 2重量%の釉薬を調製し た後、前記釉薬を用いて、表 2に示す焼成条件としたこと以外は実施例 1と同様にし て抗菌性窯業製品を製造し、滅菌率を求めて、抗菌性を評価した。結果を表 2に示 す。  A silver nanoparticle dispersion having 90 nm and a sedimentation amount of 0.06% by weight of the total amount of silver nanoparticles was prepared. Using the silver nanoparticle dispersion, the content of the dispersant was 1.2% by weight. After the preparation of the glaze, an antibacterial ceramic product was manufactured in the same manner as in Example 1 except that the firing conditions shown in Table 2 were used, and the antibacterial properties were evaluated by obtaining the sterilization rate. did. The results are shown in Table 2.
[表 2] 表 2 [Table 2] Table 2
Figure imgf000018_0001
Figure imgf000018_0001
[0048] 表 2より、焼成の温度を 800〜; 1600°C、時間を 30時間以下としたとき、抗菌性窯業 製品の表面に形成される銀ナノ粒子の平均粒子径を 200nm以下として、良好な抗 菌性を [0048] From Table 2, when the firing temperature is 800 to 1600 ° C and the time is 30 hours or less, the average particle diameter of the silver nanoparticles formed on the surface of the antibacterial ceramics product is 200 nm or less, which is good Antibacterial
付与できること力確認された。なお、試料 3— 6の抗菌性窯業製品は、表面を観察し ても銀ナノ粒子が観察されず、高温での焼成によって揮発して、失われてしまったこ とが確認された。  It was confirmed that it could be granted. The antibacterial ceramic products of Samples 3-6 were found to have been lost due to volatilization by firing at high temperature, and no silver nanoparticles were observed even when the surface was observed.
実施例 4  Example 4
[0049] 実施例 1に記載の方法に準拠して、銀ナノ粒子の、粒度分布の 90%累積径 D が 33  [0049] According to the method described in Example 1, the 90% cumulative diameter D of the particle size distribution of the silver nanoparticles was 33.
90 nmである銀ナノ粒子分散液を調製し、前記銀ナノ粒子分散液を用いて、表 3に示す ように、分散剤の含有率が異なる 3種の釉薬を調製した後、前記釉薬を用いて、実施 例 1と同条件で抗菌性窯業製品を製造し、滅菌率を求めて、抗菌性を評価した。また 、製造された抗菌性窯業製品の外観を観察した。結果を表 3に示す。  After preparing a silver nanoparticle dispersion liquid of 90 nm and using the silver nanoparticle dispersion liquid, as shown in Table 3, three types of glazes with different dispersant contents were prepared, and then the glaze was used. The antibacterial ceramic product was manufactured under the same conditions as in Example 1, the sterilization rate was determined, and the antibacterial property was evaluated. In addition, the appearance of the manufactured antibacterial ceramic products was observed. The results are shown in Table 3.
[表 3]  [Table 3]
表 3  Table 3
Figure imgf000018_0002
Figure imgf000018_0002
[0050] 表 3より、分散剤の含有率は、抗菌性窯業製品の外観を考慮すると;!〜 20重量%で あるのが好ましレ、ことが確認された。 [0050] From Table 3, the content of the dispersant is from! To 20% by weight, considering the appearance of antibacterial ceramic products; It was confirmed that it was preferred.
実施例 5 Example 5
実施例 1に記載の方法に準拠して、表 4に示すように、銀または銀とパラジウムの合 金からなる金属ナノ粒子を含み、前記金属ナノ粒子の、粒度分布の 90%累積径 D In accordance with the method described in Example 1, as shown in Table 4, it contains metal nanoparticles made of silver or a combination of silver and palladium, and 90% cumulative diameter of the particle size distribution of the metal nanoparticles D
90 が 35〜40nmである金属ナノ粒子分散液を調製し、前記銀ナノ粒子分散液を用いて 、分散剤の含有率が 12. 5〜; 15. 0重量%の釉薬を調製した後、前記釉薬を用いて 、実施例 1と同条件で抗菌性窯業製品を製造し、滅菌率を求めて、抗菌性を評価し た。分散剤としては、ポリアクリル酸 (分子量 5000)を用いた。結果を表 4に示す。  After preparing a metal nanoparticle dispersion in which 90 is 35 to 40 nm, and using the silver nanoparticle dispersion, a glaze having a dispersant content of 12.5 to 15.0 wt% is prepared, Using glaze, antibacterial ceramic products were produced under the same conditions as in Example 1, the sterilization rate was determined, and antibacterial properties were evaluated. As the dispersant, polyacrylic acid (molecular weight 5000) was used. The results are shown in Table 4.
[表 4] [Table 4]
表 4  Table 4
Figure imgf000019_0001
Figure imgf000019_0001
表 4より、合金からなる金属ナノ粒子の場合、銀の含有割合は、合金の総量中の 50 重量%以上、特に 80重量%以上であるのが好まし!/、ことが確認された。 From Table 4, it was confirmed that in the case of metal nanoparticles made of an alloy, the silver content is preferably 50% by weight or more, particularly 80% by weight or more in the total amount of the alloy!

Claims

請求の範囲 The scope of the claims
[1] 表面に、少なくとも銀を含む、平均粒子径 200nm以下の金属ナノ粒子が存在してい ることを特徴とする抗菌性窯業製品。  [1] An antibacterial ceramic product characterized in that metal nanoparticles containing at least silver and having an average particle diameter of 200 nm or less exist on the surface.
[2] 分散媒中に、粒度分布の 90%累積径 D が 150nm以下の金属ナノ粒子力 コロイド [2] Metal nanoparticle force colloid with 90% cumulative diameter D of particle size distribution of 150 nm or less in dispersion medium
90  90
分散して!/ヽることを特徴とする窯業表面処理剤。  A ceramic surface treatment agent that is dispersed!
[3] 金属ナノ粒子が、少なくとも銀を含んでいることを特徴とする請求項 2に記載の窯業 表面処理剤。 [3] The ceramic surface treatment agent according to claim 2, wherein the metal nanoparticles contain at least silver.
[4] 金属ナノ粒子が、親水性基を有する分散剤によって被覆された状態で、分散媒とし ての水中にコロイド分散していることを特徴とする請求項 2または 3に記載の窯業表面 処理剤。  [4] The ceramic surface treatment according to claim 2 or 3, wherein the metal nanoparticles are colloidally dispersed in water as a dispersion medium in a state of being coated with a dispersant having a hydrophilic group. Agent.
[5] 調製後、 24時間、経過した時点での金属ナノ粒子の沈降量が、前記金属ナノ粒子 の総量の 0. 1重量%以下である分散液を用いて調製されたことを特徴とする請求項 [5] The method is characterized by being prepared using a dispersion in which the amount of sedimentation of the metal nanoparticles after the lapse of 24 hours is 0.1% by weight or less of the total amount of the metal nanoparticles. Claim
2な!/、し 4の!/、ずれかに記載の窯業表面処理剤。 2! /, 4! /, Ceramic surface treatment agent as described in any of the above.
[6] 窯業製品の表面に、請求項 2ないし 5のいずれかに記載の窯業表面処理剤を塗布し た後、 800〜; 1600°Cで焼成する工程を含むことを特徴とする抗菌性窯業製品の製 造方法。 [6] An antibacterial ceramic industry comprising a step of applying a ceramic surface treatment agent according to any one of claims 2 to 5 to a surface of a ceramic product, followed by baking at 800 to 1600 ° C. Product manufacturing method.
PCT/JP2007/070076 2006-10-27 2007-10-15 Antibacterial ceramic product, ceramic surface treatment agent, and method for production of antibacterial ceramic product WO2008050625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006292907A JP5358877B2 (en) 2006-10-27 2006-10-27 Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP2006-292907 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008050625A1 true WO2008050625A1 (en) 2008-05-02

Family

ID=39324424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070076 WO2008050625A1 (en) 2006-10-27 2007-10-15 Antibacterial ceramic product, ceramic surface treatment agent, and method for production of antibacterial ceramic product

Country Status (3)

Country Link
JP (1) JP5358877B2 (en)
CN (1) CN101360696A (en)
WO (1) WO2008050625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265692A4 (en) * 2021-01-21 2024-12-11 Torrecid, S.A. Bactericidal and antiviral digital ink

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599060B2 (en) * 2010-10-14 2014-10-01 三菱製紙株式会社 Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion
CN105613582B (en) * 2014-10-31 2019-11-22 住友大阪水泥股份有限公司 Anti-bacterial composition and antibiotic property glaze compositions and antibacterial articles
WO2017082117A1 (en) * 2015-11-12 2017-05-18 三菱電機株式会社 Sustained release antimicrobial agent and article
JP6930343B2 (en) * 2017-09-29 2021-09-01 信越化学工業株式会社 Deodorant / antibacterial / antifungal agent-containing dispersion, its manufacturing method, and members having deodorant / antibacterial / antifungal agent on the surface
CN109384452A (en) * 2018-10-31 2019-02-26 福建省德化县合和陶瓷技术开发有限公司 A kind of self-cleaning antimicrobial ceramic ware for daily use and its preparation process
KR101975955B1 (en) * 2018-12-20 2019-05-08 맥섬석 지.엠. 주식회사 Manufacturing method of antimicrobial plastic masterbatch using macsumsuk granule
CN111559926B (en) * 2020-07-15 2020-10-27 广东蒲公英新型材料有限公司 Antibacterial material based on silicate-based surface and preparation method thereof
CN113248143B (en) * 2021-07-14 2021-09-24 广东欧文莱陶瓷有限公司 Antibacterial digital protective glaze
CN114853340A (en) * 2022-04-20 2022-08-05 德化县宏顺陶瓷有限公司 Glaze slip formula of antibacterial ceramic, antibacterial ceramic and firing process of antibacterial ceramic
CN116283244B (en) * 2023-05-17 2023-07-21 湖南大学 A method for preparing alumina ceramic sheets by tape casting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873256A (en) * 1994-09-01 1996-03-19 Inax Corp Production of antimicrobial pottery
JP2000143405A (en) * 1998-11-05 2000-05-23 Mitsubishi Materials Corp Surface-treated material, antimicrobial pottery product, and production thereof
JP2004033901A (en) * 2002-07-03 2004-02-05 Nippon Paint Co Ltd Production method for metal colloidal solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290985A (en) * 1995-04-20 1996-11-05 Narumi China Corp Antibacterial ceramic product and its production
JP3454640B2 (en) * 1996-07-04 2003-10-06 住友大阪セメント株式会社 Antibacterial / antifungal / algae-resistant article and method for producing the same
JPH11189509A (en) * 1997-12-25 1999-07-13 Sumitomo Osaka Cement Co Ltd Antimicrobial application solution
JP4148078B2 (en) * 2003-09-12 2008-09-10 住友電気工業株式会社 Method for producing metal powder
JP3952027B2 (en) * 2004-03-01 2007-08-01 住友電気工業株式会社 Metal colloid solution
JP4735939B2 (en) * 2004-12-27 2011-07-27 住友電気工業株式会社 Method for producing alloy fine particles and alloy fine particles and metal colloid solution produced thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873256A (en) * 1994-09-01 1996-03-19 Inax Corp Production of antimicrobial pottery
JP2000143405A (en) * 1998-11-05 2000-05-23 Mitsubishi Materials Corp Surface-treated material, antimicrobial pottery product, and production thereof
JP2004033901A (en) * 2002-07-03 2004-02-05 Nippon Paint Co Ltd Production method for metal colloidal solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265692A4 (en) * 2021-01-21 2024-12-11 Torrecid, S.A. Bactericidal and antiviral digital ink

Also Published As

Publication number Publication date
JP5358877B2 (en) 2013-12-04
CN101360696A (en) 2009-02-04
JP2008105920A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
Goia Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions
US7625637B2 (en) Production of metal nanoparticles from precursors having low reduction potentials
KR101526233B1 (en) Silver micropowder, silver ink, silver coating, and methods for production of these materials
KR101004553B1 (en) Micro Silver Particle-Containing Composition, Method for Producing It, Method for Producing Micro Silver Particle
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
CN101011747B (en) Manufacturing method of copper powder and copper powder
US10208211B2 (en) Conductive pastes using bimodal particle size distribution
CN102407342A (en) Preparation method of nano silver powder with accurately controllable particle size
JP4844805B2 (en) Method for forming metal coating
Krylova et al. Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method
Titkov et al. Synthesis of 10 nm size Cu/Ag core-shell nanoparticles stabilized by an ethoxylated carboxylic acid for conductive ink
CN114082938B (en) A kind of metal particle and its preparation method and application
Chowdhury et al. Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
JP5765455B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
Park et al. One-step synthesis of silver nanoplates with high aspect ratios: Using coordination of silver ions to enhance lateral growth
JP5582164B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP2004043892A (en) Noble metal fine particles and method for producing the same
Chung et al. Colloidal gold nanoparticle formation derived from self-assembled supramolecular structure of cyclodextrin/Au salt complex
Tsuji et al. Syntheses of Au–Cu-rich AuAg (AgCl) Cu alloy and Ag–Cu-rich AuAgCu@ Cu core–shell and AuAgCu alloy nanoparticles using a polyol method
JP4490305B2 (en) Copper powder
JP5825213B2 (en) Method for producing metal nanoparticle dispersion and method for producing metal nanoparticle / layered mineral composite

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001783.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829810

Country of ref document: EP

Kind code of ref document: A1