[go: up one dir, main page]

WO2008047832A1 - Semiconductor device, semiconductor device manufacturing method, and inspection method - Google Patents

Semiconductor device, semiconductor device manufacturing method, and inspection method Download PDF

Info

Publication number
WO2008047832A1
WO2008047832A1 PCT/JP2007/070247 JP2007070247W WO2008047832A1 WO 2008047832 A1 WO2008047832 A1 WO 2008047832A1 JP 2007070247 W JP2007070247 W JP 2007070247W WO 2008047832 A1 WO2008047832 A1 WO 2008047832A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
power device
metal wiring
terminal
electrode layer
Prior art date
Application number
PCT/JP2007/070247
Other languages
French (fr)
Japanese (ja)
Inventor
Shigekazu Komatsu
Mitsuyoshi Miyazono
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2008047832A1 publication Critical patent/WO2008047832A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device having a structure in consideration of inspection of electrical characteristics of a power device, a manufacturing method thereof, and an inspection method of the semiconductor device.
  • the inspection of electrical characteristics of power devices having terminals on the front and back surfaces is usually performed using an inspection device. Is called.
  • the above-described inspection apparatus normally includes a chuck 100 for holding a semiconductor device W on which a power device is formed, and a probe card 102 in which a probe pin 101 is supported above the chuck 100. And a tester 103 electrically connected to the probe card 102. Since the power device has terminals on the upper and lower surfaces of the semiconductor device W, an inspection electrode 104 is formed on the holding surface of the chuck 100, and this inspection electrode 104 is a wiring formed inside the chuck 100. It is electrically connected to the tester 103 through 105! /, (See patent document).
  • the probe pin 101 is brought into contact with the terminal on the upper surface side of the power device, a voltage is applied to the probe pin 101 and the inspection electrode 104 by the tester 103, and a current is passed through the power device.
  • the electrical characteristics of power devices were inspected.
  • Patent Document 1 JP-A-6-242177
  • the present invention has been made in view of the force and the point, and it is an object of the present invention to inspect the electrical characteristics of a power device stably with high accuracy using an electric circuit with a small load.
  • the present invention provides a semiconductor device in which a power device having terminals on the front surface and the back surface is formed, and an electrode serving as a terminal on the back surface side of the power device is formed on the back surface of the semiconductor device.
  • a metal wiring that passes through the inside of the semiconductor device and communicates with the electrode layer is formed on the surface of the semiconductor device and without any terminal on the surface side of the semiconductor device. It is characterized by that.
  • the metal wiring leading to the electrode layer on the back surface is formed on the front surface of the semiconductor device, inspection is performed from the front surface side of the semiconductor device to the terminal and metal wiring on the front surface side of the power device.
  • the electrical characteristics can be inspected by bringing the probe pins into contact with each other and applying a voltage between the front and back terminals of the power device using these probe pins.
  • the electric circuit formed during the inspection is simple and short, and no large resistance or inductance is generated! /, So the desired inspection can be performed stably with high accuracy.
  • the power device may be formed in each of a plurality of device formation regions of the semiconductor device, and the metal wiring may be formed between adjacent device formation regions.
  • an insulating layer may be formed around the metal wiring.
  • a method for manufacturing a semiconductor device in which a power device having terminals on the front surface and the back surface is formed.
  • the first step of forming the surface layer element portion including the second step, the second step of grinding the back side of the semiconductor device, and the electrode layer serving as the terminal on the back side of the first device are formed on the back side of the semiconductor device And having a predetermined depth in a region on the surface of the semiconductor device without the surface layer element portion, before the first step, at the time of the first step, or immediately after the first step.
  • the electrode layer may be formed by plating, and a metal wiring may be formed by embedding a metal in the recessed portion by the contact.
  • the power device may be formed in each of a plurality of device formation regions of the semiconductor device, and the metal wiring may be formed between adjacent device formation regions. Also
  • an insulating film may be formed on the inner surface of the recess.
  • a method for inspecting electrical characteristics of the semiconductor device with respect to the power device from the surface side of the semiconductor device to the terminal and metal wiring on the surface side of the power device.
  • the probe pins are brought into contact, and the electrical characteristics are inspected by applying a voltage between the front and back terminals of the power device using these probe pins.
  • a pair of probe pins is brought into contact with a terminal on the surface side of the power device, and a voltage is applied between the probe pins. Utilizes the fritting phenomenon that occurs when electrical connection between the terminals on the surface side is made, a pair of probe pins are brought into contact with the metal wiring, and a voltage is applied between the probe pins. Then, electrical continuity may be achieved between the probe pin and the metal wiring. Further, a plurality of sets of probe pins may be brought into contact with the surface side terminal of the power device and the metal wiring, respectively.
  • FIG. 1 is a schematic view showing a configuration of a semiconductor device.
  • FIG. 2 is an explanatory diagram showing a manufacturing process of a semiconductor device.
  • FIG. 3 is a side view schematically showing the configuration of the inspection apparatus.
  • FIG. 4 is a schematic view showing a state in which a probe pin is brought into contact with a semiconductor device.
  • FIG. 5 is an explanatory diagram showing a circuit configuration when using the fritting phenomenon.
  • FIG. 6 is a schematic diagram showing an outline of a configuration of a conventional power device inspection apparatus.
  • FIG. 1 is a schematic diagram showing the configuration of the semiconductor device 1 according to the present embodiment.
  • a power device P such as an IGBT is formed.
  • a surface layer element portion P1 such as a p-type emitter region 11, an n-type drain region 12, a gate electrode 13, and an emitter electrode 14 is formed on the upper layer side of the n-type base 10, and the n-type base 10
  • An n-type buffer layer 15, a p-type layer 16, and an electrode layer 17 are formed on the lower layer side.
  • the gate electrode 13 and the emitter electrode 14 constitute a surface terminal C1 on the surface side of the power device P
  • the electrode layer 17 constitutes a back surface terminal C2 on the back side of the power device P.
  • a metal wiring 20 is formed in the vertical direction from the front surface of the semiconductor device 1 to the electrode layer 17 on the back surface. Metal wiring 20 is formed for each power device P . For example, an insulating layer 21 is formed around the metal wiring 20.
  • the semiconductor device 1 is manufactured by, for example, the following process.
  • the surface element portion P1 is formed on the surface side of the device formation region R of the semiconductor device 1.
  • the surface layer element portion pit is formed using, for example, a photolithography technique.
  • a wiring hole 30 to be a recessed portion with a predetermined depth is formed from the surface side of the semiconductor device 1 before the formation process of the surface element part P1, during the formation process of the surface element part P1, or immediately after the formation of the surface element part P1. Is done.
  • This wiring hole 30 is formed outside the device formation region R by, for example, etching.
  • an insulating film 21 such as an oxide film or a nitride film is formed on the inner surface of the wiring hole 30 by, for example, a CVD method.
  • the back surface side of the semiconductor device 1 is ground, and the semiconductor device 1 is shaved to a predetermined thickness.
  • the wiring hole 30 penetrates.
  • an n-type buffer layer 15 and a p-type layer 16 are formed in this order on the back side of the semiconductor device 1, and then an electrode layer 17 is formed as shown in Fig. 2 (c), for example, by a plating technique.
  • a metal is buried in the wiring hole 30 by, for example, a plating technique, and a metal wiring 20 that leads from the electrode layer 17 to the surface of the semiconductor device 1 is formed. In this way, the semiconductor device 1 having the power device P and the metal wiring 20 is manufactured.
  • FIG. 3 is an explanatory diagram showing an outline of the configuration of the inspection device 50.
  • the inspection device 50 includes, for example, a probe card 51 and a chuck that holds the semiconductor device 1 by suction.
  • the probe card 51 includes, for example, a contactor 61 that supports a plurality of probe pins 60 on the lower surface, and a printed wiring board 62 that is attached to the upper surface side of the contactor 61.
  • the probe pin 60 is electrically connected to the printed wiring board 62 through the main body of the contactor 61.
  • a tester 54 is electrically connected to the probe card 51, and an electrical signal for inspecting electrical characteristics can be transmitted and received from the tester 54 to each probe pin 60 via the probe card 51.
  • the chuck 52 is formed in a substantially disc shape having a horizontal upper surface. Upper surface of chuck 52 Is provided with a suction port 52a for adsorbing the semiconductor device 1. For example, a suction pipe 52b that passes through the inside of the chuck 52 and communicates with an external negative pressure generator 63 is connected to the suction port 52a.
  • the moving mechanism 53 includes, for example, an elevating drive unit 70 such as a cylinder for elevating the chuck 52, and an elevating drive unit 70 for moving in two directions orthogonal to the horizontal X direction and the Y direction.
  • the 71 is equipped. As a result, the semiconductor device 1 held by the chuck 52 is moved three-dimensionally, and the specific probe pin 60 located above is moved to a predetermined position on the surface of the semiconductor device 1 with a force.
  • the semiconductor device 1 is sucked and held on the chuck 52 as shown in FIG. Subsequently, the chuck 52 is moved in the X and Y directions by the moving mechanism 53, and the position of the semiconductor device 1 is adjusted. Thereafter, the chuck 52 is raised, and a plurality of probe pins 60 are brought into contact with the surface of the semiconductor device 1 as shown in FIG. At this time, for example, the probe pin 60a contacts the surface terminal C1 of each power device P. The probe pin 60b is in contact with the metal wiring 20 in the region where the power device P is not formed.
  • a high voltage is applied between the probe pin 60a and the probe pin 60b by the tester 54, and the current is applied to the probe pin 60b, the metal wiring 20, the back surface terminal C2, the surface layer element portion P1, and the surface terminal C1.
  • the probe pin 60a in this order, and the electrical characteristics of the power device P, such as a large current switching test, are inspected.
  • the chuck 52 is lowered by the drive mechanism 53, and each probe pin 60 is separated from the semiconductor device 1. Thereafter, the semiconductor device 1 is removed from the chuck 52, and the series of inspection processes is completed.
  • the probe pin 60 can be connected to the surface terminal C1 of the power device P and the metal with the upward force.
  • the electrical characteristics can be inspected by contacting the wiring 20 and applying a voltage between both terminals CI and C2 of the power device P.
  • the electric circuit from the back terminal C2 of the power device P to the probe pin 60 is short, and the tester 54 and the power device P Since an electric circuit with a small load can be formed between the two, a highly accurate and stable inspection can be performed.
  • the wiring hole 30 is formed when the surface element portion P 1 of the power device P is formed, and then the wiring hole 30 is ground when the back surface of the semiconductor device 1 is ground.
  • metal wiring 20 was formed by embedding metal in the wiring holes 30. In this way, the metal wiring 20 can be easily formed in a small number of steps in the manufacturing process of the semiconductor device 1.
  • the electrical characteristic inspection performed using the probe pin 60 described in the above embodiment may be performed using the fritting phenomenon.
  • the fritting phenomenon is the application of a potential gradient of 10 5 to 10 6 V / cm to the metal surface on which the oxide film is formed, causing the oxide film to break down and current to flow through the metal surface. A phenomenon.
  • the printed circuit board 12 causes a fringing phenomenon, as shown in FIG. 5, with a test circuit 80 that transmits / receives an electrical signal for inspecting electrical characteristics to / from the probe pin 60.
  • a fringing circuit 81 for applying a voltage to a pair of probe pins 60 and a switching circuit 82 for switching the connection of the test circuit 80 and the fritting circuit 81 to the probe pin 60 are formed! .
  • a plurality of pairs of probe pins 60a are brought into contact with the surface terminal C1 of the power device P of the semiconductor device 1 so that the outer side of the power device P
  • Multiple sets of two probe pins 60b are in contact with the metal wiring 20.
  • a predetermined voltage is applied between each pair of probe pins 60a (60b) by the fritting circuit 81, and the potential gradient between the pair of probe pins 60a (60b) is increased. .
  • This causes dielectric breakdown in the surface oxide film at the surface terminal C1 and the metal wiring 20 of the power device P, respectively, and between the surface terminal C1 and the probe pin 60a and between the metal wiring 20 and the probe pin 60b. Electrical continuity is achieved.
  • Switching from the fritting circuit 81 to the test circuit 80 is performed by the pinching circuit 82.
  • a voltage is generated between the surface terminal C1 of the power device P and the metal wiring 20 by both probe pins 60a and 60b.
  • the electrical characteristics of the power device P which are the same as those in the above-described embodiment, are inspected.
  • the test may be performed using the number of probe pins corresponding to the current value.
  • the electrical connection between the probe pin 60 and the surface terminal C or the metal wiring 20 is achieved by utilizing the fritting phenomenon, so that the probe pin 60 is strongly pressed against the surface terminal C1 or the metal wiring 20 This is unnecessary, and damage to the semiconductor device 1 due to the pressing can be reduced. As a result, for example, damage to the semiconductor device 1 can be prevented.
  • the power device P described in the above embodiment is an example of an IGBT
  • the present invention can be applied to power devices having other configurations.
  • the present invention can be applied to other power devices such as a power transistor and a power MOSFET as long as it is a vertical power device having terminals on the front and back surfaces.
  • the present invention is useful when inspecting the electrical characteristics of a power device, forming an electric circuit with less load and performing a stable inspection with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

When inspecting electric characteristic of a power device having a terminal on the front and the rear surface, it is possible to accurately and stably perform the inspection by forming an electric path of a small load. A power device is formed in a device forming region of a semiconductor device. In a region outside the device formation region on the surface of the semiconductor device, a metal wire is arranged to lead to an electrode layer of the rear surface of the power device passing through the interior of the semiconductor. In the inspection of the electric characteristic of the power device, a plurality of probe pins are respectively brought into contact with the power device surface terminal and the metal wire from the surface side of the semiconductor device. By the probe pins, voltage is applied between terminals of the front and the rear surfaces of the power device, thereby inspecting the electric characteristic.

Description

明 細 書  Specification
半導体装置,半導体装置の製造方法及び検査方法  Semiconductor device, semiconductor device manufacturing method and inspection method
技術分野  Technical field
[0001] 本発明は,パワーデバイスの電気的特性の検査を考慮した構造の半導体装置と, その製造方法及びその半導体装置の検査方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a semiconductor device having a structure in consideration of inspection of electrical characteristics of a power device, a manufacturing method thereof, and an inspection method of the semiconductor device.
背景技術  Background art
[0002] 例えばパワートランジスタ,パワー MOSFET (電界効果型トランジスタ), IGBT (ins ulated gate bipolar transistor)などの表裏面に端子を有するパワーデバイスの電 気的特性の検査は,通常検査装置を用いて行われる。  [0002] For example, the inspection of electrical characteristics of power devices having terminals on the front and back surfaces, such as power transistors, power MOSFETs (field effect transistors), and IGBTs (insulated gate bipolar transistors), is usually performed using an inspection device. Is called.
[0003] 上述の検査装置には,通常図 6に示すようにパワーデバイスの形成された半導体 装置 Wを保持するチャック 100と,そのチャック 100の上方においてプローブピン 10 1が支持されたプローブカード 102と,そのプローブカード 102に電気的に接続され たテスタ 103を備えている。パワーデバイスは,半導体装置 Wの上下面に端子を有し ているため,チャック 100の保持面に検査用電極 104が形成され,この検査用電極 1 04は,チャック 100の内部に形成された配線 105を通って,テスタ 103に電気的に接 続されて!/、る (特許文献参照)。  [0003] As shown in FIG. 6, the above-described inspection apparatus normally includes a chuck 100 for holding a semiconductor device W on which a power device is formed, and a probe card 102 in which a probe pin 101 is supported above the chuck 100. And a tester 103 electrically connected to the probe card 102. Since the power device has terminals on the upper and lower surfaces of the semiconductor device W, an inspection electrode 104 is formed on the holding surface of the chuck 100, and this inspection electrode 104 is a wiring formed inside the chuck 100. It is electrically connected to the tester 103 through 105! /, (See patent document).
[0004] そして,上記検査装置では,プローブピン 101をパワーデバイスの上面側の端子に 接触させ,テスタ 103によりプローブピン 101と検査用電極 104に電圧を印加し,パ ヮーデバイスに電流を流すことによって,パワーデバイスの電気的特性の検査を行つ ていた。  In the above inspection apparatus, the probe pin 101 is brought into contact with the terminal on the upper surface side of the power device, a voltage is applied to the probe pin 101 and the inspection electrode 104 by the tester 103, and a current is passed through the power device. The electrical characteristics of power devices were inspected.
特許文献 1 :特開平 6— 242177号公報  Patent Document 1: JP-A-6-242177
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら,上述の検査装置では,検査時に,検査用電極 104からチャック 100 の内部を通ってテスタ 103に通じる電路が形成されるため,この電路が長く複雑にな り,大きな抵抗やインダクタンスが生じる。このため,検査時の通電の際には,電路の 流電を妨げる様々な負荷がかかり,高い精度で安定的な検査を行うことが難し力、つた 。特に,信頼性試験のようにパワーデバイスに大きな電流を流す場合には,電路に, より大きな抵抗やインダクタンスが生じ,要求される検査を適正に行うことができなか つた。 [0005] However, in the inspection apparatus described above, since an electric circuit is formed from the inspection electrode 104 through the inside of the chuck 100 to the tester 103 at the time of inspection, this electric circuit becomes long and complicated, and has a large resistance and inductance. Occurs. For this reason, during energization during inspection, various loads that impede current flow in the circuit are applied, making it difficult to conduct stable inspection with high accuracy. . In particular, when a large current was passed through the power device as in the reliability test, a larger resistance and inductance were generated in the circuit, and the required inspection could not be performed properly.
[0006] 本発明は,力、かる点に鑑みてなされたものであり,パワーデバイスの電気的特性の 検査を,負荷の小さい電路を用いて,高い精度で安定的に行うことをその目的とする [0006] The present invention has been made in view of the force and the point, and it is an object of the present invention to inspect the electrical characteristics of a power device stably with high accuracy using an electric circuit with a small load. Do
Yes
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するための本発明は,表面と裏面に端子を有するパワーデバイス が形成された半導体装置であって,半導体装置の裏面には,パワーデバイスの裏面 側の端子となる電極層が形成されており,前記半導体装置の表面であって前記パヮ 一デバイスの表面側の端子のない領域には,半導体装置の内部を通って前記電極 層に通じる金属配線が形成されてレ、ることを特徴とする。  [0007] To achieve the above object, the present invention provides a semiconductor device in which a power device having terminals on the front surface and the back surface is formed, and an electrode serving as a terminal on the back surface side of the power device is formed on the back surface of the semiconductor device. A metal wiring that passes through the inside of the semiconductor device and communicates with the electrode layer is formed on the surface of the semiconductor device and without any terminal on the surface side of the semiconductor device. It is characterized by that.
[0008] 本発明によれば,半導体装置の表面に裏面の電極層に通じる金属配線が形成さ れているので,半導体装置の表面側から,パワーデバイスの表面側の端子と金属配 線に検査用のプローブピンを接触させ,それらのプローブピンによりパワーデバイス の表裏面の端子間に電圧を印加して電気的特性の検査を行うことができる。この場 合,検査の際に形成される電路が単純で短くなり,大きな抵抗やインダクタンスが生 じな!/、ため,所望の検査を高レ、精度で安定的に行うことができる。  [0008] According to the present invention, since the metal wiring leading to the electrode layer on the back surface is formed on the front surface of the semiconductor device, inspection is performed from the front surface side of the semiconductor device to the terminal and metal wiring on the front surface side of the power device. The electrical characteristics can be inspected by bringing the probe pins into contact with each other and applying a voltage between the front and back terminals of the power device using these probe pins. In this case, the electric circuit formed during the inspection is simple and short, and no large resistance or inductance is generated! /, So the desired inspection can be performed stably with high accuracy.
[0009] 前記パワーデバイスは,半導体装置の複数のデバイス形成領域にそれぞれ形成さ れ,前記金属配線は,隣り合うデバイス形成領域の間に形成されていてもよい。また ,前記金属配線の周囲には,絶縁層が形成されていてもよい。  [0009] The power device may be formed in each of a plurality of device formation regions of the semiconductor device, and the metal wiring may be formed between adjacent device formation regions. In addition, an insulating layer may be formed around the metal wiring.
[0010] 別の観点による本発明によれば,表面と裏面に端子を有するパワーデバイスが形 成される半導体装置の製造方法であって,半導体装置の表面側に,パワーデバイス の表面側の端子を含む表層素子部を形成する第 1の工程と,半導体装置の裏面側 を研削する第 2の工程と,半導体装置の裏面に,ノ ヮ一デバイスの裏面側の端子と なる電極層を形成する第 3の工程と,を有し,前記第 1の工程前,前記第 1の工程時 又は第 1の工程直後に,前記半導体装置の表面であって前記表層素子部のない領 域に所定深さのくぼみ部を形成し,前記第 2の工程において,前記半導体装置の裏 面側を研削することにより前記くぼみ部を貫通させ,前記第 3の工程において,前記 電極層を形成する際に前記くぼみ部に金属を埋め込んで,前記電極層から前記半 導体装置の表面にまで通じる金属配線を形成する。 [0010] According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device in which a power device having terminals on the front surface and the back surface is formed. The first step of forming the surface layer element portion including the second step, the second step of grinding the back side of the semiconductor device, and the electrode layer serving as the terminal on the back side of the first device are formed on the back side of the semiconductor device And having a predetermined depth in a region on the surface of the semiconductor device without the surface layer element portion, before the first step, at the time of the first step, or immediately after the first step. Forming a recess portion of the semiconductor device in the second step; The recess is penetrated by grinding the surface side, and in the third step, when the electrode layer is formed, a metal is embedded in the recess to extend from the electrode layer to the surface of the semiconductor device. Form metal wiring that leads to
[0011] 前記第 3の工程において,前記電極層は,めっきにより形成され,そのめつきにより 前記くぼみ部に金属が埋め込まれて金属配線が形成されるようにしてもよい。 [0011] In the third step, the electrode layer may be formed by plating, and a metal wiring may be formed by embedding a metal in the recessed portion by the contact.
[0012] 前記パワーデバイスは,半導体装置の複数のデバイス形成領域にそれぞれ形成さ れ,前記金属配線は,隣り合うデバイス形成領域の間に形成されていてもよい。また[0012] The power device may be formed in each of a plurality of device formation regions of the semiconductor device, and the metal wiring may be formed between adjacent device formation regions. Also
,前記所定の深さのくぼみ部を形成した後に, 当該くぼみ部の内側表面に絶縁膜を 形成してもよい。 Then, after forming the recess of the predetermined depth, an insulating film may be formed on the inner surface of the recess.
[0013] 別の観点による本発明によれば,上記半導体装置のパワーデバイスに対する電気 的特性を検査する方法であって,半導体装置の表面側から,パワーデバイスの表面 側の端子と金属配線にそれぞれプローブピンを接触させ,それらのプローブピンによ りパワーデバイスの表裏面の端子間に電圧を印加して電気的特性の検査を行うこと を特徴とする。  [0013] According to another aspect of the present invention, there is provided a method for inspecting electrical characteristics of the semiconductor device with respect to the power device, from the surface side of the semiconductor device to the terminal and metal wiring on the surface side of the power device. The probe pins are brought into contact, and the electrical characteristics are inspected by applying a voltage between the front and back terminals of the power device using these probe pins.
[0014] 前記パワーデバイスの表面側の端子に, 2本一組のプローブピンを接触させ,それ らのプローブピン間に電圧を印加することにより生じるしフリツティング現象を利用して ,前記プローブピンと前記表面側の端子との間の電気的な導通を図り,前記金属配 線に 2本一組のプローブピンを接触させ,それらのプローブピン間に電圧を印加する ことにより生じるフリツティング現象を利用して,前記プローブピンと前記金属配線との 間の電気的な導通を図るようにしてもよい。また,前記パワーデバイスの表面側の端 子と前記金属配線に,それぞれ複数組のプローブピンを接触させるようにしてもよい  [0014] A pair of probe pins is brought into contact with a terminal on the surface side of the power device, and a voltage is applied between the probe pins. Utilizes the fritting phenomenon that occurs when electrical connection between the terminals on the surface side is made, a pair of probe pins are brought into contact with the metal wiring, and a voltage is applied between the probe pins. Then, electrical continuity may be achieved between the probe pin and the metal wiring. Further, a plurality of sets of probe pins may be brought into contact with the surface side terminal of the power device and the metal wiring, respectively.
発明の効果 The invention's effect
[0015] 本発明によれば,検査時に負荷の小さい電路を形成して,高い精度で安定した検 查を fiうこと力できる。  [0015] According to the present invention, it is possible to form an electric circuit with a small load at the time of inspection and to perform stable inspection with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]半導体装置の構成を示す模式図である。  FIG. 1 is a schematic view showing a configuration of a semiconductor device.
[図 2]半導体装置の製造プロセスを示す説明図である。 [図 3]検査装置の構成の概略を示す側面図である。 FIG. 2 is an explanatory diagram showing a manufacturing process of a semiconductor device. FIG. 3 is a side view schematically showing the configuration of the inspection apparatus.
[図 4]半導体装置にプローブピンを接触させた状態を示す模式図である。  FIG. 4 is a schematic view showing a state in which a probe pin is brought into contact with a semiconductor device.
[図 5]フリッティング現象を利用する際の回路構成を示す説明図である。  FIG. 5 is an explanatory diagram showing a circuit configuration when using the fritting phenomenon.
[図 6]従来のパワーデバイスの検査装置の構成の概略を示す模式図である。  FIG. 6 is a schematic diagram showing an outline of a configuration of a conventional power device inspection apparatus.
符号の説明  Explanation of symbols
[0017] 1 半導体装置 [0017] 1 Semiconductor device
17 電極層  17 Electrode layer
20 金属配線  20 Metal wiring
60 プローブピン  60 Probe pin
P パワーデバイス  P power device
P1 表層素子部  P1 Surface layer element
R デバイス形成領域  R device formation region
C1 表面端子  C1 Surface contact
C2 裏面端子  C2 Back terminal
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下,本発明の好ましい実施の形態について説明する。図 1は,本実施の形態に かかる半導体装置 1の構成を示す模式図である。  [0018] Hereinafter, a preferred embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing the configuration of the semiconductor device 1 according to the present embodiment.
[0019] 板状の半導体装置 1には,分割された複数のデバイス形成領域 Rが形成され,その 各デバイス形成領域 Rに, IGBTなどのパワーデバイス Pが形成されている。例えば パワーデバイス Pは, n型ベース 10の上層側に, p型ェミッタ領域 11 , n型ドレイン領 域 12,ゲート電極 13,ェミッタ電極 14などの表層素子部 P1が形成され, n型ベース 10の下層側に, n型バッファ層 15, p型層 16,電極層 17が形成されている。この例 において,ゲート電極 13及びェミッタ電極 14は,パワーデバイス Pの表面側の表面 端子 C1を構成しており,電極層 17は,パワーデバイス Pの裏面側の裏面端子 C2を 構成している。  In the plate-like semiconductor device 1, a plurality of divided device forming regions R are formed, and in each device forming region R, a power device P such as an IGBT is formed. For example, in the power device P, a surface layer element portion P1 such as a p-type emitter region 11, an n-type drain region 12, a gate electrode 13, and an emitter electrode 14 is formed on the upper layer side of the n-type base 10, and the n-type base 10 An n-type buffer layer 15, a p-type layer 16, and an electrode layer 17 are formed on the lower layer side. In this example, the gate electrode 13 and the emitter electrode 14 constitute a surface terminal C1 on the surface side of the power device P, and the electrode layer 17 constitutes a back surface terminal C2 on the back side of the power device P.
[0020] 半導体装置 1における隣り合うデバイス形成領域 Rの間,つまりパワーデバイス の ない領域には,半導体装置 1の表面から裏面の電極層 17に上下方向に通じる金属 配線 20が形成されている。金属配線 20は,各パワーデバイス P毎に形成されている 。また,例えば金属配線 20の周囲には,絶縁層 21が形成されている。 [0020] Between the adjacent device formation regions R in the semiconductor device 1, that is, in a region without a power device, a metal wiring 20 is formed in the vertical direction from the front surface of the semiconductor device 1 to the electrode layer 17 on the back surface. Metal wiring 20 is formed for each power device P . For example, an insulating layer 21 is formed around the metal wiring 20.
[0021] 半導体装置 1は,例えば以下のプロセスにより製造されている。先ず,図 2 (a)に示 すように半導体装置 1のデバイス形成領域 Rの表面側に,表層素子部 P1が形成され る。この表層素子部 Pi tt,例えばフォトリソグラフィー技術などを用いて形成される。 この表層素子部 P1の形成工程前,表層素子部 P1の形成工程中,或いは表層素子 部 P1の形成直後に,半導体装置 1の表面側から所定深さのくぼみ部となる配線用孔 30が形成される。この配線用孔 30は,デバイス形成領域 Rの外側に,例えばエッチ ングにより形成される。次に,例えば配線用孔 30の内側の表面に,例えば CVD法な どにより酸化膜,窒化膜などの絶縁膜 21が形成される。 The semiconductor device 1 is manufactured by, for example, the following process. First, as shown in FIG. 2 (a), the surface element portion P1 is formed on the surface side of the device formation region R of the semiconductor device 1. The surface layer element portion pit is formed using, for example, a photolithography technique. A wiring hole 30 to be a recessed portion with a predetermined depth is formed from the surface side of the semiconductor device 1 before the formation process of the surface element part P1, during the formation process of the surface element part P1, or immediately after the formation of the surface element part P1. Is done. This wiring hole 30 is formed outside the device formation region R by, for example, etching. Next, an insulating film 21 such as an oxide film or a nitride film is formed on the inner surface of the wiring hole 30 by, for example, a CVD method.
[0022] その後,例えば図 2 (b)に示すように半導体装置 1の裏面側が研削され,半導体装 置 1が所定の厚みに削られる。このとき,配線用孔 30が貫通する。その後半導体装 置 1の裏面側に, n型バッファ層 15, p型層 16が順に形成され,その後例えばめつき 技術により図 2 (c)に示すように電極層 17が形成される。この際,配線用孔 30内に例 えばめっき技術により金属が埋め込まれ,電極層 17から半導体装置 1の表面に通じ る金属配線 20が形成される。このようにして,パワーデバイス Pと金属配線 20を有す る半導体装置 1が製造される。 Thereafter, as shown in FIG. 2B, for example, the back surface side of the semiconductor device 1 is ground, and the semiconductor device 1 is shaved to a predetermined thickness. At this time, the wiring hole 30 penetrates. After that, an n-type buffer layer 15 and a p-type layer 16 are formed in this order on the back side of the semiconductor device 1, and then an electrode layer 17 is formed as shown in Fig. 2 (c), for example, by a plating technique. At this time, a metal is buried in the wiring hole 30 by, for example, a plating technique, and a metal wiring 20 that leads from the electrode layer 17 to the surface of the semiconductor device 1 is formed. In this way, the semiconductor device 1 having the power device P and the metal wiring 20 is manufactured.
[0023] 次に,半導体装置 1に形成されているパワーデバイス Pの電気的特性の検査を行う 検査装置について説明する。図 3は,その検査装置 50の構成の概略を示す説明図 である。  Next, an inspection apparatus that inspects the electrical characteristics of the power device P formed in the semiconductor device 1 will be described. FIG. 3 is an explanatory diagram showing an outline of the configuration of the inspection device 50.
[0024] 検査装置 50は,例えばプローブカード 51と,半導体装置 1を吸着保持するチャック  The inspection device 50 includes, for example, a probe card 51 and a chuck that holds the semiconductor device 1 by suction.
52と,チャック 52を移動させる移動機構 53と,テスタ 54などを備えている。  52, a moving mechanism 53 for moving the chuck 52, a tester 54, and the like.
[0025] プローブカード 51は,例えば複数のプローブピン 60を下面に支持したコンタクタ 6 1と,そのコンタクタ 61の上面側に取り付けられたプリント配線基板 62を備えている。 プローブピン 60は,コンタクタ 61の本体を通じてプリント配線基板 62に電気的に接 続されている。プローブカード 51には,テスタ 54が電気的に接続されており,テスタ 5 4からプローブカード 51を介して各プローブピン 60に電気的特性の検査のための電 気信号を送受信できる。  The probe card 51 includes, for example, a contactor 61 that supports a plurality of probe pins 60 on the lower surface, and a printed wiring board 62 that is attached to the upper surface side of the contactor 61. The probe pin 60 is electrically connected to the printed wiring board 62 through the main body of the contactor 61. A tester 54 is electrically connected to the probe card 51, and an electrical signal for inspecting electrical characteristics can be transmitted and received from the tester 54 to each probe pin 60 via the probe card 51.
[0026] チャック 52は,水平な上面を有する略円盤状に形成されている。チャック 52の上面 には,半導体装置 1を吸着するための吸引口 52aが設けられている。吸引口 52aに は,例えばチャック 52の内部を通って外部の負圧発生装置 63に通じる吸引管 52b が接続されている。 [0026] The chuck 52 is formed in a substantially disc shape having a horizontal upper surface. Upper surface of chuck 52 Is provided with a suction port 52a for adsorbing the semiconductor device 1. For example, a suction pipe 52b that passes through the inside of the chuck 52 and communicates with an external negative pressure generator 63 is connected to the suction port 52a.
[0027] 移動機構 53は,例えばチャック 52を昇降するシリンダなどの昇降駆動部 70と,昇 降駆動部 70を水平方向の X方向と Y方向の直交する 2方向に移動させる X— Yステ ージ 71を備えている。これにより,チャック 52に保持された半導体装置 1を三次元移 動させ,半導体装置 1の表面の所定の位置に,上方にある特定のプローブピン 60を 接角虫させること力でさる。  [0027] The moving mechanism 53 includes, for example, an elevating drive unit 70 such as a cylinder for elevating the chuck 52, and an elevating drive unit 70 for moving in two directions orthogonal to the horizontal X direction and the Y direction. The 71 is equipped. As a result, the semiconductor device 1 held by the chuck 52 is moved three-dimensionally, and the specific probe pin 60 located above is moved to a predetermined position on the surface of the semiconductor device 1 with a force.
[0028] 次に,以上のように構成された検査装置 50で行われるパワーデバイス Pの電気的 特性の検査プロセスについて説明する。  [0028] Next, an inspection process of the electrical characteristics of the power device P performed by the inspection apparatus 50 configured as described above will be described.
[0029] 先ず,半導体装置 1が図 3に示すようにチャック 52上に吸着保持される。続いて,移 動機構 53により,チャック 52が X— Y方向に移動されて,半導体装置 1の位置が調 整される。その後チャック 52が上昇され,例えば図 4に示すように複数のプローブピ ン 60が半導体装置 1の表面に接触される。この際,例えば各パワーデバイス Pの表 面端子 C1にはプローブピン 60aが接触される。またパワーデバイス Pが形成されてい ない領域にある金属配線 20にはプローブピン 60bが接触される。  First, the semiconductor device 1 is sucked and held on the chuck 52 as shown in FIG. Subsequently, the chuck 52 is moved in the X and Y directions by the moving mechanism 53, and the position of the semiconductor device 1 is adjusted. Thereafter, the chuck 52 is raised, and a plurality of probe pins 60 are brought into contact with the surface of the semiconductor device 1 as shown in FIG. At this time, for example, the probe pin 60a contacts the surface terminal C1 of each power device P. The probe pin 60b is in contact with the metal wiring 20 in the region where the power device P is not formed.
[0030] そして,テスタ 54によって,例えばプローブピン 60aとプローブピン 60bの間に高電 圧が印加され,電流がプローブピン 60b,金属配線 20,裏面端子 C2,表層素子部 P 1 ,表面端子 C1及びプローブピン 60aの順に流れ,パワーデバイス Pの大電流スイツ チング試験などの電気的特性の検査が行われる。  [0030] Then, for example, a high voltage is applied between the probe pin 60a and the probe pin 60b by the tester 54, and the current is applied to the probe pin 60b, the metal wiring 20, the back surface terminal C2, the surface layer element portion P1, and the surface terminal C1. And the probe pin 60a in this order, and the electrical characteristics of the power device P, such as a large current switching test, are inspected.
[0031] 電気的特性の検査が終了すると,駆動機構 53によりチャック 52が下降し,各プロ一 ブピン 60が半導体装置 1から離される。その後,半導体装置 1がチャック 52から取り 外されて,一連の検査プロセスが終了する。  When the inspection of the electrical characteristics is completed, the chuck 52 is lowered by the drive mechanism 53, and each probe pin 60 is separated from the semiconductor device 1. Thereafter, the semiconductor device 1 is removed from the chuck 52, and the series of inspection processes is completed.
[0032] 以上の実施の形態によれば,半導体装置 1の表面に,裏面の電極層 17に通じる金 属配線 20を形成したので,プローブピン 60を上方力もパワーデバイス Pの表面端子 C1と金属配線 20に接触させ,パワーデバイス Pの両端子 CI , C2間に電圧を印加さ せて,電気的特性の検査を行うことができる。この場合,パワーデバイス Pの裏面端子 C2からプローブピン 60までの電路が短く,検査の際にテスタ 54とパワーデバイス P の間に負荷の小さい電路を形成できるので,高い精度で安定的な検査を行うことが できる。また,半導体装置 1自体の表面に裏面端子 C2と電気的に導通する電極を形 成するので,従来のようにチャック内部に裏面端子 C2と導通を図るための特別な配 線を形成する必要がなく,検査装置 50の構成を単純化できる。 [0032] According to the above embodiment, since the metal wiring 20 leading to the electrode layer 17 on the back surface is formed on the front surface of the semiconductor device 1, the probe pin 60 can be connected to the surface terminal C1 of the power device P and the metal with the upward force. The electrical characteristics can be inspected by contacting the wiring 20 and applying a voltage between both terminals CI and C2 of the power device P. In this case, the electric circuit from the back terminal C2 of the power device P to the probe pin 60 is short, and the tester 54 and the power device P Since an electric circuit with a small load can be formed between the two, a highly accurate and stable inspection can be performed. In addition, since an electrode that is electrically connected to the back terminal C2 is formed on the surface of the semiconductor device 1 itself, it is necessary to form a special wiring inside the chuck for electrical connection with the back terminal C2. In addition, the configuration of the inspection device 50 can be simplified.
[0033] また,金属配線 20を隣り合うデバイス形成領域 Rの間に形成したので,パワーデバ イス P自体に影響を及ぼすことがな!/、。  [0033] Since the metal wiring 20 is formed between the adjacent device formation regions R, the power device P itself is not affected!
[0034] また,半導体装置 1の製造プロセスにおいては,パワーデバイス Pの表層素子部 P1 を形成する際に配線用孔 30を形成し,その後半導体装置 1の裏面を研削する際に 配線用孔 30を貫通させ,さらに電極層 17を形成する際に配線用孔 30に金属を埋め 込んで金属配線 20を形成した。こうすることにより,半導体装置 1の製造プロセスに ぉレ、て,金属配線 20を少な!/、工程で簡単に形成することができる。  In the manufacturing process of the semiconductor device 1, the wiring hole 30 is formed when the surface element portion P 1 of the power device P is formed, and then the wiring hole 30 is ground when the back surface of the semiconductor device 1 is ground. When the electrode layer 17 was formed, metal wiring 20 was formed by embedding metal in the wiring holes 30. In this way, the metal wiring 20 can be easily formed in a small number of steps in the manufacturing process of the semiconductor device 1.
[0035] 以上の実施の形態で記載したプローブピン 60を用いて行う電気的特性の検査を, フリツティング現象を利用して行ってもよい。なお,フリツティング現象とは,酸化膜が 形成された金属表面に 105〜; 106V/cm程度の電位傾度を印加することにより,酸 化膜が絶縁破壊され,金属表面に電流が流れる現象をいう。 [0035] The electrical characteristic inspection performed using the probe pin 60 described in the above embodiment may be performed using the fritting phenomenon. The fritting phenomenon is the application of a potential gradient of 10 5 to 10 6 V / cm to the metal surface on which the oxide film is formed, causing the oxide film to break down and current to flow through the metal surface. A phenomenon.
[0036] かかる場合,例えばプリント配線基板 12には,図 5に示すように電気的特性の検査 のための電気信号をプローブピン 60に対して送受信するテスト回路 80と,フリツティ ング現象を生じさせるために 2本一組のプローブピン 60に電圧を印加するフリツティ ング回路 81と,テスト回路 80とフリツティング回路 81とのプローブピン 60に対する接 続を切り替えるスイッチング回路 82が形成されて!/、る。  In such a case, for example, the printed circuit board 12 causes a fringing phenomenon, as shown in FIG. 5, with a test circuit 80 that transmits / receives an electrical signal for inspecting electrical characteristics to / from the probe pin 60. For this purpose, a fringing circuit 81 for applying a voltage to a pair of probe pins 60 and a switching circuit 82 for switching the connection of the test circuit 80 and the fritting circuit 81 to the probe pin 60 are formed! .
[0037] そして,パワーデバイス Pの検査の際には,例えば半導体装置 1のパワーデバイス P の表面端子 C1に, 2本一組のプローブピン 60aが複数組接触され,パワーデバイス Pの外方の金属配線 20に, 2本一組のプローブピン 60bが複数組接触される。フリツ ティング回路 81により,それぞれの 2本一組のプローブピン 60a (60b)の相互間に所 定の電圧が印加され, 当該 2本一組のプローブピン 60a (60b)間の電位傾度が上げ られる。こうすることによって,パワーデバイス Pの表面端子 C1と金属配線 20におい て,それぞれ表面の酸化膜に絶縁破壊が起こり,表面端子 C1とプローブピン 60aの 間と,金属配線 20とプローブピン 60bの間の電気的な導通が図られる。その後,スィ ツチング回路 82により,フリツティング回路 81からテスト回路 80に切り替えられ,例え ば 2本一組の両方のプローブピン 60a, 60bによって,パワーデバイス Pの表面端子 C1と金属配線 20との間に電圧が印加され,上述した実施の形態と同様のパワーデ バイス Pの電気的特性が検査される。なお,大電流で電気的特性の試験を行う場合 には,その電流値に応じた数のプローブピンを用いて,試験を実施してもよい。 [0037] When the power device P is inspected, for example, a plurality of pairs of probe pins 60a are brought into contact with the surface terminal C1 of the power device P of the semiconductor device 1 so that the outer side of the power device P Multiple sets of two probe pins 60b are in contact with the metal wiring 20. A predetermined voltage is applied between each pair of probe pins 60a (60b) by the fritting circuit 81, and the potential gradient between the pair of probe pins 60a (60b) is increased. . This causes dielectric breakdown in the surface oxide film at the surface terminal C1 and the metal wiring 20 of the power device P, respectively, and between the surface terminal C1 and the probe pin 60a and between the metal wiring 20 and the probe pin 60b. Electrical continuity is achieved. After that, Switching from the fritting circuit 81 to the test circuit 80 is performed by the pinching circuit 82. For example, a voltage is generated between the surface terminal C1 of the power device P and the metal wiring 20 by both probe pins 60a and 60b. The electrical characteristics of the power device P, which are the same as those in the above-described embodiment, are inspected. When testing electrical characteristics at a large current, the test may be performed using the number of probe pins corresponding to the current value.
[0038] かかる場合,フリツティング現象を利用してプローブピン 60と表面端子 C或いは金 属配線 20との電気的な導通が図られるので,プローブピン 60を表面端子 C1や金属 配線 20に強く押し付ける必要がなく,その押し付けによる半導体装置 1へのダメージ を低減できる。この結果,例えば半導体装置 1の破損を防止できる。  [0038] In such a case, the electrical connection between the probe pin 60 and the surface terminal C or the metal wiring 20 is achieved by utilizing the fritting phenomenon, so that the probe pin 60 is strongly pressed against the surface terminal C1 or the metal wiring 20 This is unnecessary, and damage to the semiconductor device 1 due to the pressing can be reduced. As a result, for example, damage to the semiconductor device 1 can be prevented.
[0039] 以上,添付図面を参照しながら本発明の好適な実施の形態について説明したが, 本発明は力、かる例に限定されない。当業者であれば,特許請求の範囲に記載された 思想の範疇内において,各種の変更例または修正例に相到し得ることは明らかであ り,それらについても当然に本発明の技術的範囲に属するものと了解される。例えば 以上の実施の形態で記載したパワーデバイス Pは, IGBTの一例であり,本発明は, 他の構成のパワーデバイスにも適用できる。例えば本発明は,表面と裏面にそれぞ れ端子を有する縦型のパワーデバイスであれば,パワートランジスタ,パワー MOSF ETなどの他のパワーデバイスにも適用できる。  The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to these examples. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the idea described in the claims. It is understood that it belongs to. For example, the power device P described in the above embodiment is an example of an IGBT, and the present invention can be applied to power devices having other configurations. For example, the present invention can be applied to other power devices such as a power transistor and a power MOSFET as long as it is a vertical power device having terminals on the front and back surfaces.
産業上の利用可能性  Industrial applicability
[0040] 本発明は,パワーデバイスの電気的特性の検査において,負荷の少ない電路を形 成して,高い精度で安定的な検査を行う際に有用である。 The present invention is useful when inspecting the electrical characteristics of a power device, forming an electric circuit with less load and performing a stable inspection with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 表面と裏面に端子を有するパワーデバイスが形成された半導体装置であって, 半導体装置の裏面には,パワーデバイスの裏面側の端子となる電極層が形成されて おり,  [1] A semiconductor device in which a power device having terminals on the front and back surfaces is formed, and an electrode layer serving as a terminal on the back side of the power device is formed on the back surface of the semiconductor device.
前記半導体装置の表面であって前記パワーデバイスの表面側の端子のない領域に は,半導体装置の内部を通って前記電極層に通じる金属配線が形成されている。  In the region of the surface of the semiconductor device where there is no terminal on the surface side of the power device, a metal wiring that passes through the inside of the semiconductor device and communicates with the electrode layer is formed.
[2] 請求項 1に記載の半導体装置において,  [2] In the semiconductor device according to claim 1,
前記パワーデバイスは,半導体装置の複数のデバイス形成領域にそれぞれ形成さ れ,  The power device is formed in each of a plurality of device formation regions of a semiconductor device,
前記金属配線は,隣り合うデバイス形成領域の間に形成されている。  The metal wiring is formed between adjacent device formation regions.
[3] 請求項 1に記載の半導体装置において, [3] In the semiconductor device according to claim 1,
前記金属配線の周囲には,絶縁層が形成されている。  An insulating layer is formed around the metal wiring.
[4] 表面と裏面に端子を有するパワーデバイスが形成される半導体装置の製造方法であ つて, [4] A method of manufacturing a semiconductor device in which a power device having terminals on the front and back surfaces is formed.
半導体装置の表面側に,パワーデバイスの表面側の端子を含む表層素子部を形成 する第 1の工程と,  A first step of forming a surface element portion including a terminal on the surface side of the power device on the surface side of the semiconductor device;
半導体装置の裏面側を研削する第 2の工程と,  A second step of grinding the back side of the semiconductor device;
半導体装置の裏面に,パワーデバイスの裏面側の端子となる電極層を形成する第 3 の工程と,を有し,  A third step of forming an electrode layer on the back surface of the semiconductor device, which serves as a terminal on the back surface side of the power device,
前記第 1の工程前,前記第 1の工程時又は第 1の工程直後に,前記半導体装置の表 面であって前記表層素子部のない領域に所定深さのくぼみ部を形成し, 前記第 2の工程において,前記半導体装置の裏面側を研削することにより前記くぼ み部を貫通させ,  Before the first step, at the time of the first step, or immediately after the first step, a recess portion having a predetermined depth is formed in a region of the surface of the semiconductor device that does not have the surface layer element portion. In step 2, by grinding the back side of the semiconductor device, the recess is penetrated,
前記第 3の工程において,前記電極層を形成する際に前記くぼみ部に金属を埋め 込んで,前記電極層から前記半導体装置の表面にまで通じる金属配線を形成する。  In the third step, when the electrode layer is formed, a metal wiring is formed by burying a metal in the recessed portion and extending from the electrode layer to the surface of the semiconductor device.
[5] 請求項 4に記載の半導体装置の製造方法において, [5] In the method of manufacturing a semiconductor device according to claim 4,
前記第 3の工程において,前記電極層は,めっきにより形成され,そのめつきにより前 記くぼみ部に金属が埋め込まれて金属配線が形成される。 In the third step, the electrode layer is formed by plating, and metal is embedded in the recessed portion by the plating to form a metal wiring.
[6] 請求項 4に記載の半導体装置の製造方法において, [6] In the method of manufacturing a semiconductor device according to claim 4,
前記パワーデバイスは,半導体装置の複数のデバイス形成領域にそれぞれ形成さ れ,  The power device is formed in each of a plurality of device formation regions of a semiconductor device,
前記金属配線は,隣り合うデバイス形成領域の間に形成される。  The metal wiring is formed between adjacent device formation regions.
[7] 請求項 4に記載の半導体装置の製造方法において, [7] In the method of manufacturing a semiconductor device according to claim 4,
前記所定の深さのくぼみ部を形成した後に, 当該くぼみ部の内側表面に絶縁膜を形 成する。  After forming the recess of the predetermined depth, an insulating film is formed on the inner surface of the recess.
[8] 表面と裏面に端子を有するパワーデバイスが形成された半導体装置の当該パワー デバイスに対する電気的特性を検査する方法であって,  [8] A method for inspecting the electrical characteristics of a semiconductor device in which a power device having terminals on the front and back surfaces is formed.
前記半導体装置の裏面には,パワーデバイスの裏面側の端子となる電極層が形成さ れており,  An electrode layer serving as a terminal on the back side of the power device is formed on the back side of the semiconductor device.
前記半導体装置の表面であって前記パワーデバイスの表面側の端子のない領域に は,半導体装置の内部を通って前記電極層に通じる金属配線が形成されており, さらに前記半導体装置の表面側から,パワーデバイスの表面側の端子と金属配線に それぞれプローブピンを接触させ,それらのプローブピンによりパワーデバイスの表 裏面の端子間に電圧を印加して電気的特性の検査を行う。  In the region of the surface of the semiconductor device where there is no terminal on the surface side of the power device, a metal wiring that passes through the inside of the semiconductor device and communicates with the electrode layer is formed, and further from the surface side of the semiconductor device. The probe pins are brought into contact with the terminals on the front side of the power device and the metal wiring, and the electrical characteristics are inspected by applying a voltage between the front and back terminals of the power device with these probe pins.
[9] 請求項 8に記載の検査方法において, [9] In the inspection method according to claim 8,
前記パワーデバイスの表面側の端子に, 2本一組のプローブピンを接触させ,それら のプローブピン間に電圧を印加することにより生じるフリツティング現象を利用して, 前記プローブピンと前記表面側の端子との間の電気的な導通を図り,  The probe pin and the surface-side terminal are utilized by utilizing a fritting phenomenon caused by bringing a pair of probe pins into contact with the surface-side terminal of the power device and applying a voltage between the probe pins. To establish electrical continuity between
前記金属配線に 2本一組のプローブピンを接触させ,それらのプローブピン間に電 圧を印加することにより生じるフリツティング現象を利用して,前記プローブピンと前記 金属配線との間の電気的な導通を図る。  An electrical connection between the probe pin and the metal wiring is made by utilizing a fritting phenomenon caused by bringing a pair of probe pins into contact with the metal wiring and applying a voltage between the probe pins. Ensuring continuity.
[10] 請求項 9に記載の検査方法において, [10] In the inspection method according to claim 9,
前記パワーデバイスの表面側の端子と前記金属配線に,それぞれ複数組のプロ一 ブピンを接触させる。  Plural pairs of probe pins are brought into contact with the terminal on the surface side of the power device and the metal wiring.
PCT/JP2007/070247 2006-10-17 2007-10-17 Semiconductor device, semiconductor device manufacturing method, and inspection method WO2008047832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006283001A JP2008103421A (en) 2006-10-17 2006-10-17 Semiconductor device, and manufacturing and inspection method thereof
JP2006-283001 2006-10-17

Publications (1)

Publication Number Publication Date
WO2008047832A1 true WO2008047832A1 (en) 2008-04-24

Family

ID=39314054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070247 WO2008047832A1 (en) 2006-10-17 2007-10-17 Semiconductor device, semiconductor device manufacturing method, and inspection method

Country Status (2)

Country Link
JP (1) JP2008103421A (en)
WO (1) WO2008047832A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584146B2 (en) * 2011-01-20 2014-09-03 株式会社東芝 Semiconductor device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351997A (en) * 2000-06-09 2001-12-21 Canon Inc Mounting structure of light receiving sensor and method of using the same
JP2002121041A (en) * 2000-10-13 2002-04-23 Nakamura Tome Precision Ind Co Ltd Method and device for breaking rigid brittle plate
JP2002139540A (en) * 2000-10-30 2002-05-17 Nec Corp Probe structure and its manufacturing method
JP2006121041A (en) * 2004-09-24 2006-05-11 Toshiba Corp Semiconductor device and manufacturing method of semiconductor device
JP2006228837A (en) * 2005-02-15 2006-08-31 Sharp Corp Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351997A (en) * 2000-06-09 2001-12-21 Canon Inc Mounting structure of light receiving sensor and method of using the same
JP2002121041A (en) * 2000-10-13 2002-04-23 Nakamura Tome Precision Ind Co Ltd Method and device for breaking rigid brittle plate
JP2002139540A (en) * 2000-10-30 2002-05-17 Nec Corp Probe structure and its manufacturing method
JP2006121041A (en) * 2004-09-24 2006-05-11 Toshiba Corp Semiconductor device and manufacturing method of semiconductor device
JP2006228837A (en) * 2005-02-15 2006-08-31 Sharp Corp Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008103421A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US8159245B2 (en) Holding member for inspection, inspection device and inspecting method
CN105023845B (en) Manufacture method, evaluation method and the semiconductor device of semiconductor device
CN107367678B (en) Test structure, test probe card, test system and test method
JP4387125B2 (en) Inspection method and inspection apparatus
KR100965440B1 (en) Computer-readable storage media storing test methods, test devices and programs
CN204649917U (en) A kind of measurement mechanism of MOSFET wafer conducting resistance
US20110298115A1 (en) Semiconductor component and method of manufacture
KR100842784B1 (en) Inspection method and inspection equipment
JP2016025124A (en) Semiconductor device and method of manufacturing the same
JP2010010306A (en) Semiconductor wafer measuring apparatus
US20090021272A1 (en) Inspection apparatus, probe card and inspection method
CN104465614A (en) Test structure and corresponding test method
US11333702B2 (en) Semiconductor device test method
CN215415735U (en) Electrical characteristic testing device for switch component on wafer
CN113539870B (en) Method for testing electrical characteristics of a switch component on a wafer
CN111579955B (en) Probe station with busbar mechanism for testing the device under test
WO2008047832A1 (en) Semiconductor device, semiconductor device manufacturing method, and inspection method
US9117880B2 (en) Method for manufacturing semiconductor device
CN103839776B (en) Semiconductor structure and forming method thereof
CN101770964B (en) Test method for introducing charge in technology for forming passivation layer window
CN113341294B (en) Electrical characteristic testing device for a switch component on a wafer
CN105304515B (en) Method and test apparatus for testing semiconductor die
JP5861822B2 (en) Semiconductor device and test method thereof
TW563220B (en) Method for picking defected dielectric in semiconductor device
JP2002110692A (en) Method for manufacturing insulated gate power IC, method for inspecting insulated gate power IC, and probe for inspecting insulated gate power IC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829981

Country of ref document: EP

Kind code of ref document: A1