WO2008044479A1 - Electron beam lithography system and electron beam lithography - Google Patents
Electron beam lithography system and electron beam lithography Download PDFInfo
- Publication number
- WO2008044479A1 WO2008044479A1 PCT/JP2007/068807 JP2007068807W WO2008044479A1 WO 2008044479 A1 WO2008044479 A1 WO 2008044479A1 JP 2007068807 W JP2007068807 W JP 2007068807W WO 2008044479 A1 WO2008044479 A1 WO 2008044479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron beam
- lens
- refocus
- stage
- electrode
- Prior art date
Links
- 238000000609 electron-beam lithography Methods 0.000 title abstract 5
- 238000010894 electron beam technology Methods 0.000 claims abstract description 116
- 238000007493 shaping process Methods 0.000 claims abstract description 13
- 230000005405 multipole Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 230000004075 alteration Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 101710179738 6,7-dimethyl-8-ribityllumazine synthase 1 Proteins 0.000 description 1
- 101710179734 6,7-dimethyl-8-ribityllumazine synthase 2 Proteins 0.000 description 1
- 101710186608 Lipoyl synthase 1 Proteins 0.000 description 1
- 101710137584 Lipoyl synthase 1, chloroplastic Proteins 0.000 description 1
- 101710090391 Lipoyl synthase 1, mitochondrial Proteins 0.000 description 1
- 101710186609 Lipoyl synthase 2 Proteins 0.000 description 1
- 101710122908 Lipoyl synthase 2, chloroplastic Proteins 0.000 description 1
- 101710101072 Lipoyl synthase 2, mitochondrial Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/153—Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/153—Correcting image defects, e.g. stigmators
- H01J2237/1534—Aberrations
Definitions
- Electron beam exposure apparatus and electron beam exposure method are Electron beam exposure apparatus and electron beam exposure method
- the present invention relates to an electron beam exposure apparatus and an electron beam exposure method, and in particular, an electron beam exposure apparatus and an electron beam exposure that can change the shape and size of a beam using a variable rectangular opening or a partial collective pattern. Regarding the method.
- variable rectangular opening or a plurality of mask patterns are prepared in a mask, and they are selected by beam deflection and transferred and exposed to a sample! /, The
- an electron beam exposure apparatus that performs partial batch exposure.
- a beam is irradiated to one pattern area selected by beam deflection from a plurality of patterns arranged on the mask, and the beam cross section is formed into a pattern shape. Further, the beam that has passed through the mask is deflected back by a subsequent deflector, reduced at a fixed reduction rate determined by the electron optical system, and transferred onto the sample.
- Patent Document 1 discloses a method for controlling a focusing coil in synchronization with the size of a rectangular beam.
- Patent Document 2 discloses a method of measuring and correcting a positional deviation of a beam axis when performing electron beam refocusing.
- a refocus coil is installed, and an amount of current proportional to the cross-sectional area of the shaped beam is passed through the refocus coil to adjust the focus of the beam. For example, when the beam size is large, a larger current is passed through the refocusing coil in proportion to the cross-sectional area of the beam so that the convergence effect of the electron beam is strengthened.
- the refocusing execution time is the time until a predetermined current is passed through the refocusing coil until a stable current is obtained.
- the time is about 300ns, and the exposure waiting time is long.
- Patent Document 1 Japanese Patent Laid-Open No. Sho 56-94740
- Patent Document 2 JP-A-58-121625
- the present invention has been made in view of the power and problems of the prior art, and shortens the refocus time and improves the throughput in electron beam exposure that can change the shape and size of the beam. It is an object to provide an electron beam exposure apparatus and an electron beam exposure method capable of achieving the above.
- the above-described problems include an electron gun that emits an electron beam, shaping means having an opening for shaping the electron beam, a projection lens that forms an image of the electron beam on a sample surface, and the projection lens.
- a focus lens composed of an electrostatic multipole lens that corrects the focus of the electron beam, and a voltage according to the cross-sectional area of the electron beam shaped by the shaping means.
- the refocusing lens may have three stages of quadrupole electrostatic electrodes in the beam axis direction of the electron beam, and the three stages of quadrupoles.
- the first and third electrodes may have the same length, and the length of the second electrode may be twice the length of the second electrode.
- the polarity of the voltage applied to the X-direction electrode in the first, second, and third stages is opposite to the polarity of the voltage applied to the y-direction electrode.
- the applied voltage is opposite in polarity to the voltage applied to the second X-direction electrode, the voltage applied to the first X-direction electrode, and the third X-direction electrode.
- the polarity of the voltage applied to the electrodes is the same, and the polarity of the voltage applied to the first stage y-direction electrode and the voltage applied to the third stage y-direction electrode may be the same. good.
- an electron beam refocusing lens constituted by an electrostatic electrode is provided.
- This refocusing lens has a configuration in which three quadrupole lenses are stacked so that the electron beam passing between them is converged.
- the voltage applied to each electrode constituting the refocus lens is adjusted according to the cross-sectional area of the shaped electron beam. This makes it possible to focus on the sample surface even if the amount of electrons in the irradiated electron beam changes.
- the electric field is adjusted by the voltage using the electrostatic electrode, the refocusing speed can be increased and the exposure throughput can be improved.
- FIG. 1 is a block diagram of an electron beam exposure apparatus according to the present invention.
- FIG. 2 is a configuration diagram of a refocus lens in the electron beam exposure apparatus according to the present invention.
- FIG. 3 is a diagram illustrating electron deflection control in a single-stage quadrupole electrode.
- FIG. 4 is a diagram for explaining electron trajectories of a three-stage quadrupole electrostatic electrode.
- FIG. 5 is a diagram showing a connection relationship of each electrode of the refocus lens.
- FIG. 6 is a diagram illustrating a refocus circuit.
- FIG. 7 is a diagram for explaining a refocus amount.
- FIG. 8 is a diagram (part 1) illustrating calculation of a refocus coefficient.
- FIG. 9 is a diagram (part 2) illustrating calculation of a refocus coefficient.
- FIG. 1 is a block diagram of an electron beam exposure apparatus according to the present embodiment.
- This electron beam exposure apparatus is roughly divided into an electron optical system column 100 and a control unit 200 that controls each part of the electron optical system column 100.
- the electron optical system column 100 includes an electron beam generation unit 130, a mask deflection unit 140, and a substrate deflection unit 150, and the inside thereof is decompressed.
- the electron beam EB generated from the electron gun 101 is converged by the first electromagnetic lens 102, and then passes through the rectangular aperture 103a of the beam shaping mask 103 to be transmitted to the electron beam EB.
- the cross section is shaped into a rectangle.
- the electron beam EB is imaged on the exposure mask 110 by the second electromagnetic lens 105 of the mask deflection unit 140. Then, the electron beam EB is deflected to a specific pattern S formed on the exposure mask 110 by the first and second electrostatic deflections 104 and 106, and the cross-sectional shape thereof is shaped to the shape of the pattern S.
- the exposure mask 110 has a force to be fixed to the mask stage 123.
- the mask stage 123 can be moved in a horizontal plane, and the deflection range (beam) of the first and second electrostatic deflectors 104 and 106 can be When using the pattern S in the portion exceeding the deflection area), the pattern S is moved into the beam deflection area by moving the mask stage 123.
- an opening capable of changing the electron beam into a predetermined shape may be arranged.
- the third and fourth electromagnetic lenses 108 and 111 disposed above and below the exposure mask 110 play a role of forming an image of the electron beam EB on the substrate W by adjusting their current amounts.
- Electron beam EB passing through exposure mask 110 is deflected by third and fourth electrostatic deflectors 112 and 113. After being returned to the optical axis (beam axis) C by the action, the size is reduced by the fifth electromagnetic lens 114.
- the mask deflector 140 is provided with first and second correction coils 107 and 109, and the beams generated by the first to fourth electrostatic deflectors 104, 106, 112, and 113 by them. Deflection aberration is corrected.
- the electron beam EB passes through the aperture 115a of the shielding plate 115 constituting the substrate deflecting unit 150, and the focus is adjusted according to the cross-sectional area of the electron beam EB by the refocus lens 128.
- the first and second projection electromagnetic lenses 116 and 121 are projected onto the substrate W.
- the image power of the pattern of the exposure mask 110 is transferred to the substrate W at a predetermined reduction ratio, for example, a reduction ratio of 1/10.
- the substrate deflecting unit 150 is provided with a fifth electrostatic deflector 119 and an electromagnetic deflector 120, and the deflector 119, 120 deflects the electron beam EB so that the substrate W has a predetermined position. An image of the pattern of the exposure mask is projected onto the screen.
- the substrate deflecting unit 150 is provided with third and fourth corrective coins 117 and 118 for correcting the deflection aberration of the electron beam EB on the substrate W.
- the substrate W is fixed to a wafer stage 124 that can be moved in the horizontal direction by a driving unit 125 such as a motor. By moving the wafer stage 124, the entire surface of the substrate W can be exposed. It becomes.
- the control unit 200 includes an electron gun control unit 202, an electron optical system control unit 203, a mask deflection control unit 204, a mask stage control unit 205, a blanking control unit 206, a substrate deflection control unit 206, and a wafer.
- a stage control unit 208 and a refocus control unit 209 are included.
- the electron gun control unit 202 controls the electron gun 101 to control the acceleration voltage of the electron beam EB, beam emission conditions, and the like.
- the electron optical system control unit 203 controls the amount of current to the electromagnetic lenses 102105, 108, 111, 114, 116, and 121, and the magnification, focal position, etc. of the electron optical system in which these electromagnetic lenses are configured. Adjust.
- the blanking control unit 20 controls the voltage applied to the blanking electrode 127 to deflect the electron beam EB generated from before the start of exposure onto the shielding plate 115, and onto the substrate W before exposure. Prevent EB irradiation.
- the substrate deflection control unit 207 controls the voltage applied to the fifth electrostatic deflector 119 and the amount of current to the electromagnetic deflector 120 to deflect the electron beam EB onto a predetermined position on the substrate W. To be.
- Wafer stage control unit 208 adjusts the driving amount of driving unit 125 to move substrate W in the horizontal direction so that a desired position on substrate W is irradiated with electron beam EB.
- the refocus control unit 209 supplies a necessary voltage to each electrode constituting the refocus lens according to the cross-sectional area of the electron beam EB that is shaped through the exposure mask 110.
- Each of the above-described units 202 to 209 is controlled in an integrated manner by an integrated control system 201 such as a workstation.
- FIG. 2 shows the configuration of the refocus lens used in this embodiment.
- FIG. 2 (a) shows a plan view of the refocusing lens 128 installed above the projection lenses 116 and 121 on the electron gun 101 side.
- FIG. 2 (b) shows a cross-sectional view of the refocus lens 128 as seen from the front.
- the refocus lens 128 is configured by overlapping an electrostatic quadrupole lens using four electrostatic electrodes at a predetermined interval in the beam axis direction (Z-axis direction).
- the electrostatic quadrupole lens has a first stage, a second stage, and a third stage from the side closer to the electron gun along the electron beam irradiation direction, and the first stage, the second stage, and the third stage.
- These electrostatic quadrupole lenses are LSI and LS 2, LS3, respectively.
- the electrostatic quadrupole lens LS I is composed of four electrostatic electrodes Pl l, P12, P13, and P14, and is centered on the beam axis (Z axis) in the X axis direction, the Y axis direction, etc. Two are arranged at intervals. For example, the length L1 of each electrode is 10mm.
- the electrostatic quadrupole lens LS2 is composed of four electrostatic electrodes P21, P22, P23, and P24, and is arranged in the lower stage of LS1.
- the four electrodes of the electrostatic quadrupole lens LS2 are arranged so as to overlap the four electrodes of LS I with a predetermined gap G1 in the Z-axis direction. This predetermined interval G1 is 5 mm, for example.
- the length L2 of each electrode of the electrostatic quadrupole lens LS2 is twice the length L1 of each electrode of the electrostatic quadrupole lens LS I. For example, if L1 is 10mm, L12 is 20mm And
- the electrostatic quadrupole lens LS3 includes four electrostatic electrodes P31, P32, P33, and P34, and is arranged in the lower stage of LS2.
- the four electrodes of the electrostatic quadrupole lens LS3 are arranged so as to overlap the four electrodes of LS2 with a predetermined gap G2 in the Z-axis direction.
- This predetermined gap G2 is, for example, 5 mm.
- each electrode of the electrostatic quadrupole lens LS 3 is the same as that of LS 1.
- FIG. 3 shows a plan view of a one-stage electrostatic quadrupole lens.
- Electrons that pass through in the Z-axis direction travel by receiving forces in the X-axis direction and the Y-axis direction.
- b is the length of the parallel plates
- Vd is the voltage applied between the plates
- V0 is the incident voltage of electrons (for example, 50 kV).
- FIG. 4 is a diagram for explaining the trajectory of electrons of the three-stage quadrupole electrostatic electrode.
- the Z axis in Fig. 4 is assumed to be the beam axis, and the electron beam travels from left to right in the figure.
- the X-axis side shows the trajectory C1 of the electron beam in the X direction
- the y-axis side shows the trajectory C2 in the Y direction of the electron beam.
- the first quadrupole lens acts as a convex lens
- the second quadrupole lens acts as a concave lens
- the third step The quadrupole lens works as a convex lens.
- the first quadrupole lens acts as a concave lens
- the second quadrupole lens acts as a convex lens
- the third quadrupole lens Acts as a concave lens.
- the incident angle to the final focal point z2 can be almost the same in both the X and y directions. Therefore, by using this three-stage quadrupole electrostatic electrode, it is possible to easily adjust the focus.
- FIG. 5 shows the plan views of the electrostatic quadrupole lenses LS1, LS2, and LS3 side by side for convenience.
- a voltage of ⁇ Vy is supplied to the electrostatic electrodes P11 and P13, and + V is supplied to P12 and P14.
- a voltage is applied to each electrode of LS2 in the next stage so that the potential is opposite to that of each electrode of the LSI. That is, P21 and P23 are marked with + Vy, and P22 and P24 are marked with Vx '.
- the refocus control unit 209 multiplies the cross-sectional area of the shaped electron beam by the refocus coefficient, and supplies it to each electrode.
- FIG. 6 is a diagram showing a configuration of a refocus circuit that applies a predetermined voltage to each electrode of the refocus lens.
- the refocusing circuit 42 converts four voltage values (digital values) specified by the refocusing control unit 209 for performing refocusing through the DAC 43 to analog de- duction.
- the analog voltage converted to the predetermined electrode is supplied through the voltage amplifier 44.
- the cross-sectional area of the electron beam to be shaped is calculated from exposure mask data and electron beam deflection data stored in the storage unit 41. For example, as shown in FIG. 7, the opening 110a of the exposure mask is selected, and the cross section in which the deflected electron beam EB is irradiated onto the exposure mask 110 is EBS. At this time, the cross-sectional area Fes of the shaped electron beam is the area where the opening 110a and the cross-section EBS of the electron beam overlap.
- the refocus coefficient is calculated by a known method as described below.
- An electron beam having two beam sizes is used, and a refocus amount that minimizes the blur of the beam edge is obtained for each of the electron beams.
- the beam current passing through the rectangular aperture 103a is constant and the refocus amount is substantially proportional to the current of the beam passing through the exposure mask 110, the exposure mask 110 and the electron beam at this position
- a voltage proportional to the area where the image overlaps that is, a voltage force corresponding to the amount of deflection in the deflectors 104 and 106, is supplied to each electrode of the refocus lens as a refocus amount.
- the beam edge blur amount is measured as follows.
- a tantalum film 82 having an electron reflectivity higher than that of silicon Si is formed on the silicon silicon wafer 81.
- the beams are scanned by the deflectors 104 and 106 so that the electron beam 83 crosses the tantalum film 82.
- the reflected electrons 84 from the irradiation point are detected by the electron detector.
- the amount of detected electrons is obtained as shown in FIG.
- This electron detection amount is differentiated with respect to the beam scanning position to obtain the waveform shown in Fig. 8 (c), and the distance at which the maximum value changes from 90% to 10% is obtained as the beam edge blur amount ⁇ . .
- the relationship between the cross-sectional area of the electron beam and the refocus amount (refocus coefficient G;! To G4) is linearly approximated.
- the refocus coefficient when the cross-sectional area is S1 is GS1
- the correlation between the cross-sectional area and the refocus coefficient is obtained by a straight line passing through the two points.
- the correlation is similarly obtained for the four refocus coefficients. Based on this, the refocus coefficient is determined from the area of the block pattern of arbitrary shape.
- a refocus coefficient is determined in order to adjust the focus of the electron beam every time an exposure mask is selected.
- the refocus coefficient is measured by measuring the beam blur for two electron beams having different cross-sectional areas, and the refocus coefficient G1 so that the beam blur is minimized. To determine G4.
- the size of the cross-sectional area of the irradiated electron beam is extracted from the storage unit 41 in which the exposure data is stored.
- the voltage value applied to each electrode is determined by applying the refocus coefficients G1 to G4 according to the size.
- the voltage value is calculated at the same time as the voltage is applied to the deflectors 104 and 106.
- the time until the voltage is stabilized after applying a voltage to the deflector is 50 [ns], but the refocus current is stabilized for about 300 [ns]. It was over.
- the voltage stabilization time for focus correction is 50 [ns], which is a short time until the voltage value to be applied to each electrode is determined from the size of the electron beam. Even if time is taken into consideration, the exposure waiting time is about 100 [ns], and the exposure can be started in a short time, about three times as long as the conventional method, so that the exposure throughput can be improved.
- a refocusing lens including an electrostatic electrode is provided.
- This refocus lens has a structure in which three quadrupole lenses are stacked so that the electron beam passing between them is converged.
- the voltage applied to each electrode constituting the refocus lens is adjusted according to the cross-sectional area of the electron beam.
- the focus is adjusted even if the amount of electrons in the electron beam changes according to the cross-sectional area of the electron beam It becomes possible.
- the electric field is adjusted simply by applying a voltage using an electrostatic electrode, the refocusing speed can be increased and the exposure throughput can be improved.
- the force S described for the case where the voltage applied to each electrode of the refocusing lens uses four values to perform the refocusing is not limited to this, and the three-stage quadrupole is not limited thereto.
- a voltage may be separately applied to each of the 12 electrostatic electrodes constituting the lens. In this case, it becomes possible to perform refocusing with higher accuracy.
- the refocus lens having a configuration in which the quadrupole lens is stacked in three stages has been described!
- the present invention is not limited thereto, and may be configured with more stages than three stages. good.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electron Beam Exposure (AREA)
Abstract
[PROBLEMS] To provide an electron beam lithography system and an electron beam lithography in which re-focus time is shortened and the throughput is enhanced. [MEANS FOR SOLVING PROBLEMS] The electron beam lithography system comprises an electron gun for emitting an electron beam, shaping means having an aperture to shape the electron beam, a projection lens for focusing the electron beam onto a sample surface, a re-focus lens installed above the projection lens and composed of electrostatic multipole lens for correcting the focal point of the electron beam, and control means for applying a voltage corresponding to the area of the cross section of the electron beam shaped by the shaping means to the re-focus lens. The re-focus lens may have three stages of quadrupole electrostatic electrodes along the beam axis direction of the electron beam. The lengths of the first- and third-stage electrodes may be equal to each other, and the length of the second-stage electrode may be twice the length of the first-stage electrode.
Description
明 細 書 Specification
電子ビーム露光装置及び電子ビーム露光方法 Electron beam exposure apparatus and electron beam exposure method
技術分野 Technical field
[0001] 本発明は、電子ビーム露光装置及び電子ビーム露光方法に関し、特に、可変矩形 開口や部分一括パターンを用いてビームの形状と大きさを変化可能にする電子ビー ム露光装置及び電子ビーム露光方法に関する。 TECHNICAL FIELD [0001] The present invention relates to an electron beam exposure apparatus and an electron beam exposure method, and in particular, an electron beam exposure apparatus and an electron beam exposure that can change the shape and size of a beam using a variable rectangular opening or a partial collective pattern. Regarding the method.
背景技術 Background art
[0002] 近年、電子ビーム露光装置において、スループットの向上を図るために、マスクに 可変矩形開口又は複数のマスクパターンを用意し、ビーム偏向によりそれらを選択し て試料に転写露光して!/、る。 In recent years, in an electron beam exposure apparatus, in order to improve throughput, a variable rectangular opening or a plurality of mask patterns are prepared in a mask, and they are selected by beam deflection and transferred and exposed to a sample! /, The
[0003] このような露光装置として、部分一括露光をする電子ビーム露光装置がある。部分 一括露光では、マスク上に配置した複数個のパターンからビーム偏向により選択した 一つのパターン領域にビームを照射し、ビーム断面をパターンの形状に成形する。さ らにマスクを通過したビームを後段の偏向器で偏向振り戻し、電子光学系で決まる一 定の縮小率で縮小し、試料上に転写する。 As such an exposure apparatus, there is an electron beam exposure apparatus that performs partial batch exposure. In partial batch exposure, a beam is irradiated to one pattern area selected by beam deflection from a plurality of patterns arranged on the mask, and the beam cross section is formed into a pattern shape. Further, the beam that has passed through the mask is deflected back by a subsequent deflector, reduced at a fixed reduction rate determined by the electron optical system, and transferred onto the sample.
[0004] 部分一括露光において、予め使用頻度の高いパターンをマスク上に用意すれば、 可変矩形開口だけの場合より、必要な露光ショット数が大幅に減少し、スループット が向上する。 In partial collective exposure, if a frequently used pattern is prepared in advance on a mask, the number of exposure shots required is significantly reduced and throughput is improved as compared with the case of only a variable rectangular aperture.
[0005] 一方、可変矩形開口や部分一括パターンを用いて電子ビーム露光をすると、電子 ビームのビームサイズがショット毎に異なり、電子ビームの焦点がずれてビームがぼ ける現象が発生する。例えば小さ!/、ビームサイズで試料表面に焦点を合わせた場合 、大きなビームサイズで露光をすると、電子ビームの全電流が大きくなり、焦点距離が 伸び、試料表面にはビームぼけが発生する。 [0005] On the other hand, when electron beam exposure is performed using a variable rectangular aperture or a partial batch pattern, the beam size of the electron beam varies from shot to shot, and the phenomenon that the beam defocuses due to the defocus of the electron beam occurs. For example, when focusing on the sample surface with a small beam size, exposure with a large beam size increases the total current of the electron beam, increases the focal length, and causes beam blur on the sample surface.
[0006] このような電子ビームの焦点のずれを防止するために、ショット毎にリフォーカスコィ ルに流す電流を可変矩形開口の面積から算出して補正する方法が検討されている。 特許文献 1には、矩形ビームのサイズに同期して収束コイルを制御する方法が開示 されている。
[0007] また、特許文献 2には、電子ビームのリフォーカスを行う際に、ビーム軸の位置ずれ を測定して補正をする方法が開示されている。 [0006] In order to prevent such defocusing of the electron beam, a method of correcting the current flowing through the refocusing coil for each shot from the area of the variable rectangular opening has been studied. Patent Document 1 discloses a method for controlling a focusing coil in synchronization with the size of a rectangular beam. [0007] Further, Patent Document 2 discloses a method of measuring and correcting a positional deviation of a beam axis when performing electron beam refocusing.
[0008] 上記したように、可変矩形開口や部分一括パターンを用いた場合に、ショット毎に 電子ビームの焦点を移動させるようにすることで、ビーム焦点のずれを防止すること が可能である。 [0008] As described above, when a variable rectangular opening or a partial collective pattern is used, it is possible to prevent the deviation of the beam focus by moving the focus of the electron beam for each shot.
[0009] 具体的には、リフォーカスコイルを設置し、整形したビームの断面積に比例する量 の電流をリフォーカスコイルに流し、ビームの焦点を調整している。例えば、ビームサ ィズが大きい場合は、ビームの断面積に比例して、より大きな電流をリフォーカスコィ ルに流し、電子ビームの収束作用を強くするようにしている。 [0009] Specifically, a refocus coil is installed, and an amount of current proportional to the cross-sectional area of the shaped beam is passed through the refocus coil to adjust the focus of the beam. For example, when the beam size is large, a larger current is passed through the refocusing coil in proportion to the cross-sectional area of the beam so that the convergence effect of the electron beam is strengthened.
[0010] しかし、リフォーカスを実行するのに時間がかかり、部分一括露光を実施するにもか かわらず、露光スループットを向上できな!/、とレ、う不都合が生じて!/、る。 [0010] However, it takes time to perform refocusing, and it is difficult to improve the exposure throughput even though partial batch exposure is performed!
[0011] 例えば、電子ビームを整形するのに力、かる時間が 50ns程度であるにもかかわらず 、リフォーカスの実行時間は、リフォーカスコイルに所定の電流を流し、安定した電流 になるまでの時間が 300ns程度力、かっており、露光待ち時間が長くなつてしまってい 特許文献 1:特開昭 56— 94740号公報 [0011] For example, although the power and time required for shaping the electron beam are about 50 ns, the refocusing execution time is the time until a predetermined current is passed through the refocusing coil until a stable current is obtained. The time is about 300ns, and the exposure waiting time is long. Patent Document 1: Japanese Patent Laid-Open No. Sho 56-94740
特許文献 2:特開昭 58— 121625号公報 Patent Document 2: JP-A-58-121625
発明の開示 Disclosure of the invention
[0012] 本発明は、力、かる従来技術の課題に鑑みなされたものであり、ビームの形状と大き さを変えることが可能な電子ビーム露光において、リフォーカス時間を短縮し、スルー プットの向上を図ることのできる電子ビーム露光装置及び電子ビーム露光方法を提 供することを目的とする。 [0012] The present invention has been made in view of the power and problems of the prior art, and shortens the refocus time and improves the throughput in electron beam exposure that can change the shape and size of the beam. It is an object to provide an electron beam exposure apparatus and an electron beam exposure method capable of achieving the above.
[0013] 上記した課題は、電子ビームを放射する電子銃と、前記電子ビームを整形するため の開口を有する整形手段と、前記電子ビームを試料面上へ結像させる投影レンズと 、前記投影レンズの上方に設置され、電子ビームの焦点を補正する静電多重極レン ズからなるフォーカスレンズと、前記整形手段により整形された前記電子ビームの断 面の面積に応じた電圧を前記リフォーカスレンズに印加する制御手段とを備えること を特徴とする電子ビーム露光装置により解決する。
[0014] この形態に係る電子ビーム露光装置において、前記リフォーカスレンズは、 4重極 静電電極を前記電子ビームのビーム軸方向に 3段有するようにしても良く、前記 3段 の 4重極静電電極のうち、 1段目と 3段目の電極の長さが同じで、 2段目の電極の長さ 力 段目の電極の長さの 2倍であるようにしても良い。また、前記 1段目、 2段目、 3段 目の X方向の電極に印加する電圧と、 y方向の電極に印加する電圧の極性は逆であ り、前記 1段目 X方向の電極に印加する電圧と、前記 2段目の X方向の電極に印加す る電圧とは極性が逆であり、前記 1段目の X方向の電極に印加する電圧と、前記 3段 目の X方向の電極に印加する電圧の極性は同じであり、前記 1段目の y方向の電極 に印加する電圧と、前記 3段目の y方向の電極に印加する電圧の極性は同じである ようにしても良い。 [0013] The above-described problems include an electron gun that emits an electron beam, shaping means having an opening for shaping the electron beam, a projection lens that forms an image of the electron beam on a sample surface, and the projection lens. A focus lens composed of an electrostatic multipole lens that corrects the focus of the electron beam, and a voltage according to the cross-sectional area of the electron beam shaped by the shaping means. This is solved by an electron beam exposure apparatus comprising a control means for applying. In the electron beam exposure apparatus according to this aspect, the refocusing lens may have three stages of quadrupole electrostatic electrodes in the beam axis direction of the electron beam, and the three stages of quadrupoles. Of the electrostatic electrodes, the first and third electrodes may have the same length, and the length of the second electrode may be twice the length of the second electrode. In addition, the polarity of the voltage applied to the X-direction electrode in the first, second, and third stages is opposite to the polarity of the voltage applied to the y-direction electrode. The applied voltage is opposite in polarity to the voltage applied to the second X-direction electrode, the voltage applied to the first X-direction electrode, and the third X-direction electrode. The polarity of the voltage applied to the electrodes is the same, and the polarity of the voltage applied to the first stage y-direction electrode and the voltage applied to the third stage y-direction electrode may be the same. good.
[0015] 本発明では、電子ビームの焦点を調整するためのリフォーカスを行うために、静電 電極で構成される電子ビームのリフォーカスレンズを備えてレ、る。このリフォーカスレ ンズは、 4重極レンズを 3段重ねた構成にして、その間を通過する電子ビームが収束 するようにしている。リフォーカスレンズを構成する各電極に印加する電圧は、整形さ れる電子ビームの断面積に応じて調整するようにしている。これにより、照射する電子 ビームの電子量が変化しても試料表面上で焦点を合わせることが可能になる。しかも 、静電電極を用いて電圧により電界を調整するため、リフォーカスの速度を速くするこ とが可能になり、露光スループットを向上させることが可能となる。 In the present invention, in order to perform refocusing for adjusting the focus of the electron beam, an electron beam refocusing lens constituted by an electrostatic electrode is provided. This refocusing lens has a configuration in which three quadrupole lenses are stacked so that the electron beam passing between them is converged. The voltage applied to each electrode constituting the refocus lens is adjusted according to the cross-sectional area of the shaped electron beam. This makes it possible to focus on the sample surface even if the amount of electrons in the irradiated electron beam changes. In addition, since the electric field is adjusted by the voltage using the electrostatic electrode, the refocusing speed can be increased and the exposure throughput can be improved.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]本発明に係る電子ビーム露光装置の構成図である。 FIG. 1 is a block diagram of an electron beam exposure apparatus according to the present invention.
[図 2]本発明に係る電子ビーム露光装置におけるリフォーカスレンズの構成図である FIG. 2 is a configuration diagram of a refocus lens in the electron beam exposure apparatus according to the present invention.
[図 3]1段の 4重極電極における電子の偏向制御を説明する図である。 FIG. 3 is a diagram illustrating electron deflection control in a single-stage quadrupole electrode.
[図 4]3段 4重極静電電極の電子の軌道を説明する図である。 FIG. 4 is a diagram for explaining electron trajectories of a three-stage quadrupole electrostatic electrode.
[図 5]リフォーカスレンズの各電極の接続関係を示す図である。 FIG. 5 is a diagram showing a connection relationship of each electrode of the refocus lens.
[図 6]リフォーカス回路を説明する図である。 FIG. 6 is a diagram illustrating a refocus circuit.
[図 7]リフォーカス量を説明する図である。 FIG. 7 is a diagram for explaining a refocus amount.
[図 8]リフォーカス係数の算出を説明する図(その 1)である。
[図 9]リフォーカス係数の算出を説明する図(その 2)である。 FIG. 8 is a diagram (part 1) illustrating calculation of a refocus coefficient. FIG. 9 is a diagram (part 2) illustrating calculation of a refocus coefficient.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018] はじめに、電子ビーム露光装置の構成について説明する。次に、電子ビームのリフ オーカスを行うリフォーカスレンズについて説明する。最後に、電子ビーム露光方法 について説明する。 First, the configuration of the electron beam exposure apparatus will be described. Next, a refocusing lens that performs electron beam refocusing will be described. Finally, the electron beam exposure method will be described.
[0019] (電子ビーム露光装置の構成) [0019] (Configuration of electron beam exposure apparatus)
図 1は、本実施形態に係る電子ビーム露光装置の構成図である。 FIG. 1 is a block diagram of an electron beam exposure apparatus according to the present embodiment.
[0020] この電子ビーム露光装置は、電子光学系コラム 100と、電子光学系コラム 100の各 部を制御する制御部 200とに大別される。このうち、電子光学系コラム 100は、電子 ビーム生成部 130、マスク偏向部 140及び基板偏向部 150によって構成され、その 内部が減圧される。 This electron beam exposure apparatus is roughly divided into an electron optical system column 100 and a control unit 200 that controls each part of the electron optical system column 100. Among these, the electron optical system column 100 includes an electron beam generation unit 130, a mask deflection unit 140, and a substrate deflection unit 150, and the inside thereof is decompressed.
[0021] 電子ビーム生成部 130では、電子銃 101から生成した電子ビーム EBが第 1電磁レ ンズ 102で収束作用を受けた後、ビーム整形用マスク 103の矩形アパーチャ 103aを 透過し、電子ビーム EBの断面が矩形に整形される。 [0021] In the electron beam generator 130, the electron beam EB generated from the electron gun 101 is converged by the first electromagnetic lens 102, and then passes through the rectangular aperture 103a of the beam shaping mask 103 to be transmitted to the electron beam EB. The cross section is shaped into a rectangle.
[0022] その後、電子ビーム EBは、マスク偏向部 140の第 2電磁レンズ 105によって露光マ スク 110上に結像される。そして、電子ビーム EBは、第 1、第 2静電偏向 104、 106に より、露光マスク 110に形成された特定のパターン Sに偏向され、その断面形状がパ ターン Sの形状に整形される。 Thereafter, the electron beam EB is imaged on the exposure mask 110 by the second electromagnetic lens 105 of the mask deflection unit 140. Then, the electron beam EB is deflected to a specific pattern S formed on the exposure mask 110 by the first and second electrostatic deflections 104 and 106, and the cross-sectional shape thereof is shaped to the shape of the pattern S.
[0023] なお、露光マスク 110はマスクステージ 123に固定される力 そのマスクステージ 12 3は水平面内において移動可能であって、第 1、第 2静電偏向器 104、 106の偏向範 囲(ビーム偏向領域)を超える部分にあるパターン Sを使用する場合、マスクステージ 123を移動することにより、そのパターン Sをビーム偏向領域内に移動させる。 Note that the exposure mask 110 has a force to be fixed to the mask stage 123. The mask stage 123 can be moved in a horizontal plane, and the deflection range (beam) of the first and second electrostatic deflectors 104 and 106 can be When using the pattern S in the portion exceeding the deflection area), the pattern S is moved into the beam deflection area by moving the mask stage 123.
[0024] また、露光マスク 110の代わりに、電子ビームを所定の形状に可変可能な開口部を 配置しても良い。 Further, instead of the exposure mask 110, an opening capable of changing the electron beam into a predetermined shape may be arranged.
[0025] 露光マスク 110の上下に配された第 3、第 4電磁レンズ 108、 111は、それらの電流 量を調節することにより、電子ビーム EBを基板 W上で結像させる役割を担う。 [0025] The third and fourth electromagnetic lenses 108 and 111 disposed above and below the exposure mask 110 play a role of forming an image of the electron beam EB on the substrate W by adjusting their current amounts.
[0026] 露光マスク 110を通った電子ビーム EBは、第 3、第 4静電偏向器 112、 113の偏向
作用によって光軸(ビーム軸) Cに振り戻された後、第 5電磁レンズ 114によってその サイズが縮小される。 [0026] Electron beam EB passing through exposure mask 110 is deflected by third and fourth electrostatic deflectors 112 and 113. After being returned to the optical axis (beam axis) C by the action, the size is reduced by the fifth electromagnetic lens 114.
[0027] マスク偏向部 140には、第 1、第 2補正コイル 107、 109が設けられており、それらに より、第 1〜第 4静電偏向器 104、 106、 112、 113で発生するビーム偏向収差が補 正される。 [0027] The mask deflector 140 is provided with first and second correction coils 107 and 109, and the beams generated by the first to fourth electrostatic deflectors 104, 106, 112, and 113 by them. Deflection aberration is corrected.
[0028] その後、電子ビーム EBは、基板偏向部 150を構成する遮蔽板 115のアパーチャ 1 15aを通過し、リフォーカスレンズ 128によって、電子ビーム EBの断面積に応じた焦 点の調整が行われ、第 1、第 2投影用電磁レンズ 116、 121によって基板 W上に投影 される。これにより、露光マスク 110のパターンの像力 所定の縮小率、例えば 1/10 の縮小率で基板 Wに転写されることになる。 [0028] Thereafter, the electron beam EB passes through the aperture 115a of the shielding plate 115 constituting the substrate deflecting unit 150, and the focus is adjusted according to the cross-sectional area of the electron beam EB by the refocus lens 128. The first and second projection electromagnetic lenses 116 and 121 are projected onto the substrate W. As a result, the image power of the pattern of the exposure mask 110 is transferred to the substrate W at a predetermined reduction ratio, for example, a reduction ratio of 1/10.
[0029] 基板偏向部 150には、第 5静電偏向器 119と電磁偏向器 120とが設けられており、 これらの偏向器 119、 120によって電子ビーム EBが偏向され、基板 Wの所定の位置 に露光マスクのパターンの像が投影される。 [0029] The substrate deflecting unit 150 is provided with a fifth electrostatic deflector 119 and an electromagnetic deflector 120, and the deflector 119, 120 deflects the electron beam EB so that the substrate W has a predetermined position. An image of the pattern of the exposure mask is projected onto the screen.
[0030] 更に、基板偏向部 150には、基板 W上における電子ビーム EBの偏向収差を補正 するための第 3、第 4ネ甫正コィノレ 117、 118カ設けられる。 In addition, the substrate deflecting unit 150 is provided with third and fourth corrective coins 117 and 118 for correcting the deflection aberration of the electron beam EB on the substrate W.
[0031] 基板 Wは、モータ等の駆動部 125により水平方向に移動可能なウェハステージ 12 4に固定されており、ウェハステージ 124を移動させることで、基板 Wの全面に露光を 行うことが可能となる。 [0031] The substrate W is fixed to a wafer stage 124 that can be moved in the horizontal direction by a driving unit 125 such as a motor. By moving the wafer stage 124, the entire surface of the substrate W can be exposed. It becomes.
[0032] 一方、制御部 200は、電子銃制御部 202、電子光学系制御部 203、マスク偏向制 御部 204、マスクステージ制御部 205、ブランキング制御部 206、基板偏向制御部 2 07、ウェハステージ制御部 208及びリフォーカス制御部 209を有する。これらのうち、 電子銃制御部 202は電子銃 101を制御して、電子ビーム EBの加速電圧やビーム放 射条件等を制御する。また、電子光学系制御部 203は、電磁レンズ 102105、 108、 111、 114、 116及び 121への電流量等を制御して、これらの電磁レンズが構成され る電子光学系の倍率や焦点位置等を調節する。ブランキング制御部 20は、ブランキ ング電極 127への印加電圧を制御することにより、露光開始前から発生している電子 ビーム EBを遮蔽板 115上に偏向し、露光前に基板 W上に電子ビーム EBが照射され るのを防ぐ。
[0033] 基板偏向制御部 207は、第 5静電偏向器 119への印加電圧と、電磁偏向器 120へ の電流量を制御することにより、基板 Wの所定の位置上に電子ビーム EBが偏向され るようにする。ウェハステージ制御部 208は、駆動部 125の駆動量を調節して基板 W を水平方向に移動させ、基板 Wの所望の位置に電子ビーム EBが照射されるように する。 On the other hand, the control unit 200 includes an electron gun control unit 202, an electron optical system control unit 203, a mask deflection control unit 204, a mask stage control unit 205, a blanking control unit 206, a substrate deflection control unit 206, and a wafer. A stage control unit 208 and a refocus control unit 209 are included. Among these, the electron gun control unit 202 controls the electron gun 101 to control the acceleration voltage of the electron beam EB, beam emission conditions, and the like. The electron optical system control unit 203 controls the amount of current to the electromagnetic lenses 102105, 108, 111, 114, 116, and 121, and the magnification, focal position, etc. of the electron optical system in which these electromagnetic lenses are configured. Adjust. The blanking control unit 20 controls the voltage applied to the blanking electrode 127 to deflect the electron beam EB generated from before the start of exposure onto the shielding plate 115, and onto the substrate W before exposure. Prevent EB irradiation. The substrate deflection control unit 207 controls the voltage applied to the fifth electrostatic deflector 119 and the amount of current to the electromagnetic deflector 120 to deflect the electron beam EB onto a predetermined position on the substrate W. To be. Wafer stage control unit 208 adjusts the driving amount of driving unit 125 to move substrate W in the horizontal direction so that a desired position on substrate W is irradiated with electron beam EB.
[0034] リフォーカス制御部 209は、露光マスク 110を透過して整形される電子ビーム EBの 断面積に応じて、リフォーカスレンズを構成する各電極に必要な電圧を供給するよう にする。 The refocus control unit 209 supplies a necessary voltage to each electrode constituting the refocus lens according to the cross-sectional area of the electron beam EB that is shaped through the exposure mask 110.
[0035] 上記の各部 202〜209は、ワークステーション等の統合制御系 201によって統合的 に制御される。 Each of the above-described units 202 to 209 is controlled in an integrated manner by an integrated control system 201 such as a workstation.
[0036] (リフォーカスレンズ) [0036] (Refocus lens)
図 2は、本実施形態で用いるリフォーカスレンズの構成を示している。図 2 (a)は、投 影用レンズ 116、 121の電子銃 101側の上方に設置されるリフォーカスレンズ 128の 平面図を示している。また、図 2 (b)は、リフォーカスレンズ 128を正面からみた断面 図を示している。 FIG. 2 shows the configuration of the refocus lens used in this embodiment. FIG. 2 (a) shows a plan view of the refocusing lens 128 installed above the projection lenses 116 and 121 on the electron gun 101 side. FIG. 2 (b) shows a cross-sectional view of the refocus lens 128 as seen from the front.
[0037] 図 2に示すように、リフォーカスレンズ 128は、静電電極を 4つ用いた静電 4重極レン ズをビーム軸方向(Z軸方向)に所定の間隔で重ねて構成する。 [0037] As shown in FIG. 2, the refocus lens 128 is configured by overlapping an electrostatic quadrupole lens using four electrostatic electrodes at a predetermined interval in the beam axis direction (Z-axis direction).
[0038] 静電 4重極レンズは、電子ビームの照射方向に沿って、電子銃に近い方から 1段目 、 2段目、 3段目とし、 1段目、 2段目、 3段目の静電 4重極レンズをそれぞれ LSI、 LS 2,: LS3とする。 [0038] The electrostatic quadrupole lens has a first stage, a second stage, and a third stage from the side closer to the electron gun along the electron beam irradiation direction, and the first stage, the second stage, and the third stage. These electrostatic quadrupole lenses are LSI and LS 2, LS3, respectively.
[0039] 静電 4重極レンズ LS Iは、 4本の静電電極 Pl l、 P12, P13, P14で構成され、ビー ム軸(Z軸)を中心に X軸方向、 Y軸方向に等間隔に 2本ずつ配置される。例えば、各 電極の長さ L1は 10mmである。 [0039] The electrostatic quadrupole lens LS I is composed of four electrostatic electrodes Pl l, P12, P13, and P14, and is centered on the beam axis (Z axis) in the X axis direction, the Y axis direction, etc. Two are arranged at intervals. For example, the length L1 of each electrode is 10mm.
[0040] 静電 4重極レンズ LS2は、 4本の静電電極 P21 , P22, P23, P24で構成され、 LS 1の下段に配置される。静電 4重極レンズ LS2の 4つの各電極は、 LS Iの 4つの各電 極と Z軸方向に所定の間隔 G1で重なるように配置される。この所定の間隔 G1は、例 えば 5mmである。静電 4重極レンズ LS2の各電極の長さ L2は静電 4重極レンズ LS I の各電極の長さ L1の 2倍の長さとする。例えば、 L1が 10mmの場合は L12は 20mm
とする。 The electrostatic quadrupole lens LS2 is composed of four electrostatic electrodes P21, P22, P23, and P24, and is arranged in the lower stage of LS1. The four electrodes of the electrostatic quadrupole lens LS2 are arranged so as to overlap the four electrodes of LS I with a predetermined gap G1 in the Z-axis direction. This predetermined interval G1 is 5 mm, for example. The length L2 of each electrode of the electrostatic quadrupole lens LS2 is twice the length L1 of each electrode of the electrostatic quadrupole lens LS I. For example, if L1 is 10mm, L12 is 20mm And
[0041] 静電 4重極レンズ LS3は 4本の静電電極 P31 , P32, P33, P34で構成され、 LS2 の下段に配置される。静電 4重極レンズ LS3の 4つの各電極は、 LS2の 4つの各電極 と Z軸方向に所定の間隔 G2で重なるように配置される。この所定の間隔 G2は、例え は 5mmである。 [0041] The electrostatic quadrupole lens LS3 includes four electrostatic electrodes P31, P32, P33, and P34, and is arranged in the lower stage of LS2. The four electrodes of the electrostatic quadrupole lens LS3 are arranged so as to overlap the four electrodes of LS2 with a predetermined gap G2 in the Z-axis direction. This predetermined gap G2 is, for example, 5 mm.
[0042] 静電 4重極レンズ LS 3の各電極の長さは LS 1と同じ長さとする。 [0042] The length of each electrode of the electrostatic quadrupole lens LS 3 is the same as that of LS 1.
[0043] 次に、このように構成したリフォーカスレンズによって電子の焦点を調整できることに ついて説明する。まず、 1段の静電 4重極レンズについて、その間を通過した後の電 子の偏向量について説明する。 [0043] Next, the fact that the focus of electrons can be adjusted by the refocus lens configured as described above will be described. First, the amount of deflection of the electrons after passing through a single-stage electrostatic quadrupole lens will be described.
[0044] 図 3に 1段の静電 4重極レンズの平面図を示す。このレンズの電位分布 φは、 φ =FIG. 3 shows a plan view of a one-stage electrostatic quadrupole lens. The potential distribution φ of this lens is φ =
A (x'-y') /r 2と表される。ここで r =2mmとする。 A (x'-y ') / r 2 Here, r = 2mm.
0 0 0 0
[0045] この中を Z軸方向に通過する電子は、 X軸方向及び Y軸方向に力を受けて進行す る。 x= 1mmの点における電界は、 E (x= 1) =—d φ /dx = 40/9[V/mm]となる 。ここで、ビーム軸から lmmの距離を通過する電子力 Z軸方向に 5000mm離れた 位置での偏光量につ!/、て検討する。 [0045] Electrons that pass through in the Z-axis direction travel by receiving forces in the X-axis direction and the Y-axis direction. The electric field at the point of x = 1 mm is E (x = 1) = — dφ / dx = 40/9 [V / mm]. Here, we examine the amount of polarized light at a position 5000 mm away in the Z-axis direction, which passes the distance of lmm from the beam axis.
[0046] 仮に、平行平板間を電子が通過するときの電子の偏光量に対応させて考える。平 行平板の両端部での電界の乱れを無視すると、電極から長さ 1離れた位置における 偏向量 Dは、次式で表される。 [0046] It is assumed that the amount of polarization of electrons when electrons pass between parallel flat plates corresponds to the amount of polarization. If the disturbance of the electric field at both ends of the parallel plate is ignored, the deflection amount D at a distance of 1 distance from the electrode is expressed by the following equation.
[0047] D = (lb/2d) X (Xd/VO) [0047] D = (lb / 2d) X (Xd / VO)
ここで、 bは平行平板の長さ、 Vdは平板間に印加する電圧、 V0は電子の入射電圧 (例えば、 50kV)である。 Here, b is the length of the parallel plates, Vd is the voltage applied between the plates, and V0 is the incident voltage of electrons (for example, 50 kV).
[0048] この式で、 2Vd/dは電界 Eであるので、 D = lbE/4V0となる。 [0048] In this equation, 2Vd / d is the electric field E, so D = lbE / 4V0.
[0049] 式(1) ίこおレヽて、 b = 10[mm]、 E = 40/9[V/m]、 V0 = 50000[V]、 [0049] Formula (1), b = 10 [mm], E = 40/9 [V / m], V0 = 50000 [V],
l = 5000[mm]とすると、偏向距離 Dは 1. l l[mm]となる。 If l = 5000 [mm], the deflection distance D is 1. l l [mm].
[0050] すなわち、焦点をビーム軸上にするためには l[mm]偏向すればよいため、電極に 印加する電圧を調整することによって目的を達することができる。このように、 1段の 4 重極レンズによって、電子の焦点を調整することが可能となる。 [0050] That is, in order to make the focal point on the beam axis, it is only necessary to deflect l [mm]. Therefore, the purpose can be achieved by adjusting the voltage applied to the electrode. In this way, it is possible to adjust the focal point of electrons by using a single quadrupole lens.
[0051] よって、 4重極レンズが多段に構成された場合であっても、電子の焦点を調整する
ことが可能となる。 [0051] Therefore, even when the quadrupole lens is configured in multiple stages, the focus of electrons is adjusted. It becomes possible.
[0052] 図 4は、 3段 4重極静電電極の電子の軌道を説明する図である。図 4の Z軸をビーム 軸とし、電子ビームが図の左から右へ進行するものとする。 FIG. 4 is a diagram for explaining the trajectory of electrons of the three-stage quadrupole electrostatic electrode. The Z axis in Fig. 4 is assumed to be the beam axis, and the electron beam travels from left to right in the figure.
[0053] 図 4の X軸側は X方向の電子ビームの軌道 C1を示し、 y軸側は電子ビームの Y方向 の軌道 C2を示している。図 4に示すように、 X方向の軌道 C1に注目すると、 1段目の 4重極レンズは凸レンズの働きをし、 2段目の 4重極レンズは凹レンズの働きをし、 3段 目の 4重極レンズは凸レンズの働きをしている。また、 y方向の軌道 C2に注目すると、 1段目の 4重極レンズは凹レンズの働きをし、 2段目の 4重極レンズは凸レンズの働き をし、 3段目の 4重極レンズは凹レンズの働きをする。そして、最終焦点 z2への入射 角度が X方向及び y方向ともほとんど同じ角度にすることができる。よって、この 3段 4 重極静電電極を使用することにより、焦点の調整を容易に行うことが可能になる。 In FIG. 4, the X-axis side shows the trajectory C1 of the electron beam in the X direction, and the y-axis side shows the trajectory C2 in the Y direction of the electron beam. As shown in Fig. 4, focusing on the X-direction trajectory C1, the first quadrupole lens acts as a convex lens, the second quadrupole lens acts as a concave lens, and the third step The quadrupole lens works as a convex lens. Looking at the orbit C2 in the y direction, the first quadrupole lens acts as a concave lens, the second quadrupole lens acts as a convex lens, and the third quadrupole lens Acts as a concave lens. The incident angle to the final focal point z2 can be almost the same in both the X and y directions. Therefore, by using this three-stage quadrupole electrostatic electrode, it is possible to easily adjust the focus.
[0054] 図 2のように構成したリフォーカスレンズの各電極には、リフォーカス制御部 209によ つて所定の電圧が印加され、リフォーカスレンズ 128全体としてリフォーカスに必要な 電界を発生するようにしている。本実施形態では、図 5に示すような極性の電圧を印 加する。図 5は、便宜的に静電 4重極レンズ LS1、 LS2, LS3の各平面図を並べて示 している。 A predetermined voltage is applied to each electrode of the refocus lens configured as shown in FIG. 2 by the refocus control unit 209 so that the entire refocus lens 128 generates an electric field necessary for refocus. I have to. In this embodiment, a voltage having a polarity as shown in FIG. 5 is applied. FIG. 5 shows the plan views of the electrostatic quadrupole lenses LS1, LS2, and LS3 side by side for convenience.
[0055] 図 5に示すように、静電電極 P11と P13に—Vyの電圧を供給し、 P12と P14に + V [0055] As shown in FIG. 5, a voltage of −Vy is supplied to the electrostatic electrodes P11 and P13, and + V is supplied to P12 and P14.
Xの電圧を供給する。 Supply X voltage.
[0056] 次の段の LS2の各電極には、 LSIの各電極と電位が反対になるように電圧を印加 する。すなわち、 P21と P23に + Vy,を印カロし、 P22と P24に Vx'を印カロする。 [0056] A voltage is applied to each electrode of LS2 in the next stage so that the potential is opposite to that of each electrode of the LSI. That is, P21 and P23 are marked with + Vy, and P22 and P24 are marked with Vx '.
[0057] また、 3段目の LS3の各電極には LSIと同じ電圧を印加する。 [0057] The same voltage as the LSI is applied to each electrode of the third-stage LS3.
[0058] このように、 12個の静電電極に対して 4つの値の電圧を使用する。これらの電圧はThus, four values of voltage are used for 12 electrostatic electrodes. These voltages are
、リフォーカス制御部 209が整形された電子ビームの断面積にリフォーカス係数を乗 じて算出し、各電極に供給する。 Then, the refocus control unit 209 multiplies the cross-sectional area of the shaped electron beam by the refocus coefficient, and supplies it to each electrode.
[0059] 図 6は、リフォーカスレンズの各電極に所定の電圧を印加するリフォーカス回路の構 成を示す図である。 FIG. 6 is a diagram showing a configuration of a refocus circuit that applies a predetermined voltage to each electrode of the refocus lens.
[0060] リフォーカス回路 42は、リフォーカス制御部 209によって指定される、リフォーカスを 実施するための 4つの電圧値(デジタル値)を、それぞれ DAC43を通してアナログデ
ータに変換し、電圧増幅器 44を介して上記した所定の電極に変換されたアナログ電 圧を供給する。 [0060] The refocusing circuit 42 converts four voltage values (digital values) specified by the refocusing control unit 209 for performing refocusing through the DAC 43 to analog de- duction. The analog voltage converted to the predetermined electrode is supplied through the voltage amplifier 44.
[0061] 整形される電子ビームの断面積は、記憶部 41に格納されている露光マスクのデー タと、電子ビームの偏向量のデータから算出する。例えば、図 7に示すように、露光マ スクの開口 110aが選択され、偏向される電子ビーム EBが露光マスク 110に照射され る断面が EBSとする。このとき、整形される電子ビームの断面積 Fesは、開口 110aと 電子ビームの断面 EBSとが重なる部分の面積となる。 The cross-sectional area of the electron beam to be shaped is calculated from exposure mask data and electron beam deflection data stored in the storage unit 41. For example, as shown in FIG. 7, the opening 110a of the exposure mask is selected, and the cross section in which the deflected electron beam EB is irradiated onto the exposure mask 110 is EBS. At this time, the cross-sectional area Fes of the shaped electron beam is the area where the opening 110a and the cross-section EBS of the electron beam overlap.
[0062] リフォーカス係数の算出は以下に示すような周知の方法によって算出する。 [0062] The refocus coefficient is calculated by a known method as described below.
[0063] 2つのビームサイズの電子ビームを用い、そのそれぞれについてビームエッジのぼ けを最小にするようなリフォーカス量を求める。 [0063] An electron beam having two beam sizes is used, and a refocus amount that minimizes the blur of the beam edge is obtained for each of the electron beams.
[0064] 矩形開口 103aを通るビーム電流は一定であり、リフォーカス量は、露光用マスク 11 0を通過するビームの電流にほぼ比例するので、露光用マスク 110とこの位置での電 子ビームの像とが重なりあう面積に比例した電圧、すなわち偏向器 104, 106での偏 向量に応じた電圧力 リフォーカス量としてリフォーカスレンズの各電極に供給される [0064] Since the beam current passing through the rectangular aperture 103a is constant and the refocus amount is substantially proportional to the current of the beam passing through the exposure mask 110, the exposure mask 110 and the electron beam at this position A voltage proportional to the area where the image overlaps, that is, a voltage force corresponding to the amount of deflection in the deflectors 104 and 106, is supplied to each electrode of the refocus lens as a refocus amount.
〇 Yes
[0065] リフォーカス量を決定するために、次のようにしてビームエッジぼけ量を測定する。 In order to determine the refocus amount, the beam edge blur amount is measured as follows.
すなわち、図 8 (a)に示すように、シリコン Siのゥエーハ 81上に、シリコン Siよりも電子 反射率が高いタンタル膜 82を形成しておく。偏向器 104, 106でビームを走査させて 、電子ビーム 83がタンタル膜 82を横切るようにする。この際、照射点からの反射電子 84を電子検出器で検出する。そして、図 8 (b)に示すような、電子検出量を求める。こ の電子検出量をビーム走査位置について微分して図 8 (c)に示すような波形を取得 し、その最大値が 90%から 10%まで変化する距離をビームエッジぼけ量 δとして求 める。 That is, as shown in FIG. 8A, a tantalum film 82 having an electron reflectivity higher than that of silicon Si is formed on the silicon silicon wafer 81. The beams are scanned by the deflectors 104 and 106 so that the electron beam 83 crosses the tantalum film 82. At this time, the reflected electrons 84 from the irradiation point are detected by the electron detector. Then, the amount of detected electrons is obtained as shown in FIG. This electron detection amount is differentiated with respect to the beam scanning position to obtain the waveform shown in Fig. 8 (c), and the distance at which the maximum value changes from 90% to 10% is obtained as the beam edge blur amount δ. .
[0066] このビームエッジぼけ量を最小にするように各電極に印加する電圧を調整し、 G;!〜 G4を求める。 [0066] The voltage applied to each electrode is adjusted so as to minimize the beam edge blurring amount, and G ;! to G4 are obtained.
[0067] 上記の処理を 2つの断面積の異なる電子ビームについて行う。 [0067] The above processing is performed on two electron beams having different cross-sectional areas.
[0068] 次に、図 9に示すように、電子ビームの断面積とリフォーカス量(リフォーカス係数 G ;!〜 G4)との関係を直線近似する。断面積が S1のときのリフォーカス係数が GS1で
あり、断面積が S2のときのリフォーカス係数が GS2であったとすれば、その 2点を通る 直線で断面積とリフォーカス係数との相関関係を求める。 4つのリフォーカス係数に ついて同様に相関関係を求める。これに基づき、任意形状のブロックパターンについ てその面積からリフォーカス係数を決定する。 Next, as shown in FIG. 9, the relationship between the cross-sectional area of the electron beam and the refocus amount (refocus coefficient G;! To G4) is linearly approximated. The refocus coefficient when the cross-sectional area is S1 is GS1 If the refocus coefficient is GS2 when the cross-sectional area is S2, the correlation between the cross-sectional area and the refocus coefficient is obtained by a straight line passing through the two points. The correlation is similarly obtained for the four refocus coefficients. Based on this, the refocus coefficient is determined from the area of the block pattern of arbitrary shape.
[0069] (電子ビーム露光方法) [0069] (Electron beam exposure method)
次に、上記した電子ビーム露光装置を使用した露光方法について説明する。 Next, an exposure method using the above-described electron beam exposure apparatus will be described.
[0070] 電子ビーム露光をする際、露光マスクを選択する毎に電子ビームの焦点を調整す るため、リフォーカス係数を決定する。 [0070] When performing electron beam exposure, a refocus coefficient is determined in order to adjust the focus of the electron beam every time an exposure mask is selected.
[0071] リフォーカス係数は、図 8及び図 9を用いて説明したように、 2つの異なる断面積の 電子ビームについてビームぼけを測定し、そのビームぼけが最小になるようにリフォ 一カス係数 G1から G4を決定する。 [0071] As described with reference to FIGS. 8 and 9, the refocus coefficient is measured by measuring the beam blur for two electron beams having different cross-sectional areas, and the refocus coefficient G1 so that the beam blur is minimized. To determine G4.
[0072] 照射される電子ビームの断面の面積は、露光データが記憶されている記憶部 41か らサイズを抽出する。そのサイズに応じたリフォーカス係数 G1から G4をかけて各電 極に印加する電圧値を決定する。 [0072] The size of the cross-sectional area of the irradiated electron beam is extracted from the storage unit 41 in which the exposure data is stored. The voltage value applied to each electrode is determined by applying the refocus coefficients G1 to G4 according to the size.
[0073] この電圧値の算出は、偏向器 104, 106に電圧を印加すると同時に行う。従来は、 偏向器に電圧を印加して電圧が安定するまでの時間が 50[ns]であるにもかかわらず 、リフォーカス電流の安定する時間が 300[ns]程度であったため、露光待ち時間がか かっていた。本実施形態では、静電電極に電圧を印加するため、焦点補正のための 電圧の静定時間は 50[ns]と短ぐ電子ビームのサイズから各電極に印加する電圧値 を決定するまでの時間を考慮しても露光待ち時間は 100[ns]程度となり、従来よりも 3 倍程、短時間で露光を開始することができ、露光スループットの向上を図ることが可 能となる。 The voltage value is calculated at the same time as the voltage is applied to the deflectors 104 and 106. Conventionally, the time until the voltage is stabilized after applying a voltage to the deflector is 50 [ns], but the refocus current is stabilized for about 300 [ns]. It was over. In this embodiment, since a voltage is applied to the electrostatic electrodes, the voltage stabilization time for focus correction is 50 [ns], which is a short time until the voltage value to be applied to each electrode is determined from the size of the electron beam. Even if time is taken into consideration, the exposure waiting time is about 100 [ns], and the exposure can be started in a short time, about three times as long as the conventional method, so that the exposure throughput can be improved.
[0074] 以上説明したように、本実施形態では、電子ビームの焦点を調整するためのリフォ 一カスを行うために、静電電極で構成されるリフォーカスレンズを備えている。このリフ オーカスレンズは、 4重極レンズを 3段重ねた構成にして、その間を通過する電子ビ ームが収束するようにしている。この場合、リフォーカスレンズを構成する各電極に印 加する電圧を電子ビームの断面積に応じて調整するようにしている。これにより、電子 ビームの断面積の大きさに応じて電子ビームの電子量が変化しても焦点を合わせる
ことが可能になる。しかも、静電電極を用いて電圧を印加するだけで電界を調整する ため、リフォーカスの速度を速くすることが可能になり、露光スループットを向上させる ことが可能となる。 As described above, in this embodiment, in order to perform refocusing for adjusting the focus of the electron beam, a refocusing lens including an electrostatic electrode is provided. This refocus lens has a structure in which three quadrupole lenses are stacked so that the electron beam passing between them is converged. In this case, the voltage applied to each electrode constituting the refocus lens is adjusted according to the cross-sectional area of the electron beam. As a result, the focus is adjusted even if the amount of electrons in the electron beam changes according to the cross-sectional area of the electron beam It becomes possible. In addition, since the electric field is adjusted simply by applying a voltage using an electrostatic electrode, the refocusing speed can be increased and the exposure throughput can be improved.
[0075] なお、本実施形態では、リフォーカスを行うためにリフォーカスレンズの各電極に印 加する電圧が 4つの値を用いる場合について説明した力 S、これに限らず、 3段 4重極 レンズを構成する 12個の静電電極のそれぞれに別個に電圧を与えるようにしても良 い。この場合には、より精度のよいリフォーカスを行うことが可能となる。 In the present embodiment, the force S described for the case where the voltage applied to each electrode of the refocusing lens uses four values to perform the refocusing is not limited to this, and the three-stage quadrupole is not limited thereto. A voltage may be separately applied to each of the 12 electrostatic electrodes constituting the lens. In this case, it becomes possible to perform refocusing with higher accuracy.
[0076] また、本実施形態では、 4重極レンズを 3段重ねる構成のリフォーカスレンズにつ!/ヽ て説明したが、これに限らず、 3段より多い段数で構成するようにしても良い。
Further, in the present embodiment, the refocus lens having a configuration in which the quadrupole lens is stacked in three stages has been described! However, the present invention is not limited thereto, and may be configured with more stages than three stages. good.
Claims
[1] 電子ビームを放射する電子銃と、 [1] an electron gun that emits an electron beam;
前記電子ビームを整形するための開口を有する整形手段と、 Shaping means having an aperture for shaping the electron beam;
前記電子ビームを試料面上へ結像させる投影レンズと、 A projection lens for imaging the electron beam onto the sample surface;
前記投影レンズの上方に設置され、電子ビームの焦点を補正する静電多重極レン ズからなるリフォーカスレンズと、 A refocusing lens that is installed above the projection lens and is made of an electrostatic multipole lens that corrects the focus of the electron beam;
前記整形手段により整形された前記電子ビームの断面の面積に応じた電圧を前記 リフォーカスレンズに印加する制御手段と Control means for applying a voltage according to the cross-sectional area of the electron beam shaped by the shaping means to the refocus lens;
を備えることを特徴とする電子ビーム露光装置。 An electron beam exposure apparatus comprising:
[2] 前記リフォーカスレンズは、 4重極静電電極を前記電子ビームのビーム軸方向に 3 段有することを特徴とする請求項 1に記載の電子ビーム露光装置。 2. The electron beam exposure apparatus according to claim 1, wherein the refocus lens has three stages of quadrupole electrostatic electrodes in the beam axis direction of the electron beam.
[3] 前記 3段の 4重極静電電極のうち、 1段目と 3段目の電極の長さが同じで、 2段目の 電極の長さが 1段目の電極の長さの 2倍であることを特徴とする請求項 2に記載の電 子ビーム露光装置。 [3] Of the three-stage quadrupole electrostatic electrodes, the first-stage and third-stage electrodes have the same length, and the second-stage electrode has the same length as the first-stage electrode. 3. The electron beam exposure apparatus according to claim 2, wherein the electron beam exposure apparatus is doubled.
[4] 前記 1段目、 2段目、 3段目の X方向の電極に印加する電圧と、 y方向の電極に印加 する電圧の極性は逆であり、 [4] The polarity of the voltage applied to the first, second and third stage X-direction electrodes and the voltage applied to the y-direction electrode is opposite,
前記 1段目の X方向の電極に印加する電圧と、前記 2段目の X方向の電極に印加す る電圧とは極性が逆であり、 The voltage applied to the first X-direction electrode and the voltage applied to the second X-direction electrode are opposite in polarity.
前記 1段目の X方向の電極に印加する電圧と、前記 3段目の X方向の電極に印加す る電圧の極性は同じであり、 The polarity of the voltage applied to the first X-direction electrode and the voltage applied to the third X-direction electrode are the same,
前記 1段目の y方向の電極に印加する電圧と、前記 3段目の y方向の電極に印加す る電圧の極性は同じであることを特徴とする請求項 2又は 3に記載の電子ビーム露光 装置。 4. The electron beam according to claim 2, wherein the polarity of the voltage applied to the first-stage y-direction electrode and the voltage applied to the third-stage y-direction electrode are the same. Exposure equipment.
[5] 前記リフォーカスレンズの各電極に印加する電圧は、前記電子ビームの断面の面 積に、予め算出した所定のビームの断面積とリフォーカス量との相関関係から求めた 4つのリフォーカス係数を前記電子ビームの断面の面積に乗じて算出することを特徴 とする請求項 2から 4のいずれか一項に記載の電子ビーム露光装置。 [5] The voltages applied to the electrodes of the refocus lens are four refocus values obtained from the correlation between the cross-sectional area of the electron beam and the pre-calculated cross-sectional area of the predetermined beam and the refocus amount. 5. The electron beam exposure apparatus according to claim 2, wherein a coefficient is calculated by multiplying an area of a cross section of the electron beam.
[6] 電子ビームを放射する電子銃と、前記電子ビームを整形するための開口を有する
整形手段と、前記電子ビームを試料面上へ結像させる投影レンズと、前記投影レン ズの上方に設置され、電子ビームの焦点を補正する静電多重極レンズからなるリフォ 一カスレンズと、制御手段とを備える電子ビーム露光装置にお!/、て、 [6] having an electron gun that emits an electron beam and an opening for shaping the electron beam A shaping lens, a projection lens that forms an image of the electron beam on the sample surface, a refocus lens comprising an electrostatic multipole lens that is installed above the projection lens and corrects the focal point of the electron beam, and a control unit. In an electron beam exposure system equipped with
前記制御手段は前記整形手段により整形された前記電子ビームの断面の面積に 応じて、予め算出した所定のビームの断面積とリフォーカス量との相関関係から 4つ のリフォーカス係数を算出し、前記断面の面積と該リフォーカス係数とを乗算し、前記 リフォーカスレンズの各電極に電圧を印加して露光することを特徴とする電子ビーム 露光方法。 The control means calculates four refocus coefficients from the correlation between the pre-calculated cross-sectional area of the predetermined beam and the refocus amount according to the cross-sectional area of the electron beam shaped by the shaping means, An electron beam exposure method, wherein the exposure is performed by multiplying the cross-sectional area by the refocus coefficient and applying a voltage to each electrode of the refocus lens.
前記リフォーカスレンズは、 4重極静電電極を前記電子ビームのビーム軸方向に 3 段有することを特徴とする請求項 6に記載の電子ビーム露光方法。
7. The electron beam exposure method according to claim 6, wherein the refocus lens has three stages of quadrupole electrostatic electrodes in the beam axis direction of the electron beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008538632A JPWO2008044479A1 (en) | 2006-10-05 | 2007-09-27 | Electron beam exposure apparatus and electron beam exposure method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-273912 | 2006-10-05 | ||
JP2006273912A JP4889431B2 (en) | 2006-10-05 | 2006-10-05 | Electron beam exposure apparatus and electron beam exposure method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008044479A1 true WO2008044479A1 (en) | 2008-04-17 |
Family
ID=39282690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/068807 WO2008044479A1 (en) | 2006-10-05 | 2007-09-27 | Electron beam lithography system and electron beam lithography |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP4889431B2 (en) |
TW (1) | TW200823969A (en) |
WO (1) | WO2008044479A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI712866B (en) * | 2018-09-21 | 2020-12-11 | 台灣積體電路製造股份有限公司 | Method for electron beam lithography and increasing throughput |
WO2025028136A1 (en) * | 2023-08-01 | 2025-02-06 | 株式会社ニューフレアテクノロジー | Multiple electron beam irradiation device and multiple electron beam irradiation method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5462569B2 (en) * | 2009-09-25 | 2014-04-02 | 株式会社アドバンテスト | Electron beam exposure system |
JP5528753B2 (en) * | 2009-09-25 | 2014-06-25 | 株式会社アドバンテスト | Electron beam exposure system |
DE102020107738B3 (en) * | 2020-03-20 | 2021-01-14 | Carl Zeiss Multisem Gmbh | Particle beam system with a multipole lens sequence for the independent focusing of a large number of single particle beams, its use and associated process |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133715A (en) * | 1985-12-06 | 1987-06-16 | Toshiba Corp | Charged beam lithography equipment |
JP2002299207A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Charged particle beam lithography device |
JP2004203595A (en) * | 2002-12-26 | 2004-07-22 | Furukawa Co Ltd | Hook operating device of crane |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62249417A (en) * | 1986-04-23 | 1987-10-30 | Hitachi Vlsi Eng Corp | Electron beam lithography equipment |
NL8602196A (en) * | 1986-08-29 | 1988-03-16 | Philips Nv | CHARGED PARTICLE IRRADIATION DEVICE WITH OPTICALLY DEFORMABLE BUNDLE LIMITING APERTURE. |
JPH0314219A (en) * | 1989-06-13 | 1991-01-22 | Toshiba Corp | Electron beam lithography device |
JPH03119717A (en) * | 1989-09-30 | 1991-05-22 | Fujitsu Ltd | Charged particle exposure device and exposure |
-
2006
- 2006-10-05 JP JP2006273912A patent/JP4889431B2/en active Active
-
2007
- 2007-09-27 JP JP2008538632A patent/JPWO2008044479A1/en not_active Withdrawn
- 2007-09-27 WO PCT/JP2007/068807 patent/WO2008044479A1/en active Application Filing
- 2007-10-02 TW TW096136865A patent/TW200823969A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133715A (en) * | 1985-12-06 | 1987-06-16 | Toshiba Corp | Charged beam lithography equipment |
JP2002299207A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Charged particle beam lithography device |
JP2004203595A (en) * | 2002-12-26 | 2004-07-22 | Furukawa Co Ltd | Hook operating device of crane |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI712866B (en) * | 2018-09-21 | 2020-12-11 | 台灣積體電路製造股份有限公司 | Method for electron beam lithography and increasing throughput |
US11054748B2 (en) | 2018-09-21 | 2021-07-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Dummy insertion for improving throughput of electron beam lithography |
US11526081B2 (en) | 2018-09-21 | 2022-12-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Dummy insertion for improving throughput of electron beam lithography |
US11899367B2 (en) | 2018-09-21 | 2024-02-13 | Taiwan Semiconductor Manufacturing Co., Ltd | Dummy insertion for improving throughput of electron beam lithography |
WO2025028136A1 (en) * | 2023-08-01 | 2025-02-06 | 株式会社ニューフレアテクノロジー | Multiple electron beam irradiation device and multiple electron beam irradiation method |
Also Published As
Publication number | Publication date |
---|---|
TW200823969A (en) | 2008-06-01 |
JP4889431B2 (en) | 2012-03-07 |
JPWO2008044479A1 (en) | 2010-02-04 |
JP2008091827A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7005658B2 (en) | Charged particle beam exposure apparatus and method | |
US6472672B1 (en) | Electron beam exposure apparatus and its control method | |
US6552353B1 (en) | Multi-electron beam exposure method and apparatus and device manufacturing method | |
JP6128744B2 (en) | Drawing apparatus, drawing method, and article manufacturing method | |
JP3993334B2 (en) | Charged beam lithography system | |
US7041988B2 (en) | Electron beam exposure apparatus and electron beam processing apparatus | |
JP4889431B2 (en) | Electron beam exposure apparatus and electron beam exposure method | |
JP6823823B2 (en) | Charged particle beam drawing device, its control method and correction drawing data creation method | |
EP2388801B1 (en) | Multi-column electron beam lithography system and electron beam orbit adjusting method thereof | |
JP4207232B2 (en) | Charged beam exposure system | |
KR20220079969A (en) | Charged Particle Beam Device and Method of Operating the Charged Particle Beam Device | |
US6838682B2 (en) | Electron beam exposure equipment and electron beam exposure method | |
US20150044614A1 (en) | Drawing apparatus, and method of manufacturing article | |
JP2004311472A (en) | Electron beam drawing equipment | |
KR20140130028A (en) | Drawing apparatus, and method of manufacturing article | |
JP4018197B2 (en) | Electron beam exposure method and electron beam exposure apparatus | |
JP5528753B2 (en) | Electron beam exposure system | |
JP2004047766A (en) | Method and system for controlling electron beam exposure | |
JP2001332473A (en) | Charged particle beam aligner and device-manufacturing method using it | |
JP4143204B2 (en) | Charged particle beam exposure apparatus and device manufacturing method using the apparatus | |
JP6951673B2 (en) | Charged particle beam drawing device and its control method | |
JP4870392B2 (en) | Electron beam drawing apparatus, electron beam defocus correction method, and electron beam defocus measurement method | |
KR102811445B1 (en) | Method for adjusting optical system of multi-charged particle beam device and computer readable recording medium | |
JPH10308341A (en) | Exposing method and aligner by means of electron beam | |
JPH11219678A (en) | Charged particle beam device and aberration correcting method for charged particle beam device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828553 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008538632 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828553 Country of ref document: EP Kind code of ref document: A1 |