WO2008044471A1 - Thermoplastic resin composition - Google Patents
Thermoplastic resin composition Download PDFInfo
- Publication number
- WO2008044471A1 WO2008044471A1 PCT/JP2007/068769 JP2007068769W WO2008044471A1 WO 2008044471 A1 WO2008044471 A1 WO 2008044471A1 JP 2007068769 W JP2007068769 W JP 2007068769W WO 2008044471 A1 WO2008044471 A1 WO 2008044471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- resin
- resin composition
- polylactic acid
- thermoplastic resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
Definitions
- the present invention contains a high molecular weight plant-derived resin, a flexibility imparting agent, and an inorganic flame retardant.
- the present invention relates to a thermoplastic resin composition containing a plasticizer and achieving excellent toughness and flame retardancy.
- plant-derived resins have attracted attention as substitutes for petroleum raw materials, and research into commercialization of resin compositions using various plant-derived resins has been actively conducted.
- polylactic acid resins have attracted particular attention as an example of plant-derived resins, and are being commercialized for various uses.
- applications of the above-mentioned plant-derived resin are applications for which disposal is expected to be short, such as containers and packaging and films for agricultural use, housings for home appliances, mobile phones and OA equipment, and parts for automobiles. As you can see, there are a wide variety of high-performance applications that can retain the initial characteristics for a long time.
- Patent Document 1 discloses a biodegradable resin composition using an additive.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2003-192925
- polylactic acid resin which is a representative of plant-derived resins (this resin also has biodegradability) is generally a brittle material and has insufficient flame retardancy, so it can be used as a housing for home appliances and OA equipment. There was a problem in applying it.
- the polylactic acid resin composition containing 50% by mass of aluminum hydroxide described in Patent Document 1 has a bending strain of only about 1% or less in household appliances and OA equipment. There is a problem that the toughness is not enough to apply to
- the present invention has been made in view of power and other problems, and an object of the present invention is to provide a thermoplastic resin composition which is excellent in toughness and flame retardancy and contains a plant-derived resin.
- thermoplastic resin composition according to the present invention contains a high molecular weight polylactic acid (A), a flexibility imparting agent (B), and an inorganic flame retardant (C), and the high molecular weight polylactic acid (A
- the melt flow rate at 190 ° C. is less than 15.
- thermoplastic resin composition according to the present invention is a plasticizer (D) in addition to the above-mentioned high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C). Containing Effect of the invention
- thermoplastic resin composition containing a plant-derived resin according to the present invention has a high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C) and further a plastic By containing the agent (D), excellent toughness and flame retardancy can be realized.
- thermoplastic resin composition according to the present invention which contains the inorganic flame retardant (C) as an essential component, first contains, simultaneously, high molecular weight polylactic acid (A) and a flexibility imparting agent (B). Show excellent toughness (especially large strain at break). Furthermore, the thermoplastic resin composition according to the present invention, which contains the inorganic flame retardant (C) as an essential component, has the high molecular weight polylactic acid (A), a flexibility imparting agent (B) and a plasticizer (D) At the same time, it contains a synergetic effect that improves the toughness specifically. In particular, the breaking strain is significantly improved.
- FIG. 1 is a graph showing the relationship between bending rupture strain and melt flow rate.
- the present invention is characterized by containing a high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C), and further containing a plasticizer (D).
- A high molecular weight polylactic acid
- B flexibility imparting agent
- C inorganic flame retardant
- D plasticizer
- the high molecular weight polylactic acid (A) according to the present invention is a polylactic acid having a melt flow rate at 190 ° C. (hereinafter referred to as MFR) of less than 15, and the lower this value is It is effective in improving toughness.
- MFR melt flow rate at 190 ° C.
- MFR is an extrusion type plastometer, which measures the mass (g) of resin flowing out in 10 minutes from a nozzle (orifice) with specified dimensions under a constant pressure and a constant temperature.
- G / 10 is an index expressed in units of 10 minutes.
- the smaller the MFR value the lower the fluidity at the time of melting, that is, the higher the molecular weight of the resin.
- a method of measuring MFR for polylactic acid in a very general manner that is, setting the melting temperature to 190 ° C.
- the inorganic flame retardant (C) is an essential component.
- the MFR is preferably 3 or more because the fluidity of the thermoplastic resin composition of the present invention may be reduced and sufficient moldability may not be obtained.
- the molecular structure of polylactic acid is usually linear, but may be branched.
- the flexibility imparting agent (B) according to the present invention is not particularly limited as long as the elastic modulus at normal temperature is lower than that of polylactic acid, and it is made of an organic material. It is preferable that / is a compound having a structural unit that is compatible with polylactic acid and a structural unit that exhibits flexibility in the same structure.
- Specific examples of the organic substance constituting the flexibility imparting agent (B) include a copolymer consisting of three components of polylactic acid, glycols and linear saturated dicarboxylic acid. Examples of the darichles that constitute the copolymer include ethylene glycol, propylene glycol, diethylene glycol and the like.
- linear saturated dicarboxylic acid constituting the above-mentioned copolymer
- succinic acid dartalic acid, adipic acid, pimelic acid, suberic acid, caseelaic acid, sebacic acid and the like.
- polybutylene succinate As specific examples of the organic substance constituting the flexible additive (B), other than the above, polybutylene succinate, copolymer of polybutylene succinate and polylactic acid, polyprotonic agent, polyprogenic agent and polylactic acid Copolymers, natural rubber, acrylic resins such as polymethyl methacrylate (PMMA), polyester segments, polyether segments, and copolymers having a polymer block selected from the group consisting of polyhydroxy carboxylic acid segments Block copolymer in which a polylactic acid segment, an aromatic polyester segment and a polyalkylene ether segment are bonded to each other, a polymer containing an unsaturated carboxylic acid alkyl ester unit as a main component, polyethylene succinate, polyethylene adipate, Polypropylene And aliphatic polyesters such as polybutylene adipate, polyhexamethylene adipate and polybutylene succinate adipate, polyethylene glycol and esters thereof.
- PMMA polymethyl methacrylate
- the mass ratio of the high molecular weight polylactic acid (A) to the flexibility imparting agent (B) is set to 95: 5 to 50:50.
- the force that can be preferably is a ratio of 92: 8 to 70:30.
- inorganic flame retardant (C) according to the present invention, metal hydrates are particularly preferred.
- flame retardants other than halogen flame retardants such as nitrogen flame retardant and phosphorus flame retardant may be used in combination.
- halogen-based flame retardants interrupt and cut the combustion cycle by capturing and reducing active radicals ( ⁇ ) generated during combustion of plastic by halogen and turning it into a more inactive form. Also, it has a mechanism to generate gaseous halogen compounds and to block the polymer from heat and oxygen, and it simply contains halogen V, not in the sense!
- the flame retardant (C) according to the present invention is an inorganic substance having a content of 0.2% by mass or less of an alkali metal-based substance, and is a metal hydrate which further exhibits thermal absorption effect by thermal decomposition.
- a plant-derived resin for example, represented by polylactic acid
- the molecular weight reduction of the above-mentioned plant-derived resin having an ester bond is Low V, particularly preferred V, (good resistance to hydrolysis).
- an inorganic flame retardant aluminum hydroxide, boehmite, magnesium hydroxide, dawsonite, calcium aluminate, hydrated gypsum, calcium hydroxide, zinc borate, barium metaborate, borohydride
- fillers include sand, kaolin clay and calcium carbonate, inorganic fillers surface-treated with various organic substances including epoxy resin and phenolic resin, and inorganic fillers obtained by solidifying metals.
- aluminum hydroxide which is a representative of metal hydrates, is particularly preferable because it is particularly excellent in flame retardancy with high endothermic effect.
- the 50% by mass particle diameter of the inorganic flame retardant (C) when the 50% by mass particle diameter of the inorganic flame retardant (C) is in the range of 20 111 or less, the plant-derived resin contained in the thermoplastic resin composition of the present invention It is more preferable because the dispersibility is good and the flame retardancy and the mechanical property improvement effect are excellent.
- the 50% by mass particle diameter of the inorganic flame retardant (C) is 20 ⁇ m or less, the surface properties of the thermoplastic resin composition containing the same are also excellent, and irregularities may be generated on the surface to lower the designability. Absent.
- the weight ratio of the above-mentioned inorganic flame retardant (C) to the total amount of the thermoplastic resin composition of the present invention is X
- the above-mentioned X is in the range of 30% by mass to 60% by mass.
- the flame retardance may be insufficient.
- the weight ratio X of the above-mentioned inorganic flame retardant (C) exceeds 60% by mass, the fluidity and the thermal decomposition resistance may be lowered.
- nitrogen-based flame retardants examples include melamine and isocyanuric acid compounds.
- phosphorus-based flame retardants examples include red phosphorus, phosphoric acid compounds, and organic phosphorus compounds.
- the thermoplastic resin composition of the present invention contains a metal hydrate such as aluminum hydroxide among the inorganic flame retardants (C)
- the above-mentioned nitrogen based flame retardants and phosphorus based flame retardants may be used.
- the amount of addition of the flame retardant is small, and deterioration of other physical properties such as moisture resistance, heat resistance, mechanical properties and the like caused by the flame retardant other than the inorganic flame retardant (C) can be suppressed.
- the above-mentioned inorganic flame retardant (C) and other flame retardants may be pretreated on high strength fibers and fibers derived from plants for use.
- the plasticizer (D) according to the present invention also includes, in a broad sense, a “lubricant” having a releasing effect.
- the plasticizer (D) is not particularly limited as long as it penetrates between polymer molecules, in particular between polylactic acid molecules to weaken the intermolecular force between the polymers and facilitate movement of the molecular chain. is not.
- Specific examples of the plasticizer (D) include dimethyl adipate, dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (butyl diglycol) adipate, bis (butyl ester).
- Noregi Gliconole) adipate bis (2-etinole hexinore) gaslate, dimethynoles cenocate, dibutynoresenocate, bis (2-ethinole hexinole) cenocate, bis (2-ethinolehexyl / le) senocate, ge Aliphatic dibasic acid esters such as resuccinate, bismethy / legetylene glycolonaea dipate, and benzyl-2- (2-methoxyethoxy) ethyl adipate, ditridecyl phthalate, dinormalocyl phthalate, diisononyl phthalate, dimethyl Phthalate esters such as tallyte, jetyl phthalate, dibutyl phthalate, bis (2-ethyl nolhexyl) phthalate, di-octyl phthalate, diisodecyl phthalate, buty
- the plasticizer (D) When the plasticizer (D) is added to the thermoplastic resin composition of the present invention, it is preferably added so as to be 5% by mass or less based on the total amount of the thermoplastic resin composition. Yes. If this value exceeds 5%, sufficient flame retardance may not be obtained.
- thermoplastic resin composition of the present invention in the case where the high molecular weight polylactic acid (A, hereinafter, high molecular weight polylactic acid) and the flexibility imparting agent (B) are simultaneously contained, the high molecular weight In the case of polylactic acid (A) alone, polylactic acid other than the high molecular weight polylactic acid (A) (hereinafter referred to as low molecular weight polylactic acid ⁇ ) alone, the low molecular weight polylactic acid ⁇ is a flexibility imparting agent ( The strain at break is superior to the case where ⁇ ) is added.
- high molecular weight polylactic acid ( ⁇ ) crystalline high molecular weight polylactic acid with MFR less than 15 (hereinafter referred to as high molecular weight poly L lactic acid (A1). It has a crystalline portion and an amorphous portion.
- a flexibility imparting agent ( ⁇ ⁇ ) a compound having a structural unit capable of compatiblizing with polylactic acid and a structural unit exhibiting flexibility in the same structure, for example, polylactic acid and glycols, and a straight chain The mechanism for improving the toughness, in particular the strain at break, will be described in the case where each of the three component copolymers of the cyclic saturated dicarboxylic acid is used.
- the above-mentioned flexibility imparting agent ( ⁇ ) having a saturated aliphatic chain having a small interaction between molecular chains and polylactic acid as a constitutional unit is a copolymer having flexibility and partially Is compatible with polylactic acid. Therefore, the molecule of the agent for imparting flexibility ( ⁇ ) is likely to form entanglement of molecular chains with the polylactic acid molecule.
- the molecular chains are easily entangled, and the distance of entanglement is also long. As a result, it is assumed that the toughness is effectively improved as a result of forming a typical crosslink.
- thermoplastic resin composition of the present invention when the plasticizer (D) is further used in combination with the high molecular weight poly (L-lactic acid) (A1) and the flexible additive ( ⁇ ), the high resin The toughness is remarkably improved as compared with the case where only two components of molecular weight polylactic acid (A1) and the above-mentioned flexibility imparting agent ( ⁇ ) are contained.
- a mechanism that synergistically improves toughness, in particular, strain at break, is described for the case where a compound that causes a sliding effect between molecules of polylactic acid, for example, trimellitic acid ester, is used as the plasticizer (D). Do.
- the presence of the plasticizer (D) is presumed to significantly improve the toughness with the following three effects: did.
- the three effects are [1] The effect of improving the dispersibility of the high molecular weight poly-L-lactic acid (A1) and the flexibility imparting agent (B) in the thermoplastic resin composition of the present invention by the addition of the plasticizer (D) ,
- the (A1) and (B) can be obtained.
- the (A1) has a high molecular weight, so that the distance between the molecular chains is longer than in the case where only low molecular weight polylactic acid (a) is used. Therefore, when the thermoplastic resin composition of the present invention is deformed by stress, stress relaxation due to the flexibility of the flexibility imparting agent ( ⁇ ) is more than that when the low molecular weight polylactic acid (a) is solely composed.
- the thermoplastic resin composition according to the present invention may contain an organic substance derived from a plant other than polylactic acid, and the structure thereof is not particularly limited.
- plant-derived organic substances other than polylactic acid for example, as a plant-derived resin based on succinic acid which can be obtained using saccharides contained in corn and corn as starting materials, esters such as polybutylene succinate are usable. is there.
- starch, amylose, cellulose, cellulose ester, chitin, chitosan, gellan gum, carboxyl group-containing cellulose, carboxyl group-containing starch, pectinic acid, polysaccharides such as alginic acid and the like are also plant-derived organic substances.
- polybutylene succinate as “organic matter derived from plants other than polylactic acid”, Excluded from the above-mentioned flexibility imparting agent (B) of the invention.
- polybetahydroxyalkanoate (Zeneca, trade name: biopore, etc.), which is a polymer of hydroxybutyrate and / or hydroxyvalerate synthesized by microorganisms, is not derived from plants, but It can be used because it has the same meaning as plant-derived resin in that it does not require petroleum resources.
- Lignin is a dehydrogenation polymer of coniferyl alcohol and sinapyl alcohol which is contained in 20 to 30% of wood, and a modified product thereof is also a plant-derived resin. That is, thermosetting resins using plant materials such as lignin, hemicellulose and cellulose may also be used.
- thermoplastic resin is excellent, and the viscosity at the time of melting is preferably not significantly increased, because it has good moldability and processing ability.
- aliphatic polyesters and modified polyesters which are crystalline polyesters and modified polyesters are more preferable.
- aliphatic polyamino acids and aliphatic polyamino acids modified with polyamino acids and modified polyamino acids are more preferable.
- modified products of polyols and polyols are preferable, and modified products of aliphatic polyols and aliphatic polyols are more preferable.
- petroleum-derived resins can also be mixed with plant-derived resins.
- resins derived from petroleum for example, polypropylene, polystyrene, ABS, nylon, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, urea resin, melamine resin, alkoxide resin, acrylic resin, unsaturated polyester resin, diaryle phthalate resin, Epoxy resin, silicone resin, cyanate resin, isocyanate resin, furan resin, furan resin, ketone resin, thermosetting resin, thermosetting polyimide, thermosetting polyamide, styrylpyridine resin, nitrile terminal resin, addition curing resin
- thermosetting resins such as quinoxaline, addition-curable polyquinoxaline resin, and the like, and the plant-derived resin.
- thermosetting resin When a thermosetting resin is used, a curing agent and a curing accelerator necessary for the curing reaction can be used. Further, the thermoplastic resin composition according to the present invention may contain a core forming agent (E).
- the above-mentioned heat forming agent (E) is excellent in thermal decomposition resistance and is not particularly limited as long as it is a compound which easily forms a carbonized component (also referred to as a heat generating agent)!
- chain forming agent (E) As the above-mentioned chain forming agent (E), phenols, silicone compounds, boron compounds and the like are particularly preferable in view of flame retardancy and flowability.
- the phenols are generally used as curing agents for epoxy resins, as long as they are not particularly limited unless they volatilize or decompose at the kneading temperature or molding temperature of the resin.
- a phenolic resin is available. These phenol resins are exemplified by phenol nopolac resin, cresol nopolac resin, p-cresol nopolac resin, phenol xylene alaryl type resin, phenol biphenyl dilenalallyl type resin, bis phenol A type phenol resin, bis phenol F-type phenol resin, bis-phenol S-type phenol resin, biphenyl isomer dihydroxy ether-type phenol resin, naphthalene diol-type phenol resin, phenol diphenol ether resin, naphthalene-containing nopolac resin, anthracene-containing nopolac resin Resin, biscresol fluorene, fluorene-containing nopolac resin, bisphenol fluorene
- catechol and catechol resins are examples of phenols, biphenyl, xylenol, bisphenol A, bisphenol 1? And bisphenol S. Furthermore, catechol biphenyl alkyal resins, catechol xylene alaryl resins and the like obtained by copolymerizing catechol and derivatives of aromatics can also be used. In addition, lignin and its analogues (for example, lignophenols) may be used.
- the silicone compound is an organosilane containing an aromatic ring, which is branched or linear unless it volatilizes or decomposes at the kneading temperature or molding temperature of the resin.
- the structure is not limited. Among these, as a silicone compound of a branched structure, it is preferable that it is a thing containing the unit (T unit) shown by Formula RSiO 2. Furthermore, the formula SiO
- R represents a monovalent aliphatic hydrocarbon group or an aromatic hydrocarbon group, at least one of which is a group containing an aromatic ring. Even if all R's are different, all R's may be the same.
- the subscripts "2" and "3" in R indicate the number of substitutions. With such a structure, the flame retardancy can be further improved.
- the silicone compound having a linear structure has a unit represented by the formula R SiO (D unit), a unit represented by the formula R SiO (M unit
- silicone compounds are effective in improving impact resistance in addition to the improvement of flame retardancy and fluidity.
- the weight ratio of the above-mentioned key forming agent (E) to the total amount of the thermoplastic resin composition of the present invention is Y
- the Y is not less than 0.5% by mass and not more than 20% by mass.
- the weight ratio Y of the above-mentioned core-forming agent (E) is less than 0.5% by mass, the effect of improving the flame retardancy and the fluidity may be insufficient.
- the weight ratio Y of the above-mentioned core-forming agent (E) exceeds 20% by mass, the heat resistance (in particular, the load deflection temperature ⁇ HDT>) may be reduced.
- the above-described carrier-forming agent (E) can be treated with high molecular weight polylactic acid (A), a flexibility imparting agent (B), an inorganic type
- A high molecular weight polylactic acid
- B flexibility imparting agent
- an inorganic type It has been discovered that, when used in combination with the thermoplastic resin composition of the present invention comprising the flame retardant (C) and the plasticizer (D), there is an excellent flame retardancy improvement effect which is reduced by the flowability improvement effect alone. .
- the cause of this effect is not necessarily clear, it can be caused when the resin composition containing the above-mentioned chain forming agent (E) is ignited especially when metal hydrate is used as the inorganic flame retardant (C).
- the carbide including the molten resin
- the carbide is complexed with the above-mentioned metal hydrate (including the formed metal oxide) to form a unique composite layer (carbide, molten resin, metal hydrate and this oxide).
- Forming a composite layer and the composite layer contains water generated by thermal decomposition of metal hydrate and decomposition gas (including combustible gas) of resin components in the resin composition. It is thought that the flame retardancy is improved as a result of the formation of a heat insulating layer that can expand and shut off the heat of ignition efficiently. Furthermore, it is assumed that this heat insulation layer also has an effect of capturing the decomposition gas of the resin and diffusing the decomposition gas to the outside to spread the fire of the resin.
- thermoplastic resin composition of the present invention it is preferable to add a crystal nucleating agent (F) to the thermoplastic resin composition of the present invention.
- an inorganic nucleating agent or an organic nucleating agent can be used as the nucleating agent (F).
- inorganic crystal nucleating agents include clay minerals, calcium carbonate, boron nitride, synthetic silicic acid, silicates, silica, carbon black, zinc flower, basic magnesium carbonate, quartz powder, glass fiber, glass powder, green algae, It is possible to cite dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, boron nitride and the like.
- the clay mineral refers to a hydrous cayrate produced as a main component of clay.
- clay minerals include alophen, hisingerite, phyllosilicate, neurophyllite, talc, ummo (also called my power) group, montmorillonite group, vermiculite group, liyotadi group, kaolin group, inokeyic acid Salt, norigorskite group, etc.
- Organic carboxylic acids for example, octylic acid, toluic acid, heptanoic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, cerotic acid, montanic acid, melisic acid, benzoic acid Acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, isophthalic acid monomethyl ester, rosin acid, 12-hydroxystearic acid, cholic acid, etc.
- Organic carboxylic acid alkali (earth) metal salts such as alkaline (earth) metal salts of the above organic carboxylic acids,
- Polymeric organic compounds having metal salts of carboxyl groups for example, carboxyl group-containing polyethylene obtained by oxidation of polyethylene, carboxyl group-containing polypropylene obtained by oxidation of polypropylene, ethylene, propylene, butene-1 etc.
- Amide compounds for example, foreic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, N-oleyl palmitamide, N stearyl yl acid amide, N, N'- methylene bis ( Stearyl amide), methylol 'stearyl amide, ethylene bis behenic acid amide, ethylene bis lauric acid amide, hexamethylene bis oleic acid amide, hexamethylene bis stearic acid amide, butylene bis stearic acid amide, N, N'— Dioleyl sebacic acid amide, N, N, -Dioleyl adipic acid amide, N, N,-Distearyl adipic acid amide, N, N,-Distearyl sebacic acid amide, m- xylylene bis-stearic acid amide, N , N 'distearyl isophthalic acid amide, N
- a high molecular weight organic compound for example, 3,3 dimethylbutene 1,3 methylbutene 1,3 -methylpentene 1,3-methylhexene 1,3,5,5-trimethylhexene 1 etc.
- Phosphoric acid or phosphorous acid and an organic compound thereof or metal salt thereof for example, diphenyl phosphite, diphenyl phosphite, sodium bis (4-tert butylphenyl) phosphate, methylene phosphate (2, 4-tert-butyl (biphenyl) sodium etc.,
- Sorbitol derivatives for example, bis (p methyl benzylidene) sorbitol, bis (p ethyl benzylidene) sorbitol,
- Cholesterol derivatives for example, cholesteryl stearate, cholesteryloxys thearamide,
- metal phenylphosphonates such as zinc phenylphosphonate, calcium phenylphosphonate and magnesium phenylphosphonate, melamine cyanurate and melami Melamine compounds such as monopolyphosphate and bis (benzidrazino carbonyl) octaneate can also be used.
- organic crystal nucleating agents some of them exert effects as a plasticizer (D), but when used as a crystal nucleating agent (F), the plasticizer (D) may be used. Excluded from).
- the organic crystal nucleating agent is used for injection molding, etc./ It is compatible with the resin in the high temperature molten state, or dissolved or finely dispersed, and it is deposited in the mold cooling stage in the mold.
- An organic crystal nucleating agent which phase-separates and acts as a crystal nucleus is preferably used.
- the inorganic crystal nucleating agent functions efficiently as a crystal nucleus by highly dispersing the inorganic substance of the fine particles in the resin.
- the surface of the inorganic crystal nucleating agent is compatibilized (coating treatment using a resin or compound having a compatibilizing action, or ion-exchange treatment, surface treatment with a coupling agent, etc.) S-preferable. Yes.
- the inorganic crystal nucleating agent whose surface is compatibilized is enhanced in the interaction with the resin to improve the dispersibility, and the aggregation of the nucleating agent can be prevented.
- a masterbatch may be used in which a crystal nucleating agent (F) is previously dissolved or dispersed in a plant-derived resin such as polylactic acid.
- a crystal nucleating agent (F) when the weight ratio to the total amount of the thermoplastic resin composition of this invention is set to Z, Z is more than 0. 05 mass% and 20 mass% or less. These are particularly preferable because the crystallization rate of a crystalline resin such as polylactic acid can be increased to improve the productivity and the impact resistance is good. That is, if the weight ratio Z of the crystal nucleating agent (F) is more than 0.05 mass%, the crystallization proceeds rapidly and the production rate is improved.
- the weight ratio Z of the crystal nucleating agent (F) is 20% by mass or less, particularly when using an inorganic crystal nucleating agent, the growth of cracks starting from the inorganic crystal nucleating agent is suppressed.
- the impact resistance of the thermoplastic resin composition of the present invention is improved.
- the anti-drip agent (G) may be used in combination with the thermoplastic resin composition of the present invention.
- the drip inhibitor (G) include organic fibers such as polytetrafluoroethylene (PTFE) and acryl-modified PTFE.
- PTFE polytetrafluoroethylene
- acryl-modified PTFE acryl-modified PTFE.
- the weight ratio to the total amount of the thermoplastic resin composition of the present invention is 1% by mass or less.
- the proportion by weight of these anti-drip agents is 1% by mass or less, the granulation property is good when making pellets.
- H 2 hydrolysis inhibitor
- hydrolysis inhibitor compounds having reactivity with active hydrogen in a plant-derived resin can be used.
- active hydrogen hydrogen in a carboxyl group, a hydroxyl group, an amino group, an amide group, etc. in a plant-derived resin can be mentioned.
- a compound having reactivity with these active hydrogens a carpodiimide compound, an isocyanate compound and a oxazoline compound can be applied.
- aromatic polycarpimides are particularly preferable.
- high strength fibers (I) can be used as a method for improving heat resistance (particularly heat deformation temperature) and impact strength.
- High-strength fibers (I) include polyamide fibers such as aramid fibers and nylon fibers, polyester fibers such as polyarylate fibers and polyethylene terephthalate fibers, ultra-high-strength polyethylene fibers, polypropylene fibers, carbon fibers, metal fibers, glass fibers, etc.
- polyamide fibers such as aramid fibers and nylon fibers
- polyester fibers such as polyarylate fibers and polyethylene terephthalate fibers
- ultra-high-strength polyethylene fibers polypropylene fibers
- carbon fibers metal fibers, glass fibers, etc.
- Aramid fibers and polyarylate fibers are aromatic compounds and have higher heat resistance and higher strength than other fibers, and because they are light in color, they do not impair the designability even when added to a resin. Because of its low specific gravity, it is particularly desirable.
- the shape of the high strength fiber (I) is a polygon having a round fiber cross section, an irregular shape, or a shape having irregularities, and having a high aspect ratio or a small fiber diameter.
- the bonding area with force resin increases. As a result, the debonding effect between the fiber and the matrix is increased, and the impact relaxation effect due to the drawing of the fiber is also increased, so that the impact strength is improved.
- fibers having irregularities formed on the surface of the fiber fibers having a kind of wedge shape in which both end portions of the fibers are made thicker than the central portion, those having a narrow part in the fibers, or non-linear
- fibers of a crimped shape friction at the time of pulling out of the fibers is increased, and impact resistance is improved.
- the high-strength fiber (I) can be subjected to a surface treatment, as necessary, in order to enhance the affinity with the resin as the base material or the entanglement between the fibers.
- a surface treatment method treatment with a coupling agent such as silane or titanate, ozone or plasma treatment, Treatment with an alkyl phosphate ester type surfactant is effective.
- treatment methods that can usually be used to modify the surface of the filler, which is not particularly limited to these, are possible.
- the average fiber length of the high strength fiber (I) is in the range of 1 mm to 10 mm, it is particularly effective for improving the impact resistance.
- the average fiber length of the high strength fiber (I) is lmm or more, sufficient impact resistance can be obtained to enhance the energy absorption effect by pulling out the fiber.
- the weight ratio of high strength fibers (I) to the total amount of the thermoplastic resin composition of the present invention is 10% by mass or less, impact resistance is obtained. Preferred because the properties and formability are particularly excellent.
- vegetable fibers such as kenaf and flax can also be used.
- plant fibers refer to fibers derived from plants, and specific examples include fibers obtained from wood, kenaf, bamboo, hemp and the like.
- the fibers preferably have an average fiber length of 10 mm or less.
- pulps etc. obtained by delignifying / de-pecting these plant fibers are particularly preferable because they are less likely to be degraded by heat, discoloration, and deterioration.
- Kenaf and bamboo can absorb a large amount of carbon dioxide because they have high photosynthetic rate and fast growth, and they are excellent as one of the means to solve global problems such as global warming and deforestation by carbon dioxide at the same time.
- high-strength fibers (I) and organic fibers among the above-mentioned plant fibers act as crystal nucleating agents for resins, and the heat resistance of the thermoplastic resin composition of the present invention (especially deflection temperature under load) Effect that can improve the ⁇ HDT>.
- a reinforcing material a coloring agent (such as titanium oxide), a stabilizer (such as a radical scavenger or an antioxidant), an antibacterial agent or an antimicrobial agent can be used together with mold materials.
- a coloring agent such as titanium oxide
- a stabilizer such as a radical scavenger or an antioxidant
- an antibacterial agent or an antimicrobial agent can be used together with mold materials.
- silica, alumina, sand, clay, slag and the like can be used.
- the antibacterial agent silver ion, copper ion, zeolite containing these, etc. can be used.
- thermoplastic resin composition of the present invention as described above is not particularly limited, and known injection molding methods, injection / compression molding, compression molding methods, film molding methods, blow molding methods, foam molding methods, etc. According to the method described above, it can be processed into molded articles such as electrical and electronic equipment applications such as housings of electric appliances, building materials applications, automobile parts applications, daily necessities applications, medical applications, agricultural applications and the like.
- the mixing method of the various compounding components of the thermoplastic resin composition in the present invention is not particularly limited, and mixing and extrusion using known mixers such as a tumbler, ribbon blender, single- or twin-screw kneader, etc. Melt mixing by machine, roll etc. is mentioned.
- the temperature at the time of these melt mixing and molding it is possible to set a range which is equal to or higher than the melting temperature of the resin as the base material and in which the plant fibers and the plant-derived resin are not thermally deteriorated.
- a forming agent ( ⁇ ), a crystal nucleating agent (F), an anti-drip agent (G) and a hydrolysis inhibitor ( ⁇ ) were used.
- Flexibility agent (B-1) Copolymer of propylene glycol, sebacic acid and polylactic acid
- Plasticizer (D-1) Benzyl 1-2 (2-Metoxytoxy)
- MFR Melt flow rate
- thermoplastic resin compositions shown in Examples which may be represented as Examples
- Comparative Examples A kneader (biaxial type) in which each material for thermoplastic resin compositions shown in Examples (which may be represented as Examples) and Comparative Examples is set so that the temperature of this composition is about 180 ° C.
- the mixture was melt mixed to make pellets for injection molding.
- the injection molding machine is 13 cm long, 13 mm wide, and 1.6 mm or 3.2 mm thick. Two types of molded bodies were created. Next, these molded bodies were heated at 100 ° C. for 4 hours to crystallize the resin component, and then used as samples for various evaluations. By the way, the temperature of the barrel of the injection molding machine is 190. I was ashamed.
- the mold surface temperature is set to 110 ° C.
- the injection molding machine is 13 cm long, 13 mm wide, and 1.6 mm thick.
- Two types of molded articles of 2 mm were prepared and used as samples for various evaluations. Incidentally, the temperature of the barrel of the injection molding machine was set to 190 ° C., and the sample holding time in the mold was 180 seconds.
- A-1 50% by mass of polylactic acid (A-1) having an MFR of 3 as high molecular weight polylactic acid (A), and 5% by mass of (B-1) shown in Table 1 as a flexible additive (B)
- a mixture containing 45% by mass of aluminum hydroxide (C 1) shown in Table 1 as the flame retardant (C) was melt mixed in a kneader to prepare pellets of a resin composition.
- the temperature of the kneader was set such that the temperature of the above-mentioned resin composition in the kneader was about 180 ° C.
- thermoplastic resin composition of the present invention was compared to the prior art. It is apparent that the resin composition of each of the related comparative examples is superior in toughness in which the bending fracture strain is larger. In particular, when simultaneously containing the three components of high molecular weight polylactic acid (A), flexibility imparting agent (B) and plasticizer (D), it is known that extremely high bending rupture strain is exhibited.
- A high molecular weight polylactic acid
- B flexibility imparting agent
- plasticizer D
- the high-molecular-weight polylactic acid (A) is used in combination with the flexibility imparting agent (B).
- the breaking strain is improved, and a thermoplastic resin composition having good toughness can be obtained.
- Example 4 of the present invention with Example 7 and Comparative Example 6, and as apparent, the high molecular weight polylactic acid (A) and the flexibility imparting agent (B) Strain) is specifically improved by using the plasticizer (D) in combination, and a thermoplastic resin composition having excellent toughness can be obtained.
- thermoplastic resin composition excellent in toughness and having a specifically improved breaking strain can be obtained.
- thermoplastic resin composition of the present invention can be used for electric / electronic devices, construction materials, automobile parts, etc. by methods such as injection molding, film molding, blow molding, foam molding and the like. This application is processed into molded articles for daily use, medical use, agricultural use, toy use, and entertainment use etc. (October 2006, 10 Claim priority and incorporate all of its disclosure here.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
A thermoplastic resin composition comprising at least (A) a polylactic acid having a high molecular weight, (B) a plasticity-imparting agent and (C) an inorganic flame retardant agent, wherein the high-molecular-weight polylactic acid (A) contained in the thermoplastic resin composition has a melt flow rate (MFR) of less than 15.
Description
明 細 書 Specification
熱可塑性樹脂組成物 Thermoplastic resin composition
技術分野 Technical field
[0001] 本発明は、高分子量の植物由来樹脂と可とう性付与剤及び無機系難燃剤を含有し [0001] The present invention contains a high molecular weight plant-derived resin, a flexibility imparting agent, and an inorganic flame retardant.
、さらには可塑剤を含有し、優れた靭性ゃ難燃性を達成した熱可塑性樹脂組成物に 関する。 Further, the present invention relates to a thermoplastic resin composition containing a plasticizer and achieving excellent toughness and flame retardancy.
背景技術 Background art
[0002] 石油原料の代替として、近年、植物由来樹脂が注目され、各種の植物由来樹脂を 利用した樹脂組成物の実用化検討が盛んに行われて V、る。植物由来樹脂の一例と して、最近では、ポリ乳酸樹脂が特に注目され、各種用途で製品化されつつある。前 記の植物由来樹脂の用途としては、容器包装や農業用フィルム等のように使用期間 が短ぐ廃棄を前提とした用途や、家電製品、携帯電話や OA機器のハウジング及び 自動車用部品などのように、初期の特性を長期間保持できるような高機能用途まで、 実に多岐にわたっている。 [0002] In recent years, plant-derived resins have attracted attention as substitutes for petroleum raw materials, and research into commercialization of resin compositions using various plant-derived resins has been actively conducted. Recently, polylactic acid resins have attracted particular attention as an example of plant-derived resins, and are being commercialized for various uses. Examples of applications of the above-mentioned plant-derived resin are applications for which disposal is expected to be short, such as containers and packaging and films for agricultural use, housings for home appliances, mobile phones and OA equipment, and parts for automobiles. As you can see, there are a wide variety of high-performance applications that can retain the initial characteristics for a long time.
[0003] しかしながらこれらの植物由来樹脂、特にポリ乳酸樹脂は靭性に劣るため、本特性 を強化しなければならない。また、植物由来樹脂を、家電製品や OA機器のハウジン グゃ自動車部品などのように、靭性だけでなぐ高度な難燃性も要求される用途に使 用する場合には、これらの特性を同時に達成する必要がある。特に、電気製品の筐 体に、植物由来樹脂からなる樹脂組成物を使用する場合には、アメリカの UL (Under writers Laboratories In )規格をはじめとする難燃性の規格を満足しなければならな い。しかし、既存の植物由来樹脂からなる樹脂組成物では、前記の難燃性の規格を 満足することはできなかった。 However, since these plant-derived resins, in particular polylactic acid resins, are inferior in toughness, this property must be enhanced. In addition, when using plant-derived resin in applications that require high flame retardancy beyond toughness alone, such as household appliances and housings of office automation equipment and automotive parts, these properties are simultaneously used. It needs to be achieved. In particular, when a resin composition comprising a plant-derived resin is used for the housing of an electric product, it is necessary to satisfy the flame retardant standards including the US Underwriters Laboratories (UL) standards. Yes. However, the resin composition comprising the existing plant-derived resin can not satisfy the above-mentioned flame retardancy standard.
[0004] これに対して、一般的な方法として、難燃化効率の高!/、臭素化合物などのハロゲン 系難燃剤を樹脂に配合して難燃化する方法がある。しかし、ポリエステル系樹脂の代 表であるポリカーボネート樹脂にハロゲン系難燃剤を添加した場合には、再利用を目 的として繰り返し溶融混練すると、樹脂が劣化して、難燃性ゃ耐衝撃性などの物性が 低下する課題があった。したがって、植物由来樹脂の代表で、エステル結合を有する
ポリ乳酸樹脂に、ハロゲン系難燃剤を使用すると、前記ポリカーボネート樹脂と同様 に、繰り返し溶融混練したときに、物性が低下することが懸念された。 On the other hand, as a general method, there is a method of achieving high flame retardancy! /, And halogen-containing flame retardants such as bromine compounds in a resin by blending them. However, when a halogen-based flame retardant is added to polycarbonate resin, which is a representative of polyester-based resin, when it is repeatedly melt-kneaded for the purpose of reuse, the resin is degraded and flame resistance, impact resistance, etc. There was a problem that the physical properties decreased. Therefore, as a representative of plant-derived resin, it has an ester bond When a halogen-based flame retardant is used for the polylactic acid resin, there is a concern that the physical properties may deteriorate when it is repeatedly melt-kneaded, as in the case of the polycarbonate resin.
[0005] 一方、ポリ乳酸樹脂に、 yン系化合物、水酸化物系化合物(金属水和物とも呼ばれ 、水酸化アルミニウムが含まれる。)及びシリカ系化合物から選ばれる少なくとも一種 の難燃系添加剤を使用した生分解性樹脂組成物が、特許文献 1に開示されている。 特許文献 1 :特開 2003— 192925号公報 On the other hand, at least one flame retardant system selected from a polylactic acid resin, y-n compounds, hydroxide compounds (also referred to as metal hydrates and includes aluminum hydroxide), and silica compounds. Patent Document 1 discloses a biodegradable resin composition using an additive. Patent Document 1: Japanese Unexamined Patent Application Publication No. 2003-192925
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problem that invention tries to solve
[0006] しかしながら、上述の従来技術には以下に示すような課題がある。すなわち、植物 由来樹脂の代表であるポリ乳酸樹脂 (本樹脂は生分解性も有する)は、一般的に脆 い材料であり、難燃性も不十分なため、家電製品や OA機器のハウジングに適用す るには問題があった。 However, the above-described prior art has the following problems. That is, polylactic acid resin, which is a representative of plant-derived resins (this resin also has biodegradability) is generally a brittle material and has insufficient flame retardancy, so it can be used as a housing for home appliances and OA equipment. There was a problem in applying it.
[0007] さらにまた、特許文献 1に記載されているポリ乳酸樹脂組成物、すなわち、例示され ている純度 99. 5質量%の水酸化アルミニウムを 50質量%含有するポリ乳酸樹脂組 成物(=ポリ乳酸 +水酸化アルミニウム +耐加水分解処方の総量に占める質量割合 )は、 UL規格で V— 2にしか適合しておらず、家電製品や OA機器のハウジング用途 で要求されている、より高度な難燃性 (V— 1以上)を満足できない課題があった。 Furthermore, the polylactic acid resin composition described in Patent Document 1, that is, a polylactic acid resin composition containing 50% by mass of the illustrated 99.5% by mass of aluminum hydroxide (= Poly lactic acid + aluminum hydroxide + mass ratio to total amount of hydrolysis resistance) is only compliant with V-2 in UL standard, and is required for housing application of home appliances and OA equipment, more advanced There is a problem that can not satisfy the required flame retardancy (V-1 or more).
[0008] くわえて、特許文献 1に記載されている水酸化アルミニウムを 50質量%含有するポ リ乳酸樹脂組成物は、曲げ破断ひずみが 1 %程度しかなぐ家電製品や OA機器の ノ、ウジングに適用するには靭性が十分ではないという問題があった。 In addition, the polylactic acid resin composition containing 50% by mass of aluminum hydroxide described in Patent Document 1 has a bending strain of only about 1% or less in household appliances and OA equipment. There is a problem that the toughness is not enough to apply to
[0009] 本発明は力、かる課題に鑑みてなされたものであって、靭性ゃ難燃性に優れる、植 物由来樹脂を含有する熱可塑性樹脂組成物を提供することを目的とする。 The present invention has been made in view of power and other problems, and an object of the present invention is to provide a thermoplastic resin composition which is excellent in toughness and flame retardancy and contains a plant-derived resin.
課題を解決するための手段 Means to solve the problem
[0010] 本発明に係る熱可塑性樹脂組成物は、高分子量のポリ乳酸 (A)、可とう性付与剤( B)及び無機系難燃剤(C)を含有し、前記高分子量ポリ乳酸 (A)の 190°Cでのメルト フローレートが 15未満であることを特徴とする。 The thermoplastic resin composition according to the present invention contains a high molecular weight polylactic acid (A), a flexibility imparting agent (B), and an inorganic flame retardant (C), and the high molecular weight polylactic acid (A The melt flow rate at 190 ° C. is less than 15.
[0011] また、本発明に係る熱可塑性樹脂組成物は、上記高分子量のポリ乳酸 (A)、可とう 性付与剤 (B)及び無機系難燃剤 (C)に加え、可塑剤 (D)を含有することを特徴とす
発明の効果 Further, the thermoplastic resin composition according to the present invention is a plasticizer (D) in addition to the above-mentioned high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C). Containing Effect of the invention
[0012] 本発明に係る、植物由来樹脂を含有する熱可塑性樹脂組成物は、高分子量のポリ 乳酸 (A)、可とう性付与剤 (B)及び、無機系難燃剤 (C)さらには可塑剤 (D)を含有 することで、優れた靭性ゃ難燃性を実現できる。 The thermoplastic resin composition containing a plant-derived resin according to the present invention has a high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C) and further a plastic By containing the agent (D), excellent toughness and flame retardancy can be realized.
[0013] すなわち、無機系難燃剤(C)を必須成分とする本発明に係る熱可塑性樹脂組成物 は、まず、高分子量のポリ乳酸 (A)及び可とう性付与剤(B)を同時に含有することで 、優れた靭性を示す(特に破断ひずみが大きい)。さらにまた、無機系難燃剤(C)を 必須成分とする本発明に係る熱可塑性樹脂組成物は、前記高分子量のポリ乳酸 (A )、可とう性付与剤 (B)及び可塑剤 (D)の 3成分を同時に含有したときに、特異的に 靭性が向上する相乗効果を発現する。特に破断ひずみが格段に向上する。 That is, the thermoplastic resin composition according to the present invention, which contains the inorganic flame retardant (C) as an essential component, first contains, simultaneously, high molecular weight polylactic acid (A) and a flexibility imparting agent (B). Show excellent toughness (especially large strain at break). Furthermore, the thermoplastic resin composition according to the present invention, which contains the inorganic flame retardant (C) as an essential component, has the high molecular weight polylactic acid (A), a flexibility imparting agent (B) and a plasticizer (D) At the same time, it contains a synergetic effect that improves the toughness specifically. In particular, the breaking strain is significantly improved.
図面の簡単な説明 Brief description of the drawings
[0014] [図 1]曲げ破断ひずみとメルトフローレートとの関係を示すグラフである。 FIG. 1 is a graph showing the relationship between bending rupture strain and melt flow rate.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下本発明につ!/、てさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
[0016] 本発明は、高分子量のポリ乳酸 (A)、可とう性付与剤 (B)及び無機系難燃剤(C)を 含有し、さらには可塑剤(D)を含有することを特徴とする熱可塑性樹脂組成物に関 する。 The present invention is characterized by containing a high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C), and further containing a plasticizer (D). The thermoplastic resin composition.
[0017] 本発明に係る、高分子量のポリ乳酸 (A)としては、 190°Cでのメルトフローレート(以 下、 MFRと表す。)が 15未満のポリ乳酸であり、この数値が低いほど靭性の向上に は効果がある。 The high molecular weight polylactic acid (A) according to the present invention is a polylactic acid having a melt flow rate at 190 ° C. (hereinafter referred to as MFR) of less than 15, and the lower this value is It is effective in improving toughness.
[0018] ここで、 MFRとは、押出式プラストメーターで、一定圧力、一定温度の下に、規定の 寸法をもつノズル (オリフィス)から、 10分間に流出する樹脂の質量 (g)を測定し、 g/ 10分の単位で表わした指数である。一般に MFRの数値が小さいほうが、溶融時の 流動性が低い、すなわち、より分子量が高い樹脂であることを示す。ここでは、ごく一 般的にポリ乳酸について MFRを測定する方法、すなわち、 ISO (International Stand ardizing Organization) 1133に則って、押出式プラストメーターで、溶融温度を 190 °Cに設定し、 2. 16kgの荷重を加えたときに 10分間に流出する樹脂の質量 (g/10
分)を MFRとした。本発明に係る熱可塑性樹脂組成物では、前記 MFRが 15未満の 高分子量ポリ乳酸の場合に、破断ひずみが特異的に向上する効果が発現する。 [0018] Here, MFR is an extrusion type plastometer, which measures the mass (g) of resin flowing out in 10 minutes from a nozzle (orifice) with specified dimensions under a constant pressure and a constant temperature. , G / 10 is an index expressed in units of 10 minutes. In general, the smaller the MFR value, the lower the fluidity at the time of melting, that is, the higher the molecular weight of the resin. Here, a method of measuring MFR for polylactic acid in a very general manner, that is, setting the melting temperature to 190 ° C. with an extrusion type plastometer in accordance with ISO (International Stand ardizing Organization) 1133, 2.16 kg Mass of resin that flows out in 10 minutes when the load of water is applied (g / 10 Minutes) as MFR. In the case of high molecular weight polylactic acid having the MFR of less than 15, in the thermoplastic resin composition according to the present invention, an effect of specifically improving the breaking strain is exhibited.
[0019] ただし、高分子量のポリ乳酸 (A)の MFRが小さすぎると(すなわち、ポリ乳酸の分 子量がさらに高くなる場合を指す。)、無機系難燃剤 (C)を必須成分とする本発明の 熱可塑性樹脂組成物の流動性が低下して、十分な成形性が得られなくなる場合があ るので、前記 MFRは 3以上であることが好ましい。また、ポリ乳酸の分子構造は、通 常、直鎖状であるが、分岐状にしてもよい。 However, when the MFR of the high molecular weight polylactic acid (A) is too small (that is, the case where the molecular weight of polylactic acid is further increased), the inorganic flame retardant (C) is an essential component. The MFR is preferably 3 or more because the fluidity of the thermoplastic resin composition of the present invention may be reduced and sufficient moldability may not be obtained. The molecular structure of polylactic acid is usually linear, but may be branched.
[0020] 本発明に係る、前記可とう性付与剤(B)としては、ポリ乳酸よりも常温での弾性率が 低レ、有機物から構成されてレ、れば特に限定されるものではな!/、が、ポリ乳酸と相溶 化が可能な構造単位と柔軟性を示す構造単位を同一構造中に有する化合物である ことが好ましい。前記可とう性付与剤(B)を構成する有機物の具体例としては、ポリ乳 酸とグリコール類及び直鎖状飽和ジカルボン酸の 3成分からなる共重合体が挙げら れる。前記共重合体を構成する、前記ダリコール類としては、エチレングリコール、プ ロピレンダリコール、ジエチレングリコール等が例示できる。また、前記共重合体を構 成する、前記の直鎖状飽和ジカルボン酸としては、コハク酸、ダルタル酸、アジピン酸 、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸等が例示できる。前記可とう性付 与剤(B)を構成する有機物の具体例として、上記以外に、ポリブチレンサクシネート、 ポリブチレンサクシネートとポリ乳酸の共重合体、ポリ力プロラタトン、ポリ力プロラタトン とポリ乳酸の共重合体、天然ゴム、ポリメタクリル酸メチル(PMMA)をはじめとするァ クリル系樹脂、ポリエステルセグメント、ポリエーテルセグメント及びポリヒドロキシカル ボン酸セグメントからなる群から選ばれるポリマーブロックを有する共重合体、ポリ乳 酸セグメント、芳香族ポリエステルセグメント及びポリアルキレンエーテルセグメントが 互いに結合されてなるブロック共重合物、不飽和カルボン酸アルキルエステル系単 位を主成分とする重合体、ポリエチレンサクシネート、ポリエチレンアジペート、ポリプ ロピレンアジペート、ポリブチレンアジペート、ポリへキサメチレンアジペート、ポリブチ レンサクシネートアジペートなどの脂肪族ポリエステル、ポリエチレングリコール及び そのエステルなども挙げられる。 [0020] The flexibility imparting agent (B) according to the present invention is not particularly limited as long as the elastic modulus at normal temperature is lower than that of polylactic acid, and it is made of an organic material. It is preferable that / is a compound having a structural unit that is compatible with polylactic acid and a structural unit that exhibits flexibility in the same structure. Specific examples of the organic substance constituting the flexibility imparting agent (B) include a copolymer consisting of three components of polylactic acid, glycols and linear saturated dicarboxylic acid. Examples of the darichles that constitute the copolymer include ethylene glycol, propylene glycol, diethylene glycol and the like. Further, as the above-mentioned linear saturated dicarboxylic acid constituting the above-mentioned copolymer, there can be exemplified succinic acid, dartalic acid, adipic acid, pimelic acid, suberic acid, caseelaic acid, sebacic acid and the like. As specific examples of the organic substance constituting the flexible additive (B), other than the above, polybutylene succinate, copolymer of polybutylene succinate and polylactic acid, polyprotonic agent, polyprogenic agent and polylactic acid Copolymers, natural rubber, acrylic resins such as polymethyl methacrylate (PMMA), polyester segments, polyether segments, and copolymers having a polymer block selected from the group consisting of polyhydroxy carboxylic acid segments Block copolymer in which a polylactic acid segment, an aromatic polyester segment and a polyalkylene ether segment are bonded to each other, a polymer containing an unsaturated carboxylic acid alkyl ester unit as a main component, polyethylene succinate, polyethylene adipate, Polypropylene And aliphatic polyesters such as polybutylene adipate, polyhexamethylene adipate and polybutylene succinate adipate, polyethylene glycol and esters thereof.
[0021] 高分子量のポリ乳酸 (A)と可とう性付与剤(B)との質量比は、 95 : 5〜50 : 50とする
ことができる力 好ましくは、 92 : 8〜70 : 30の割合である。 The mass ratio of the high molecular weight polylactic acid (A) to the flexibility imparting agent (B) is set to 95: 5 to 50:50. The force that can be preferably is a ratio of 92: 8 to 70:30.
[0022] また、本発明に係る無機系難燃剤(C)としては、金属水和物が特に好ましレ、。また 、前記難燃剤 (C)以外の難燃剤として、窒素系難燃剤やリン系難燃剤等の、ハロゲ ン系難燃剤以外の難燃剤を併用することもできる。なお、ハロゲン系難燃剤とは、ハ ロゲンがプラスチックの燃焼時発生する活性ラジカル(· ΟΗ、 ·Η)を捕捉、低減化し、 より不活性な形に変えることによって燃焼のサイクルを阻害し切断する、また、気体状 のハロゲン化合物を発生して熱と酸素からポリマーを遮断する作用機構を有するもの であり、単にハロゲンを含むと V、う意味ではな!/、。 In addition, as the inorganic flame retardant (C) according to the present invention, metal hydrates are particularly preferred. Further, as the flame retardant other than the flame retardant (C), flame retardants other than halogen flame retardants such as nitrogen flame retardant and phosphorus flame retardant may be used in combination. In addition, halogen-based flame retardants interrupt and cut the combustion cycle by capturing and reducing active radicals (······) generated during combustion of plastic by halogen and turning it into a more inactive form. Also, it has a mechanism to generate gaseous halogen compounds and to block the polymer from heat and oxygen, and it simply contains halogen V, not in the sense!
[0023] 本発明に係る前記難燃剤(C) 、アルカリ金属系物質の含有量が 0. 2質量%以下 である無機物であって、さらに、熱分解して吸熱効果を示す金属水和物であると、難 燃性に優れるだけでなぐエステル結合を有する植物由来樹脂 (たとえば、ポリ乳酸 に代表される。)と併用した場合に、前記のエステル結合を有する植物由来樹脂の分 子量低下が少な V、ので特に好まし V、(耐加水分解性が良好である。 )。 The flame retardant (C) according to the present invention is an inorganic substance having a content of 0.2% by mass or less of an alkali metal-based substance, and is a metal hydrate which further exhibits thermal absorption effect by thermal decomposition. When used in combination with a plant-derived resin (for example, represented by polylactic acid) having an ester bond having excellent flame retardancy, the molecular weight reduction of the above-mentioned plant-derived resin having an ester bond is Low V, particularly preferred V, (good resistance to hydrolysis).
[0024] このような無機系難燃剤(C)としては、水酸化アルミニウム、ベーマイト、水酸化マグ ネシゥム、ドーソナイト、アルミン酸カルシウム、水和石膏、水酸化カルシウム、ホウ酸 亜鉛、メタホウ酸バリウム、ホウ砂、カオリンクレー及び炭酸カルシウム、表面をェポキ シ樹脂やフエノール樹脂をはじめとする各種有機物で表面処理した無機充填材、金 属を固溶化させた無機充填材が挙げられる。特に、これらのうち、金属水和物の代表 である水酸化アルミニウムは、特に吸熱効果が高ぐ難燃性に優れるので特に好まし い。 As such an inorganic flame retardant (C), aluminum hydroxide, boehmite, magnesium hydroxide, dawsonite, calcium aluminate, hydrated gypsum, calcium hydroxide, zinc borate, barium metaborate, borohydride Examples of such fillers include sand, kaolin clay and calcium carbonate, inorganic fillers surface-treated with various organic substances including epoxy resin and phenolic resin, and inorganic fillers obtained by solidifying metals. Among these, aluminum hydroxide, which is a representative of metal hydrates, is particularly preferable because it is particularly excellent in flame retardancy with high endothermic effect.
[0025] さらに、本発明において、無機系難燃剤(C)の 50質量%粒径が 20 111以下の範 囲であると、本発明の熱可塑性樹脂組成物に含まれる植物由来樹脂中での分散性 が良好で、難燃性や機械特性の向上効果に優れるためより好ましい。無機系難燃剤 (C)の 50質量%粒径を 20 μ m以下とすると、これを含有する熱可塑性樹脂組成物 の表面性状も優れ、表面に凹凸が発生して意匠性が低下することもない。 Furthermore, in the present invention, when the 50% by mass particle diameter of the inorganic flame retardant (C) is in the range of 20 111 or less, the plant-derived resin contained in the thermoplastic resin composition of the present invention It is more preferable because the dispersibility is good and the flame retardancy and the mechanical property improvement effect are excellent. When the 50% by mass particle diameter of the inorganic flame retardant (C) is 20 μm or less, the surface properties of the thermoplastic resin composition containing the same are also excellent, and irregularities may be generated on the surface to lower the designability. Absent.
[0026] さらに、本発明の熱可塑性樹脂組成物の総量に占める、上記の無機系難燃剤(C) の重量割合を Xとした場合に、前記 Xが 30質量%以上 60質量%以下の範囲である と、難燃性及び流動性に加えて、耐熱分解性も優れるのでより好ましい。なお、上記
の無機系難燃剤(C)の重量割合 Xが 30質量%未満であると、難燃性が不十分にな る場合がある。また、上記の無機系難燃剤(C)の重量割合 Xが 60質量%を超えると 、流動性や耐熱分解性が低下する場合がある。 Furthermore, when the weight ratio of the above-mentioned inorganic flame retardant (C) to the total amount of the thermoplastic resin composition of the present invention is X, the above-mentioned X is in the range of 30% by mass to 60% by mass. In addition to a flame retardance and fluidity, it is more preferable because it is excellent in thermal decomposition resistance. The above When the weight ratio X of the inorganic flame retardant (C) is less than 30% by mass, the flame retardance may be insufficient. When the weight ratio X of the above-mentioned inorganic flame retardant (C) exceeds 60% by mass, the fluidity and the thermal decomposition resistance may be lowered.
[0027] また、前記難燃剤 (C)及びハロゲン系難燃剤以外の難燃剤として、窒素系難燃剤 やリン系難燃剤等も使用できる。これら窒素系難燃剤としては、メラミンやイソシァヌル 酸化合物などが、リン系難燃剤としては、赤燐、燐酸化合物、有機リン化合物などが 挙げられる。特に、本発明の熱可塑性樹脂組成物において、無機系難燃剤(C)のう ち水酸化アルミニウムをはじめとする金属水和物を含有する場合には、上記の窒素 系難燃剤やリン系難燃剤の添加量は少なくて済み、無機系難燃剤 (C)以外の難燃 剤に起因する、耐湿性、耐熱性、機械特性など、他の物性の低下を抑えることができ る。また、上記の無機系難燃剤(C)や他の難燃剤を、高強度繊維や植物由来の繊 維にあらかじめ処理して使用しても良い。 In addition, as a flame retardant other than the above-mentioned flame retardant (C) and the halogen-based flame retardant, nitrogen-based flame retardants, phosphorus-based flame retardants and the like can also be used. Examples of these nitrogen-based flame retardants include melamine and isocyanuric acid compounds. Examples of phosphorus-based flame retardants include red phosphorus, phosphoric acid compounds, and organic phosphorus compounds. In particular, when the thermoplastic resin composition of the present invention contains a metal hydrate such as aluminum hydroxide among the inorganic flame retardants (C), the above-mentioned nitrogen based flame retardants and phosphorus based flame retardants may be used. The amount of addition of the flame retardant is small, and deterioration of other physical properties such as moisture resistance, heat resistance, mechanical properties and the like caused by the flame retardant other than the inorganic flame retardant (C) can be suppressed. In addition, the above-mentioned inorganic flame retardant (C) and other flame retardants may be pretreated on high strength fibers and fibers derived from plants for use.
[0028] 本発明に係る、前記可塑剤 (D)は、広義には、離型効果を兼ね備えた「滑剤」も含 む。前記可塑剤(D)としては、ポリマー分子間、特にポリ乳酸の分子間に浸透してポ リマー間の分子間力を弱め、分子鎖の運動をしやすくするものであれば特に限定さ れるものではない。前記可塑剤(D)の具体例としては、ジメチルアジペート、ジブチ ルアジペート、ジイソブチルアジペート、ビス(2—ェチルへキシル)アジペート、ジイソ ノニルアジペート、ジイソデシルアジペート、ビス(ブチルジグリコール)アジペート、ビ ス(ブチノレジグリコーノレ)アジペート、ビス(2—ェチノレへキシノレ)ァゼレート、ジメチノレ セノ ケート、ジブチノレセノ ケート、ビス(2—ェチノレへキシノレ)セノ ケート、ビス(2—ェ チノレへキシ/レ)セノ ケート、ジェチ /レサクシネート、ビスメチ/レジェチレングリコーノレア ジペート、ベンジルー 2—(2—メトキシエトキシ)ェチルアジペート等の脂肪族二塩基 酸エステル、ジトリデシルフタレート、ジノルマルォクチルフタレート、ジイソノニルフタ レート、ジメチルフタレート、ジェチルフタレート、ジブチルフタレート、ビス(2—ェチ ノレへキシル)フタレート、ジ n ォクチルフタレート、ジイソデシルフタレート、ブチル ベンジルフタレート、ジイソノニルフタレート、ェチルフタリルェチルダリコレート等のフ タル酸エステル、トリノルマルォクチルトリメリテート、トリイソデシルトリメリテート及びトリ ス(2—ェチルへキシル)トリメリテート等のトリメリット酸エステル、トリメチルホスフェート
、トリェチルホスフェート、トリブチルホスフェート、トリス(2—ェチルへキシル)ホスフエ ート、トリス(ブトキシェチノレ)ホスフェート、トリフエニルホスフェート、トリクレジルホスフ エート、トリキシレニノレホスフェート、クレジノレジフエニノレホスフェート、 2—ェチノレへキ シルジフエニルホスフェート等のリン酸エステル、メチルァセチルリシノレート等のリシ ノール酸エステル、ポリ(1 , 3—ブタンジオールアジペート)等の脂肪族ポリエステル 、ポリグリセリン酢酸エステル、エポキシ化大豆油等のエポキシ化ポリエステル、ェポ キシ化亜麻仁油、エポキシ化亜麻仁油脂肪酸ブチル、グリセリルトリアセテート、 2— ェチルへキシルアセテート等の酢酸エステル、 N ブチルベンゼンスルホンアミド等 のスルホンアミド、塩素化パラフィン、アルキルナフテン炭化水素等の流動パラフィン 、 n パラフィン等のパラフィンワックス、低分子量ポリエチレン、部分酸化型ポリェチ レン等のポリエチレンワックス、ォクチルアルコール、デシルアルコール、ラウリノレアノレ コール、ミリスチノレアノレコーノレ、セチルアルコール、ステアリルアルコール等の脂肪族 アルコール、リノレン酸、リノール酸、ォレイン酸、ラウリン酸、ミリスチン酸、パルミチン 酸、ステアリン酸、ベへニン酸等の脂肪酸、ひまし油由来の 12—ヒドロキシステアリン 酸等のヒドロキシ脂肪酸、ステアリン酸メチル、ステアリン酸オタチル、ステアリン酸ス テアリル、モノステアリン酸エチレングリコール、ジステアリン酸エチレングリコール等 の脂肪酸エステル、 12—ヒドロキシステアリン酸メチル、 12—ヒドロキシステアリン酸ス テアリル、モノー 12—ヒドロキシステアリン酸エチレングリコール、モノー 12—ヒドロキ システアリン酸プロピレングリコール等のヒドロキシ脂肪酸エステル、ステアリルアミド、 N ヒドロキシェチルーリシノレィルアミド、 N ヒドロキシェチルー 12—ヒドロキシステ ァリノレアミド、 N, N,一エチレン一ビス一ォレイルアミド、 N, N,一エチレン一ビス一リ シノレィルアミド、 N, N, 一エチレン ビスーォクタデカジエニルアミド、 N, N,ーェチ レン一ビス一 12—ヒドロキシステアリルアミド、 N, N,一エチレン一ビス一ステアリルァ ミド、 N, N, 一へキサメチレン一ビス一リシノレィルアミド、 N, N, 一へキサメチレン一 ビス一 12—ヒドロキシステアリルアミド、 N, N,一キシリレン一ビス一 12—ヒドロキシス テアリルアミド等の脂肪酸アミド、脂肪族石鹼等が挙げられる。 The plasticizer (D) according to the present invention also includes, in a broad sense, a “lubricant” having a releasing effect. The plasticizer (D) is not particularly limited as long as it penetrates between polymer molecules, in particular between polylactic acid molecules to weaken the intermolecular force between the polymers and facilitate movement of the molecular chain. is not. Specific examples of the plasticizer (D) include dimethyl adipate, dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (butyl diglycol) adipate, bis (butyl ester). Noregi Gliconole) adipate, bis (2-etinole hexinore) gaslate, dimethynoles cenocate, dibutynoresenocate, bis (2-ethinole hexinole) cenocate, bis (2-ethinolehexyl / le) senocate, ge Aliphatic dibasic acid esters such as resuccinate, bismethy / legetylene glycolonaea dipate, and benzyl-2- (2-methoxyethoxy) ethyl adipate, ditridecyl phthalate, dinormalocyl phthalate, diisononyl phthalate, dimethyl Phthalate esters such as tallyte, jetyl phthalate, dibutyl phthalate, bis (2-ethyl nolhexyl) phthalate, di-octyl phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, ethyl phthaloyl thalidolate , Trimellitic acid esters such as tolnorroxyl trimellitate, triisodecyl trimellitate and tris (2-ethylhexyl) trimellitate, trimethyl phosphate , Triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, tris (butoxyethyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylene base phosphate, cresino base resin phosphate, 2- Phosphoric acid esters such as hydroxyethyl oleicyl phosphate, ricinoleic acid esters such as methylacetyl licinolate, aliphatic polyesters such as poly (1, 3-butanediol adipate), polyglycerin acetate, epoxidized soybean oil And other epoxidized polyesters, epoxyxed linseed oil, epoxidized linseed oil, fatty acid butyl, glyceryl triacetate, acetates such as 2-ethylhexyl acetate, sulfones such as N-butyl benzene sulfonamide Liquid paraffin such as chlorinated paraffin, alkyl naphthene hydrocarbon, paraffin wax such as n paraffin, polyethylene wax such as low molecular weight polyethylene, partially oxidized polyethylene, octyl alcohol, decyl alcohol, laurinoleanolec, myristino alano Aliphatic alcohols such as Leconor, cetyl alcohol and stearyl alcohol, linolenic acid, linoleic acid, oleic acid, lauric acid, myristic acid, palmitic acid, fatty acids such as stearic acid and behenic acid, 12-hydroxystearin derived from castor oil Hydroxy fatty acids such as acids, methyl stearate, otatyl stearate, stearyl stearate, ethylene glycol monostearate, fatty acid esters such as ethylene glycol distearate, 12-hydride Hydroxy fatty acid esters such as methyl Hydroxystearate, stearyl 12-hydroxystearate, ethylene glycol mono- 12-hydroxystearate, propylene glycol mono- 12-hydroxystearate, stearylamide, N-hydroxy-glycinoleylamide, N-hydroxy- 12-hydroxy-stearoleamide, N, N, ethylene-bis-bis-oleylamide, N, N, ethylene-bis-bis-cinoleamide, N, N, ethylene-bis-octadecadienyl amide, N, N , 1-bis-bis-12-hydroxystearylamide, N, N, 1-ethylene-bis-bis-stearylamide, N, N, 1-hexamethylene-bis-bisinosylamide, N, N, 1-hexamethylene-bis-one 12-hydroxy stearylamide, N, N, 1 Ren one bis one 12-hydroxystearic acid amides such as Teariruamido include aliphatic stone 鹼等.
前記可塑剤(D)を、本発明の熱可塑性樹脂組成物に添加する場合は、前記の熱 可塑性樹脂組成物の総量に対して、 5質量%以下となるように添加することが好まし
い。本数値が 5%を超えると十分な難燃性が得られない場合がある。 When the plasticizer (D) is added to the thermoplastic resin composition of the present invention, it is preferably added so as to be 5% by mass or less based on the total amount of the thermoplastic resin composition. Yes. If this value exceeds 5%, sufficient flame retardance may not be obtained.
[0030] 本発明の熱可塑性樹脂組成物で、前記高分子量のポリ乳酸 (A、以下、高分子量 ポリ乳酸)と前記可とう性付与剤 (B)を同時に含有する場合には、前記高分子量ポリ 乳酸 (A)単独の場合、前記高分子量ポリ乳酸 (A)以外のポリ乳酸 (以下、低分子量 ポリ乳酸 ωと呼ぶ。)単独の場合、前記低分子量ポリ乳酸 ωに可とう性付与剤 (Β) を添加した場合に比べて、破断ひずみが優れる。以下、本発明に係る高分子量ポリ 乳酸 (Α)として、 MFRが 15未満で結晶性の高分子量ポリ乳酸 (以下、高分子量ポリ L乳酸 (A1)と呼ぶ。結晶部分と非晶部分を有する。)を、可とう性付与剤 (Β)として、 ポリ乳酸と相溶化が可能な構造単位と柔軟性を示す構造単位を同一構造中に有す る化合物、例えば、ポリ乳酸とグリコール類及び直鎖状飽和ジカルボン酸の 3成分か らなる共重合体を、それぞれ使用した場合について、靭性、特に破断ひずみが向上 するメカニズムを説明する。 [0030] In the thermoplastic resin composition of the present invention, in the case where the high molecular weight polylactic acid (A, hereinafter, high molecular weight polylactic acid) and the flexibility imparting agent (B) are simultaneously contained, the high molecular weight In the case of polylactic acid (A) alone, polylactic acid other than the high molecular weight polylactic acid (A) (hereinafter referred to as low molecular weight polylactic acid ω) alone, the low molecular weight polylactic acid ω is a flexibility imparting agent ( The strain at break is superior to the case where Β) is added. Hereinafter, as high molecular weight polylactic acid (Α) according to the present invention, crystalline high molecular weight polylactic acid with MFR less than 15 (hereinafter referred to as high molecular weight poly L lactic acid (A1). It has a crystalline portion and an amorphous portion. As a flexibility imparting agent (可能 な), a compound having a structural unit capable of compatiblizing with polylactic acid and a structural unit exhibiting flexibility in the same structure, for example, polylactic acid and glycols, and a straight chain The mechanism for improving the toughness, in particular the strain at break, will be described in the case where each of the three component copolymers of the cyclic saturated dicarboxylic acid is used.
[0031] 分子鎖間の相互作用が小さい飽和脂肪族鎖と、ポリ乳酸を構成単位に有する、前 記可とう性付与剤(Β)は、柔軟性がある共重合体であるとともに、一部がポリ乳酸と相 溶化できる。したがって、前記可とう性付与剤(Β)の分子は、ポリ乳酸分子との間に、 分子鎖同士の絡み合いを形成しやすい。特に、本発明に係る前記の高分子量ポリ L 乳酸 (A1)を使用する場合には、分子鎖同士が絡み合いやすくなり、絡み合いの距 離も長くなるので、可とう性付与剤との間に擬似的な架橋を形成した状態になりやす くなつた結果、靭性が効果的に向上したものと推定する。 [0031] The above-mentioned flexibility imparting agent (鎖) having a saturated aliphatic chain having a small interaction between molecular chains and polylactic acid as a constitutional unit is a copolymer having flexibility and partially Is compatible with polylactic acid. Therefore, the molecule of the agent for imparting flexibility (Β) is likely to form entanglement of molecular chains with the polylactic acid molecule. In particular, in the case of using the high molecular weight poly L lactic acid (A1) according to the present invention, the molecular chains are easily entangled, and the distance of entanglement is also long. As a result, it is assumed that the toughness is effectively improved as a result of forming a typical crosslink.
[0032] 本発明の熱可塑性樹脂組成物で、前記高分子量ポリ L乳酸 (A1)と前記可とう性付 与剤(Β)に加えて、前記可塑剤(D)をさらに併用すると、前記高分子量ポリ乳酸 (A1 )と前記可とう性付与剤 (Β)の 2成分のみを含有する場合に比べて、格段に靭性が向 上する。前記可塑剤(D)として、ポリ乳酸の分子間でのすべり効果を発現させる化合 物、例えば、トリメリット酸エステルを使用した場合について、靭性、特に破断ひずみ が相乗効果的に向上するメカニズムを説明する。 In the thermoplastic resin composition of the present invention, when the plasticizer (D) is further used in combination with the high molecular weight poly (L-lactic acid) (A1) and the flexible additive (Β), the high resin The toughness is remarkably improved as compared with the case where only two components of molecular weight polylactic acid (A1) and the above-mentioned flexibility imparting agent (Β) are contained. A mechanism that synergistically improves toughness, in particular, strain at break, is described for the case where a compound that causes a sliding effect between molecules of polylactic acid, for example, trimellitic acid ester, is used as the plasticizer (D). Do.
[0033] 前記高分子量ポリ L乳酸 (A1)と前記可とう性付与剤(Β)に加えて、前記可塑剤(D )が存在すると、以下の 3つの効果で、靭性が格段に向上すると推察した。 3つの効 果とは、
[1] 可塑剤 (D)の添加で、本発明の熱可塑性樹脂組成物中での、前記高分子量 ポリ L乳酸 (A1)と前記可とう性付与剤 (B)の分散性が向上する効果、 In addition to the high molecular weight poly-L-lactic acid (A1) and the flexibility imparting agent (Β), the presence of the plasticizer (D) is presumed to significantly improve the toughness with the following three effects: did. The three effects are [1] The effect of improving the dispersibility of the high molecular weight poly-L-lactic acid (A1) and the flexibility imparting agent (B) in the thermoplastic resin composition of the present invention by the addition of the plasticizer (D) ,
[2] 前記 [1]の分散性の向上効果により、前記高分子量ポリ L乳酸 (A1)と前記可と う性付与剤(B)の分子鎖の絡み合 V、が増大する効果、 [2] An effect of increasing the entanglement V of the molecular chains of the high molecular weight poly-L-lactic acid (A1) and the moldability imparting agent (B) by the dispersion improvement effect of the above [1],
[3] 可塑剤 (D)の添加で、分子間力が低下し、その結果、分子鎖の間にすべりが 発現する効果 [3] Addition of plasticizer (D) reduces the intermolecular force, resulting in the effect of causing slippage between molecular chains
である。 It is.
[0034] すなわち、前記可塑剤(D)の添加で、前記高分子量ポリ L乳酸 (A1)と前記可とう 性付与剤 (B)の分散性が向上するため、前記 (A1)と (B)の分子鎖が絡み合う確立 が高くなるとともに、前記 (A1)が高分子量であるために、低分子量ポリ乳酸 (a)だけ 力、らなる場合よりも、分子鎖間の絡み合いの距離も長くなる。したがって、本発明の熱 可塑性樹脂組成物が応力によって変形する場合に、低分子量ポリ乳酸 (a)だけから なる場合よりも、前記可とう性付与剤 (Β)の柔軟性に起因する応力緩和の効果が有 効に発現しながら、分子鎖間の絡み合いが解けることにエネルギーが多量に消費さ れるとともに、可塑剤が分子間に介在するために分子鎖同士にすべる効果も発現し て、応力が想定以上に緩和される効果が発現すると推察した。その結果、予想もしな 力、つた大幅な破断ひずみの向上を示したと考える。さらに、硬くて脆く変形しにくいポ リ乳酸の結晶が、前記可塑剤(D)の添加効果で、応力に対して変形しやすい「可とう 性を有する結晶」になり、本発明の熱可塑性樹脂組成物の靭性の増大に寄与したと 推定する。 That is, since the dispersibility of the high molecular weight poly-L-lactic acid (A1) and the flexibility imparting agent (B) is improved by the addition of the plasticizer (D), the (A1) and (B) can be obtained. As the molecular chains of the polymer chains become entangled, the (A1) has a high molecular weight, so that the distance between the molecular chains is longer than in the case where only low molecular weight polylactic acid (a) is used. Therefore, when the thermoplastic resin composition of the present invention is deformed by stress, stress relaxation due to the flexibility of the flexibility imparting agent (Β) is more than that when the low molecular weight polylactic acid (a) is solely composed. While the effect is effectively developed, a large amount of energy is consumed to break up the entanglement between molecular chains, and the effect of slipping between the molecular chains is also exhibited because the plasticizer intervenes between molecules, and stress is generated. It was speculated that the effect would be alleviated more than expected. As a result, I think that it showed an unexpected improvement in strength and breaking strain. Furthermore, crystals of polylactic acid which are hard, brittle and difficult to deform become "crystals having flexibility" which are easily deformed by stress due to the addition effect of the plasticizer (D), and the thermoplastic resin of the present invention It is estimated that it contributed to the increase in the toughness of the composition.
[0035] 本発明に係る熱可塑性樹脂組成物は、ポリ乳酸以外の植物に由来する有機物を 含有してもよく、その構造は特に限定されるものではない。ポリ乳酸以外の植物由来 の有機物としては、例えば、トウモロコシゃ芋などに含まれる糖質を出発原料として得 られる、コハク酸を基にした植物由来樹脂としては、ポリブチレンサクシネートなどの エステル類がある。また、澱粉、アミロース、セルロース、セルロースエステル、キチン 、キトサン、ゲランガム、カルボキシル基含有セルロース、カルボキシル基含有デンプ ン、ぺクチン酸、アルギン酸などの多糖類なども植物由来の有機物である。ポリブチ レンサクシネートを、「ポリ乳酸以外の植物由来の有機物」として使用する場合は、本
発明の前記可とう性付与剤 (B)から除外する。 The thermoplastic resin composition according to the present invention may contain an organic substance derived from a plant other than polylactic acid, and the structure thereof is not particularly limited. As plant-derived organic substances other than polylactic acid, for example, as a plant-derived resin based on succinic acid which can be obtained using saccharides contained in corn and corn as starting materials, esters such as polybutylene succinate are usable. is there. In addition, starch, amylose, cellulose, cellulose ester, chitin, chitosan, gellan gum, carboxyl group-containing cellulose, carboxyl group-containing starch, pectinic acid, polysaccharides such as alginic acid and the like are also plant-derived organic substances. When using polybutylene succinate as “organic matter derived from plants other than polylactic acid”, Excluded from the above-mentioned flexibility imparting agent (B) of the invention.
[0036] また、微生物により合成されるヒドロキシブチレート及び/またはヒドロキシバリレート の重合体であるポリベータヒドロキシアルカノエート(ゼネカ社製、商品名:バイオポー ル等)などは、植物由来ではないが、石油資源を必要としない点で、植物由来樹脂と 同様の意義を持っため使用することが出来る。 [0036] Also, polybetahydroxyalkanoate (Zeneca, trade name: biopore, etc.), which is a polymer of hydroxybutyrate and / or hydroxyvalerate synthesized by microorganisms, is not derived from plants, but It can be used because it has the same meaning as plant-derived resin in that it does not require petroleum resources.
[0037] リグニンは、木材中に 20〜30%含有されるコニフェリルアルコール及びシナピルァ ルコールの脱水素重合体で、これを変成したものも植物由来樹脂である。即ち、リグ ニン、へミセルロース、セルロース等の植物原料を使用した熱硬化性樹脂も使用する ことあでさる。 [0037] Lignin is a dehydrogenation polymer of coniferyl alcohol and sinapyl alcohol which is contained in 20 to 30% of wood, and a modified product thereof is also a plant-derived resin. That is, thermosetting resins using plant materials such as lignin, hemicellulose and cellulose may also be used.
[0038] 以上の様な植物由来樹脂の中でも、人工合成した生分解性オリゴマー及びポリマ 一、人工合成した生分解性オリゴマー及びポリマーの変性体、天然合成した生分解 性オリゴマー及びポリマーの変性体が、分子間の結合力が適度であるため熱可塑性 に優れ、溶融時の粘度が著しく上昇することは無ぐ良好な成形加工性を有するため 好ましい。なかでも、結晶性を有するポリエステル類及びポリエステル類の変性体が 好ましぐ脂肪族ポリエステル類及び脂肪族ポリエステル類の変性体が更に好ましい 。また、ポリアミノ酸類及びポリアミノ酸類の変性体が好ましぐ脂肪族ポリアミノ酸類 及び脂肪族ポリアミノ酸類の変性体が更に好ましい。また、ポリオール類及びポリオ ール類の変性体が好ましく、脂肪族ポリオール類及び脂肪族ポリオール類の変性体 が更に好ましい。 [0038] Among the above-mentioned plant-derived resins, artificially synthesized biodegradable oligomers and polymers, modified products of artificially synthesized biodegradable oligomers and polymers, and modified products of naturally synthesized biodegradable oligomers and polymers Since the bonding strength between molecules is appropriate, the thermoplastic resin is excellent, and the viscosity at the time of melting is preferably not significantly increased, because it has good moldability and processing ability. Among them, aliphatic polyesters and modified polyesters which are crystalline polyesters and modified polyesters are more preferable. Furthermore, aliphatic polyamino acids and aliphatic polyamino acids modified with polyamino acids and modified polyamino acids are more preferable. In addition, modified products of polyols and polyols are preferable, and modified products of aliphatic polyols and aliphatic polyols are more preferable.
[0039] また、石油由来の樹脂も、植物由来樹脂に混合することが可能である。石油由来の 樹脂として、例えば、ポリプロピレン、ポリスチレン、 ABS、ナイロン、ポリエチレンテレ フタレート、ポリブチレンテレフタレート、ポリカーボネート、尿素樹脂、メラミン樹脂、ァ ルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジァリルフタレート樹脂、ェポキ シ樹脂、シリコーン樹脂、シァネート系樹脂、イソシァネート系樹脂、フラン樹脂、ケト ン樹脂、キシレン樹脂、熱硬化型ポリイミド、熱硬化型ポリアミド、スチリルピリジン系樹 脂、二トリル末端型樹脂、付加硬化型キノキサリン、付加硬化型ポリキノキサリン樹脂 などの熱硬化性樹脂と、前記植物由来樹脂とのァロイが挙げられる。熱硬化性樹脂 を使用する場合は、硬化反応に必要な硬化剤や硬化促進剤を使用できる。
[0040] また、本発明に係る熱可塑性樹脂組成物は、チヤ一形成剤 (E)を含有しても良い。 前記のチヤ一形成剤(E)は、耐熱分解性に優れ、炭化成分(チヤ一とも呼ぶ。)を形 成しやすレ、化合物であれば特に限定されるものではな!/、。前記チヤ一形成剤(E)と して、フエノール類、シリコーン化合物、ホウ素系化合物などが、難燃性と流動性の向 上の点から特に好ましい。 In addition, petroleum-derived resins can also be mixed with plant-derived resins. As resins derived from petroleum, for example, polypropylene, polystyrene, ABS, nylon, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, urea resin, melamine resin, alkoxide resin, acrylic resin, unsaturated polyester resin, diaryle phthalate resin, Epoxy resin, silicone resin, cyanate resin, isocyanate resin, furan resin, furan resin, ketone resin, thermosetting resin, thermosetting polyimide, thermosetting polyamide, styrylpyridine resin, nitrile terminal resin, addition curing resin Examples include thermosetting resins such as quinoxaline, addition-curable polyquinoxaline resin, and the like, and the plant-derived resin. When a thermosetting resin is used, a curing agent and a curing accelerator necessary for the curing reaction can be used. Further, the thermoplastic resin composition according to the present invention may contain a core forming agent (E). The above-mentioned heat forming agent (E) is excellent in thermal decomposition resistance and is not particularly limited as long as it is a compound which easily forms a carbonized component (also referred to as a heat generating agent)! As the above-mentioned chain forming agent (E), phenols, silicone compounds, boron compounds and the like are particularly preferable in view of flame retardancy and flowability.
[0041] 前記フエノール類としては、樹脂の混練温度や成形温度で揮発したり、分解したり しなければ、特に限定されるものではなぐ一般的にエポキシ樹脂用の硬化剤に使 用されているフエノール樹脂が利用できる。これらのフエノール樹脂を例示すると、フ エノールノポラック樹脂、クレゾールノポラック樹脂、 p—クレゾールノポラック樹脂、フ ェノールキシレンァラルキル型樹脂、フエノールビフエ二レンァラルキル型樹脂、ビス フエノール A型フエノール樹脂、ビスフエノール F型フエノール樹脂、ビスフエノール S 型フエノール樹脂、ビフエニル異性体のジヒドロキシエーテル型フエノール樹脂、ナフ タレンジオール型フエノール樹脂、フエノールジフエニルエーテルァラルキル型樹脂 、ナフタレン含有ノポラック型樹脂、アントラセン含有型ノポラック樹脂、ビスクレゾー ルフルオレン、フルオレン含有ノポラック型樹脂、ビスフエノールフルオレン含有ノボラ ック型樹脂、ビスフエノール F含有ノポラック型フエノール樹脂、ビスフエノール A含有 ノポラック型フエノール樹脂、フエノールビフエ二レントリアジン型樹脂、フエノールキシ リレントリアジン型樹脂、フエノールトリアジン型樹脂、トリスフヱ二ロールエタン型樹脂 、テトラフヱ二ロールエタン型樹脂、ポリフエノール型樹脂、芳香族エステル型フエノ ール樹脂、環状脂肪族エステル含有フエノール樹脂、エーテルエステル型フエノー ル樹脂及びフエノキシ樹脂、フラン環含有フエノール樹脂などが挙げられる。また、そ の他のフエノール類として、ビフエノール、キシレノール、ビスフエノール A、ビスフエノ 一ル?、ビスフエノール S、カテコールゃカテコール樹脂が挙げられる。さらに、カテコ ールと芳香族類の誘導体を共重合させて得られる、カテコールビフエ二レンァラルキ ル樹脂やカテコールキシレンァラルキル樹脂なども使用できる。加えて、リグニンやそ の類縁体 (例えばリグノフエノール類が挙げられる。)を使用しても良い。 The phenols are generally used as curing agents for epoxy resins, as long as they are not particularly limited unless they volatilize or decompose at the kneading temperature or molding temperature of the resin. A phenolic resin is available. These phenol resins are exemplified by phenol nopolac resin, cresol nopolac resin, p-cresol nopolac resin, phenol xylene alaryl type resin, phenol biphenyl dilenalallyl type resin, bis phenol A type phenol resin, bis phenol F-type phenol resin, bis-phenol S-type phenol resin, biphenyl isomer dihydroxy ether-type phenol resin, naphthalene diol-type phenol resin, phenol diphenol ether resin, naphthalene-containing nopolac resin, anthracene-containing nopolac resin Resin, biscresol fluorene, fluorene-containing nopolac resin, bisphenol fluorene-containing novolak resin, bisphenol F-containing nopolac phenol resin, bisphenol A-containing nopolac phenol resin, phenol biphenyl triazine resin, phenol xylylene triazine resin, phenol triazine resin, trisphenyl dirole ethane resin, tetrafluorodi roll ethane resin, polyphenol resin, aromatic ester pheno resin Resin, cyclic aliphatic ester-containing phenolic resin, ether ester type phenolic resin and phenoxy resin, furan ring-containing phenolic resin and the like. Also, as other phenols, biphenyl, xylenol, bisphenol A, bisphenol 1? And bisphenol S, catechol and catechol resins. Furthermore, catechol biphenyl alkyal resins, catechol xylene alaryl resins and the like obtained by copolymerizing catechol and derivatives of aromatics can also be used. In addition, lignin and its analogues (for example, lignophenols) may be used.
[0042] ただし、フエノール類は酸化されやす!/、ので、意匠性が要求される用途では、一般 的に、酸化防止剤として使用されている化合物と併用するとより好ましい。あるいは、
p—クレゾールノポラック樹脂やビスクレゾールフルオレンは、難燃性も比較的良好で あると同時に、着色の原因となるキノン構造を取りにくいので、これらを用いると意匠 性が良好なので好ましい。また、フエノール類の構造中のフエノール性水酸基をダリ シジル化またはエチレンオキサイド化した化合物も、着色の原因となるキノン構造に 変化しないので、これらの化合物を使用すれば、本発明の熱可塑性樹脂組成物の 意匠性は良好となる。 However, since phenols are easily oxidized! /, In applications where design is required, it is generally more preferable to use in combination with a compound used as an antioxidant. Or Since p-cresol nopolac resin and biscresol fluorene are relatively good in flame retardancy and at the same time difficult to take a quinone structure which is a cause of coloring, use of these is preferable because the designability is good. In addition, compounds obtained by dalysylated or ethylene oxided phenolic hydroxyl groups in the structure of phenols do not change to the quinone structure that causes coloring, so if these compounds are used, the thermoplastic resin composition of the present invention The design of the object is good.
[0043] また、シリコーン化合物としては、芳香環を含有するオルガノシランであって、樹脂 の混練温度や成形温度で揮発したり、分解したりしなければ、分岐状でも直鎖状でも よぐ特に構造は限定されない。これらのうち、分岐構造のシリコーン化合物としては 、式 RSiO で示される単位 (T単位)を含むものであることが好ましい。さらに、式 SiO The silicone compound is an organosilane containing an aromatic ring, which is branched or linear unless it volatilizes or decomposes at the kneading temperature or molding temperature of the resin. The structure is not limited. Among these, as a silicone compound of a branched structure, it is preferable that it is a thing containing the unit (T unit) shown by Formula RSiO 2. Furthermore, the formula SiO
1.5 1.5
で示される単位(Q単位)を含有しても良い。さらに前記シリコーン化合物の分岐構 You may contain the unit (Q unit) shown by these. Furthermore, the branched structure of the silicone compound
2.0 2.0
造が、式 RSi〇 で示される単位(T単位)、式 R SiO で示される単位(D単位)、式 Is a unit represented by the formula RSi o (T unit), a unit represented by the formula R SiO 2 (D unit), the formula
1.5 2 1.0 1.5 2 1.0
R SiO で示される単位 (M単位)から構成されて!/、ると難燃性改良の点で特に好ま Composed of units (M units) represented by R SiO! /, And particularly preferred in terms of improvement of flame retardancy
3 0.5 3 0.5
しい。ここで Rは、一価の脂肪族炭化水素基や芳香族炭化水素基を表しており、 の 内少なくとも一つが芳香環を含有する基である。 Rが全て異なっていても、 Rが全て 同じでも良い。なお、 Rの下付き数字「2」や「3」は置換数を示している。このような構 造のものであれば、難燃性を一層向上することができる。また、直鎖構造のシリコーン 化合物は、式 R SiO で示される単位(D単位)、式 R SiO で示される単位(M単位 Yes. Here, R represents a monovalent aliphatic hydrocarbon group or an aromatic hydrocarbon group, at least one of which is a group containing an aromatic ring. Even if all R's are different, all R's may be the same. The subscripts "2" and "3" in R indicate the number of substitutions. With such a structure, the flame retardancy can be further improved. In addition, the silicone compound having a linear structure has a unit represented by the formula R SiO (D unit), a unit represented by the formula R SiO (M unit
2 1.0 3 0.5 2 1.0 3 0.5
)から構成されるものを指す。さらに、このようなシリコーン化合物は、難燃性と流動性 の向上にくわえて、耐衝撃性の改良にも効果的である。 It refers to what consists of. Furthermore, such silicone compounds are effective in improving impact resistance in addition to the improvement of flame retardancy and fluidity.
[0044] また、本発明の熱可塑性樹脂組成物の総量に占める、上記のチヤ一形成剤(E)の 重量割合を Yとした場合に、前記 Yが 0. 5質量%以上 20質量%以下の範囲であると 、無機系難燃剤 (C)の使用量を低減しても、難燃性及び流動性だけでなぐ耐熱性 に優れるのでより好ましい。なお、上記のチヤ一形成剤(E)の重量割合 Yが 0. 5質量 %未満であると、難燃性と流動性の向上効果が不十分なものとなる場合がある。また 、上記のチヤ一形成剤(E)の重量割合 Yが 20質量%を超えると、耐熱性(特に荷重 たわみ温度 < HDT >を指す。 )が低下する場合がある。 In addition, when the weight ratio of the above-mentioned key forming agent (E) to the total amount of the thermoplastic resin composition of the present invention is Y, the Y is not less than 0.5% by mass and not more than 20% by mass. Within the above range, even if the amount of use of the inorganic flame retardant (C) is reduced, it is more preferable because the flame retardancy and the heat resistance which is superior to the fluidity alone are excellent. If the weight ratio Y of the above-mentioned core-forming agent (E) is less than 0.5% by mass, the effect of improving the flame retardancy and the fluidity may be insufficient. In addition, when the weight ratio Y of the above-mentioned core-forming agent (E) exceeds 20% by mass, the heat resistance (in particular, the load deflection temperature <HDT>) may be reduced.
[0045] 上記のチヤ一形成剤(E)を、高分子量ポリ乳酸 (A)、可とう性付与剤(B)、無機系
難燃剤(C)及び可塑剤 (D)からなる本発明の熱可塑性樹脂組成物にさらに併用す ると、流動性の向上効果だけでなぐ優れた難燃性の改良効果があることを発見した 。この効果の原因は必ずしも明らかではないが、特に無機系難燃剤(C)として金属 水和物を使用した場合、上記のチヤ一形成剤 (E)を含有する樹脂組成物に着火した 際にできる炭化物 (溶融した樹脂も含む。)が、前記の金属水和物(生成した金属酸 化物を含む)と複合化して、特有の複合層(炭化物、溶融樹脂、金属水和物及びこの 酸化物から成る複合物の層)を形成し、この複合層が、金属水和物の熱分解で発生 する水分や、前記樹脂組成物中の樹脂成分の分解ガス(可燃性ガスを含む)を含有 して膨張し、着火の熱を効率的に遮断できる断熱層を形成した結果、難燃性が向上 したと考える。さらに、この断熱層には、樹脂の分解ガスを捕捉して、分解ガスが外部 に拡散して樹脂を延焼させることを抑制する効果もあったものと想定する。 [0045] The above-described carrier-forming agent (E) can be treated with high molecular weight polylactic acid (A), a flexibility imparting agent (B), an inorganic type It has been discovered that, when used in combination with the thermoplastic resin composition of the present invention comprising the flame retardant (C) and the plasticizer (D), there is an excellent flame retardancy improvement effect which is reduced by the flowability improvement effect alone. . Although the cause of this effect is not necessarily clear, it can be caused when the resin composition containing the above-mentioned chain forming agent (E) is ignited especially when metal hydrate is used as the inorganic flame retardant (C). The carbide (including the molten resin) is complexed with the above-mentioned metal hydrate (including the formed metal oxide) to form a unique composite layer (carbide, molten resin, metal hydrate and this oxide). Forming a composite layer), and the composite layer contains water generated by thermal decomposition of metal hydrate and decomposition gas (including combustible gas) of resin components in the resin composition. It is thought that the flame retardancy is improved as a result of the formation of a heat insulating layer that can expand and shut off the heat of ignition efficiently. Furthermore, it is assumed that this heat insulation layer also has an effect of capturing the decomposition gas of the resin and diffusing the decomposition gas to the outside to spread the fire of the resin.
[0046] さらに、本発明の熱可塑性樹脂組成物に、結晶核剤(F)を添加するのが好ましい。 Furthermore, it is preferable to add a crystal nucleating agent (F) to the thermoplastic resin composition of the present invention.
結晶核剤(F)としては、無機系の結晶核剤または有機系の結晶核剤を使用すること 力できる。無機系の結晶核剤としては、粘土鉱物、炭酸カルシウム、窒化硼素、合成 珪酸、珪酸塩、シリカ、カーボンブラック、亜鉛華、塩基性炭酸マグネシウム、石英粉 、ガラスファイバー、ガラス粉、ケィ藻土、ドロマイト粉、酸化チタン、酸化亜鉛、酸化 アンチモン、硫酸バリウム、硫酸カルシウム、アルミナ、ケィ酸カルシウム、窒化ホウ素 等を挙げることが可能である。ここで、粘土鉱物とは、粘土の主成分として産する含水 ケィ酸塩を指す。粘土鉱物の具体例としては、ァロフェン、ヒシンゲル石、フイロケィ酸 塩、ノ イロフィライト、タルク、ゥンモ(マイ力とも呼ぶ。)群、モンモリロン石群、バーミキ ュル石、リヨタディ石群、カオリン群、イノケィ酸塩、ノ リゴルスカイト群などが挙げられ As the nucleating agent (F), an inorganic nucleating agent or an organic nucleating agent can be used. Examples of inorganic crystal nucleating agents include clay minerals, calcium carbonate, boron nitride, synthetic silicic acid, silicates, silica, carbon black, zinc flower, basic magnesium carbonate, quartz powder, glass fiber, glass powder, green algae, It is possible to cite dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, boron nitride and the like. Here, the clay mineral refers to a hydrous cayrate produced as a main component of clay. Specific examples of clay minerals include alophen, hisingerite, phyllosilicate, neurophyllite, talc, ummo (also called my power) group, montmorillonite group, vermiculite group, liyotadi group, kaolin group, inokeyic acid Salt, norigorskite group, etc.
[0047] また、有機系の結晶核剤としては、 Further, as an organic crystal nucleating agent,
(1)有機カルボン酸類、例示すると、ォクチル酸、トルィル酸、ヘプタン酸、ペラルゴ ン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、ベへニン酸、セロチン酸 、モンタン酸、メリシン酸、安息香酸、 p— tert—ブチル安息香酸、テレフタル酸、テレ フタル酸モノメチルエステル、イソフタル酸、イソフタル酸モノメチルエステル、ロジン 酸、 12—ヒドロキシステアリン酸、コール酸等、
(2)有機カルボン酸アルカリ(土類)金属塩、例示すると、上記有機カルボン酸のアル カリ(土類)金属塩等、 (1) Organic carboxylic acids, for example, octylic acid, toluic acid, heptanoic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, cerotic acid, montanic acid, melisic acid, benzoic acid Acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, isophthalic acid monomethyl ester, rosin acid, 12-hydroxystearic acid, cholic acid, etc. (2) Organic carboxylic acid alkali (earth) metal salts, such as alkaline (earth) metal salts of the above organic carboxylic acids,
(3)カルボキシル基の金属塩を有する高分子有機化合物、例示すると、ポリエチレン の酸化によって得られるカルボキシル基含有ポリエチレン、ポリプロピレンの酸化によ つて得られるカルボキシル基含有ポリプロピレン、エチレン、プロピレン、ブテン一 1等 のォレフイン類とアクリル酸またはメタクリル酸との共重合体、スチレンとアクリル酸ま たはメタクリル酸との共重合体、ォレフィン類と無水マレイン酸との共重合体、スチレ ンと無水マレイン酸との共重合体等の金属塩等、 (3) Polymeric organic compounds having metal salts of carboxyl groups, for example, carboxyl group-containing polyethylene obtained by oxidation of polyethylene, carboxyl group-containing polypropylene obtained by oxidation of polypropylene, ethylene, propylene, butene-1 etc. Copolymers of acrylic acid or methacrylic acid, copolymers of styrene and acrylic acid or methacrylic acid, copolymers of olefins and maleic anhydride, styrene and maleic anhydride Metal salts such as copolymers, etc.
(4)アミド系化合物、例示すると、ォレイン酸アミド、ステアリン酸アミド、エル力酸アミド 、ベへニン酸アミド、 N ォレイルパルミトアミド、 N ステアリルエル力酸アミド、 N, N '—メチレンビス(ステアリルアミド)、メチロール'ステアリルアミド、エチレンビスべヘン 酸アミド、エチレンビスラウリン酸アミド、へキサメチレンビスォレイン酸アミド、へキサメ チレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、 N, N'—ジォレイルセ バシン酸アミド、 N, N,—ジォレイルアジピン酸アミド、 N, N,—ジステアリルアジピン 酸アミド、 N, N,—ジステアリルセバシン酸アミド、 m—キシリレンビスステアリン酸アミ ド、 N, N' ジステアリルイソフタル酸アミド、 N, N' ジステアリルテレフタル酸アミド 、 N ォレイルォレイン酸アミド、 N ステアリルォレイン酸アミド、 N ステアリルエル 力酸アミド、 N ォレイルステアリン酸アミド、 N ステアリルステアリン酸アミド、 N ブ チルー N,ーステアリル尿素、 N—プロピル N,ーステアリル酸尿素、 N ァリル—N '—ステアリル尿素、 N フエニル N,一ステアリル尿素、 N ステアリル N,一ス テアリル尿素、ジメチトール油アミド、ジメチルラウリン酸アミド、ジメチルステアリン酸ァ ミド等、 N ヒドロキシェチルーリシノレィルアミド、 N ヒドロキシェチルー 12—ヒドロ キシステアリルアミド、 N, N,一エチレン一ビス一ォレイルアミド、 N, N,一エチレン一 ビス リシノレィルアミド、 N, N, 一エチレン ビスーォクタデカジエニルアミド、 N, N '—エチレン一ビス一 12—ヒドロキシステアリノレアミド、 N, N,一エチレン一ビス一ステ ァリルアミド、 N, N, 一へキサメチレン一ビス一リシノレィルアミド、 N, N, 一へキサメ チレン一ビス一 12—ヒドロキシステアリルアミド、 N, N,一キシリレン一ビス一 12—ヒド ロキシステアリルアミド、 N, N,一シクロへキサンビス(ステア口アミド)、 N ラウロイル
—L グルタミン酸一 a、 γ—n ブチノレアミド、トリメシン酸トリス(t ブチルアミド)、 トリメシン酸トリス(2—メチルシクロへキシノレアミド)、トリメシン酸トリペンジノレアミド、 1 , 4ーシクロへキサンジカルボン酸ジァニリド、 1 , 4ーシクロへキサンジカルボン酸ビス( p トルイジンアミド)、 2, 6 ナフタレンジカルボン酸ジシクロへキシルアミド、アジピ ン酸ジァニリド、アジピン酸ビス(4ーシクロへキシルァニリド)、ブタンテトラカルボン酸 テトラジシクロへキシルアミド、ブタンテトラカルボン酸テトラ(2—メチルシクロへキシル アミド)、テレフタル酸ジベンジルアミド、 N, N '—ジベンゾィル 1 , 4—ジアミノシクロ へキサン、 N, N'—ジシクロへキサンカルボ二ルー 1 , 4ージアミノシクロへキサン、 N , N'—ジシクロへキサンカルボ二ルー 1 , 5—ジァミノナフタレン、 N, N '—ジベンゾィ ノレ一 p フエ二レンジァミン、 N, Ν '—ジベンゾィル 1 , 4—ジァミノブタン等、 (4) Amide compounds, for example, foreic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, N-oleyl palmitamide, N stearyl yl acid amide, N, N'- methylene bis ( Stearyl amide), methylol 'stearyl amide, ethylene bis behenic acid amide, ethylene bis lauric acid amide, hexamethylene bis oleic acid amide, hexamethylene bis stearic acid amide, butylene bis stearic acid amide, N, N'— Dioleyl sebacic acid amide, N, N, -Dioleyl adipic acid amide, N, N,-Distearyl adipic acid amide, N, N,-Distearyl sebacic acid amide, m- xylylene bis-stearic acid amide, N , N 'distearyl isophthalic acid amide, N, N' distearyl terephthalic acid amide, N Acid amide, N-stearyloleic acid amide, N-stearyl acetate, N-oleyl stearamide, N-stearyl-stearic amide, N-butyl-N-stearyl-urea, N-propyl-N, stearyl-acid-urea, N-aryl- N'-stearyl urea, N phenyl N, mono stearyl urea, N stearyl N, mono stearyl urea, dimethitol oil amide, dimethyl lauric acid amide, dimethyl stearic acid amide, etc., N hydroxyl ethylicyclic amide, N Hydroxyethyl-12-hydroxycystearylamide, N, N, monoethylene mono bis mono oleyl amide, N, N, mono ethylene mono bis ricinoleyl amide, N, N, mono ethylene bis-octadecadienyl amide, N , N'-Ethylene-bis-bis- 12-hydroxy stearinoleamide, N, N, ethylene Mono-bis-styramide, N, N, hexamethylene-bis-ricinoleyl amide, N, N, hexa-methylene-bis-one 12-hydroxystearylamide, N, N, mono-xylylene-bis-one 12- Hydroxystearylamide, N, N, monocyclohexane bis (stear opening amide), N lauroyl —L-glutamic acid mono-a, γ-n-butyroreamide, trimesic acid tris (t-butylamide), trimesic acid tris (2-methylcyclohexylene amide), trimesic acid trippenzinoleamide, 1,4-cyclohexanedicarboxylic acid dianilide, 1, 4 Cyclohexanedicarboxylic acid bis (p toluidine amide), 2,6 naphthalenedicarboxylic acid dicyclohexylamide, adipate diisocyanate, adipate bis (4-cyclohexylanilide), butanetetracarboxylic acid tetradicyclohexylamide, butanetetracarboxylic acid tetra-cyclodicarboxylic acid (2-Methylcyclohexyl amide), terephthalic acid dibenzylamide, N, N'-dibenzil 1, 4-diaminocyclohexane, N, N'- dicyclohexanecarbodione 1, 4-diaminocyclohexane, N, N '— To dicyclo Sankarubo two Lou 1, 5-§ amino naphthalene, N, N '- Jibenzoi Honoré one p-phenylene Renjiamin, N, New' - Jibenzoiru 1, 4-Jiaminobutan like,
[0048] (5)高分子有機化合物、例示すると、 3, 3 ジメチルブテン 1 , 3 メチルブテン 1 , 3—メチルペンテン 1 , 3—メチルへキセン 1 , 3 , 5, 5—トリメチルへキセン 1 などの炭素数 5以上の 3位分岐 α—ォレフイン、ならびにビュルシクロペンタン、ビニ ノレシクロへキサン、ビュルノルボルナンなどのビュルシクロアルカンの重合体、ポリエ チレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、ポリグリ コーノレ酸、セノレロース、セノレロースエステノレ、セノレロースエーテノレ、ポリエステノレ、ポリ カーボネート等、 (5) A high molecular weight organic compound, for example, 3,3 dimethylbutene 1,3 methylbutene 1,3 -methylpentene 1,3-methylhexene 1,3,5,5-trimethylhexene 1 etc. Polymers of 3- or 3-position branched α-olefene having carbon atoms, as well as bulcycloalkanes such as bulcyclopentane, vinylorethene hexane, bulnorbornane, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyglycorenoic acid, cenolellose , Cenolerose Estenole, Cenolerose Etenole, Polyestenore, Polycarbonate etc.,
(6)リン酸または亜リン酸及の有機化合物またはその金属塩、例示すると、リン酸ジフ ェニノレ、亜リン酸ジフエニル、リン酸ビス(4— tert ブチルフエ二ノレ)ナトリウム、リン酸 メチレン(2, 4— tert ブチルフエ二ノレ)ナトリウム等、 (6) Phosphoric acid or phosphorous acid and an organic compound thereof or metal salt thereof, for example, diphenyl phosphite, diphenyl phosphite, sodium bis (4-tert butylphenyl) phosphate, methylene phosphate (2, 4-tert-butyl (biphenyl) sodium etc.,
(7)ソルビトール誘導体、例示すると、ビス(p メチルベンジリデン)ソルビトール、ビ ス(p ェチルベンジリデン)ソルビトール、 (7) Sorbitol derivatives, for example, bis (p methyl benzylidene) sorbitol, bis (p ethyl benzylidene) sorbitol,
(8)コレステロール誘導体、例示すると、コレステリルステアレート、コレステリロキシス テアラミド、 (8) Cholesterol derivatives, for example, cholesteryl stearate, cholesteryloxys thearamide,
(9)無水チォグリコール酸、パラトルエンスルホン酸、パラトルエンスルホン酸アミド及 びその金属塩等を挙げることが出来る。 (9) Thioglycolic anhydride, paratoluenesulfonic acid, paratoluenesulfonic acid amide and metal salts thereof and the like can be mentioned.
[0049] 以上のほかに、フエニルホスホン酸亜鉛、フエニルホスホン酸カルシウムやフエニル ホスホン酸マグネシウム等のフエニルホスホン酸金属塩、メラミンシァヌレートやメラミ
ンポリホスフェート等のメラミン化合物や、ビス(ベンジドラジノカルボニル)ォクタネー ト等も使用できる。 [0049] In addition to the above, metal phenylphosphonates such as zinc phenylphosphonate, calcium phenylphosphonate and magnesium phenylphosphonate, melamine cyanurate and melami Melamine compounds such as monopolyphosphate and bis (benzidrazino carbonyl) octaneate can also be used.
[0050] これら有機系の結晶核剤のうち、一部、可塑剤(D)としての効果を発揮するものも あるが、結晶核剤(F)として使用する場合には、前記可塑剤(D)から除外する。 Among the organic crystal nucleating agents, some of them exert effects as a plasticizer (D), but when used as a crystal nucleating agent (F), the plasticizer (D) may be used. Excluded from).
[0051] 有機結晶核剤にっレ、ては、射出成形等にお!/、て高温溶融状態で樹脂に相溶ある いは溶解や微分散し、金型内での成形冷却段階で析出ある V、は相分離し、結晶核と して作用する有機結晶核剤が好ましく用いられる。また、無機結晶核剤は、微粒子の 無機物が樹脂中で高分散することにより結晶核として効率よく機能する。無機結晶核 剤の表面を相溶化処理 (相溶化作用を有する樹脂や化合物を用いた被覆処理、ま たは、イオン交換処理やカップリング剤による表面処理等を指す。)すること力 S好まし い。表面が相溶化処理された無機結晶核剤は、樹脂との相互作用が高められて分 散性が向上し、核剤の凝集を防止することができる。 [0051] The organic crystal nucleating agent is used for injection molding, etc./ It is compatible with the resin in the high temperature molten state, or dissolved or finely dispersed, and it is deposited in the mold cooling stage in the mold. An organic crystal nucleating agent which phase-separates and acts as a crystal nucleus is preferably used. In addition, the inorganic crystal nucleating agent functions efficiently as a crystal nucleus by highly dispersing the inorganic substance of the fine particles in the resin. The surface of the inorganic crystal nucleating agent is compatibilized (coating treatment using a resin or compound having a compatibilizing action, or ion-exchange treatment, surface treatment with a coupling agent, etc.) S-preferable. Yes. The inorganic crystal nucleating agent whose surface is compatibilized is enhanced in the interaction with the resin to improve the dispersibility, and the aggregation of the nucleating agent can be prevented.
[0052] また、ポリ乳酸などの植物由来樹脂に、結晶核剤(F)をあらかじめ溶解または分散 させたマスターバッチを使用しても良い。なお、結晶核剤(F)を使用する場合には、 本発明の熱可塑性樹脂組成物の総量に占める重量割合を Zとしたときに、 Zが 0. 05 質量%より多く 20質量%以下であると、ポリ乳酸などのような結晶性樹脂の結晶化速 度が上昇して生産性を向上できるとともに、耐衝撃性が良好であるので特に好ましい 。すなわち、結晶核剤 (F)の重量割合 Zを 0. 05質量%より多くすると、結晶化が速や かに進行し、生産速度が向上する。加えて、結晶核剤(F)の重量割合 Zを 20質量% 以下とすると、特に無機系の結晶核剤を使用した場合に、無機系の結晶核剤を基点 としたクラックの成長が抑えられ、本発明の熱可塑性樹脂組成物の耐衝撃性が向上 する。 Alternatively, a masterbatch may be used in which a crystal nucleating agent (F) is previously dissolved or dispersed in a plant-derived resin such as polylactic acid. In addition, when using the crystal nucleating agent (F), when the weight ratio to the total amount of the thermoplastic resin composition of this invention is set to Z, Z is more than 0. 05 mass% and 20 mass% or less These are particularly preferable because the crystallization rate of a crystalline resin such as polylactic acid can be increased to improve the productivity and the impact resistance is good. That is, if the weight ratio Z of the crystal nucleating agent (F) is more than 0.05 mass%, the crystallization proceeds rapidly and the production rate is improved. In addition, when the weight ratio Z of the crystal nucleating agent (F) is 20% by mass or less, particularly when using an inorganic crystal nucleating agent, the growth of cracks starting from the inorganic crystal nucleating agent is suppressed. The impact resistance of the thermoplastic resin composition of the present invention is improved.
[0053] 本発明の熱可塑性樹脂組成物に、ドリップ防止剤 (G)を併用しても良い。ドリップ防 止剤(G)としては、ポリテトラフノレォロエチレン (PTFE)及びアクリル変成した PTFE 等の有機繊維が挙げられる。特にこれらのドリップ防止剤を使用する場合には、本発 明の熱可塑性樹脂組成物の総量に占める重量割合が、 1質量%以下であることが好 ましい。これらのドリップ防止剤の重量割合を 1質量%以下とすると、ペレットを作成 する際に造粒性が良好である。
[0054] さらに、植物由来樹脂が構造中にエステル結合を有する場合には、一般的に、カロ 水分解しやすいので、耐加水分解性を改良する目的で、公知の加水分解抑制剤(H )を併用しても良い。前記の加水分解抑制剤としては、植物由来樹脂中の活性水素 と反応性を有する化合物が使用できる。ここで、活性水素としては、植物由来樹脂中 のカルボキシル基、水酸基、アミノ基、アミド基などにおける水素が挙げられる。これら の活性水素と反応性を有する化合物としては、カルポジイミド化合物、イソシァネート 化合物ゃォキサゾリン系化合物が適用可能である。特にこれらに限定されるものでは ないが、耐加水分解性と難燃性を両立する観点から、芳香族系のポリカルポジイミド が特に好ましい。 The anti-drip agent (G) may be used in combination with the thermoplastic resin composition of the present invention. Examples of the drip inhibitor (G) include organic fibers such as polytetrafluoroethylene (PTFE) and acryl-modified PTFE. In particular, in the case of using these anti-drip agents, it is preferable that the weight ratio to the total amount of the thermoplastic resin composition of the present invention is 1% by mass or less. When the proportion by weight of these anti-drip agents is 1% by mass or less, the granulation property is good when making pellets. Furthermore, when the plant-derived resin has an ester bond in the structure, generally, it is easily hydrolysed by hydrolysis, and thus a known hydrolysis inhibitor (H 2) is used for the purpose of improving hydrolysis resistance. You may use together. As the above-mentioned hydrolysis inhibitor, compounds having reactivity with active hydrogen in a plant-derived resin can be used. Here, as active hydrogen, hydrogen in a carboxyl group, a hydroxyl group, an amino group, an amide group, etc. in a plant-derived resin can be mentioned. As a compound having reactivity with these active hydrogens, a carpodiimide compound, an isocyanate compound and a oxazoline compound can be applied. Although not particularly limited to these, from the viewpoint of achieving both hydrolysis resistance and flame retardancy, aromatic polycarpimides are particularly preferable.
[0055] また、耐熱性 (特に熱変形温度)や衝撃強度を向上させる手法として、高強度繊維( I)を使用すること力できる。高強度繊維 (I)としては、ァラミド繊維やナイロン繊維など のポリアミド繊維、ポリアリレート繊維やポリエチレンテレフタレート繊維などのポリエス テル繊維、超高強度ポリエチレン繊維、ポリプロピレン繊維、炭素繊維、金属繊維、 ガラス繊維等など、アスペクト比の高!/、有機物や無機物が挙げられる。 In addition, high strength fibers (I) can be used as a method for improving heat resistance (particularly heat deformation temperature) and impact strength. High-strength fibers (I) include polyamide fibers such as aramid fibers and nylon fibers, polyester fibers such as polyarylate fibers and polyethylene terephthalate fibers, ultra-high-strength polyethylene fibers, polypropylene fibers, carbon fibers, metal fibers, glass fibers, etc. Such as, high aspect ratio! /, Organic matter and inorganic matter can be mentioned.
[0056] ァラミド繊維やポリアリレート繊維は芳香族化合物であり、他の繊維に比べ耐熱性 が高ぐかつ高強度であること、淡色であることから樹脂に添加しても意匠性を損なわ ないこと、比重も低いことから、特に望ましい。 [0056] Aramid fibers and polyarylate fibers are aromatic compounds and have higher heat resistance and higher strength than other fibers, and because they are light in color, they do not impair the designability even when added to a resin. Because of its low specific gravity, it is particularly desirable.
[0057] また、高強度繊維 (I)の形状は、繊維断面を円状ではなぐ多角形、不定形あるい は凹凸のある形状のもので、アスペクト比が高いものや、繊維径の小さいもの力 樹 脂との接合面積が大きくなる。この結果、繊維とマトリックスの脱結合効果が増大し、 繊維の引き抜きによる衝撃緩和効果も増大するため、衝撃強度が向上する。また、繊 維の表面に凹凸を形成したものや、繊維の両端部分を中心部より太くしたような一種 のくさび形状を形成した繊維や、繊維の一部にくびれがあるもの、あるいは非直線状 の縮れた形状の繊維を用いることにより、繊維の引き抜け時の摩擦が増大し、耐衝撃 性が向上する。 In addition, the shape of the high strength fiber (I) is a polygon having a round fiber cross section, an irregular shape, or a shape having irregularities, and having a high aspect ratio or a small fiber diameter. The bonding area with force resin increases. As a result, the debonding effect between the fiber and the matrix is increased, and the impact relaxation effect due to the drawing of the fiber is also increased, so that the impact strength is improved. In addition, fibers having irregularities formed on the surface of the fiber, fibers having a kind of wedge shape in which both end portions of the fibers are made thicker than the central portion, those having a narrow part in the fibers, or non-linear By using fibers of a crimped shape, friction at the time of pulling out of the fibers is increased, and impact resistance is improved.
[0058] また、高強度繊維 (I)には必要に応じて、基材となる樹脂との親和性または繊維間 の絡み合いを高めるために、表面処理を施すことができる。表面処理方法としては、 シラン系、チタネート系などのカップリング剤による処理、オゾンやプラズマ処理、さら
には、アルキルリン酸エステル型の界面活性剤による処理などが有効である。しかし ながら、これらに特に限定されるものでは無ぐ充填材の表面改質に通常使用できる 処理方法が可能である。 In addition, the high-strength fiber (I) can be subjected to a surface treatment, as necessary, in order to enhance the affinity with the resin as the base material or the entanglement between the fibers. As the surface treatment method, treatment with a coupling agent such as silane or titanate, ozone or plasma treatment, Treatment with an alkyl phosphate ester type surfactant is effective. However, treatment methods that can usually be used to modify the surface of the filler, which is not particularly limited to these, are possible.
[0059] 上記の高強度繊維(I)の平均繊維長力、 1mm以上 10mm以下の範囲であると、耐 衝撃性の向上に特に有効である。高強度繊維 (I)の平均繊維長を lmm以上とすると 、繊維の引き抜けによるエネルギー吸収効果が高ぐ十分な耐衝撃性が得られる。加 えて、高強度繊維 (I)の平均繊維長を 10mm以下とすると成形性が良好なので好ま しい。また、高強度繊維 (I)を使用する場合には、本発明の熱可塑性樹脂組成物の 総量に占める高強度繊維 (I)の重量割合が 10質量%以下になるようにすると、耐衝 撃性や成形性が特に優れるので好ましレ、。 When the average fiber length of the high strength fiber (I) is in the range of 1 mm to 10 mm, it is particularly effective for improving the impact resistance. When the average fiber length of the high strength fiber (I) is lmm or more, sufficient impact resistance can be obtained to enhance the energy absorption effect by pulling out the fiber. In addition, it is preferable to set the average fiber length of the high strength fiber (I) to 10 mm or less because the moldability is good. When high strength fibers (I) are used, when the weight ratio of high strength fibers (I) to the total amount of the thermoplastic resin composition of the present invention is 10% by mass or less, impact resistance is obtained. Preferred because the properties and formability are particularly excellent.
[0060] また、上記の高強度繊維 (I)のほかに、ケナフ、亜麻などの植物繊維も使用できる。 In addition to the high-strength fiber (I) described above, vegetable fibers such as kenaf and flax can also be used.
本発明において、植物繊維とは、植物に由来する繊維をいい、具体例として、木材、 ケナフ、竹、麻類などから得られる繊維を挙げることができる。これらの繊維は、平均 繊維長が 10mm以下のものが好ましい。また、これらの植物繊維を脱リグニンゃ脱ぺ クチンして得られるパルプ等は、熱による分解や変色とレ、つた劣化が少な!/、ため特に 好ましい。ケナフや竹は光合成速度が速く成長が速いので、二酸化炭素を多量に吸 収できることから、二酸化炭素による地球温暖化、森林破壊という地球問題を同時に 解決する手段の一つとしても優れている。また、高強度繊維 (I)や、前記の植物繊維 などのうち有機系の繊維は、樹脂の結晶核剤として作用して、本発明の熱可塑性樹 脂組成物の耐熱性(特に荷重たわみ温度 < HDT〉を指す。)を向上できる効果があ In the present invention, plant fibers refer to fibers derived from plants, and specific examples include fibers obtained from wood, kenaf, bamboo, hemp and the like. The fibers preferably have an average fiber length of 10 mm or less. Also, pulps etc. obtained by delignifying / de-pecting these plant fibers are particularly preferable because they are less likely to be degraded by heat, discoloration, and deterioration. Kenaf and bamboo can absorb a large amount of carbon dioxide because they have high photosynthetic rate and fast growth, and they are excellent as one of the means to solve global problems such as global warming and deforestation by carbon dioxide at the same time. In addition, high-strength fibers (I) and organic fibers among the above-mentioned plant fibers act as crystal nucleating agents for resins, and the heat resistance of the thermoplastic resin composition of the present invention (especially deflection temperature under load) Effect that can improve the <HDT>.
[0061] その他、本発明の熱可塑性樹脂組成物には、必要に応じて、補強材、着色剤(酸 化チタンなど)、安定剤 (ラジカル捕捉剤、酸化防止剤など)、抗菌剤や防かび材など を併用できる。補強材としては、シリカ、アルミナ、砂、粘土、鉱滓などを使用できる。 また、抗菌剤としては、銀イオン、銅イオン、これらを含有するゼオライトなどを使用で きる。 In addition to the thermoplastic resin composition of the present invention, if necessary, a reinforcing material, a coloring agent (such as titanium oxide), a stabilizer (such as a radical scavenger or an antioxidant), an antibacterial agent or an antimicrobial agent Can be used together with mold materials. As a reinforcing material, silica, alumina, sand, clay, slag and the like can be used. Further, as the antibacterial agent, silver ion, copper ion, zeolite containing these, etc. can be used.
[0062] 以上の様な本発明の熱可塑性樹脂組成物は、特に制限はなぐ公知の射出成形 法、射出 ·圧縮成型、圧縮成型法、フィルム成形法、ブロー成形法、発泡成形法など
の方法により、電化製品の筐体などの電気'電子機器用途、建材用途、自動車部品 用途、 日用品用途、医療用途、農業用途などの成形体に加工できる。 The thermoplastic resin composition of the present invention as described above is not particularly limited, and known injection molding methods, injection / compression molding, compression molding methods, film molding methods, blow molding methods, foam molding methods, etc. According to the method described above, it can be processed into molded articles such as electrical and electronic equipment applications such as housings of electric appliances, building materials applications, automobile parts applications, daily necessities applications, medical applications, agricultural applications and the like.
[0063] 本発明における熱可塑性樹脂組成物の各種配合成分の混合方法には、特に制限 はなぐ公知の混合機、たとえばタンブラ一、リボンブレンダー、単軸や二軸の混練機 等による混合や押出機、ロール等による溶融混合が挙げられる。 The mixing method of the various compounding components of the thermoplastic resin composition in the present invention is not particularly limited, and mixing and extrusion using known mixers such as a tumbler, ribbon blender, single- or twin-screw kneader, etc. Melt mixing by machine, roll etc. is mentioned.
[0064] これらの溶融混合や成型時における温度については、基材となる樹脂の溶融温度 以上でかつ植物繊維や植物由来樹脂が熱劣化しない範囲を設定することが可能で ある。 With regard to the temperature at the time of these melt mixing and molding, it is possible to set a range which is equal to or higher than the melting temperature of the resin as the base material and in which the plant fibers and the plant-derived resin are not thermally deteriorated.
実施例 Example
[0065] 以下、具体例を挙げて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of specific examples.
[0066] まず、本発明例及び比較例で用いた原材料につ!/、て説明する。下記表 1に示され る、高分子量ポリ乳酸 (A)、低分子量ポリ乳酸 (a)、可とう性付与剤 (B)、無機系難燃 剤(C)、可塑剤 (D)、チヤ一形成剤 (Ε)、結晶核剤 (F)、ドリップ防止剤 (G)や加水 分解抑制剤 (Η)を用いた。 First, raw materials used in the invention examples and the comparative examples will be described. High molecular weight polylactic acid (A), low molecular weight polylactic acid (a), flexibility imparting agent (B), inorganic type flame retardant (C), plasticizer (D), as shown in Table 1 below. A forming agent (Ε), a crystal nucleating agent (F), an anti-drip agent (G) and a hydrolysis inhibitor (Η) were used.
[0067] [表 1]
[0067] [Table 1]
構成要素 内容 Component Content
高分子量ポリ乳酸 (A— 1 ) メルトフローレ一ト (M F R) " = 3 High molecular weight polylactic acid (A-1) Melt flow resin (M F R) "= 3
高分子量ポリ乳酸 (A— 2) M F R 1 = 9 High molecular weight polylactic acid (A-2) MFR 1 = 9
高分子量ポリ乳酸 (A— 3 ) M F R *1 = 1 4 High molecular weight polylactic acid (A-3) MFR * 1 = 1 4
低分子量ポリ乳酸 ( a— 1 ) M F R * 1 = 1 6 Low molecular weight polylactic acid (a-1) MFR * 1 = 1 6
可とう性付与剤 (B— 1 ) プロピレングリ コール一セバシン酸一ポリ乳酸の 共重合体 Flexibility agent (B-1) Copolymer of propylene glycol, sebacic acid and polylactic acid
(大日本ィンキ化学工業製、 (Dainippon Ink Chemical Industries, Inc.,
商品名 Γプラメ一 ト P D— 1 50」 ) 無機系難燃剤 (C一 1 ) 水酸化アルミニウム Product name Platelet P D-1 50 ") Inorganic flame retardant (C-1) Aluminum hydroxide
(昭和電工製、 商品名 Γ H P— 350 *」 : (Product name Γ H P— 350 *, made by Showa Denko:
N a 20*z= 0. 05質量0 /o、 N a 2 0 * z = 0. 05 mass 0 / o,
50質量%粒径 = 3 ju m) 50% by mass particle size = 3 ju m)
無機系難燃剤 (C一 2) 微粒水酸化アルミニウム Inorganic flame retardant (C-1) fine particle aluminum hydroxide
(上記 「 H P— 35 0 *」 の粉砕品 : (The above ground product of "H P-35 0 *":
50質量%粒径 = 1 jU m) 50 mass% particle size = 1 jU m)
可塑剤 (D— 1 ) ベンジル一 2— (2—メ トキシェトキシ) Plasticizer (D-1) Benzyl 1-2 (2-Metoxytoxy)
ェチルアジぺー ト Fertility Adipate
(大八化学工業製、 (Made by Daihachi Chemical Industry,
商品名 「D A I F A T T Y— 1 0 1」 ) 可塑剤 (D— 2 ) ビス (ブチルジグリコール) アジペート Brand name "D A I F A T T Y-1 0 1") Plasticizer (D-2) Bis (butyl diglycol) Adipate
(大八化学工業製、 商品名 「B X A」 ) 可塑剤 (D— 3 ) トリス (2—ェチルへキシル) トリメ リ亍一ト (Dahachi Chemical Industry Co., Ltd., trade name "B X A") Plasticizer (D-3) Tris (2-Ethyl Hexyl) Trimelliate
(大八化学工業製、 商品名 「Τ Ο Τ Μ」 ) 可塑剤 (D— 4 ) トリスノルマルォクチルトリメ リテ一ト (Made by Daihachi Chemical Industry Co., Ltd., trade name "Ο Ο Μ 可塑") Plasticizer (D-4)
(花王製、 商品名 「 トリメックス Ν— 08」 ) チヤ一形成剤 ( E— 1 ) フエノ一ルノボラック樹脂 (Made by Kao, trade name "Trimex Ν-08") Chain forming agent (E-1) Fueno 1 novolac resin
(明和化成製、 商品名 「H F— 45」 ) 結晶核剤 ( F— 1 ) N, N ' —エチレン一ビス一 1 2—ヒ ドロキシ ステアリルアミ ド (Meiwa Chemical Co., Ltd., trade name "H F-45") Crystal nucleating agent (F-1) N, N '-Ethylene-bis-one 1-2 2-hydroxy stearylamide
(伊藤製油製、 (Ito Oil Co., Ltd.
商品名 r i T Q HWA X J— 530」 ) ドリップ防止剤 (G— 1 ) ポリ亍 トラフルォロェチレン Product name r i T Q HWA X J— 530 ”) Anti-drip agent (G-1) Poly trafluorecilene
(ダイキン工業製、 (Made by Daikin Industries,
商品名 「ポリフロン M P A F A— 500」 ) 加水分解抑制剤 (H— 1 ) 芳香族ポリカルポジイミ ド 9 5 °/oとシリカ 5 %の 混合物 Brand name “Polyflon M P A F A— 500”) Hydrolysis inhibitor (H-1) Mixture of aromatic polycarboximide 9 5 ° / o and 5% silica
(ラインケミー製、 商品名 ΓスタバクゾールP」 ) (Line Chemie, brand name Γ Stabacuzole P ”)
*1 メルトフローレート(MFR)は、 IS01133に貝 IJつて、押出式プラストメーターを 用いて、樹脂組成物の温度が 190°Cのときに、 2. 16kgの荷重を加えて、 10分間で 、規定の寸法をもつノズル (オリフィス)から流出する、樹脂組成物の質量 (g)を測定し て算出した(単位は g/10分である。)。
* 2 水酸化アルミニウム中のアルカリ金属系物質の総量として、表 1では、 Na Oの 総量を示した。 * 1 Melt flow rate (MFR) is shellfish IJ in IS01133 and using an extrusion type plastometer, when the temperature of the resin composition is 190 ° C, a load of 2.16 kg is applied for 10 minutes. The mass (g) of the resin composition flowing out of a nozzle (orifice) having a prescribed size was measured and calculated (unit: g / 10 min). * 2 As total amount of alkali metal based materials in aluminum hydroxide, Table 1 shows total amount of Na 2 O.
[0069] 次に、本発明例及び比較例における、曲げ特性及び難燃性の評価方法を示す。 Next, evaluation methods of bending characteristics and flame retardancy in the examples of the present invention and the comparative examples will be shown.
[0070] (1)樹脂組成物の混練 (1) Kneading of resin composition
実施例 (例と表すことがある。 )と比較例に示した熱可塑性樹脂組成物用の各材料 を、この組成物の温度が約 180°Cになるように設定した混練機(二軸タイプを使用) 内で、溶融混合して、射出成型用のペレットを作成した。 A kneader (biaxial type) in which each material for thermoplastic resin compositions shown in Examples (which may be represented as Examples) and Comparative Examples is set so that the temperature of this composition is about 180 ° C. The mixture was melt mixed to make pellets for injection molding.
[0071] (2)評価用サンプルの作成 1 (低温金型での成型) (2) Preparation of a sample for evaluation 1 (molding with a low temperature mold)
100°Cで 7時間以上乾燥させたペレットを用いて、金型温度を 25°Cに設定して、射 出成型機で、長さ 13cm、幅 13mm、板厚 1. 6mm又は 3. 2mmの 2種類の成型体 を作成した。次に、これらの成型体を 100°Cで 4時間加熱して、樹脂分を結晶化させ たのち、各種評価用サンプルとした。ちなみに、射出成型機のバレルの温度は 190 。しに 疋した。 Using the pellets dried at 100 ° C for 7 hours or longer, and setting the mold temperature to 25 ° C, the injection molding machine is 13 cm long, 13 mm wide, and 1.6 mm or 3.2 mm thick. Two types of molded bodies were created. Next, these molded bodies were heated at 100 ° C. for 4 hours to crystallize the resin component, and then used as samples for various evaluations. By the way, the temperature of the barrel of the injection molding machine is 190. I was jealous.
[0072] (3)評価用サンプルの作成 2 (高温金型での成型) (3) Preparation of evaluation sample 2 (Molding with high temperature mold)
100°Cで 7時間以上乾燥させたペレットを用いて、金型の表面温度を 1 10°Cに設定 して、射出成型機で、長さ 13cm、幅 13mm、板厚 1. 6mm又は 3. 2mmの 2種類の 成型体を作成し、各種評価用サンプルとした。ちなみに、射出成型機のバレルの温 度は 190°Cに設定し、金型内でのサンプル保持時間は 180秒とした。 Using the pellets dried at 100 ° C. for 7 hours or longer, the mold surface temperature is set to 110 ° C., and the injection molding machine is 13 cm long, 13 mm wide, and 1.6 mm thick. Two types of molded articles of 2 mm were prepared and used as samples for various evaluations. Incidentally, the temperature of the barrel of the injection molding machine was set to 190 ° C., and the sample holding time in the mold was 180 seconds.
[0073] (4)曲げ特性の評価 (4) Evaluation of bending characteristics
上記(2)または(3)の方法で得られた板厚 3. 2mmの成型体について、支点間距 離を 5cm、押し込み速度を 1. 6mm/分に設定して、 JIS K7171に準拠した 3点曲 げ試験を行って、曲げ破断応力(MPa)、曲げ弾性率 (GPa)、曲げ破断ひずみ(%) を求めた。 For molded articles with a plate thickness of 3.2 mm obtained by the above method (2) or (3), the distance between fulcrums is set to 5 cm, the push speed is set to 1.6 mm / min, and three points complying with JIS K7171. A bending test was conducted to determine bending stress (MPa), flexural modulus (GPa), and bending strain (%).
[0074] (5)難燃性の評価 (5) Evaluation of flame retardancy
上記(2)または(3)の方法で成型したサンプル(板厚 1 · 6mm)について、 UL (Und erwriters UL (Und erwriters) for samples (plate thickness 1.6 mm) molded by the above method (2) or (3)
Laboratories In ) 94規格の垂直燃焼試験を実施して、難燃性を評価した。難燃性 の評価基準は表 2に示した通りである。
[0075] [表 2] Laboratories In) A 94 standard vertical fire test was conducted to evaluate flame retardancy. The evaluation criteria for flame retardancy are as shown in Table 2. [Table 2]
[0076] なお、上記の分類以外の燃焼形態をとる場合は、 NOTと分類した。ちなみに、難 燃性が良好な順から悪い順に並べると、 V— 0、 V— 1、(V— 2または NOT)となる。 [0076] In the case of combustion forms other than the above classification, it was classified as NOT. By the way, if the flame resistance is arranged in order from good to bad, it becomes V-0, V-1 and (V-2 or NOT).
[0077] (例 1) (Example 1)
高分子量ポリ乳酸 (A)として MFRが 3のポリ乳酸 (A— 1)を 50質量%、可とう性付 与剤 (B)として表 1に示した (B— 1)を 5質量%、無機系難燃剤(C)として表 1に示し た水酸化アルミニウム(C 1)を 45質量%含有してなる混合物を、混練機で溶融混 合して、樹脂組成物のペレットを作成した。なお、上記の樹脂組成物の混練機中で の温度が約 180°Cになるように、混練機の温度を設定した。 50% by mass of polylactic acid (A-1) having an MFR of 3 as high molecular weight polylactic acid (A), and 5% by mass of (B-1) shown in Table 1 as a flexible additive (B) A mixture containing 45% by mass of aluminum hydroxide (C 1) shown in Table 1 as the flame retardant (C) was melt mixed in a kneader to prepare pellets of a resin composition. The temperature of the kneader was set such that the temperature of the above-mentioned resin composition in the kneader was about 180 ° C.
[0078] 次に、得られたペレットを用いて、上記(2)評価用サンプルの作成 1 (低温金型での 成型)の方法にしたがって、評価用サンプルを作成した。 Next, using the obtained pellet, a sample for evaluation was prepared according to the method of the above (2) Preparation of evaluation sample 1 (molding with a low temperature mold).
[0079] (例 2— 11)、(比較例 1 7) (Example 2-11), (Comparative Example 1 7)
表 3乃至 6に示した配合の樹脂組成物を用いたこと以外は、例 1と同様にして、各種 評価用サンプルを作成した。表 7に示した配合の樹脂組成物は、上記(3)評価用サ ンプルの作成 2 (高温金型での成型)の方法にしたがって、評価用サンプルを作成し た。評価結果を表 3乃至 6に示す。 Various evaluation samples were prepared in the same manner as in Example 1 except that the resin compositions of the formulations shown in Tables 3 to 6 were used. The resin composition of the formulation shown in Table 7 was used to prepare an evaluation sample according to the method of (3) Preparation of evaluation sample 2 (molding with a high temperature mold). The evaluation results are shown in Tables 3 to 6.
[0080] [表 3]
比較例 1 比較例 2 比較例 3 例 1 高分子量ポリ乳酸 ( A - 1 ) 5 5 5 0 低分子量ポリ乳酸 ( a- 1 ) 5 5 5 0 可とう性付与剤 ( B— 1 ) 5 5 無機系難燃剤 ( C - 1 ) 4 5 4 5 4 5 4 5 曲げ特性 曲げ破断応力(MPa) 7 2 7 5 6 5 6 9 曲げ弾性率 (GPa) 7 . 7 7 . 8 6. 2 6. 1 曲げ破断ひずみ(%) 1 . 0 1 . 0 1 . 6 2. 9[Table 3] Comparative Example 1 Comparative Example 2 Comparative Example 3 Example 1 High Molecular Weight Polylactic Acid (A-1) 5 5 5 0 Low Molecular Weight Polylactic Acid (a-1) 5 5 5 0 Flexibility Agent (B-1) 5 5 Inorganic Flame Retardant (C-1) 4 5 4 5 4 5 4 5 Flexural Properties Bending Stress (MPa) 7 2 7 5 6 5 6 9 Flexural Modulus (GPa) 7 7 8 6 2 6 1 Bending fracture strain (%) 1. 0 1 1. 6 2. 9
[0081] [表 4] [Table 4]
[0082] [表 5]
[Table 5]
比較例 4 例 5 例 6 例 2 高分子量ポリ乳酸 (A— 1 ) 48 Comparative Example 4 Example 5 Example 6 Example 2 High Molecular Weight Polylactic Acid (A-1) 48
(A - 2) 48 (A-2) 48
(A— 3 ) 48 (A— 3) 48
低分子量ポリ乳酸 ( a- 1 ) 48 Low molecular weight polylactic acid (a- 1) 48
可とう性付与剤 (B - 1 ) 5 5 5 5 無機系難燃剤 (C - 1 ) 45 45 45 45 可塑剤 (D - 1 ) 2 2 2 2 Flexibility agent (B-1) 5 5 5 5 Inorganic flame retardant (C-1) 45 45 45 45 Plasticizer (D-1) 2 2 2 2
(D - 2) (D-2)
(D - 3 ) (D-3)
曲げ特性 曲げ破断応力 (MPa) 55 56 56 58 曲げ弾性率 (GPa) 5.4 5.3 5.2 5.0 曲げ破断ひずみ 、 1.5 6.0 6.5 7.3 Flexural properties Flexural stress (MPa) 55 56 56 58 Flexural modulus (GPa) 5.4 5.3 5.2 5.0 Flexural strain, 1.5 6.0 6.5 7.3
[0083] 表 5の結果を基に、 MFRと曲げ破断ひずみの関係を図 1に示した。 Based on the results in Table 5, the relationship between MFR and bending strain is shown in FIG.
[0084] [表 6] [Table 6]
[0085] [表 7]
比較例 Ί 例 8 例 9 例 L0 例 1L 例 12 例 13 高分子量ポリ乳酸 (A- 1) 43 38 36 33 32 [Table 7] Comparative Example 例 Example 8 Example 9 Example L0 Example 1 L Example 12 Example 13 High Molecular Weight Polylactic Acid (A-1) 43 38 36 33 32
(A- 2) 36 (A-2) 36
(A- 3) 36 (A- 3) 36
低分子量ポリ乳酸 (a-1) Low molecular weight polylactic acid (a-1)
可とう性付与剤 (B- 1) 5 5 5 5 10 10 無機系難燃剤 (c-i) 49.5 49.5 49.5 49.5 49.5 49.5 49.5 可塑剤 (D-1) Flexibility agent (B-1) 5 5 5 5 10 10 Inorganic flame retardant (c-i) 49.5 49.5 49.5 49.5 49.5 49.5 Plasticizer (D-1)
(D-2) (D-2)
(D-3) 2 2 2 1 チヤ一形成剤 (E-1) 5 5 5 5 5 5 5 結晶核剤 (F-1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ドリ ップ防止剤 (G- 1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 加水分解抑制剤 (H-1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 曲げ特性 曲げ破断応力 (D-3) 2 2 2 1 Carrier forming agent (E-1) 5 5 5 5 5 5 5 Crystal nucleating agent (F-1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Anti-drip agent (G-1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Hydrolysis inhibitor (H-1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Flexural property Bending fracture stress
72 78 54 52 50 60 50 72 78 54 52 50 60 50
(MPs) (MPs)
曲げ弾性率 Flexural modulus
9.6 7.3 5.4 5.4 5.3 5.1 4.3 9.6 7.3 5.4 5.4 5.3 5.1 4.3
(GPa) (GPa)
曲げ破断 Bending fracture
0.8 1.8 5.0 4.5 4.3 3.3 6.0 ひずみ «) 0.8 1.8 5.0 4.5 4.3 3.3 6.0 Strain «)
難燃性 Uし 941.6mm V - 0 v-i v-i v-i v-i V- 1 v-i Flame Retardant U mm 941.6 mm V-0 v-i v-i v-i V-1 v-i
[0086] [表 8] [Table 8]
[0087] 上記表 3乃至 8に示した結果から、本発明の熱可塑性樹脂組成物は、従来技術に
かかわる各比較例の樹脂組成物よりも、曲げ破断ひずみが大きぐ靭性に優れてい ることは明白である。特に、高分子量ポリ乳酸 (A)、可とう性付与剤 (B)及び可塑剤( D)の 3成分を同時に含有するときに、極めて高い曲げ破断ひずみを示すことがわか From the results shown in Tables 3 to 8 above, the thermoplastic resin composition of the present invention was compared to the prior art. It is apparent that the resin composition of each of the related comparative examples is superior in toughness in which the bending fracture strain is larger. In particular, when simultaneously containing the three components of high molecular weight polylactic acid (A), flexibility imparting agent (B) and plasticizer (D), it is known that extremely high bending rupture strain is exhibited.
[0088] 表 3に示した本発明例 1と、比較例 1乃至 3との比較から明らかなように、高分子量 ポリ乳酸 (A)に、可とう性付与剤(B)を併用することで、破断ひずみが向上して、靭 性が良好な熱可塑性樹脂組成物が得られる。 As apparent from the comparison between Inventive Example 1 shown in Table 3 and Comparative Examples 1 to 3, the high-molecular-weight polylactic acid (A) is used in combination with the flexibility imparting agent (B). The breaking strain is improved, and a thermoplastic resin composition having good toughness can be obtained.
[0089] さらに、表 4に示した本発明例 2と比較例 4との比較、例 3と比較例 5との比較から明 らかなように、高分子量ポリ乳酸 (A)、可とう性付与剤 (B)及び可塑剤 (D)の 3成分を 同時に含有することで、破断ひずみが特異的に向上し、靭性に優れる熱可塑性樹脂 組成物が得られる。 Further, as is clear from the comparison between Inventive Example 2 and Comparative Example 4 shown in Table 4 and the comparison between Example 3 and Comparative Example 5, high molecular weight polylactic acid (A), flexibility was imparted. By simultaneously containing the three components of the agent (B) and the plasticizer (D), the breaking strain is specifically improved, and a thermoplastic resin composition having excellent toughness can be obtained.
[0090] 加えて、表 5に示した本発明例 2、 5、 6と、比較例 4との比較及び、図 1からも明らか なように、 MFRが 15未満の高分子量ポリ乳酸 (A)を使用した場合に、破断ひずみが 特異的に向上し、靭性に優れる熱可塑性樹脂組成物が得られる。 [0090] In addition, high molecular weight polylactic acid having an MFR of less than 15 (A), as is apparent from comparisons between Inventive Examples 2, 5 and 6 shown in Table 5 and Comparative Example 4 and also from FIG. In the case where is used, the strain at break is specifically improved, and a thermoplastic resin composition excellent in toughness is obtained.
[0091] 加えて、表 6に示した本発明例 4と、例 7及び比較例 6との比較力、らも明らかなように 、高分子量ポリ乳酸 (A)及び可とう性付与剤(B)の併用、さらに可塑剤(D)の使用に より、破断ひずみが特異的に向上し、靭性に優れる熱可塑性樹脂組成物が得られる [0091] In addition, as shown in Table 6, the comparative power of Example 4 of the present invention with Example 7 and Comparative Example 6, and as apparent, the high molecular weight polylactic acid (A) and the flexibility imparting agent (B) Strain) is specifically improved by using the plasticizer (D) in combination, and a thermoplastic resin composition having excellent toughness can be obtained.
〇 Yes
[0092] さらに、表 7乃至 8に示した本発明例 8乃至 16と、比較例 7との比較力もも明らかな ように、高分子量ポリ乳酸 (A)及び可とう性付与剤 (B)の併用、さらに可塑剤 (D)の 使用により、破断ひずみが特異的に向上する、靭性に優れる熱可塑性樹脂組成物 が得られる。 Further, as is also apparent from the comparison between the invention examples 8 to 16 shown in Tables 7 to 8 and the comparative example 7, the high molecular weight polylactic acid (A) and the flexibility imparting agent (B) By using the plasticizer (D) in combination, a thermoplastic resin composition excellent in toughness and having a specifically improved breaking strain can be obtained.
[0093] 以上、実施例を参照して本発明を説明したが、本発明は上記実施例に限定されも のではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る 様々な変更をすることができる Although the present invention has been described above with reference to the examples, the present invention is not limited to the above examples. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
産業上の利用可能性 Industrial applicability
[0094] 本発明の熱可塑性樹脂組成物は、射出成型法、フィルム成形法、ブロー成形法、 発泡成形法などの方法により、電気 ·電子機器用途、建材用途、自動車部品用途、
日用品用途、医療用途、農業用途、玩具用と、娯楽用途などの成型体に加工される この出願 (ま、 2006年 10月 10曰 ίこ出願された曰本出願特願 2006— 276679を基 礎とする優先権を主張し、その開示の全てをここに取り込む。
The thermoplastic resin composition of the present invention can be used for electric / electronic devices, construction materials, automobile parts, etc. by methods such as injection molding, film molding, blow molding, foam molding and the like. This application is processed into molded articles for daily use, medical use, agricultural use, toy use, and entertainment use etc. (October 2006, 10 Claim priority and incorporate all of its disclosure here.
Claims
[1] 少なくとも高分子量ポリ乳酸 (A)、可とう性付与剤 (B)及び無機系難燃剤 (C)を含 む熱可塑性樹脂組成物であって、 [1] A thermoplastic resin composition comprising at least a high molecular weight polylactic acid (A), a flexibility imparting agent (B) and an inorganic flame retardant (C),
前記高分子量ポリ乳酸 (A)の 190°Cでのメルトフローレートが 15未満であることを 特徴とする熱可塑性樹脂組成物。 The thermoplastic resin composition, wherein the melt flow rate of the high molecular weight polylactic acid (A) at 190 ° C. is less than 15.
[2] 可塑剤 (D)を含有することを特徴とする、請求項 1に記載の熱可塑性樹脂組成物。 [2] The thermoplastic resin composition according to claim 1, which contains a plasticizer (D).
[3] 無機系難燃剤(C)が金属水和物であることを特徴とする、請求項 1または 2に記載 の熱可塑性樹脂組成物。
[3] The thermoplastic resin composition according to claim 1 or 2, wherein the inorganic flame retardant (C) is a metal hydrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008538627A JP5463670B2 (en) | 2006-10-10 | 2007-09-27 | Thermoplastic resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-276679 | 2006-10-10 | ||
JP2006276679 | 2006-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008044471A1 true WO2008044471A1 (en) | 2008-04-17 |
Family
ID=39282675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/068769 WO2008044471A1 (en) | 2006-10-10 | 2007-09-27 | Thermoplastic resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5463670B2 (en) |
WO (1) | WO2008044471A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235872A (en) * | 2009-03-31 | 2010-10-21 | Osaka Gas Co Ltd | Lignin-containing composite and method for producing the same |
JP2011006597A (en) * | 2009-06-26 | 2011-01-13 | Nec Corp | Polylactic acid resin composition and molded article thereof |
JP2011241347A (en) * | 2010-05-21 | 2011-12-01 | Unitika Ltd | Polylactic acid-based resin composition, polylactic acid-based heat-resistant sheet and molded body |
JP2013001719A (en) * | 2011-06-13 | 2013-01-07 | Osaka Gas Co Ltd | Polylactic acid resin composition |
WO2013047766A1 (en) * | 2011-09-30 | 2013-04-04 | 日産化学工業株式会社 | Poly(3-hydroxyalkanoate) resin composition |
WO2014091351A1 (en) * | 2012-12-14 | 2014-06-19 | Sabic Innovative Plastics Ip B.V. | Thermally conductive flame retardant polymer compositions and uses thereof |
CN105542440A (en) * | 2016-03-08 | 2016-05-04 | 苏州珍展科技材料有限公司 | Carbon fiber composite with high thermal conductivity and preparation method of carbon fiber composite |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041142A (en) * | 2001-07-31 | 2003-02-13 | Mitsui Chemicals Inc | Biodegradable resin composition |
JP2003183627A (en) * | 2001-12-18 | 2003-07-03 | Unitika Ltd | Biodegradable polishing material |
WO2004022649A1 (en) * | 2002-09-09 | 2004-03-18 | Sony Corporation | Resin composition |
JP2004190025A (en) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | Resin composition and molded article made thereof |
JP2004190026A (en) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | Resin composition and molded article made thereof |
JP2005162873A (en) * | 2003-12-02 | 2005-06-23 | Sony Corp | Resin composition, molded product, electrical product, and method for producing the resin composition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4334345B2 (en) * | 2001-09-06 | 2009-09-30 | ユニチカ株式会社 | Biodegradable resin composition for molded body and molded body formed by molding the same |
JP4329348B2 (en) * | 2003-01-30 | 2009-09-09 | Dic株式会社 | Polyester composition and process for producing the same |
JP2005029601A (en) * | 2003-07-07 | 2005-02-03 | Fuji Photo Film Co Ltd | Injection molding material, its manufacturing method and injection molded article |
JP2005042045A (en) * | 2003-07-24 | 2005-02-17 | Unitika Ltd | Polyester resin composition and molded product produced by molding the same |
JP4894263B2 (en) * | 2003-12-19 | 2012-03-14 | 日本電気株式会社 | Flame retardant thermoplastic resin composition |
-
2007
- 2007-09-27 JP JP2008538627A patent/JP5463670B2/en not_active Expired - Fee Related
- 2007-09-27 WO PCT/JP2007/068769 patent/WO2008044471A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041142A (en) * | 2001-07-31 | 2003-02-13 | Mitsui Chemicals Inc | Biodegradable resin composition |
JP2003183627A (en) * | 2001-12-18 | 2003-07-03 | Unitika Ltd | Biodegradable polishing material |
WO2004022649A1 (en) * | 2002-09-09 | 2004-03-18 | Sony Corporation | Resin composition |
JP2004190025A (en) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | Resin composition and molded article made thereof |
JP2004190026A (en) * | 2002-11-29 | 2004-07-08 | Toray Ind Inc | Resin composition and molded article made thereof |
JP2005162873A (en) * | 2003-12-02 | 2005-06-23 | Sony Corp | Resin composition, molded product, electrical product, and method for producing the resin composition |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235872A (en) * | 2009-03-31 | 2010-10-21 | Osaka Gas Co Ltd | Lignin-containing composite and method for producing the same |
JP2011006597A (en) * | 2009-06-26 | 2011-01-13 | Nec Corp | Polylactic acid resin composition and molded article thereof |
JP2011241347A (en) * | 2010-05-21 | 2011-12-01 | Unitika Ltd | Polylactic acid-based resin composition, polylactic acid-based heat-resistant sheet and molded body |
JP2013001719A (en) * | 2011-06-13 | 2013-01-07 | Osaka Gas Co Ltd | Polylactic acid resin composition |
JPWO2013047766A1 (en) * | 2011-09-30 | 2015-03-30 | 日産化学工業株式会社 | Poly (3-hydroxyalkanoate) resin composition |
WO2013047766A1 (en) * | 2011-09-30 | 2013-04-04 | 日産化学工業株式会社 | Poly(3-hydroxyalkanoate) resin composition |
US9340660B2 (en) | 2011-09-30 | 2016-05-17 | Nissan Chemical Industries, Ltd. | Poly(3-hydroxyalkanoate) resin composition |
WO2014091350A3 (en) * | 2012-12-14 | 2014-08-21 | Sabic Innovative Plastics Ip B.V. | Thermally conductive flame retardant polymer compositions and uses thereof |
CN104854178A (en) * | 2012-12-14 | 2015-08-19 | 沙特基础全球技术有限公司 | Thermally conductive flame retardant polymer compositions and uses thereof |
CN104854180A (en) * | 2012-12-14 | 2015-08-19 | 沙特基础全球技术有限公司 | Thermally conductive flame retardant polymer compositions and uses thereof |
WO2014091351A1 (en) * | 2012-12-14 | 2014-06-19 | Sabic Innovative Plastics Ip B.V. | Thermally conductive flame retardant polymer compositions and uses thereof |
CN104854178B (en) * | 2012-12-14 | 2018-02-02 | 沙特基础全球技术有限公司 | Thermal conductivity flame retardant compositions and application thereof |
CN105542440A (en) * | 2016-03-08 | 2016-05-04 | 苏州珍展科技材料有限公司 | Carbon fiber composite with high thermal conductivity and preparation method of carbon fiber composite |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008044471A1 (en) | 2010-02-04 |
JP5463670B2 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5647076B2 (en) | Flame retardant thermoplastic resin composition | |
US7445835B2 (en) | Kenaf-fiber-reinforced resin composition | |
WO2008044471A1 (en) | Thermoplastic resin composition | |
WO2010004799A1 (en) | Polylactic acid resin composition and polylactic acid resin molded body | |
JP5479747B2 (en) | Polylactic acid resin composition | |
JPWO2007094478A1 (en) | Polylactic acid resin composition and molded article | |
EP2264103B1 (en) | Polylactic acid resin composite | |
KR20110008181A (en) | Manufacturing method of polylactic acid resin composition | |
CN101781445B (en) | Intumescent flame retardant polybutylene succinate and preparation method thereof | |
JP2021121683A (en) | Polyester-based resin composition and molding, and method for producing polyester-based resin composition | |
JPWO2011155119A1 (en) | Polylactic acid resin composition and molded body thereof | |
JP5412886B2 (en) | Flame retardant polylactic acid resin composition | |
JP2009161658A (en) | Flame-retardant polylactic acid composition | |
JP2009270089A (en) | Polylactic acid resin composition | |
WO2012049896A1 (en) | Polylactic resin composition and polylactic resin molded body | |
JP2010083914A (en) | Polylactic acid resin composition, and method for producing the same | |
JP2009083485A (en) | Manufacturing method of injection-molded article of polylactic acid resin | |
JP2009091549A (en) | Flame-retardant aliphatic polyester resin composition | |
JP5682943B2 (en) | Polylactic acid resin composition and molded article thereof | |
JP5261006B2 (en) | Polylactic acid resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828515 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008538627 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828515 Country of ref document: EP Kind code of ref document: A1 |