WO2008041718A1 - Microchip, and microchip electrophoresis device - Google Patents
Microchip, and microchip electrophoresis device Download PDFInfo
- Publication number
- WO2008041718A1 WO2008041718A1 PCT/JP2007/069340 JP2007069340W WO2008041718A1 WO 2008041718 A1 WO2008041718 A1 WO 2008041718A1 JP 2007069340 W JP2007069340 W JP 2007069340W WO 2008041718 A1 WO2008041718 A1 WO 2008041718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reservoir
- channel
- microchip
- separation channel
- electrode
- Prior art date
Links
- 238000004226 microchip electrophoresis Methods 0.000 title claims abstract description 42
- 238000011084 recovery Methods 0.000 claims abstract description 40
- 238000000926 separation method Methods 0.000 claims description 177
- 238000001514 detection method Methods 0.000 claims description 56
- 239000004115 Sodium Silicate Substances 0.000 claims description 9
- 238000005194 fractionation Methods 0.000 claims description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 51
- 108020004414 DNA Proteins 0.000 description 46
- 239000000872 buffer Substances 0.000 description 43
- 239000002090 nanochannel Substances 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 239000007853 buffer solution Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 230000005284 excitation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000005373 porous glass Substances 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44791—Microapparatus
Definitions
- the present invention relates to a microchip and a microchip electrophoresis apparatus, and more particularly to a microchip and a microchip electrophoresis apparatus for separating a specific sample component from a sample.
- Electrophoresis is a separation method that utilizes a phenomenon in which ions are directed to a pole having an opposite charge when a direct current voltage is applied to a solution.
- gel electrophoresis separates macromolecules by utilizing the fact that macromolecules such as DNA and proteins are blocked by carrier molecules (gels such as agarose and polyacrylamide) and move with increasing molecular weight. It is a method.
- Gel electrophoresis has been used to determine the base sequence of genomic DNA, such as in the Human Genome Project, because DNA can be separated by the difference in the number of bases.
- a microchip electrophoresis apparatus disclosed in Patent Document 1 is disclosed as such a sorting apparatus.
- the microchip electrophoresis apparatus of Patent Document 1 includes a microchip having a flow path shown in FIG. 1, and controls a voltage applied to each electrode of the microchip to control a desired sample from a sample containing a plurality of DNAs. Sample components (specific DNA) The power S
- the microchip electrophoresis apparatus of Patent Document 1 can sort out desired DNA without a researcher performing complicated operations such as cutting out the gel or extracting from the gel.
- Patent Document 1 JP 2002-310992 A
- the microchip electrophoresis apparatus of Patent Document 1 has a problem that the collected sample components are adsorbed to the electrodes in the pod.
- An object of the present invention is to collect a specific sample component from a sample, adsorb the collected specific sample component on an electrode, and collect the microchip and the microchip electricity that can be recovered in a state. It is to provide a swimming device.
- the microchip of the present invention includes a separation channel, a sorting channel intersecting with the separation channel, and A separation reservoir that communicates with the sorting channel, the separation channel separates a specific component contained in a sample migrated therein, the sorting channel separates the specific component, and
- the collection reservoir is a microchip that collects the specific component, and includes a collection electrode reservoir having a collection electrode that communicates with the collection reservoir and applies a voltage to the collection reservoir.
- the microchip electrophoresis apparatus of the present invention includes a separation channel having electrodes at both ends, a sorting channel crossing the separation channel, a collection reservoir communicating with the sorting channel and having an electrode, A microchip having a recovery electrode reservoir that communicates with the recovery reservoir and applies a voltage to the recovery reservoir; and the specific component that migrates in the separation channel of the microchip.
- a separation channel detection unit for optical detection, a collection reservoir detection unit for optical detection of the specific component collected in the collection reservoir of the microchip, the separation channel detection unit and the collection reservoir detection A control unit that determines a voltage to be applied to the electrode of the microchip based on a detection result of the unit, and a voltage that applies a voltage to the electrode of the microchip based on the determination by the control unit. And a application unit.
- the present invention it is possible to adsorb the collected specific sample component to the electrode and recover it in the recovery reservoir in a state of! / ,! Therefore, according to the present invention, it is possible to quickly collect a specific sample component from a sample and collect the sample component that has been collected in a state where it can be easily taken out with a micropipette or the like.
- FIG. 1 is a diagram for explaining the operation of a conventional microchip electrophoresis apparatus.
- A is a schematic diagram of a microchip during introduction processing
- B is a microchip during fractionation processing
- C is a schematic diagram of the microchip during the sorting process.
- FIG. 2 is a diagram showing a microchip according to Embodiment 1 of the present invention, (A) is a plan view of the microchip, (B) is a partially enlarged plan view of the microchip, and (C) is a microchip.
- FIG. 4 is an enlarged sectional view of a part of the chip.
- FIG. 3 is a schematic view showing the structure of a microchip electrophoresis apparatus of the present invention.
- FIG. 4 is an enlarged plan view of an intersection of a separation channel and a sorting channel.
- FIG. 5 is a flowchart for explaining the operation of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
- FIG. 6 is a schematic diagram for explaining an operation of collecting sample components of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
- FIG. 7 is a plan view of a microchip according to a second embodiment of the present invention.
- FIG. 8 is a flowchart for explaining the operation of the microchip electrophoresis apparatus according to the second embodiment of the present invention.
- FIG. 9 is a schematic diagram for explaining an operation of collecting sample components of the microchip electrophoresis apparatus according to the second embodiment of the present invention.
- FIG. 10 is a photograph of the microchip used in the example, (A) is a photograph showing the intersection of the introduction channel and the separation channel, and (B) is a photograph of the intersection of the separation channel and the sorting channel. It is a photograph shown.
- FIG. 11 is a photograph showing the intersection of the introduction channel and the separation channel during the introduction process.
- FIG. 12 Fluorescent photographs showing the intersections of the separation flow path and the preparative flow path, (A) to (C) are fluorescent photographs during blocking processing, and (D) to (F) are during preparative processing. Fluorescent photographs (G) to (I) are fluorescent photographs during the recovery process.
- FIG. 13 is a fluorescent photograph showing the intersection of a separation channel and a sorting channel when no blocking treatment is performed.
- FIG. 14 is a chromatogram of fluorescence intensity near the intersection of the separation channel and the sorting channel.
- FIG. 15 is a fluorescent photograph of the area around the nanochannel in the collection reservoir when a voltage is applied to the collection electrode reservoir.
- the microchip of the present invention is a microchip having a separation channel provided with electrodes at both ends, a sorting channel intersecting with the separation channel, and a collection reservoir communicating with the sorting channel and having an electrode. And a collection electrode reservoir further comprising a collection electrode in communication with the collection reservoir.
- the separation channel is provided with electrodes at both ends, and the introduced sample is electrophoresed.
- the separation channel is preferably filled with a buffer solution, and more preferably filled with a carrier.
- the carrier is not particularly limited, and for example, agarose gel or polyacrylamide gel can be used. If the separation channel detector described later detects fluorescence, a fluorescent dye may be added to the carrier or buffer solution!
- the thickness of the separation channel (width x depth) may be set appropriately according to the type and amount of the sample. For example, the width of the separation channel is preferably in the range of 50 to; lOO ⁇ m, and more preferably in the range of 70 to 100 m.
- the length of the separation channel is not particularly limited. For example, the length from the point where the sample is introduced to the intersection with the sorting channel may be about 65 mm.
- the sorting channel is a channel that sorts a specific sample component migrated in the separation channel at the intersection of the separation channel and the sorting channel.
- the sorting flow path is preferably filled with a buffer solution S, and may further be filled with a carrier.
- the thickness of the sorting channel is not particularly limited! /, But is preferably narrower than the separation channel from the viewpoint of increasing the resolution of the sorting process described later.
- the width of the sorting channel is preferably in the range of 25 to 75 111, and more preferably in the range of 25 to 60 111.
- the length of the sorting channel (the distance from the intersection of the separation channel and the sorting channel to the collection reservoir) is not particularly limited, but may be, for example, about 5 to 10 mm.
- the collection reservoir has a pod filled with a buffer solution inside and an electrode for applying a voltage to the sorting channel, and a specific sample component sorted in the sorting channel is stored in the pod.
- the size of the pod is not particularly limited as long as sample components can be collected, but a depth of about 1 mm is preferred, with a diameter of about 500 ⁇ 111-4 mm being preferred.
- the material of the electrode is not particularly limited as long as a voltage can be applied to the preparative flow path, but gold or platinum is particularly preferred, which is preferably a metal that is difficult to bend such as gold, platinum, copper, and aluminum!
- the collection electrode reservoir has a pod filled with a buffer solution therein, and a collection electrode for applying a voltage to the collection reservoir.
- the collection electrode reservoir preferably communicates with the collection reservoir through a nanochannel that allows water molecules to pass through but does not allow sample components to pass through.
- the material of the nanochannel is not particularly limited as long as it allows water molecules to pass through but does not allow sample components to pass through, but for example, it is porous glass made of sodium silicate. Any porous material can be used.
- the size of the pod and the material of the collection electrode are not particularly limited, and may be the same as the collection reservoir.
- the length of the nanochannel and the distance between the collection reservoir and the collection electrode reservoir are not particularly limited as long as the collection electrode reservoir can apply a voltage to the collection reservoir, and depends on the material of the nanochannel. What is necessary is just to adjust suitably.
- the length of the nanochannel is 5 to 10 mm.
- the distance between the collection reservoir and the collection electrode reservoir is 0.5 to 1 mm. Any degree is acceptable.
- microchip of the present invention can be used in any microchip electrophoresis apparatus, for example, the following microchip electrophoresis apparatus.
- the microchip electrophoresis apparatus of the present invention includes the above-described microchip of the present invention, a separation flow path detection unit, a recovery reservoir detection unit, a control unit, and a voltage application unit.
- the separation channel detection unit optically detects a sample component that migrates in the separation channel in the vicinity of the intersection of the separation channel and the sorting channel of the microchip. At this time, the separation channel detection unit is migrated in the separation channel near the intersection of the separation channel and the separation channel, which is composed of only the sample components to be migrated in the separation channel! It is also preferable to detect sample components!
- the method for optically detecting the sample component by the separation channel detection unit is not particularly limited, but for example, fluorescence emitted from the sample component stained with a fluorescent dye may be detected! /. The detection result is output to the control unit.
- the collection reservoir detection unit optically detects a sample component collected in the collection reservoir in the collection reservoir of the microchip.
- the method for optically detecting the sample component by the collection reservoir detector is not particularly limited, and may be the same method as the separation channel detector.
- the detection result is output to the control unit.
- the control unit determines a voltage to be applied to each electrode of the microchip. For example, when a specific sample component is separated from the sample by migrating the sample in the separation channel, the control unit applies a voltage of the opposite polarity to the charge of the sample component at the downstream electrode in the separation channel. Decide to apply. In addition, when the separation channel detection unit detects that the desired sample component has reached the intersection of the separation channel and the sorting channel, or the desired sample component is contained in the sorting channel. When migrating, the control unit determines to apply a voltage having a polarity opposite to the charge of the sample component to the electrode in the collection reservoir.
- the control unit detects the charge of the sample component on the electrode in the collection electrode reservoir (collection electrode). Decide to apply a voltage of opposite polarity.
- the voltage applied to each electrode by the control unit is not particularly limited as long as sample components can be migrated. For example, a voltage of about 150 V / cm may be applied to the flow path for running the sample components. Whether the sample component detected by the separation channel detection unit is a desired sample component is preferably set in advance by the user! /.
- the voltage application unit applies a voltage to each electrode of the microchip based on the determination of the control unit.
- the voltage application unit may be provided with, for example, a power source and a switching switch circuit group having a relace switch circuit.
- Sample components that can be collected and collected by the microchip and microchip electrophoresis apparatus of the present invention are not particularly limited, and examples thereof include DNA, RNA, protein, and cells.
- the voltage application unit applies a voltage to the separation channel of the microchip based on the determination of the control unit, and the sample introduced into the separation channel is separated from the introduction point to the separation channel. Electrophoresis toward the intersection of the and the separation flow path. Thus, the sample is migrated toward the intersection of the separation channel and the sorting channel while being separated into each sample component by the molecular sieve effect (separation process).
- the voltage application unit determines whether the micro-channel is based on the determination of the control unit. A voltage is applied to the tip separation channel. As a result, the desired sample component is taken into the sorting channel (sorting process) and collected in the collecting reservoir (collecting process). Note that the separation channel detector is not desired! / Even if it is detected that the sample component has reached the intersection of the separation channel and the sorting channel, the voltage Since the applying unit does not apply a voltage to the sorting channel based on the determination of the control unit, the separating process is continued without performing the sorting process. Therefore, undesired sample components are further migrated toward the electrode downstream of the separation channel without being taken into the sorting channel.
- the voltage application unit applies a voltage to the collection electrode of the microchip based on the determination of the control unit. Is applied.
- the sample component adsorbed on the electrode in the collection reservoir moves away from the electrode in the collection reservoir and further migrates toward the collection electrode reservoir.
- the sample component is blocked from migration by the nanochannel between the collection reservoir and the collection electrode reservoir, so it eventually remains in the area surrounding the nanochannel in the collection reservoir.
- the microchip electrophoresis apparatus of the present invention separates a desired sample component from a sample, and collects the collected sample component in a collection reservoir in a state where it can be easily taken out with a micropipette or the like. Can do.
- the microchip of the present invention preferably further includes a sample reservoir having electrodes, and an introduction channel that communicates with the sample reservoir and intersects the separation channel.
- the sample reservoir includes a pod into which a sample is injected, and an electrode for applying a voltage to the sorting channel.
- the size of the pod is not particularly limited as long as a desired amount of the sample component can be injected, but a depth of about 1 mm is preferable, and a diameter of about 500 111 to 4111 111 is preferable.
- the material of the electrode is not particularly limited as long as a voltage can be applied to the introduction flow path, and may be the same as the material of the electrode of the recovery reservoir.
- the introduction channel is provided with electrodes (one of which is an electrode in the sample reservoir) at both ends, and the sample injected into the sample reservoir is transferred from the intersection of the introduction channel and the separation channel to the separation channel.
- This is a flow channel to be introduced.
- the introduction channel is preferably filled with a buffer solution inside, and may further be filled with a carrier.
- the thickness of the introduction channel (width X depth) is not particularly limited, but may be, for example, about 90 m width x 25 Hm depth.
- the length of the introduction channel is not particularly limited. For example, the length from the communication point with the sample reservoir to the intersection with the separation channel may be about 5 mm.
- the sample reservoir and the introduction channel are used for introducing the sample into the separation channel (introduction process) performed before the separation process. Hereinafter, the flow of the introduction process will be described.
- a sample containing a desired sample component is injected into a sample reservoir.
- the voltage application unit applies a voltage to the introduction flow path to cause the sample to migrate from the sample reservoir toward the intersection of the introduction flow path and the separation flow path.
- the voltage application unit introduces a part of the sample into the separation channel by applying a voltage to the separation channel for a short time.
- the sample By using the sample reservoir and the introduction channel, the sample can be introduced into the separation channel while preventing diffusion and leakage of the sample. Therefore, since a clear sample plug can be formed in the separation channel, it is possible to increase the resolution of subsequent separation processing and sorting processing.
- the microchip of the present invention preferably further has a block electrode.
- the block electrode is an electrode that is provided at a position communicating with the sorting channel and applies a voltage to the sorting channel.
- the material of the block electrode is not particularly limited as long as a voltage can be applied to the introduction flow path, and may be the same as the material of the electrode of the recovery reservoir.
- the block electrode is used during the separation process.
- the control unit has the same polarity as the charge of the sample component on the block electrode Decide to apply a voltage of.
- the voltage application unit applies a voltage to the block electrode based on the determination of the control unit (blocking process).
- the block electrode By using the block electrode, it is possible to prevent a sample component other than the specific sample component from entering the sorting flow path. Therefore, the sorting channel can be prevented from being stained by sample components other than a specific sample component.
- the microchip of the present invention preferably has two or more block electrodes. At this time, it is more preferable that the block electrodes are disposed on both lateral sides of the separation channel.
- the sorting channel is on both sides of the separation channel (for example, when the separation channel and the sorting channel cross in a cross)
- one block electrode has a voltage across the sorting channel on one side.
- the lock electrode can prevent the sorting channels on both sides from being contaminated by sample components other than the specific sample component.
- the thickness of the sorting channel is preferably thinner than the separation channel from the viewpoint of increasing the resolution of the blocking process.
- the width of the sorting channel is preferably in the range of 25 to 75 111, more preferably in the range of 25-60 ⁇ 111 (7)
- FIG. 2A is a diagram showing a configuration of a microchip used in the microchip electrophoresis apparatus according to Embodiment 1 of the present invention.
- the microchip 100 includes an introduction channel 102, a separation channel 104, a sorting channel 106, two block channels 108a and 108b, a sample reservoir 110, and a sample discharge. It has a reservoir 112, a buffer reservoir 114, a buffer discharge reservoir 116, a collection risano 118, a collection electrode reservoir 120, and two block electrode reservoirs 122a and 122b.
- the size of the microchip 100 should be about 100 mm (horizontal direction in the figure) X 30 mm (vertical direction in the figure)! /.
- the introduction channel 102 intersects with the separation channel 104, and is a channel provided with a sample reservoir 110 and a sample discharge reservoir 112 at both ends thereof.
- the introduction flow path 102 may be a flow path having a width of 90 Hm, a depth of 25 ⁇ m, and a length of 10 mm, and intersecting the separation flow path 104 at the midpoint.
- the separation channel 104 intersects with the introduction channel 102 and the sorting channel 106 so as to communicate with each other, and the buffer reservoir 114 and the buffer discharge reservoir 116 are provided at both ends thereof.
- the separation channel 104 has a width of 90 ⁇ m, a depth of 25 ⁇ m, and a length of 85 mm.
- the separation channel 104 intersects the introduction channel 102 at a point 5 mm from the buffer reservoir 114 and It is sufficient to cross the sorting channel 106 at a point 15 mm from the discharge reservoir 116.
- the sorting channel 106 intersects with the separation channel 104 so as to communicate with the separation channel 104, and is provided with a collection reservoir 118 at one end.
- the sorting channel 106 includes block channels 108a and 108b. Also communicate.
- a portion of the sorting channel 106 that is perpendicular to the separation channel 104 is a channel having a width of 55 111, a depth of 25 111, and a length of 10 mm. It is sufficient to cross the road 104.
- a portion of the sorting channel 106 that is parallel to the separation channel 104 may be, for example, a channel having a width of 90 Hm, a depth of 25 ⁇ m, and a length of 5 mm. ! /
- the block channels 108a and 108b are channels that communicate with the sorting channel 106 at one end, and are channels in which the block electrode reservoirs 122a and 122b are provided at the other end.
- the block channels 108a and 108b may be channels having a width of 90 mm 111, a depth of 25 mm, and a length of 20 mm.
- Each of the Sampno Relizano 110, the sample discharge reservoir 112, the buffer reservoir 114, the buffer discharge reservoir 116, the collection reservoir 118, the collection electrode reservoir 120, and the block electrode reservoirs 122a and 122b has a buffer solution ( It has a pod for storing a buffer) and a sample (sample), and an electrode (not shown! /) For applying a voltage to each channel.
- the electrode of the collection electrode reservoir 120 is referred to as a “collection electrode”.
- the electrodes respectively included in the block electrode reservoirs 122a and 122b are referred to as “block electrodes”.
- applying a voltage to the electrode in the reservoir A may be referred to as “applying a voltage to the reservoir A”.
- the size of the pods of the reservoirs 110 to 122 may be about 3 to 4 mm in diameter and about 1 mm in depth.
- FIG. 2B is a partially enlarged plan view of the microchip 100 showing the collection reservoir 118 and the collection electrode reservoir 120.
- FIG. 2C is a partially enlarged sectional view of the microchip 100 showing the collection reservoir 118 and the collection electrode reservoir 120. For convenience of explanation, electrodes are not shown.
- the collection electrode reservoir 120 is formed adjacent to the collection reservoir 118, and passes through the nanochannel 124 through which water molecules pass but sample components do not pass. Communicate with 118.
- FIG. 3 is a diagram showing a configuration of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
- the microchip electrophoresis apparatus 200 includes the microchip 100, the separation channel detection unit 210, the recovery reservoir detection unit 220, and the control unit shown in FIG. 230 and a voltage application unit 240.
- the separation channel detection unit 210 detects the fluorescence emitted from the sample component in the vicinity of the intersection between the separation channel 104 and the sorting channel 106 of the microchip 100.
- FIG. 4 is a schematic diagram showing the vicinity of the intersection between the separation channel 104 and the sorting channel 106.
- the left side is the buffer reservoir 114 side
- the right side is the buffer discharge reservoir 116 side
- the upper side is the block electrode reservoir 122a and recovery reservoir 118 side
- the lower side is the block electrode reservoir 122b side.
- the separation channel detection unit 210 detects fluorescence at three points a to C in FIG. 4 to separate the sample component (point a) that has migrated in the separation channel 104 into the separation channel. It is possible to distinguish and detect the sample component (point b) that has not been sampled and the sample component (point c) separated in the sorting channel 106.
- the detection result is output to the control unit 230.
- the separation channel detection unit 210 includes a mercury lamp 211 as an excitation light source, an excitation filter 212 that separates excitation light, and guides the excitation light in the direction of the sample component.
- the dichroic mirror 213 which guides the fluorescence emitted from the components in the direction of the CCD camera 215, the absorption filter 214 for separating the fluorescence, and the CCD camera 215 for detecting the fluorescence.
- the method for emitting fluorescence from the sample component may be appropriately selected according to the sample component. For example, if the sample component is DNA, the sample component may be stained with a DNA-binding fluorescent dye such as ethidium bromide or cyber green.
- the collection reservoir detection unit 220 detects fluorescence emitted from the sample components in the collection reservoir 118 of the microchip 100.
- the collection reservoir detection unit 220 may have the same configuration as that of the separation flow path detection unit 210, for example.
- the detection result is output to the control unit 230.
- the control unit 230 determines a voltage to be applied to the electrodes in each reservoir of the microchip 100. At this time, the control unit 230 determines the position of each sample component in the vicinity of the intersection of the separation channel 104 and the separation channel 106 from the detection result of the separation channel detection unit 210, and whether the sample component should be separated. The voltage to be applied to each electrode of the microchip 100 is determined depending on whether or not. Further, the control unit 230 determines whether or not the sample component collected from the detection result of the collection reservoir detection unit 220 is collected in the collection reservoir 118, and whether or not the sample component is collected in the collection reservoir 118. The voltage applied to each electrode of the microchip 100 is determined accordingly. For example, if the sample component is DNA (negatively charged), the flow path for running the sample component Apply a positive voltage to the downstream electrode and ground the upstream electrode! /.
- the voltage application unit 240 applies a voltage to the electrodes in each reservoir of the microchip 100 based on the determination by the control unit 230.
- the voltage application unit 240 may include power supplies 242a to 242c and a switching switch circuit group 244 having a relaced circuit.
- the microchip electrophoresis apparatus separates and collects a desired sample component. The flow to do will be described.
- step S1000 a sample containing a desired sample component is injected into the sample reservoir 110.
- step S 1100 the sample is migrated from the sample reservoir 110 toward the sample discharge reservoir 112 by applying a voltage to the introduction channel 102, and the sample is introduced into the introduction channel 102 and the separation channel 104. After reaching the crossing point, a part of the sample is introduced into the separation channel 104 by applying a voltage to the separation channel 104 for a short time (introduction process).
- the sample component is DNA
- the sample reservoir 110 is grounded and a positive voltage is applied to the sample discharge reservoir 112.
- the buffer reservoir 114 and the buffer discharge reservoir 116 are also preferably grounded so that contaminants do not enter the separation channel 104.
- the sample reservoir 110 is grounded and the sample discharge reservoir 112 is grounded. And apply a positive voltage to the buffer drain reservoir 116 for 4 seconds.
- step S 1200 the sample is migrated from the intersection of the introduction flow path 102 and the separation flow path 104 toward the buffer discharge reservoir 116 by applying a voltage to the separation flow path 104.
- the sample is separated into each sample component by the molecular sieving effect (separation process). For example, if the sample component is DNA, as shown in Fig. 6A, ground the buffer reservoir 114 (indicated by "-" in the figure) and apply a positive voltage to the notch drain reservoir 116! / (Indicated by “+” in the figure).
- step S1300 when the separation channel detection unit 210 detects that the separated sample component has reached the intersection of the separation channel 104 and the sorting channel 106 (see FIG.
- the controller 230 determines whether or not this sample component is a desired sample component. If this sample component is not the desired sample component (S1300: NO), go to step S1400. On the other hand, if this sample component is the desired sample component (S 1300: YES), the process proceeds to step S 1500.
- step S 1400 an undesired sample component is swung toward the buffer discharge reservoir 116.
- voltage is applied to the block electrode reservoirs 122a and 122b (block electrodes) to prevent the sample component from entering the sorting channel 106 (blocking process).
- the block electrode reservoirs 122a and 122b can be grounded. Good (see Figure 6B).
- step S1500 a desired sample component is taken into the sorting channel 106 by applying a voltage to the sorting channel 106 (sorting process).
- a voltage For example, when the sample component is DNA, the buffer reservoir 114 is grounded, the buffer discharge reservoir 116 is opened, and a positive voltage is applied to the collection reservoir 118 as shown in FIG. 6D.
- step S 1600 the collected sample component is collected in the collection reservoir 118 (collection process). For example, if the sample component is DNA, the buffer reservoir 114 is opened, the block electrode reservoirs 122a and 122b are grounded, and a positive voltage is applied to the collection reservoir 118 (see FIG. 6E), so that the collected sample components Can be recovered in the recovery reservoir 118 (see Figure 6F).
- step S1700 when the collection reservoir detection unit 220 detects that the sample components collected in the collection reservoir 118 have been collected, a voltage is applied to the collection electrode reservoir 120. Then, the sample component is separated from the electrode in the collection reservoir 118, and this flow is finished.
- the collected sample component is DNA
- the block electrode reservoirs 122a and 122b are grounded, the collection reservoir 118 is opened, and a positive voltage is applied to the collection electrode reservoir 120. do it. By doing this, The sample component adsorbed on the electrode in the collection reservoir 118 moves away from the electrode and further migrates toward the collection electrode reservoir 120. Since sample components are prevented from migrating by the nanochannel 124, the sample component will eventually end up in the region around the nanochannel 124 in the collection reservoir 118.
- the collected sample component is prevented from adsorbing to the electrode in the collection reservoir, and the collected sample component is collected in the region around the nanochannel in the collection reservoir. Therefore, the sample components in the collection reservoir can be easily removed using a micropipette.
- the block electrode since the block electrode applies a voltage to the sorting flow path, it is possible to prevent a desired layer and band from entering the sorting flow path. The ability to sort and collect components without contamination is possible.
- the voltage to be applied to each electrode of the microchip is determined by the control unit based on the detection results of the separation channel detection unit and the recovery reservoir detection unit. Sample components can be accurately sorted by automatic control without any work.
- Embodiment 2 shows an example in which there are a plurality of recovery reservoirs.
- the same components as those of the microchip and the microchip electrophoresis apparatus according to the first embodiment are denoted by the same reference numerals, and description of overlapping portions is omitted.
- FIG. 7 is a diagram showing a configuration of a microchip according to Embodiment 2 of the present invention.
- the microchip 300 of the present embodiment includes an introduction channel 102, a separation channel 104, a sorting channel 302, two block channels 108a and 108b, a sample reservoir 110, and a sample. It has a discharge reservoir 112, a buffer reservoir 114, a buffer discharge reservoir 116, a plurality of recovery reservoirs 304a to 304d, a plurality of recovery electrode reservoirs 306a to 306d, and two block electrode reservoirs 122a and 122b.
- the components other than the sorting channel 302 are the same as those in the first embodiment.
- the sorting channel 302 intersects with the separation channel 104 and communicates with the separation channel 104. Is a flow path that branches into a plurality of sides on both sides. Recovered Lisano 304a to 304d forces S are provided at the branch ends of the sorting flow path 302, respectively.
- the sorting flow paths 302 communicating with the collection reservoirs 304a to 304d may be referred to as branch flow paths 302a to 302d, respectively.
- the sorting channel 302 communicates with the block channels 108a and 108b. For example, a portion of the sorting channel 302 that is perpendicular to the separation channel 104 (see FIG.
- the branch channels 302a and 302d are, for example, 90 ⁇ m wide, 25 ⁇ m deep, and 5 mm long, and the branch channels 302b and 302c are 90 mm wide.
- the channel should be 111, 25 mm deep and 3 mm long.
- a microchip electrophoresis apparatus 200 includes a microchip 300, a separation channel detection unit 210, a plurality of collection reservoir detection units 220a to 220d, a control unit 230, and a voltage application shown in FIG. Part 240 is provided.
- Components other than the microchip 300 are the same as those in the first embodiment.
- Steps S1000 to S1200 are the same as the steps in the flowchart of FIG.
- step S2000 when the separation channel detector 210 optically detects that the separated sample component has reached the intersection of the separation channel 104 and the sorting channel 302 (see FIG. 9A).
- the control unit 230 determines whether this sample component is a desired sample component.
- the separation channel detection unit 210 detects fluorescence at four points a to d near the intersection of the separation channel and the sorting channel shown in FIG. To do. If this sample component is not the desired sample component! / (S2000: NO), go to step S1400. On the other hand, if this sample component is the desired sample component (S2000: YES), the process proceeds to step S2100.
- step S 2100 a desired sample component is taken into the sorting channel 302 by applying a voltage to the sorting channel 106 (sorting process). For example, transfer the desired DNA to the collection reservoir 304a.
- sorting process For example, transfer the desired DNA to the collection reservoir 304a.
- FIG. 9D the buffer discharge reservoir 116 is opened and a positive voltage is applied to the collection reservoir 304a.
- step S2200 the collected sample components are collected in one of the collection reservoirs 304a to 304d (collection process).
- the plurality of recovery reservoirs are used from reservoirs far from the separation channel 104. That is, in the case of the microchip shown in FIG. 7, the sample components are collected in the order of the collection risano 304a, the collection reservoir 304d, the collection reservoir 304b, and the collection reservoir 304c.
- the sample components are collected in the order of the collection risano 304a, the collection reservoir 304d, the collection reservoir 304b, and the collection reservoir 304c.
- open the buffer reservoir 114, ground the block electrode reservoirs 122a and 122b, and apply a positive voltage to the collection reservoir 304a see FIG. 9E.
- the collected sample components can be collected in the collection reservoir 304a (see FIG.
- the branch flow path 302b is cleaned by applying a voltage to the branch flow path 302b located inside the branch flow path 302a (washing). processing).
- the recovery reservoir 304b may be grounded as shown in FIG. 9F in order to wash the branch channel 302b.
- the sample component that has entered the branch channel 302b during the recovery process can be discharged from the branch channel 302b (see FIGS. 9E and 9F).
- step S2300 when the collection reservoir detector 220a detects that the sample components collected in the collection reservoir 304a are collected, a voltage is applied to the collection electrode reservoir 306a for a predetermined time. As a result, the sample component is separated from the electrode in the collection reservoir 304a.
- the collected sample component is DNA
- FIG. 9H ground the block electrode reservoirs 122a and 122b, open the collection reservoir 304a, and apply a positive voltage to the collection electrode reservoir 306a. do it.
- the sample component adsorbed on the electrode in the collection reservoir 304a is separated from the electrode and further migrates in the direction of the collection electrode reservoir 306a. Since the sample component is prevented from migrating by the nanochannel, it finally remains in the region around the nanochannel in the collection reservoir 304a.
- control unit 230 determines whether or not to end this flow.
- a plurality of sample components derived from one sample can be collected in different collection reservoirs in one microchip. Touch with force S.
- the electrodes are arranged symmetrically with respect to the separation channel! /, So that the structure of the electric circuit and the switching operation of voltage application are prevented from being complicated. Doing with the power S
- the configuration of the microchip in each embodiment of the present invention is not limited to that described in each of the above embodiments, and the shape and number of each flow path, the number of reservoirs, and the like are changed. Also good.
- the microchip used in this example was made of glass having the flow path shown in FIG. 2A.
- the introduction channel and the separation channel were 90 m wide x 20 m deep.
- the sorting channel is 50 m wide and 20 m deep to improve sorting resolution.
- Fig. 10A shows a photomicrograph of the intersection of the introduction channel and the separation channel
- Fig. 10B shows a photomicrograph of the intersection of the separation channel and the sorting channel.
- “1” indicates the buffer reservoir side
- “2” indicates the sample reservoir side
- “4” indicates the sample discharge reservoir side
- Figure 10B “3” indicates the buffer discharge reservoir side
- “0” indicates the side without the recovery reservoir
- “8” indicates the side with the recovery reservoir.
- the introduction channel was 10 mm long and crossed the separation channel at the midpoint.
- the separation channel was 85 mm long, intersecting the inlet channel at a point 5 mm from the buffer reservoir, and intersecting the preparatory channel at a point 15 mm from the buffer discharge reservoir.
- the part of the sorting channel that is perpendicular to the separation channel is 10 mm long and intersects the separation channel at the midpoint.
- the part of the sorting channel parallel to the separation channel was 10 mm long.
- the block channel was 20 mm long.
- the microchip used in this example was manufactured by bonding a glass plate with engraved channel grooves and a glass plate with holes for reservoirs (pods), using sodium silicate as an adhesive layer. did. Specifically, first, using a general photolithography technique and a wet etching technique, a glass plate with engraved channel grooves and a glass plate with holes for reservoirs (pods) were produced. Next, a thin film of sodium silicate was formed on one glass plate by spin-coating a 0.1M sodium silicate aqueous solution. The other glass plate was placed on the sodium silicate thin film and heated at 200 ° C. By doing so, the sodium silicate became a porous glass, and the two glass plates were bonded to each other. The formed sodium silicate porous glass also functions as a nanochannel between the collection reservoir and the collection electrode reservoir, as shown in FIG. 2C. At this time, the length of the nanochannel (“a” in FIG. 2C) was 10 m.
- a polydimethylacrylamide gel containing a DNA-binding fluorescent dye cyber green and a buffer solution were previously introduced into the flow path.
- the separation channel detection unit and the recovery reservoir detection unit are an inverted system microscope (1X70: equipped with a mercury lamp, an excitation filter (460 to 490 nm), a dichroic mirror (505 nm), and an absorption filter (510 to 550 nm). Olympus) and CCD camera (ORCA-EG: Hamamatsu Photonics).
- the separation channel detector was set to monitor the change in fluorescence intensity at each point A to C shown in FIG. 10B.
- the voltage switching by the control unit and the voltage application unit was set as follows.
- the separation process was set so that the buffer reservoir was grounded, a voltage of +1300 V was applied to the buffer discharge reservoir, and the other reservoirs were opened (see Figure 6A).
- Blocking process The two block electrode reservoirs were set to ground when the fluorescence intensity at point B rose above a certain threshold (see Fig. 6B). In addition, when the fluorescence intensity at point B fell below a predetermined threshold, the two block electrode reservoirs were set back to open (see FIG. 6C).
- the sorting process was set to open the buffer discharge reservoir and apply a voltage of +1300 V to the collection reservoir when the fluorescence intensity at point A rose above a predetermined threshold (see Figure 6D).
- the collection process was set to open the buffer reservoir and ground the two block electrode reservoirs when the fluorescence intensity at point C fell below a predetermined threshold (see Figure 9E and Figure 9F).
- a predetermined threshold see Figure 9E and Figure 9F.
- the collection reservoir was opened and a voltage of +1300 V was applied to the collection electrode reservoir (see FIG. 9G).
- an introduction process was performed. First, the sample reservoir, the buffer reservoir, and the buffer discharge reservoir were grounded, and a voltage of +300 V was applied to the sample discharge reservoir. As a result, the sample started to migrate from the sample reservoir toward the sample discharge reservoir. Next, when the sample reaches the intersection of the introduction channel and the separation channel, the sample reservoir is grounded, + 300V voltage is applied to the sample discharge reservoir, and + 1300V voltage is applied simultaneously to the sample discharge reservoir for 4 seconds. And a part of the sample was introduced into the separation channel.
- FIG. 11 is a fluorescent photograph near the intersection when the sample reaches the intersection between the introduction channel and the separation channel.
- “1” indicates the buffer reservoir side
- “2” indicates the sample reservoir side
- “3” indicates the buffer discharge reservoir side
- “4” indicates the sample discharge reservoir side.
- the multiple bands continued to migrate toward the buffer discharge reservoir, and the force with a small number of bases reached the intersection of the separation channel and the sorting channel in order. Since the first reached band (10 bp DNA) was not the desired DNA (20 bp DNA), blocking treatment was performed. That is, when the fluorescence intensity at point B rises above a predetermined threshold, the two block electrode reservoirs were grounded. As a result, this band (10 bp DNA) migrated toward the buffer discharge reservoir without entering the sorting channel (see FIG. 6B). When the fluorescence intensity at point B fell below a predetermined threshold, the two block electrode reservoirs were returned to the open state and electrophoresis continued (see FIG. 6C).
- FIG. 12A to FIG. 12C are fluorescent photographs in the vicinity of the intersection of the separation channel and the sorting channel during the blocking process.
- Fig. 12A is a photo when an undesired band reaches the intersection
- Fig. 12B is a photo when it is detected that the fluorescence intensity at point B has risen above a predetermined threshold
- Fig. 12C is a photo when blocking processing is performed. It is.
- the vertical channel is the separation channel
- the horizontal channel is the sorting channel
- the upper is the buffer reservoir side
- the lower is the notch discharge reservoir side. From these photographs, it can be seen that by performing the blocking treatment, an undesired band (10 bp DNA) does not enter the sorting channel.
- FIG. 13 is a fluorescent photograph in the vicinity of the intersection of the separation channel and the sorting channel when a blocking process is applied as a comparative example.
- the direction of each channel is the same as the photograph in FIG. From this photograph, it can be seen that undesired bands (lOObp DNA and lObp DNA) enter the preparative channel without blocking treatment.
- FIGS. 12D to 12F are fluorescence photographs near the intersection of the separation channel and the sorting channel during the sorting process.
- Fig. 12D is a photograph when it is detected that the fluorescence intensity at point A has risen above a predetermined threshold
- Fig. 12E is a photograph when sorting processing is started
- Fig. 12F is a photograph when sorting processing is finished.
- the direction of each channel is the same as the photograph in FIG. 12A. From these photographs, it can be seen that the desired band (20 bp DNA) was fractionated by the fractionation process.
- a collecting process was performed in order to collect the desired DNA collected in the collecting reservoir. That is, when the fluorescence intensity at point C fell below a predetermined threshold, the buffer reservoir was opened and the two block electrode reservoirs were grounded. As a result, the desired band (20 bp DNA) migrated toward the collection reservoir and was finally collected in the collection reservoir (see FIGS. 6E and 6F).
- FIGS. 12G to 121 are fluorescent photographs near the intersection of the separation channel and the sorting channel during the recovery process.
- 12G is a photograph when the collection process is started
- FIG. 12H is a photograph during the collection process
- FIG. 121 is a photograph when the collection process is completed.
- the direction of each flow path is the same as the photograph in FIG. 12A. From these photographs, it can be seen that the desired band was collected as intended by the collection process.
- FIG. 14 is a chromatogram of fluorescence intensity at each point of A to C.
- the horizontal axis represents time (seconds), and the vertical axis represents fluorescence intensity (arb. Units).
- the upper row shows the fluorescence intensity at point A, the middle row at point C, and the lower row at point B.
- the arrow in the chromatogram (upper part) at point A indicates the start of the desired band collection process
- the arrow in the chromatogram (middle stage) at point C indicates the start of the recovery process for the desired band.
- Fig. 14 shows that an undesired band (first band) is detected at point A (upper) and then detected at point B (lower), so this band is not sorted. .
- the desired band second band
- is detected at point A (upper) and then detected at point C (middle) only this band is separated! I'm worried.
- FIG. 15 is a fluorescent photograph of the area around the nanochannel in the collection reservoir when a voltage is applied to the collection electrode reservoir.
- the upper side of the upper dotted line shows the collection reservoir 118
- the lower side of the lower dotted line shows the collection electrode reservoir 120
- what appears white is the sample 400 (20 bp DNA ladder) fluorescently stained with Cyber Green. It is.
- the sample component (20 bp DNA) in the collection reservoir separates from the electrode in the collection reservoir and collects in the region around the nanochannel.
- the microchip and the microchip electrophoresis apparatus according to the present invention can separate sample components such as DNA without requiring a complicated work by a researcher, and thus biological materials related to any bioindustry. It is useful for analysis.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Provided is a microchip electrophoresis device capable of dispensing a specific sample component from a sample and recovering the dispensed specific sample component into a pod without being adsorbed by an electrode. A microchip to be used in the microchip electrophoresis device is constituted to include a separate passage (104), a dispensing passage (106) intersecting with the separate passage, a recovery reservoir (pod) (118) communicating with the dispensing passage, and a recovery electrode reservoir (120) communicating with the recovery reservoir and having a recovery electrode. The microchip electrophoresis device separates the specific sample component contained in the sample, through the separate passage, dispenses the specific sample component through the dispensing passage, and recovers the dispensed specific sample component into the recovery reservoir. After this, the microchip electrophoresis device applies a voltage to the recovery reservoir from the recovery electrode so that the sample component in the recovery reservoir may leave the electrode.
Description
明 細 書 Specification
マイクロチップおよびマイクロチップ電気泳動装置 Microchip and microchip electrophoresis apparatus
技術分野 Technical field
[0001] 本発明は、マイクロチップおよびマイクロチップ電気泳動装置に関し、特に試料から 特定の試料成分を分取するマイクロチップおよびマイクロチップ電気泳動装置に関 する。 [0001] The present invention relates to a microchip and a microchip electrophoresis apparatus, and more particularly to a microchip and a microchip electrophoresis apparatus for separating a specific sample component from a sample.
背景技術 Background art
[0002] 電気泳動は、溶液に直流電圧をかけたときに、イオンが反対電荷を有する極に向 力、つて泳動する現象を利用した分離法である。その中でもゲル電気泳動は、 DNAや タンパク質などの高分子が担体分子(ァガロースやポリアクリルアミドなどのゲル)に遮 られ分子量の大きいものほど移動しに《なることを利用して、高分子を分離する方法 である。ゲル電気泳動は、 DNAを塩基数の違いにより分離することができるため、ヒト ゲノム計画などでゲノム DNAの塩基配列を決定するのに用いられてきた。 [0002] Electrophoresis is a separation method that utilizes a phenomenon in which ions are directed to a pole having an opposite charge when a direct current voltage is applied to a solution. Among them, gel electrophoresis separates macromolecules by utilizing the fact that macromolecules such as DNA and proteins are blocked by carrier molecules (gels such as agarose and polyacrylamide) and move with increasing molecular weight. It is a method. Gel electrophoresis has been used to determine the base sequence of genomic DNA, such as in the Human Genome Project, because DNA can be separated by the difference in the number of bases.
[0003] 2003年にヒトゲノムの塩基配列の解読が終了したことが宣言され、いわゆるポスト ゲノム時代に突入した。現在では、 DNAの塩基配列を決定するだけではなぐ塩基 配列が有する遺伝情報や疾病に関わる情報などを明らかにすることが重要な課題と なっている。この課題を成し遂げるためには、細胞内に存在する膨大な量の核酸 (D NAおよび RNA)の中から、所望の DNAを取り出す(分取する)ことが必要である。 [0003] In 2003, it was declared that the decoding of the base sequence of the human genome was completed, and it entered the so-called post-genomic era. At present, it is an important issue to clarify genetic information and disease-related information possessed by a base sequence that is more than just determining the DNA base sequence. In order to accomplish this task, it is necessary to take out (sort) the desired DNA from the enormous amount of nucleic acids (DNA and RNA) present in the cell.
[0004] 従来、所望の DNAを分取するには、ゲル電気泳動により分離した所望の DNAを その周囲のゲルと共にカッターやメスなどで切り出し、切り出したゲルから所望の DN Aを抽出することが行われてきた。この方法は、研究者が行わなければならない作業 が多ぐ研究者にとって煩雑であった。そこで、研究者にとって簡便な、高速かつ自 動化された分取装置の登場が求められていた。 [0004] Conventionally, in order to fractionate desired DNA, the desired DNA separated by gel electrophoresis is cut out together with the surrounding gel with a cutter or a scalpel, and the desired DNA is extracted from the cut out gel. Has been done. This method was cumbersome for researchers who had a lot of work to do. Therefore, there has been a demand for the introduction of a high-speed and automated sorting device that is easy for researchers.
[0005] このような分取装置として、特許文献 1に示されるマイクロチップ電気泳動装置が開 示されている。特許文献 1のマイクロチップ電気泳動装置は、図 1に示される流路を 有するマイクロチップを備え、このマイクロチップの各電極に印加する電圧を制御す ることにより、複数の DNAを含む試料から所望の試料成分(特定の DNA)を分取す
ること力 Sでさる。 [0005] A microchip electrophoresis apparatus disclosed in Patent Document 1 is disclosed as such a sorting apparatus. The microchip electrophoresis apparatus of Patent Document 1 includes a microchip having a flow path shown in FIG. 1, and controls a voltage applied to each electrode of the microchip to control a desired sample from a sample containing a plurality of DNAs. Sample components (specific DNA) The power S
[0006] 図 1を用いて、特許文献 1のマイクロチップ電気泳動装置の動作を説明する。まず、 ポッド 2aに試料を入れ、導入泳動溝 5において試料を泳動させる。所望のバンドが導 入泳動溝 5と分画泳動溝 6との交点に到達した時、各電極に印加する電圧を切り換 え、所望のバンドを分画溝 6a内に導入する(図 1A :導入処理)。次に、導入したバン ドを分画溝 6a内で泳動させ、試料を試料成分に分画(分離)する(図 1B:分画処理) 。所望のバンドが分画溝 6aと分取溝 6bとの交点に到達した時、各電極に印加する電 圧を切り換え、所望のバンドを分取溝 6b内に分取する。最後に、分取したバンドをポ ッド 2f〜2mに回収する(図 1C:分取処理)。 [0006] The operation of the microchip electrophoresis apparatus disclosed in Patent Document 1 will be described with reference to FIG. First, a sample is placed in the pod 2a, and the sample is migrated in the introduction migration groove 5. When the desired band reaches the intersection between the introduction migration groove 5 and the fractionation migration groove 6, the voltage applied to each electrode is switched, and the desired band is introduced into the fractionation groove 6a (FIG. 1A: Introduction process). Next, the introduced band is migrated in the fractionation groove 6a, and the sample is fractionated (separated) into sample components (FIG. 1B: fractionation treatment). When the desired band reaches the intersection between the fractionation groove 6a and the sorting groove 6b, the voltage applied to each electrode is switched, and the desired band is sorted into the sorting groove 6b. Finally, collect the collected bands in pods 2f to 2m (Figure 1C: Sorting process).
[0007] このように、特許文献 1のマイクロチップ電気泳動装置は、研究者がゲルの切り出し やゲルからの抽出などの煩雑な作業を行うことなぐ所望の DNAを分取することがで きる。 [0007] As described above, the microchip electrophoresis apparatus of Patent Document 1 can sort out desired DNA without a researcher performing complicated operations such as cutting out the gel or extracting from the gel.
特許文献 1 :特開 2002— 310992号公報 Patent Document 1: JP 2002-310992 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] しかしながら、特許文献 1のマイクロチップ電気泳動装置には、回収した試料成分 がポッド内の電極に吸着してしまうという問題がある。 [0008] However, the microchip electrophoresis apparatus of Patent Document 1 has a problem that the collected sample components are adsorbed to the electrodes in the pod.
[0009] すなわち、特許文献 1のマイクロチップ電気泳動装置では、試料成分がポッドに回 収された後もある程度の時間ポッド内の電極に電圧が印加されるため、回収された試 料成分はポッド内の電極に吸着してしまうのである。このように、試料成分が電極に 吸着してしまうと、回収した試料成分をポッドからマイクロピペットなどを用いて取り出 すこと力 S難しくなる。また、電極が試料成分により吸着汚染されると、この電極の試料 成分を引き寄せる能力が落ちてしまう。 That is, in the microchip electrophoresis apparatus of Patent Document 1, since the voltage is applied to the electrode in the pod for a certain period of time after the sample component is collected in the pod, the collected sample component is It is adsorbed by the inner electrode. Thus, if the sample component is adsorbed on the electrode, it becomes difficult to extract the collected sample component from the pod using a micropipette or the like. In addition, if the electrode is adsorbed and contaminated by the sample component, the ability of the electrode to draw the sample component will decrease.
[0010] 本発明の目的は、試料から特定の試料成分を分取し、分取した特定の試料成分を 電極に吸着して!/、な!/、状態で回収できるマイクロチップおよびマイクロチップ電気泳 動装置を提供することである。 [0010] An object of the present invention is to collect a specific sample component from a sample, adsorb the collected specific sample component on an electrode, and collect the microchip and the microchip electricity that can be recovered in a state. It is to provide a swimming device.
課題を解決するための手段 Means for solving the problem
[0011] 本発明のマイクロチップは、分離流路、前記分離流路と交差する分取流路、および
前記分取流路と連通する回収リザーバを有し、前記分離流路はその内部に泳動され る試料に含まれる特定成分を分離し、前記分取流路は前記特定成分を分取し、前記 回収リザーバは前記特定成分を回収するマイクロチップであって、前記回収リザーバ と連通し、前記回収リザーバに電圧を印加する回収用電極を有する回収用電極用リ ザーバを有する。 [0011] The microchip of the present invention includes a separation channel, a sorting channel intersecting with the separation channel, and A separation reservoir that communicates with the sorting channel, the separation channel separates a specific component contained in a sample migrated therein, the sorting channel separates the specific component, and The collection reservoir is a microchip that collects the specific component, and includes a collection electrode reservoir having a collection electrode that communicates with the collection reservoir and applies a voltage to the collection reservoir.
[0012] 本発明のマイクロチップ電気泳動装置は、両端に電極を有する分離流路、前記分 離流路と交差する分取流路、前記分取流路と連通し、電極を有する回収リザーバ、 および前記回収リザーバと連通し、前記回収リザーバに電圧を印加する回収用電極 を有する回収用電極用リザーバと、を有するマイクロチップと、前記マイクロチップの 分離流路内を泳動される前記特定成分を光学的に検出する分離流路検出部と、前 記マイクロチップの回収リザーバに回収される前記特定成分を光学的に検出する回 収リザーバ検出部と、前記分離流路検出部および前記回収リザーバ検出部の検出 結果に基づいて前記マイクロチップの電極に印加する電圧を決定する制御部と、前 記制御部の決定に基づいて前記マイクロチップの電極に電圧を印加する電圧印加 部とを有する。 [0012] The microchip electrophoresis apparatus of the present invention includes a separation channel having electrodes at both ends, a sorting channel crossing the separation channel, a collection reservoir communicating with the sorting channel and having an electrode, A microchip having a recovery electrode reservoir that communicates with the recovery reservoir and applies a voltage to the recovery reservoir; and the specific component that migrates in the separation channel of the microchip. A separation channel detection unit for optical detection, a collection reservoir detection unit for optical detection of the specific component collected in the collection reservoir of the microchip, the separation channel detection unit and the collection reservoir detection A control unit that determines a voltage to be applied to the electrode of the microchip based on a detection result of the unit, and a voltage that applies a voltage to the electrode of the microchip based on the determination by the control unit. And a application unit.
発明の効果 The invention's effect
[0013] 本発明によれば、分取した特定の試料成分を電極に吸着して!/、な!/、状態で回収リ ザーバ内に回収することができる。したがって、本発明によれば、試料から特定の試 料成分を迅速に分取し、マイクロピペットなどで取り出しやすい状態で分取した試料 成分を回収することができる。 [0013] According to the present invention, it is possible to adsorb the collected specific sample component to the electrode and recover it in the recovery reservoir in a state of! / ,! Therefore, according to the present invention, it is possible to quickly collect a specific sample component from a sample and collect the sample component that has been collected in a state where it can be easily taken out with a micropipette or the like.
図面の簡単な説明 Brief Description of Drawings
[0014] [図 1]従来のマイクロチップ電気泳動装置の動作を説明するための図であり、(A)は 導入処理時のマイクロチップの模式図、(B)は分画処理時のマイクロチップの模式図 、 (C)は分取処理時のマイクロチップの模式図である。 FIG. 1 is a diagram for explaining the operation of a conventional microchip electrophoresis apparatus. (A) is a schematic diagram of a microchip during introduction processing, and (B) is a microchip during fractionation processing. (C) is a schematic diagram of the microchip during the sorting process.
[図 2]本発明の実施の形態 1に係るマイクロチップを示す図であり、 (A)はマイクロチ ップの平面図、(B)はマイクロチップの一部拡大平面図、(C)はマイクロチップの一 部拡大断面図である。 2 is a diagram showing a microchip according to Embodiment 1 of the present invention, (A) is a plan view of the microchip, (B) is a partially enlarged plan view of the microchip, and (C) is a microchip. FIG. 4 is an enlarged sectional view of a part of the chip.
[図 3]本発明のマイクロチップ電気泳動装置の構造を示す模式図である。
[図 4]分離流路と分取流路との交点の拡大平面図である。 FIG. 3 is a schematic view showing the structure of a microchip electrophoresis apparatus of the present invention. FIG. 4 is an enlarged plan view of an intersection of a separation channel and a sorting channel.
[図 5]本発明の実施の形態 1に係るマイクロチップ電気泳動装置の動作を説明するた めのフローチャートである。 FIG. 5 is a flowchart for explaining the operation of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
[図 6]本発明の実施の形態 1に係るマイクロチップ電気泳動装置の試料成分を回収 する動作を説明するための模式図である。 FIG. 6 is a schematic diagram for explaining an operation of collecting sample components of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
[図 7]本発明の実施の形態 2に係るマイクロチップの平面図である。 FIG. 7 is a plan view of a microchip according to a second embodiment of the present invention.
[図 8]本発明の実施の形態 2に係るマイクロチップ電気泳動装置の動作を説明するた めのフローチャートである。 FIG. 8 is a flowchart for explaining the operation of the microchip electrophoresis apparatus according to the second embodiment of the present invention.
[図 9]本発明の実施の形態 2に係るマイクロチップ電気泳動装置の試料成分を回収 する動作を説明するための模式図である。 FIG. 9 is a schematic diagram for explaining an operation of collecting sample components of the microchip electrophoresis apparatus according to the second embodiment of the present invention.
[図 10]実施例で用いたマイクロチップの写真であり、 (A)は導入流路と分離流路との 交点を示す写真、 (B)は分離流路と分取流路との交点を示す写真である。 FIG. 10 is a photograph of the microchip used in the example, (A) is a photograph showing the intersection of the introduction channel and the separation channel, and (B) is a photograph of the intersection of the separation channel and the sorting channel. It is a photograph shown.
[図 11]導入処理時における導入流路と分離流路との交点を示す写真である。 FIG. 11 is a photograph showing the intersection of the introduction channel and the separation channel during the introduction process.
[図 12]分離流路と分取流路との交点を示す蛍光写真であり、 (A)〜(C)はブロッキン グ処理時の蛍光写真、(D)〜(F)は分取処理時の蛍光写真、(G)〜(I)は回収処理 時の蛍光写真である。 [Fig. 12] Fluorescent photographs showing the intersections of the separation flow path and the preparative flow path, (A) to (C) are fluorescent photographs during blocking processing, and (D) to (F) are during preparative processing. Fluorescent photographs (G) to (I) are fluorescent photographs during the recovery process.
[図 13]ブロッキング処理を行わなかった場合の分離流路と分取流路との交点を示す 蛍光写真である。 FIG. 13 is a fluorescent photograph showing the intersection of a separation channel and a sorting channel when no blocking treatment is performed.
[図 14]分離流路と分取流路との交点付近における蛍光強度のクロマトグラムである。 FIG. 14 is a chromatogram of fluorescence intensity near the intersection of the separation channel and the sorting channel.
[図 15]回収用電極用リザーバに電圧を印加した時の回収リザーバ内のナノチャンネ ル周辺領域の蛍光写真である。 FIG. 15 is a fluorescent photograph of the area around the nanochannel in the collection reservoir when a voltage is applied to the collection electrode reservoir.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 1.本発明のマイクロチップ [0015] 1. Microchip of the present invention
本発明のマイクロチップは、両端に電極を設けられた分離流路と、分離流路と交差 する分取流路と、分取流路と連通し、電極を有する回収リザーバとを有するマイクロ チップであって、回収リザーバと連通し、回収用電極を有する回収用電極用リザーバ をさらに有することを特徴とする。 The microchip of the present invention is a microchip having a separation channel provided with electrodes at both ends, a sorting channel intersecting with the separation channel, and a collection reservoir communicating with the sorting channel and having an electrode. And a collection electrode reservoir further comprising a collection electrode in communication with the collection reservoir.
[0016] 分離流路は、両端に電極を設けられており、導入された試料を電気泳動することで
、試料から特定の試料成分を分離する流路である。分離流路は、内部に緩衝液を充 填されていること力好ましく、さらに担体も充填されていることがより好ましい。担体は 、特に限定されないが、例えばァガロースゲルやポリアクリルアミドゲルなどを用いる ことができる。後述する分離流路検出部が蛍光を検出する場合は、担体または緩衝 液に蛍光色素を添加してもよ!/、。分離流路の太さ(幅 X深さ)は、試料の種類や量な どに応じて適宜設定すればよい。例えば、分離流路の幅は、 50〜; lOO ^ mの範囲内 であることが好ましぐ 70〜; 100 mの範囲内であることがより好ましい。分離流路の 長さは、特に限定されないが、例えば試料を導入される地点から分取流路との交点 までの長さが 65mm程度であればよい。 The separation channel is provided with electrodes at both ends, and the introduced sample is electrophoresed. A flow path for separating a specific sample component from a sample. The separation channel is preferably filled with a buffer solution, and more preferably filled with a carrier. The carrier is not particularly limited, and for example, agarose gel or polyacrylamide gel can be used. If the separation channel detector described later detects fluorescence, a fluorescent dye may be added to the carrier or buffer solution! The thickness of the separation channel (width x depth) may be set appropriately according to the type and amount of the sample. For example, the width of the separation channel is preferably in the range of 50 to; lOO ^ m, and more preferably in the range of 70 to 100 m. The length of the separation channel is not particularly limited. For example, the length from the point where the sample is introduced to the intersection with the sorting channel may be about 65 mm.
[0017] 分取流路は、分離流路内を泳動されている特定の試料成分を、分離流路と分取流 路との交点において分取する流路である。分取流路は、内部に緩衝液を充填されて いること力 S好ましく、さらに担体も充填されていてもよい。分取流路の太さは、特に限 定されな!/、が、後述する分取処理の分解能を高める観点から分離流路よりも細!/、方 が好ましい。例えば、分取流路の幅は、 25〜75 111の範囲内であることが好ましぐ 25〜60 111の範囲内であることがより好ましい。分取流路の長さ(分離流路と分取流 路との交点から回収リザーバまでの距離)は、特に限定されないが、例えば 5〜; 10m m程度であればよい。 [0017] The sorting channel is a channel that sorts a specific sample component migrated in the separation channel at the intersection of the separation channel and the sorting channel. The sorting flow path is preferably filled with a buffer solution S, and may further be filled with a carrier. The thickness of the sorting channel is not particularly limited! /, But is preferably narrower than the separation channel from the viewpoint of increasing the resolution of the sorting process described later. For example, the width of the sorting channel is preferably in the range of 25 to 75 111, and more preferably in the range of 25 to 60 111. The length of the sorting channel (the distance from the intersection of the separation channel and the sorting channel to the collection reservoir) is not particularly limited, but may be, for example, about 5 to 10 mm.
[0018] 回収リザーバは、内部に緩衝液を充填されたポッドと、分取流路に電圧を印加する 電極とを有し、分取流路内に分取された特定の試料成分をポッド内に回収する。ポッ ドの大きさは、試料成分を回収できるのであれば特に限定されないが、 500 ^ 111-4 mm程度の直径が好ましぐ 1mm程度の深さが好ましい。電極の材質は、分取流路 に電圧を印加できるのであれば特に限定されないが、金や白金、銅、アルミニウムな どの鯖びにくい金属が好ましぐ金または白金が特に好まし!/、。 [0018] The collection reservoir has a pod filled with a buffer solution inside and an electrode for applying a voltage to the sorting channel, and a specific sample component sorted in the sorting channel is stored in the pod. To collect. The size of the pod is not particularly limited as long as sample components can be collected, but a depth of about 1 mm is preferred, with a diameter of about 500 ^ 111-4 mm being preferred. The material of the electrode is not particularly limited as long as a voltage can be applied to the preparative flow path, but gold or platinum is particularly preferred, which is preferably a metal that is difficult to bend such as gold, platinum, copper, and aluminum!
[0019] 回収用電極用リザーバは、内部に緩衝液を充填されたポッドと、回収リザーバに電 圧を印加する回収用電極とを有する。回収用電極用リザーバは、水分子は通過させ るが試料成分は通過させないナノチャンネルを介して回収リザーバに連通することが 好ましい。ナノチャンネルの材質は、水分子は通過させるが試料成分は通過させな いものであれば特に限定されないが、例えばケィ酸ナトリウムから成る多孔質ガラスな
どの多孔質物質を用いることができる。ポッドの大きさおよび回収用電極の材質は、 特に限定されず、回収リザーバと同様のものでよい。ナノチャンネルの長さおよび回 収リザーバと回収用電極用リザーバとの間隔は、回収用電極用リザーバが回収リザ ーバに電圧を印加できるのであれば特に限定されず、ナノチャンネルの材質に応じ て適宜調整すればよい。例えば、ナノチャンネルにケィ酸ナトリウムの多孔質ガラスを 用いた場合、ナノチャンネルの長さは 5〜; 10 m程度であればよぐ回収リザーバと 回収用電極用リザーバとの間隔は 0.5〜; 1mm程度であればよい。 [0019] The collection electrode reservoir has a pod filled with a buffer solution therein, and a collection electrode for applying a voltage to the collection reservoir. The collection electrode reservoir preferably communicates with the collection reservoir through a nanochannel that allows water molecules to pass through but does not allow sample components to pass through. The material of the nanochannel is not particularly limited as long as it allows water molecules to pass through but does not allow sample components to pass through, but for example, it is porous glass made of sodium silicate. Any porous material can be used. The size of the pod and the material of the collection electrode are not particularly limited, and may be the same as the collection reservoir. The length of the nanochannel and the distance between the collection reservoir and the collection electrode reservoir are not particularly limited as long as the collection electrode reservoir can apply a voltage to the collection reservoir, and depends on the material of the nanochannel. What is necessary is just to adjust suitably. For example, when sodium silicate porous glass is used for the nanochannel, the length of the nanochannel is 5 to 10 mm. The distance between the collection reservoir and the collection electrode reservoir is 0.5 to 1 mm. Any degree is acceptable.
[0020] 本発明のマイクロチップは、任意のマイクロチップ電気泳動装置に用いることができ る力 例えば以下のマイクロチップ電気泳動装置に用いることができる。 The microchip of the present invention can be used in any microchip electrophoresis apparatus, for example, the following microchip electrophoresis apparatus.
[0021] 2.本発明のマイクロチップ電気泳動装置 [0021] 2. Microchip electrophoresis apparatus of the present invention
本発明のマイクロチップ電気泳動装置は、上記本発明のマイクロチップと、分離流 路検出部と、回収リザーバ検出部と、制御部と、電圧印加部とを備える。 The microchip electrophoresis apparatus of the present invention includes the above-described microchip of the present invention, a separation flow path detection unit, a recovery reservoir detection unit, a control unit, and a voltage application unit.
[0022] 分離流路検出部は、マイクロチップの分離流路と分取流路との交点付近において 分離流路内を泳動される試料成分を光学的に検出する。このとき、分離流路検出部 は、分離流路内を泳動される試料成分だけでなぐ分離流路と分取流路との交点付 近にお!/、て分取流路内を泳動される試料成分も検出することが好まし!/、。分離流路 検出部が試料成分を光学的に検出する方法は、特に限定されないが、例えば蛍光 色素で染色された試料成分から放出される蛍光を検出すればよ!/、。検出結果は制 御部に出力される。 The separation channel detection unit optically detects a sample component that migrates in the separation channel in the vicinity of the intersection of the separation channel and the sorting channel of the microchip. At this time, the separation channel detection unit is migrated in the separation channel near the intersection of the separation channel and the separation channel, which is composed of only the sample components to be migrated in the separation channel! It is also preferable to detect sample components! The method for optically detecting the sample component by the separation channel detection unit is not particularly limited, but for example, fluorescence emitted from the sample component stained with a fluorescent dye may be detected! /. The detection result is output to the control unit.
[0023] 回収リザーバ検出部は、マイクロチップの回収リザーバ内において回収リザーバに 回収される試料成分を光学的に検出する。回収リザーバ検出部が試料成分を光学 的に検出する方法は、特に限定されず、分離流路検出部と同様の方法でよい。検出 結果は制御部に出力される。 [0023] The collection reservoir detection unit optically detects a sample component collected in the collection reservoir in the collection reservoir of the microchip. The method for optically detecting the sample component by the collection reservoir detector is not particularly limited, and may be the same method as the separation channel detector. The detection result is output to the control unit.
[0024] 制御部は、マイクロチップの各電極に印加する電圧を決定する。例えば、試料を分 離流路内で泳動させることにより試料から特定の試料成分を分離する場合、制御部 は、分離流路内の下流側の電極に試料成分が有する電荷と反対の極性の電圧を印 加するよう決定する。また、所望の試料成分が分離流路と分取流路との交点に到達 したことを分離流路検出部が検出した場合または所望の試料成分を分取流路内で
泳動させる場合、制御部は、回収リザーバ内の電極に試料成分が有する電荷と反対 の極性の電圧を印加するように決定する。また、分取した試料成分が回収リザーバ内 に回収されたことを回収リザーバ検出部が検出した場合、制御部は、回収用電極用 リザーバ内の電極(回収用電極)に試料成分が有する電荷と反対の極性の電圧を印 加するように決定する。制御部が各電極に印加する電圧は、試料成分を泳動させる ことができるのであれば特に限定されない。例えば、試料成分を泳動する流路に対し て、 150V/cm程度の電圧を印加すればよい。分離流路検出部が検出した試料成 分が所望の試料成分か否かは、あらかじめユーザにより設定されることが好まし!/、。 例えば、予備実験により試料内の各試料成分が分離流路と分取流路との交点に到 達する順番を把握している場合、ユーザは「2番目に交点に到達する試料成分を分 取する」と制御部に設定すればよ!/、。 [0024] The control unit determines a voltage to be applied to each electrode of the microchip. For example, when a specific sample component is separated from the sample by migrating the sample in the separation channel, the control unit applies a voltage of the opposite polarity to the charge of the sample component at the downstream electrode in the separation channel. Decide to apply. In addition, when the separation channel detection unit detects that the desired sample component has reached the intersection of the separation channel and the sorting channel, or the desired sample component is contained in the sorting channel. When migrating, the control unit determines to apply a voltage having a polarity opposite to the charge of the sample component to the electrode in the collection reservoir. In addition, when the collection reservoir detection unit detects that the collected sample component has been collected in the collection reservoir, the control unit detects the charge of the sample component on the electrode in the collection electrode reservoir (collection electrode). Decide to apply a voltage of opposite polarity. The voltage applied to each electrode by the control unit is not particularly limited as long as sample components can be migrated. For example, a voltage of about 150 V / cm may be applied to the flow path for running the sample components. Whether the sample component detected by the separation channel detection unit is a desired sample component is preferably set in advance by the user! /. For example, when it is known in the preliminary experiment that the order in which each sample component in the sample reaches the intersection of the separation channel and the separation channel, the user will be able to “separate the sample component that reaches the intersection second. ”And set it in the control!
[0025] 電圧印加部は、制御部の決定に基づいてマイクロチップの各電極に電圧を印加す る。電圧印加部は、例えば、電源と、リレースィッチ回路を有する切り替えスィッチ回 路群とを備えるようにすればよい。 The voltage application unit applies a voltage to each electrode of the microchip based on the determination of the control unit. The voltage application unit may be provided with, for example, a power source and a switching switch circuit group having a relace switch circuit.
[0026] 本発明のマイクロチップおよびマイクロチップ電気泳動装置で分取し、回収できる 試料成分は、特に限定されないが、例えば、 DNA、 RNA、タンパク質、細胞などで ある。 [0026] Sample components that can be collected and collected by the microchip and microchip electrophoresis apparatus of the present invention are not particularly limited, and examples thereof include DNA, RNA, protein, and cells.
[0027] 以下、本発明のマイクロチップ電気泳動装置が、試料から所望の試料成分を分取 し、回収リザーバに回収する流れを説明する。 [0027] Hereinafter, a flow in which the microchip electrophoresis apparatus of the present invention separates a desired sample component from a sample and collects it in a collection reservoir will be described.
[0028] まず、電圧印加部は、制御部の決定に基づ!/、てマイクロチップの分離流路に電圧 を印加して、分離流路に導入された試料をその導入地点から分離流路と分取流路と の交点に向けて泳動させる。これにより、試料は分子ふるい効果により各試料成分に 分離されながら分離流路と分取流路との交点に向けて泳動される(分離処理)。 First, the voltage application unit applies a voltage to the separation channel of the microchip based on the determination of the control unit, and the sample introduced into the separation channel is separated from the introduction point to the separation channel. Electrophoresis toward the intersection of the and the separation flow path. Thus, the sample is migrated toward the intersection of the separation channel and the sorting channel while being separated into each sample component by the molecular sieve effect (separation process).
[0029] 次に、分離流路検出部が分離流路と分取流路との交点に所望の試料成分が到達 したことを検出した時、電圧印加部は、制御部の決定に基づいてマイクロチップの分 取流路に電圧を印加する。これにより、所望の試料成分は、分取流路に取り込まれ( 分取処理)、回収リザーバに回収される(回収処理)。なお、分離流路検出部が所望 でな!/、試料成分が分離流路と分取流路との交点に到達したことを検出しても、電圧
印加部は、制御部の決定に基づいて分取流路に電圧を印加しないので、分取処理 は行われずに分離処理が続けられる。したがって、所望でない試料成分は、分取流 路に取り込まれることなく分離流路の下流の電極に向けてさらに泳動される。 [0029] Next, when the separation channel detection unit detects that a desired sample component has arrived at the intersection of the separation channel and the sorting channel, the voltage application unit determines whether the micro-channel is based on the determination of the control unit. A voltage is applied to the tip separation channel. As a result, the desired sample component is taken into the sorting channel (sorting process) and collected in the collecting reservoir (collecting process). Note that the separation channel detector is not desired! / Even if it is detected that the sample component has reached the intersection of the separation channel and the sorting channel, the voltage Since the applying unit does not apply a voltage to the sorting channel based on the determination of the control unit, the separating process is continued without performing the sorting process. Therefore, undesired sample components are further migrated toward the electrode downstream of the separation channel without being taken into the sorting channel.
[0030] 次に、回収リザーバ検出部が回収リザーバ内に所望の試料成分が回収されたこと を検出した時、電圧印加部は、制御部の決定に基づいてマイクロチップの回収用電 極に電圧を印加する。これにより、回収リザーバ内の電極に吸着していた試料成分 は、回収リザーバ内の電極から離れ、回収用電極用リザーバ方向にさらに泳動する。 試料成分は、回収リザーバと回収用電極用リザーバとの間にあるナノチャンネルによ り泳動を妨害されるため、最終的に回収リザーバ内のナノチャンネル周辺領域に留ま [0030] Next, when the collection reservoir detection unit detects that a desired sample component is collected in the collection reservoir, the voltage application unit applies a voltage to the collection electrode of the microchip based on the determination of the control unit. Is applied. As a result, the sample component adsorbed on the electrode in the collection reservoir moves away from the electrode in the collection reservoir and further migrates toward the collection electrode reservoir. The sample component is blocked from migration by the nanochannel between the collection reservoir and the collection electrode reservoir, so it eventually remains in the area surrounding the nanochannel in the collection reservoir.
[0031] このように、本発明のマイクロチップ電気泳動装置は、試料から所望の試料成分を 分取し、分取した試料成分をマイクロピペットなどで取り出しやすい状態で回収リザー バ内に回収することができる。 As described above, the microchip electrophoresis apparatus of the present invention separates a desired sample component from a sample, and collects the collected sample component in a collection reservoir in a state where it can be easily taken out with a micropipette or the like. Can do.
[0032] 3.導入流路 [0032] 3. Introduction channel
本発明のマイクロチップは、電極を有するサンプルリザーバと、サンプルリザーバと 連通し、前記分離流路と交差する導入流路とをさらに有することが好ましい。 The microchip of the present invention preferably further includes a sample reservoir having electrodes, and an introduction channel that communicates with the sample reservoir and intersects the separation channel.
[0033] サンプルリザーバは、内部に試料を注入されるポッドと、分取流路に電圧を印加す る電極とを有する。ポッドの大きさは、所望の量の試料成分を注入できる大きさであれ ば特に限定されないが、 500 111〜4111111程度の直径が好ましぐ 1mm程度の深さ が好ましい。電極の材質は、導入流路に電圧を印加できるのであれば特に限定され ず、回収リザーバの電極の材質と同様のものでよい。 [0033] The sample reservoir includes a pod into which a sample is injected, and an electrode for applying a voltage to the sorting channel. The size of the pod is not particularly limited as long as a desired amount of the sample component can be injected, but a depth of about 1 mm is preferable, and a diameter of about 500 111 to 4111 111 is preferable. The material of the electrode is not particularly limited as long as a voltage can be applied to the introduction flow path, and may be the same as the material of the electrode of the recovery reservoir.
[0034] 導入流路は、両端に電極(一方はサンプルリザーバ内の電極)を設けられており、 サンプルリザーバに注入された試料を、導入流路と分離流路との交点から分離流路 に導入する流路である。導入流路は、内部に緩衝液を充填されていることが好ましく 、さらに担体も充填されていてもよい。導入流路の太さ(幅 X深さ)は、特に限定され ないが、例えば幅 90 m X深さ 25 H m程度であればよい。導入流路の長さは、特に 限定されないが、例えばサンプルリザーバとの連通点から分離流路との交点までの 長さが 5mm程度であればよい。
[0035] サンプルリザーバおよび導入流路は、分離処理前に行われる分離流路への試料の 導入(導入処理)に用いられる。以下、導入処理の流れを説明する。 [0034] The introduction channel is provided with electrodes (one of which is an electrode in the sample reservoir) at both ends, and the sample injected into the sample reservoir is transferred from the intersection of the introduction channel and the separation channel to the separation channel. This is a flow channel to be introduced. The introduction channel is preferably filled with a buffer solution inside, and may further be filled with a carrier. The thickness of the introduction channel (width X depth) is not particularly limited, but may be, for example, about 90 m width x 25 Hm depth. The length of the introduction channel is not particularly limited. For example, the length from the communication point with the sample reservoir to the intersection with the separation channel may be about 5 mm. [0035] The sample reservoir and the introduction channel are used for introducing the sample into the separation channel (introduction process) performed before the separation process. Hereinafter, the flow of the introduction process will be described.
[0036] まず、所望の試料成分を含む試料がサンプルリザーバに注入される。次に、電圧印 加部は、導入流路に電圧を印加することで試料をサンプルリザーバから導入流路と 分離流路との交点に向けて泳動させる。試料が導入流路と分離流路との交点に到達 した後、電圧印加部は、分離流路に電圧を短時間印加することで試料の一部を分離 流路に導入する。 [0036] First, a sample containing a desired sample component is injected into a sample reservoir. Next, the voltage application unit applies a voltage to the introduction flow path to cause the sample to migrate from the sample reservoir toward the intersection of the introduction flow path and the separation flow path. After the sample reaches the intersection of the introduction channel and the separation channel, the voltage application unit introduces a part of the sample into the separation channel by applying a voltage to the separation channel for a short time.
[0037] サンプルリザーバおよび導入流路を用いることにより、試料の拡散および漏出を防 ぎつつ、試料を分離流路に導入することができる。したがって、分離流路内に鮮明な 試料プラグを形成させることができるので、引き続き行われる分離処理および分取処 理の解像度を高めることができる。 [0037] By using the sample reservoir and the introduction channel, the sample can be introduced into the separation channel while preventing diffusion and leakage of the sample. Therefore, since a clear sample plug can be formed in the separation channel, it is possible to increase the resolution of subsequent separation processing and sorting processing.
[0038] 4.ブロック電極 [0038] 4. Block electrode
本発明のマイクロチップは、ブロック電極をさらに有することが好ましい。 The microchip of the present invention preferably further has a block electrode.
[0039] ブロック電極は、分取流路に連通する位置に設けられ、分取流路に電圧を印加す る電極である。ブロック電極の材質は、導入流路に電圧を印加できるのであれば特に 限定されず、回収リザーバの電極の材質と同様のものでよい。 [0039] The block electrode is an electrode that is provided at a position communicating with the sorting channel and applies a voltage to the sorting channel. The material of the block electrode is not particularly limited as long as a voltage can be applied to the introduction flow path, and may be the same as the material of the electrode of the recovery reservoir.
[0040] ブロック電極は、分離処理時に用いられる。制御部は、分離流路検出部が特定の 試料成分以外の試料成分が分離流路と分取流路との交点に到達したことを検出した 時、ブロック電極に試料成分が有する電荷と同じ極性の電圧を印加するよう決定する 。電圧印加部は、制御部の決定に基づいてブロック電極に電圧を印加する(ブロッキ ング処理)。 [0040] The block electrode is used during the separation process. When the separation channel detection unit detects that a sample component other than a specific sample component has reached the intersection of the separation channel and the sorting channel, the control unit has the same polarity as the charge of the sample component on the block electrode Decide to apply a voltage of. The voltage application unit applies a voltage to the block electrode based on the determination of the control unit (blocking process).
[0041] ブロック電極を用いることにより、特定の試料成分以外の試料成分が分取流路に入 り込むことを阻止すること力 Sできる。したがって、分取流路が特定の試料成分以外の 試料成分により:^染されることを防ぐことカできる。 [0041] By using the block electrode, it is possible to prevent a sample component other than the specific sample component from entering the sorting flow path. Therefore, the sorting channel can be prevented from being stained by sample components other than a specific sample component.
[0042] また、本発明のマイクロチップは、ブロック電極を 2以上有することが好ましい。この とき、ブロック電極は、分離流路の側方両側に配置されることがさらに好ましい。分取 流路が分離流路の側方両側にある場合 (例えば、分離流路と分取流路とが十字に交 差している場合)、一方のブロック電極が片側の分取流路に電圧を印加し、他方のブ
ロック電極がもう一方の側の分取流路に電圧を印加することで、両側の分取流路が 特定の試料成分以外の試料成分により汚染されることを防ぐことができる。 [0042] Further, the microchip of the present invention preferably has two or more block electrodes. At this time, it is more preferable that the block electrodes are disposed on both lateral sides of the separation channel. When the sorting channel is on both sides of the separation channel (for example, when the separation channel and the sorting channel cross in a cross), one block electrode has a voltage across the sorting channel on one side. And apply the other By applying a voltage to the sorting channel on the other side, the lock electrode can prevent the sorting channels on both sides from being contaminated by sample components other than the specific sample component.
[0043] また、本発明のマイクロチップがブロック電極を有する場合、分取流路の太さは、ブ ロッキング処理の分解能を高める観点から、分離流路よりも細い方が好ましい。例え ば、分取流路の幅は、 25〜75 111の範囲内であることが好ましぐ 25—60 ^ 111(7) |g 囲内であることがより好ましい。 [0043] When the microchip of the present invention has a block electrode, the thickness of the sorting channel is preferably thinner than the separation channel from the viewpoint of increasing the resolution of the blocking process. For example, the width of the sorting channel is preferably in the range of 25 to 75 111, more preferably in the range of 25-60 ^ 111 (7) | g.
[0044] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0045] (実施の形態 1) [0045] (Embodiment 1)
図 2Aは、本発明の実施の形態 1に係るマイクロチップ電気泳動装置で用いられる マイクロチップの構成を示す図である。 FIG. 2A is a diagram showing a configuration of a microchip used in the microchip electrophoresis apparatus according to Embodiment 1 of the present invention.
[0046] 図 2Aにおいて、本実施の形態に係るマイクロチップ 100は、導入流路 102、分離 流路 104、分取流路 106、 2本のブロック流路 108a, 108b,サンプルリザーバ 110、 サンプル排出リザーバ 112、バッファリザーバ 114、バッファ排出リザーバ 116、回収 リザーノ 118、回収用電極用リザーバ 120、および 2つのブロック電極用リザーバ 12 2a, 122bを有する。マイクロチップ 100の大きさは、例えば、 100mm (図中横方向) X 30mm (図中縦方向)程度とすればよ!/、。 In FIG. 2A, the microchip 100 according to the present embodiment includes an introduction channel 102, a separation channel 104, a sorting channel 106, two block channels 108a and 108b, a sample reservoir 110, and a sample discharge. It has a reservoir 112, a buffer reservoir 114, a buffer discharge reservoir 116, a collection risano 118, a collection electrode reservoir 120, and two block electrode reservoirs 122a and 122b. For example, the size of the microchip 100 should be about 100 mm (horizontal direction in the figure) X 30 mm (vertical direction in the figure)! /.
[0047] 導入流路 102は、分離流路 104と連通するように交差しており、その両端にサンプ ノレリザーバ 110およびサンプル排出リザーバ 112が設けられた流路である。例えば、 導入流路 102は、幅 90 H m、深さ 25 μ m、長さ 10mmの流路とし、その中間点で分 離流路 104と交差するようにするようにすればよい。 [0047] The introduction channel 102 intersects with the separation channel 104, and is a channel provided with a sample reservoir 110 and a sample discharge reservoir 112 at both ends thereof. For example, the introduction flow path 102 may be a flow path having a width of 90 Hm, a depth of 25 μm, and a length of 10 mm, and intersecting the separation flow path 104 at the midpoint.
[0048] 分離流路 104は、導入流路 102および分取流路 106とそれぞれ連通するように交 差しており、その両端にバッファリザーバ 114およびバッファ排出リザーバ 116が設け られた流路である。例えば、分離流路 104は、幅 90 μ m、深さ 25 μ m、長さ 85mm の流路とし、バッファリザーバ 1 14から 5mmの地点で導入流路 102と交差するように するようにし、バッファ排出リザーバ 116から 15mmの地点で分取流路 106と交差す るようにすれば'よい。 [0048] The separation channel 104 intersects with the introduction channel 102 and the sorting channel 106 so as to communicate with each other, and the buffer reservoir 114 and the buffer discharge reservoir 116 are provided at both ends thereof. For example, the separation channel 104 has a width of 90 μm, a depth of 25 μm, and a length of 85 mm. The separation channel 104 intersects the introduction channel 102 at a point 5 mm from the buffer reservoir 114 and It is sufficient to cross the sorting channel 106 at a point 15 mm from the discharge reservoir 116.
[0049] 分取流路 106は、分離流路 104と連通するように交差しており、一端に回収リザー ノ 118が設けられた流路である。また、分取流路 106は、ブロック流路 108a, 108bと
も連通する。例えば、分取流路 106のうち分離流路 104に対して垂直方向の部分( 図 2A参照)は、幅 55 111、深さ 25 111、長さ 10mmの流路とし、その中間点で分離 流路 104と交差するようにするようにすればよい。また、分取流路 106のうち分離流 路 104に対して平行の部分(図 2A参照)は、例えば、幅 90 H m、深さ 25 μ m、長さ 5 mmの流路とすればよ!/、。 [0049] The sorting channel 106 intersects with the separation channel 104 so as to communicate with the separation channel 104, and is provided with a collection reservoir 118 at one end. In addition, the sorting channel 106 includes block channels 108a and 108b. Also communicate. For example, a portion of the sorting channel 106 that is perpendicular to the separation channel 104 (see FIG. 2A) is a channel having a width of 55 111, a depth of 25 111, and a length of 10 mm. It is sufficient to cross the road 104. In addition, a portion of the sorting channel 106 that is parallel to the separation channel 104 (see FIG. 2A) may be, for example, a channel having a width of 90 Hm, a depth of 25 μm, and a length of 5 mm. ! /
[0050] ブロック流路 108a, 108bは、一端で分取流路 106と連通する流路であり、残る一 端にブロック電極用リザーバ 122a, 122bが設けられた流路である。例えば、ブロック 流路 108a, 108bは、幅 90〃111、深さ 25〃m、長さ 20mmの流路とすればよい。 [0050] The block channels 108a and 108b are channels that communicate with the sorting channel 106 at one end, and are channels in which the block electrode reservoirs 122a and 122b are provided at the other end. For example, the block channels 108a and 108b may be channels having a width of 90 mm 111, a depth of 25 mm, and a length of 20 mm.
[0051] サンプノレリザーノ 110、サンプル排出リザーバ 112、バッファリザーバ 114、バッフ ァ排出リザーバ 116、回収リザーバ 118、回収用電極用リザーバ 120およびブロック 電極用リザーバ 122a, 122bの各リザーバは、緩衝液(バッファ)や試料(サンプル) などを格納するポッドと、各流路に電圧を印加する電極(図示しな!/、)とをそれぞれ有 する。ここで、回収用電極用リザーバ 120が有する電極を「回収用電極」という。同様 に、ブロック電極用リザーバ 122a, 122bがそれぞれ有する電極を「ブロック電極」と いう。なお、本明細書では、リザーバ A内の電極に電圧を印加することを、「リザーバ Aに電圧を印加する」と記載することがある。例えば、リザーバ 110〜 122のポッドの 大きさは、直径 3〜4mm、深さ lmm程度とすればよい。 [0051] Each of the Sampno Relizano 110, the sample discharge reservoir 112, the buffer reservoir 114, the buffer discharge reservoir 116, the collection reservoir 118, the collection electrode reservoir 120, and the block electrode reservoirs 122a and 122b has a buffer solution ( It has a pod for storing a buffer) and a sample (sample), and an electrode (not shown! /) For applying a voltage to each channel. Here, the electrode of the collection electrode reservoir 120 is referred to as a “collection electrode”. Similarly, the electrodes respectively included in the block electrode reservoirs 122a and 122b are referred to as “block electrodes”. In the present specification, applying a voltage to the electrode in the reservoir A may be referred to as “applying a voltage to the reservoir A”. For example, the size of the pods of the reservoirs 110 to 122 may be about 3 to 4 mm in diameter and about 1 mm in depth.
[0052] 図 2Bは、回収リザーバ 118および回収用電極用リザーバ 120を示すマイクロチッ プ 100の一部拡大平面図である。図 2Cは、回収リザーバ 118および回収用電極用リ ザーバ 120を示すマイクロチップ 100の一部拡大断面図である。説明の便宜上、電 極は図示していない。 FIG. 2B is a partially enlarged plan view of the microchip 100 showing the collection reservoir 118 and the collection electrode reservoir 120. FIG. 2C is a partially enlarged sectional view of the microchip 100 showing the collection reservoir 118 and the collection electrode reservoir 120. For convenience of explanation, electrodes are not shown.
[0053] 図 2Bおよび図 2Cにおいて、回収用電極用リザーバ 120は、回収リザーバ 118に 隣接するように形成されており、水分子は通過させるが試料成分は通過させないナノ チャンネル 124を介して回収リザーバ 118と連通している。 [0053] In FIG. 2B and FIG. 2C, the collection electrode reservoir 120 is formed adjacent to the collection reservoir 118, and passes through the nanochannel 124 through which water molecules pass but sample components do not pass. Communicate with 118.
[0054] 図 3は、本発明の実施の形態 1に係るマイクロチップ電気泳動装置の構成を示す図 である。 FIG. 3 is a diagram showing a configuration of the microchip electrophoresis apparatus according to the first embodiment of the present invention.
[0055] 図 3において、本実施の形態に係るマイクロチップ電気泳動装置 200は、図 2に示 されるマイクロチップ 100、分離流路検出部 210、回収リザーバ検出部 220、制御部
230および電圧印加部 240を備える。 In FIG. 3, the microchip electrophoresis apparatus 200 according to the present embodiment includes the microchip 100, the separation channel detection unit 210, the recovery reservoir detection unit 220, and the control unit shown in FIG. 230 and a voltage application unit 240.
[0056] 分離流路検出部 210は、マイクロチップ 100の分離流路 104と分取流路 106との交 点付近において試料成分から放出される蛍光を検出する。図 4は、分離流路 104と 分取流路 106との交点付近を示す模式図である。図 4において、左側はバッファリザ ーバ 114側、右側はバッファ排出リザーバ 116側、上側はブロック電極用リザーバ 12 2aおよび回収リザーバ 118側、下側はブロック電極用リザーバ 122b側を示す。分離 流路検出部 210は、例えば、図 4の a〜Cの 3地点において蛍光を検出することで、分 離流路 104を泳動してきた試料成分(a地点)、分取流路に分取されなかった試料成 分 (b地点)および分取流路 106に分取された試料成分 (c地点)をそれぞれ区別して 検出すること力 Sできる。検出結果は、制御部 230に出力される。 The separation channel detection unit 210 detects the fluorescence emitted from the sample component in the vicinity of the intersection between the separation channel 104 and the sorting channel 106 of the microchip 100. FIG. 4 is a schematic diagram showing the vicinity of the intersection between the separation channel 104 and the sorting channel 106. In FIG. 4, the left side is the buffer reservoir 114 side, the right side is the buffer discharge reservoir 116 side, the upper side is the block electrode reservoir 122a and recovery reservoir 118 side, and the lower side is the block electrode reservoir 122b side. For example, the separation channel detection unit 210 detects fluorescence at three points a to C in FIG. 4 to separate the sample component (point a) that has migrated in the separation channel 104 into the separation channel. It is possible to distinguish and detect the sample component (point b) that has not been sampled and the sample component (point c) separated in the sorting channel 106. The detection result is output to the control unit 230.
[0057] 分離流路検出部 210は、例えば図 3に示されるように、励起光源である水銀ランプ 211と、励起光を分離する励起フィルタ 212と、励起光を試料成分方向に導き、かつ 試料成分から放出された蛍光を CCDカメラ 215方向に導くダイクロイツクミラー 213と 、蛍光を分離する吸収フィルタ 214と、蛍光を検出する CCDカメラ 215とを備える構 成にすればよい。試料成分から蛍光を放出させる方法は、試料成分に応じて適宜選 択すればよい。例えば、試料成分が DNAの場合、ェチジゥムブロマイドやサイバー グリーンなどの DNA結合性の蛍光色素で試料成分を染色すればよい。 For example, as shown in FIG. 3, the separation channel detection unit 210 includes a mercury lamp 211 as an excitation light source, an excitation filter 212 that separates excitation light, and guides the excitation light in the direction of the sample component. What is necessary is just to comprise the dichroic mirror 213 which guides the fluorescence emitted from the components in the direction of the CCD camera 215, the absorption filter 214 for separating the fluorescence, and the CCD camera 215 for detecting the fluorescence. The method for emitting fluorescence from the sample component may be appropriately selected according to the sample component. For example, if the sample component is DNA, the sample component may be stained with a DNA-binding fluorescent dye such as ethidium bromide or cyber green.
[0058] 回収リザーバ検出部 220は、マイクロチップ 100の回収リザーバ 118内において試 料成分から放出される蛍光を検出する。回収リザーバ検出部 220は、例えば分離流 路検出部 210と同様の構成にすればよい。検出結果は、制御部 230に出力される。 The collection reservoir detection unit 220 detects fluorescence emitted from the sample components in the collection reservoir 118 of the microchip 100. The collection reservoir detection unit 220 may have the same configuration as that of the separation flow path detection unit 210, for example. The detection result is output to the control unit 230.
[0059] 制御部 230は、マイクロチップ 100の各リザーバ内の電極に印加する電圧を決定す る。このとき、制御部 230は、分離流路検出部 210の検出結果から分離流路 104と分 取流路 106との交点付近における各試料成分の位置を判断し、当該試料成分を分 取すべきか否かに応じてマイクロチップ 100の各電極に印加する電圧を決定する。さ らに、制御部 230は、回収リザーバ検出部 220の検出結果から分取した試料成分が 回収リザーバ 118に回収されたか否かを判断し、当該試料成分が回収リザーバ 118 に回収されたか否かに応じてマイクロチップ 100の各電極に印加する電圧を決定す る。例えば、試料成分が DNA (マイナスに荷電)の場合、試料成分を泳動する流路
の下流の電極にプラスの電圧を印加し、上流の電極を接地すればよ!/、。 The control unit 230 determines a voltage to be applied to the electrodes in each reservoir of the microchip 100. At this time, the control unit 230 determines the position of each sample component in the vicinity of the intersection of the separation channel 104 and the separation channel 106 from the detection result of the separation channel detection unit 210, and whether the sample component should be separated. The voltage to be applied to each electrode of the microchip 100 is determined depending on whether or not. Further, the control unit 230 determines whether or not the sample component collected from the detection result of the collection reservoir detection unit 220 is collected in the collection reservoir 118, and whether or not the sample component is collected in the collection reservoir 118. The voltage applied to each electrode of the microchip 100 is determined accordingly. For example, if the sample component is DNA (negatively charged), the flow path for running the sample component Apply a positive voltage to the downstream electrode and ground the upstream electrode! /.
[0060] 電圧印加部 240は、制御部 230の決定に基づき、マイクロチップ 100の各リザーバ 内の電極に電圧を印加する。電圧印加部 240は、例えば図 3に示されるように、電源 242a〜242cと、リレースィッチ回路を有する切り替えスィッチ回路群 244とを備える ようにすれば'よい。 The voltage application unit 240 applies a voltage to the electrodes in each reservoir of the microchip 100 based on the determination by the control unit 230. For example, as shown in FIG. 3, the voltage application unit 240 may include power supplies 242a to 242c and a switching switch circuit group 244 having a relaced circuit.
[0061] 次に、図 5に示されるフローチャートおよび図 6に示されるマイクロチップの模式図を 用いて、本実施の形態に係るマイクロチップ電気泳動装置が、所望の試料成分を分 取し、回収する流れについて説明する。 Next, using the flowchart shown in FIG. 5 and the schematic diagram of the microchip shown in FIG. 6, the microchip electrophoresis apparatus according to the present embodiment separates and collects a desired sample component. The flow to do will be described.
[0062] まず、ステップ S1000では、所望の試料成分を含む試料がサンプルリザーバ 110 に注入される。 [0062] First, in step S1000, a sample containing a desired sample component is injected into the sample reservoir 110.
[0063] 次に、ステップ S 1100では、導入流路 102に電圧を印加することで試料をサンプル リザーバ 110からサンプル排出リザーバ 112に向けて泳動させ、試料が導入流路 10 2と分離流路 104との交点に到達した後、分離流路 104に電圧を短時間印加するこ とで試料の一部を分離流路 104に導入する(導入処理)。例えば、試料成分が DNA の場合、試料をサンプルリザーバ 110からサンプル排出リザーバ 112に向けて泳動 させるには、サンプルリザーバ 110を接地し、サンプル排出リザーバ 112にプラスの 電圧を印加すればよい。このとき、分離流路 104に汚染物質が入り込まないように、 バッファリザーバ 114およびバッファ排出リザーバ 116も接地することが好ましい。ま た、試料が導入流路 102と分離流路 104との交点に到達した後に試料の一部を分 離流路 104に導入するには、例えば、サンプルリザーバ 110を接地し、サンプル排出 リザーバ 112およびバッファ排出リザーバ 116にプラスの電圧を 4秒間印加すればよ い。 Next, in step S 1100, the sample is migrated from the sample reservoir 110 toward the sample discharge reservoir 112 by applying a voltage to the introduction channel 102, and the sample is introduced into the introduction channel 102 and the separation channel 104. After reaching the crossing point, a part of the sample is introduced into the separation channel 104 by applying a voltage to the separation channel 104 for a short time (introduction process). For example, when the sample component is DNA, in order to migrate the sample from the sample reservoir 110 to the sample discharge reservoir 112, the sample reservoir 110 is grounded and a positive voltage is applied to the sample discharge reservoir 112. At this time, the buffer reservoir 114 and the buffer discharge reservoir 116 are also preferably grounded so that contaminants do not enter the separation channel 104. In order to introduce a part of the sample into the separation channel 104 after the sample reaches the intersection of the introduction channel 102 and the separation channel 104, for example, the sample reservoir 110 is grounded and the sample discharge reservoir 112 is grounded. And apply a positive voltage to the buffer drain reservoir 116 for 4 seconds.
[0064] 次に、ステップ S 1200では、分離流路 104に電圧を印加することで試料を導入流 路 102と分離流路 104との交点からバッファ排出リザーバ 116に向けて泳動させる。 このとき、試料は分子ふるい効果により各試料成分に分離される(分離処理)。例え ば、試料成分が DNAの場合、図 6Aに示されるように、バッファリザーバ 114を接地し (図中「―」で表記)、ノ ッファ排出リザーバ 116にプラスの電圧を印加すればよ!/、(図 中「 +」で表記)。
[0065] 次に、ステップ S 1300では、分離流路検出部 210で分離流路 104と分取流路 106 との交点に分離された試料成分が到達したことを検出した時(図 6A参照)、制御部 2 30でこの試料成分が所望の試料成分か否力、を判定する。この試料成分が所望の試 料成分ではない場合(S1300 : NO)、ステップ S1400に進む。一方、この試料成分 が所望の試料成分の場合(S 1300: YES)、ステップ S 1500に進む。 Next, in step S 1200, the sample is migrated from the intersection of the introduction flow path 102 and the separation flow path 104 toward the buffer discharge reservoir 116 by applying a voltage to the separation flow path 104. At this time, the sample is separated into each sample component by the molecular sieving effect (separation process). For example, if the sample component is DNA, as shown in Fig. 6A, ground the buffer reservoir 114 (indicated by "-" in the figure) and apply a positive voltage to the notch drain reservoir 116! / (Indicated by “+” in the figure). [0065] Next, in step S1300, when the separation channel detection unit 210 detects that the separated sample component has reached the intersection of the separation channel 104 and the sorting channel 106 (see FIG. 6A). The controller 230 determines whether or not this sample component is a desired sample component. If this sample component is not the desired sample component (S1300: NO), go to step S1400. On the other hand, if this sample component is the desired sample component (S 1300: YES), the process proceeds to step S 1500.
[0066] ステップ S 1400では、所望でない試料成分をバッファ排出リザーバ 116に向けて泳 動させる。このとき、ブロック電極用リザーバ 122a, 122b (ブロック電極)に電圧を印 カロすることで、当該試料成分が分取流路 106に入り込まないようにする(ブロッキング 処理)。例えば、試料成分が DNAの場合、分離流路検出部 210で図 4の b地点にお ける蛍光強度が所定の閾値より上昇したことを検出したとき、ブロック電極用リザーバ 122a, 122bを接地すればよい(図 6B参照)。この試料成分が分離流路 104と分取 流路 106との交点を完全に通過したら、ブロック電極用リザーバ 122a, 122bをォー プンに戻し(図中無印)、ステップ S 1200に戻る(図 6C参照)。 In step S 1400, an undesired sample component is swung toward the buffer discharge reservoir 116. At this time, voltage is applied to the block electrode reservoirs 122a and 122b (block electrodes) to prevent the sample component from entering the sorting channel 106 (blocking process). For example, when the sample component is DNA, if the separation channel detection unit 210 detects that the fluorescence intensity at the point b in FIG. 4 has risen above a predetermined threshold, the block electrode reservoirs 122a and 122b can be grounded. Good (see Figure 6B). When this sample component completely passes through the intersection of the separation channel 104 and the separation channel 106, the block electrode reservoirs 122a and 122b are returned to the open state (not shown in the figure), and the process returns to step S1200 (FIG. 6C). reference).
[0067] ステップ S1500では、分取流路 106に電圧を印加することで所望の試料成分を分 取流路 106に取り込む(分取処理)。例えば、試料成分が DNAの場合、図 6Dに示さ れるように、バッファリザーバ 114を接地し、バッファ排出リザーバ 116をオープンにし 、回収リザーバ 118にプラスの電圧を印加すればよい。 [0067] In step S1500, a desired sample component is taken into the sorting channel 106 by applying a voltage to the sorting channel 106 (sorting process). For example, when the sample component is DNA, the buffer reservoir 114 is grounded, the buffer discharge reservoir 116 is opened, and a positive voltage is applied to the collection reservoir 118 as shown in FIG. 6D.
[0068] 次に、ステップ S 1600では、分取した試料成分を回収リザーバ 118に回収する(回 収処理)。例えば、試料成分が DNAの場合、バッファリザーバ 114をオープンにし、 ブロック電極用リザーバ 122a, 122bを接地し、回収リザーバ 118にプラスの電圧を 印加することで(図 6E参照)、分取した試料成分を回収リザーバ 118に回収すること ができる(図 6F参照)。 Next, in step S 1600, the collected sample component is collected in the collection reservoir 118 (collection process). For example, if the sample component is DNA, the buffer reservoir 114 is opened, the block electrode reservoirs 122a and 122b are grounded, and a positive voltage is applied to the collection reservoir 118 (see FIG. 6E), so that the collected sample components Can be recovered in the recovery reservoir 118 (see Figure 6F).
[0069] 次に、ステップ S 1700では、回収リザーバ検出部 220で回収リザーバ 118に分取さ れた試料成分が回収されたことを検出した時、回収用電極用リザーバ 120に電圧を 印加することで当該試料成分を回収リザーバ 118内の電極から離れさせ、本フロー を終了する。例えば、回収した試料成分が DNAの場合、図 6Gに示されるように、ブ ロック電極用リザーバ 122a, 122bを接地し、回収リザーバ 118をオープンにし、回 収用電極用リザーバ 120にプラスの電圧を印加すればよい。このようにすることで、
回収リザーバ 118内の電極に吸着していた試料成分は、電極から離れ、回収用電極 用リザーバ 120方向にさらに泳動する。試料成分は、ナノチャンネル 124により泳動 を妨害されるため、最終的に回収リザーバ 1 18内のナノチャンネル 124周辺領域に [0069] Next, in step S1700, when the collection reservoir detection unit 220 detects that the sample components collected in the collection reservoir 118 have been collected, a voltage is applied to the collection electrode reservoir 120. Then, the sample component is separated from the electrode in the collection reservoir 118, and this flow is finished. For example, if the collected sample component is DNA, as shown in FIG. 6G, the block electrode reservoirs 122a and 122b are grounded, the collection reservoir 118 is opened, and a positive voltage is applied to the collection electrode reservoir 120. do it. By doing this, The sample component adsorbed on the electrode in the collection reservoir 118 moves away from the electrode and further migrates toward the collection electrode reservoir 120. Since sample components are prevented from migrating by the nanochannel 124, the sample component will eventually end up in the region around the nanochannel 124 in the collection reservoir 118.
[0070] このように、本実施の形態によれば、回収した試料成分が回収リザーバ内の電極に 吸着することを防ぎ、かつ回収した試料成分を回収リザーバ内のナノチャンネル周辺 領域に集めることができるので、回収リザーバ内の試料成分をマイクロピペットなどを 用いて容易に取り出すことができる。 As described above, according to the present embodiment, the collected sample component is prevented from adsorbing to the electrode in the collection reservoir, and the collected sample component is collected in the region around the nanochannel in the collection reservoir. Therefore, the sample components in the collection reservoir can be easily removed using a micropipette.
[0071] また、本実施の形態によれば、ブロック電極が分取流路に電圧を印加することで、 所望でなレ、バンドが分取流路に入り込むことを阻止できるので、所望の試料成分を 汚染することなく分取し、回収すること力 Sできる。 [0071] Further, according to the present embodiment, since the block electrode applies a voltage to the sorting flow path, it is possible to prevent a desired layer and band from entering the sorting flow path. The ability to sort and collect components without contamination is possible.
[0072] また、本実施の形態によれば、分離流路検出部および回収リザーバ検出部の検出 結果に基づいて制御部でマイクロチップの各電極に印加する電圧を決定するので、 ユーザが煩雑な作業を行うことなく自動制御で試料成分の分取を正確に行うことがで きる。 [0072] Further, according to the present embodiment, the voltage to be applied to each electrode of the microchip is determined by the control unit based on the detection results of the separation channel detection unit and the recovery reservoir detection unit. Sample components can be accurately sorted by automatic control without any work.
[0073] (実施の形態 2) [0073] (Embodiment 2)
実施の形態 1では、回収リザーバがーつの例を示した。実施の形態 2は、回収リザ ーバが複数ある例を示す。実施の形態 1に係るマイクロチップおよびマイクロチップ 電気泳動装置と同じ構成要素については同一の符号を付し、重複箇所の説明を省 略する。 In the first embodiment, an example in which there is one recovery reservoir is shown. Embodiment 2 shows an example in which there are a plurality of recovery reservoirs. The same components as those of the microchip and the microchip electrophoresis apparatus according to the first embodiment are denoted by the same reference numerals, and description of overlapping portions is omitted.
[0074] 図 7は、本発明の実施の形態 2に係るマイクロチップの構成を示す図である。 FIG. 7 is a diagram showing a configuration of a microchip according to Embodiment 2 of the present invention.
[0075] 図 7において、本実施の形態のマイクロチップ 300は、導入流路 102、分離流路 10 4、分取流路 302、 2本のブロック流路 108a, 108b,サンプルリザーバ 110、サンプ ル排出リザーノ 112、バッファリザーバ 114、バッファ排出リザーバ 116、複数の回収 リザーノ 304a〜304d、複数の回収用電極用リザーバ 306a〜306d、および 2つの ブロック電極用リザーバ 122a, 122bを有する。分取流路 302以外の構成要素は、 実施の形態 1と同様のものである。 In FIG. 7, the microchip 300 of the present embodiment includes an introduction channel 102, a separation channel 104, a sorting channel 302, two block channels 108a and 108b, a sample reservoir 110, and a sample. It has a discharge reservoir 112, a buffer reservoir 114, a buffer discharge reservoir 116, a plurality of recovery reservoirs 304a to 304d, a plurality of recovery electrode reservoirs 306a to 306d, and two block electrode reservoirs 122a and 122b. The components other than the sorting channel 302 are the same as those in the first embodiment.
[0076] 分取流路 302は、分離流路 104と連通するように交差しており、かつ分離流路 104
に対して両側で複数に分岐する流路である。分取流路 302の分岐端には、それぞれ 回収リザーノ 304a〜304d力 S設けられている。説明の便宜上、回収リザーバ 304a〜 304dと連通する分取流路 302を、それぞれ分岐流路 302a〜302dと呼ぶことがある 。また、分取流路 302は、ブロック流路 108a, 108bとも連通する。例えば、分取流路 302のうち分離流路 104に対して垂直方向の部分(図 7参照)は、幅 55 m、深さ 25 ^ m,長さ 10mmの流路とし、その中間点(1/2地点)で分離流路 104と交差し、そ の両端、 1/4地点および 3/4地点で分岐するようにするようにすればよい。また、分 岐流路 302a, 302dは、 列えば、、幅 90 μ m、深さ 25 μ m、長さ 5mmの流路とし、分 岐流路 302b, 302cは、 列えば、、幅 90〃111、深さ 25〃m、長さ 3mmの流路とすれば、 よい。 The sorting channel 302 intersects with the separation channel 104 and communicates with the separation channel 104. Is a flow path that branches into a plurality of sides on both sides. Recovered Lisano 304a to 304d forces S are provided at the branch ends of the sorting flow path 302, respectively. For convenience of explanation, the sorting flow paths 302 communicating with the collection reservoirs 304a to 304d may be referred to as branch flow paths 302a to 302d, respectively. Further, the sorting channel 302 communicates with the block channels 108a and 108b. For example, a portion of the sorting channel 302 that is perpendicular to the separation channel 104 (see FIG. 7) is a channel having a width of 55 m, a depth of 25 ^ m, and a length of 10 mm, and an intermediate point (1 / 2) crosses the separation channel 104 and divides at both ends, 1/4 and 3/4. The branch channels 302a and 302d are, for example, 90 μm wide, 25 μm deep, and 5 mm long, and the branch channels 302b and 302c are 90 mm wide. The channel should be 111, 25 mm deep and 3 mm long.
[0077] 実施の形態 2に係るマイクロチップ電気泳動装置 200は、図 7に示されるマイクロチ ップ 300、分離流路検出部 210、複数の回収リザーバ検出部 220a〜220d、制御部 230および電圧印加部 240を備える。マイクロチップ 300以外の構成要素は、実施 の形態 1と同様のものである。 [0077] A microchip electrophoresis apparatus 200 according to Embodiment 2 includes a microchip 300, a separation channel detection unit 210, a plurality of collection reservoir detection units 220a to 220d, a control unit 230, and a voltage application shown in FIG. Part 240 is provided. Components other than the microchip 300 are the same as those in the first embodiment.
[0078] 次に、図 8に示されるフローチャートおよび図 9に示されるマイクロチップの模式図を 用いて、本実施の形態に係るマイクロチップ電気泳動装置が所望の試料成分を分取 する流れを説明する。ステップ S1000〜ステップ S 1200 (分離処理:図 9A参照)およ びステップ S 1400 (ブロッキング処理:図 9Bおよび図 9C参照)は、図 5のフローチヤ 一トの各ステップと同様のものである。 [0078] Next, using the flowchart shown in FIG. 8 and the schematic diagram of the microchip shown in FIG. 9, the flow in which the microchip electrophoresis apparatus according to the present embodiment sorts a desired sample component will be described. To do. Steps S1000 to S1200 (separation process: see FIG. 9A) and step S1400 (blocking process: see FIGS. 9B and 9C) are the same as the steps in the flowchart of FIG.
[0079] ステップ S2000では、分離流路検出部 210で分離流路 104と分取流路 302との交 点に分離された試料成分が到達したことを光学的に検出した時(図 9A参照)、制御 部 230でこの試料成分が所望の試料成分か否かを判定する。なお、実施の形態 2で は、分離流路検出部 210は、図 4に示される分離流路と分取流路との交点付近の a 〜dの 4地点にお!/、て蛍光を検出する。この試料成分が所望の試料成分ではな!/、場 合(S2000 : NO)、ステップ S1400に進む。一方、この試料成分が所望の試料成分 の場合(S2000 :YES)、ステップ S2100に進む。 [0079] In step S2000, when the separation channel detector 210 optically detects that the separated sample component has reached the intersection of the separation channel 104 and the sorting channel 302 (see FIG. 9A). The control unit 230 determines whether this sample component is a desired sample component. In Embodiment 2, the separation channel detection unit 210 detects fluorescence at four points a to d near the intersection of the separation channel and the sorting channel shown in FIG. To do. If this sample component is not the desired sample component! / (S2000: NO), go to step S1400. On the other hand, if this sample component is the desired sample component (S2000: YES), the process proceeds to step S2100.
[0080] ステップ S2100では、分取流路 106に電圧を印加することで所望の試料成分を分 取流路 302に取り込む(分取処理)。例えば、所望の DNAを回収リザーバ 304aに回
収するには、図 9Dに示されるように、バッファ排出リザーバ 116をオープンにし、回 収リザーバ 304aにプラスの電圧を印加すればよい。 In step S 2100, a desired sample component is taken into the sorting channel 302 by applying a voltage to the sorting channel 106 (sorting process). For example, transfer the desired DNA to the collection reservoir 304a. To achieve this, as shown in FIG. 9D, the buffer discharge reservoir 116 is opened and a positive voltage is applied to the collection reservoir 304a.
[0081] 次に、ステップ S2200では、分取した試料成分を回収リザーバ 304a〜304dのい ずれかに回収する(回収処理)。このとき、複数の回収リザーバは、分離流路 104から 遠いリザーバから使用する。すなわち、図 7に示されるマイクロチップの場合、回収リ ザーノ 304a、回収リザーバ 304d、回収リザーバ 304b、回収リザーバ 304cの順に 試料成分を回収する。例えば、所望の DNAを回収リザーバ 304aに回収するには、 バッファリザーバ 114をオープンにし、ブロック電極用リザーバ 122a, 122bを接地し 、回収リザーバ 304aにプラスの電圧を印加することで(図 9E参照)、分取した試料成 分を回収リザーバ 304aに回収することができる(図 9G参照)。また、分取した試料成 分が分岐流路 302aに到達した時、分岐流路 302aよりも内側に位置する分岐流路 3 02bに電圧を印加することで、分岐流路 302bを洗浄する(洗浄処理)。例えば、試料 成分が DNAの場合、分岐流路 302bを洗浄するには、図 9Fに示されるように、回収 リザーバ 304bを接地すればよい。これにより、回収処理中に分岐流路 302bに入り 込んでしまった試料成分を分岐流路 302bから排出することができる(図 9Eおよび図 9F参照)。 [0081] Next, in step S2200, the collected sample components are collected in one of the collection reservoirs 304a to 304d (collection process). At this time, the plurality of recovery reservoirs are used from reservoirs far from the separation channel 104. That is, in the case of the microchip shown in FIG. 7, the sample components are collected in the order of the collection risano 304a, the collection reservoir 304d, the collection reservoir 304b, and the collection reservoir 304c. For example, to collect desired DNA in the collection reservoir 304a, open the buffer reservoir 114, ground the block electrode reservoirs 122a and 122b, and apply a positive voltage to the collection reservoir 304a (see FIG. 9E). The collected sample components can be collected in the collection reservoir 304a (see FIG. 9G). Further, when the collected sample component reaches the branch flow path 302a, the branch flow path 302b is cleaned by applying a voltage to the branch flow path 302b located inside the branch flow path 302a (washing). processing). For example, when the sample component is DNA, the recovery reservoir 304b may be grounded as shown in FIG. 9F in order to wash the branch channel 302b. Thus, the sample component that has entered the branch channel 302b during the recovery process can be discharged from the branch channel 302b (see FIGS. 9E and 9F).
[0082] 次に、ステップ S2300では、回収リザーバ検出部 220aで回収リザーバ 304aに分 取された試料成分が回収されたことを検出した時、回収用電極用リザーバ 306aに電 圧を所定の時間印加することで当該試料成分を回収リザーバ 304a内の電極から離 れさせる。例えば、回収した試料成分が DNAの場合、図 9Hに示されるように、ブロッ ク電極用リザーバ 122a, 122bを接地し、回収リザーバ 304aをオープンにし、回収 用電極用リザーバ 306aにプラスの電圧を印加すればよい。このようにすることで、回 収リザーバ 304a内の電極に吸着していた試料成分は、電極から離れ、回収用電極 用リザーバ 306a方向にさらに泳動する。試料成分は、ナノチャンネルにより泳動を妨 害されるため、最終的に回収リザーバ 304a内のナノチャンネル周辺領域に留まる。 Next, in step S2300, when the collection reservoir detector 220a detects that the sample components collected in the collection reservoir 304a are collected, a voltage is applied to the collection electrode reservoir 306a for a predetermined time. As a result, the sample component is separated from the electrode in the collection reservoir 304a. For example, if the collected sample component is DNA, as shown in Fig. 9H, ground the block electrode reservoirs 122a and 122b, open the collection reservoir 304a, and apply a positive voltage to the collection electrode reservoir 306a. do it. By doing so, the sample component adsorbed on the electrode in the collection reservoir 304a is separated from the electrode and further migrates in the direction of the collection electrode reservoir 306a. Since the sample component is prevented from migrating by the nanochannel, it finally remains in the region around the nanochannel in the collection reservoir 304a.
[0083] 次に、ステップ S2400では、制御部 230で本フローを終了するか否かを判定する。 Next, in step S2400, control unit 230 determines whether or not to end this flow.
例えば、すべての回収リザーバ 304a〜304dが試料成分を回収したとき、すべての 所望の試料成分が回収リザーバ 304a〜304dに回収されたとき、またはすベての試
料成分が分離流路 104と分取流路 302との交点を通過したとき、本フローを終了す ると判定する。本フローを終了しないと判定した場合(S2400 : NO)、各電極の設定 をステップ S 1200の状態に戻し、ステップ S1200に戻る。一方、本フローを終了する と判定した場合(S2400 : YES)、本フローを終了する。 For example, when all collection reservoirs 304a-304d have collected sample components, all desired sample components have been collected in collection reservoirs 304a-304d, or all When the material component passes through the intersection of the separation channel 104 and the sorting channel 302, it is determined that this flow is finished. If it is determined not to end this flow (S2400: NO), the setting of each electrode is returned to the state of step S1200, and the process returns to step S1200. On the other hand, if it is determined that this flow is to be terminated (S2400: YES), this flow is terminated.
[0084] このように、本実施の形態によれば、実施の形態 1の効果に加え、 1枚のマイクロチ ップにおいて一の試料由来の複数の試料成分をそれぞれ異なる回収リザーバに回 収すること力 Sでさる。 Thus, according to the present embodiment, in addition to the effects of the first embodiment, a plurality of sample components derived from one sample can be collected in different collection reservoirs in one microchip. Touch with force S.
[0085] また、本実施の形態によれば、洗浄処理を行うことにより未使用の分岐流路が汚染 されることを防げるので、所望の試料成分を汚染することなく分取し、回収することが できる。 [0085] Further, according to the present embodiment, it is possible to prevent the unused branch flow path from being contaminated by performing the cleaning process, so that the desired sample component can be separated and collected without being contaminated. Is possible.
[0086] また、本実施の形態によれば、電極が分離流路に対して線対称に配置されて!/、る ので、電気回路の構造および電圧印加の切り替え動作が複雑になることを回避する こと力 Sでさる。 [0086] Further, according to the present embodiment, the electrodes are arranged symmetrically with respect to the separation channel! /, So that the structure of the electric circuit and the switching operation of voltage application are prevented from being complicated. Doing with the power S
[0087] なお、本発明の各実施の形態におけるマイクロチップの構成は上記各実施の形態 で説明したものに限定されるものではなぐ各流路の形状や本数、リザーバの数など を変更してもよい。 Note that the configuration of the microchip in each embodiment of the present invention is not limited to that described in each of the above embodiments, and the shape and number of each flow path, the number of reservoirs, and the like are changed. Also good.
実施例 Example
[0088] 以下、本発明を実施例を参照してさらに説明する。なお、本発明の範囲は、本実施 例により限定して解釈されない。 [0088] The present invention will be further described below with reference to examples. It should be noted that the scope of the present invention is not construed as being limited by this example.
[0089] 本実施例では、実施の形態 1のマイクロチップを備えるマイクロチップ電気泳動装 置を用いて、 lObpDNAラダー(試料)から 20bpの DNA (特定の試料成分)を分取 した例を示す。 [0089] In this example, an example in which 20 bp DNA (specific sample component) was fractionated from an lObp DNA ladder (sample) using the microchip electrophoresis apparatus including the microchip of Embodiment 1 is shown.
[0090] 本実施例で用いたマイクロチップは、図 2Aに示される流路を有するガラス製のもの を用いた。導入流路および分離流路は、幅 90 m X深さ 20 mとした。一方、分取 流路は、分取の分解能を向上させるため、幅 50 mX深さ 20 mとした。図 10Aに 導入流路と分離流路との交点の顕微鏡写真を、図 10Bに分離流路と分取流路との 交点の顕微鏡写真をそれぞれ示す。図 10Aにおいて、「1」はバッファリザーバ側、「 2」はサンプルリザーバ側、「4」はサンプル排出リザーバ側を示す。また、図 10Bにお
いて、「3」はバッファ排出リザーバ側、「0」は回収リザーバがない側、「8」は回収リザ ーバがある側を示す。導入流路は、長さ 10mmとし、その中間点で分離流路と交差 するようにした。分離流路は、長さ 85mmとし、バッファリザーバから 5mmの地点で導 入流路と交差するようにし、バッファ排出リザーバから 15mmの地点で分取流路と交 差するようにした。分取流路のうち分離流路に対して垂直方向の部分は、長さ 10mm とし、その中間点で分離流路と交差するようにした。分取流路のうち分離流路と平行 の部分は、長さ 10mmとした。ブロック流路は、長さ 20mmとした。 [0090] The microchip used in this example was made of glass having the flow path shown in FIG. 2A. The introduction channel and the separation channel were 90 m wide x 20 m deep. On the other hand, the sorting channel is 50 m wide and 20 m deep to improve sorting resolution. Fig. 10A shows a photomicrograph of the intersection of the introduction channel and the separation channel, and Fig. 10B shows a photomicrograph of the intersection of the separation channel and the sorting channel. In FIG. 10A, “1” indicates the buffer reservoir side, “2” indicates the sample reservoir side, and “4” indicates the sample discharge reservoir side. Figure 10B “3” indicates the buffer discharge reservoir side, “0” indicates the side without the recovery reservoir, and “8” indicates the side with the recovery reservoir. The introduction channel was 10 mm long and crossed the separation channel at the midpoint. The separation channel was 85 mm long, intersecting the inlet channel at a point 5 mm from the buffer reservoir, and intersecting the preparatory channel at a point 15 mm from the buffer discharge reservoir. The part of the sorting channel that is perpendicular to the separation channel is 10 mm long and intersects the separation channel at the midpoint. The part of the sorting channel parallel to the separation channel was 10 mm long. The block channel was 20 mm long.
[0091] また、本実施例で用いたマイクロチップは、流路溝を刻んだガラス板とリザーバ(ポ ッド)用の穴を開けたガラス板とをケィ酸ナトリウムを接着層として張り合わせて作製し た。具体的には、まず、一般的なフォトリソグラフィ技術およびウエットエッチング技術 を用いて、流路溝を刻んだガラス板およびリザーバ(ポッド)用の穴を開けたガラス板 を作製した。次に、一方のガラス板の上に 0.1Mのケィ酸ナトリウム水溶液をスピンコ ートすることで、ケィ酸ナトリウムの薄膜を形成した。ケィ酸ナトリウムの薄膜の上に他 方のガラス板を載せ、 200°Cで加熱した。このようにすることで、ケィ酸ナトリウムは多 孔質ガラスとなり、 2枚のガラス板は互いに接着された。また、形成されたケィ酸ナトリ ゥムの多孔質ガラスは、図 2Cに示されるように、回収リザーバと回収用電極用リザー バとの間のナノチャンネルとしても機能するようにした。このとき、ナノチャンネルの長 さ(図 2Cの「a」)は 10 mとした。 [0091] The microchip used in this example was manufactured by bonding a glass plate with engraved channel grooves and a glass plate with holes for reservoirs (pods), using sodium silicate as an adhesive layer. did. Specifically, first, using a general photolithography technique and a wet etching technique, a glass plate with engraved channel grooves and a glass plate with holes for reservoirs (pods) were produced. Next, a thin film of sodium silicate was formed on one glass plate by spin-coating a 0.1M sodium silicate aqueous solution. The other glass plate was placed on the sodium silicate thin film and heated at 200 ° C. By doing so, the sodium silicate became a porous glass, and the two glass plates were bonded to each other. The formed sodium silicate porous glass also functions as a nanochannel between the collection reservoir and the collection electrode reservoir, as shown in FIG. 2C. At this time, the length of the nanochannel (“a” in FIG. 2C) was 10 m.
[0092] 流路内には、 DNA結合性蛍光色素サイバーグリーンを含むポリジメチルアクリルァ ミドゲルおよび緩衝液をあらかじめ導入した。 [0092] A polydimethylacrylamide gel containing a DNA-binding fluorescent dye cyber green and a buffer solution were previously introduced into the flow path.
[0093] 分離流路検出部および回収リザーバ検出部は、水銀ランプ、励起フィルタ(460〜 490nm)、ダイクロイツクミラー(505nm)、吸収フィルタ(510〜550nm)を備える倒 立型システム顕微鏡(1X70:ォリンパス)および CCDカメラ(ORCA—EG:浜松ホト 二タス)を備える構成とした。分離流路検出部は、図 10Bに示される A〜Cの各地点 の蛍光強度の変化をモニターするように設定した。 [0093] The separation channel detection unit and the recovery reservoir detection unit are an inverted system microscope (1X70: equipped with a mercury lamp, an excitation filter (460 to 490 nm), a dichroic mirror (505 nm), and an absorption filter (510 to 550 nm). Olympus) and CCD camera (ORCA-EG: Hamamatsu Photonics). The separation channel detector was set to monitor the change in fluorescence intensity at each point A to C shown in FIG. 10B.
[0094] 制御部および電圧印加部による電圧の切り替えは、次のように設定した。分離処理 は、バッファリザーバを接地し、バッファ排出リザーバに + 1300Vの電圧を印加し、 その他のリザーバをオープンにするように設定した(図 6A参照)。ブロッキング処理は
、 B地点における蛍光強度が所定の閾値より上昇したとき、 2つのブロック電極用リザ ーバを接地するように設定した(図 6B参照)。また、 B地点における蛍光強度が所定 の閾値より下降したとき、 2つのブロック電極用リザーバをオープンに戻すように設定 した(図 6C参照)。分取処理は、 A地点における蛍光強度が所定の閾値より上昇した とき、バッファ排出リザーバをオープンにし、回収リザーバに + 1300Vの電圧を印加 するように設定した(図 6D参照)。回収処理は、 C地点における蛍光強度が所定の閾 値より下降したとき、バッファリザーバをオープンにし、 2つのブロック電極用リザーバ を接地するように設定した(図 9Eおよび図 9F参照)。また、回収リザーバ内における 蛍光強度が所定の閾値より上昇したとき、回収リザーバをオープンにし、回収用電極 用リザーバに + 1300Vの電圧を印加するように設定した(図 9G参照)。 [0094] The voltage switching by the control unit and the voltage application unit was set as follows. The separation process was set so that the buffer reservoir was grounded, a voltage of +1300 V was applied to the buffer discharge reservoir, and the other reservoirs were opened (see Figure 6A). Blocking process The two block electrode reservoirs were set to ground when the fluorescence intensity at point B rose above a certain threshold (see Fig. 6B). In addition, when the fluorescence intensity at point B fell below a predetermined threshold, the two block electrode reservoirs were set back to open (see FIG. 6C). The sorting process was set to open the buffer discharge reservoir and apply a voltage of +1300 V to the collection reservoir when the fluorescence intensity at point A rose above a predetermined threshold (see Figure 6D). The collection process was set to open the buffer reservoir and ground the two block electrode reservoirs when the fluorescence intensity at point C fell below a predetermined threshold (see Figure 9E and Figure 9F). When the fluorescence intensity in the collection reservoir rose above a predetermined threshold, the collection reservoir was opened and a voltage of +1300 V was applied to the collection electrode reservoir (see FIG. 9G).
[0095] (導入処理) [0095] (Introduction process)
試料をサンプルリザーバに注入した後、導入処理を行った。まず、サンプルリザー ノ 、バッファリザーバおよびバッファ排出リザーバを接地し、サンプル排出リザーバに + 300Vの電圧を印加した。これにより、試料は、サンプルリザーバからサンプル排出 リザーバに向けて泳動を開始した。次に、試料が導入流路と分離流路との交点に到 達した時、サンプルリザーバを接地し、サンプル排出リザーバに + 300Vの電圧を、 ノ ッファ排出リザーバに + 1300Vの電圧を同時に 4秒間印加し、試料の一部を分離 流路に導入した。 After the sample was injected into the sample reservoir, an introduction process was performed. First, the sample reservoir, the buffer reservoir, and the buffer discharge reservoir were grounded, and a voltage of +300 V was applied to the sample discharge reservoir. As a result, the sample started to migrate from the sample reservoir toward the sample discharge reservoir. Next, when the sample reaches the intersection of the introduction channel and the separation channel, the sample reservoir is grounded, + 300V voltage is applied to the sample discharge reservoir, and + 1300V voltage is applied simultaneously to the sample discharge reservoir for 4 seconds. And a part of the sample was introduced into the separation channel.
[0096] 図 11は、試料が導入流路と分離流路との交点に到達した時の、交点付近の蛍光 写真である。図 11において、「1」はバッファリザーバ側、「2」はサンプルリザーバ側、 「3」はバッファ排出リザーバ側、「4」はサンプル排出リザーバ側を示しており、白色に 見えるものはサイバーグリーンにより蛍光染色された試料(lObpDNAラダー)である FIG. 11 is a fluorescent photograph near the intersection when the sample reaches the intersection between the introduction channel and the separation channel. In FIG. 11, “1” indicates the buffer reservoir side, “2” indicates the sample reservoir side, “3” indicates the buffer discharge reservoir side, and “4” indicates the sample discharge reservoir side. Fluorescently stained sample (lObpDNA ladder)
[0097] (分離処理) [0097] (Separation process)
試料を分離流路に導入した後、自動制御による電気泳動を開始させた。まず、制 御部および電圧印加部により、バッファリザーバが接地され、バッファ排出リザーバに + 1300Vの電圧が印加された(図 6A参照)。これにより、導入された試料は、バッフ ァ排出リザーバに向けて泳動を開始した。試料は、ポリジメチルアクリルアミドゲル中
を泳動することにより、複数のバンド(lObpの DNA、 20bpの DNA、 · · ·、の DNA)に 分離した。 After introducing the sample into the separation channel, electrophoresis by automatic control was started. First, the buffer reservoir was grounded by the control unit and the voltage application unit, and a voltage of +1300 V was applied to the buffer discharge reservoir (see FIG. 6A). Thus, the introduced sample started to migrate toward the buffer discharge reservoir. Sample in a polydimethylacrylamide gel Was separated into multiple bands (10 bp DNA, 20 bp DNA,...).
[0098] (ブロッキング処理) [0098] (Blocking process)
複数のバンドは、バッファ排出リザーバに向けて泳動を続け、塩基数が少ないもの 力も順に分離流路と分取流路との交点に到達した。最初に到達したバンド(lObpの DNA)は所望の DNA(20bpの DNA)ではないため、ブロッキング処理が行われた。 すなわち、 B地点における蛍光強度が所定の閾値より上昇した時、 2つのブロック電 極用リザーバが接地された。これにより、このバンド(lObpの DNA)は、分取流路に 入り込むことなくバッファ排出リザーバに向けて泳動した(図 6B参照)。 B地点におけ る蛍光強度が所定の閾値より下降した時、 2つのブロック電極用リザーバが再びォー プンに戻され、泳動が続けられた(図 6C参照)。 The multiple bands continued to migrate toward the buffer discharge reservoir, and the force with a small number of bases reached the intersection of the separation channel and the sorting channel in order. Since the first reached band (10 bp DNA) was not the desired DNA (20 bp DNA), blocking treatment was performed. That is, when the fluorescence intensity at point B rises above a predetermined threshold, the two block electrode reservoirs were grounded. As a result, this band (10 bp DNA) migrated toward the buffer discharge reservoir without entering the sorting channel (see FIG. 6B). When the fluorescence intensity at point B fell below a predetermined threshold, the two block electrode reservoirs were returned to the open state and electrophoresis continued (see FIG. 6C).
[0099] 図 12A〜図 12Cは、ブロッキング処理時の分離流路と分取流路との交点付近の蛍 光写真である。図 12Aは所望でないバンドが交点に到達した時の写真、図 12Bは B 地点における蛍光強度が所定の閾値より上昇したことを検出した時の写真、図 12C はブロッキング処理を行っている時の写真である。各写真において、上下方向の流 路は分離流路、左右方向の流路は分取流路であり、上がバッファリザーバ側、下が ノ ッファ排出リザーバ側である。これらの写真から、ブロッキング処理を行うことにより 、所望でないバンド(lObpの DNA)が分取流路に入り込まないことがわかる。 FIG. 12A to FIG. 12C are fluorescent photographs in the vicinity of the intersection of the separation channel and the sorting channel during the blocking process. Fig. 12A is a photo when an undesired band reaches the intersection, Fig. 12B is a photo when it is detected that the fluorescence intensity at point B has risen above a predetermined threshold, and Fig. 12C is a photo when blocking processing is performed. It is. In each photograph, the vertical channel is the separation channel, the horizontal channel is the sorting channel, the upper is the buffer reservoir side, and the lower is the notch discharge reservoir side. From these photographs, it can be seen that by performing the blocking treatment, an undesired band (10 bp DNA) does not enter the sorting channel.
[0100] 図 13は、比較例としてブロッキング処理を行わな力 た場合の、分離流路と分取流 路との交点付近の蛍光写真である。各流路の方向は図 12の写真と同様である。この 写真から、ブロッキング処理を行わないと、所望でないバンド(lOObpの DNAおよび l lObpの DNA)が分取流路に入り込んでしまうことがわ力、る。 [0100] FIG. 13 is a fluorescent photograph in the vicinity of the intersection of the separation channel and the sorting channel when a blocking process is applied as a comparative example. The direction of each channel is the same as the photograph in FIG. From this photograph, it can be seen that undesired bands (lOObp DNA and lObp DNA) enter the preparative channel without blocking treatment.
[0101] (分取処理) [0101] (Preparation processing)
次に到達したバンド(20bpの DNA)は所望の DNAであるため、分取処理および回 収処理が行われた。すなわち、 A地点における蛍光強度が所定の閾値より上昇した 時、バッファ排出リザーバがオープンにされ、回収リザーバに + 1300Vの電圧が印 カロされた(図 6D参照)。これにより、所望のバンド(20bpの DNA)は分取流路に分取 された。
[0102] 図 12D〜図 12Fは、分取処理時の分離流路と分取流路との交点付近の蛍光写真 である。図 12Dは A地点における蛍光強度が所定の閾値より上昇したことを検出した 時の写真、図 12Eは分取処理を開始した時の写真、図 12Fは分取処理を終えた時 の写真である。各流路の方向は図 12Aの写真と同様である。これらの写真から、分取 処理を行うことにより、所望のバンド(20bpの DNA)が分取されたことがわかる。 Since the next band reached (20 bp of DNA) was the desired DNA, sorting and collection were performed. That is, when the fluorescence intensity at point A rose above a predetermined threshold, the buffer discharge reservoir was opened and a voltage of +1300 V was applied to the collection reservoir (see FIG. 6D). As a result, the desired band (20 bp DNA) was separated into the sorting channel. [0102] FIGS. 12D to 12F are fluorescence photographs near the intersection of the separation channel and the sorting channel during the sorting process. Fig. 12D is a photograph when it is detected that the fluorescence intensity at point A has risen above a predetermined threshold, Fig. 12E is a photograph when sorting processing is started, and Fig. 12F is a photograph when sorting processing is finished. . The direction of each channel is the same as the photograph in FIG. 12A. From these photographs, it can be seen that the desired band (20 bp DNA) was fractionated by the fractionation process.
[0103] (回収処理) [0103] (Recovery processing)
分取処理の後、分取した所望の DNAを回収リザーバに回収するため、回収処理 が行われた。すなわち、 C地点における蛍光強度が所定の閾値より下降した時、バッ ファリザーバがオープンにされ、 2つのブロック電極用リザーバが接地された。これに より、所望のバンド(20bpの DNA)は、回収リザーバに向けて泳動し、最終的には回 収リザーバに回収された(図 6Eおよび図 6F参照)。 After the sorting process, a collecting process was performed in order to collect the desired DNA collected in the collecting reservoir. That is, when the fluorescence intensity at point C fell below a predetermined threshold, the buffer reservoir was opened and the two block electrode reservoirs were grounded. As a result, the desired band (20 bp DNA) migrated toward the collection reservoir and was finally collected in the collection reservoir (see FIGS. 6E and 6F).
[0104] 図 12G〜図 121は、回収処理時の分離流路と分取流路との交点付近の蛍光写真 である。図 12Gは回収処理を開始した時の写真、図 12Hは回収処理中の写真、図 1 21は回収処理を終了した時の写真である。各流路の方向は図 12Aの写真と同様で ある。これらの写真から、回収処理を行うことにより、所望のバンドが目的どおりに回 収されたことがわかる。 FIGS. 12G to 121 are fluorescent photographs near the intersection of the separation channel and the sorting channel during the recovery process. 12G is a photograph when the collection process is started, FIG. 12H is a photograph during the collection process, and FIG. 121 is a photograph when the collection process is completed. The direction of each flow path is the same as the photograph in FIG. 12A. From these photographs, it can be seen that the desired band was collected as intended by the collection process.
[0105] 図 14は、 A〜Cの各地点における蛍光強度のクロマトグラムである。横軸は時間( 秒)、縦軸は蛍光強度(arb. units)を示す。上段が A地点、中段が C地点、下段が B 地点における蛍光強度を示している。また、 A地点のクロマトグラム(上段)の矢印は 所望のバンドの分取処理開始時を示し、 C地点のクロマトグラム(中段)の矢印は所望 のバンドの回収処理開始時を示している。図 14から、所望でないバンド(1番目のバ ンド)は、 A地点(上段)で検出された後、 B地点(下段)で検出されているので、この バンドは分取されていないことがわかる。一方、所望のバンド(2番目のバンド)は、 A 地点(上段)で検出された後、 C地点(中段)で検出されているので、このバンドのみ 分取されて!/、ること力 Sわ力、る。 FIG. 14 is a chromatogram of fluorescence intensity at each point of A to C. The horizontal axis represents time (seconds), and the vertical axis represents fluorescence intensity (arb. Units). The upper row shows the fluorescence intensity at point A, the middle row at point C, and the lower row at point B. In addition, the arrow in the chromatogram (upper part) at point A indicates the start of the desired band collection process, and the arrow in the chromatogram (middle stage) at point C indicates the start of the recovery process for the desired band. Fig. 14 shows that an undesired band (first band) is detected at point A (upper) and then detected at point B (lower), so this band is not sorted. . On the other hand, since the desired band (second band) is detected at point A (upper) and then detected at point C (middle), only this band is separated! I'm worried.
[0106] (回収用電極用リザーバに電圧印加) [0106] (Voltage applied to collection electrode reservoir)
回収処理の後、回収した試料成分を回収リザーバ内の電極から離れさせるための 処理が行われた。すなわち、回収リザーバ内における蛍光強度が所定の閾値より上
昇した時、回収リザーバの電位がオープンにされ、回収用電極用リザーバに + 1300 Vの電圧が印加された。これにより、回収リザーバ内の試料成分(20bpの DNA)は、 回収リザーバ内のナノチャンネル周辺領域に集まった。 (図 6G参照)。 After the recovery process, a process was performed to separate the recovered sample components from the electrode in the recovery reservoir. That is, the fluorescence intensity in the collection reservoir is above a predetermined threshold. When raised, the potential of the collection reservoir was opened and a voltage of +1300 V was applied to the collection electrode reservoir. As a result, the sample component (20 bp DNA) in the collection reservoir gathered in the area around the nanochannel in the collection reservoir. (See Figure 6G).
[0107] 図 15は、回収用電極用リザーバに電圧を印加した時の回収リザーバ内のナノチヤ ンネル周辺領域の蛍光写真である。図 15において、上の点線より上側が回収リザー バ 118、下の点線より下側が回収用電極用リザーバ 120を示しており、白色に見える ものはサイバーグリーンにより蛍光染色された試料 400 (20bpDNAラダー)である。 このように、回収用電極用リザーバに電圧を印加することにより、回収リザーバ内の試 料成分(20bpの DNA)は、回収リザーバ内の電極から離れ、ナノチャンネル周辺領 域に集まることがわかる。 FIG. 15 is a fluorescent photograph of the area around the nanochannel in the collection reservoir when a voltage is applied to the collection electrode reservoir. In FIG. 15, the upper side of the upper dotted line shows the collection reservoir 118, and the lower side of the lower dotted line shows the collection electrode reservoir 120, and what appears white is the sample 400 (20 bp DNA ladder) fluorescently stained with Cyber Green. It is. Thus, it can be seen that when a voltage is applied to the collection electrode reservoir, the sample component (20 bp DNA) in the collection reservoir separates from the electrode in the collection reservoir and collects in the region around the nanochannel.
[0108] 本出願 (ま、 2006年 10月 4曰出願の特願 2006— 273377ίこ基づく優先権を主張 する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用 される。 [0108] The present application (or claiming the priority based on the Japanese Patent Application No. 2006-273377ί, which was filed on October 4, 2006. All the contents described in the specification and drawings of this application are incorporated herein by reference. .
産業上の利用可能性 Industrial applicability
[0109] 本発明に係るマイクロチップおよびマイクロチップ電気泳動装置は、研究者が煩雑 な作業を行うことなく DNAなどの試料成分を分取することができるので、あらゆるバイ ォ産業に関係した生体物質などの分析などに有用である。
[0109] The microchip and the microchip electrophoresis apparatus according to the present invention can separate sample components such as DNA without requiring a complicated work by a researcher, and thus biological materials related to any bioindustry. It is useful for analysis.
Claims
[1] 分離流路、前記分離流路と交差する分取流路、および前記分取流路と連通する回 収リザーバを有し、 [1] having a separation channel, a sorting channel intersecting with the separation channel, and a collection reservoir communicating with the sorting channel,
前記分離流路は、その内部に泳動される試料に含まれる特定成分を分離し、前記 分取流路は、前記特定成分を分取し、前記回収リザーバは、前記特定成分を回収す るマイクロチップであって、 The separation channel separates a specific component contained in a sample migrated therein, the sorting channel separates the specific component, and the recovery reservoir collects the specific component. A chip,
前記回収リザーバと連通し、前記回収リザーバに電圧を印加する回収用電極を有 する回収用電極用リザーバを有するマイクロチップ。 A microchip having a collection electrode reservoir that communicates with the collection reservoir and has a collection electrode that applies a voltage to the collection reservoir.
[2] 前記回収用電極用リザーバは、前記回収リザーバに多孔質物質を介して連通する [2] The collection electrode reservoir communicates with the collection reservoir via a porous substance.
、請求項 1記載のマイクロチップ。 The microchip according to claim 1.
[3] 前記多孔質物質はケィ酸ナトリウムである、請求項 2記載のマイクロチップ。 3. The microchip according to claim 2, wherein the porous material is sodium silicate.
[4] 前記分取流路は前記分離流路よりも細い、請求項 1記載のマイクロチップ。 4. The microchip according to claim 1, wherein the sorting channel is narrower than the separation channel.
[5] サンプルリザーバと、 [5] a sample reservoir;
前記サンプルリザーバと連通し、前記分離流路と交差する導入流路と、 をさらに有する、請求項 1記載のマイクロチップ。 The microchip according to claim 1, further comprising: an introduction channel that communicates with the sample reservoir and intersects the separation channel.
[6] 前記分取流路に電圧を印加して前記特定成分以外の成分が前記分取流路に入り 込むことを抑制するブロック電極をさらに有する、請求項 1記載のマイクロチップ。 6. The microchip according to claim 1, further comprising a block electrode that applies a voltage to the sorting channel and suppresses components other than the specific component from entering the sorting channel.
[7] 前記ブロック電極の数は 2以上である、請求項 6記載のマイクロチップ。 7. The microchip according to claim 6, wherein the number of block electrodes is two or more.
[8] 前記ブロック電極は、前記分離流路の側方両側に配置されて!/、る、請求項 7記載 のマイクロチップ。 8. The microchip according to claim 7, wherein the block electrodes are arranged on both sides of the separation channel.
[9] 両端に電極を有する分離流路、前記分離流路と交差する分取流路、前記分取流 路と連通し、電極を有する回収リザーバ、および前記回収リザーバと連通し、前記回 収リザーバに電圧を印加する回収用電極を有する回収用電極用リザーバを有するマ イク口チップと、 [9] A separation channel having electrodes at both ends, a sorting channel crossing the separation channel, communicating with the sorting channel, a collection reservoir having electrodes, and communicating with the collection reservoir, the collection A microphone mouth tip having a collecting electrode reservoir having a collecting electrode for applying a voltage to the reservoir;
前記マイクロチップの分離流路内を泳動される特定成分を光学的に検出する分離 流路検出部と、 A separation channel detection unit for optically detecting a specific component migrated in the separation channel of the microchip;
前記マイクロチップの回収リザーバに回収される前記特定成分を光学的に検出す る回収リザーバ検出部と、
前記分離流路検出部および前記回収リザーバ検出部の検出結果に基づいて前記 マイクロチップの電極に印加する電圧を決定する制御部と、 A collection reservoir detector for optically detecting the specific component collected in the collection reservoir of the microchip; A control unit that determines a voltage to be applied to the electrode of the microchip based on detection results of the separation channel detection unit and the recovery reservoir detection unit;
前記制御部の決定に基づいて前記マイクロチップの電極に電圧を印加する電圧印 加部と、 A voltage applying unit that applies a voltage to the electrodes of the microchip based on the determination of the control unit;
を有するマイクロチップ電気泳動装置。 A microchip electrophoresis apparatus having
[10] 両端に電極を有する分離流路、前記分離流路と交差する分取流路、前記分取流 路と連通し、電極を有する回収リザーバ、前記回収リザーバと連通し、前記回収リザ ーバに電圧を印加する回収用電極を有する回収用電極用リザーバ、および前記分 取流路に電圧を印加して特定成分以外の成分が前記分取流路に入り込むことを抑 制するブロック電極を有するマイクロチップと、 [10] A separation channel having electrodes at both ends, a sorting channel crossing the separation channel, communicating with the sorting channel, a collection reservoir having electrodes, communicating with the collection reservoir, and the collection reservoir A collecting electrode reservoir having a collecting electrode for applying a voltage to the bar, and a block electrode for applying a voltage to the sorting flow path to prevent components other than the specific component from entering the sorting flow path. A microchip having
前記マイクロチップの分離流路内を泳動される前記特定成分を光学的に検出する 分離流路検出部と、 A separation channel detector for optically detecting the specific component migrated in the separation channel of the microchip;
前記マイクロチップの回収リザーバに回収される前記特定成分を光学的に検出す る回収リザーバ検出部と、 A collection reservoir detector for optically detecting the specific component collected in the collection reservoir of the microchip;
前記分離流路検出部および前記回収リザーバ検出部の検出結果に基づいて前記 マイクロチップの電極に印加する電圧を決定する制御部と、 A control unit that determines a voltage to be applied to the electrode of the microchip based on detection results of the separation channel detection unit and the recovery reservoir detection unit;
前記制御部の決定に基づいて前記マイクロチップの電極に電圧を印加する電圧印 加部と、 A voltage applying unit that applies a voltage to the electrodes of the microchip based on the determination of the control unit;
を有するマイクロチップ電気泳動装置。 A microchip electrophoresis apparatus having
[11] 分離流路、前記分離流路と交差する分取流路、および前記分取流路と連通する回 収リザーバを有し、 [11] having a separation channel, a sorting channel intersecting with the separation channel, and a collection reservoir communicating with the sorting channel,
前記分離流路は、その内部に泳動される試料に含まれる特定成分を分離し、前記 分取流路は、前記特定成分を分取し、前記回収リザーバは、前記特定成分を回収す るマイクロチップであって、 The separation channel separates a specific component contained in a sample migrated therein, the sorting channel separates the specific component, and the recovery reservoir collects the specific component. A chip,
前記分取流路に電圧を印加して前記特定成分以外の成分が前記分取流路に入り 込むことを抑制するブロック電極を有するマイクロチップ。 A microchip having a block electrode that applies a voltage to the sorting channel and suppresses components other than the specific component from entering the sorting channel.
[12] 前記分取流路は前記分離流路よりも細い、請求項 11記載のマイクロチップ。 12. The microchip according to claim 11, wherein the sorting channel is narrower than the separation channel.
[13] 両端に電極を有する分離流路、前記分離流路と交差する分取流路、前記分取流
路と連通し、電極を有する回収リザーバ、および前記分取流路に電圧を印加して特 定成分以外の成分が前記分取流路に入り込むことを抑制するブロック電極を有する マイクロチップと、 [13] A separation channel having electrodes at both ends, a fractionation channel intersecting with the separation channel, and the fractionation flow A microchip having a collection reservoir that has an electrode in communication with the channel, and a block electrode that prevents a component other than a specific component from entering the sorting channel by applying a voltage to the sorting channel;
前記マイクロチップの分離流路内を泳動される前記特定成分を光学的に検出する 分離流路検出部と、 A separation channel detector for optically detecting the specific component migrated in the separation channel of the microchip;
前記マイクロチップの回収リザーバに回収される前記特定成分を光学的に検出す る回収リザーバ検出部と、 A collection reservoir detector for optically detecting the specific component collected in the collection reservoir of the microchip;
前記分離流路検出部および前記回収リザーバ検出部の検出結果に基づいて前記 マイクロチップの電極に印加する電圧を決定する制御部と、 A control unit that determines a voltage to be applied to the electrode of the microchip based on detection results of the separation channel detection unit and the recovery reservoir detection unit;
前記制御部の決定に基づいて前記マイクロチップの電極に電圧を印加する電圧印 加部と、 A voltage applying unit that applies a voltage to the electrodes of the microchip based on the determination of the control unit;
を有するマイクロチップ電気泳動装置。
A microchip electrophoresis apparatus having
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008537543A JP4862115B2 (en) | 2006-10-04 | 2007-10-03 | Microchip and microchip electrophoresis apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-273377 | 2006-10-04 | ||
JP2006273377 | 2006-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008041718A1 true WO2008041718A1 (en) | 2008-04-10 |
Family
ID=39268572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/069340 WO2008041718A1 (en) | 2006-10-04 | 2007-10-03 | Microchip, and microchip electrophoresis device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4862115B2 (en) |
WO (1) | WO2008041718A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011067961A1 (en) * | 2009-12-02 | 2011-06-09 | 独立行政法人科学技術振興機構 | Flow path device and sample processing device including same |
JP2012505415A (en) * | 2008-10-08 | 2012-03-01 | セージ サイエンス, インコーポレイテッド | Multi-channel preparative electrophoresis system |
JP2012525591A (en) * | 2009-04-27 | 2012-10-22 | プロテイン・デイスカバリー・インコーポレーテツド | Programmable electrophoresis notch filter system and method |
US9719961B2 (en) | 2008-10-08 | 2017-08-01 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US10131901B2 (en) | 2014-10-15 | 2018-11-20 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US10473619B2 (en) | 2012-10-12 | 2019-11-12 | Sage Science, Inc. | Side-eluting molecular fractionator |
JP2021512310A (en) * | 2018-01-29 | 2021-05-13 | インタバイオ・インコーポレーテッド | Equipment, methods and kits for sample characterization |
US11542495B2 (en) | 2015-11-20 | 2023-01-03 | Sage Science, Inc. | Preparative electrophoretic method for targeted purification of genomic DNA fragments |
JP2023540471A (en) * | 2020-08-27 | 2023-09-25 | ジャイラス エーシーエムアイ インク ディー/ビー/エー オリンパス サージカル テクノロジーズ アメリカ | Composition analysis technology for ultrasonic ablation |
US11867661B2 (en) | 2017-04-07 | 2024-01-09 | Sage Science, Inc. | Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000338085A (en) * | 1999-05-26 | 2000-12-08 | Shimadzu Corp | Chemiluminescence detection method and microchip electrophoresis apparatus using the method |
JP2002296234A (en) * | 2001-04-02 | 2002-10-09 | Hitachi Electronics Eng Co Ltd | DNA chip and DNA fragment sorting device |
JP2002323477A (en) * | 2001-04-27 | 2002-11-08 | Shimadzu Corp | Electrophoresis device |
JP2003066005A (en) * | 2001-08-23 | 2003-03-05 | Kikuchi Jun | Method and device for electrophoresis of cell |
JP2005249572A (en) * | 2004-03-04 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip |
WO2005121767A1 (en) * | 2004-05-25 | 2005-12-22 | Fluid Incorporated | Microfluidic device and analyzing/sorting device using the same |
JP2006510903A (en) * | 2002-12-19 | 2006-03-30 | キャプチャー デヴァイス アーベー | Method and apparatus for capturing charged molecules moving in a flowing stream |
WO2006093343A1 (en) * | 2005-03-04 | 2006-09-08 | Kabushikikaisya Advance | Electrophoresis-use barrier material and barrier structure and electrophoresis device |
-
2007
- 2007-10-03 WO PCT/JP2007/069340 patent/WO2008041718A1/en active Search and Examination
- 2007-10-03 JP JP2008537543A patent/JP4862115B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000338085A (en) * | 1999-05-26 | 2000-12-08 | Shimadzu Corp | Chemiluminescence detection method and microchip electrophoresis apparatus using the method |
JP2002296234A (en) * | 2001-04-02 | 2002-10-09 | Hitachi Electronics Eng Co Ltd | DNA chip and DNA fragment sorting device |
JP2002323477A (en) * | 2001-04-27 | 2002-11-08 | Shimadzu Corp | Electrophoresis device |
JP2003066005A (en) * | 2001-08-23 | 2003-03-05 | Kikuchi Jun | Method and device for electrophoresis of cell |
JP2006510903A (en) * | 2002-12-19 | 2006-03-30 | キャプチャー デヴァイス アーベー | Method and apparatus for capturing charged molecules moving in a flowing stream |
JP2005249572A (en) * | 2004-03-04 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip |
WO2005121767A1 (en) * | 2004-05-25 | 2005-12-22 | Fluid Incorporated | Microfluidic device and analyzing/sorting device using the same |
WO2006093343A1 (en) * | 2005-03-04 | 2006-09-08 | Kabushikikaisya Advance | Electrophoresis-use barrier material and barrier structure and electrophoresis device |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012505415A (en) * | 2008-10-08 | 2012-03-01 | セージ サイエンス, インコーポレイテッド | Multi-channel preparative electrophoresis system |
US9719961B2 (en) | 2008-10-08 | 2017-08-01 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
JP2012525591A (en) * | 2009-04-27 | 2012-10-22 | プロテイン・デイスカバリー・インコーポレーテツド | Programmable electrophoresis notch filter system and method |
JPWO2011067961A1 (en) * | 2009-12-02 | 2013-04-18 | 独立行政法人科学技術振興機構 | Flow path device and sample processing apparatus including the same |
US9114402B2 (en) | 2009-12-02 | 2015-08-25 | Japan Science And Technology Agency | Channel device and sample treatment apparatus including the same |
WO2011067961A1 (en) * | 2009-12-02 | 2011-06-09 | 独立行政法人科学技術振興機構 | Flow path device and sample processing device including same |
US10473619B2 (en) | 2012-10-12 | 2019-11-12 | Sage Science, Inc. | Side-eluting molecular fractionator |
US10738298B2 (en) | 2014-10-15 | 2020-08-11 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US10131901B2 (en) | 2014-10-15 | 2018-11-20 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US11542495B2 (en) | 2015-11-20 | 2023-01-03 | Sage Science, Inc. | Preparative electrophoretic method for targeted purification of genomic DNA fragments |
US11867661B2 (en) | 2017-04-07 | 2024-01-09 | Sage Science, Inc. | Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification |
JP2021512310A (en) * | 2018-01-29 | 2021-05-13 | インタバイオ・インコーポレーテッド | Equipment, methods and kits for sample characterization |
JP7333326B2 (en) | 2018-01-29 | 2023-08-24 | インタバイオ, エルエルシー | Devices, methods and kits for sample characterization |
JP2023540471A (en) * | 2020-08-27 | 2023-09-25 | ジャイラス エーシーエムアイ インク ディー/ビー/エー オリンパス サージカル テクノロジーズ アメリカ | Composition analysis technology for ultrasonic ablation |
JP7640679B2 (en) | 2020-08-27 | 2025-03-05 | ジャイラス エーシーエムアイ インク ディー/ビー/エー オリンパス サージカル テクノロジーズ アメリカ | Compositional Analysis Techniques for Ultrasonic Ablation |
US12357329B2 (en) | 2020-08-27 | 2025-07-15 | Gyrus Acmi, Inc. | Real-time composition analysis techniques for ultrasonic ablation |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008041718A1 (en) | 2010-02-04 |
JP4862115B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4862115B2 (en) | Microchip and microchip electrophoresis apparatus | |
JP3920221B2 (en) | Concentration and purification of analytes using electric fields | |
JP5562342B2 (en) | Multi-channel preparative electrophoresis system | |
US6261430B1 (en) | Micro-electrophoresis chip for moving and separating nucleic acids and other charged molecules | |
US9719961B2 (en) | Multichannel preparative electrophoresis system | |
JP5221529B2 (en) | Method and apparatus for separating and depleting certain proteins and particles using electrophoresis | |
Long et al. | Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis | |
JP2005502864A (en) | Method and apparatus for separating analytes | |
EP2184602A1 (en) | Micro-channel chip for electrophoresis and method for electrophoresis | |
WO2001070397A2 (en) | Microfluidic device and system with additional peripheral channels | |
RU2006126664A (en) | ANALYTES INPUT SYSTEM | |
Song et al. | Separation of double‐stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium | |
CN107406481B (en) | Electrophoresis and electroblotting systems and methods | |
WO2005032717A1 (en) | System and method for electrokinetic trapping and concentration enrichment of analytes in a microfluidic channel | |
US20120228141A1 (en) | Liquid and gel electrodes for transverse free flow electrophoresis | |
EP2163305A1 (en) | Device and process for rapid isolation of a compound in a sample | |
JPWO2002023180A1 (en) | Extraction equipment and chemical analysis equipment | |
CN1908647A (en) | Ngatively pressurized sampling three-dimensional chip capillary array electrophoresis system | |
JP4423810B2 (en) | Electrophoresis device | |
JP2004000217A (en) | Trapping and releasing device of dna using flow passage and method for trapping and releasing dna | |
AU768109B2 (en) | Apparatus and methods for high resolution separation of sample components on microfabricated channel devices | |
US20170153202A1 (en) | Device and method for separation and analysis of trace and ultra-trace ionogenic compounds by isotachophoresis and zone electrophoresis on chip | |
WO2014092652A1 (en) | Devices for extracting at least one analyte | |
CN102816202A (en) | Monolithic column electroelution apparatus and method thereof | |
KR20070118567A (en) | Method and apparatus for recovering deoxyribohexane and ribohexane or protein fragments using electrophoresis on agarose gel or polyacrylamide gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07829079 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008537543 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07829079 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |