[go: up one dir, main page]

WO2008038536A1 - Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric - Google Patents

Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric Download PDF

Info

Publication number
WO2008038536A1
WO2008038536A1 PCT/JP2007/068042 JP2007068042W WO2008038536A1 WO 2008038536 A1 WO2008038536 A1 WO 2008038536A1 JP 2007068042 W JP2007068042 W JP 2007068042W WO 2008038536 A1 WO2008038536 A1 WO 2008038536A1
Authority
WO
WIPO (PCT)
Prior art keywords
split
fiber
nonwoven fabric
type composite
density polyethylene
Prior art date
Application number
PCT/JP2007/068042
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Matsubara
Shigeyuki Motomura
Chureerat Prahsarn
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2008536332A priority Critical patent/JP5334583B2/en
Publication of WO2008038536A1 publication Critical patent/WO2008038536A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a split composite long fiber excellent in splitting ability, which is an polyolefin polymer suitable for sanitary materials, filters, wipers, battery separators, and the like, a non-woven fabric having split composite long fiber strength, and a split fiber non-woven fabric. .
  • Nonwoven fabrics made of ultrafine fibers are excellent in flexibility, texture, etc., and are widely used as materials for clothing, usage !, sanitary goods, sanitary goods, wiping cloths, and the like. In recent years, it is expected to be used in clean rooms because of its excellent wiping performance.
  • a multicomponent polymer is combined and spun into a split composite fiber, and the resulting split composite fiber is applied to physical stress and resin chemicals.
  • a method of obtaining ultrafine fibers by dividing into a large number of fibers using a difference in shrinkage or the like is used.
  • polymers used for split type composite fibers are easily peelable, that is, incompatible polyesters and polyolefins, polyesters and polyamides, polyamides and polyolefins, etc. are used! / RU
  • Patent Document 1 JP 2000-328348 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-220740 [0005]
  • a special nozzle or multi-stage drawing is required to improve the splitting property, and while the spun composite long fiber is cooled by the cooling fluid, the tension is applied to the long fiber with the fluid.
  • the thinning method has not yielded a non-woven fabric composed of split-type composite continuous fibers having excellent splitting properties.
  • (A) a propylene-based polymer has a load of 2160 g. It has been found that (B) high-pressure low-density polyethylene can be used to improve the resolution by (A) a propylene polymer having an MFR at 230 ° C of 40 g / 10 min or more, and an ethylene polymer. It was.
  • the present invention uses (A) a propylene polymer having a load of 2160 g and an MFR at 230 ° C of 40 g / 10 min or more and (B) a high-pressure low-density polyethylene, and (A) a propylene polymer.
  • the present invention also provides a spinneret having a composite spinning nozzle comprising (A) a propylene-based polymer having a load of 2160 g and an MFR force of Og / 10 min at 230 ° C of 10 minutes or more and (B) a high-pressure low-density polyethylene.
  • the composite filaments that are spun and spun from (A) the propylene polymer part and (B) the high-pressure method low-density polyethylene part are cooled by the cooling fluid, and the tension is applied to the filaments by the fluid.
  • (A) Propylene polymer part is oriented and crystallized, and then collected and deposited on a collection belt to produce a non-woven fabric with split composite long fiber strength. The method and the manufacturing method of a split fiber nonwoven fabric are provided.
  • the split-type long fibers of the present invention are excellent in splitting properties, and the resulting nonwoven fabric is made of an olefin polymer, so that it is lightweight and has excellent water resistance and flexibility.
  • FIG. 1 is a schematic view showing an example of a cross section of a composite long fiber according to the present invention.
  • the propylene-based polymer (A) relating to the split-type composite long fiber of the present invention has a melt flow rate (MFR; ASTM D-1238 load; 2160 gf, temperature; 230 ° C), MFR force 0 g / 10 min or more, Preferably in the range of 50-500 g / 10 min, more preferably 55-; lOOg / 10 min
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the poly (A) propylene polymer is usually 1.5 to less than 5.0, and the spinnability is good. Further, 1.5 to 3.5 is preferable in that a composite fiber having particularly excellent fiber strength can be obtained.
  • good spinnability means that yarn breakage does not occur during discharging from the spinning nozzle and during drawing, and filament fusion does not occur. If Mw / Mn is 5.0 or more, there is a large amount of high molecular weight, and yarn breakage is likely to occur.If Mw / Mn is 1.5 or less, filament fusion occurs due to crystallization delay during drawing. There is a problem that it is easy.
  • Mw and Mn are measured by a known method using GPC (gel permeation chromatography).
  • the propylene-based polymer (A) is a homopolymer of propylene or propylene and a small amount of ethylene, 1-butene, 1-hexene, 4-methynole 1-pentene, 1-octene, Examples thereof include copolymers with ⁇ -olefin having 2 to 10 carbon atoms such as 1-decene.
  • propylene-based polymer is preferably a polymer having a melting point (Tm) of 155 ° C or higher, more preferably 160 ° C or higher.
  • the (A) propylene-based polymer according to the present invention includes an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an antistatic agent, an antifogging agent, and the like, as long as the object of the present invention is not impaired.
  • Professional Use force S to add additives such as anti-ocking agents, lubricants, nucleating agents, pigments, or other polymers as necessary.
  • the (B) high-pressure method low-density polyethylene relating to the split-type composite continuous fiber of the present invention is a so-called polymer obtained by radical polymerization of ethylene under high pressure, and is an ethylene homopolymer or ethylene. It is a copolymer with a small amount of butyl acetate.
  • the (B) high-pressure process low-density polyethylene is an ethylene obtained by copolymerizing ethylene and ⁇ -olefin having 3 to 10 carbon atoms under low pressure using a Ziegler catalyst, a meta-mouth catalyst, or the like.
  • LLDPE linear low density polyethylene
  • Ziegler catalyst low pressure 10-20 kg m 2
  • Philips catalyst medium pressure 30-; 100 kg m 2
  • HDPE high-density polyethylene
  • melt flow rate (MFR; ASTM D-1238 load; 2160gf, temperature; 190 ° C) of the (B) high-pressure low-density polyethylene according to the present invention is not particularly limited as long as it can be melt-spun. ! ⁇ LOOOg / 10 min, preferred ⁇ (between 10 and 500 g / 10 min, more preferred ⁇ (between 20 and; lOOg / 10 min.).
  • the melting point (Tm) of the (B) high-pressure method low-density polyethylene according to the present invention is preferably 90 to 110.
  • C more preferably (between 95 and 110; in the range of C, density is preferably (between 0.9.900-0. 935 g / cm 3 , more preferred (between 0.9.905—0. 925 g / cm 3 range) There is.
  • the (iii) high-pressure low-density polyethylene according to the present invention includes an antioxidant, a weather-resistant stabilizer, a light-resistant stabilizer, an anti-static agent, an anti-fogging agent, and the like as long as the object of the present invention is not impaired.
  • the split-type composite long fiber of the present invention comprises the above (ii) propylene polymer and the above (ii) high pressure method low density polyethylene, and (ii) a propylene polymer portion and (iii) a high pressure method low density polyethylene. It is a split-type composite continuous fiber that is in contact with each other.
  • the shape (cross section) of the split-type composite continuous fiber is not particularly limited as long as (A) the propylene polymer portion and (B) the high-pressure method low-density polyethylene portion are in contact with each other. a) to l (e)], etc., but from the viewpoint of ensuring good spinnability, the distance from the center is equal! /, a curve consisting of a set of points.
  • the shape of a so-called perfect circle (Fig. 1 (a) and (b) is preferred.
  • the split-type composite long fibers of the present invention have the same orientation pattern and a degree of orientation of at least 0.80, preferably at least 0.82 propylene polymer part and ethylene polymer part.
  • the orientation mode indicates a tendency in which direction the structural elements in the molecular chain are selectively oriented with respect to the fiber axis as a whole.
  • a high degree of c-axis orientation means that the crystal lattice has a high degree of orientation.
  • the c-axis is selectively oriented in the fiber axis direction, indicating a high ratio.
  • the orientation mode is the same and the degree of orientation is higher because both components are crystallized at the same time or because the splitting property is excellent! /.
  • the split composite long fibers of the present invention preferably have an orientation degree of the main orientation mode of the ethylene polymer of at least 0.70, more preferably 0.75 or more.
  • the orientation degree of the present invention is determined by using a wide-angle X-ray diffractometer (RINT2550, manufactured by Rigaku Corporation, attached device: fiber sample table, X-ray source: CuKa, output: 40 kV 370 mA, detector: scintillation counter) Are aligned in the fiber axis direction and fixed to the sample holder, and the orientation obtained by measuring the azimuth distribution strength of the crystal plane peak [polypropylene polymer: (110) plane, polyethylene polymer: (200) plane].
  • the degree of orientation in the fiber axis direction is calculated from the half-value width ( ⁇ ) of the peak according to the following formula and evaluated.
  • the fineness of the split-type composite continuous fiber of the present invention is usually preferably 6 denier or less. If it is 6 denier or less, the fineness after splitting treatment can be reduced, and it is excellent in wiping property and flexibility. Further, the number of divisions of the (A) propylene polymer part and the ethylene polymer part forming the split-type composite long fiber is not particularly limited as long as it does not impair the splittability, but usually 4 to 48 splits.
  • the fineness of the split-type composite long fiber and the splitting of the composite fiber is set to 0.00;! To 2.00 Denier, preferably in the range of 0.001 -0.5 denier.
  • the nonwoven fabric composed of the split-type composite long fibers of the present invention is made of the split-type composite long fibers, and usually has a basis weight of 200 g / m 2 , preferably 10 to 150 g / m 2 .
  • the nonwoven fabric of this invention is heat-seal
  • the area (embossed area ratio) in the case of heat-sealing can be appropriately selected depending on the application, but is preferably 5 to 30%.
  • the split fiber non-woven fabric of the present invention forms a composite fiber by applying stress to the non-woven fabric composed of the split-type composite long fibers.
  • a propylene-based polymer portion and (B) a high-pressure method low-density polyethylene portion are split.
  • the basis weight is usually 3 to 200 g / m 2 , preferably 10 to 150 g / m 2 .
  • the fineness of the split fibers forming the split fiber nonwoven fabric of the present invention is usually in the range of 0.00;! To 2.0 denier, preferably 0.001 to 0.5 denier.
  • Examples of stress applied to the nonwoven fabric composed of split-type composite long fibers include various known methods such as a method of applying a liquid such as water at a high pressure, a so-called high-pressure water flow method (water jet method), and a gear stretcher.
  • a high-pressure water flow is applied to a nonwoven fabric composed of split-type composite continuous fibers that are deposited, in order to promote entanglement and the like, for example, before the split splitting and entanglement application step by high-pressure liquid flow, It is preferable to replace the air present between the constituent single yarns of the nonwoven fabric with water. Specifically, water may be added to the web.
  • the high-pressure liquid flow can be obtained by injecting the liquid through a nozzle hole and increasing the pressure with a high-pressure pump.
  • the hole diameter is usually 0.05 to 1. Omm, and more preferably in the range of 0.5;! To 0.5 mm.
  • the pressure of the high-pressure liquid stream is usually in the range of 5 to 400 MPa, preferably 50 to 300 MPa.
  • water or warm water is applied as the liquid for ease of handling, and it is preferable to use a known water quality measuring device with a specific resistance value of 10 ⁇ ⁇ 'cm or more, more preferably 15 ⁇ ⁇ 'cm or more. To do.
  • the distance between the nozzle hole and the nonwoven fabric is preferably about 1 to 15 cm. When this distance exceeds 15 cm, the energy that the liquid gives to the nonwoven fabric decreases, and splitting tends to reduce the effect of confounding. If it is less than 1 cm, the formation of the nonwoven fabric tends to be disturbed.
  • the nozzle holes of the high-pressure liquid flow are arranged in a row in a direction crossing the traveling direction of the nonwoven fabric.
  • the pressure of the high-pressure liquid stream is preferably low on the front side and high on the rear side in order to make the formation uniform.
  • the appearance pattern, V, and loose pattern of the split fiber nonwoven fabric according to the present invention can be changed by appropriately selecting the pattern of the screen belt used when processing the high-pressure liquid flow.
  • the split fiber nonwoven fabric subjected to split splitting treatment with a high-pressure liquid flow is then subjected to drying and heat treatment after the excess water is removed by mechanical squeezing into a final product.
  • the heat treatment temperature time can be selected not only to remove moisture but also to allow moderate shrinkage and promotion of crystallization.
  • the heat treatment may be dry heat treatment or wet heat treatment! /.
  • the non-woven fabric composed of the split-type composite long fibers and the split-type composite long fibers of the present invention is produced by a known melt-spun spinning method using (A) a propylene polymer and (B) a high-pressure low-density polyethylene. Force that can be obtained
  • the spunbond method is preferred because it provides a good productivity and good splitting ability.
  • FIGS. 1 (a) to 1 (e) Like, inside It is discharged from a spinneret having a composite spinning nozzle that has a hollow, radial, parallel or parallel IJ, or arc-shaped cross-sectional structure, and (A) a propylene-based polymer portion and (B) a high-pressure method. Spinning split type composite continuous fibers in which the low density polyethylene parts are in contact with each other.
  • the spun split composite long fibers are cooled with a cooling fluid, and further, tension is applied to the long fibers with drawn air to obtain a predetermined fineness, and the fibers are collected as they are and collected to a predetermined thickness. .
  • heat embossing is performed as necessary by heat fusion using a hot embossing roll.
  • the embossing area ratio of the embossing roll is a force that can be appropriately determined. Usually, 5 to 30% is preferable.
  • the method for producing a split fiber nonwoven fabric of the present invention comprises: (A) a propylene-based polymer part and (B) a high-pressure process low-density polyethylene part by using the above-mentioned various known methods for a nonwoven fabric comprising split-type composite long fibers. Divide.
  • the obtained split fiber non-woven fabric is embedded in an epoxy resin and cut with a microtome at the next step to obtain a sample piece.
  • the split ratio is 100%.
  • the split ratio was calculated by the following formula. This was observed for 50 fibers, and the average value was taken as the split ratio of the split fiber nonwoven fabric.
  • Splitting rate [%] (Total number of segments-Number of segments of the split fiber cross section observed) / Total number of segments XI 00
  • the total number of segments refers to the total number of segments forming the filament cross section of the split composite fiber.
  • the total segment is 8.
  • the obtained split fiber non-woven fabric is embedded in an epoxy resin and cut with a microtome in the next step to obtain a sample piece.
  • observe with an electron microscope S-3500N scanning electron microscope manufactured by Hitachi, Ltd.
  • select 30 undivided filaments from the obtained cross-sectional image calculate the cross-sectional area, and calculate the average value thereof.
  • the fineness of the undivided filament was obtained, and the fineness of the divided fiber was calculated by the following formula using the division ratio.
  • Fineness of the split fibers undivided filament fineness / (total number of segments X split ratio / 100)
  • the touch is evaluated by 10 evaluators, and the evaluation results are shown according to the following criteria.
  • X 2 or less of 10 people who feel comfortable to touch.
  • JIS Z 8703 standard condition of test place temperature 20 ⁇ 2 ° C, humidity 65 ⁇ 2% in a constant temperature room 20mm X 150mm Take 5 specimens in the flow direction (MD) and transverse direction (CD) respectively, and place the short side of the specimen on a smooth horizontal surface with a 45 ° slope with the scale base line aligned. Next, manually slide the specimen in the direction of the slope, and when the center point of one end of the specimen touches the slope, read the moving length of the other end on the scale.
  • MD flow direction
  • CD transverse direction
  • Bending / softening is indicated by the length (mm) of the specimen moved, measured for each of the five front and back sides, and expressed as the average value in the flow direction (MD) and the transverse direction (CD).
  • MD flow direction
  • CD transverse direction
  • Tensile strength of 25cm in the flow direction (MD) and 2.5cm in the transverse direction (CD) were collected as the tensile strength of the fabric, and the tensile strength in the transverse direction (CD) was 2.5 in the flow direction (MD).
  • Three non-woven test specimens of 25 cm in the transverse direction (CD) were collected and used a tensile tester (Instron Model 5564 manufactured by Instron Japan Ltd.) under the conditions of 200 mm between chucks and 200 mm / min. Tensile tests were performed, and the tensile load was measured on the three test pieces, and the average of the maximum values was taken as the tensile strength.
  • A Propylene polymer part with a load of 2160g, MFR at 230 ° C of 60g / 10min
  • A Propylene polymer (density 0 ⁇ 910g / cm 3 , melting point 157 ° C, Mw / Mn2.75)
  • B High-pressure low-density polyethylene as a high-pressure low-density polyethylene part 2160 g, 190 ° C MFR 20 g / 10 min
  • B High-pressure low-density polyethylene (density 0.919 g / cm 3 ) Melting was performed at a temperature of 210 ° C.
  • the weight ratio of (A) propylene polymer part and (B) high-pressure low-density polyethylene part is 50.
  • split-type composite continuous fibers were spun by a so-called spunbond method at a yarn speed of 2500 m / min and deposited on a collection belt.
  • the fiber In order to divide the fibers, a nozzle with a hole diameter of 0.11 mm is used, the distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 and the second stage water pressure is 100 kgf / cm at a line speed of 5 m / min. 2 , the water pressure of the third stage is 100 kgf / cm 2 and the water pressure of the fourth stage is 100 kgf / cm 2.
  • An m 2 split fiber nonwoven fabric was prepared. The obtained nonwoven fabric was evaluated by measuring the division ratio, fineness, bending resistance, and tensile strength. The results are shown in Table 1.
  • A Propylene polymer part with a load of 2160g, MFR at 230 ° C of 60g / 10min
  • A Propylene polymer (density 0 ⁇ 910g / cm 3 , melting point 157 ° C, Mw / Mn2.75)
  • B High-pressure method low-density polyethylene part
  • B High-pressure method low-density polyethylene (density 0.916 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 35 g / 10 min.
  • Extruder Melts at a molding temperature of 210 ° C, and uses a split type composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a).
  • (B ) Split type composite continuous fiber with 50/50 weight ratio of high-pressure low-density polyethylene part is spun by the so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then the fiber Use a nozzle with a hole diameter of ⁇ 0.11 mm to divide the distance from the nozzle to the nonwoven fabric to 10 cm, and the first stage water at a line speed of 5 m / min.
  • A Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min
  • A Propylene polymer (density 0 ⁇ 910 g / cm 3 , melting point 161.7 ° C, Mw / Mn3
  • B High-pressure low-density polyethylene part
  • B High-pressure method low-density polyethylene part 2160g, 190 ° C MFR 35g / 10 min
  • B High-pressure method low-density polyethylene (density 0.916g / cm 3 )
  • A Propylene-based polymer part melted at 210 ° C, using a split composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape shown in Fig.
  • high-density polyethylene (density: 972 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 16 g / 10 min as a high-density polyethylene part, melt at a separate extruder molding temperature of 240 ° C.
  • the weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50/50.
  • A Propylene polymer part, load 2160g, 230 ° C MFR 30g / 10min
  • A propylene polymer [density 0.910g / cm 3 , melting point 165.4 ° C, Mw / Mn6. 79) as a high-density polyethylene part, high-density polyethylene (density: 972 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 16 g / 10 min, and a separate extruder molding temperature of 240 ° C.
  • the weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50 //, using a split composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a). 50 split-type composite long fibers were spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle with a hole diameter of 0.11 mm was used to divide the fibers.
  • the distance from the nozzle to the nonwoven fabric is 10 cm
  • the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min
  • the second stage water pressure is 100 kgf / cm 2
  • the third stage water pressure is 100 kgf / cm 2
  • 4 A split fiber nonwoven fabric with a basis weight of 50 g / m 2 was produced by applying water jet processing four times each on the front and back surfaces of the nonwoven fabric at a water pressure of 100 kgf / cm 2 at the stage.
  • the obtained non-woven fabric was evaluated by measuring the division ratio, fineness, softness and tensile strength. The results are shown in Table 1.
  • A Propylene polymer part with a load of 2160g, MFR at 230 ° C of 13g / 10min
  • A Propylene polymer (density 0.910g / cm 3 , melting point 165.4 ° C, Mw / MnlO 97), high-density polyethylene with a load of 2160 g, 190 ° C MFR of 16 g / 10 min high-density polyethylene (density 0.972 g / cm 3 ), and a separate extruder molding temperature of 240 ° C.
  • the weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50, using a split-type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a). / 50 split-type composite long fibers are spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle with a hole diameter of 0.11 mm is used to split the fibers The distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, and the second stage water pressure is 100 kgf.
  • A Propylene polymer part with a load of 2160 g, 230 ° C MFR of 30 g / 10 min
  • A Propylene polymer (density 0 ⁇ 910 g / cm 3 , melting point 157 ° C, Mw / Mn2.80)
  • B High pressure method low density polyethylene (density 0.919 g / cm 3 ) was used as the high pressure method low density polyethylene part with a load of 2160 g and 190 ° C MFR of 20 g / 10 min.
  • a split type composite continuous fiber having a weight ratio of 50/50 is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then the pore diameter ⁇ is used to split the fiber.
  • a split type composite continuous fiber having a quantity ratio of 50/50 is spun by a so-called span bond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then has a pore diameter of 0.11 mm for fiber splitting.
  • Comparative Example 6 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C, Mw / Mn 2.75) As the polyethylene part, linear low-density polyethylene (density: 915 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 15 g / 10 min was used.
  • the distance from the nozzle to the nonwoven fabric is 10 cm
  • the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min
  • the second stage With a water pressure of 100 kgf / cm 2 , a third-stage water pressure of 100 kgf / cm 2 , and a fourth-stage water pressure of 100 kgf / cm 2 , four times each on the front and back surfaces of the nonwoven fabric, a total of 8 times of water jet processing, and the basis weight is
  • a 50 g / m 2 split fiber nonwoven fabric was prepared.
  • the obtained non-woven fabric was evaluated by measuring the division ratio, fineness, stiffness and tensile strength. The results are shown in Table 1.
  • the weight ratio of the propylene polymer part to the high density polyethylene part was 50/50.
  • the distance from the nozzle to the non-woven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 and the second stage water pressure is 100 kgf / cm at a line speed of 5 m / min.
  • the water pressure of the third stage is 10 Okgf / cm 2
  • the water pressure of the fourth stage is 100 kgf / cm 2
  • the basis weight is 50g / m
  • Two split fiber nonwoven fabrics were prepared. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.
  • the composite long fiber nonwoven fabrics using the polypropylene and polyethylene of Example 1, Example 2, and Example 3 can be easily divided into 80% or more, and thus obtained.
  • the fineness of the resulting split fiber is also thin, and it is extremely excellent in flexibility and texture!
  • the split-type composite fiber nonwoven fabric obtained by the method for producing a split fiber nonwoven fabric of the present invention is extremely excellent in flexibility and texture, and various wiping cloths, surgical garments, medical gowns, and industrial gowns. It can also be widely used for non-woven fabrics for clothing, packaging fabrics, surface materials for sanitary materials such as disposable ommu and napkins, bedding such as bed sheets and pillow covers, carpets and base fabrics for artificial leather.
  • VTR and compact 'disk cleaning cloth include, for example, VTR and compact 'disk cleaning cloth, disk polishing, filter cloth, filter, battery separator, general consumer materials such as glass, precious metal, high-quality furniture, window glass, OA equipment, Examples include automobile windows, musical instruments, mirrors, dirt removal, oil flooring, flooring, and toilet cleaners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

A split type composite fiber which comprises a propylene polymer and an ethylene polymer and has improved suitability for splitting. The split type composite long fiber is made of a propylene polymer having an MFR as measured at 230°C under a load of 2,160 g of 40 g/10 min or higher and high-pressure-process low-density polyethylene, the propylene polymer part and the high-pressure-process low-density polyethylene part being in contact with each other. Also provided are: a nonwoven fabric comprising fibers which each is the split type composite long fiber; a split-fiber nonwoven fabric obtained by subjecting the nonwoven fabric to fiber splitting; and a process for producing the split-fiber nonwoven fabric.

Description

明 細 書  Specification
分割型複合長繊維、分割型複合長繊維からなる不織布および分割繊維 不織布  Split composite long fibers, non-woven fabrics composed of split composite long fibers, and split fiber non-woven fabrics
技術分野  Technical field
[0001] 本発明は、衛生材料、フィルター、ワイパー、電池セパレータなどに好適なォレフィ ン系重合体力 なる分割性に優れる分割型複合長繊維、分割型複合長繊維力 な る不織布および分割繊維不織布に関する。  TECHNICAL FIELD [0001] The present invention relates to a split composite long fiber excellent in splitting ability, which is an polyolefin polymer suitable for sanitary materials, filters, wipers, battery separators, and the like, a non-woven fabric having split composite long fiber strength, and a split fiber non-woven fabric. .
背景技術  Background art
[0002] 極細繊維からなる不織布は、柔軟性、風合!/、などに優れ、衣料、使!/、捨てォムッ、 衛生用品、ワイビングクロスなどの材料として広く使用されている。近年は、その優れ た拭取り性能よりクリーンルーム内での使用を期待されている。  [0002] Nonwoven fabrics made of ultrafine fibers are excellent in flexibility, texture, etc., and are widely used as materials for clothing, usage !, sanitary goods, sanitary goods, wiping cloths, and the like. In recent years, it is expected to be used in clean rooms because of its excellent wiping performance.
[0003] 極細繊維を得る方法の一つとして、複数成分の重合体を組み合わせて紡糸して分 割型複合繊維とし、得られた該分割型複合繊維を物理的応力や樹脂の化学薬品に 対する収縮差などを利用して、多数の繊維に分割して極細繊維を得る方法が用いら れている。そして、一般的には、分割型複合繊維に用いられる重合体は、剥離が容 易な、即ち、相容性がないポリエステルとポリオレフイン、ポリエステルとポリアミド、ポリ アミドとポリオレフイン等が用いられて!/、る。  [0003] As one method for obtaining ultrafine fibers, a multicomponent polymer is combined and spun into a split composite fiber, and the resulting split composite fiber is applied to physical stress and resin chemicals. A method of obtaining ultrafine fibers by dividing into a large number of fibers using a difference in shrinkage or the like is used. In general, polymers used for split type composite fibers are easily peelable, that is, incompatible polyesters and polyolefins, polyesters and polyamides, polyamides and polyolefins, etc. are used! / RU
[0004] 同種の重合体からなる分割型複合繊維はポリエステルとポリオレフインとの組合せ に比べ分割性に劣ることから、プロピレン系重合体とエチレン系重合体からなる分割 型複合繊維の分割性を改良する方法が種々提案されている。例えば、 MFR比が異 なるポリプロピレン系樹脂とポリエチレン系樹脂とを断面が屈曲した分割型複合繊維 とする方法(特許文献 1;特開 2000— 328348号公報)、分子量分布が少なくとも 5 のポリプロピレン系樹脂とポリエチレン系樹脂を用い、断面の中央部が中空部分とな る分割型複合ノズルを用いて溶融紡糸し、 5倍以上に多段延伸して分割型複合繊維 とする方法(特許文献 2;特開 2002— 220740号公報)が提案されて!/、る。  [0004] Splitting composite fibers made of the same kind of polymer are inferior to the combination of polyester and polyolefin, so the splitting performance of the splitting composite fiber made of a propylene polymer and an ethylene polymer is improved. Various methods have been proposed. For example, a method in which a polypropylene-based resin and a polyethylene-based resin having different MFR ratios are used as a split-type composite fiber having a bent cross section (Patent Document 1; Japanese Patent Laid-Open No. 2000-328348), and a polypropylene resin having a molecular weight distribution of at least 5 And polyethylene-based resin, melt-spinning using a split-type composite nozzle having a hollow section at the center of the cross section, and a multi-stage drawing of 5 times or more to obtain a split-type composite fiber (Patent Document 2; 2002-220740) was proposed!
特許文献 1 :特開 2000— 328348号公報  Patent Document 1: JP 2000-328348 A
特許文献 2:特開 2002— 220740号公報 [0005] し力もながら、分割性を高めるには、特殊なノズルを必要とするか、多段延伸を必要 とし、紡出された複合長繊維を冷却流体により冷却しながら流体で長繊維に張力を 加えて細化させる方法では分割性に優れる分割型複合長繊維からなる不織布は得 られていない。 Patent Document 2: Japanese Patent Laid-Open No. 2002-220740 [0005] However, in order to improve the splitting property, a special nozzle or multi-stage drawing is required to improve the splitting property, and while the spun composite long fiber is cooled by the cooling fluid, the tension is applied to the long fiber with the fluid. In addition, the thinning method has not yielded a non-woven fabric composed of split-type composite continuous fibers having excellent splitting properties.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、プロピレン系重合体とエチレン系重合体からなる分割型複合繊維の分 割性を改良することを目的として、種々検討した結果、(A)プロピレン系重合体として 、荷重 2160g、 230°Cにおける MFRが 40g/10分以上の(A)プロピレン系重合体 、およびエチレン系重合体として、(B)高圧法低密度ポリエチレンを用いることにより 、分割性を改良し得ることを見出した。  [0006] As a result of various studies for the purpose of improving the splitability of a split type composite fiber composed of a propylene-based polymer and an ethylene-based polymer, (A) a propylene-based polymer has a load of 2160 g. It has been found that (B) high-pressure low-density polyethylene can be used to improve the resolution by (A) a propylene polymer having an MFR at 230 ° C of 40 g / 10 min or more, and an ethylene polymer. It was.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、荷重 2160g、 230°Cにおける MFRが 40g/10分以上の(A)プロピレン 系重合体および (B)高圧法低密度ポリエチレンを用いてなり、(A)プロピレン系重合 体部と(B)高圧法低密度ポリエチレン部とが互いに接してなる分割型複合長繊維、 力、かる分割型複合長繊維からなる不織布および当該不織布を分割してなる分割繊 維不織布を提供するものである。  [0007] The present invention uses (A) a propylene polymer having a load of 2160 g and an MFR at 230 ° C of 40 g / 10 min or more and (B) a high-pressure low-density polyethylene, and (A) a propylene polymer. A split-type composite long fiber in which a part and (B) a high-pressure method low-density polyethylene part are in contact with each other, a non-woven fabric composed of force, split-type composite long fiber, and a split-fiber non-woven fabric obtained by dividing the non-woven fabric It is.
[0008] 本発明はまた、荷重 2160g、 230°Cにおける MFR力 Og/10分以上の(A)プロ ピレン系重合体と、(B)高圧法低密度ポリエチレンを、複合紡糸ノズルを有する紡糸 口金から吐出させて、紡出された (A)プロピレン系重合体部と(B)高圧法低密度ポリ エチレン部が互いに接する複合長繊維を、冷却流体により冷却しながら、流体で長 繊維に張力を加えて細化させて、(A)プロピレン系重合体部を配向結晶化した後、 捕集ベルト上に捕集して堆積させることを特徴とする分割型複合長繊維力 なる不織 布の製造方法および分割繊維不織布の製造方法を提供するものである。  [0008] The present invention also provides a spinneret having a composite spinning nozzle comprising (A) a propylene-based polymer having a load of 2160 g and an MFR force of Og / 10 min at 230 ° C of 10 minutes or more and (B) a high-pressure low-density polyethylene. The composite filaments that are spun and spun from (A) the propylene polymer part and (B) the high-pressure method low-density polyethylene part are cooled by the cooling fluid, and the tension is applied to the filaments by the fluid. In addition, (A) Propylene polymer part is oriented and crystallized, and then collected and deposited on a collection belt to produce a non-woven fabric with split composite long fiber strength. The method and the manufacturing method of a split fiber nonwoven fabric are provided.
発明の効果  The invention's effect
[0009] 本発明の分割型長繊維は、分割性に優れ、得られる不織布はォレフィン系重合体 からなるので、軽量で且つ、耐水性、柔軟性に優れる。 図面の簡単な説明 [0009] The split-type long fibers of the present invention are excellent in splitting properties, and the resulting nonwoven fabric is made of an olefin polymer, so that it is lightweight and has excellent water resistance and flexibility. Brief Description of Drawings
[0010] [図 1]図 1は、本発明に係る複合長繊維の横断面の一例を示した模式図である。  FIG. 1 is a schematic view showing an example of a cross section of a composite long fiber according to the present invention.
[0011] (a)〜(d)の 5形態を挙げた。 (e)は分割処理後の断面形態の一例である。 [0011] The five forms (a) to (d) are listed. (E) is an example of the cross-sectional form after a division | segmentation process.
[0012] 図中、白塗り部分と黒塗り部分はそれぞれ組み合わせる樹脂を表す。  [0012] In the drawing, white and black portions represent resins to be combined.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] (A)プロピレン系重合体 [0013] (A) Propylene polymer
本発明の分割型複合長繊維に係る (A)プロピレン系重合体は、メルトフローレ一ト( MFR;ASTM D— 1238 荷重; 2160gf、温度; 230°C)が、 MFR力 0g/10分 以上、好ましくは 50〜500g/10分、さらに好ましくは 55〜; lOOg/10分の範囲にあ  The propylene-based polymer (A) relating to the split-type composite long fiber of the present invention has a melt flow rate (MFR; ASTM D-1238 load; 2160 gf, temperature; 230 ° C), MFR force 0 g / 10 min or more, Preferably in the range of 50-500 g / 10 min, more preferably 55-; lOOg / 10 min
[0014] MFR力 S40g/10分未満の (A)プロピレン系重合体を用いた場合は、得られる分 割型長繊維の分割性に劣る。 [0014] When the (A) propylene-based polymer having an MFR force S of less than 40 g / 10 min is used, the split-type long fibers obtained are inferior in splitting properties.
また、ポリ(A)プロピレン系重合体の重量平均分子量 (Mw)と数平均分子量 (Mn) の比 Mw/Mnは、通常 1. 5〜5. 0未満、さらには、紡糸性が良好で、かつ繊維強 度が特に優れる複合繊維が得られる点で、 1. 5〜3. 5が好ましい。本発明において 、良好な紡糸性とは、紡糸ノズルからの吐き出し時および延伸中に糸切れを生じず、 フィラメントの融着が生じないことをいう。 Mw/Mnが 5. 0以上であると高分子量成 分が多いために糸切れを生じ易ぐ Mw/Mnが 1. 5以下であると延伸中の結晶化 の遅れからフィラメントの融着が生じ易いという問題が有る。本発明において、 Mwお よび Mnは、 GPC (ゲルパーミエーシヨンクロマトグラフィー)によって、公知の方法で 測定すること力でさる。  Further, the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the poly (A) propylene polymer is usually 1.5 to less than 5.0, and the spinnability is good. Further, 1.5 to 3.5 is preferable in that a composite fiber having particularly excellent fiber strength can be obtained. In the present invention, good spinnability means that yarn breakage does not occur during discharging from the spinning nozzle and during drawing, and filament fusion does not occur. If Mw / Mn is 5.0 or more, there is a large amount of high molecular weight, and yarn breakage is likely to occur.If Mw / Mn is 1.5 or less, filament fusion occurs due to crystallization delay during drawing. There is a problem that it is easy. In the present invention, Mw and Mn are measured by a known method using GPC (gel permeation chromatography).
[0015] 本発明に係る (A)プロピレン系重合体は、プロピレンの単独重合体若しくはプロピ レンと少量のエチレン、 1—ブテン、 1—へキセン、 4—メチノレー 1—ペンテン、 1—ォ クテン、 1—デセン等の炭素数 2〜; 10の α—ォレフインとの共重合体を例示できる。 かかる(Α)プロピレン系重合体は、好ましくは融点 (Tm)が 155°C以上、より好ましく は 160°C以上の重合体である。  [0015] The propylene-based polymer (A) according to the present invention is a homopolymer of propylene or propylene and a small amount of ethylene, 1-butene, 1-hexene, 4-methynole 1-pentene, 1-octene, Examples thereof include copolymers with α-olefin having 2 to 10 carbon atoms such as 1-decene. Such (ii) propylene-based polymer is preferably a polymer having a melting point (Tm) of 155 ° C or higher, more preferably 160 ° C or higher.
[0016] 本発明に係る (A)プロピレン系重合体には、本発明の目的を損なわない範囲で、 通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、防曇剤、プロ ッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配 合すること力 Sでさる。 [0016] The (A) propylene-based polymer according to the present invention includes an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an antistatic agent, an antifogging agent, and the like, as long as the object of the present invention is not impaired. Professional Use force S to add additives such as anti-ocking agents, lubricants, nucleating agents, pigments, or other polymers as necessary.
[0017] (B)高圧法低密度ポリエチレン  [0017] (B) High-pressure low-density polyethylene
本発明の分割型複合長繊維に係る (B)高圧法低密度ポリエチレンは、所謂、ェチ レンを高圧下でラジカル重合して得られる重合体であり、エチレンの単独重合体ある いはエチレンと少量の酢酸ビュルとの共重合体である。かかる(B)高圧法低密度ポリ エチレンは、チーグラー触媒、メタ口セン触媒等を用いて低圧下にエチレンと炭素数 3〜; 10の α -ォレフインとを共重合して得られるエチレン. α -ォレフイン共重合体であ る、所謂、線状低密度ポリエチレン (LLDPE)、およびチーグラー触媒 (低圧 10〜20 kgん m2)またはフィリップス触媒またはスタンダード触媒(中圧 30〜; 100kgん m2)を 用いてエチレンをラジカル重合して得られる、所謂、高密度ポリエチレン (HDPE ;密 度 0· 950—0. 970g/cm3)とも異なる重合体である。 The (B) high-pressure method low-density polyethylene relating to the split-type composite continuous fiber of the present invention is a so-called polymer obtained by radical polymerization of ethylene under high pressure, and is an ethylene homopolymer or ethylene. It is a copolymer with a small amount of butyl acetate. The (B) high-pressure process low-density polyethylene is an ethylene obtained by copolymerizing ethylene and α-olefin having 3 to 10 carbon atoms under low pressure using a Ziegler catalyst, a meta-mouth catalyst, or the like. The so-called linear low density polyethylene (LLDPE) and Ziegler catalyst (low pressure 10-20 kg m 2 ) or Philips catalyst or standard catalyst (medium pressure 30-; 100 kg m 2 ) It is a polymer different from so-called high-density polyethylene (HDPE; density 0 · 950-0.970 g / cm 3 ) obtained by radical polymerization of ethylene.
[0018] 本発明に係る(B)高圧法低密度ポリエチレンのメルトフローレート(MFR; ASTM D— 1238 荷重; 2160gf、温度; 190°C)は、溶融紡糸し得る限り特に限定はされな いが、通常、;!〜 lOOOg/10分、好まし < (ま 10〜500g/10分、さらに好まし < (ま 20 〜; lOOg/10分の範囲にある。  [0018] The melt flow rate (MFR; ASTM D-1238 load; 2160gf, temperature; 190 ° C) of the (B) high-pressure low-density polyethylene according to the present invention is not particularly limited as long as it can be melt-spun. ! ~ LOOOg / 10 min, preferred <(between 10 and 500 g / 10 min, more preferred <(between 20 and; lOOg / 10 min.).
[0019] 本発明に係る(B)高圧法低密度ポリエチレンの融点 (Tm)は、好ましくは 90〜; 110 。C、より好ましく (ま 95〜; 110。Cの範囲にあり、密度カ好ましく (ま 0. 900-0. 935g/ cm3、より好ましく (ま 0. 905—0. 925g/cm3の範囲 ίこある。 [0019] The melting point (Tm) of the (B) high-pressure method low-density polyethylene according to the present invention is preferably 90 to 110. C, more preferably (between 95 and 110; in the range of C, density is preferably (between 0.9.900-0. 935 g / cm 3 , more preferred (between 0.9.905—0. 925 g / cm 3 range) There is.
[0020] 本発明に係る(Β)高圧法低密度ポリエチレンには、本発明の目的を損なわない範 囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、防曇剤 、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応 じて酉己合すること力 Sでさる。  [0020] The (iii) high-pressure low-density polyethylene according to the present invention includes an antioxidant, a weather-resistant stabilizer, a light-resistant stabilizer, an anti-static agent, an anti-fogging agent, and the like as long as the object of the present invention is not impaired. Add power, additives, such as anti-blocking agents, lubricants, nucleating agents, pigments, or other polymers as needed.
[0021] 害翻編鍵  [0021] Harmful key
本発明の分割型複合長繊維は、前記 (Α)プロピレン系重合体および前記 (Β)高圧 法低密度ポリエチレンを用いてなり、(Α)プロピレン系重合体部と(Β)高圧法低密度 ポリエチレン部とが互いに接してなる分割型複合長繊維である。  The split-type composite long fiber of the present invention comprises the above (ii) propylene polymer and the above (ii) high pressure method low density polyethylene, and (ii) a propylene polymer portion and (iii) a high pressure method low density polyethylene. It is a split-type composite continuous fiber that is in contact with each other.
[0022] (Α)プロピレン系重合体として、荷重 2160g、 230°Cにおける MFRが 40g/10分 未満の (A)プロピレン系重合体を用いた場合は、得られる分割型複合長繊維は分割 性に劣り、また、(B)高圧法低密度ポリエチレンに替えて線状低密度ポリエチレンを 用いた場合も、得られる分割型複合長繊維は分割性に劣る。 [0022] (ii) As propylene polymer, MFR at load of 2160g and 230 ° C is 40g / 10min. When (A) a propylene-based polymer is used, the split type composite continuous fiber obtained is inferior in splitting properties. (B) When linear low density polyethylene is used instead of high pressure method low density polyethylene However, the obtained split-type composite continuous fiber is inferior in splittability.
[0023] 分割型複合長繊維の形状(断面)は、(A)プロピレン系重合体部と (B)高圧法低密 度ポリエチレン部とが互いに接する限り、特に限定はされず、〔図 1 (a)〜図 l (e)〕な ど種々の形状を有するが、良好な紡糸性を確保できるという観点から、中心からの距 離が等し!/、点の集合からなる曲線である、レ、わゆる真円の形状(図 1 (a)および (b) ) が好ましい。 [0023] The shape (cross section) of the split-type composite continuous fiber is not particularly limited as long as (A) the propylene polymer portion and (B) the high-pressure method low-density polyethylene portion are in contact with each other. a) to l (e)], etc., but from the viewpoint of ensuring good spinnability, the distance from the center is equal! /, a curve consisting of a set of points. The shape of a so-called perfect circle (Fig. 1 (a) and (b)) is preferred.
本発明の分割型複合長繊維は、配向様式が同一であり、かつその配向度が少なくと も 0. 80、好ましくは 0. 82以上のプロピレン系重合体部とエチレン系重合体部が互 いに接してなる分割型複合長繊維である。ここで、配向様式とは繊維軸に対し、分子 鎖中の構造要素が全体としてどのような方向に選択的に向いているかの傾向を示し 、例えば c軸配向度が高いとは、結晶格子の c軸が選択的に繊維軸方向に向いてお り、その割合が高い状態を表す。  The split-type composite long fibers of the present invention have the same orientation pattern and a degree of orientation of at least 0.80, preferably at least 0.82 propylene polymer part and ethylene polymer part. Is a split-type composite continuous fiber in contact with Here, the orientation mode indicates a tendency in which direction the structural elements in the molecular chain are selectively oriented with respect to the fiber axis as a whole.For example, a high degree of c-axis orientation means that the crystal lattice has a high degree of orientation. The c-axis is selectively oriented in the fiber axis direction, indicating a high ratio.
配向様式が同一であり、かつその配向度が高いほど、両成分の結晶化が同時に行 われるためか分割性が優れるため好まし!/、。  It is preferable that the orientation mode is the same and the degree of orientation is higher because both components are crystallized at the same time or because the splitting property is excellent! /.
[0024] 本発明の分割型複合長繊維は、好ましくはエチレン系重合体の主たる配向様式の 配向度が少なくとも 0. 70、より好ましくは 0. 75以上である。 [0024] The split composite long fibers of the present invention preferably have an orientation degree of the main orientation mode of the ethylene polymer of at least 0.70, more preferably 0.75 or more.
本発明の配向度は、広角 X線回折装置(リガク社製 RINT2550、付属装置:繊維 試料台、 X線源: CuK a、出力: 40kV 370mA,検出器:シンチレーシヨンカウンタ 一)を用いて、試料を繊維軸方向に並べて試料ホルダーに固定し、結晶面ピーク [ポ リプロピレン系重合体:(110)面、ポリエチレン重合体:(200)面]の方位角分布強度 を測定して得られた方位角分布曲線 (X線干渉図)において、ピークの半価幅( α )か ら下記の式より繊維軸方向の配向度を算出して評価する。なお、下記式で求められ る配向度において、 0. 8未満の場合は配向性が非常に低いと判断し、無配向とする 配向度(F) = (180° — α ) /180° ( αは方位角分布曲線におけるピーク半価幅 ) 本発明の分割型複合長繊維の繊度は、通常、 6デニール以下が好ましい。 6デニ ール以下であれば、割繊処理後の繊度を細くすることができ、拭取り性や柔軟性に 優れるため好ましい。また、分割型複合長繊維を形成する (A)プロピレン系重合体 部とエチレン系重合体部の分割数は分割性を阻害しない範囲であれば特に限定さ れないが、通常、 4〜48分割、好ましくは 4〜24分割の範囲にある。分割型複合長繊 維の繊度および複合繊維の分割を力、かる範囲にすることにより、複合繊維からなる不 織布を分割して得られる分割繊維の繊度を 0. 00;!〜 2. 00デニール、好ましくは 0. 001 -0. 5デニールの範囲にすることができる。 The orientation degree of the present invention is determined by using a wide-angle X-ray diffractometer (RINT2550, manufactured by Rigaku Corporation, attached device: fiber sample table, X-ray source: CuKa, output: 40 kV 370 mA, detector: scintillation counter) Are aligned in the fiber axis direction and fixed to the sample holder, and the orientation obtained by measuring the azimuth distribution strength of the crystal plane peak [polypropylene polymer: (110) plane, polyethylene polymer: (200) plane]. In the angular distribution curve (X-ray interference diagram), the degree of orientation in the fiber axis direction is calculated from the half-value width (α) of the peak according to the following formula and evaluated. When the orientation degree obtained by the following formula is less than 0.8, it is judged that the orientation is very low, and the orientation degree (F) = (180 ° — α) / 180 ° (α Is the peak half-value width in the azimuth distribution curve) The fineness of the split-type composite continuous fiber of the present invention is usually preferably 6 denier or less. If it is 6 denier or less, the fineness after splitting treatment can be reduced, and it is excellent in wiping property and flexibility. Further, the number of divisions of the (A) propylene polymer part and the ethylene polymer part forming the split-type composite long fiber is not particularly limited as long as it does not impair the splittability, but usually 4 to 48 splits. , Preferably in the range of 4 to 24 divisions. By setting the fineness of the split-type composite long fiber and the splitting of the composite fiber to be within the range, the fineness of the split fiber obtained by splitting the nonwoven fabric made of the composite fiber is set to 0.00;! To 2.00 Denier, preferably in the range of 0.001 -0.5 denier.
[0025] 分割型複合長繊維からなる不織布  [0025] Nonwoven fabric composed of split composite long fibers
本発明の分割型複合長繊維からなる不織布は、前記分割型複合長繊維からなり、 通常、 目付け力 〜 200g/m2、好ましくは 10〜; 150g/m2の範囲にある。また、本 発明の不織布は、必要に応じて、分割型複合長繊維群をエンボスロール、超音波融 着などの方法により、熱融着される。熱融着する場合の面積 (エンボス面積率)は、用 途に応じて、適宜選択し得るが、 5〜30%が好ましい。 The nonwoven fabric composed of the split-type composite long fibers of the present invention is made of the split-type composite long fibers, and usually has a basis weight of 200 g / m 2 , preferably 10 to 150 g / m 2 . Moreover, the nonwoven fabric of this invention is heat-seal | bonded by methods, such as an embossing roll and ultrasonic fusion | bonding, as needed, about a split type composite long fiber group. The area (embossed area ratio) in the case of heat-sealing can be appropriately selected depending on the application, but is preferably 5 to 30%.
[0026] 分割繊維不織布  [0026] Split fiber nonwoven fabric
本発明の分割繊維不織布は、前記分割型複合長繊維からなる不織布に応力を加 えることにより、複合繊維を形成する (A)プロピレン系重合体部と(B)高圧法低密度 ポリエチレン部を分割してなる不織布であり、 目付けが通常 3〜200g/m2、好ましく は 10〜; 150g/m2の範囲にある。 The split fiber non-woven fabric of the present invention forms a composite fiber by applying stress to the non-woven fabric composed of the split-type composite long fibers. (A) A propylene-based polymer portion and (B) a high-pressure method low-density polyethylene portion are split. The basis weight is usually 3 to 200 g / m 2 , preferably 10 to 150 g / m 2 .
[0027] 本発明の分割繊維不織布を形成する分割繊維の繊度は、通常、 0. 00;!〜 2. 0デ ニール、好ましくは 0· 001—0. 5デニーノレの範囲にある。  [0027] The fineness of the split fibers forming the split fiber nonwoven fabric of the present invention is usually in the range of 0.00;! To 2.0 denier, preferably 0.001 to 0.5 denier.
[0028] 分割型複合長繊維からなる不織布に与える応力は、種々公知の方法、例えば、水 などの液体を高圧で当てる方法、所謂高圧水流法(ウォータージェット法)、ギア延伸 機が挙げられる。  [0028] Examples of stress applied to the nonwoven fabric composed of split-type composite long fibers include various known methods such as a method of applying a liquid such as water at a high pressure, a so-called high-pressure water flow method (water jet method), and a gear stretcher.
[0029] 堆積させてなる分割型複合長繊維からなる不織布に高圧水流を与える場合は、交 絡等を促進させるために、例えば、高圧液体流による分割割繊と交絡の付与工程の 前に、不織布の構成単糸間に存在する空気を水で置換するのが好ましい。具体的に は、ウェブに水を付与すればよい。 [0030] 高圧液体流は液体をノズル孔に通して高圧ポンプで昇圧して噴射すれば得ること 力できる。ノズル孔としては、通常、孔径が 0. 05- 1. Ommであり、更に好ましくは 0 . ;!〜 0. 5mmの範囲にある。また、高圧液体流の圧力としては、通常 5〜400MPa、 好ましくは 50〜300MPaの範囲にある。また、液体としては取扱いの容易さから、水 または温水が適用され、公知の水質測定装置で比抵抗値が 10Μ Ω ' cm以上が好ま しぐ更に好ましくは 15Μ Ω ' cm以上の純水を使用する。 [0029] When a high-pressure water flow is applied to a nonwoven fabric composed of split-type composite continuous fibers that are deposited, in order to promote entanglement and the like, for example, before the split splitting and entanglement application step by high-pressure liquid flow, It is preferable to replace the air present between the constituent single yarns of the nonwoven fabric with water. Specifically, water may be added to the web. [0030] The high-pressure liquid flow can be obtained by injecting the liquid through a nozzle hole and increasing the pressure with a high-pressure pump. As for the nozzle hole, the hole diameter is usually 0.05 to 1. Omm, and more preferably in the range of 0.5;! To 0.5 mm. The pressure of the high-pressure liquid stream is usually in the range of 5 to 400 MPa, preferably 50 to 300 MPa. In addition, water or warm water is applied as the liquid for ease of handling, and it is preferable to use a known water quality measuring device with a specific resistance value of 10Μ Ω'cm or more, more preferably 15 純 Ω'cm or more. To do.
[0031] ノズル孔と不織布の距離は、 1〜15cm程度が好適である。この距離が 15cmを超 えると、液体が不織布に与えるエネルギーが低下し、割繊ゃ交絡の効果が低下する 傾向となる。また、 1cm未満となると、不織布の地合が乱れる傾向となる。  [0031] The distance between the nozzle hole and the nonwoven fabric is preferably about 1 to 15 cm. When this distance exceeds 15 cm, the energy that the liquid gives to the nonwoven fabric decreases, and splitting tends to reduce the effect of confounding. If it is less than 1 cm, the formation of the nonwoven fabric tends to be disturbed.
[0032] 一般的に、高圧液体流のノズル孔は不織布の進行方向と交差する方向に列状に 配置される。片面処理の場合、均一な分割割繊ゃ緊密な交絡結合を得るためには、 噴射孔を 2列以上、このましくは 3列以上で行うのがよい。高圧液体流の圧力は、前 段側で低ぐ後段側で高くするのが、地合の均一化のために好ましい。  [0032] Generally, the nozzle holes of the high-pressure liquid flow are arranged in a row in a direction crossing the traveling direction of the nonwoven fabric. In the case of single-sided processing, in order to obtain a tightly entangled bond with uniform split splitting, it is better to carry out the injection holes in two or more rows, preferably three or more rows. The pressure of the high-pressure liquid stream is preferably low on the front side and high on the rear side in order to make the formation uniform.
[0033] 更に、本発明に係る分割繊維不織布の外観模様、 V、わゆる柄は、高圧液体流の処 理時に使用するスクリーンベルトのパターンを適宜選択することより、変更可能である [0033] Further, the appearance pattern, V, and loose pattern of the split fiber nonwoven fabric according to the present invention can be changed by appropriately selecting the pattern of the screen belt used when processing the high-pressure liquid flow.
Yes
[0034] 高圧液体流で分割割繊処理を施された分割繊維不織布は、その後、過剰の水分 を機械的絞りで除去した後、乾燥 '熱処理されて最終製品となる。熱処理温度時間は 、単に水分の除去に留まらず、適度の収縮および結晶化の促進を許容するように選 択することも可能である。熱処理は乾熱処理や湿熱処理であってもよ!/、。  [0034] The split fiber nonwoven fabric subjected to split splitting treatment with a high-pressure liquid flow is then subjected to drying and heat treatment after the excess water is removed by mechanical squeezing into a final product. The heat treatment temperature time can be selected not only to remove moisture but also to allow moderate shrinkage and promotion of crystallization. The heat treatment may be dry heat treatment or wet heat treatment! /.
[0035] 分割型複合長繊維および不織布の製造方法  [0035] Manufacturing method of split-type composite continuous fiber and nonwoven fabric
本発明の前記分割型複合長繊維および分割型複合長繊維からなる不織布は、前 記 (A)プロピレン系重合体および (B)高圧法低密度ポリエチレンを用いて公知の溶 融紡糸の製造方法により得ることができる力 生産性が良ぐ分割性に優れるフィラメ ントが得られる点で、スパンボンド法が好ましレ、。  The non-woven fabric composed of the split-type composite long fibers and the split-type composite long fibers of the present invention is produced by a known melt-spun spinning method using (A) a propylene polymer and (B) a high-pressure low-density polyethylene. Force that can be obtained The spunbond method is preferred because it provides a good productivity and good splitting ability.
[0036] 本発明の分割複合繊維不織布の製造方法として、スパンボンド法を例にとって説 明する。前記 (A)プロピレン系重合体および (B)高圧法低密度ポリエチレンを、それ ぞれ別個に押出機等で溶融し、各溶融物を図 1 (a)〜図 1 (e)に例示されるように、中 空状、放射状または平行あるいは並歹 IJ、若しくは弧状に断面構造を形成するようにさ れた複合紡糸ノズルを有する紡糸口金から吐出させて、(A)プロピレン系重合体部と (B)高圧法低密度ポリエチレン部が互いに接する分割型複合長繊維を紡出させる。 紡出された分割型複合長繊維を、冷却流体により冷却し、さらに延伸エアによって長 繊維に張力を加えて所定の繊度とし、そのまま捕集ベルト上に捕集して所定の厚さ に堆積させる。次いで、必要に応じて熱エンボスロールによる熱融着等による熱ェン ボス加工を行う。熱エンボスロールによる熱融着の場合、エンボスロールのエンボス 面積率は適宜決められる力 通常 5〜30%が好ましい。 [0036] As a method for producing the split composite fiber nonwoven fabric of the present invention, a spunbond method will be described as an example. The above (A) propylene-based polymer and (B) high-pressure method low-density polyethylene are separately melted with an extruder or the like, and the respective melts are illustrated in FIGS. 1 (a) to 1 (e). Like, inside It is discharged from a spinneret having a composite spinning nozzle that has a hollow, radial, parallel or parallel IJ, or arc-shaped cross-sectional structure, and (A) a propylene-based polymer portion and (B) a high-pressure method. Spinning split type composite continuous fibers in which the low density polyethylene parts are in contact with each other. The spun split composite long fibers are cooled with a cooling fluid, and further, tension is applied to the long fibers with drawn air to obtain a predetermined fineness, and the fibers are collected as they are and collected to a predetermined thickness. . Next, heat embossing is performed as necessary by heat fusion using a hot embossing roll. In the case of heat fusion using a hot embossing roll, the embossing area ratio of the embossing roll is a force that can be appropriately determined. Usually, 5 to 30% is preferable.
[0037] この際、紡糸性が良好な範囲で成形温度、紡糸速度、冷却エア温度を適宜選択す ることにより(A)プロピレン系重合体部、好ましくは (A)プロピレン系重合体部と(B) 高圧法低密度ポリエチレン部を前記範囲で結晶化させることが必要である。  [0037] At this time, by appropriately selecting a molding temperature, a spinning speed, and a cooling air temperature within a range in which spinnability is good, (A) a propylene-based polymer portion, preferably (A) a propylene-based polymer portion ( B) It is necessary to crystallize the high-density low-density polyethylene part within the above range.
[0038] 分害 II繊維不織布の 1¾告 法  [0038] Pollution II 1¾ method of non-woven fabric
本発明の分割繊維不織布の製造方法は、前記分割型複合長繊維からなる不織布 を前記記載の種々公知の方法で (A)プロピレン系重合体部と(B)高圧法低密度ポリ エチレン部とを分割させる。  The method for producing a split fiber nonwoven fabric of the present invention comprises: (A) a propylene-based polymer part and (B) a high-pressure process low-density polyethylene part by using the above-mentioned various known methods for a nonwoven fabric comprising split-type composite long fibers. Divide.
実施例  Example
[0039] 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの 実施例に限定されるものではない。  [0039] Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
[0040] なお、実施例および比較例における物性値等は、以下の方法により測定した。  [0040] The physical property values and the like in Examples and Comparative Examples were measured by the following methods.
[0041] (1)分割率  [0041] (1) Split ratio
得られた分割繊維不織布をエポキシ樹脂に包埋して、次!、でミクロトームで切断し 、試料片を得る。これを電子顕微鏡〔(株)日立製作所製 S— 3500N形 走査型電子 顕微鏡〕で観察し、得られた断面像より観察された分割繊維断面のセグメント数が 1 つの場合は分割率を 100%とし、観察された分割繊維断面のセグメント数が 2つ以上 の場合は分割率を以下の式で算出した。これを繊維 50本分観察し、その平均値を該 分割繊維不織布の分割率とした。  The obtained split fiber non-woven fabric is embedded in an epoxy resin and cut with a microtome at the next step to obtain a sample piece. When this is observed with an electron microscope (S-3500N Scanning Electron Microscope manufactured by Hitachi, Ltd.), and the number of segments in the cross-section of the split fiber observed from the obtained cross-sectional image is 1, the split ratio is 100%. When the number of segments in the section of the split fibers observed was 2 or more, the split ratio was calculated by the following formula. This was observed for 50 fibers, and the average value was taken as the split ratio of the split fiber nonwoven fabric.
[0042] 分割率 [%] = (総セグメント数一観察された分割繊維断面のセグメント数) /総セグ メント数 X I 00 ここで、総セグメント数とは、分割型複合繊維のフィラメント横断面を形成するセグメ ントの総和のことである。例えば、図 1 (a)、(b)および(d)のようなフィラメント横断面を 有する分割型複合繊維の場合は、総セグメントを 8とする。 [0042] Splitting rate [%] = (Total number of segments-Number of segments of the split fiber cross section observed) / Total number of segments XI 00 Here, the total number of segments refers to the total number of segments forming the filament cross section of the split composite fiber. For example, in the case of a split type composite fiber having a filament cross section as shown in Figs. 1 (a), (b) and (d), the total segment is 8.
[0043] 例えば、図 1 (a)のような総セグメント数 8のフィラメントにおいて図 1 (e)のような分割 繊維断面が観察された場合は、観察された分割繊維断面のセグメント数は 3として、 上式より分割率は 62. 5%とする。 [0043] For example, when a split fiber cross section as shown in Fig. 1 (e) is observed in a filament with a total number of segments of 8 as shown in Fig. 1 (a), the number of segments of the observed split fiber cross section is assumed to be 3. Based on the above formula, the split ratio is 62.5%.
[0044] (2)繊度 [0044] (2) Fineness
得られた分割繊維不織布をエポキシ樹脂に包埋して、次!、でミクロトームで切断し て試料片を得る。次いで、電子顕微鏡〔(株)日立製作所製 S— 3500N形 走査型電 子顕微鏡〕で観察し、得られた断面像から未分割フィラメント 30本を選び、その断面 積を算出し、それらの平均値より未分割フィラメントの繊度を求め、分割率を用いて次 の式により分割繊維の繊度を算出した。  The obtained split fiber non-woven fabric is embedded in an epoxy resin and cut with a microtome in the next step to obtain a sample piece. Next, observe with an electron microscope (S-3500N scanning electron microscope manufactured by Hitachi, Ltd.), select 30 undivided filaments from the obtained cross-sectional image, calculate the cross-sectional area, and calculate the average value thereof. Further, the fineness of the undivided filament was obtained, and the fineness of the divided fiber was calculated by the following formula using the division ratio.
[0045] 分割繊維の繊度 =未分割フィラメント繊度/ (総セグメント数 X分割率/ 100) [0045] Fineness of the split fibers = undivided filament fineness / (total number of segments X split ratio / 100)
(3)風合い  (3) Texture
評価者 10人により手触りの評価を行い、以下の基準で評価結果を示す。  The touch is evaluated by 10 evaluators, and the evaluation results are shown according to the following criteria.
[0046] ◎:手触りが良いと感じた人力 S、 10人のうち 10人の場合、 [0046] ◎: Human power S felt good to touch, 10 out of 10 people,
〇:手触りが良いと感じた人力 S、 10人のうち 9〜7人の場合、  〇: Human power S that feels good to touch, 9 to 7 out of 10 people,
△:手触りが良いと感じた人力 S、 10人のうち 6〜3人の場合、  △: Human power S felt good to touch, 6 to 3 out of 10 people,
X:手触りが良いと感じた人力 10人のうち 2人以下の場合。  X: 2 or less of 10 people who feel comfortable to touch.
[0047] (4)剛軟性(45° カンチレバー法) [0047] (4) Flexibility (45 ° cantilever method)
JIS L1096 (6. 19. 1 A法項)に準拠して、 JIS Z 8703 (試験場所の標準状態) に規定する温度 20 ± 2°C、湿度 65 ± 2%の恒温室内で幅 20mm X 150mmの試験 片を流れ方向(MD)と横方向(CD)でそれぞれ 5枚採取し、 45° の斜面をもつ表面 の滑らかな水平台の上に試験片の短辺をスケール基線に合わせて置く。次に、手動 により試験片を斜面の方向に緩やかに滑らせて試験片の一端の中央点が斜面と接 したとき他端の位置の移動長さをスケールによって読む。剛軟性(剛軟度)は試験片 の移動した長さ(mm)で示され、それぞれ 5枚の裏表について測定し、流れ方向(M D)および横方向(CD)それぞれの平均値で表した。 [0048] 剛軟度が低いほど不織布に柔軟性があると判断される。一般に流れ方向(MD)お よび横方向(CD)ともに剛軟度の値が 25mm未満の場合に、柔軟性が良好と判断さ れる。但し、必要な柔軟性は使用目的等によっても異なる為、必ずしもこの数値に制 限されるものではない。 In accordance with JIS L1096 (Section 6. 19.1 A), JIS Z 8703 (standard condition of test place) temperature 20 ± 2 ° C, humidity 65 ± 2% in a constant temperature room 20mm X 150mm Take 5 specimens in the flow direction (MD) and transverse direction (CD) respectively, and place the short side of the specimen on a smooth horizontal surface with a 45 ° slope with the scale base line aligned. Next, manually slide the specimen in the direction of the slope, and when the center point of one end of the specimen touches the slope, read the moving length of the other end on the scale. Bending / softening (bending / softening) is indicated by the length (mm) of the specimen moved, measured for each of the five front and back sides, and expressed as the average value in the flow direction (MD) and the transverse direction (CD). [0048] It is determined that the nonwoven fabric is more flexible as the bending resistance is lower. Generally, flexibility is judged to be good when the bending resistance (MD) and transverse direction (CD) are less than 25 mm. However, the required flexibility varies depending on the purpose of use, and so is not necessarily limited to this value.
[0049] (5)引張強度  [0049] (5) Tensile strength
JIS L1906 (6. 12. 1 A法)に準拠して、 JIS Z8703 (試験場所の標準状態)に規 定する温度 20 ± 2°C、湿度 65 ± 2 %の恒温室内で流れ方向(MD)の引張強度とし ては流れ方向(MD)に 25cm、横方向(CD)に 2· 5cmの不織布試験片を 3枚採取 し、横方向(CD)の引張強度としては流れ方向(MD)に 2.5cm、横方向(CD)に 25 cmの不織布試験片を 3枚採取し、チャック間 200mm、引張速度 200mm/分の条 件で引張り試験機 (インストロンジャパンカンパニイリミテッド製 インストロン 5564型 )を用いて引張試験を行い、 3枚の試験片について引張荷重を測定し、それらの最 大値の平均値を引張強度とした。  Flow direction (MD) in a constant temperature room of 20 ± 2 ° C and humidity of 65 ± 2% specified in JIS Z8703 (standard condition of test place) in accordance with JIS L1906 (6.12.1 A method) Tensile strength of 25cm in the flow direction (MD) and 2.5cm in the transverse direction (CD) were collected as the tensile strength of the fabric, and the tensile strength in the transverse direction (CD) was 2.5 in the flow direction (MD). Three non-woven test specimens of 25 cm in the transverse direction (CD) were collected and used a tensile tester (Instron Model 5564 manufactured by Instron Japan Ltd.) under the conditions of 200 mm between chucks and 200 mm / min. Tensile tests were performed, and the tensile load was measured on the three test pieces, and the average of the maximum values was taken as the tensile strength.
[0050] (6)通気度  [0050] (6) Air permeability
JIS L 1096 (通気性 A法)に準拠し、試料長さ方向より 100 X 100mmの試験片を 20枚採取しフラジール型試験機 (大栄科学精器製作所 AT-360S)を用いて測定し た結果の平均値を通気度とした。  Based on JIS L 1096 (Breathability A method), 20 specimens of 100 X 100mm from the sample length direction were collected and measured using a Frazier type tester (Daiei Scientific Instruments Seisakusho AT-360S) Was the air permeability.
[0051] 通気度が低いほど、分割性が高いため極細繊維が不織布全体に均一に存在して いると判断できる。  [0051] Since the lower the air permeability, the higher the splitting property, it can be determined that the ultrafine fibers are uniformly present throughout the nonwoven fabric.
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0· 910g/cm3、融点 157°C、 Mw/Mn2. 75〕を、(B) 高圧法低密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 20g/10分の(B )高圧法低密度ポリエチレン〔密度 0. 919g/cm3〕をそれぞれ別個の押出機成形温 度を 210°Cとして溶融した。図 1 (a)のような断面形状において総セグメント数が 16で ある分割型複合繊維紡糸用口金を用い (A)プロピレン系重合体部と (B)高圧法低 密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500m /分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させた。次いで、繊 維を分割させるために孔径 φ 0. 11mmのノズルを使用してノズルから不織布までの 距離を 10cmとして、ライン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織 布の表面と裏面に各 4回、合計 8回のウォータージェット加工を施し、 目付量が 50g/ m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性 、引張強度を測定して評価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160g, MFR at 230 ° C of 60g / 10min (A) Propylene polymer (density 0 · 910g / cm 3 , melting point 157 ° C, Mw / Mn2.75) (B) High-pressure low-density polyethylene as a high-pressure low-density polyethylene part 2160 g, 190 ° C MFR 20 g / 10 min (B) High-pressure low-density polyethylene (density 0.919 g / cm 3 ) Melting was performed at a temperature of 210 ° C. Using a split-type composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape shown in Fig. 1 (a), the weight ratio of (A) propylene polymer part and (B) high-pressure low-density polyethylene part is 50. / 50 split-type composite continuous fibers were spun by a so-called spunbond method at a yarn speed of 2500 m / min and deposited on a collection belt. Then the fiber In order to divide the fibers, a nozzle with a hole diameter of 0.11 mm is used, the distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 and the second stage water pressure is 100 kgf / cm at a line speed of 5 m / min. 2 , the water pressure of the third stage is 100 kgf / cm 2 and the water pressure of the fourth stage is 100 kgf / cm 2. An m 2 split fiber nonwoven fabric was prepared. The obtained nonwoven fabric was evaluated by measuring the division ratio, fineness, bending resistance, and tensile strength. The results are shown in Table 1.
[0052] 実施例 2 [0052] Example 2
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0· 910g/cm3、融点 157°C、 Mw/Mn2. 75〕を、(B) 高圧法低密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 35g/10分の(B )高圧法低密度ポリエチレン〔密度 0. 916 g/cm3〕を用い、それぞれ別個の押出機 成形温度を 210°Cで溶融し、図 1 (a)のような断面形状において総セグメント数が 16 である分割型複合繊維紡糸用口金を用い (A)プロピレン系重合体部と(B)高圧法低 密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500m /分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊 維の分割させるために孔径 Φ 0. 11mmのノズルを使用してノズルから不織布までの 距離を 10cmとして、ライン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織 布の表面と裏面に各 4回、合計 8回のウォータージェット加工を施し、 目付量が 50g/ m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性 、引張強度を測定して評価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160g, MFR at 230 ° C of 60g / 10min (A) Propylene polymer (density 0 · 910g / cm 3 , melting point 157 ° C, Mw / Mn2.75) (B) High-pressure method low-density polyethylene part (B) High-pressure method low-density polyethylene (density 0.916 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 35 g / 10 min. Extruder Melts at a molding temperature of 210 ° C, and uses a split type composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a). (A) Propylene polymer part and (B ) Split type composite continuous fiber with 50/50 weight ratio of high-pressure low-density polyethylene part is spun by the so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then the fiber Use a nozzle with a hole diameter of Φ0.11 mm to divide the distance from the nozzle to the nonwoven fabric to 10 cm, and the first stage water at a line speed of 5 m / min. In 60 kgf / cm 2, 2 stage pressure 100 kgf / cm 2, 3-stage water pressure 100 kgf / cm 2, 4 stage each 4 times with water pressure 100 kgf / cm 2 on the surface and the back surface of the nonwoven fabric, a total of 8 Water jet processing was performed twice to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . The obtained nonwoven fabric was evaluated by measuring the division ratio, fineness, bending resistance, and tensile strength. The results are shown in Table 1.
[0053] 実施例 3 [0053] Example 3
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0· 910 g/cm3、融点 161. 7°C、 Mw/Mn3. 40〕を、 ( B)高圧法低密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 35g/10分の (B)高圧法低密度ポリエチレン〔密度 0. 916g/cm3〕を用い、それぞれ別個の押出 機成形温度を 210°Cで溶融し、図 1 (a)のような断面形状において総セグメント数が 1 6である分割型複合繊維紡糸用口金を用い (A)プロピレン系重合体部と(B)高圧法 低密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500 m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、 繊維の分割させるために孔径 Φ 0. 11mmのノズルを使用してノズルから不織布まで の距離を 10cmとして、ライン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水 圧 100kgf/cm2で、 3段目の水圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不 織布の表面と裏面に各 4回、合計 8回のウォータージェット加工を施し、 目付量が 50g /m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟 性、引張強度を測定して評価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min (A) Propylene polymer (density 0 · 910 g / cm 3 , melting point 161.7 ° C, Mw / Mn3 (B) High-pressure low-density polyethylene part (B) High-pressure method low-density polyethylene part 2160g, 190 ° C MFR 35g / 10 min (B) High-pressure method low-density polyethylene (density 0.916g / cm 3 ) (A) Propylene-based polymer part melted at 210 ° C, using a split composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape shown in Fig. 1 (a) (B) High pressure method In order to spin a split-type composite continuous fiber having a weight ratio of low density polyethylene part 50/50 by a so-called spunbond method at a yarn speed of 2500 m / min, deposit it on a collecting belt, and then split the fiber using a nozzle hole diameter [Phi 0. 11 mm as a 10cm distance from the nozzles to the non-woven fabric, in the first stage pressure 60 kgf / cm 2, 2-stage water pressure 100 kgf / cm 2 at a line speed of 5 m / min, the 3 th stage pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 at each four times on the front and back surfaces of the nonwoven fabric is subjected to a total of 8 times of the water jet cutting, dividing basis weight of 50 g / m 2 A fiber nonwoven fabric was prepared. The resulting nonwoven fabric was evaluated by measuring the division ratio, fineness, bending resistance, and tensile strength. The results are shown in Table 1.
[0054] 比較例 1 [0054] Comparative Example 1
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0. 910g/cm3、融点 157°C、 Mw/Mn2. 75〕を、高密 度ポリエチレン部として荷重 2160g、 190°Cの MFRが 16g/10分の高密度ポリェチ レン〔密度 0. 972g/cm3〕を用い、それぞれ別個の押出機成形温度を 240°Cで溶 融し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊維 紡糸用口金を用い (Α)プロピレン系重合体部と高密度ポリエチレン部の重量比が 50 /50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパンボンド法によ り紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径 φ 0. 1 lmmのノズルを使用してノズルから不織布までの距離を 10cmとして、ライン速度 5m /minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水圧 100 kgf/cm2、 4段目の水圧 100kgf/cm2で不織布の表面と裏面に各 4回、合計 8回の ウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織布を作製した。得 られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結 果を表 1に示す。 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C, Mw / Mn 2.75) Using high-density polyethylene (density: 972 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 16 g / 10 min as a high-density polyethylene part, melt at a separate extruder molding temperature of 240 ° C. (1) The weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50/50. Are spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle having a hole diameter of 0.1 lmm is used to divide the fiber. Using a 10cm distance from the nozzle to the non-woven fabric, the first stage water pressure 60kgf / cm 2 at the line speed 5m / min, the second stage water pressure 100kgf / c m 2, and the respective four times on the front and back surfaces of the nonwoven fabric, a total of eight water jet machining performed in the third stage pressure 100 kgf / cm 2, the fourth-stage pressure 100 kgf / cm 2, weight per unit area 50 g / An m 2 split fiber nonwoven fabric was prepared. The obtained non-woven fabric was evaluated by measuring the division ratio, fineness, stiffness and tensile strength. The results are shown in Table 1.
[0055] 比較例 2 [0055] Comparative Example 2
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 30g/10分の(A) プロピレン系重合体〔密度 0. 910g/cm3、融点 165. 4°C、 Mw/Mn6. 79〕を、高 密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 16g/10分の高密度ポリエ チレン〔密度 0. 972g/cm3〕を用い、それぞれ別個の押出機成形温度を 240°Cで 溶融し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊 維紡糸用口金を用い (A)プロピレン系重合体部と高密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパンボンド法 により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径 φ 0. 11mmのノズルを使用してノズルから不織布までの距離を 10cmとして、ライン速 度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水 圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織布の表面と裏面に各 4回、合 計 8回のウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織布を作 製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評 価した。結果を表 1に示す。 (A) Propylene polymer part, load 2160g, 230 ° C MFR 30g / 10min (A) propylene polymer [density 0.910g / cm 3 , melting point 165.4 ° C, Mw / Mn6. 79) as a high-density polyethylene part, high-density polyethylene (density: 972 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 16 g / 10 min, and a separate extruder molding temperature of 240 ° C. so (A) The weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50 //, using a split composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a). 50 split-type composite long fibers were spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle with a hole diameter of 0.11 mm was used to divide the fibers. The distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, the second stage water pressure is 100 kgf / cm 2 , the third stage water pressure is 100 kgf / cm 2 , 4 A split fiber nonwoven fabric with a basis weight of 50 g / m 2 was produced by applying water jet processing four times each on the front and back surfaces of the nonwoven fabric at a water pressure of 100 kgf / cm 2 at the stage. The obtained non-woven fabric was evaluated by measuring the division ratio, fineness, softness and tensile strength. The results are shown in Table 1.
[0056] 比較例 3 [0056] Comparative Example 3
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 13g/10分の(A) プロピレン系重合体を〔密度 0. 910g/cm3、融点 165. 4°C、 Mw/MnlO. 97〕、 高密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 16g/10分の高密度ポリ エチレン〔密度 0. 972g/cm3〕を用い、それぞれ別個の押出機成形温度を 240°Cで 溶融し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊 維紡糸用口金を用い (Α)プロピレン系重合体部と高密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパンボンド法 により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径 φ 0. 11mmのノズルを使用してノズルから不織布までの距離を 10cmとして、ライン速 度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水 圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織布の表面と裏面に各 4回、合 計 8回のウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織布を作 製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評 価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160g, MFR at 230 ° C of 13g / 10min (A) Propylene polymer (density 0.910g / cm 3 , melting point 165.4 ° C, Mw / MnlO 97), high-density polyethylene with a load of 2160 g, 190 ° C MFR of 16 g / 10 min high-density polyethylene (density 0.972 g / cm 3 ), and a separate extruder molding temperature of 240 ° C. (Ii) The weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50, using a split-type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a). / 50 split-type composite long fibers are spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle with a hole diameter of 0.11 mm is used to split the fibers The distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, and the second stage water pressure is 100 kgf. In / cm 2, 3-stage water pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 each four times on the front and back surfaces of the nonwoven fabric is subjected to water jet machining of the total of 8 times, basis weight A 50 g / m 2 split fiber nonwoven fabric was produced. The obtained non-woven fabric was evaluated by measuring the division ratio, fineness, softness and tensile strength. The results are shown in Table 1.
[0057] 比較例 4 [0057] Comparative Example 4
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 30g/10分の(A) プロピレン系重合体〔密度 0· 910g/cm3、融点 157°C、 Mw/Mn2. 80〕を、(B) 高圧法低密度ポリエチレン部として荷重 2160g、 190°Cの MFRが 20g/10分の(B )高圧法低密度ポリエチレン〔密度 0. 919g/cm3〕を用い、それぞれ別個の押出機 成形温度を 210°Cで溶融し、図 1 (a)のような断面形状において総セグメント数が 16 である分割型複合繊維紡糸用口金を用い (A)プロピレン系重合体部と(B)高圧法低 密度ポリエチレン部の重量比が 50/50である分割型複合長繊維を糸速度 2500m /分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊 維の分割させるために孔径 Φ 0. 11mmのノズルを使用してノズルから不織布までの 距離を 10cmとして、ライン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織 布の表面と裏面に各 4回、合計 8回のウォータージェット加工を施し、 目付量が 50g/ m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性 、引張強度を測定して評価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 30 g / 10 min (A) Propylene polymer (density 0 · 910 g / cm 3 , melting point 157 ° C, Mw / Mn2.80) (B) (B) High pressure method low density polyethylene (density 0.919 g / cm 3 ) was used as the high pressure method low density polyethylene part with a load of 2160 g and 190 ° C MFR of 20 g / 10 min. (A) Propylene polymer part and (B) High-pressure low-density polyethylene using a split-type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape shown in Fig. 1 (a). A split type composite continuous fiber having a weight ratio of 50/50 is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then the pore diameter Φ is used to split the fiber. 0.1 Using a 11mm nozzle, the distance from the nozzle to the nonwoven fabric is 10cm, the first stage water pressure 60kgf / cm 2 at the line speed 5m / min, the second stage water pressure 100kgf / cm 2 and the third stage water pressure 100kgf / cm 2, 4-stage of each four times with water pressure 100kgf / cm 2 on the front and back surfaces of the non-woven cloth, a total of 8 times of water Subjected to jet machining, basis weight was produced of the split fiber nonwoven fabric 50 g / m 2. The obtained nonwoven fabric was evaluated by measuring the division ratio, fineness, bending resistance, and tensile strength. The results are shown in Table 1.
[0058] 比較例 5 [0058] Comparative Example 5
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0. 910g/cm3、融点 157°C、 Mw/Mn2. 75〕を、高密 度ポリエチレン部として荷重 2160g、 190°Cの MFRが 30g/10分の高密度ポリェチ レン〔密度 0. 95g/cm3〕を用い、それぞれ別個の押出機成形温度を 210°Cで溶融 し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊維紡 糸用口金を用い (Α)プロピレン系重合体部と(Β)高圧法低密度ポリエチレン部の重 量比が 50/50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパンボ ンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために 孔径 Φ 0. 11mmのノズルを使用してノズルから不織布までの距離を 10cmとして、ラ イン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段 目の水圧 100kgf/cm2、 4段目の水圧 lOOkgf /cm2で不織布の表面と裏面に各 4 回、合計 8回のウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織布 を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して 評価した。結果を表 1に示す。 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C, Mw / Mn 2.75) Using high-density polyethylene (density 0.95 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 30 g / 10 min as a high-density polyethylene part, melted at 210 ° C at a separate extruder molding temperature. Then, using a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a), the weight of (i) propylene polymer part and (ii) high pressure method low density polyethylene part A split type composite continuous fiber having a quantity ratio of 50/50 is spun by a so-called span bond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then has a pore diameter of 0.11 mm for fiber splitting. use nozzle from the nozzle as 10cm the distance to the nonwoven fabric, line 1 stage at a speed of 5 m / min pressure 60 kgf / cm 2, 2 stage of In pressure 100 kgf / cm 2, 3-stage water pressure 100 kgf / cm 2, 4-stage pressure lOOkgf / cm 2 each four times on the front and back surfaces of the nonwoven fabric is subjected to a total of eight water jet machining, basis weight A 50 g / m 2 split fiber nonwoven fabric was produced. The obtained nonwoven fabric was evaluated by measuring the division ratio, fineness, stiffness and tensile strength. The results are shown in Table 1.
[0059] 比較例 6 (A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 60g/10分の(A) プロピレン系重合体〔密度 0. 910g/cm3、融点 157°C、 Mw/Mn2. 75〕を、ポリエ チレン部として荷重 2160g、 190°Cの MFRが 15g/10分の直鎖状低密度ポリェチ レン〔密度 0. 915g/cm3〕を用い、それぞれ別個の押出機成形温度を 210°Cで溶 融し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊維 紡糸用口金を用い (Α)プロピレン系重合体部と(Β)高圧法低密度ポリエチレン部の 重量比が 50/50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパン ボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるため に孔径 φ 0. 11mmのノズルを使用してノズルから不織布までの距離を 10cmとして、 ライン速度 5m/minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3 段目の水圧 100kgf/cm2、 4段目の水圧 100kgf/cm2で不織布の表面と裏面に各 4回、合計 8回のウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織 布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定し て評価した。結果を表 1に示す。 [0059] Comparative Example 6 (A) Propylene polymer part with a load of 2160 g, 230 ° C MFR of 60 g / 10 min (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C, Mw / Mn 2.75) As the polyethylene part, linear low-density polyethylene (density: 915 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 15 g / 10 min was used. (Ii) Propylene-based polymer part and (ii) High-pressure low-density polyethylene part using split-type composite fiber spinning die with a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a) A split-type composite continuous fiber having a weight ratio of 50/50 is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then has a pore diameter of φ 0. Using a 11 mm nozzle, the distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, the second stage With a water pressure of 100 kgf / cm 2 , a third-stage water pressure of 100 kgf / cm 2 , and a fourth-stage water pressure of 100 kgf / cm 2 , four times each on the front and back surfaces of the nonwoven fabric, a total of 8 times of water jet processing, and the basis weight is A 50 g / m 2 split fiber nonwoven fabric was prepared. The obtained non-woven fabric was evaluated by measuring the division ratio, fineness, stiffness and tensile strength. The results are shown in Table 1.
比較例 7  Comparative Example 7
(A)プロピレン系重合体部として荷重 2160g、 230°Cの MFRが 35g/10分の(A) プロピレン系重合体〔密度 0. 910g/cm3、融点 157°C、 Mw/Mn2. 7〕を、高密度 ポリエチレン部として荷重 2160g、 190°Cの MFRが 16g/10分の高密度ポリエチレ ン〔密度 0. 972g/cm3〕を用い、それぞれ別個の押出機成形温度を 240°Cで溶融 し、図 1 (a)のような断面形状において総セグメント数が 16である分割型複合繊維紡 糸用口金を用い (Α)プロピレン系重合体部と高密度ポリエチレン部の重量比が 50/ 50である分割型複合長繊維を糸速度 2500m/分でいわゆるスパンボンド法により 紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径 φ 0. 11 mmのノズルを使用してノズルから不織布までの距離を 10cmとして、ライン速度 5m /minで 1段目水圧 60kgf/cm2、 2段目の水圧 100kgf/cm2で、 3段目の水圧 10 Okgf/cm2、 4段目の水圧 100kgf/cm2で不織布の表面と裏面に各 4回、合計 8回 のウォータージェット加工を施し、 目付量が 50g/m2の分割繊維不織布を作製した。 得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。 結果を表 1に示す。 (A) Propylene polymer part, load 2160g, 230 ° C MFR 35g / 10min (A) propylene polymer [density 0.910g / cm 3 , melting point 157 ° C, Mw / Mn2.7] Using high-density polyethylene (density: 0.972 g / cm 3 ) with a load of 2160 g and 190 ° C MFR of 16 g / 10 min as a high-density polyethylene part, melt at a separate extruder molding temperature of 240 ° C. However, a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in Fig. 1 (a) was used. (Ii) The weight ratio of the propylene polymer part to the high density polyethylene part was 50/50. Are spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collection belt, and then a nozzle having a hole diameter of 0.11 mm is used to divide the fiber. The distance from the nozzle to the non-woven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 and the second stage water pressure is 100 kgf / cm at a line speed of 5 m / min. 2 , the water pressure of the third stage is 10 Okgf / cm 2 , the water pressure of the fourth stage is 100 kgf / cm 2 , 4 times each on the front and back surfaces of the nonwoven fabric, total 8 times water jet processing, the basis weight is 50g / m Two split fiber nonwoven fabrics were prepared. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.
[表 1] [table 1]
表 1 table 1
Figure imgf000019_0001
Figure imgf000019_0001
[0062] 表 1から明らかなように、実施例 1、実施例 2、実施例 3のポリプロピレンとポリエチレ ンを用いてなる複合長繊維不織布は、分割性が 80%以上と容易に分割でき、得られ る分割繊維の繊度も細く、柔軟性および風合いに極めて優れて!/ヽた。 [0062] As is clear from Table 1, the composite long fiber nonwoven fabrics using the polypropylene and polyethylene of Example 1, Example 2, and Example 3 can be easily divided into 80% or more, and thus obtained. The fineness of the resulting split fiber is also thin, and it is extremely excellent in flexibility and texture!
[0063] それに対し、比較例 1、比較例 2、比較例 3、比較例 4、比較例 5、比較例 6、比較例 7のポリプロピレンとポリエチレンを用いてなる複合長繊維不織布は、分割が困難で あり、繊度は細くなり得ず、柔軟性および風合いは劣ったものとなった。  [0063] In contrast, the composite long fiber nonwoven fabric using polypropylene and polyethylene of Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 5, Comparative Example 5, Comparative Example 6, and Comparative Example 7 is difficult to divide. The fineness could not be reduced, and the flexibility and texture were poor.
産業上の利用可能性  Industrial applicability
[0064] 本発明の分割繊維不織布の製造方法により得られうる分割型複合繊維不織布は、 柔軟性および風合いに極めて優れており、各種ワイビングクロス、手術衣や医療用ガ ゥンゃ産業用ガウンなどの衣料用不織布、包装布、使い捨てォムッやナプキンなど の衛生材料の表面材、ベッドシーツ、枕カバー等の寝具類、カーペットや人工皮革 用基布等に幅広く使用することもできる。  [0064] The split-type composite fiber nonwoven fabric obtained by the method for producing a split fiber nonwoven fabric of the present invention is extremely excellent in flexibility and texture, and various wiping cloths, surgical garments, medical gowns, and industrial gowns. It can also be widely used for non-woven fabrics for clothing, packaging fabrics, surface materials for sanitary materials such as disposable ommu and napkins, bedding such as bed sheets and pillow covers, carpets and base fabrics for artificial leather.
[0065] その他用途として、例えば VTRやコンパクト 'ディスクのクリーニング布、ディスクの 研磨、ろ過布、フィルター、バッテリーセパレータ、一般消費材としてはグラス、貴金 属、高級置物品、窓ガラス、 OA機器、 自動車などのウィンド、楽器、鏡などの汚れ落 としゃ油膜取り、フローリング用、トイレ用クリーナーなども挙げられる。  [0065] Other applications include, for example, VTR and compact 'disk cleaning cloth, disk polishing, filter cloth, filter, battery separator, general consumer materials such as glass, precious metal, high-quality furniture, window glass, OA equipment, Examples include automobile windows, musical instruments, mirrors, dirt removal, oil flooring, flooring, and toilet cleaners.

Claims

請求の範囲 The scope of the claims
[1] (A)荷重 2160g、 230°Cにおける MFR力 0g/10分以上のプロピレン系重合体 、および  [1] (A) Propylene polymer having a load of 2160 g, MFR force at 230 ° C of 0 g / 10 min or more, and
(B)高圧法低密度ポリエチレンを用いてなり、  (B) using high pressure method low density polyethylene,
(A)からなる樹脂部と (B)力 なる樹脂部とが互いに接してなる分割型複合長繊維 Split type composite long fiber in which the resin part made of (A) and the resin part made of (B) are in contact with each other
Yes
[2] (A)プロピレン系重合体の Mw/Mn (重量平均分子量/数平均分子量の比)が 5.  [2] (A) Mw / Mn (weight-average molecular weight / number-average molecular weight ratio) of the propylene polymer is 5.
0未満である請求項 1に記載の分割型複合長繊維。  2. The split-type composite continuous fiber according to claim 1, which is less than 0.
[3] (B)高圧法低密度ポリエチレンの荷重 2160g、 190°Cにおける MFR力 S20g/10 分以上の請求項 1に記載の分割型複合長繊維。 [3] The split type composite continuous fiber according to claim 1, wherein (B) high-pressure low-density polyethylene has a load of 2160 g and an MFR force of S20 g / 10 min.
[4] 請求項 1または 2に記載の分割型複合長繊維力もなる不織布。 [4] A non-woven fabric having a split-type composite continuous fiber strength according to claim 1 or 2.
[5] 請求項 4に記載の不織布に応力を付加することにより、分割型複合長繊維の (A) プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を分割してなる分割繊維 不織布。 [5] A split fiber nonwoven fabric obtained by splitting (A) a propylene-based polymer portion and (B) a high-pressure method low-density polyethylene portion of a split-type composite long fiber by applying stress to the nonwoven fabric according to claim 4. .
[6] 応力の付加が、高圧液体流を用いて行われる請求項 5に記載の分割繊維不織布。  6. The split fiber nonwoven fabric according to claim 5, wherein the stress is applied using a high-pressure liquid flow.
[7] 荷重 2160g、 230°Cにおける MFRが 40g/10分以上の(A)プロピレン系重合体 と、(B)高圧法低密度ポリエチレンを、複合紡糸ノズルを有する紡糸口金から吐出さ せて、紡出された (A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部が互 いに接する複合長繊維を、冷却流体により冷却しながら、流体で長繊維に張力を加 えて細化させて、(A)プロピレン系重合体部を配向結晶化した後、捕集ベルト上に捕 集して堆積させることを特徴とする分割型複合長繊維からなる不織布の製造方法。  [7] (A) Propylene polymer having a load of 2160 g and MFR at 230 ° C of 40 g / 10 min or more and (B) high-pressure low-density polyethylene are discharged from a spinneret having a composite spinning nozzle. The composite long fiber (A) propylene polymer part and (B) high-density low-density polyethylene part that are spun together is cooled by a cooling fluid, and tension is applied to the long fiber to reduce the length. (A) A method for producing a nonwoven fabric comprising split-type composite continuous fibers, wherein the propylene-based polymer portion is oriented and crystallized and then collected and deposited on a collection belt.
[8] 請求項 4に記載の不織布に、応力を付加することにより、分割型複合長繊維の (A) プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を分割することを特徴とす る分割繊維不織布の製造方法。  [8] The nonwoven fabric according to claim 4, wherein stress is applied to divide the (A) propylene-based polymer portion and (B) the high-pressure low-density polyethylene portion of the split-type composite continuous fiber, A method for producing a split fiber nonwoven fabric.
[9] 応力の付加が、高圧液体流を用いて行われる請求項 8に記載の分割繊維不織布 の製造方法。  [9] The method for producing a split fiber nonwoven fabric according to [8], wherein the stress is applied using a high-pressure liquid flow.
PCT/JP2007/068042 2006-09-25 2007-09-18 Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric WO2008038536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536332A JP5334583B2 (en) 2006-09-25 2007-09-18 Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006259365 2006-09-25
JP2006-259365 2006-09-25

Publications (1)

Publication Number Publication Date
WO2008038536A1 true WO2008038536A1 (en) 2008-04-03

Family

ID=39229972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068042 WO2008038536A1 (en) 2006-09-25 2007-09-18 Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric

Country Status (3)

Country Link
JP (1) JP5334583B2 (en)
TW (1) TW200825225A (en)
WO (1) WO2008038536A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758263A (en) * 2011-04-29 2012-10-31 顾海云 Fabricating method of tangerine section shaped composite fiber
TWI572754B (en) * 2014-06-27 2017-03-01 三洋紡織纖維股份有限公司 Method of manufacturing artificial leather fabrics
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2022001688A (en) * 2020-06-19 2022-01-06 花王株式会社 Fiber sheet, electrospinning device, and fiber sheet manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014002232B4 (en) * 2014-02-21 2019-10-02 Carl Freudenberg Kg Microfiber composite fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328348A (en) * 1999-03-17 2000-11-28 Chisso Corp Splittable conjugate fiber and fiber molded body using the same
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Split fiber and fiber molded body using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852644B2 (en) * 1998-09-21 2006-12-06 チッソ株式会社 Split type composite fiber, nonwoven fabric and absorbent article using the same
JP3318833B2 (en) * 1999-03-11 2002-08-26 チッソ株式会社 Splittable conjugate fiber and fiber molded product using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328348A (en) * 1999-03-17 2000-11-28 Chisso Corp Splittable conjugate fiber and fiber molded body using the same
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Split fiber and fiber molded body using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758263A (en) * 2011-04-29 2012-10-31 顾海云 Fabricating method of tangerine section shaped composite fiber
TWI572754B (en) * 2014-06-27 2017-03-01 三洋紡織纖維股份有限公司 Method of manufacturing artificial leather fabrics
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2022001688A (en) * 2020-06-19 2022-01-06 花王株式会社 Fiber sheet, electrospinning device, and fiber sheet manufacturing method

Also Published As

Publication number Publication date
JP5334583B2 (en) 2013-11-06
JPWO2008038536A1 (en) 2010-01-28
TW200825225A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
JP5717769B2 (en) Spunbond nonwoven fabric
MX2008002376A (en) Propylene based meltblown nonwoven layers and composite structures.
JP3734277B2 (en) Flexible nonwoven fabric laminate
JP4758804B2 (en) Non-woven
WO2008038536A1 (en) Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric
WO2000036200A1 (en) Composite-fiber nonwoven fabric
CN113474505A (en) Spun-bonded nonwoven fabric, sanitary material, and method for producing spun-bonded nonwoven fabric
TW201942433A (en) Nonwoven fabric and filter
JP5181028B2 (en) Long fiber nonwoven fabric
CN111587303B (en) Spunbond nonwoven fabric, sanitary material and method for producing spunbond nonwoven fabric
CN113677516A (en) Nonwoven fabric laminate and sanitary product
KR20120034918A (en) Spunbonded nonwoven having an excellent elastic recovering property and manufacturing method thereof
JPH11158766A (en) Non-woven fabric laminate
JP6533025B1 (en) Method of manufacturing spunbonded nonwoven fabric and spunbonded nonwoven fabric
JP4675865B2 (en) Nonwoven fabric made of split composite fiber
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
KR101805386B1 (en) Polyolefin non-woven fabric manufacturing method of having a rough surface
JP7378419B2 (en) Nonwoven fabric and its manufacturing method
JP5314075B2 (en) Thermal adhesive composite fiber and method for producing the same
JP4442013B2 (en) Composite nonwoven fabric and fiber product using the same
JP2024170251A (en) Meltblown nonwoven fabrics, sanitary materials, waterproof sheets and medical sheets
WO2020095947A1 (en) Nonwoven fabric and method for manufacturing same
CN117440887A (en) Nonwoven fabrics for medical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536332

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807443

Country of ref document: EP

Kind code of ref document: A1