WO2008026545A1 - Moving image encoding system, switching apparatus and video encoder - Google Patents
Moving image encoding system, switching apparatus and video encoder Download PDFInfo
- Publication number
- WO2008026545A1 WO2008026545A1 PCT/JP2007/066561 JP2007066561W WO2008026545A1 WO 2008026545 A1 WO2008026545 A1 WO 2008026545A1 JP 2007066561 W JP2007066561 W JP 2007066561W WO 2008026545 A1 WO2008026545 A1 WO 2008026545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- image
- lines
- image signals
- received
- Prior art date
Links
- 239000000872 buffer Substances 0.000 claims abstract description 91
- 230000015654 memory Effects 0.000 claims description 66
- 238000013481 data capture Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- 238000011094 buffer selection Methods 0.000 claims description 24
- 238000003384 imaging method Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims 2
- 230000000996 additive effect Effects 0.000 claims 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000005055 memory storage Effects 0.000 claims 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 238000004590 computer program Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101100270435 Mus musculus Arhgef12 gene Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
Definitions
- Video coding system switching device, video encoder
- the present invention relates to a moving image encoding system that inputs image signals from a plurality of cameras to one input interface of a video encoder and encodes them.
- Patent Document 1 listed below discloses an image processing system including a plurality of cameras and a video encoder corresponding to each camera on a one-to-one basis.
- video encoders As the performance of video encoders has improved, it has become possible to encode images from a plurality of cameras with a single video encoder.
- an increase in the number of pins is unavoidable, and the circuit scale Must be large. For this reason, the number of input interfaces provided in a video encoder is often smaller than the number of cameras.
- a switching device is provided outside the video encoder, and an image signal input to one input interface of the video encoder is switched at a predetermined cycle by the switching device, thereby encoding image signals of a plurality of cameras. Is going.
- Patent Document 2 the camera is sequentially switched during the vertical blanking period by the switching circuit operating based on the vertical synchronization signal.
- a camera designation signal superimposing circuit is provided to indicate which camera the image signal is, and an image pattern for identifying the camera is superimposed on the vertical blanking period of the image signal.
- Patent Document 1 Japanese Patent Publication No. 2003-101992
- Patent Document 2 Japan Patent Publication No. 2003 230076
- Patent Document 3 Japanese Patent Laid-Open No. 9 266571
- each image signal is distinguished after being input to one input interface. It must be possible.
- the switching order of cameras is determined in advance, and each image signal is distinguished by managing the synchronization timing of each camera or separating the vertical synchronization signal from the input image signal.
- Patent Document 3 the image pattern for identifying the camera is superimposed on the vertical blanking period of the image signal as described above, and the image pattern superimposed on the blanking period is detected on the image signal receiving side. The above distinction is made.
- each image signal is taken into the video encoder in units of frames or fields and stored in a memory such as a buffer. Then, even if the number of lines that is the minimum unit of encoding is smaller than the number of lines that make up one frame or one field, the image signal for one frame or one field is not stored in memory once. The video encoder cannot start encoding the image signal. As a result, a delay occurs in frame units or field units.
- each image signal is distinguished and encoded, and the image signal is converted into a frame or field unit.
- Video encoding system, method, switching device, video encoder, integrated circuit, program which enables faster start of encoding by handling in smaller units, thereby reducing the delay compared to conventional units Means to solve the problem
- the present invention provides a moving image encoding system for encoding a plurality of moving images, and a signal receiving means for receiving image signals generated by imaging by a plurality of cameras. And a temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals are cyclically switched for each camera so as to perform image encoding. Image signals for a predetermined number of lines consisting of the number of lines as a small unit or a multiple of the number of lines are read out from the temporary storage means and output, and a switching control signal indicating the timing at which the plurality of image signals are switched is generated.
- Output control means and encoding means includes one input interface comprising a synchronization signal input part and one image signal input part, and is switched by the output control means.
- Each of the output image signals for the predetermined number of lines and the switching control signal are received by the one input interface, and each of the received image signals for the predetermined number of lines is indicated in the switching control signal.
- the video encoding system is characterized in that encoding is performed in accordance with the timing.
- the “predetermined number of lines” is a number smaller than the number of lines constituting one field.
- each picture signal is cyclically switched every time a predetermined number of lines are outputted and outputted to the coding means.
- a switching control signal indicating the timing at which the image signal is switched is output from the output control means to the encoding means.
- the encoding means can detect the timing at which the image signal is switched based on the switching control signal.
- the encoding unit can detect that the image signal is switched every time the image signal is received for the predetermined number of lines, and thereby can distinguish each image signal.
- the encoding means can distinguish each image signal every time it receives image signals for a predetermined number of lines, so that each image signal is represented by a line smaller than the field. Numbers can be imported as units. As a result, the start of encoding can be made earlier than in the prior art, and the delay can be reduced compared to the prior art.
- the input interface includes a synchronization signal input unit and one image signal input unit, and such an input interface is provided in any encoding means (for example, a video encoder). is there. Therefore, the above-described configuration can be achieved without any special modification such as adding a pin or the like to the input interface in the encoding means. It is possible to realize switching of image signals in units of lines.
- an image signal is captured every predetermined number of lines, but this is the minimum unit of image signal encoding or a multiple thereof, so that overhead associated with switching of image signals is reduced.
- encoding can be performed efficiently.
- the present invention is a switching device that switches a plurality of moving images and outputs the same to one input interface comprising a synchronization signal input unit and one image signal input unit of a video encoder.
- a signal receiving means for receiving image signals generated by imaging for a plurality of cameras, a temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals cyclically for each camera.
- the image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines is read out from the temporary storage means and output to the one input interface, and the plurality of images Output control means for generating a switching control signal indicating the timing at which the signal is switched and outputting the switching control signal to the first input interface. It is also a switching device to.
- the plurality of image signals are generated synchronously at a timing according to a predetermined synchronization signal composed of a vertical synchronization signal and a horizontal synchronization signal, and the output control means has a timing based on the predetermined horizontal synchronization signal.
- the image signal may be switched and output.
- each image signal is generated synchronously. Therefore, it is possible to switch the image signal at the timing based on the synchronization signal of 1, and the processing is simplified.
- the output control means detects data based on the predetermined horizontal synchronizing signal that the image signal for the predetermined number of lines has been received by the signal receiving means.
- the control unit cyclically transmits the image signals for the predetermined number of lines stored in the temporary storage means within a period required for receiving the image signals corresponding to the predetermined number of lines for each detection. Buffer selection control to read and output to each It is good to include.
- the temporary storage means is a plurality of FIFO type buffer memories provided corresponding to each image signal, and each of the buffer memories includes two storage units, and the temporary storage means Each of the image signals received by the signal receiving means is stored in a corresponding buffer memory, and each of the buffer memories is selectively switched between the two storage units, and the received image signal is one of them. Is written and stored, and the data capture control unit switches the storage unit every time it detects that the signal reception unit has received the image signals for the predetermined number of lines, and performs the buffer selection control. The image signal from the one of the two storage units that has already been written for the predetermined number of lines. You may want to and be carried out of the read-out.
- each of the two storage units constituting the buffer memory writes an image signal in one of them and reads an image signal from the other in a certain period. Therefore, each storage unit has a sufficient storage capacity if it can store a predetermined number of lines of image signals. Therefore, it is possible to reduce the size of a circuit or switching device that does not need to have a storage capacity sufficient to store an image signal for one field or one frame.
- each camera performs imaging in synchronization with the timing indicated by the synchronization signal output from one of the cameras, and the output control means inputs the synchronization signal output from the one camera.
- a synchronization signal input unit is included, and the predetermined synchronization signal may be a synchronization signal received by the synchronization signal input unit.
- the number of lines as the minimum unit of image encoding is preferably the number of lines for a macroblock.
- the number of lines for the macroblock can be encoded as a unit.
- the present invention is a video in which a plurality of image signals switched and output by a switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded.
- An encoder comprising the input interface of 1
- the video encoder further comprises encoding means for distinguishing and encoding each received image signal according to the timing indicated by the switching control signal.
- the encoding means may encode the image signal for the predetermined number of lines received each time the switching timing indicated by the switching control signal is reached. Coding can be started by receiving line-by-line image signals, and delay can be reduced.
- the image signal is stored in one memory area having a storage area for storing a predetermined number of lines of image signals in the video encoder!
- Each of the image signals is stored in a different memory area, and the encoding means generates an interrupt at each switching timing indicated by the switching control signal to perform reception processing of the image signal, and the predetermined line
- the reception process is ended, and the memory area for storing the image signals is switched at each switching timing.
- each image signal can be distinguished by referring to the memory area.
- the present invention is a moving image encoding system that encodes a plurality of moving images, and includes a signal receiving unit that receives image signals generated by imaging by a plurality of cameras and the signal receiving unit. Temporary storage means for storing a plurality of image signals, and switching a plurality of image signals for each camera, and images corresponding to a predetermined number of lines composed of the number of lines as a minimum unit of image encoding or a multiple of the number of lines.
- a signal is read from the temporary storage means, a set of the read image signal and an additional signal for identifying the image signal is output, and a superposition timing signal for distinguishing the additional signal from the image signal is generated.
- Output control means and encoding means, and the encoding means includes one input interface comprising a synchronization signal input section and one image signal input section.
- Each of the predetermined number of image signals switched and output by the output control means, the additional signal, and the superimposition timing signal are received by the input interface of 1, and the received number of the predetermined lines.
- the image signal and the additional signal are distinguished from each other by the received superposition timing signal, and the received image signals for the predetermined number of lines are identified by using the additional signal, thereby distinguishing each of the image signals.
- This is a video encoding system characterized by encoding.
- the output control means outputs the additional signal for identifying each image signal together with the image signal.
- the additional signal and the image signal can be distinguished from each other by the superposition timing signal, and the image signal can be identified based on the additional signal. Therefore, even if the image signals are not generated synchronously, each image signal can be identified by the additional signal. Therefore, the encoding means is provided when a plurality of image signals are input to one input interface. In addition, even if the image signals are not generated synchronously, the image signals can be distinguished and encoded in units of lines. Further, it is not necessary to add a new pin or the like to the input interface.
- This moving image coding system is also roughly divided into a switching device and a video encoder. Therefore, the present invention is a switching device that switches a plurality of moving images and outputs them to one input interface comprising a synchronization signal input unit and one image signal input unit of a video encoder.
- Signal receiving means for receiving generated image signals for a plurality of cameras, and storing a plurality of image signals received by the signal receiving means
- the temporary storage means and a plurality of image signals are switched on a camera-by-camera basis, and image signals for a predetermined number of lines consisting of the minimum number of lines for image coding or a multiple of the number of lines are read from the temporary storage means.
- the output control means includes a synchronization signal receiving unit that receives a synchronization signal for generating an image signal for each of the image signals, and based on each of the synchronization signals received by the synchronization signal receiving unit! / The switching output of the set of the image signal and the additional signal and the output of the superimposition timing signal may be performed. Specifically, the output control means outputs the image signals for the predetermined number of lines for each of the plurality of image signals based on the horizontal synchronization signals of the respective synchronization signals received by the synchronization signal receiving unit.
- a data capturing control unit that detects that the signal has been received by the signal receiving unit, an additional information generating unit that generates an additional signal, and image signals for a predetermined number of lines in the order detected by the data capturing control unit. It is preferable to include a selection unit that reads out from the temporary storage means and outputs the read image signals for a predetermined number of lines and the additional signal generated by the additional information generation unit for the image signal.
- the switching device detects, for each image signal, the reception of the image signals for a predetermined number of lines based on the horizontal synchronization signal of the image signals, and the images are sequentially detected. Since the signals are switched and output, image signals can be output even when the image signals are asynchronous. In addition, even if the image signal data amount differs because each image signal has a different image size, each image signal is output even if the line size or image size of the image signal is different, because they are output in the order of detection. can do.
- the additional signal may include identification information of an image signal. Further, the additional signal includes at least one of macro block line information indicating which line in the image of the image signal is one line, or line size information indicating the size of one line. And as good.
- the video encoder can acquire which line of the image the image signal corresponds to by the additional signal, so the video encoder receives each image signal, for example, up to which line. This eliminates the need to manage these and simplifies processing on the video encoder side.
- a plurality of image signals that are switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded.
- a video encoder including the input interface of 1 and a set of each of the image signals switched and output every predetermined number of lines by the switching device, and an additional signal for identifying the image signal, and The superimposition timing signal for distinguishing the additional signal from the image signal is received by the input interface of 1 and the received image signal and the additional signal for the predetermined line are received.
- Each image signal is distinguished by identifying the received image signal for the predetermined line using the additional signal.
- a video encoder characterized in that it comprises coding means for No. of.
- the present invention also provides a video encoder having one input interface comprising a synchronization signal input unit and one image signal input unit, and a plurality of moving images switched to the one input interface for output.
- a moving image encoding method for encoding a plurality of moving images in a moving image encoding system including a switching device, the signal receiving step for receiving image signals generated by imaging of a camera for a plurality of cameras, and the signal The temporary storage step of storing a plurality of image signals received by the reception step by the temporary storage means of the switching device, and the number of lines as a minimum unit of image encoding by cyclically switching the plurality of image signals for each camera.
- a predetermined number of lines of image signals consisting of multiples of the lines are read out from the temporary storage means and output, and An output control step for generating and outputting a switching control signal indicating the timing at which the image signal is switched, and the switching control signal for each of the predetermined number of image signals to be switched and output by the output control step.
- Each of the received image signals is distinguished by the timing indicated by the switching control signal.
- a coding step for coding for coding.
- the present invention provides a video encoder having one input interface including a synchronization signal input unit and one image signal input unit, and a plurality of moving images switched to the one input interface for output.
- a moving image encoding method for encoding a plurality of moving images in a moving image encoding system including a switching device, the signal receiving step for receiving image signals generated by imaging of a camera for a plurality of cameras, and the signal A temporary storage step for storing a plurality of image signals received by the reception step by the temporary storage means of the switching device; and a number of lines or a multiple thereof as a minimum unit for image encoding by switching the plurality of image signals for each camera.
- a predetermined number of image signals consisting of the number of lines is read from the temporary storage means, and the read image signal and the image signal are A pair of additional signals for separation is output, and an output control step for generating and outputting a superimposition timing signal for distinguishing between the additional signal and the image signal, and switching output by the output control step are output.
- Each of the image signals for the predetermined number of lines, the additional signal, and the superposition timing signal are received by the input interface of 1, and the received image signals for the predetermined number of lines and the additional signal are received.
- An encoding step of distinguishing and encoding each of the image signals by identifying the received image signals for the predetermined number of lines using the additional signal. It is also a featured video encoding method.
- the present invention is an integrated circuit used in a switching device that switches a plurality of moving images and outputs to a single input interface including a synchronization signal input unit and a single image signal input unit of a video encoder.
- a signal receiving unit for receiving image signals generated by imaging by a plurality of cameras, a temporary storage unit for storing a plurality of image signals received by the signal receiving unit, and a plurality of image signals for each camera.
- the image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines is read out from the temporary storage unit and output to the input interface 1.
- An output control unit that generates a switching control signal indicating a timing at which the plurality of image signals are switched and outputs the switching control signal to the first input interface. It is also the integrated circuit that features and. [0029] Further, according to the present invention, a plurality of image signals that are switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded. Each of the image signals received by the input interface and switched by the switching device every predetermined number of lines and output from the switching device. It is also an integrated circuit characterized by including an encoding unit that distinguishes and encodes by a switching control signal indicating the switching timing of an image signal received by one input interface.
- the present invention is an integrated circuit used in a switching device that switches a plurality of moving images and outputs to a single input interface including a synchronization signal input unit and a single image signal input unit of a video encoder.
- a signal receiving unit for receiving image signals generated by imaging by a plurality of cameras, a temporary storage unit for storing a plurality of image signals received by the signal receiving unit, and a plurality of image signals for each camera.
- the image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines.
- a superposition timing signal for distinguishing the additional signal from the image signal is generated to generate the superposition timing signal.
- an output control unit that outputs to one input interface.
- a plurality of image signals switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded.
- An integrated circuit used in a video encoder for identifying an image signal for each image signal that is switched and output every predetermined number of lines and received by the one input interface.
- the additional signal and a superimposition timing signal for distinguishing the additional signal and the image signal are used to distinguish the additional signal from the predetermined number of lines of the image signal by the superimposition timing signal, and
- An integrated circuit comprising: an encoding unit that distinguishes and encodes each image signal by identifying the image signal using the additional signal. But there is.
- the present invention switches a plurality of moving images, and switches a process of outputting to one input interface including a synchronization signal input unit and one image signal input unit of the video encoder.
- a control program for causing the apparatus to perform a signal reception step of receiving image signals generated by imaging of a camera for a plurality of cameras, and a plurality of image signals received by the signal reception step to temporarily store the switching device.
- a temporary storage step to be stored in the storage means and a plurality of image signals are switched cyclically for each camera, and a predetermined number of lines consisting of the number of lines that are the minimum unit of image encoding or a multiple of the number of lines.
- a plurality of image signals that are switched and output by a switching device to a video encoder having one input interface including a synchronization signal input unit and one image signal input unit are output to the 1
- the present invention allows a switching device to perform a process of switching a plurality of moving images and outputting to one input interface including a synchronization signal input unit and one image signal input unit of a video encoder.
- a signal receiving step for receiving image signals generated by imaging by a plurality of cameras, and a plurality of image signals received by the signal receiving step are stored in a temporary storage unit of the switching device.
- Temporary storage step and switching a plurality of image signals for each camera, and reading out from the temporary storage means image signals for a predetermined number of lines consisting of the number of lines as a minimum unit of image encoding or a multiple of the number of lines.
- a set of the read image signal and an additional signal for identifying the image signal is output to the input interface 1 described above. It is also a control program, characterized in that it comprises an output control step of generating a superimposed timing signal for discriminating the additional signal and the image signal output to the first input interface.
- a plurality of image signals that are switched and output by a switching device to a video encoder having one input interface including a synchronization signal input unit and one image signal input unit are output to the 1
- a control program for performing processing for encoding each image signal received by the input interface of the image signal, the image signal being switched and output every predetermined number of lines by the switching device, and the predetermined number of lines A combination of an additional signal for identifying the image signal and a superimposition timing signal for distinguishing the additional signal from the image signal for the predetermined number of lines are received by the input interface of 1 and received.
- the predetermined number of lines of image signals and the additional signal are distinguished by the received superimposition timing signal, and the received images of the predetermined number of lines are received. No. and by identifying using said additional signal is also a control program characterized in that it comprises a coding stearyl-up for encoding and distinguish each of the image signals.
- FIG. 1 is a functional block diagram showing a configuration of a moving picture coding system 100 according to a first embodiment.
- FIG. 2 is a diagram showing a detailed configuration of a control circuit 6.
- FIG. 3 is a flowchart showing processing performed by an interrupt handler in processor 13
- FIG. 4 is a timing chart showing the operation of the video encoding system 100.
- FIG. 5 is a diagram showing the start timing of encoding processing in the video encoder 3;
- FIG. 6 is a functional block diagram showing a configuration of a moving picture coding system 200 according to Embodiment 2.
- FIG. 7 is a diagram showing a detailed configuration of a control circuit 56.
- FIG. 8 is a diagram showing V-SYNC9 and H-SYNC10 output by a synchronization signal generation unit 73.
- FIG. 9 is a flowchart showing processing performed by an interrupt handler in processor 13 in the second embodiment.
- FIG. 10 is a timing chart showing the operation of the video encoding system 200.
- FIG. 11 is a diagram showing the start timing of the encoding process in the video encoder 53.
- FIG. 12 is a diagram showing a configuration of a moving picture coding system 300 according to Embodiment 3 of the present invention. is there.
- FIG. 1 is a functional block diagram showing the configuration of the moving picture coding system 100 according to the first embodiment.
- the moving picture coding system 100 includes a plurality of cameras (cameras la, lb, lc, and Id), a switching device 2, and a video encoder 3.
- the cameras la, lb, lc, and ld (hereinafter, cameras la, lb, lc, and Id may be collectively referred to as “camera 1”), the switching device 2, and the video encoder 3 will be described in order.
- Camera 1 captures image signals 19a, 19b, 19c, 19d (hereinafter image signals 19a, 19b, 1
- image signal 19 9c and 19d are collectively referred to as “image signal 19”), and the generated image signal 19 is output.
- image signal 19 generated by the camera 1 is output to the switching device 2.
- Each of the cameras la, lb, lc, and Id outputs image signals 19a, 19b, 19c, and 19d in synchronization with each other.
- one of the cameras 1 (for example, camera la) outputs the synchronization signal 4 (vertical synchronization signal and horizontal synchronization signal) to the other camera and the switching device 2, and the other camera It receives synchronization signal 4 output from the camera and operates in synchronization with this synchronization signal 4.
- the image sizes of the moving images taken by the cameras la, lb, lc, and Id are assumed to be the same in the cameras la, 1b, lc, and Id.
- the switching device 2 receives the image signal 19 from the camera 1 and outputs the received image signal 19 to the input interface of the video encoder 3 (image signal and synchronization signal input terminal).
- image signals from a plurality of cameras are input to the input interface 1 of the video encoder 3.
- four image signals generated by the four cameras la, lb, lc, and Id are input to one input interface of the video encoder 3. Therefore, the switching device 2 sequentially switches a plurality of image signals received from the camera 1 and outputs them to the video encoder 3. At this time, the switching device 2 switches the output image signal every time it outputs an image signal of 16 lines (hereinafter referred to as “macro-block line”).
- the macroblock line is the number of lines that are the minimum unit of encoding by the video encoder 3.
- the switching device 2 includes buffers 5a, 5b, 5c, 5d (hereinafter referred to as buffers 5a, 5b,
- buffer 5 5c and 5d are collectively referred to as “buffer 5”), a control circuit 6 and a selection circuit 7.
- the notfer 5 is a FIFO (First In First Out) type buffer memory that temporarily stores the image signal 19 output from the camera 1.
- notches 5a, 5b, 5c, and 5d are provided corresponding to the cameras la, lb, lc, and Id, respectively.
- the image signals 19a, 19b, 19c, and 19d output from the cameras l a, lb, lc, and Id force are recorded in the corresponding buffers 5a, 5b, 5c, and 5d.
- the buffers 5a, 5b, 5c, and 5d each include two buffer memories that can store image signals of macroblock lines. Of the two buffer memories, at one timing, one is used for storing the image signal 19 from the camera 1 (that is, writing the image signal 19), and the other is output to the video encoder 3 (that is, the image). Used to read signal 19). Each time the image signal 19 of the macroblock line is processed, the buffer memory used for writing and the buffer memory used for reading are switched. That is, the image signal 19 is read from the buffer memory that has been written, and the image signal 19 is written to the buffer memory that has been read.
- the control circuit 6 cyclically switches the buffer from which the image signal is to be read out of the buffer 5 and outputs the image signal to the video encoder 3, and the switching control signal indicating the timing at which the image signal to be output is switched. And processing for outputting a switching control signal to the synchronization signal input terminal of the video encoder.
- the video encoder 3 distinguishes each image signal and captures the image signal on the assumption that the input image signal is switched.
- control circuit 6 receives the synchronization signal 4 for synchronizing the cameras la, lb, lc, and Id from one camera, and based on this synchronization signal, receives the image signal in the buffer 5. read out Switches the target buffer in order.
- FIG. 2 is a diagram showing a detailed configuration of the control circuit 6.
- the control circuit 6 includes a camera data capture control unit 31, a buffer selection control unit 32, and a synchronization signal generation unit 33.
- the camera data capture control unit 31 controls switching between writing and reading in each buffer memory provided on the two surfaces. This switching between writing and reading is called bank switching. That is, from the state where one of the two-surface buffer memories is used for writing and the other is used for reading, the buffer memory for writing is switched to reading by switching the bank, and the buffer memory for reading is used for writing. Switch.
- the camera data capture control unit 31 receives the synchronization signal 4 from one camera.
- the camera pixel clock is CAM_PCLK4p
- the vertical sync signal is CAM_V_SYNC4v
- the horizontal sync signal is CAM_H_SYNC4h!
- the timing at which the field switches in the image signal output from each camera can be detected by CAM_V_SYNC4v.
- Line switching can be detected by CAM.H-S YNC4h. Therefore, the camera data capture control unit 31 can detect field switching by CAM_V_SYNC4v, and can detect how many lines of image signals have been received by CAM_H_SYNC 4h.
- CAM_H-SYNC4h detects that switching device 2 has received a macroblock line image signal
- the macroblock line image signal is stored in one of the two buffer memory surfaces of buffer 5. Therefore, bank switching is required.
- the camera data capture control unit 31 outputs a buffer control signal to the buffer 5 to switch the bank of the buffer 5. At this time, the buffer control signal is also output to the buffer selection control unit 32.
- the noffer selection control unit 32 controls the selection circuit 7 by outputting a read control signal for designating a buffer to be read to the selection circuit 7, and sequentially reads out the image signal from each buffer and outputs the video encoder 3 Output to the 1 input interface.
- the noffer selection control unit 32 receives the buffer control signal from the camera data capture control unit 31. Accept.
- the buffer data is read out by switching the bank by the camera data capturing control unit 31. It is the power to open the reading from the buffer memory.
- reading from the buffer 5a is performed, and then reading is performed from the buffers 5b, 5c, and 5d.
- reading from the buffer memory used for reading by bank switching is performed in order from the buffer 5a to the buffer 5b, the buffer 5c, and the buffer 5d. Let's go. That is, the order of reading image signals from the buffer 5 is determined in advance, and reading is performed cyclically.
- the macroblock line image signals are read out and output in order from the buffers 5a, 5b, 5c, and 5d, but this reading is completed within the period in which the switching device 2 receives the macroblock line image signals. .
- the buffer selection control unit 32 monitors the amount of data stored in the buffer memory, for example, starts reading the buffer 5b after the reading of the buffer 5a is completed, and reads the macroblock line from the buffer memory. A read control signal designating the buffer to be read is output to the selection circuit 7 so that the next buffer is read each time image signal reading is completed.
- the output of the readout control signal means that the image signal output from the switching device 2 to the video encoder 3 is switched. Therefore, a switching control signal to be output to the video encoder 3 may be generated based on the timing at which the readout control signal is output.
- the buffer selection control unit 32 outputs a predetermined signal to the synchronization signal generation unit 33 at the timing of outputting the read control signal.
- the synchronization signal generation unit 33 generates a switching control signal based on the switching timing of the image signal output from the switching device 2 to the video encoder 3 and outputs the switching control signal to the 1 input interface of the video encoder 3.
- the synchronization signal generation unit 33 includes a counter 34, and the counter 34 receives an input of a system clock (system CLK). Synchronization signal generator 33
- the buffer selection control unit 32 adjusts the number of clocks required for switching the buffer 5 to be read out to adjust the high (HI) level signal. And the output of the low (LO) level signal.
- the synchronization signal generation unit 33 is connected to the synchronization signal input terminal of the video encoder 3, that is, the vertical synchronization signal input terminal and the horizontal synchronization signal. Both output high level signals to the input terminals. When the image signal is not output, a low level signal is output.
- the signal output to the vertical synchronization signal input terminal of the video encoder 3 is V-SYNC9
- the signal output to the horizontal synchronization signal input terminal is H-SYNC10. .
- the sync signal generation unit 33 receives a predetermined signal output from the buffer selection control unit 32, and receives V-SYNC9 and H-SYNC10. Set both levels to low level.
- the counter 34 counts the predetermined number of clocks required to switch the buffer to be read, the level of the output V-SYNC 9 and H-SYNC 10 is made high.
- the synchronization signal generation unit 33 outputs a high-level signal while the image signal is read from the buffer and output to the video encoder, and while the buffer 5 to be read is switched. Outputs a low level signal.
- the selection circuit 7 receives the read control signal output from the buffer selection control unit 32 of the control circuit 6, and connects to the buffer designated as the read control signal among the buffers 5a, 5b, 5c, and 5d.
- the selection circuit 7 reads an image signal from the buffer memory that is used for reading by bank switching of the connected buffer.
- the read image signal is output to the image signal input terminal of the video encoder 3 input interface.
- the signal output from the switching device 2 to the image signal input terminal of the video encoder 3 is DATA11.
- Video encoder 3 The video encoder 3 receives a plurality of image signals through one input interface and encodes each received image signal. As described above, V-SYNC 9 and H-SYNC 10 are output from the switching device 2 to the input terminal of the synchronization signal of the 1 input interface of the video encoder 3. DATA11 is output to the image signal input terminal. With this V-SYNC9, the video encoder 3 distinguishes which of the cameras 1 has generated the image signal input as DATA11. Each distinct image signal is encoded.
- the video encoder 3 includes a camera input unit 8, a harmful ij insertion controller 12, a processor 13, a data transfer unit 14, an image encoding unit 15, and a memory 16.
- the memory 16 includes an input image area 17 and an encoded data area 18.
- the camera input unit 8 includes a synchronization signal input terminal and an image signal input terminal, and detects switching of the image signal camera by the V-SYNC 9 and H-SYNC 10 output from the switching device 2.
- the camera input unit 8 operates in synchronization with PCLK21 which is the pixel clock of the video encoder 3, and changes from low to high of V-SYNC9 input to the vertical synchronization signal input terminal.
- PCLK21 is the pixel clock of the video encoder 3
- V-SYNC9 changes from low to high of V-SYNC9 input to the vertical synchronization signal input terminal.
- the interrupt signal 22 is output to the interrupt controller 12.
- DATA11 input to the image signal input terminal is temporarily recorded as fe.
- the interrupt controller 12 receives the interrupt signal 22 output from the camera input receiving means, causes the processor 13 to generate an interrupt, and activates the interrupt handler.
- the processor 13 controls the processing of the video encoder 3 by operating based on a predetermined program. For example, the processor 13 activates an interrupt handler by the harmful ij interrupt controller 12 and performs a process of determining a storage area in the memory 16 of the image signal received by the camera input unit 8.
- the image encoding unit 15 encodes the image signal stored in the memory 16.
- the memory 16 includes an input image area 17 and an encoded data area 18.
- the memory 16 stores the image signal captured from the switching device 2 in the input image area 17 under the control of the processor 13.
- the encoded data obtained by encoding the image signal is stored in the encoded data area 18.
- a storage area is predetermined and secured for each image signal.
- the image signal and the storage area in the memory are associated with each other! /.
- the operation of the switching device 2 is as described in the configuration of the control circuit 6 described above.
- the interrupt controller 12 when the camera input unit 8 outputs the interrupt signal 22, the interrupt controller 12 generates an interrupt to the processor 13 and activates the interrupt handler.
- the interrupt handler calculates the storage area in the memory 16 of the image signal related to the generation of the interrupt signal 22.
- FIG. 3 is a flowchart showing processing performed by the interrupt handler in the processor 13.
- cam_number corresponds to the number of cameras, and in this embodiment, there are four cameras. Therefore, the cameras la, lb, lc, and Id are specified by four values from 0 to 3. ing. That is, if the cam-number force is “0”, it indicates the ⁇ camera la.
- cam-number force is “(camera lb, cam-number force is“ 2 ”
- the camera lc, cam-number force is S "3" indicates the camera Id
- the image signal is divided for each field by the vertical sync signal, so that one field is 240 lines, and in this embodiment, Lines is "1" to "15”.
- the harmful ij entry handler calculates and updates the value of cam_number (step S103). Specifically, the value of cam_number read from the register in step S101 is incremented. If the cam_number read from the register is “3”, the cam_number is set to “0.” This allows the camera of the image signal to determine the value storage area of the cam_number. It becomes corresponding
- the interrupt handler calculates and updates the value of Lines (step S105). Since the image signal is cyclically switched in the order of the camera la to Id as described above, the value of Lines is updated when the value of cam_number updated in step S103 is 0 ". Specifically, the harmful ij entry handler increments the value of Lines read from the register in step S101 if the value of cam_number updated in step S105 is 0 ". When the read Lines value is “15”, that is, when the upper limit value of Lines is possible, the Lines value is updated to “1”. As a result, the value S of Lines and the position of the image signal for one macroblock whose storage area is to be determined are indicated in the image.
- the harmful ij insertion handler calculates the address range in the input image area 17 of the memory 16 (step S107). ). For example, a storage area address range is assigned to each camera, and a storage area for a predetermined number of frames is assigned to each camera. Furthermore, in the storage area for each camera, the address range of the storage area is defined in units of frames. Based on the value of Lines, an address range for storing the image signal for the macroblock line is calculated from the address range of the storage area determined in units of frames. In short, by referring to the memory address, it is preferable to be able to specify which camera the image signal corresponds to and which line of the image signal.
- the harmful ij entry handler uses the address range calculated in step S107 as the data transfer unit.
- the interrupt handler sets information necessary for encoding the image signal in the image encoding unit 15 (step S111).
- the information necessary for encoding the image signal is, for example, a storage area of the encoded data area 18 after the encoding process, a frame rate, a reference image address, and the like.
- the harmful ij entry handler saves the values of cam_number and Lines in a register (step SI 13), and ends the interrupt.
- the data transfer unit 14 transfers the image signal captured by the camera input unit 8 to the address range calculated in step S107 by the harmful ij insertion handler in the input image region 17.
- the image encoding unit 15 starts encoding processing when an image signal for one macroblock line is transferred to the input image area 17 by the data transfer unit 14. Based on the information set in step SI 11 by the interrupt handler, the encoding process is performed, and the encoded data after encoding is stored in the encoded data area 18. Then, in synchronization with the camera input switching timing, the image signal to be encoded is switched for each macroblock line. Similar to the case where the image signal of each camera is distinguished by the address range of the input image area 17, the encoded data after encoding is stored in the encoded data area 18 for each camera. I will do it. As a result, the encoded data after encoding can be easily distinguished for each camera.
- FIG. 4 shows a timing chart of the moving picture coding system 100 that operates in this manner.
- the image signals 19a, 19b, 19c, and 19d are CAM-DATA0, CAM-DATA1, CAM_DATA2, and CAM_DATA3, respectively.
- Cameras la, lb, lc, and Id are camera # 0, camera # 1, camera # 2, camera # 3, and the numbers below camera # 0 indicate the position of the image signal for the macroblock line in the image. Show. That is, in the figure, the number “1” under the camera # 0 etc. indicates an image signal of;! To 16 lines, and the number “2” indicates an image signal of 17 to 32 lines.
- This image signal is input to the camera input unit 8 as DATA11.
- FIG. 5 shows the start timing of the encoding process in the video encoder 3.
- the image signal of each camera is input as DATA 11 in the camera input unit 8 for each macroblock line as shown in “video encoder input” in FIG. Then, the input image signal is started to be encoded as shown in “Encoding process” in FIG.
- the video encoder 3 inputs four macro block line image signals for each camera while each camera generates a macro block line image signal. As a result, the image signal of each camera can be encoded in real time.
- the video encoder 3 can switch and capture images from a plurality of cameras without adding a special signal line.
- the buffer size can be reduced, and the coding delay can be reduced.
- each camera operates based on the same synchronization signal.
- the operation is performed based on the same synchronization signal! /, ! /
- the image size of each camera may be different.
- the macroblock line image signals are output from the switching device 52 in the order in which each camera outputs the macroblock line image signals instead of cyclically switching the cameras. .
- information relating to the image signal such as which camera generated the image signal, is output as an additional signal from the switching device 52 to the image signal input terminal of the video encoder 53 as an additional signal.
- the superimposition timing signal is output from the switching device 52 to the synchronization signal input terminal of the video encoder 53 so that the additional signal and the image signal can be distinguished.
- FIG. 6 is a functional block diagram showing the configuration of the moving picture coding system 200 according to the second embodiment.
- the cameras 51a, 51b, 51c, and 51d are not controlled to operate synchronously with each other.
- the image sizes of the moving images captured by the cameras are not the same but include different ones. For example, all cameras may record moving images of different image sizes! /, And V, some cameras may have large image sizes, moving images (some! / , Moving image) is also good.
- each camera outputs synchronization signals 4a, 4b, 4c, and 4d, which are output to the control circuit 56 of the switching device 52, and the synchronization signal power of each camera.
- camera 51a is camera # 0
- camera 51b is camera # 1
- camera 51c is camera # 2
- camera 51d is camera # 3.
- the switching device 52 includes a buffer 55, a control circuit 56, and a selection circuit 7.
- the koffa 55 (55a, 55b, 55c, 55d) is arranged corresponding to each camera.
- Each buffer is a two-sided buffer memory as in the first embodiment, but the buffer memory can store a macroblock line image signal having a line size corresponding to each camera. Let's say.
- FIG. 7 is a diagram showing a detailed configuration of the control circuit 56.
- the control circuit 56 includes a camera # 0 data capture control unit 71a, a camera # 1 data capture control unit 71b, a camera # 2 data capture control unit 71c, and a camera # 3 data capture control unit. 71d, a buffer selection control unit 72, a synchronization signal generation unit 73, a counter 74, and an additional information generation unit 75.
- the camera # 0 data capture control unit 71a, the camera # 1 data capture control unit 71b, the camera # 2 data capture control unit 71c, and the camera # 3 data capture control unit 71d are collectively shown.
- a call and power s referred to as a "camera # 0 data capture control unit 71a, etc.”.
- the camera # 0 data acquisition control unit 71a corresponds to the camera # 0.
- the camera # 1 data acquisition control unit 71b corresponds to the camera # 1.
- the camera # 2 data capture control unit 71c corresponds to the camera # 2
- the camera # 3 data capture control unit 71d corresponds to the camera # 3.
- the camera # 0 data capture control unit 71a and the like store the buffer control signal in the corresponding buffer each time the image signal of the macroblock line is stored. Output and perform bank switching. At this time, the camera # 0 data capture control unit 71a and the like also output a buffer control signal to the buffer selection control unit 72. Therefore, the buffer selection control unit 72 receives buffer control signals from the camera # 0 data capture control unit 71a, the camera # 1 data capture control unit 71b, the camera # 2 data capture control unit 71c, and the camera # 3 data capture control unit 71d. .
- the synchronization signal 4 of each camera is used.
- the pixel clock 4a — p is CAM—PCLK0
- the vertical synchronization signal 4a—v is CAM—V_SYNC0
- the horizontal synchronization signal 4a—h Is CAM_H-SYNCO.
- the buffer selection control unit 72 receives buffer control signals from the camera # 0 data acquisition control unit 71a and the like. A read control signal is output to the selection circuit 7 so as to select a buffer to be output from the buffer 55 in the order received.
- the buffer selection control unit 72 monitors the amount of data stored in the buffer memory, and whenever reading of the image signal of the macroblock line from the buffer memory is completed, the buffer selection control unit 72 A read control signal is output to the selection circuit 7 by designating a buffer to be read so that reading is performed. In addition, a predetermined signal is output to the synchronization signal generation unit 73 at the timing when the read control signal is output.
- the buffer selection control unit 72 receives the buffer control signal from each camera, and the horizontal after the camera # 0 data capture control unit 71a receives the vertical synchronization signal 4a-V from the camera. Based on the number of times the synchronization signal 4a—h is received, it is managed for each camera how many lines of the image signal in one field are input to the buffer 55. Based on the managed information, the additional information generation unit 75 generates an additional signal. Specifically, the buffer selection control unit 72 is responsive to the image signal read from the buffer 55 by the read control signal at the timing when the read control signal is output to the selection circuit 7. The additional information generation unit 75 includes information indicating which camera the image signal is generated, information indicating which line the image signal is in one field, and information indicating the line size of the image signal. Output to.
- the additional information generation unit 75 generates an additional signal based on each piece of information received from the buffer selection control unit 72.
- the additional signal includes camera identification number information 81 indicating which camera generated the image signal, macroblock line information 82 indicating which line the image signal is for, and the line size of the image signal.
- Line size information 83 is included.
- the camera identification number information 81 identifies the camera by four values from 0 to 3 corresponding to the number of cameras.
- the macro block line information 82 divides the image into 16 lines and specifies which portion of the image of the image signal indicates one field. Since it is divided into 16 lines, the macro block line information 82 specifies which part of the image is indicated by “!” To “16” being “1”, “17 to 32” being “2”, etc.
- Size information 83 Stores, for example, a value equivalent to the line size. For example, if the line size is 720 pixels, the line size is indicated as “720”.
- the additional information generation unit 75 outputs the generated additional signal to the selection circuit 7.
- the synchronization signal generation unit 73 generates a superimposition timing signal based on the timing at which the image signal output from the switching device 2 to the video encoder 3 is switched, and the synchronization signal input terminal of the 1 input interface of the video encoder 3 by the H-SYNC 10 Output to.
- the synchronization signal generator 73 includes a counter 74, and the counter 74 accepts an input of a system clock (system CLK).
- system CLK system clock
- the synchronization signal generation unit 73 switches the output signal between high and low at the timing when the selection circuit 7 outputs the additional signal.
- the additional signal includes camera identification number information, macroblock line information, and line size information, the signal is switched between low and high so that these pieces of information can be distinguished.
- FIG. 8 is a diagram showing V-SYNC9 and H-SYNC10 output by the synchronization signal generation unit 73. As shown in FIG.
- DATA11 is output from the switching device 2 to the video encoder 3 including camera identification number information 81, macroblock line information 82, and line size information 83 as additional signals before the image signal.
- the synchronization signal generation unit 73 switches between a low signal and a high signal output as H-SYNC10.
- V-SYNC9 falls when the output of a certain image signal to the video encoder 3 is finished, and then V-SYNC9 rises at the timing when the image signal is switched.
- H-SYNC10 is set to low or high as shown in Fig.8.
- the output timing of the additional signal can be notified to the video encoder 3 by V-SYNC9 and H-SYNC10.
- the selection circuit 7 receives the read control signal output from the buffer selection control unit 32 of the control circuit 56, and connects to the buffer specified by the read control signal. Further, it is connected to the additional information generation unit 75 and receives additional information.
- the selection circuit 7 outputs the additional signal received from the additional information generation unit 75 and the image signal read from the connected buffer memory to the video encoder 3 as DATA11. At this time, the selection circuit 7 outputs the additional signal first and then outputs the image signal.
- the image switching unit 58 is included in the camera input unit 8. Based on V-SYNC9 and H-SYNC10, the image switching unit 58 detects an additional signal superimposed on DATA11, and includes camera identification number information 81, macroblock line information 82, and line size information included in the additional signal. 83 is extracted and stored in the register.
- the image switching unit 58 detects a change between H-SYNC9 low and high while V-SYNC9 is falling, and detects an additional signal from DATA11. To do. Further, the image switching unit 58 detects the rising edge of V-SYNC 9 and outputs the interrupt signal 22 to the interrupt controller 12.
- the operation of the switching device 52 is as described in the configuration of the control circuit 56 described above. Therefore, the operation of the video encoder 53 will be described.
- the interrupt handler has the power to generate the interrupt signal 22 and the address range in the input image area 17 of the memory 16 where the image signal is stored is stored in the camera identification number information 81 and the macro block stored in the image switching unit 58. Calculated based on line information 82 and the like.
- FIG. 9 is a flowchart showing processing performed by the interrupt handler in the processor 13 according to the second embodiment.
- the interrupt handler reads the camera identification number information 81, macroblock line information 82, and line size information 83 stored in the register by the image switching unit 58 from the register (step S201).
- the interrupt handler determines in which address range the input image area 17 of the memory 16 stores the image signal. Calculate (step S203). For example, as in the first embodiment, it is assumed that the memory address and the image signal correspond to which camera and which line. Since the size of the captured image signal data varies depending on the line size, the line size information 83 is also used to calculate the address range.
- the harmful ij entry handler sets the address range calculated in step S203 in the data transfer unit 14 (step S205).
- the interrupt handler sets information necessary for encoding the image signal in the image encoding unit 15 (step S207), and ends the interrupt.
- the image signal force data transfer unit 14 captured by the camera input unit 8 transfers the image data to the address range calculated in step S203 by the interrupt handler. Further, the image encoding unit 15 starts the encoding process when the image signal for one macroblock line is transferred to the input image area 17 by the data transfer unit 14.
- FIG. 10 shows a timing chart of the moving picture coding system operating in this way.
- the video signal of the macro block line is taken into the video encoder 53 in the order of camera # 0, camera # 1, camera # 3, camera # 2,.
- DAT Al 1 includes both an additional signal and an image signal! /, That is! /.
- V-SYNC9 rises at the boundary between the additional signal and the image signal, and interrupt signal 22 is output.
- FIG. 11 shows the start timing of the encoding process in the video encoder 53.
- the image signal of each camera is captured for each macroblock line.
- the video encoder 3 starts the encoding process as shown in the “encoding process” when the image signal for the macroblock line is taken in as shown in the “video encoder input”.
- the position of the additional signal and the position of each information in the additional signal can be obtained by using the combination of the two signals using the vertical synchronization signal input terminal and the horizontal synchronization signal input terminal of the video encoder 53.
- the boundary can be indicated, and images from multiple cameras can be switched and captured in arbitrary units without adding special signal lines to the video encoder 53.
- the above-described image signal can be captured even if each camera is not operating synchronously.
- FIG. 12 shows a configuration of moving picture coding system 300 according to Embodiment 3 of the present invention.
- the moving image encoding system 300 encodes moving images from a plurality of cameras, transmits them via a network, decodes the encoded data, and displays them on a monitor.
- a surveillance camera system For example, a surveillance camera system. Cameras 91a, 91b, 91c, 91d, encoder device 92 that compresses and encodes camera images, transmission device 93 that transmits the compressed and encoded data over network 94, and data that is compressed and encoded from network 94 Receiving device 95, decoding device 96 for decoding the received encoded data, and monitor 97 for displaying the decoded moving image.
- the encoder device 92 of the moving image coding system 300 has the same configuration as the combination of the switching device 2 and the video encoder 3 shown in FIG. 1 or the combination of the switching device 52 and the video encoder 53 shown in FIG. .
- the transmission device 93 converts the encoded data after encoding into a unit smaller than the frame, for example, the macroblock line.
- the data is transmitted to the receiving device 95 in units.
- the encoded data is transmitted by adding information such as the power that the encoded data is based on which camera data and which line is indicated in the image as a header.
- Receiving device 95 receives encoded data transmitted in units smaller than a frame and outputs the encoded data to decoder device 96.
- the decoder device 96 decodes the encoded data received by the receiving device 95. At this time, referring to the information added as a header, the storage area of the decoded data in the memory is determined. For example, the storage area on the memory is determined so that the memory address corresponds to which camera the decoded data belongs to, and which line in the image. The decoder device 96 outputs the decoded data to the monitor 97.
- the force S described in the embodiment of the present invention is not limited to the above-described configuration.
- the camera 1 is described as one camera outputs the synchronization signal 4 to the other camera, so that the cameras la, lb, lc, and Id operate in synchronization with each other.
- the method of synchronizing the cameras la, lb, lc, and Id is not limited to this.
- the cameras la, lb, lc, and Id may be synchronized when the camera 1 receives a synchronization signal from an external device (for example, the switching device 2).
- the force S with the size of the buffer memory having the two-surface configuration of the buffer 5 set to 16 lines is not limited to this, and may be any size.
- the two-plane configuration is adopted, it is not necessary to limit to such a configuration as long as the input and the output can be controlled simultaneously.
- the switching device 2 and the switching device 52 are macros that are units of encoding.
- the image signal is switched every time the image signal of the block line is output.
- the present invention is not limited to this, and the image signal for an arbitrary line may be output.
- the image signal may be switched every time an image signal corresponding to a multiple of the macro block line is output.
- the image signal may be switched with a smaller number of lines than the macroblock lines.
- the processor 13 is interrupted when the image signal is switched, so if the switching frequency increases, the overhead of the processor 13 will increase. Note that the efficiency of
- the synchronization signal generation unit 33 sets both V-SYNC9 and H-SYNC10 to high level or low level, but V-SYNC9 and H-SYNC10 are both set to high level. It is also possible to indicate the switching of the image signal using only one of V-SYNC9 and H-SYNC10. For example, when only the H-SYNC10 is used to indicate the switching of the image signal, the video encoder 3 uses which camera the image signal input as DATA11 is generated by the H-SYN C10. It is good to distinguish.
- Each of the above devices is specifically a computer system that includes a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
- a computer program is stored in the RAM or the hard disk unit.
- Microprocessor power Each device achieves its functions by operating according to the computer program.
- the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
- each device is not limited to a computer system including all of a microprocessor, ROM, RAM, hard disk unit, display unit, keyboard, mouse, and the like. Even a system! /
- a system LSI is an ultra-multifunctional LSI manufactured by integrating multiple components on a single chip. Specifically, it is a computer system that includes a microprocessor, ROM, RAM, and so on. is there. A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
- a part or all of the components constituting each of the above devices may be configured as an IC card that can be attached to and detached from each device or a single module.
- the IC card or the module is a computer system including a microprocessor, ROM, RAM, and the like.
- the IC card or the module may include the super multifunctional LSI described above. Microprocessor power By operating according to a computer program, the IC card or the module achieves its function. This IC card or module may be tamper resistant! /.
- the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program! /.
- the present invention also relates to a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD ( It may be recorded on a Blu-ray Disc) or semiconductor memory. Further, the present invention may be the computer program or the digital signal recorded on these recording media.
- a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD ( It may be recorded on a Blu-ray Disc) or semiconductor memory.
- the present invention may be the computer program or the digital signal recorded on these recording media.
- the present invention may transmit the computer program or the digital signal via an electric communication line, a wireless or wired communication line, a network typified by the Internet, a data broadcast, or the like.
- the present invention may also be a computer system including a microprocessor and a memory.
- the memory may store the computer program, and the microprocessor may operate according to the computer program.
- the program or the digital signal is recorded on the recording medium and transferred. Or may be implemented by another independent computer system by transferring the program or the digital signal via the network or the like.
- the present invention is useful for a moving image encoding system that inputs and processes images from a plurality of cameras, and is intended for application to a monitoring system or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
A plurality of image signals generated by a plurality of cameras are switched by a switching apparatus and then outputted to a video encoder. The video encoder has an input interface, which comprises a synchronization signal input part and an image signal input part. The switching apparatus stores the image signals from the cameras into a plurality of buffers and then switches buffers, which are to be read, to output the image signals to the image signal input part of the video encoder. In addition, the switching apparatus outputs a switching control signal, which is indicative of timings at which the image signals are switched, to the synchronization signal input part of the video encoder. The video encoder then distinguishes, based on the switching control signal, the image signals inputted to the image signal input part to encode the image signals.
Description
明 細 書 Specification
動画像符号化システム、切替装置、ビデオエンコーダ 技術分野 Video coding system, switching device, video encoder
[0001] 本発明は、複数のカメラからの画像信号を、ビデオエンコーダの 1の入力インターフ エースに入力してそれぞれ符号化する動画像符号化システムに関する。 [0001] The present invention relates to a moving image encoding system that inputs image signals from a plurality of cameras to one input interface of a video encoder and encodes them.
背景技術 Background art
[0002] 複数のカメラの画像信号をカメラごとに圧縮して伝送する技術が、特に、監視カメラ システムなどに用いられている。下記の特許文献 1には、複数のカメラと、各カメラに 一対一で対応するビデオエンコーダとからなる画像処理システムが開示されている。 近年では、ビデオエンコーダの性能の向上に伴って、複数のカメラの画像を 1つの ビデオエンコーダにより符号化することができるようになつている。ただし、一般的に、 ビデオエンコーダ側にカメラの数と同数の入力インターフェース(同期信号の入力端 子と画像信号の入力端子との組)を設けると、ピン数の増加が避けられず、回路規模 が大きくならざるを得ない。そのため、ビデオエンコーダに備わる入力インターフエ一 スの数は、カメラの数よりも少ない場合が多い。 A technique for compressing and transmitting image signals of a plurality of cameras for each camera is used particularly for surveillance camera systems and the like. Patent Document 1 listed below discloses an image processing system including a plurality of cameras and a video encoder corresponding to each camera on a one-to-one basis. In recent years, as the performance of video encoders has improved, it has become possible to encode images from a plurality of cameras with a single video encoder. However, in general, if the same number of input interfaces as the number of cameras is provided on the video encoder side (a set of synchronization signal input terminals and image signal input terminals), an increase in the number of pins is unavoidable, and the circuit scale Must be large. For this reason, the number of input interfaces provided in a video encoder is often smaller than the number of cameras.
[0003] そのため、ビデオエンコーダの外部に切替装置を設けて、ビデオエンコーダの 1の 入力インターフェースに入力される画像信号を切替装置によって所定周期で切り替 えることにより、複数カメラの画像信号の符号化を行っている。 [0003] Therefore, a switching device is provided outside the video encoder, and an image signal input to one input interface of the video encoder is switched at a predetermined cycle by the switching device, thereby encoding image signals of a plurality of cameras. Is going.
例えば、下記の特許文献 2では、垂直同期信号に基づいて切替回路が動作するこ とにより、垂直ブランキング期間にカメラを順次切り替えている。また、特許文献 3では 、どのカメラの画像信号であるかを示すために、カメラ指定信号重畳回路を設けて、 カメラを識別するための画像パターンを画像信号の垂直ブランキング期間に重畳し ている。 For example, in Patent Document 2 below, the camera is sequentially switched during the vertical blanking period by the switching circuit operating based on the vertical synchronization signal. In Patent Document 3, a camera designation signal superimposing circuit is provided to indicate which camera the image signal is, and an image pattern for identifying the camera is superimposed on the vertical blanking period of the image signal. .
特許文献 1 :日本国 特開 2003— 101992号公報 Patent Document 1: Japanese Patent Publication No. 2003-101992
特許文献 2 :日本国 特開 2003 230076号公報 Patent Document 2: Japan Patent Publication No. 2003 230076
特許文献 3 :日本国 特開平 9 266571号公報 Patent Document 3: Japanese Patent Laid-Open No. 9 266571
発明の開示
発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] ビデオエンコーダの 1の入力インターフェースに対して複数の画像信号が入力され る場合、画像信号それぞれを符号化するには、 1の入力インターフェースに画像信号 を入力した後において画像信号それぞれを区別できることが必要である。上記特許 文献 2では、カメラの切り替え順序をあらかじめ定めておき、各カメラの同期タイミング を管理したり、入力される画像信号から垂直同期信号を分離したりすることにより各画 像信号を区別する。特許文献 3では、上述のようにカメラを識別するための画像バタ ーンを画像信号の垂直ブランキング期間に重畳し、画像信号の受信側で、ブランキ ング期間に重畳された画像パターンを検出することで上記区別を行う。 [0004] When a plurality of image signals are input to one input interface of the video encoder, in order to encode each image signal, each image signal is distinguished after being input to one input interface. It must be possible. In Patent Document 2, the switching order of cameras is determined in advance, and each image signal is distinguished by managing the synchronization timing of each camera or separating the vertical synchronization signal from the input image signal. In Patent Document 3, the image pattern for identifying the camera is superimposed on the vertical blanking period of the image signal as described above, and the image pattern superimposed on the blanking period is detected on the image signal receiving side. The above distinction is made.
[0005] このように、上記特許文献 2や 3に記載の技術は、いずれも、垂直ブランキング期間 や垂直同期信号に基づいて画像信号を区別している。そのため、画像信号各々は、 フレーム単位またはフィールド単位でビデオエンコーダに取り込まれてバッファ等のメ モリに記憶される。そうすると、符号化の最小単位となるライン数が 1フレームや 1フィ 一ルドを構成するライン数よりも小さい場合であっても、 1フレームや 1フィールド分の 画像信号がいったんメモリに記憶されないと、ビデオエンコーダは画像信号の符号化 を開始することができない。そのため、フレーム単位またはフィールド単位で遅延が 発生する。 As described above, the techniques described in Patent Documents 2 and 3 all distinguish image signals based on the vertical blanking period and the vertical synchronization signal. Therefore, each image signal is taken into the video encoder in units of frames or fields and stored in a memory such as a buffer. Then, even if the number of lines that is the minimum unit of encoding is smaller than the number of lines that make up one frame or one field, the image signal for one frame or one field is not stored in memory once. The video encoder cannot start encoding the image signal. As a result, a delay occurs in frame units or field units.
[0006] そこで、本発明は、ビデオエンコーダの 1の入力インターフェースに対して複数の画 像信号が入力される場合に、各画像信号を区別して符号化しつつ、画像信号をフレ ームまたはフィールド単位よりも小さい単位で扱うことにより符号化の開始を早め、こ れによって遅延を従来と比較して低減することを可能とする動画像符号化システム、 方法、切替装置、ビデオエンコーダ、集積回路、プログラムを提供することを目的とす 課題を解決するための手段 [0006] Therefore, in the present invention, when a plurality of image signals are input to one input interface of the video encoder, each image signal is distinguished and encoded, and the image signal is converted into a frame or field unit. Video encoding system, method, switching device, video encoder, integrated circuit, program, which enables faster start of encoding by handling in smaller units, thereby reducing the delay compared to conventional units Means to solve the problem
[0007] 上記課題を解決するため、本発明は、複数の動画像を符号化する動画像符号化 システムであって、カメラの撮像により生成される画像信号を複数カメラ分受信する信 号受信手段と、前記信号受信手段により受信される複数の画像信号を記憶する一時 記憶手段と、複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最
小単位となるライン数またはその倍数のライン数からなる所定ライン数分の画像信号 を前記一時記憶手段から読み出して出力するとともに、前記複数の画像信号が切り 替わるタイミングを示す切替制御信号を生成して出力する出力制御手段と、符号化 手段とを備え、前記符号化手段は、同期信号入力部と 1の画像信号入力部とからな る 1の入力インターフェースを含み、前記出力制御手段により切り替えて出力される 前記所定ライン数分の画像信号それぞれと前記切替制御信号とを、前記 1の入カイ ンターフェースにより受信し、受信した前記所定ライン数分の画像信号のそれぞれを 前記切替制御信号に示される前記タイミングにより区別して符号化することを特徴と する動画像符号化システムである。 In order to solve the above problems, the present invention provides a moving image encoding system for encoding a plurality of moving images, and a signal receiving means for receiving image signals generated by imaging by a plurality of cameras. And a temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals are cyclically switched for each camera so as to perform image encoding. Image signals for a predetermined number of lines consisting of the number of lines as a small unit or a multiple of the number of lines are read out from the temporary storage means and output, and a switching control signal indicating the timing at which the plurality of image signals are switched is generated. Output control means and encoding means, and the encoding means includes one input interface comprising a synchronization signal input part and one image signal input part, and is switched by the output control means. Each of the output image signals for the predetermined number of lines and the switching control signal are received by the one input interface, and each of the received image signals for the predetermined number of lines is indicated in the switching control signal. The video encoding system is characterized in that encoding is performed in accordance with the timing.
発明の効果 The invention's effect
[0008] ここで、「所定ライン数」とは、 1フィールドを構成するためのライン数よりも小さい数 であるとする。 Here, it is assumed that the “predetermined number of lines” is a number smaller than the number of lines constituting one field.
上述の構成を備える動画像符号化システムにおいては、それぞれの画像信号が所 定ライン数分出力されるごとに巡回的に切り替わって符号化手段に出力される。画像 信号が切り替わるタイミングを示す切替制御信号が出力制御手段から符号化手段へ と出力される。ここで、巡回の順序は、通常、符号化手段では既知である。そのため、 符号化手段は、切替制御信号に基づいて、画像信号が切り替わったタイミングを検 知できる。つまり、上述の構成では、符号化手段は、画像信号を所定ライン数分受信 するごとに画像信号が切り替わつたことを検知し、これにより各画像信号を区別するこ と力 Sできる。 In the moving picture coding system having the above-described configuration, each picture signal is cyclically switched every time a predetermined number of lines are outputted and outputted to the coding means. A switching control signal indicating the timing at which the image signal is switched is output from the output control means to the encoding means. Here, the order of the circulation is usually known in the encoding means. Therefore, the encoding means can detect the timing at which the image signal is switched based on the switching control signal. In other words, in the above-described configuration, the encoding unit can detect that the image signal is switched every time the image signal is received for the predetermined number of lines, and thereby can distinguish each image signal.
[0009] したがって、上述の構成によると、符号化手段は、所定ライン数分の画像信号を受 信するごとに各画像信号を区別することができるので、各画像信号を、フィールドより も小さいライン数を単位として取り込むことができる。これにより、従来よりも符号化の 開始を早めることができ、従来と比べて遅延を低減することができる。 Therefore, according to the configuration described above, the encoding means can distinguish each image signal every time it receives image signals for a predetermined number of lines, so that each image signal is represented by a line smaller than the field. Numbers can be imported as units. As a result, the start of encoding can be made earlier than in the prior art, and the delay can be reduced compared to the prior art.
また、上記構成では、入力インターフェースは、同期信号入力部と 1の画像信号入 力部とからなり、このような入力インターフェースは、どのような符号化手段(例えば、 ビデオエンコーダ)にも備わるものである。したがって、上記構成は、特に符号化手段 において入力インターフェースに特別にピン等を追加するなどの変更を行わずとも、
ライン単位での画像信号の切り替えを実現することができる。 In the above configuration, the input interface includes a synchronization signal input unit and one image signal input unit, and such an input interface is provided in any encoding means (for example, a video encoder). is there. Therefore, the above-described configuration can be achieved without any special modification such as adding a pin or the like to the input interface in the encoding means. It is possible to realize switching of image signals in units of lines.
[0010] また、上記構成では、所定ライン数分ごとに画像信号を取り込むが、これは画像信 号の符号化の最小単位またはその倍数となっているので、画像信号の切り替わりに 伴うオーバヘッドを低減して符号化を効率良く行うことができる。 [0010] Further, in the above configuration, an image signal is captured every predetermined number of lines, but this is the minimum unit of image signal encoding or a multiple thereof, so that overhead associated with switching of image signals is reduced. Thus, encoding can be performed efficiently.
また、上述の動画像符号化システムは、機器としては、切替装置とビデオェンコ一 ダとに大きく分けられる。そこで、本発明は、複数の動画像を切り替えて、ビデオェン コーダの、同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフエ一 スへ出力する切替装置であって、カメラの撮像により生成される画像信号を複数カメ ラ分受信する信号受信手段と、前記信号受信手段により受信される複数の画像信号 を記憶する一時記憶手段と、複数の画像信号をカメラ単位で巡回的に切り替えて、 画像符号化の最小単位となるライン数またはその倍数のライン数からなる所定ライン 数分の画像信号を前記一時記憶手段から読み出して前記 1の入力インターフェース へ出力するとともに、前記複数の画像信号が切り替わるタイミングを示す切替制御信 号を生成して前記 1の入力インターフェースへ出力する出力制御手段とを備えること を特徴とする切替装置でもある。 In addition, the above-described moving image coding system is roughly divided into a switching device and a video encoder. Therefore, the present invention is a switching device that switches a plurality of moving images and outputs the same to one input interface comprising a synchronization signal input unit and one image signal input unit of a video encoder. A signal receiving means for receiving image signals generated by imaging for a plurality of cameras, a temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals cyclically for each camera. The image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines is read out from the temporary storage means and output to the one input interface, and the plurality of images Output control means for generating a switching control signal indicating the timing at which the signal is switched and outputting the switching control signal to the first input interface. It is also a switching device to.
[0011] このような切替装置において、以下のようにするとよい。 [0011] In such a switching device, the following may be performed.
すなわち、前記複数の画像信号は、垂直同期信号および水平同期信号からなる所 定の同期信号に従ったタイミングで同期して生成され、前記出力制御手段は、前記 所定の水平同期信号に基づいたタイミングで、画像信号を切り替えて出力することと してもよい。 That is, the plurality of image signals are generated synchronously at a timing according to a predetermined synchronization signal composed of a vertical synchronization signal and a horizontal synchronization signal, and the output control means has a timing based on the predetermined horizontal synchronization signal. Thus, the image signal may be switched and output.
上述の構成では、画像信号各々は同期して生成されている。したがって、 1の同期 信号に基づいたタイミングで画像信号の切り替え等が可能となり、処理が簡単になる In the above-described configuration, each image signal is generated synchronously. Therefore, it is possible to switch the image signal at the timing based on the synchronization signal of 1, and the processing is simplified.
〇 Yes
[0012] ここで、具体的には、前記出力制御手段は、前記所定ライン数分の画像信号が前 記信号受信手段により受信されたことを前記所定の水平同期信号に基づいて検知 するデータ取り込み制御部と、前記検知の都度、所定ライン数分に相当する画像信 号を受信するのに要する期間内に、前記一時記憶手段により記憶されている前記所 定ライン数分の画像信号を巡回的にそれぞれ読み出して出力するバッファ選択制御
とを含むこととするとよい。 [0012] Here, specifically, the output control means detects data based on the predetermined horizontal synchronizing signal that the image signal for the predetermined number of lines has been received by the signal receiving means. The control unit cyclically transmits the image signals for the predetermined number of lines stored in the temporary storage means within a period required for receiving the image signals corresponding to the predetermined number of lines for each detection. Buffer selection control to read and output to each It is good to include.
[0013] 上述の構成によると、所定ライン数分の信号を受信する都度、画像信号を巡回的 に読み出して各画像信号をそれぞれ所定ライン数分ずつ出力するので、ビデオェン コーダに、リアルタイム性に優れた符号化処理を行わせることができる。 [0013] According to the configuration described above, every time a signal for a predetermined number of lines is received, the image signal is read cyclically and each image signal is output for the predetermined number of lines, so that the video encoder is excellent in real time. Encoding processing can be performed.
このような構成において、前記一時記憶手段は、各画像信号に対応して設けられる FIFO型の複数のバッファメモリであり、前記バッファメモリ各々は、 2つの記憶部から なり、前記一時記憶手段は、前記信号受信手段により受信した画像信号それぞれを 、対応するバッファメモリにおいてそれぞれ記憶し、前記バッファメモリ各々は、前記 2 つの記憶部が選択的に切り替わって、いずれか一方において、前記受信される画像 信号が書き込まれて記憶され、前記データ取り込み制御部は、前記所定ライン数分 の画像信号が前記信号受信手段により受信されたことを検知するたびに、前記記憶 部の切り替えを行い、前記バッファ選択制御部は、前記 2つの記憶部のうち、前記所 定ライン数分の画像信号が既に書き込み完了している方から画像信号の前記読み 出しを行うこととするとよい。 In such a configuration, the temporary storage means is a plurality of FIFO type buffer memories provided corresponding to each image signal, and each of the buffer memories includes two storage units, and the temporary storage means Each of the image signals received by the signal receiving means is stored in a corresponding buffer memory, and each of the buffer memories is selectively switched between the two storage units, and the received image signal is one of them. Is written and stored, and the data capture control unit switches the storage unit every time it detects that the signal reception unit has received the image signals for the predetermined number of lines, and performs the buffer selection control. The image signal from the one of the two storage units that has already been written for the predetermined number of lines. You may want to and be carried out of the read-out.
[0014] これにより、一時記憶手段においてメモリアドレスの管理が不要となり、処理が簡単 になる。また、この場合、バッファメモリを構成する 2つの記憶部の各々は、ある期間 においては、いずれか一方に画像信号の書き込みを行い、もう一方から画像信号の 読み出しを行うこととなる。そのため、記憶部の各々は、所定ライン数の画像信号を記 憶することができれば記憶容量は十分である。したがって、 1フィールドや 1フレーム 分の画像信号を記憶できるだけの記憶容量とする必要がなぐ回路や切替装置を小 型ィ匕すること力 Sでさる。 [0014] This eliminates the need for memory address management in the temporary storage means and simplifies the processing. In this case, each of the two storage units constituting the buffer memory writes an image signal in one of them and reads an image signal from the other in a certain period. Therefore, each storage unit has a sufficient storage capacity if it can store a predetermined number of lines of image signals. Therefore, it is possible to reduce the size of a circuit or switching device that does not need to have a storage capacity sufficient to store an image signal for one field or one frame.
[0015] ここで、各カメラは、そのうちの 1のカメラが出力する同期信号に示されるタイミング に同期して撮像を行い、前記出力制御手段は、前記 1のカメラが出力する同期信号 の入力を受け付ける同期信号入力部を含み、前記所定の同期信号とは、前記同期 信号入力部により受け付けた同期信号であることとするとよい。 Here, each camera performs imaging in synchronization with the timing indicated by the synchronization signal output from one of the cameras, and the output control means inputs the synchronization signal output from the one camera. A synchronization signal input unit is included, and the predetermined synchronization signal may be a synchronization signal received by the synchronization signal input unit.
これによると、 1のカメラの同期信号を受け付けて、この同期信号に基づいて前記切 り替え等を行うので、切替装置の側に、カメラに対して同期信号を出力するための出 力部などを設ける必要がなレ、。
[0016] なお、前記画像符号化の最小単位となるライン数とは、マクロブロック分のライン数 のことであることとするとよい。 According to this, since the synchronization signal of 1 camera is received and the switching is performed based on this synchronization signal, an output unit for outputting the synchronization signal to the camera on the switching device side, etc. It is necessary to provide [0016] It should be noted that the number of lines as the minimum unit of image encoding is preferably the number of lines for a macroblock.
これにより、マクロブロック分のライン数を単位として符号化することができる。 As a result, the number of lines for the macroblock can be encoded as a unit.
また、本発明は、切替装置が切り替えて出力する複数の画像信号を、同期信号入 力部と 1の画像信号入力部とからなる 1の入力インターフェースにより受信して各画像 信号を符号化するビデオエンコーダであって、前記 1の入力インターフェースを含み Further, the present invention is a video in which a plurality of image signals switched and output by a switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded. An encoder comprising the input interface of 1
、前記切替装置により所定ライン数分ごとに切り替えて出力される画像信号それぞれ と、画像信号の切り替わりのタイミングを示す切替制御信号とを、前記 1の画像信号 入力部および前記同期信号入力部により受信し、受信した画像信号のそれぞれを前 記切替制御信号に示される前記タイミングにより区別して符号化する符号化手段とを 備えることを特徴とするビデオエンコーダでもある。 Each of the image signals switched and output every predetermined number of lines by the switching device and a switching control signal indicating the switching timing of the image signal are received by the image signal input unit and the synchronization signal input unit. The video encoder further comprises encoding means for distinguishing and encoding each received image signal according to the timing indicated by the switching control signal.
[0017] このようなビデオエンコーダにおいて、以下のようにするとよい。 [0017] In such a video encoder, the following may be performed.
すなわち、前記符号化手段は、前記切替制御信号に示される切り替わりのタイミン グになる都度、受信済みの所定ライン数分の画像信号を符号化することとするとよレヽ これにより、 1フィールドよりも小さいライン単位の画像信号の受信により符号化を開 始することができ、遅延を低減することができる。 That is, the encoding means may encode the image signal for the predetermined number of lines received each time the switching timing indicated by the switching control signal is reached. Coding can be started by receiving line-by-line image signals, and delay can be reduced.
[0018] このような構成にお!/、て、前記画像信号は、前記ビデオエンコーダにお!/、て、所定 ライン数分の画像信号を記憶する記憶領域を有する 1のメモリ領域に記憶され、画像 信号各々は、それぞれ異なるメモリ領域に記憶され、前記符号化手段は、前記切替 制御信号に示される切り替わりのタイミングの都度、割り込みを発生させて前記画像 信号の受信処理を行い、前記所定ライン数分の画像信号を受信すると前記受信処 理を終了し、前記切り替わりのタイミングのたびに、画像信号を記憶するメモリ領域を 切り替えることとするとよい。 [0018] In such a configuration, the image signal is stored in one memory area having a storage area for storing a predetermined number of lines of image signals in the video encoder! Each of the image signals is stored in a different memory area, and the encoding means generates an interrupt at each switching timing indicated by the switching control signal to perform reception processing of the image signal, and the predetermined line When the image signals for several minutes are received, the reception process is ended, and the memory area for storing the image signals is switched at each switching timing.
[0019] これにより、画像信号ごとにメモリ領域が異なるため、メモリ領域を参照することで、 各画像信号を区別することができる。 [0019] Thereby, since the memory area is different for each image signal, each image signal can be distinguished by referring to the memory area.
なお、上述の構成では、画像信号を巡回的に切り替えることとしたが、本発明は、 以下のようにすることあでさる。
すなわち、本発明は、複数の動画像を符号化する動画像符号化システムであって 、カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信手段と、 前記信号受信手段により受信される複数の画像信号を記憶する一時記憶手段と、複 数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数また はその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶手段から 読み出して、読み出した画像信号と、画像信号を識別するための付加信号との組を 出力するとともに、付加信号と画像信号とを区別するための重畳タイミング信号を生 成して出力する出力制御手段と、符号化手段とを備え、前記符号化手段は、同期信 号入力部と 1の画像信号入力部とからなる 1の入力インターフェースを含み、前記出 力制御手段により切り替えて出力される前記所定ライン数分の画像信号それぞれと 前記付加信号と前記重畳タイミング信号とを、前記 1の入力インターフェースにより受 信し、受信した前記所定ライン数分の画像信号と前記付加信号とを、受信した前記 重畳タイミング信号により区別し、受信した前記所定ライン数分の画像信号を、前記 付加信号を用いて識別することにより、画像信号のそれぞれを区別して符号化するこ とを特徴とする動画像符号化システムである。 In the above-described configuration, the image signal is cyclically switched. However, the present invention is as follows. That is, the present invention is a moving image encoding system that encodes a plurality of moving images, and includes a signal receiving unit that receives image signals generated by imaging by a plurality of cameras and the signal receiving unit. Temporary storage means for storing a plurality of image signals, and switching a plurality of image signals for each camera, and images corresponding to a predetermined number of lines composed of the number of lines as a minimum unit of image encoding or a multiple of the number of lines. A signal is read from the temporary storage means, a set of the read image signal and an additional signal for identifying the image signal is output, and a superposition timing signal for distinguishing the additional signal from the image signal is generated. Output control means and encoding means, and the encoding means includes one input interface comprising a synchronization signal input section and one image signal input section. Each of the predetermined number of image signals switched and output by the output control means, the additional signal, and the superimposition timing signal are received by the input interface of 1, and the received number of the predetermined lines. The image signal and the additional signal are distinguished from each other by the received superposition timing signal, and the received image signals for the predetermined number of lines are identified by using the additional signal, thereby distinguishing each of the image signals. This is a video encoding system characterized by encoding.
[0020] 上述の構成によると、出力制御手段は、各画像信号を識別するための付加信号を 、画像信号とあわせて出力する。そして、符号化手段では、付加信号と画像信号とを 、重畳タイミング信号により区別することができ、付加信号に基づいて、画像信号を識 別すること力 Sできる。したがって、各画像信号が同期して生成されていなくとも、付加 信号により各画像信号を識別することができるので、符号化手段は、 1の入力インタ 一フェースに複数の画像信号が入力される場合に、各画像信号が同期して生成され ていなくとも、それぞれの画像信号を区別して、ライン単位で符号化することができる 。また、入力インターフェースに新たにピン等を追加する必要もない。 [0020] According to the configuration described above, the output control means outputs the additional signal for identifying each image signal together with the image signal. In the encoding means, the additional signal and the image signal can be distinguished from each other by the superposition timing signal, and the image signal can be identified based on the additional signal. Therefore, even if the image signals are not generated synchronously, each image signal can be identified by the additional signal. Therefore, the encoding means is provided when a plurality of image signals are input to one input interface. In addition, even if the image signals are not generated synchronously, the image signals can be distinguished and encoded in units of lines. Further, it is not necessary to add a new pin or the like to the input interface.
[0021] この動画像符号化システムも、機器としては、切替装置とビデオエンコーダとに大き く分けられる。そこで、本発明は、複数の動画像を切り替えて、ビデオエンコーダの、 同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフェースへ出力す る切替装置であって、カメラの撮像により生成される画像信号を複数カメラ分受信す る信号受信手段と、前記信号受信手段により受信される複数の画像信号を記憶する
一時記憶手段と、複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単 位となるライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前 記一時記憶手段から読み出して、読み出した画像信号と、画像信号を識別するため の付加信号との組を前記 1の入力インターフェースへ出力するとともに、付加信号と 画像信号とを区別するための重畳タイミング信号を生成して前記 1の入力インターフ エースへ出力する出力制御手段とを備えることを特徴とする切替装置でもある。 [0021] This moving image coding system is also roughly divided into a switching device and a video encoder. Therefore, the present invention is a switching device that switches a plurality of moving images and outputs them to one input interface comprising a synchronization signal input unit and one image signal input unit of a video encoder. Signal receiving means for receiving generated image signals for a plurality of cameras, and storing a plurality of image signals received by the signal receiving means The temporary storage means and a plurality of image signals are switched on a camera-by-camera basis, and image signals for a predetermined number of lines consisting of the minimum number of lines for image coding or a multiple of the number of lines are read from the temporary storage means. And outputting a set of the read image signal and an additional signal for identifying the image signal to the input interface 1 and generating a superposition timing signal for distinguishing the additional signal from the image signal. It is also a switching device comprising output control means for outputting to one input interface.
[0022] このような切替装置にお!/、て、以下のようにするとよ!/、。 [0022] In such a switching device! /, The following should be done! /.
すなわち、前記出力制御手段は、画像信号の生成にかかる同期信号を、画像信号 それぞれについて受信する同期信号受信部を含み、前記同期信号受信部により受 信する同期信号それぞれに基づ!/、て、前記画像信号と前記付加信号との組の前記 切り替えての出力と、前記重畳タイミング信号の出力とを行うこととしてもよい。具体的 には、前記出力制御手段は、前記同期信号受信部により受信する同期信号それぞ れの水平同期信号に基づいて、前記複数の画像信号それぞれについて、前記所定 ライン数分の画像信号が前記信号受信手段により受信されたことを検知するデータ 取り込み制御部と、付加信号を生成する付加情報生成部と、前記データ取り込み制 御部により検知がなされた順に、所定ライン数分の画像信号を前記一時記憶手段か ら読み出して、読み出した所定ライン数分の画像信号と、当該画像信号について前 記付加情報生成部により生成された付加信号とを出力する選択部とを含むこととする とよい。 That is, the output control means includes a synchronization signal receiving unit that receives a synchronization signal for generating an image signal for each of the image signals, and based on each of the synchronization signals received by the synchronization signal receiving unit! / The switching output of the set of the image signal and the additional signal and the output of the superimposition timing signal may be performed. Specifically, the output control means outputs the image signals for the predetermined number of lines for each of the plurality of image signals based on the horizontal synchronization signals of the respective synchronization signals received by the synchronization signal receiving unit. A data capturing control unit that detects that the signal has been received by the signal receiving unit, an additional information generating unit that generates an additional signal, and image signals for a predetermined number of lines in the order detected by the data capturing control unit. It is preferable to include a selection unit that reads out from the temporary storage means and outputs the read image signals for a predetermined number of lines and the additional signal generated by the additional information generation unit for the image signal.
[0023] 上述の構成によると、切替装置は、各画像信号について、所定ライン数分の画像信 号を受信したことを、その画像信号の水平同期信号に基づいて検知し、検知した順 に画像信号を切り替えて出力するので、各画像信号が非同期の場合も画像信号の 出力を可能とする。また、各画像信号がそれぞれ異なる画像サイズのため画像信号 のデータ量が異なる場合であっても、検知した順に出力するため、画像信号のライン サイズや画像サイズが異なる場合においても各画像信号を出力することができる。 [0023] According to the configuration described above, the switching device detects, for each image signal, the reception of the image signals for a predetermined number of lines based on the horizontal synchronization signal of the image signals, and the images are sequentially detected. Since the signals are switched and output, image signals can be output even when the image signals are asynchronous. In addition, even if the image signal data amount differs because each image signal has a different image size, each image signal is output even if the line size or image size of the image signal is different, because they are output in the order of detection. can do.
[0024] また、前記付加信号は、画像信号の識別情報を含むこととしてもよい。また、前記付 加信号は、画像信号が 1フレームの画像におけるどのラインかを示すマクロブロックラ イン情報、または、 1ラインのサイズを示すラインサイズ情報の少なくとも 1つを含むこ
ととしてあよい。 [0024] The additional signal may include identification information of an image signal. Further, the additional signal includes at least one of macro block line information indicating which line in the image of the image signal is one line, or line size information indicating the size of one line. And as good.
これにより、画像信号が画像のどのラインのデータにあたるか等が付加信号によりビ デォエンコーダ側で取得することができるので、ビデオエンコーダの方では、各画像 信号の受信状況、例えば、どのラインまで受信したか等を管理する必要が無くなり、 ビデオエンコーダ側の処理が簡単になる。 As a result, the video encoder can acquire which line of the image the image signal corresponds to by the additional signal, so the video encoder receives each image signal, for example, up to which line. This eliminates the need to manage these and simplifies processing on the video encoder side.
[0025] また、本発明は、切替装置が切り替えて出力する複数の画像信号を、同期信号入 力部と 1の画像信号入力部とからなる 1の入力インターフェースにより受信して各画像 信号を符号化するビデオエンコーダであって、前記 1の入力インターフェースを含み 、前記切替装置により所定ライン数分ごとに切り替えて出力される画像信号それぞれ と、画像信号を識別するための付加信号との組、および、付加信号と画像信号とを区 別するための重畳タイミング信号を、前記 1の入力インターフェースにより受信し、受 信した前記所定ライン分の画像信号と前記付加信号とを、受信した前記重畳タイミン グ信号により区別し、受信した前記所定ライン分の画像信号を、前記付加信号を用 いて識別することにより、画像信号のそれぞれを区別して符号化する符号化手段を 備えることを特徴とするビデオエンコーダでもある。 [0025] Further, according to the present invention, a plurality of image signals that are switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded. A video encoder including the input interface of 1 and a set of each of the image signals switched and output every predetermined number of lines by the switching device, and an additional signal for identifying the image signal, and The superimposition timing signal for distinguishing the additional signal from the image signal is received by the input interface of 1 and the received image signal and the additional signal for the predetermined line are received. Each image signal is distinguished by identifying the received image signal for the predetermined line using the additional signal. Is also a video encoder, characterized in that it comprises coding means for No. of.
[0026] また、本発明は、同期信号入力部と 1の画像信号入力部とからなる 1の入力インタ 一フェースを備えるビデオエンコーダと、前記 1の入力インターフェースに複数の動 画像を切り替えて出力する切替装置とからなる動画像符号化システムにおいて複数 の動画像を符号化する動画像符号化方法であって、カメラの撮像により生成される 画像信号を複数カメラ分受信する信号受信ステップと、前記信号受信ステップにより 受信される複数の画像信号を前記切替装置の一時記憶手段により記憶させる一時 記憶ステップと、複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の 最小単位となるライン数またはその倍数のライン数からなる所定ライン数分の画像信 号を前記一時記憶手段から読み出して出力するとともに、前記複数の画像信号が切 り替わるタイミングを示す切替制御信号を生成して出力する出力制御ステップと、前 記出力制御ステップにより切り替えて出力される前記所定ライン数分の画像信号そ れぞれと前記切替制御信号とを、前記 1の入力インターフェースにより受信し、受信し た画像信号のそれぞれを前記切替制御信号に示される前記タイミングにより区別し
て符号化する符号化ステップとを含むことを特徴とする動画像符号化方法でもある。 [0026] The present invention also provides a video encoder having one input interface comprising a synchronization signal input unit and one image signal input unit, and a plurality of moving images switched to the one input interface for output. A moving image encoding method for encoding a plurality of moving images in a moving image encoding system including a switching device, the signal receiving step for receiving image signals generated by imaging of a camera for a plurality of cameras, and the signal The temporary storage step of storing a plurality of image signals received by the reception step by the temporary storage means of the switching device, and the number of lines as a minimum unit of image encoding by cyclically switching the plurality of image signals for each camera. Alternatively, a predetermined number of lines of image signals consisting of multiples of the lines are read out from the temporary storage means and output, and An output control step for generating and outputting a switching control signal indicating the timing at which the image signal is switched, and the switching control signal for each of the predetermined number of image signals to be switched and output by the output control step. Each of the received image signals is distinguished by the timing indicated by the switching control signal. And a coding step for coding.
[0027] また、本発明は、同期信号入力部と 1の画像信号入力部とからなる 1の入力インタ 一フェースを備えるビデオエンコーダと、前記 1の入力インターフェースに複数の動 画像を切り替えて出力する切替装置とからなる動画像符号化システムにおいて複数 の動画像を符号化する動画像符号化方法であって、カメラの撮像により生成される 画像信号を複数カメラ分受信する信号受信ステップと、前記信号受信ステップにより 受信される複数の画像信号を前記切替装置の一時記憶手段により記憶させる一時 記憶ステップと、複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位 となるライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記 一時記憶手段から読み出して、読み出した画像信号と、画像信号を識別するための 付加信号との組を出力するとともに、付加信号と画像信号とを区別するための重畳タ イミング信号を生成して出力する出力制御ステップと、前記出力制御ステップにより 切り替えて出力される前記所定ライン数分の画像信号それぞれと前記付加信号と前 記重畳タイミング信号とを、前記 1の入力インターフェースにより受信し、受信した前 記所定ライン数分の画像信号と前記付加信号とを、受信した前記重畳タイミング信号 により区別し、受信した前記所定ライン数分の画像信号を、前記付加信号を用いて 識別することにより、画像信号のそれぞれを区別して符号化する符号化ステップとを 含むことを特徴とする動画像符号化方法でもある。 [0027] Further, the present invention provides a video encoder having one input interface including a synchronization signal input unit and one image signal input unit, and a plurality of moving images switched to the one input interface for output. A moving image encoding method for encoding a plurality of moving images in a moving image encoding system including a switching device, the signal receiving step for receiving image signals generated by imaging of a camera for a plurality of cameras, and the signal A temporary storage step for storing a plurality of image signals received by the reception step by the temporary storage means of the switching device; and a number of lines or a multiple thereof as a minimum unit for image encoding by switching the plurality of image signals for each camera. A predetermined number of image signals consisting of the number of lines is read from the temporary storage means, and the read image signal and the image signal are A pair of additional signals for separation is output, and an output control step for generating and outputting a superimposition timing signal for distinguishing between the additional signal and the image signal, and switching output by the output control step are output. Each of the image signals for the predetermined number of lines, the additional signal, and the superposition timing signal are received by the input interface of 1, and the received image signals for the predetermined number of lines and the additional signal are received. An encoding step of distinguishing and encoding each of the image signals by identifying the received image signals for the predetermined number of lines using the additional signal. It is also a featured video encoding method.
[0028] また、本発明は、複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力 部と 1の画像信号入力部とからなる 1の入力インターフェースへ出力する切替装置に 用いられる集積回路であって、カメラの撮像により生成される画像信号を複数カメラ 分受信する信号受信部と、前記信号受信部により受信される複数の画像信号を記憶 する一時記憶部と、複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号 化の最小単位となるライン数またはその倍数のライン数からなる所定ライン数分の画 像信号を前記一時記憶部から読み出して前記 1の入力インターフェースへ出力する とともに、前記複数の画像信号が切り替わるタイミングを示す切替制御信号を生成し て前記 1の入力インターフェースへ出力する出力制御部とを含むことを特徴とする集 積回路でもある。
[0029] また、本発明は、切替装置が切り替えて出力する複数の画像信号を、同期信号入 力部と 1の画像信号入力部とからなる 1の入力インターフェースにより受信して各画像 信号を符号化するビデオエンコーダに用いられる集積回路であって、前記 1の入力 インターフェースにより受信され、前記切替装置により所定ライン数分ごとに切り替え て出力される画像信号それぞれを、前記切替装置から出力されて前記 1の入力イン ターフェースにより受信される、画像信号の切り替わりのタイミングを示す切替制御信 号により区別して符号化する符号化部を含むことを特徴とする集積回路でもある。 [0028] Further, the present invention is an integrated circuit used in a switching device that switches a plurality of moving images and outputs to a single input interface including a synchronization signal input unit and a single image signal input unit of a video encoder. A signal receiving unit for receiving image signals generated by imaging by a plurality of cameras, a temporary storage unit for storing a plurality of image signals received by the signal receiving unit, and a plurality of image signals for each camera. The image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines is read out from the temporary storage unit and output to the input interface 1. An output control unit that generates a switching control signal indicating a timing at which the plurality of image signals are switched and outputs the switching control signal to the first input interface. It is also the integrated circuit that features and. [0029] Further, according to the present invention, a plurality of image signals that are switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded. Each of the image signals received by the input interface and switched by the switching device every predetermined number of lines and output from the switching device. It is also an integrated circuit characterized by including an encoding unit that distinguishes and encodes by a switching control signal indicating the switching timing of an image signal received by one input interface.
[0030] また、本発明は、複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力 部と 1の画像信号入力部とからなる 1の入力インターフェースへ出力する切替装置に 用いられる集積回路であって、カメラの撮像により生成される画像信号を複数カメラ 分受信する信号受信部と、前記信号受信部により受信される複数の画像信号を記憶 する一時記憶部と、複数の画像信号をカメラ単位で切り替えて、画像符号化の最小 単位となるライン数またはその倍数のライン数からなる所定ライン数分の画像信号を 前記一時記憶部から読み出して、読み出した画像信号と、画像信号を識別するため の付加信号との組を前記 1の入力インターフェースへ出力するとともに、付加信号と 画像信号とを区別するための重畳タイミング信号を生成して前記 1の入力インターフ エースへ出力する出力制御部とを含むことを特徴とする集積回路でもある。 [0030] Further, the present invention is an integrated circuit used in a switching device that switches a plurality of moving images and outputs to a single input interface including a synchronization signal input unit and a single image signal input unit of a video encoder. A signal receiving unit for receiving image signals generated by imaging by a plurality of cameras, a temporary storage unit for storing a plurality of image signals received by the signal receiving unit, and a plurality of image signals for each camera. In order to distinguish between the read image signal and the image signal by reading from the temporary storage unit the image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines. Are output to the input interface 1 and a superposition timing signal for distinguishing the additional signal from the image signal is generated to generate the superposition timing signal. And an output control unit that outputs to one input interface.
[0031] また、本発明は、切替装置が切り替えて出力する複数の画像信号を、同期信号入 力部と 1の画像信号入力部とからなる 1の入力インターフェースにより受信して各画像 信号を符号化するビデオエンコーダに用いられる集積回路であって、前記切替装置 力、ら所定ライン数分ごとに切り替えて出力されて前記 1の入力インターフェースにより 受信される画像信号それぞれ、画像信号を識別するための付加信号、前記付加信 号と画像信号とを区別するための重畳タイミング信号、を用いて、前記付加信号と前 記所定ライン数分の画像信号とを重畳タイミング信号により区別し、前記所定ライン 分の画像信号を、前記付加信号を用いて識別することにより、画像信号のそれぞれ を区別して符号化する符号化部を含むことを特徴とする集積回路でもある。 [0031] Further, according to the present invention, a plurality of image signals switched and output by the switching device are received by one input interface including a synchronization signal input unit and one image signal input unit, and each image signal is encoded. An integrated circuit used in a video encoder for identifying an image signal for each image signal that is switched and output every predetermined number of lines and received by the one input interface. The additional signal and a superimposition timing signal for distinguishing the additional signal and the image signal are used to distinguish the additional signal from the predetermined number of lines of the image signal by the superimposition timing signal, and An integrated circuit comprising: an encoding unit that distinguishes and encodes each image signal by identifying the image signal using the additional signal. But there is.
[0032] また、本発明は、複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力 部と 1の画像信号入力部とからなる 1の入力インターフェースへ出力する処理を切替
装置に行わせるための制御プログラムであって、カメラの撮像により生成される画像 信号を複数カメラ分受信する信号受信ステップと、前記信号受信ステップにより受信 される複数の画像信号を前記切替装置の一時記憶手段に記憶させる一時記憶ステ ップと、複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単 位となるライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前 記一時記憶手段から読み出して前記 1の入力インターフェースへ出力するとともに、 前記複数の画像信号が切り替わるタイミングを示す切替制御信号を生成して前記 1 の入力インターフェースへ出力する出力制御ステップとを含むことを特徴とする制御 プログラムでもある。 [0032] Further, the present invention switches a plurality of moving images, and switches a process of outputting to one input interface including a synchronization signal input unit and one image signal input unit of the video encoder. A control program for causing the apparatus to perform a signal reception step of receiving image signals generated by imaging of a camera for a plurality of cameras, and a plurality of image signals received by the signal reception step to temporarily store the switching device. A temporary storage step to be stored in the storage means and a plurality of image signals are switched cyclically for each camera, and a predetermined number of lines consisting of the number of lines that are the minimum unit of image encoding or a multiple of the number of lines. An output control step of reading out an image signal from the temporary storage means and outputting the image signal to the first input interface, and generating a switching control signal indicating timing at which the plurality of image signals are switched and outputting the switching control signal to the first input interface; It is also a control program characterized by including.
[0033] また、本発明は、同期信号入力部と 1の画像信号入力部とからなる 1の入力インタ 一フェースを備えるビデオエンコーダに、切替装置が切り替えて出力する複数の画 像信号を前記 1の入力インターフェースにより受信させて各画像信号を符号化させる 処理を行わせるための制御プログラムであって、前記切替装置により所定ライン数分 ごとに切り替えて出力されて前記 1の入力インターフェースにより受信される画像信 号それぞれを、前記切替装置から出力されて前記 1の入力インターフェースにより受 信される、画像信号の切り替わりのタイミングを示す切替制御信号により区別して符 号化する符号化ステップを含むことを特徴とする制御プログラムでもある。 [0033] Further, according to the present invention, a plurality of image signals that are switched and output by a switching device to a video encoder having one input interface including a synchronization signal input unit and one image signal input unit are output to the 1 A control program for performing a process of encoding each image signal by being received by the input interface, and is output by being switched by the switching device every predetermined number of lines and received by the input interface of 1. And a coding step of distinguishing and coding each image signal by a switching control signal indicating the switching timing of the image signal, which is output from the switching device and received by the input interface of 1. It is also a control program.
[0034] また、本発明は、複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力 部と 1の画像信号入力部とからなる 1の入力インターフェースへ出力する処理を切替 装置に行わせるための制御プログラムであって、カメラの撮像により生成される画像 信号を複数カメラ分受信する信号受信ステップと、前記信号受信ステップにより受信 される複数の画像信号を前記切替装置の一時記憶手段により記憶させる一時記憶 ステップと、複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶手段から読み出して、読み出した画像信号と、画像信号を識別するための付加 信号との組を前記 1の入力インターフェースへ出力するとともに、付加信号と画像信 号とを区別するための重畳タイミング信号を生成して前記 1の入力インターフェース へ出力する出力制御ステップとを含むことを特徴とする制御プログラムでもある。
[0035] また、本発明は、同期信号入力部と 1の画像信号入力部とからなる 1の入力インタ 一フェースを備えるビデオエンコーダに、切替装置が切り替えて出力する複数の画 像信号を前記 1の入力インターフェースにより受信させて各画像信号を符号化させる 処理を行わせるための制御プログラムであって、前記切替装置により所定ライン数分 ごとに切り替えて出力される画像信号と、前記所定ライン数分の画像信号を識別する ための付加信号との組、および、付加信号と前記所定ライン数分の画像信号とを区 別するための重畳タイミング信号を、前記 1の入力インターフェースにより受信し、受 信した前記所定ライン数分の画像信号と前記付加信号とを、受信した前記重畳タイミ ング信号により区別し、受信した前記所定ライン数分の画像信号を、前記付加信号 を用いて識別することにより、画像信号のそれぞれを区別して符号化する符号化ステ ップを含むことを特徴とする制御プログラムでもある。 [0034] Further, the present invention allows a switching device to perform a process of switching a plurality of moving images and outputting to one input interface including a synchronization signal input unit and one image signal input unit of a video encoder. And a signal receiving step for receiving image signals generated by imaging by a plurality of cameras, and a plurality of image signals received by the signal receiving step are stored in a temporary storage unit of the switching device. Temporary storage step and switching a plurality of image signals for each camera, and reading out from the temporary storage means image signals for a predetermined number of lines consisting of the number of lines as a minimum unit of image encoding or a multiple of the number of lines. A set of the read image signal and an additional signal for identifying the image signal is output to the input interface 1 described above. It is also a control program, characterized in that it comprises an output control step of generating a superimposed timing signal for discriminating the additional signal and the image signal output to the first input interface. [0035] Further, according to the present invention, a plurality of image signals that are switched and output by a switching device to a video encoder having one input interface including a synchronization signal input unit and one image signal input unit are output to the 1 A control program for performing processing for encoding each image signal received by the input interface of the image signal, the image signal being switched and output every predetermined number of lines by the switching device, and the predetermined number of lines A combination of an additional signal for identifying the image signal and a superimposition timing signal for distinguishing the additional signal from the image signal for the predetermined number of lines are received by the input interface of 1 and received. The predetermined number of lines of image signals and the additional signal are distinguished by the received superimposition timing signal, and the received images of the predetermined number of lines are received. No. and by identifying using said additional signal is also a control program characterized in that it comprises a coding stearyl-up for encoding and distinguish each of the image signals.
図面の簡単な説明 Brief Description of Drawings
[0036] [図 1]実施の形態 1における動画像符号化システム 100の構成を示す機能ブロック図 である。 FIG. 1 is a functional block diagram showing a configuration of a moving picture coding system 100 according to a first embodiment.
[図 2]制御回路 6の詳細な構成を示す図である。 FIG. 2 is a diagram showing a detailed configuration of a control circuit 6.
[図 3]プロセッサ 13において割り込みハンドラが行う処理を示すフローチャートである FIG. 3 is a flowchart showing processing performed by an interrupt handler in processor 13
〇 Yes
[図 4]動画像符号化システム 100の動作を示すタイミングチャートである。 FIG. 4 is a timing chart showing the operation of the video encoding system 100.
[図 5]ビデオエンコーダ 3における符号化処理の開始タイミングを示す図である。 FIG. 5 is a diagram showing the start timing of encoding processing in the video encoder 3;
[図 6]実施の形態 2における動画像符号化システム 200の構成を示す機能ブロック図 である。 FIG. 6 is a functional block diagram showing a configuration of a moving picture coding system 200 according to Embodiment 2.
[図 7]制御回路 56の詳細な構成を示す図である。 FIG. 7 is a diagram showing a detailed configuration of a control circuit 56.
[図 8]同期信号生成部 73が出力する V-SYNC9および H-SYNC10を示す図である。 FIG. 8 is a diagram showing V-SYNC9 and H-SYNC10 output by a synchronization signal generation unit 73.
[図 9]実施の形態 2における、プロセッサ 13において割り込みハンドラが行う処理を示 すフローチャートである。 FIG. 9 is a flowchart showing processing performed by an interrupt handler in processor 13 in the second embodiment.
[図 10]動画像符号化システム 200の動作を示すタイミングチャートである。 FIG. 10 is a timing chart showing the operation of the video encoding system 200.
[図 11]ビデオエンコーダ 53における符号化処理の開始タイミングを示す図である。 FIG. 11 is a diagram showing the start timing of the encoding process in the video encoder 53.
[図 12]本発明の実施の形態 3における動画像符号化システム 300の構成を示す図で
ある。 FIG. 12 is a diagram showing a configuration of a moving picture coding system 300 according to Embodiment 3 of the present invention. is there.
符号の説明 Explanation of symbols
100 動画像符号化システム la、 lb、 lc、 Id カメラ 100 video encoding system la, lb, lc, ID camera
2 切替装置 2 Switching device
4 同期信号 4 Sync signal
5a、 5b、 5c、 5α ノヽッファ 5a, 5b, 5c, 5α
6 制御回路 6 Control circuit
7 選択回路 7 Selection circuit
8 カメラ入力部 8 Camera input section
9 V- SYNC 9 V- SYNC
10 H-SYNC 10 H-SYNC
11 DATA 11 DATA
12 割り込みコントローラ 12 Interrupt controller
13 プロセッサ 13 processor
14 データ転送部 14 Data transfer section
15 画像符号化部 15 Image encoder
16 メモリ 16 memory
17 入力画像領域 17 Input image area
18 符号化データ領域 18 Encoded data area
19a, 19b, 19c, 19d 画像信号 19a, 19b, 19c, 19d Image signal
22 割り込み信号 22 Interrupt signal
31 カメラデータ取り込み制御部 31 Camera data capture controller
32 ノ ッファ選択制御部 32 Noffer selection control section
33 同期信号生成部 33 Sync signal generator
34 カウンタ 34 counter
200 動画像符号化システム
51 a, 51b、 51c、 51d カメラ 200 Video coding system 51 a, 51b, 51c, 51d camera
52 52
53 ビデオエンコーダ 53 Video encoder
55 55
56 制御回路 56 Control circuit
58 画像切替部 58 Image switching section
71 a カメラ # 0データ取り込み制御部 71 a Camera # 0 Data acquisition controller
71b カメラ # 1データ取り込み制御部 71b Camera # 1 data acquisition controller
71c カメラ # 2データ取り込み制御部 71c Camera # 2 Data acquisition control unit
71 d カメラ # 3データ取り込み制御部 71 d Camera # 3 Data acquisition control unit
72 バッファ選択制御部 72 Buffer selection controller
73 同期信号生成部 73 Sync signal generator
74 カウンタ 74 counter
75 付加情報生成部 75 Additional information generator
81 カメラ識別番号情報 81 Camera identification number information
82 マクロブロックライン情報 82 Macroblock line information
83 ラインサイズ情報 83 Line size information
300 動画像符号化システム 300 Video coding system
91 a, 91b, 91c, 91d カメラ 91 a, 91b, 91c, 91d camera
92 エンコーダ装置 92 Encoder device
93 93
94 ネッ卜ワーク 94 Network
95 95
96 ェンコータ装置 96 coater equipment
97 モユタ 97 Moyuta
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
1 実施の形態 1 1 Embodiment 1
以下、本発明に力、かる動画像符号化システムについて図面を用いて説明する
1. 1 構成 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a moving image coding system that is effective in the present invention will be described with reference to the drawings. 1.1 Configuration
図 1は、実施の形態 1における動画像符号化システム 100の構成を示す機能ブロッ ク図である。 FIG. 1 is a functional block diagram showing the configuration of the moving picture coding system 100 according to the first embodiment.
[0039] 図 1に示すように、動画像符号化システム 100は、複数のカメラ(カメラ la、 lb、 lc、 Id)と、切替装置 2と、ビデオエンコーダ 3とから構成される。カメラ la、 lb、 lc、 ld ( 以下、カメラ la、 lb、 lc、 Idをひとまとめにして「カメラ 1」ということもある)、切替装置 2、ビデオエンコーダ 3について順に説明する。 As shown in FIG. 1, the moving picture coding system 100 includes a plurality of cameras (cameras la, lb, lc, and Id), a switching device 2, and a video encoder 3. The cameras la, lb, lc, and ld (hereinafter, cameras la, lb, lc, and Id may be collectively referred to as “camera 1”), the switching device 2, and the video encoder 3 will be described in order.
1. 1. 1 カメラ 1 1. 1. 1 Camera 1
カメラ 1は撮像により画像信号 19a、 19b、 19c、 19d (以下、画像信号 19a、 19b、 1 Camera 1 captures image signals 19a, 19b, 19c, 19d (hereinafter image signals 19a, 19b, 1
9c、 19dをひとまとめにして「画像信号 19」ということもある)を生成し、生成した画像 信号 19を出力する。カメラ 1により生成される画像信号 19は、切替装置 2に出力され 9c and 19d are collectively referred to as “image signal 19”), and the generated image signal 19 is output. The image signal 19 generated by the camera 1 is output to the switching device 2.
[0040] カメラ la、 lb、 lc、 Idの各々は、互いに同期して画像信号 19a、 19b、 19c、 19dを それぞれ出力する。例えば、カメラ 1のうちの一のカメラ (例えば、カメラ la)が同期信 号 4 (垂直同期信号と水平同期信号)を他のカメラと切替装置 2に出力し、他のカメラ は、前記一のカメラから出力される同期信号 4を受信して、この同期信号 4に同期して 動作する。また、カメラ la、 lb、 lc、 Idが撮影する動画像の画像サイズはカメラ l a、 1 b、 lc、 Idにおいて同一であるとする。 [0040] Each of the cameras la, lb, lc, and Id outputs image signals 19a, 19b, 19c, and 19d in synchronization with each other. For example, one of the cameras 1 (for example, camera la) outputs the synchronization signal 4 (vertical synchronization signal and horizontal synchronization signal) to the other camera and the switching device 2, and the other camera It receives synchronization signal 4 output from the camera and operates in synchronization with this synchronization signal 4. In addition, the image sizes of the moving images taken by the cameras la, lb, lc, and Id are assumed to be the same in the cameras la, 1b, lc, and Id.
[0041] 1. 1. 2 切替装置 2 [0041] 1. 1. 2 Switching device 2
切替装置 2は、カメラ 1から画像信号 19をそれぞれ受信して、受信した画像信号 19 をビデオエンコーダ 3の入力インターフェース(画像信号や同期信号の入力端子)に 出力する。 The switching device 2 receives the image signal 19 from the camera 1 and outputs the received image signal 19 to the input interface of the video encoder 3 (image signal and synchronization signal input terminal).
なお、ビデオエンコーダ 3の、 1の入力インターフェースには、複数のカメラの画像 信号が入力される。本実施形態では、カメラ la、 lb、 lc、 Idの 4台のカメラにより生成 される 4つの画像信号が、ビデオエンコーダ 3の 1の入力インターフェースに入力され る。そのため、切替装置 2は、カメラ 1から受信した複数の画像信号を順次切り替えて ビデオエンコーダ 3に出力する。このとき、切替装置 2は、 16ライン(以下、「マクロプロ ックライン」とレ、う)の画像信号を出力するたびに、出力する画像信号の切替を行う。
なお、マクロブロックラインとは、ビデオエンコーダ 3による符号化の最小単位となるラ インの数である。 Note that image signals from a plurality of cameras are input to the input interface 1 of the video encoder 3. In this embodiment, four image signals generated by the four cameras la, lb, lc, and Id are input to one input interface of the video encoder 3. Therefore, the switching device 2 sequentially switches a plurality of image signals received from the camera 1 and outputs them to the video encoder 3. At this time, the switching device 2 switches the output image signal every time it outputs an image signal of 16 lines (hereinafter referred to as “macro-block line”). The macroblock line is the number of lines that are the minimum unit of encoding by the video encoder 3.
[0042] 切替装置 2は、図 1に示すように、バッファ 5a、 5b、 5c、 5d (以下、バッファ 5a、 5b、 As shown in FIG. 1, the switching device 2 includes buffers 5a, 5b, 5c, 5d (hereinafter referred to as buffers 5a, 5b,
5c、 5dをひとまとめにして「バッファ 5」ということもある)と、制御回路 6と、選択回路 7と を備える。 5c and 5d are collectively referred to as “buffer 5”), a control circuit 6 and a selection circuit 7.
1. 1. 2. 1 ノ ッファ 5 1. 1. 2. 1 Noffer 5
ノ ッファ 5は、カメラ 1から出力される画像信号 19を一時的に記憶する FIFO (First I n First Out)型のバッファメモリである。図示するように、カメラ la、 lb、 lc、 Idのそれ ぞれに対応してノ ッファ 5a、 5b、 5c、 5dカ設けられている。カメラ l a、 lb、 lc、 Id力、 ら出力される画像信号 19a、 19b、 19c、 19dのそれぞれは、対応するバッファ 5a、 5 b、 5c、 5dに記'慮される。 The notfer 5 is a FIFO (First In First Out) type buffer memory that temporarily stores the image signal 19 output from the camera 1. As shown in the figure, notches 5a, 5b, 5c, and 5d are provided corresponding to the cameras la, lb, lc, and Id, respectively. The image signals 19a, 19b, 19c, and 19d output from the cameras l a, lb, lc, and Id force are recorded in the corresponding buffers 5a, 5b, 5c, and 5d.
[0043] また、バッファ 5a、 5b、 5c、 5dは、それぞれ、マクロブロックラインの画像信号を記 憶することができるバッファメモリを 2面備えているとする。 2面あるバッファメモリのうち 、あるタイミングにおいては、一方はカメラ 1からの画像信号 19の記憶(すなわち、画 像信号 19の書き込み)に用い、もう一方はビデオエンコーダ 3への出力(すなわち、 画像信号 19の読み出し)に用いる。そして、マクロブロックラインの画像信号 19の処 理の都度、書き込みに用いるバッファメモリと読み出しに用いるバッファメモリとを切り 替える。つまり、書き込みが完了したバッファメモリから画像信号 19を読み出すととも に、読み出しが完了したバッファメモリに画像信号 19を書き込む。 [0043] Also, it is assumed that the buffers 5a, 5b, 5c, and 5d each include two buffer memories that can store image signals of macroblock lines. Of the two buffer memories, at one timing, one is used for storing the image signal 19 from the camera 1 (that is, writing the image signal 19), and the other is output to the video encoder 3 (that is, the image). Used to read signal 19). Each time the image signal 19 of the macroblock line is processed, the buffer memory used for writing and the buffer memory used for reading are switched. That is, the image signal 19 is read from the buffer memory that has been written, and the image signal 19 is written to the buffer memory that has been read.
[0044] 1. 1. 2. 2 制御回路 6 [0044] 1. 1. 2. 2 Control circuit 6
制御回路 6は、バッファ 5のうち画像信号を読み出す対象となるバッファを巡回的に 切り替えてビデオエンコーダ 3へ画像信号を出力する処理と、出力対象となる画像信 号が切り替わるタイミングを示す切替制御信号を生成して、ビデオエンコーダの同期 信号入力端子に切替制御信号を出力する処理とを制御する。この切替制御信号の 出力により、ビデオエンコーダ 3では、入力される画像信号が切り替わつたものとして 各画像信号を区別して画像信号の取り込みを行う。 The control circuit 6 cyclically switches the buffer from which the image signal is to be read out of the buffer 5 and outputs the image signal to the video encoder 3, and the switching control signal indicating the timing at which the image signal to be output is switched. And processing for outputting a switching control signal to the synchronization signal input terminal of the video encoder. In response to the output of the switching control signal, the video encoder 3 distinguishes each image signal and captures the image signal on the assumption that the input image signal is switched.
[0045] 制御回路 6は、具体的には、カメラ la、 lb、 lc、 Idを同期させる同期信号 4を一の カメラから受信して、この同期信号に基づいて、バッファ 5のうち画像信号を読み出す
対象となるバッファを順に切り替える。 Specifically, the control circuit 6 receives the synchronization signal 4 for synchronizing the cameras la, lb, lc, and Id from one camera, and based on this synchronization signal, receives the image signal in the buffer 5. read out Switches the target buffer in order.
図 2は、制御回路 6の詳細な構成を示す図である。図 2に示すように、制御回路 6は 、カメラデータ取り込み制御部 31と、バッファ選択制御部 32と、同期信号生成部 33と 力 なる。 FIG. 2 is a diagram showing a detailed configuration of the control circuit 6. As shown in FIG. 2, the control circuit 6 includes a camera data capture control unit 31, a buffer selection control unit 32, and a synchronization signal generation unit 33.
[0046] (カメラデータ取り込み制御部 31) [0046] (Camera Data Import Control Unit 31)
カメラデータ取り込み制御部 31は、 2面備わっている各バッファメモリの、書き込み と読み出しの切り替えを制御する。この書き込みと読み出しの切り替えをバンク切り替 えという。すなわち、 2面構成のバッファメモリのうち一方を書き込み、もう一方を読み 出しに用いている状態から、バンク切り替えによって、書き込み用のバッファメモリが 読み出し用に切り替わり、読み出し用のバッファメモリが書き込み用に切り替わる。 The camera data capture control unit 31 controls switching between writing and reading in each buffer memory provided on the two surfaces. This switching between writing and reading is called bank switching. That is, from the state where one of the two-surface buffer memories is used for writing and the other is used for reading, the buffer memory for writing is switched to reading by switching the bank, and the buffer memory for reading is used for writing. Switch.
[0047] 図 2に示すように、カメラデータ取り込み制御部 31は、一のカメラから同期信号 4を 受信する。図 2では、カメラのピクセルクロックを CAM_PCLK4pとし、垂直同期信号を CAM_V_SYNC4vとし、水平同期信号を CAM_H_SYNC4hとして!/、る。 As shown in FIG. 2, the camera data capture control unit 31 receives the synchronization signal 4 from one camera. In Figure 2, the camera pixel clock is CAM_PCLK4p, the vertical sync signal is CAM_V_SYNC4v, and the horizontal sync signal is CAM_H_SYNC4h!
各カメラから出力される画像信号においてフィールドが切り替わるタイミングは、 CA M_V_SYNC4vにより検出することができる。そして、ラインの切り替わりは、 CAM.H-S YNC4hにより検出することができる。したがって、カメラデータ取り込み制御部 31は、 CAM_V_SYNC4vによりフィールドの切り替わりを検出することができ、 CAM_H_SYNC 4hにより、何ライン分の画像信号を受信したかを検知することができる。 The timing at which the field switches in the image signal output from each camera can be detected by CAM_V_SYNC4v. Line switching can be detected by CAM.H-S YNC4h. Therefore, the camera data capture control unit 31 can detect field switching by CAM_V_SYNC4v, and can detect how many lines of image signals have been received by CAM_H_SYNC 4h.
[0048] CAM_H-SYNC4hにより切替装置 2がマクロブロックラインの画像信号を受信したと 検知すると、バッファ 5のバッファメモリ 2面のうち一方にマクロブロックラインの画像信 号が記憶されていることとなるので、バンク切り替えが必要となる。カメラデータ取り込 み制御部 31は、バッファ 5に対してバッファ制御信号を出力してバッファ 5のバンク切 り替えを行う。このとき、バッファ制御信号をバッファ選択制御部 32へも出力する。 [0048] When CAM_H-SYNC4h detects that switching device 2 has received a macroblock line image signal, the macroblock line image signal is stored in one of the two buffer memory surfaces of buffer 5. Therefore, bank switching is required. The camera data capture control unit 31 outputs a buffer control signal to the buffer 5 to switch the bank of the buffer 5. At this time, the buffer control signal is also output to the buffer selection control unit 32.
[0049] (バッファ選択制御部 32) [0049] (Buffer selection control unit 32)
ノ ッファ選択制御部 32は、読み出し対象のバッファを指定する読み出し制御信号 を選択回路 7に出力することにより選択回路 7を制御して、各バッファから、順次、画 像信号を読み出してビデオエンコーダ 3の 1の入力インターフェースに出力する。 ノ ッファ選択制御部 32は、カメラデータ取り込み制御部 31からバッファ制御信号を
受け付ける。これにより、ノ ッファ 5a、 5b、 5c、 5dにはそれぞれマクロブロックラインの 画像信号が記憶されていることとなるので、バッファ 5の、カメラデータ取り込み制御 部 31によるバンク切り替えにより読み出し用となったバッファメモリからの読み出しを 開台すること力でさる。 The noffer selection control unit 32 controls the selection circuit 7 by outputting a read control signal for designating a buffer to be read to the selection circuit 7, and sequentially reads out the image signal from each buffer and outputs the video encoder 3 Output to the 1 input interface. The noffer selection control unit 32 receives the buffer control signal from the camera data capture control unit 31. Accept. As a result, since the image signals of the macro block lines are stored in the notifiers 5a, 5b, 5c, and 5d, the buffer data is read out by switching the bank by the camera data capturing control unit 31. It is the power to open the reading from the buffer memory.
[0050] 本実施形態では、まずバッファ 5aから読み出しを行い、続いてバッファ 5b、 5c、 5d と読み出していくこととする。この後、カメラデータ取り込み制御部 31からバッファ制御 信号を受け付けると、バンク切り替えにより読み出し用となったバッファメモリからの読 み出しを、バッファ 5aから順にバッファ 5b、 ノ ッファ 5c、バッファ 5dと行っていくことと する。すなわち、バッファ 5からの画像信号の読み出しの順序は予め決まっており、巡 回的に読み出しが行われる。なお、バッファ 5a、 5b、 5c、 5dから順にマクロブロックラ インの画像信号を読み出して出力するが、この読み出しは、切替装置 2がマクロプロ ックラインの画像信号を受信する期間内に終えることとする。 In the present embodiment, first, reading from the buffer 5a is performed, and then reading is performed from the buffers 5b, 5c, and 5d. After that, when a buffer control signal is received from the camera data capture control unit 31, reading from the buffer memory used for reading by bank switching is performed in order from the buffer 5a to the buffer 5b, the buffer 5c, and the buffer 5d. Let's go. That is, the order of reading image signals from the buffer 5 is determined in advance, and reading is performed cyclically. The macroblock line image signals are read out and output in order from the buffers 5a, 5b, 5c, and 5d, but this reading is completed within the period in which the switching device 2 receives the macroblock line image signals. .
[0051] なお、バッファ選択制御部 32は、例えばバッファ 5aの読み出しが終わったらバッフ ァ 5bの読み出しを開始するというように、バッファメモリのデータ蓄積量を監視して、 ノ ッファメモリからマクロブロックラインの画像信号の読み出しが完了するたびに次の ノ ッファの読み出しを行うよう、読み出し対象のバッファを指定した読み出し制御信号 を選択回路 7に出力する。 [0051] Note that the buffer selection control unit 32 monitors the amount of data stored in the buffer memory, for example, starts reading the buffer 5b after the reading of the buffer 5a is completed, and reads the macroblock line from the buffer memory. A read control signal designating the buffer to be read is output to the selection circuit 7 so that the next buffer is read each time image signal reading is completed.
[0052] ところで、上記読み出し制御信号が出力されるということは、切替装置 2からビデオ エンコーダ 3へと出力される画像信号が切り替わるということである。したがって、上記 読み出し制御信号が出力されるタイミングに基づいて、ビデオエンコーダ 3へ出力す る切替制御信号を生成すればよい。バッファ選択制御部 32は、読み出し制御信号を 出力するタイミングで同期信号生成部 33に所定の信号を出力する。 By the way, the output of the readout control signal means that the image signal output from the switching device 2 to the video encoder 3 is switched. Therefore, a switching control signal to be output to the video encoder 3 may be generated based on the timing at which the readout control signal is output. The buffer selection control unit 32 outputs a predetermined signal to the synchronization signal generation unit 33 at the timing of outputting the read control signal.
[0053] (同期信号生成部 33) [0053] (Synchronization signal generator 33)
同期信号生成部 33は、切替装置 2からビデオエンコーダ 3へ出力する画像信号が 切り替わるタイミングに基づいて切替制御信号を生成してビデオエンコーダ 3の 1の 入力インターフェースへ出力する。 The synchronization signal generation unit 33 generates a switching control signal based on the switching timing of the image signal output from the switching device 2 to the video encoder 3 and outputs the switching control signal to the 1 input interface of the video encoder 3.
図 2に示すように、同期信号生成部 33は、カウンタ 34を含んでおり、カウンタ 34に よりシステムクロック (システム CLK)の入力を受け付けている。同期信号生成部 33は
、 ノ^ファ選択制御部 32から、上述の所定の信号を受け付けると、バッファ選択制御 部 32によって読み出し対象のバッファ 5が切り替えられるのに要するクロック数を調 整してハイ(HI)レベルの信号とロー(LO)レベルの信号の出力を切り替える。 As shown in FIG. 2, the synchronization signal generation unit 33 includes a counter 34, and the counter 34 receives an input of a system clock (system CLK). Synchronization signal generator 33 When the above-mentioned predetermined signal is received from the node selection control unit 32, the buffer selection control unit 32 adjusts the number of clocks required for switching the buffer 5 to be read out to adjust the high (HI) level signal. And the output of the low (LO) level signal.
[0054] 具体的に切替制御信号の出力について説明する。同期信号生成部 33は、ビデオ エンコーダ 3の 1の入力インターフェースに画像信号を出力している状態においては 、ビデオエンコーダ 3の同期信号の入力端子、すなわち、垂直同期信号の入力端子 と水平同期信号の入力端子に、共にハイレベルの信号を出力する。画像信号を出力 していない状態においては、ローレベルの信号を出力する。なお、図 1では、切替制 御信号のうち、ビデオエンコーダ 3の垂直同期信号の入力端子に出力される信号を V -SYNC9、水平同期信号の入力端子に出力される信号を H-SYNC10としている。 [0054] The output of the switching control signal will be specifically described. When the image signal is output to one input interface of the video encoder 3, the synchronization signal generation unit 33 is connected to the synchronization signal input terminal of the video encoder 3, that is, the vertical synchronization signal input terminal and the horizontal synchronization signal. Both output high level signals to the input terminals. When the image signal is not output, a low level signal is output. In FIG. 1, among the switching control signals, the signal output to the vertical synchronization signal input terminal of the video encoder 3 is V-SYNC9, and the signal output to the horizontal synchronization signal input terminal is H-SYNC10. .
[0055] ノ ッファ選択制御部 32により読み出し対象のバッファ 5が切り替わると、同期信号生 成部 33は、バッファ選択制御部 32から出力される所定の信号を受けて、 V-SYNC9と H-SYNC10のレベルを共にローレベルにする。読み出し対象のバッファが切り替わる のに要する所定数のクロックをカウンタ 34によりカウントすると、出力している V-SYNC 9と H-SYNC10のレベルをハイにする。 [0055] When the buffer 5 to be read is switched by the noffer selection control unit 32, the sync signal generation unit 33 receives a predetermined signal output from the buffer selection control unit 32, and receives V-SYNC9 and H-SYNC10. Set both levels to low level. When the counter 34 counts the predetermined number of clocks required to switch the buffer to be read, the level of the output V-SYNC 9 and H-SYNC 10 is made high.
[0056] 要するに、同期信号生成部 33は、ノ ッファから画像信号を読み出してビデオェンコ ーダへと出力されている間はハイレベルの信号を出力し、読み出し対象のバッファ 5 が切り替わつている間は、ローレベルの信号を出力する。 In short, the synchronization signal generation unit 33 outputs a high-level signal while the image signal is read from the buffer and output to the video encoder, and while the buffer 5 to be read is switched. Outputs a low level signal.
1. 1. 2. 3 選択回路 7 1. 1. 2. 3 Selection circuit 7
選択回路 7は、制御回路 6のバッファ選択制御部 32から出力される読み出し制御 信号を受けて、バッファ 5a、 5b、 5c、 5dのうち、読み出し制御信号に指定されている バッファと接続する。 The selection circuit 7 receives the read control signal output from the buffer selection control unit 32 of the control circuit 6, and connects to the buffer designated as the read control signal among the buffers 5a, 5b, 5c, and 5d.
[0057] 選択回路 7は、接続しているバッファの、バンク切り替えにより読み出し用となってい るバッファメモリから画像信号を読み出す。読み出した画像信号を、ビデオェンコ一 ダ 3の入力インターフェースの、画像信号の入力端子に出力する。図 1では、切替装 置 2からビデオエンコーダ 3の画像信号の入力端子に出力される信号を DATA11と している。 [0057] The selection circuit 7 reads an image signal from the buffer memory that is used for reading by bank switching of the connected buffer. The read image signal is output to the image signal input terminal of the video encoder 3 input interface. In FIG. 1, the signal output from the switching device 2 to the image signal input terminal of the video encoder 3 is DATA11.
1. 1. 3 ビデオエンコーダ 3
ビデオエンコーダ 3は、 1の入力インターフェースにより複数の画像信号を受信し、 受信した画像信号それぞれを符号化する。上述のように、切替装置 2から V-SYNC9 と H-SYNC10がビデオエンコーダ 3の 1の入力インターフェースの、同期信号の入力 端子に出力される。また、 DATA11が画像信号の入力端子に出力される。ビデオェ ンコーダ 3は、この V-SYNC9により、 DATA11として入力される画像信号がカメラ 1の うちそれぞれどのカメラにより生成されたものかを区別する。区別した画像信号をそれ ぞれ符号化する。 1. 1. 3 Video encoder 3 The video encoder 3 receives a plurality of image signals through one input interface and encodes each received image signal. As described above, V-SYNC 9 and H-SYNC 10 are output from the switching device 2 to the input terminal of the synchronization signal of the 1 input interface of the video encoder 3. DATA11 is output to the image signal input terminal. With this V-SYNC9, the video encoder 3 distinguishes which of the cameras 1 has generated the image signal input as DATA11. Each distinct image signal is encoded.
[0058] 図 1に示すように、ビデオエンコーダ 3は、カメラ入力部 8と、害 ijり込みコントローラ 12 と、プロセッサ 13と、データ転送部 14と、画像符号化部 15と、メモリ 16とを備える。メ モリ 16は、入力画像領域 17と、符号化データ領域 18とを含む。 As shown in FIG. 1, the video encoder 3 includes a camera input unit 8, a harmful ij insertion controller 12, a processor 13, a data transfer unit 14, an image encoding unit 15, and a memory 16. Prepare. The memory 16 includes an input image area 17 and an encoded data area 18.
1. 1. 3. 1 カメラ入力部 8 1. 1. 3. 1 Camera input section 8
カメラ入力部 8は、同期信号の入力端子および画像信号の入力端子を備え、切替 装置 2から出力される V-SYNC9および H-SYNC10により画像信号のカメラの切り替 わりを検出する。 The camera input unit 8 includes a synchronization signal input terminal and an image signal input terminal, and detects switching of the image signal camera by the V-SYNC 9 and H-SYNC 10 output from the switching device 2.
[0059] 具体的には、カメラ入力部 8は、ビデオエンコーダ 3のピクセルクロックである PCLK2 1に同期して動作し、垂直同期信号の入力端子に入力される V-SYNC9の、ローから ハイへとエッジが立ち上がるタイミングを検出して割り込み信号 22を割り込みコント口 ーラ 12へ出力する。また、画像信号の入力端子に入力される DATA11を一時的に 記 fe、する。 [0059] Specifically, the camera input unit 8 operates in synchronization with PCLK21 which is the pixel clock of the video encoder 3, and changes from low to high of V-SYNC9 input to the vertical synchronization signal input terminal. When the edge rises, the interrupt signal 22 is output to the interrupt controller 12. In addition, DATA11 input to the image signal input terminal is temporarily recorded as fe.
1. 1. 3. 2 害 ijり込みコン卜ローラ 12 1. 1. 3. 2 Harmful ij penetration controller 12
割り込みコントローラ 12は、カメラ入力受付手段が出力する割り込み信号 22を受け 付けて、プロセッサ 13に割り込みを発生させ、割り込みハンドラを起動させる。 The interrupt controller 12 receives the interrupt signal 22 output from the camera input receiving means, causes the processor 13 to generate an interrupt, and activates the interrupt handler.
[0060] 1. 1. 3. 3 プロセッサ 13 [0060] 1. 1. 3. 3 Processor 13
プロセッサ 13は、所定のプログラムに基づいて動作することにより、ビデオェンコ一 ダ 3の処理を制御する。例えば、プロセッサ 13は、害 ijり込みコントローラ 12により割り 込みハンドラを起動して、カメラ入力部 8において受け付けた画像信号の、メモリ 16 での保存領域を決定する処理などを行う。 The processor 13 controls the processing of the video encoder 3 by operating based on a predetermined program. For example, the processor 13 activates an interrupt handler by the harmful ij interrupt controller 12 and performs a process of determining a storage area in the memory 16 of the image signal received by the camera input unit 8.
[0061] 1. 1. 3. 4 データ転送部 14
データ転送部 14は、カメラ入力部 8において DATA11として受け付けた画像信号を 、プロセッサ 13の割り込みハンドラによって決定された保存領域に従ってメモリ 16に 転送する。 [0061] 1. 1. 3. 4 Data transfer unit 14 The data transfer unit 14 transfers the image signal received as DATA 11 in the camera input unit 8 to the memory 16 according to the storage area determined by the interrupt handler of the processor 13.
1. 1. 3. 5 画像符号化部 15 1. 1. 3. 5 Image encoder 15
画像符号化部 15は、メモリ 16に記憶された画像信号を符号化する。 The image encoding unit 15 encodes the image signal stored in the memory 16.
[0062] 1. 1. 3. 6 メモリ 16 [0062] 1. 1. 3. 6 Memory 16
メモリ 16は、図 1に示すように、入力画像領域 17と符号化データ領域 18とを含んで いる。メモリ 16は、プロセッサ 13の制御により、切替装置 2から取り込んだ画像信号を 入力画像領域 17において記憶する。また、画像信号が符号化された符号化後のデ ータを符号化データ領域 18において記憶する。 As shown in FIG. 1, the memory 16 includes an input image area 17 and an encoded data area 18. The memory 16 stores the image signal captured from the switching device 2 in the input image area 17 under the control of the processor 13. The encoded data obtained by encoding the image signal is stored in the encoded data area 18.
[0063] なお、入力画像領域 17や符号化データ領域 18においては、画像信号ごとに保存 領域が予め定められて確保されていることとする。つまり、画像信号とメモリ上の保存 領域とが対応づけられて!/、ることとする。 [0063] In the input image area 17 and the encoded data area 18, a storage area is predetermined and secured for each image signal. In other words, the image signal and the storage area in the memory are associated with each other! /.
1. 2 動作 1.2 Operation
次に、動画像符号化システム 100の動作について説明する。 Next, the operation of the moving picture coding system 100 will be described.
[0064] 切替装置 2の動作は、上述の制御回路 6の構成において説明した通りである。 The operation of the switching device 2 is as described in the configuration of the control circuit 6 described above.
そこで、ビデオエンコーダ 3の動作について説明する。 Therefore, the operation of the video encoder 3 will be described.
上述のように、カメラ入力部 8が割り込み信号 22を出力すると、割り込みコントローラ 12によりプロセッサ 13に割り込みが発生し、割り込みハンドラが起動する。割り込み ハンドラは、割り込み信号 22の発生にかかる画像信号の、メモリ 16での保存領域を 算出する。 As described above, when the camera input unit 8 outputs the interrupt signal 22, the interrupt controller 12 generates an interrupt to the processor 13 and activates the interrupt handler. The interrupt handler calculates the storage area in the memory 16 of the image signal related to the generation of the interrupt signal 22.
[0065] 図 3は、プロセッサ 13において割り込みハンドラが行う処理を示すフローチャートで ある。 FIG. 3 is a flowchart showing processing performed by the interrupt handler in the processor 13.
害 |Jり込みハンドラは、 cam_numberと、 Linesをレジスタから読み出す(ステップ S 101) 。なお、 cam_numberはカメラを特定するために用いられ、 Linesは、マクロブロックライ ン分の画像信号が画像においてどの位置にあるかを特定するために用いられる。レ ジスタには、既にビデオエンコーダにおいて取り込みが行われたカメラおよび画像信 号の画像における位置を示す情報が cam_numberや Linesとして格納されている。
[0066] ここで、 cam_numberは、カメラの台数と対応しており、本実施形態ではカメラが 4台 であるため、 0〜3までの 4つの値によってカメラ la、 lb、 lc、 Idを特定している。つま り、 cam— number力 '0"であれ ίίカメラ laを示し、同様に、 cam— number力 で れ (ま カメラ lb、 cam— number力 ' 2"であれば'カメラ lc、 cam— number力 S"3"であれはカメラ Id を示す。また、画像信号は垂直同期信号によって 1フィールドごとに区切られるので、 1フィールドを 240ラインとして、本実施形態では、 Linesは、 "1"から" 15"までの値を とるものとする。例えば、ステップ S 101において、害 IJり込みハンドラによりレジスタから 読み出された値が、 cam.number = 1、 Lines = 1であれば、カメラ lbの画像が 1マクロ ブロックライン分(16ライン分)、既に取り込まれていることを示す。すなわち、この状 態では、害 IJり込みハンドラは、カメラ lcの、 1〜; 16ラインの画像信号をメモリ 16のどの 保存領域にぉレ、て保存するかを決定する。 Harm | J The handler inserts cam_number and Lines from the register (step S 101). Cam_number is used to specify the camera, and Lines is used to specify the position of the image signal for the macroblock line in the image. In the register, information indicating the position of the camera and the image signal already captured by the video encoder in the image is stored as cam_number and Lines. [0066] Here, cam_number corresponds to the number of cameras, and in this embodiment, there are four cameras. Therefore, the cameras la, lb, lc, and Id are specified by four values from 0 to 3. ing. That is, if the cam-number force is “0”, it indicates the ίί camera la. Similarly, if the cam-number force is “(camera lb, cam-number force is“ 2 ”, the camera lc, cam-number force is S "3" indicates the camera Id, and the image signal is divided for each field by the vertical sync signal, so that one field is 240 lines, and in this embodiment, Lines is "1" to "15". For example, if the value read from the register by the harmful IJ handler in step S 101 is cam.number = 1, Lines = 1, the image of camera lb is 1 macroblock line (16 lines) indicates that it has already been captured, that is, in this state, the harmful IJ insertion handler sends the image signal of 16 lines of Decide which storage area to save and save.
[0067] cam_numberと Linesをレジスタから読み出すと、害 ijり込みハンドラは、 cam_numberの 値を計算して更新する(ステップ S 103)。具体的には、ステップ S 101においてレジス タから読み出した cam_numberの値をインクリメントする。なお、レジスタから読み出した cam_numberのィ直力 '3"であれば'、 cam_numberのィ直を" 0"にする。これにより、 cam_nu mberの値力 保存領域を決定しょうとしている画像信号のカメラに対応したものとなる [0067] When cam_number and Lines are read from the register, the harmful ij entry handler calculates and updates the value of cam_number (step S103). Specifically, the value of cam_number read from the register in step S101 is incremented. If the cam_number read from the register is “3”, the cam_number is set to “0.” This allows the camera of the image signal to determine the value storage area of the cam_number. It becomes corresponding
〇 Yes
[0068] 割り込みハンドラは、 Linesの値を計算して更新する (ステップ S 105)。なお、画像信 号は、上述のようにカメラ laから Idの順に巡回的に切り替わるので、 Linesの値を更 新するのは、ステップ S 103において更新した cam_numberの値力 0"の場合である。 具体的には、害 ijり込みハンドラは、ステップ S 105において更新した cam_numberの値 力 0"であると、ステップ S 101においてレジスタから読み出した Linesの値をインクリメ ントする。なお、読み出した Linesの値が" 15"のとき、すなわち Linesの取り得る値の上 限値である場合は、 Linesの値を更新して" 1"とする。これにより、 Linesの値力 S、保存 領域を決定しょうとしている 1マクロブロック分の画像信号が画像においてどの位置に あるかを示すものとなる。 [0068] The interrupt handler calculates and updates the value of Lines (step S105). Since the image signal is cyclically switched in the order of the camera la to Id as described above, the value of Lines is updated when the value of cam_number updated in step S103 is 0 ". Specifically, the harmful ij entry handler increments the value of Lines read from the register in step S101 if the value of cam_number updated in step S105 is 0 ". When the read Lines value is “15”, that is, when the upper limit value of Lines is possible, the Lines value is updated to “1”. As a result, the value S of Lines and the position of the image signal for one macroblock whose storage area is to be determined are indicated in the image.
[0069] 害 ijり込みハンドラは、更新した cam_numberと Linesの値に基づいて、画像信号をメモ リ 16の入力画像領域 17のどのアドレス範囲に格納するかを算出する(ステップ S 107
)。例えば、カメラごとに保存領域のアドレス範囲が割り振られており、各カメラそれぞ れに所定数のフレーム分の保存領域が割り振られているとする。さらに、各カメラごと の保存領域において、フレーム単位で保存領域のアドレス範囲が定められていること とする。そして、 Linesの値により、さらにフレーム単位で定められている保存領域のァ ドレス範囲から、マクロブロックライン分の画像信号を保存するアドレス範囲を算出す る。要するにメモリアドレスを参照することで、画像信号がどのカメラと対応しているか 、さらに、どのラインの画像信号かを特定できるようにするとよい。 [0069] Based on the updated values of cam_number and Lines, the harmful ij insertion handler calculates the address range in the input image area 17 of the memory 16 (step S107). ). For example, a storage area address range is assigned to each camera, and a storage area for a predetermined number of frames is assigned to each camera. Furthermore, in the storage area for each camera, the address range of the storage area is defined in units of frames. Based on the value of Lines, an address range for storing the image signal for the macroblock line is calculated from the address range of the storage area determined in units of frames. In short, by referring to the memory address, it is preferable to be able to specify which camera the image signal corresponds to and which line of the image signal.
[0070] 害 ijり込みハンドラは、ステップ S 107において算出したアドレス範囲をデータ転送部 [0070] The harmful ij entry handler uses the address range calculated in step S107 as the data transfer unit.
14に設定する(ステップ S 109)。 Set to 14 (step S109).
また、割り込みハンドラは、画像信号の符号化に必要な情報を画像符号化部 15に 設定する(ステップ S 11 1)。画像信号の符号化に必要な情報とは、例えば符号化処 理後の符号化データの、符号化データ領域 18における保存領域や、フレームレート や、参照画像のアドレスなどである。 Further, the interrupt handler sets information necessary for encoding the image signal in the image encoding unit 15 (step S111). The information necessary for encoding the image signal is, for example, a storage area of the encoded data area 18 after the encoding process, a frame rate, a reference image address, and the like.
[0071] 害 ijり込みハンドラは、次の割り込み時に cam_numberと Linesの値を用いるために、 ca m_numberと Linesの値をレジスタに退避して(ステップ S I 13)、割り込みを終了する。 データ転送部 14は、カメラ入力部 8において取り込まれた画像信号を、入力画像領 域 17の、害 ijり込みハンドラによりステップ S 107で算出されたアドレス範囲に転送する [0071] In order to use the values of cam_number and Lines at the next interrupt, the harmful ij entry handler saves the values of cam_number and Lines in a register (step SI 13), and ends the interrupt. The data transfer unit 14 transfers the image signal captured by the camera input unit 8 to the address range calculated in step S107 by the harmful ij insertion handler in the input image region 17.
[0072] 画像符号化部 15は、 1マクロブロックライン分の画像信号がデータ転送部 14により 入力画像領域 17に画像信号が転送された時点で符号化処理を開始する。割り込み ハンドラによりステップ S I 11で設定された情報に基づ!/、て符号化処理を行い、符号 化後の符号化データを符号化データ領域 18に格納する。そして、カメラ入力の切り 替えタイミングに同期して、 1マクロブロックラインごとに、符号化する画像信号を切り 替える。なお、入力画像領域 17のアドレス範囲により各カメラの画像信号が区別され るのと同様に、符号化後の符号化データは、カメラごとに符号化データ領域 18にお ける保存領域が定まってレ、ることとする。これにより符号化後の符号化データをカメラ ごとに容易に区別することができる。 The image encoding unit 15 starts encoding processing when an image signal for one macroblock line is transferred to the input image area 17 by the data transfer unit 14. Based on the information set in step SI 11 by the interrupt handler, the encoding process is performed, and the encoded data after encoding is stored in the encoded data area 18. Then, in synchronization with the camera input switching timing, the image signal to be encoded is switched for each macroblock line. Similar to the case where the image signal of each camera is distinguished by the address range of the input image area 17, the encoded data after encoding is stored in the encoded data area 18 for each camera. I will do it. As a result, the encoded data after encoding can be easily distinguished for each camera.
[0073] このように動作する動画像符号化システム 100のタイミングチャートを、図 4に示す。
なお、同図では、画像信号 19a、 19b, 19c, 19dを、それぞれ CAM— DATA0、 CAM— DATA1、 CAM_DATA2、 CAM_DATA3としている。カメラ la、 lb、 lc、 Idをそれぞれ カメラ # 0、カメラ # 1、カメラ # 2、カメラ # 3とし、カメラ # 0等の下の数字は、画像に おけるマクロブロックライン分の画像信号の位置を示す。すなわち、同図において、 カメラ # 0等の下の数字" 1"は、;!〜 16ラインの画像信号を示し、数字" 2"は、 17〜3 2ラインの画像信号を示す。この画像信号が DATA11としてカメラ入力部 8に入力され [0073] FIG. 4 shows a timing chart of the moving picture coding system 100 that operates in this manner. In the figure, the image signals 19a, 19b, 19c, and 19d are CAM-DATA0, CAM-DATA1, CAM_DATA2, and CAM_DATA3, respectively. Cameras la, lb, lc, and Id are camera # 0, camera # 1, camera # 2, camera # 3, and the numbers below camera # 0 indicate the position of the image signal for the macroblock line in the image. Show. That is, in the figure, the number “1” under the camera # 0 etc. indicates an image signal of;! To 16 lines, and the number “2” indicates an image signal of 17 to 32 lines. This image signal is input to the camera input unit 8 as DATA11.
[0074] 図 5に、ビデオエンコーダ 3における符号化処理の開始タイミングを示す。 FIG. 5 shows the start timing of the encoding process in the video encoder 3.
図 5に示すように、各カメラの画像信号は、 DATA11としてカメラ入力部 8において、 図 5の「ビデオエンコーダ入力」に示すようにマクロブロックラインごとに入力される。そ して、入力された画像信号は、マクロブロックライン分が取り込まれた段階で、図 5の「 符号化処理」に示すように符号化処理が開始される。また、本実施形態では、各カメ ラがマクロブロックラインの画像信号を生成する間に、ビデオエンコーダ 3ではマクロ ブロックラインの画像信号が、カメラ 4つ分、入力されることとしている。これにより各力 メラの画像信号をリアルタイムに符号化することができる。 As shown in FIG. 5, the image signal of each camera is input as DATA 11 in the camera input unit 8 for each macroblock line as shown in “video encoder input” in FIG. Then, the input image signal is started to be encoded as shown in “Encoding process” in FIG. In this embodiment, the video encoder 3 inputs four macro block line image signals for each camera while each camera generates a macro block line image signal. As a result, the image signal of each camera can be encoded in real time.
[0075] 1. 3 まとめ [0075] 1. 3 Summary
上述の構成によると、ビデオエンコーダ 3においては、特別な信号線を追加すること なぐ複数カメラの画像を任意の単位で切り替えて取り込むことが可能となる。また、 フレーム単位よりも小さレ、サイズでの切替制御とすることで、バッファサイズを削減し、 また、符号化に力、かる遅延を低減することができる。 According to the above configuration, the video encoder 3 can switch and capture images from a plurality of cameras without adding a special signal line. In addition, by performing switching control with a frame size smaller than the frame unit, the buffer size can be reduced, and the coding delay can be reduced.
[0076] 2 実施の形態 2 [0076] 2 Embodiment 2
以下、本発明にかかる動画像符号化システムの、別の実施形態について説明する Hereinafter, another embodiment of the moving picture coding system according to the present invention will be described.
〇 Yes
2. 1 概要 2.1 Overview
本実施形態では、各カメラが互いに同期しているとは限らないものとする。すなわち 、実施の形態 1では、各カメラが同一の同期信号に基づいて動作していた力 本実 施形態ではこのような同一の同期信号に基づ!/、た動作を行って!/、な!/、ものとする。ま た、各カメラの画像サイズが異なることがあるものとする。
[0077] したがって、実施の形態 1のように、各カメラを巡回的に切り替えるのではなぐ各力 メラがマクロブロックラインの画像信号を出力した順にマクロブロックラインの画像信号 を切替装置 52から出力する。この際に、画像信号がどのカメラにより生成されたもの であるかなど、画像信号にかかる情報を付加信号として画像信号とともに切替装置 5 2からビデオエンコーダ 53の画像信号の入力端子へと出力する。そして、付加信号と 画像信号との区別ができるように、切替装置 52からビデオエンコーダ 53の同期信号 の入力端子に重畳タイミング信号を出力する。 In the present embodiment, it is assumed that the cameras are not always synchronized with each other. That is, in the first embodiment, each camera operates based on the same synchronization signal. In this embodiment, the operation is performed based on the same synchronization signal! /, ! / Also, the image size of each camera may be different. Accordingly, as in the first embodiment, the macroblock line image signals are output from the switching device 52 in the order in which each camera outputs the macroblock line image signals instead of cyclically switching the cameras. . At this time, information relating to the image signal, such as which camera generated the image signal, is output as an additional signal from the switching device 52 to the image signal input terminal of the video encoder 53 as an additional signal. Then, the superimposition timing signal is output from the switching device 52 to the synchronization signal input terminal of the video encoder 53 so that the additional signal and the image signal can be distinguished.
[0078] なお、以下の説明では、実施の形態 1と異なる点を中心に説明する。 [0078] Note that, in the following description, differences from Embodiment 1 will be mainly described.
2. 2 構成 2.2 Configuration
図 6は、実施の形態 2における動画像符号化システム 200の構成を示す機能ブロッ ク図である。 FIG. 6 is a functional block diagram showing the configuration of the moving picture coding system 200 according to the second embodiment.
2. 2. 1 カメラ 51 2.2.1 Camera 51
カメラ 51a、 51b、 51c、 51dは、実施の形態 2では互いに同期動作するような制御 がなされていないこととする。 In the second embodiment, the cameras 51a, 51b, 51c, and 51d are not controlled to operate synchronously with each other.
[0079] また、各カメラが撮影する動画像の画像サイズは、同一ではなく異なるものが含まれ ていることとする。例えば、すべてのカメラがそれぞれ異なる画像サイズの動画像を撮 像することとしてもよ!/、し、 V、くつかのカメラが画像サイズの大きレ、動画像(ある!/、は、 小さレ、動画像)を撮像することとしても良レ、。 [0079] Further, it is assumed that the image sizes of the moving images captured by the cameras are not the same but include different ones. For example, all cameras may record moving images of different image sizes! /, And V, some cameras may have large image sizes, moving images (some! / , Moving image) is also good.
また、各カメラはそれぞれ同期信号 4a、 4b、 4c、 4dを出力しており、各カメラの同 期信号力、切替装置 52の制御回路 56へ出力される。 Further, each camera outputs synchronization signals 4a, 4b, 4c, and 4d, which are output to the control circuit 56 of the switching device 52, and the synchronization signal power of each camera.
[0080] また、図 6に示すように、カメラ 51aをカメラ # 0とし、カメラ 51bをカメラ # 1とし、カメ ラ 51cをカメラ # 2とし、カメラ 51dをカメラ # 3としている。 Also, as shown in FIG. 6, camera 51a is camera # 0, camera 51b is camera # 1, camera 51c is camera # 2, and camera 51d is camera # 3.
2. 2. 2 切替装置 52 2.2.2 Switching device 52
切替装置 52は、バッファ 55と、制御回路 56と、選択回路 7とを備える。 The switching device 52 includes a buffer 55, a control circuit 56, and a selection circuit 7.
2. 2. 2. 1 ノ ッファ 55 2. 2. 2. 1 Noffer 55
ノ ッファ 55 (55a、 55b、 55c、 55d)は、各カメラに対応して配置される。各バッファ は実施の形態 1と同様に 2面構成のバッファメモリとするが、バッファメモリは各カメラ に対応したラインサイズの、マクロブロックラインの画像信号を記憶することができるも
のとする。 The koffa 55 (55a, 55b, 55c, 55d) is arranged corresponding to each camera. Each buffer is a two-sided buffer memory as in the first embodiment, but the buffer memory can store a macroblock line image signal having a line size corresponding to each camera. Let's say.
[0081] 2.2.2.2 制御回路 56 [0081] 2.2.2.2 Control circuit 56
図 7は、制御回路 56の詳細な構成を示す図である。図 7に示すように、制御回路 5 6は、カメラ #0データ取り込み制御部 71aと、カメラ #1データ取り込み制御部 71bと 、カメラ #2データ取り込み制御部 71cと、カメラ #3データ取り込み制御部 71dと、バ ッファ選択制御部 72と、同期信号生成部 73と、カウンタ 74と、付加情報生成部 75と 力、らなる。なお、以下、カメラ #0データ取り込み制御部 71aと、カメラ #1データ取り 込み制御部 71bと、カメラ #2データ取り込み制御部 71cと、カメラ #3データ取り込 み制御部 71dとをひとまとめにして「カメラ #0データ取り込み制御部 71a等」というこ と力 sある。 FIG. 7 is a diagram showing a detailed configuration of the control circuit 56. As shown in FIG. 7, the control circuit 56 includes a camera # 0 data capture control unit 71a, a camera # 1 data capture control unit 71b, a camera # 2 data capture control unit 71c, and a camera # 3 data capture control unit. 71d, a buffer selection control unit 72, a synchronization signal generation unit 73, a counter 74, and an additional information generation unit 75. Hereinafter, the camera # 0 data capture control unit 71a, the camera # 1 data capture control unit 71b, the camera # 2 data capture control unit 71c, and the camera # 3 data capture control unit 71d are collectively shown. a call and power s referred to as a "camera # 0 data capture control unit 71a, etc.".
[0082] (カメラ #0データ取り込み制御部 71a等) [0082] (Camera # 0 data capture control unit 71a, etc.)
図 7では、カメラ #0データ取り込み制御部 71aは、カメラ #0と対応している。カメラ #1データ取り込み制御部 71bは、カメラ #1と対応している。同様に、カメラ #2デー タ取り込み制御部 71cは、カメラ #2と対応し、カメラ #3データ取り込み制御部 71d はカメラ #3と対応している。 In FIG. 7, the camera # 0 data acquisition control unit 71a corresponds to the camera # 0. The camera # 1 data acquisition control unit 71b corresponds to the camera # 1. Similarly, the camera # 2 data capture control unit 71c corresponds to the camera # 2, and the camera # 3 data capture control unit 71d corresponds to the camera # 3.
[0083] 実施の形態 1のカメラデータ取り込み制御部 31と同様に、カメラ #0データ取り込み 制御部 71a等は、マクロブロックラインの画像信号を記憶するごとに、それぞれ対応 するバッファにバッファ制御信号を出力してバンク切り替えを行う。このとき、カメラ #0 データ取り込み制御部 71a等は、バッファ制御信号をバッファ選択制御部 72にも出 力する。したがってバッファ選択制御部 72にはカメラ #0データ取り込み制御部 71a 、カメラ #1データ取り込み制御部 71b、カメラ #2データ取り込み制御部 71c、カメラ #3データ取り込み制御部 71dからそれぞれバッファ制御信号を受け付ける。 [0083] Similar to the camera data capture control unit 31 of the first embodiment, the camera # 0 data capture control unit 71a and the like store the buffer control signal in the corresponding buffer each time the image signal of the macroblock line is stored. Output and perform bank switching. At this time, the camera # 0 data capture control unit 71a and the like also output a buffer control signal to the buffer selection control unit 72. Therefore, the buffer selection control unit 72 receives buffer control signals from the camera # 0 data capture control unit 71a, the camera # 1 data capture control unit 71b, the camera # 2 data capture control unit 71c, and the camera # 3 data capture control unit 71d. .
[0084] また、図 7では、各カメラの同期信号 4を、カメラ #0については、ピクセルクロック 4a — pを CAM— PCLK0、垂直同期信号 4a— vを CAM— V_SYNC0、水平同期信号 4a— h を CAM_H-SYNCOとしている。他のカメラについても、同様に、ピクセルクロックについ ては"— P"、垂直同期信号については"—v"、水平同期信号については"— h〃をそ れぞれのカメラの同期信号の参照符号 (4b、 4c、 4d)に付加して示している。 [0084] Also, in FIG. 7, the synchronization signal 4 of each camera is used. For the camera # 0, the pixel clock 4a — p is CAM—PCLK0, the vertical synchronization signal 4a—v is CAM—V_SYNC0, and the horizontal synchronization signal 4a—h Is CAM_H-SYNCO. Similarly, for other cameras, refer to “—P” for the pixel clock, “—v” for the vertical sync signal, and “—h” for the horizontal sync signal. It is added to the reference numerals (4b, 4c, 4d).
[0085] (バッファ選択制御部 72)
ノ ッファ選択制御部 72は、カメラ # 0データ取り込み制御部 71a等からそれぞれバ ッファ制御信号を受け付ける。受け付けた順にバッファ 55のうち出力対象となるバッ ファを選択するよう読み出し制御信号を選択回路 7に出力する。 [0085] (Buffer Selection Control Unit 72) The buffer selection control unit 72 receives buffer control signals from the camera # 0 data acquisition control unit 71a and the like. A read control signal is output to the selection circuit 7 so as to select a buffer to be output from the buffer 55 in the order received.
なお、バッファ選択制御部 72は、実施の形態 1と同様に、バッファメモリのデータ蓄 積量を監視しており、バッファメモリからマクロブロックラインの画像信号の読み出しが 完了するたびに次のバッファの読み出しを行うよう、読み出し対象のバッファを指定し て読み出し制御信号を選択回路 7に出力する。また、上記読み出し制御信号が出力 されるタイミングで、同期信号生成部 73に所定の信号を出力する。 As in the first embodiment, the buffer selection control unit 72 monitors the amount of data stored in the buffer memory, and whenever reading of the image signal of the macroblock line from the buffer memory is completed, the buffer selection control unit 72 A read control signal is output to the selection circuit 7 by designating a buffer to be read so that reading is performed. In addition, a predetermined signal is output to the synchronization signal generation unit 73 at the timing when the read control signal is output.
[0086] なお、バッファ選択制御部 72は、各カメラからバッファ制御信号を受け付けた回数 や、カメラ # 0データ取り込み制御部 71a等がカメラからの垂直同期信号 4a— Vを受 け付けてから水平同期信号 4a— hを受け付けた回数に基づいて、各カメラそれぞれ について、 1フィールドの画像信号のうちどのラインまでがバッファ 55に入力されたか を管理している。この管理している情報に基づいて、付加情報生成部 75に付加信号 を生成させる。具体的には、バッファ選択制御部 72は、読み出し制御信号が選択回 路 7に出力されるタイミングで、バッファ選択制御部 72は、読み出し制御信号によつ てバッファ 55から読み出される画像信号に力、かる情報、つまり画像信号がどのカメラ により生成されたものであるかと、 1フィールドにおいてどのラインのものであるかを示 す情報と、画像信号のラインサイズを示す情報とを付加情報生成部 75に出力する。 It should be noted that the buffer selection control unit 72 receives the buffer control signal from each camera, and the horizontal after the camera # 0 data capture control unit 71a receives the vertical synchronization signal 4a-V from the camera. Based on the number of times the synchronization signal 4a—h is received, it is managed for each camera how many lines of the image signal in one field are input to the buffer 55. Based on the managed information, the additional information generation unit 75 generates an additional signal. Specifically, the buffer selection control unit 72 is responsive to the image signal read from the buffer 55 by the read control signal at the timing when the read control signal is output to the selection circuit 7. The additional information generation unit 75 includes information indicating which camera the image signal is generated, information indicating which line the image signal is in one field, and information indicating the line size of the image signal. Output to.
[0087] (付加情報生成部 75) [0087] (Additional Information Generation Unit 75)
付加情報生成部 75は、バッファ選択制御部 72から受け付けた各情報に基づいて 、付加信号を生成する。付加信号には、画像信号がどのカメラにより生成されたかを 示すカメラ識別番号情報 81と、画像信号がどのラインのものである力、を示すマクロブ ロックライン情報 82と、画像信号のラインサイズを示すラインサイズ情報 83とが含まれ る。カメラ識別番号情報 81は、カメラの台数に対応して 0〜3の 4つの値によってカメ ラを特定している。マクロブロックライン情報 82は、画像を 16ラインごとに区切り、画 像信号が 1フィールドの画像のうちどの部分を示すかを特定するものである。 16ライ ンごとに区切るので、マクロブロックライン情報 82は、;!〜 16ラインを" 1"、 17〜32ラ インを〃 2"などとして画像のうちのどの部分を示すかを特定する。ラインサイズ情報 83
は、例えば、ラインサイズと同値の値を格納する。例えばラインのサイズが 720pixelで あれば" 720"としてラインサイズを示す。 The additional information generation unit 75 generates an additional signal based on each piece of information received from the buffer selection control unit 72. The additional signal includes camera identification number information 81 indicating which camera generated the image signal, macroblock line information 82 indicating which line the image signal is for, and the line size of the image signal. Line size information 83 is included. The camera identification number information 81 identifies the camera by four values from 0 to 3 corresponding to the number of cameras. The macro block line information 82 divides the image into 16 lines and specifies which portion of the image of the image signal indicates one field. Since it is divided into 16 lines, the macro block line information 82 specifies which part of the image is indicated by “!” To “16” being “1”, “17 to 32” being “2”, etc. Size information 83 Stores, for example, a value equivalent to the line size. For example, if the line size is 720 pixels, the line size is indicated as “720”.
[0088] 付加情報生成部 75は、生成した付加信号を選択回路 7に出力する。 The additional information generation unit 75 outputs the generated additional signal to the selection circuit 7.
(同期信号生成部 73) (Synchronization signal generator 73)
同期信号生成部 73は、切替装置 2からビデオエンコーダ 3へ出力する画像信号が 切り替わるタイミングに基づいて重畳タイミング信号を生成して H-SYNC10によってビ デォエンコーダ 3の 1の入力インターフェースの同期信号の入力端子に出力する。 The synchronization signal generation unit 73 generates a superimposition timing signal based on the timing at which the image signal output from the switching device 2 to the video encoder 3 is switched, and the synchronization signal input terminal of the 1 input interface of the video encoder 3 by the H-SYNC 10 Output to.
[0089] 図 7に示すように、同期信号生成部 73は、カウンタ 74を含んでおり、カウンタ 74に よりシステムクロック (システム CLK)の入力を受け付けている。同期信号生成部 73は 、ノ^ファ選択制御部 72から、上述の所定の信号を受け付けると、選択回路 7により 付加信号が出力されるタイミングで、出力信号のハイとローを切り替える。具体的には 、付加信号は、カメラ識別番号情報とマクロブロックライン情報とラインサイズ情報とが 含まれるので、これら各情報が区別できるようにローとハイとを切り替える。図 8は、同 期信号生成部 73が出力する V-SYNC9および H-SYNC10を示す図である。画像信 号の前に付加信号としてカメラ識別番号情報 81とマクロブロックライン情報 82とライ ンサイズ情報 83とを含めて切替装置 2からビデオエンコーダ 3へと DATA11が出力さ れる。この DATA11におけるカメラ識別番号情報 81とマクロブロックライン情報 82とラ インサイズ情報 83との境界のタイミングにおいて、同期信号生成部 73は、 H-SYNC1 0として出力する信号のローとハイを切り替える。本実施形態では、ビデオエンコーダ 3へのある画像信号の出力が終わると V-SYNC9が立ち下がり、その後、画像信号が 切り替わるタイミングにおいて、 V-SYNC9が立ち上がる。そして、この V-SYNC9が口 一になつている期間内に、 H-SYNC10を、図 8に示すようにローにしたりハイにしたり する。これにより、付加信号の出力タイミングを V-SYNC9と H-SYNC10によりビデオ エンコーダ 3に通知することができる。 As shown in FIG. 7, the synchronization signal generator 73 includes a counter 74, and the counter 74 accepts an input of a system clock (system CLK). When the synchronization signal generation unit 73 receives the above-described predetermined signal from the filter selection control unit 72, the synchronization signal generation unit 73 switches the output signal between high and low at the timing when the selection circuit 7 outputs the additional signal. Specifically, since the additional signal includes camera identification number information, macroblock line information, and line size information, the signal is switched between low and high so that these pieces of information can be distinguished. FIG. 8 is a diagram showing V-SYNC9 and H-SYNC10 output by the synchronization signal generation unit 73. As shown in FIG. DATA11 is output from the switching device 2 to the video encoder 3 including camera identification number information 81, macroblock line information 82, and line size information 83 as additional signals before the image signal. At the timing of the boundary between the camera identification number information 81, the macroblock line information 82, and the line size information 83 in the DATA 11, the synchronization signal generation unit 73 switches between a low signal and a high signal output as H-SYNC10. In the present embodiment, V-SYNC9 falls when the output of a certain image signal to the video encoder 3 is finished, and then V-SYNC9 rises at the timing when the image signal is switched. Then, during the period when this V-SYNC9 is speaking, H-SYNC10 is set to low or high as shown in Fig.8. As a result, the output timing of the additional signal can be notified to the video encoder 3 by V-SYNC9 and H-SYNC10.
[0090] なお、画像信号は V-SYNC9と H-SYNC10が共に立ち上がつている期間において 出力されるため、画像信号がまだ出力されておらず、出力を新たに開始する場合は 、 V-SYNC9と H-SYNC10が共に立ち下がっている状態である。そのため、図 8に示 すように、 V-SYNC9が立ち下がったままの状態で H-SYNC10をハイにし、その後 H-S
YNC10が立ち下がった時点から付加信号が開始することとする。 [0090] Since the image signal is output during the period when both V-SYNC9 and H-SYNC10 are rising, the image signal has not been output yet, and when output is newly started, V-SYNC9 Both SYNC9 and H-SYNC10 are falling. Therefore, as shown in Figure 8, with V-SYNC9 falling, H-SYNC10 is brought high and then HS The additional signal starts when YNC10 falls.
[0091] 2. 2. 2. 3 選択回路 7 [0091] 2. 2. 2. 3 Selection Circuit 7
選択回路 7は、制御回路 56のバッファ選択制御部 32から出力される読み出し制御 信号を受けて、読み出し制御信号に指定されているバッファと接続する。また、付加 情報生成部 75と接続しており、付加情報を受け付ける。 The selection circuit 7 receives the read control signal output from the buffer selection control unit 32 of the control circuit 56, and connects to the buffer specified by the read control signal. Further, it is connected to the additional information generation unit 75 and receives additional information.
選択回路 7は、付加情報生成部 75から受け付けた付加信号と、接続しているバッフ ァメモリから読み出した画像信号とを DATA11としてビデオエンコーダ 3に出力する。 このとき、選択回路 7は、付加信号を先に出力し、続けて画像信号を出力することと する。 The selection circuit 7 outputs the additional signal received from the additional information generation unit 75 and the image signal read from the connected buffer memory to the video encoder 3 as DATA11. At this time, the selection circuit 7 outputs the additional signal first and then outputs the image signal.
[0092] 2. 2. 3 ビデオエンコーダ 53 [0092] 2.2.3 Video encoder 53
次に、ビデオエンコーダ 53の構成について説明する。 Next, the configuration of the video encoder 53 will be described.
2. 2. 3. 1 画像切替部 58 2. 2. 3. 1 Image selector 58
図 6に示すように、画像切替部 58は、カメラ入力部 8に含まれる。画像切替部 58は 、 V-SYNC9と H-SYNC10とに基づいて、 DATA11に重畳されている付加信号を検出 し、付加信号に含まれるカメラ識別番号情報 81とマクロブロックライン情報 82とライン サイズ情報 83を抽出してレジスタに格納する。 As shown in FIG. 6, the image switching unit 58 is included in the camera input unit 8. Based on V-SYNC9 and H-SYNC10, the image switching unit 58 detects an additional signal superimposed on DATA11, and includes camera identification number information 81, macroblock line information 82, and line size information included in the additional signal. 83 is extracted and stored in the register.
[0093] 具体的には、画像切替部 58は、図 8に示すように、 V-SYNC9が立ち下がっている 状態で H-SYNC9のローとハイの変化を検出して DATA11から付加信号を検出する。 また、画像切替部 58は、 V-SYNC9の立ち上がりを検出して割り込み信号 22を割り 込みコントローラ 12へ出力する。 [0093] Specifically, as shown in Fig. 8, the image switching unit 58 detects a change between H-SYNC9 low and high while V-SYNC9 is falling, and detects an additional signal from DATA11. To do. Further, the image switching unit 58 detects the rising edge of V-SYNC 9 and outputs the interrupt signal 22 to the interrupt controller 12.
なお、ビデオエンコーダ 3のその他の構成要素については実施の形態 1と同様であ るため説明を省略する。 Since the other components of the video encoder 3 are the same as those in the first embodiment, the description thereof is omitted.
[0094] 2. 3 動作 [0094] 2.3 Operation
次に、動画像符号化システム 200の動作につ!/、て説明する。 Next, the operation of the moving picture coding system 200 will be described.
切替装置 52の動作は、上述の制御回路 56の構成において説明した通りである。 そこで、ビデオエンコーダ 53の動作について説明する。 The operation of the switching device 52 is as described in the configuration of the control circuit 56 described above. Therefore, the operation of the video encoder 53 will be described.
上述のように、カメラ入力部 8の画像切替部 58が割り込み信号 22を出力すると、割 り込みコントローラ 12によりプロセッサ 13に割り込みが発生し、割り込みハンドラが起
動する。割り込みハンドラは、割り込み信号 22の発生に力、かる画像信号をメモリ 16の 入力画像領域 17のどのアドレス範囲に保存するかを、画像切替部 58が保持してい るカメラ識別番号情報 81やマクロブロックライン情報 82などに基づいて算出する。 As described above, when the image switching unit 58 of the camera input unit 8 outputs the interrupt signal 22, an interrupt is generated in the processor 13 by the interrupt controller 12, and the interrupt handler is started. Move. The interrupt handler has the power to generate the interrupt signal 22 and the address range in the input image area 17 of the memory 16 where the image signal is stored is stored in the camera identification number information 81 and the macro block stored in the image switching unit 58. Calculated based on line information 82 and the like.
[0095] 図 9は、実施の形態 2における、プロセッサ 13において割り込みハンドラが行う処理 を示すフローチャートである。 FIG. 9 is a flowchart showing processing performed by the interrupt handler in the processor 13 according to the second embodiment.
割り込みハンドラは、画像切替部 58によりレジスタに格納されたカメラ識別番号情 報 81とマクロブロックライン情報 82とラインサイズ情報 83とを、当該レジスタから読み 出す (ステップ S201)。 The interrupt handler reads the camera identification number information 81, macroblock line information 82, and line size information 83 stored in the register by the image switching unit 58 from the register (step S201).
[0096] 割り込みハンドラは、読み出したカメラ識別番号情報 81とマクロブロックライン情報 8 2とラインサイズ情報 83とに基づいて、画像信号をメモリ 16の入力画像領域 17のど のアドレス範囲に格納するかを算出する(ステップ S203)。例えば、実施の形態 1と 同様に、メモリアドレスと画像信号がどのカメラに対応しどのラインに当たるかとを対応 づけることとする。なお、取り込んだ画像信号のデータの大きさはラインサイズによつ て変わってくるため、アドレス範囲の算出にはラインサイズ情報 83も用いる。 [0096] Based on the read camera identification number information 81, macroblock line information 82, and line size information 83, the interrupt handler determines in which address range the input image area 17 of the memory 16 stores the image signal. Calculate (step S203). For example, as in the first embodiment, it is assumed that the memory address and the image signal correspond to which camera and which line. Since the size of the captured image signal data varies depending on the line size, the line size information 83 is also used to calculate the address range.
[0097] 害 ijり込みハンドラは、ステップ S203において算出したアドレス範囲をデータ転送部 14に設定する(ステップ S205)。 The harmful ij entry handler sets the address range calculated in step S203 in the data transfer unit 14 (step S205).
また、割り込みハンドラは、画像信号の符号化に必要な情報を画像符号化部 15に 設定して (ステップ S207)、割り込みを終了する。 Further, the interrupt handler sets information necessary for encoding the image signal in the image encoding unit 15 (step S207), and ends the interrupt.
以下、実施の形態 1と同様に、カメラ入力部 8において取り込まれた画像信号力 デ ータ転送部 14により、割り込みハンドラによりステップ S203で算出されたアドレス範 囲に転送される。また、画像符号化部 15が、 1マクロブロックライン分の画像信号が データ転送部 14により入力画像領域 17に転送された時点で符号化処理を開始する Thereafter, as in the first embodiment, the image signal force data transfer unit 14 captured by the camera input unit 8 transfers the image data to the address range calculated in step S203 by the interrupt handler. Further, the image encoding unit 15 starts the encoding process when the image signal for one macroblock line is transferred to the input image area 17 by the data transfer unit 14.
[0098] このように動作する動画像符号化システムのタイミングチャートを、図 10に示す。な お、同図では、まず、カメラ # 0、カメラ # 1、カメラ # 3、カメラ # 2、 · ·の順にマクロブ ロックラインの画像信号がビデオエンコーダ 53に取り込まれている。同図では、 DAT Al 1には付加信号と画像信号との両方が含まれて!/、ることとして!/、る。付加信号と画 像信号との境界で V-SYNC9が立ち上がり、これにより割り込み信号 22が出力される
[0099] 図 11に、ビデオエンコーダ 53における符号化処理の開始タイミングを示す。 [0098] FIG. 10 shows a timing chart of the moving picture coding system operating in this way. In the figure, first, the video signal of the macro block line is taken into the video encoder 53 in the order of camera # 0, camera # 1, camera # 3, camera # 2,. In the figure, DAT Al 1 includes both an additional signal and an image signal! /, That is! /. V-SYNC9 rises at the boundary between the additional signal and the image signal, and interrupt signal 22 is output. FIG. 11 shows the start timing of the encoding process in the video encoder 53.
図 11に示すように、各カメラの画像信号はマクロブロックラインごとに取り込まれる。 ビデオエンコーダ 3は、「ビデオエンコーダ入力」に示すようにマクロブロックライン分 の画像信号が取り込まれた段階で、「符号化処理」に示すように符号化処理を開始 する。 As shown in FIG. 11, the image signal of each camera is captured for each macroblock line. The video encoder 3 starts the encoding process as shown in the “encoding process” when the image signal for the macroblock line is taken in as shown in the “video encoder input”.
[0100] 2. 4 まとめ [0100] 2.4 Summary
上述の構成によると、ビデオエンコーダ 53の、垂直同期信号の入力端子と水平同 期信号の入力端子を用いて 2つの信号の組み合わせを利用することで、付加信号の 位置および付加信号における各情報の境界を示すことができ、特別な信号線をビデ ォエンコーダ 53に追加することなぐ複数のカメラの画像を任意の単位で切り替えて 取り込むことができる。また、各カメラが同期動作していなくとも上述の画像信号の取 り込みを行うことができる。 According to the above configuration, the position of the additional signal and the position of each information in the additional signal can be obtained by using the combination of the two signals using the vertical synchronization signal input terminal and the horizontal synchronization signal input terminal of the video encoder 53. The boundary can be indicated, and images from multiple cameras can be switched and captured in arbitrary units without adding special signal lines to the video encoder 53. In addition, the above-described image signal can be captured even if each camera is not operating synchronously.
[0101] 3 実施の形態 3 [0101] 3 Embodiment 3
図 12は、本発明の実施の形態 3における動画像符号化システム 300の構成を示す 図である。 FIG. 12 shows a configuration of moving picture coding system 300 according to Embodiment 3 of the present invention.
動画像符号化システム 300は、複数カメラの動画像を符号化し、ネットワークを介し て伝送し、符号化データをデコードしてモニタに表示する。例えば監視カメラシステム である。カメラ 91a, 91b, 91c, 91d、カメラの画像を圧縮符号化するエンコーダ装置 92、圧縮符号化したデータをネットワーク 94を介して送信する伝送装置 93、ネットヮ ーク 94から圧縮符号化したデータを受信する受信装置 95、受信した符号化データ をデコードするデコーダ装置 96、デコードした動画像を表示するモニタ 97で構成す る。この動画像符号化システム 300のエンコーダ装置 92は、図 1に示す切替装置 2 およびビデオエンコーダ 3の組み合わせ、または図 6に示す切替装置 52およびビデ ォエンコーダ 53の組み合わせと同様の構成であるとする。 The moving image encoding system 300 encodes moving images from a plurality of cameras, transmits them via a network, decodes the encoded data, and displays them on a monitor. For example, a surveillance camera system. Cameras 91a, 91b, 91c, 91d, encoder device 92 that compresses and encodes camera images, transmission device 93 that transmits the compressed and encoded data over network 94, and data that is compressed and encoded from network 94 Receiving device 95, decoding device 96 for decoding the received encoded data, and monitor 97 for displaying the decoded moving image. The encoder device 92 of the moving image coding system 300 has the same configuration as the combination of the switching device 2 and the video encoder 3 shown in FIG. 1 or the combination of the switching device 52 and the video encoder 53 shown in FIG. .
[0102] このような構成において、伝送装置 93は、エンコーダ装置 92においてマクロブロッ クラインの画像信号が符号化されるたび、符号化後の符号化データを、フレームより も小さい単位、例えばマクロブロックライン単位で受信装置 95に伝送する。このとき、
符号化データがどのカメラのデータによるものである力、、画像においてどのラインを示 すかなどの情報をヘッダとして付加して符号化データを伝送する。 [0102] In such a configuration, every time the image signal of the macroblock line is encoded in the encoder device 92, the transmission device 93 converts the encoded data after encoding into a unit smaller than the frame, for example, the macroblock line. The data is transmitted to the receiving device 95 in units. At this time, The encoded data is transmitted by adding information such as the power that the encoded data is based on which camera data and which line is indicated in the image as a header.
[0103] 受信装置 95は、フレームよりも小さい単位で伝送される符号化データを受信してデ コーダ装置 96へ出力する。 [0103] Receiving device 95 receives encoded data transmitted in units smaller than a frame and outputs the encoded data to decoder device 96.
デコーダ装置 96は、受信装置 95が受信した符号化データをデコードする。このとき 、ヘッダとして付加されている情報を参照して、デコード後のデータのメモリ上の格納 領域を決定する。例えば、メモリアドレスと、デコード後のデータがどのカメラのもので あるか、画像のどのラインのものかとが対応するようにメモリ上の格納領域を決定する 。デコーダ装置 96は、デコード後のデータをモニタ 97へ出力する。 The decoder device 96 decodes the encoded data received by the receiving device 95. At this time, referring to the information added as a header, the storage area of the decoded data in the memory is determined. For example, the storage area on the memory is determined so that the memory address corresponds to which camera the decoded data belongs to, and which line in the image. The decoder device 96 outputs the decoded data to the monitor 97.
[0104] 力、かる構成によれば、フレーム単位より小さいサイズでの切り替え制御とすることで 、符号化に係る遅延を低減することができるため、画像伝送における遅延を低減する こと力 Sでさる。 [0104] According to the above-described configuration, since the switching control with a size smaller than the frame unit can be performed, the delay related to encoding can be reduced. Therefore, the delay in image transmission can be reduced with the force S. .
4 補足 4 Supplement
以上のように本発明の実施の形態について説明してきた力 S、本発明は上述の構成 に限られない。 As described above, the force S described in the embodiment of the present invention, the present invention is not limited to the above-described configuration.
[0105] 4. 1 カメラ 1 [0105] 4.1 Camera 1
上述の実施の形態 1では、カメラ 1は、一のカメラが同期信号 4を他のカメラに出力 することにより、カメラ la、 lb、 lc、 Idが互いに同期して動作することとして説明した。 カメラ la、 lb、 lc、 Idを同期させる方法はこれに限らない。例えば、カメラ 1が外部の 装置 (例えば切替装置 2)から同期信号を受け付けることでカメラ la、 lb、 lc、 Idが 同期するようにしてもよい。 In the first embodiment described above, the camera 1 is described as one camera outputs the synchronization signal 4 to the other camera, so that the cameras la, lb, lc, and Id operate in synchronization with each other. The method of synchronizing the cameras la, lb, lc, and Id is not limited to this. For example, the cameras la, lb, lc, and Id may be synchronized when the camera 1 receives a synchronization signal from an external device (for example, the switching device 2).
[0106] 4. 2 バッファメモリの構成 [0106] 4.2 Configuration of buffer memory
上述の実施の形態では、バッファ 5の 2面構成のバッファメモリのサイズを 16ライン 分(マクロブロックライン分)とした力 S、これに限らず任意のサイズでよい。また、 2面構 成としたが、入力と出力とを同時に制御できる構成であれば、このような構成に限る必 要はない。 In the embodiment described above, the force S with the size of the buffer memory having the two-surface configuration of the buffer 5 set to 16 lines (macroblock line) is not limited to this, and may be any size. In addition, although the two-plane configuration is adopted, it is not necessary to limit to such a configuration as long as the input and the output can be controlled simultaneously.
[0107] 4. 3 画像信号の出力の単位 [0107] 4.3 Image signal output unit
上述の実施の形態では、切替装置 2や切替装置 52は、符号化の単位となるマクロ
ブロックラインの画像信号を出力するごとに画像信号を切り替えることとしていたが、 これに限らず任意のライン分の画像信号を出力することとしてもよい。例えば、マクロ ブロックラインの倍数分の画像信号を出力するごとに画像信号を切り替えても良い。 また、マクロブロックラインよりも小さいライン数で画像信号を切り替えても良い。ただ し、マクロブロックラインよりも小さい単位で画像信号を切り替える場合、画像信号の 切り替え時にプロセッサ 13に割り込みを発生させているため、切り替え頻度が高くな ると、プロセッサ 13のオーバヘッドが大きくなつて処理の効率が下がる点に留意するIn the above-described embodiment, the switching device 2 and the switching device 52 are macros that are units of encoding. The image signal is switched every time the image signal of the block line is output. However, the present invention is not limited to this, and the image signal for an arbitrary line may be output. For example, the image signal may be switched every time an image signal corresponding to a multiple of the macro block line is output. Further, the image signal may be switched with a smaller number of lines than the macroblock lines. However, if the image signal is switched in units smaller than the macroblock line, the processor 13 is interrupted when the image signal is switched, so if the switching frequency increases, the overhead of the processor 13 will increase. Note that the efficiency of
〇 Yes
[0108] 4. 4 切替制御信号 [0108] 4.4 Switching control signal
なお、実施の形態 1では、同期信号生成部 33は、 V-SYNC9と H-SYNC10とを共に ハイレベルにしたりローレベルにしたりすることとしたが、 V-SYNC9と H-SYNC10を共 にハイやローにする必要はなぐ V-SYNC9と H-SYNC10のうちいずれか一方のみを 用いて画像信号の切り替わりを示すこととしてもよい。なお、例えば H-SYNC10のみ を用いて画像信号の切り替わりを示すこととする場合、ビデオエンコーダ 3は、 H-SYN C10により、 DATA11として入力される画像信号がそれぞれどのカメラにより生成され たものかを区別するとよい。 In the first embodiment, the synchronization signal generation unit 33 sets both V-SYNC9 and H-SYNC10 to high level or low level, but V-SYNC9 and H-SYNC10 are both set to high level. It is also possible to indicate the switching of the image signal using only one of V-SYNC9 and H-SYNC10. For example, when only the H-SYNC10 is used to indicate the switching of the image signal, the video encoder 3 uses which camera the image signal input as DATA11 is generated by the H-SYN C10. It is good to distinguish.
[0109] 4. 5 その他の補足 [0109] 4.5 Other supplements
(1)上記の各装置は、具体的には、マイクロプロセッサ、 ROM、 RAM,ハードデイス クユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータ システムである。前記 RAM又は前記ハードディスクユニットには、コンピュータプログ ラムが記憶されている。前記マイクロプロセッサ力 前記コンピュータプログラムに従つ て動作することにより、各装置は、その機能を達成する。ここで、コンピュータプロダラ ムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが 複数個組み合わされて構成されたものである。 (1) Each of the above devices is specifically a computer system that includes a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. Microprocessor power Each device achieves its functions by operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
[0110] なお、各装置は、マイクロプロセッサ、 ROM、 RAM,ハードディスクユニット、デイス プレイユニット、キーボード、マウスなどの全てを含むコンピュータシステムに限らず、 これらの一部から構成されて!/、るコンピュータシステムであってもよ!/、。 [0110] Note that each device is not limited to a computer system including all of a microprocessor, ROM, RAM, hard disk unit, display unit, keyboard, mouse, and the like. Even a system! /
(2)上記の各装置を構成する構成要素の一部又は全部は、 1個のシステム LSI (Larg
e Scale Integration:大規模集積回路)から構成されているとしてもよい。システム LSI は、複数の構成部を 1個のチップ上に集積して製造された超多機能 LSIであり、具体 的には、マイクロプロセッサ、 ROM、 RAMなどを含んで構成されるコンピュータシス テムである。前記 RAMには、コンピュータプログラムが記憶されている。前記マイクロ プロセッサが、前記コンピュータプログラムに従って動作することにより、システム LSI は、その機能を達成する。 (2) Some or all of the components that make up each of the above devices are made up of a single system LSI (Larg e Scale Integration: large scale integrated circuit). A system LSI is an ultra-multifunctional LSI manufactured by integrating multiple components on a single chip. Specifically, it is a computer system that includes a microprocessor, ROM, RAM, and so on. is there. A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
(3)上記の各装置を構成する構成要素の一部又は全部は、各装置に脱着可能な IC カード又は単体のモジュールから構成されているとしてもよい。前記 ICカード又は前 記モジュールは、マイクロプロセッサ、 ROM、 RAM,などから構成されるコンビユー タシステムである。前記 ICカード又は前記モジュールは、上記の超多機能 LSIを含 むとしてもよい。マイクロプロセッサ力 コンピュータプログラムに従って動作することに より、前記 ICカード又は前記モジュールは、その機能を達成する。この ICカード又は このモジュールは、耐タンパ性を有するとしてもよ!/、。 (3) A part or all of the components constituting each of the above devices may be configured as an IC card that can be attached to and detached from each device or a single module. The IC card or the module is a computer system including a microprocessor, ROM, RAM, and the like. The IC card or the module may include the super multifunctional LSI described above. Microprocessor power By operating according to a computer program, the IC card or the module achieves its function. This IC card or module may be tamper resistant! /.
(4)本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンビユー タにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログ ラムからなるデジタル信号であるとしてもよ!/、。 (4) The present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program! /.
[0111] また、本発明は、前記コンピュータプログラム又は前記デジタル信号をコンピュータ 読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、 CD— RO M、 MO、 DVD, DVD-ROM, DVD -RAM, BD (Blu— ray Disc)、半導体メ モリなど、に記録したものとしてもよい。また、これらの記録媒体に記録されている前 記コンピュータプログラム又は前記デジタル信号であるとしてもよい。 [0111] The present invention also relates to a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD ( It may be recorded on a Blu-ray Disc) or semiconductor memory. Further, the present invention may be the computer program or the digital signal recorded on these recording media.
[0112] また、本発明は、前記コンピュータプログラム又は前記デジタル信号を、電気通信 回線、無線又は有線通信回線、インターネットを代表とするネットワーク、データ放送 等を経由して伝送するものとしてもよい。 Further, the present invention may transmit the computer program or the digital signal via an electric communication line, a wireless or wired communication line, a network typified by the Internet, a data broadcast, or the like.
また、本発明は、マイクロプロセッサとメモリとを備えたコンピュータシステムであって 、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサ は、前記コンピュータプログラムに従って動作するとしてもよい。 The present invention may also be a computer system including a microprocessor and a memory. The memory may store the computer program, and the microprocessor may operate according to the computer program.
[0113] また、前記プログラム又は前記デジタル信号を前記記録媒体に記録して移送する
ことにより、又は前記プログラム又は前記デジタル信号を前記ネットワーク等を経由し て移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい [0113] Further, the program or the digital signal is recorded on the recording medium and transferred. Or may be implemented by another independent computer system by transferring the program or the digital signal via the network or the like.
(5)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよ!/、。 (5) The above embodiment and the above modifications may be combined! /, Respectively.
産業上の利用可能性 Industrial applicability
本発明は、複数カメラの画像を入力、処理する動画像符号化システムに有用であり 、監視システム等への応用を目的とする。
The present invention is useful for a moving image encoding system that inputs and processes images from a plurality of cameras, and is intended for application to a monitoring system or the like.
Claims
請求の範囲 The scope of the claims
[1] 複数の動画像を符号化する動画像符号化システムであって、 [1] A moving image encoding system for encoding a plurality of moving images,
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信手段と、 前記信号受信手段により受信される複数の画像信号を記憶する一時記憶手段と、 複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶手段から読み出して出力するとともに、前記複数の画像信号が切り替わるタイミ ングを示す切替制御信号を生成して出力する出力制御手段と、 Signal receiving means for receiving image signals generated by camera imaging for a plurality of cameras, temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals cyclically for each camera The image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image coding or a multiple of the number of lines is read out from the temporary storage means and output, and the timing at which the plurality of image signals are switched. Output control means for generating and outputting a switching control signal indicating
符号化手段とを備え、 Encoding means,
前記符号化手段は、同期信号入力部と 1の画像信号入力部とからなる 1の入力イン ターフェースを含み、前記出力制御手段により切り替えて出力される前記所定ライン 数分の画像信号それぞれと前記切替制御信号とを、前記 1の入力インターフェース により受信し、受信した前記所定ライン数分の画像信号のそれぞれを前記切替制御 信号に示される前記タイミングにより区別して符号化する The encoding unit includes one input interface including a synchronization signal input unit and one image signal input unit. Each of the image signals for the predetermined number of lines output by switching by the output control unit The switching control signal is received by the input interface of 1 and the received image signals for the predetermined number of lines are distinguished and encoded by the timing indicated by the switching control signal.
ことを特徴とする動画像符号化システム。 A video encoding system characterized by the above.
[2] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する切替装置であって、 [2] A switching device that switches a plurality of moving images and outputs the video encoder to one input interface including a synchronization signal input unit and one image signal input unit of the video encoder,
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信手段と、 前記信号受信手段により受信される複数の画像信号を記憶する一時記憶手段と、 複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶手段から読み出して前記 1の入力インターフェースへ出力するとともに、前記複 数の画像信号が切り替わるタイミングを示す切替制御信号を生成して前記 1の入カイ ンターフェースへ出力する出力制御手段とを備える Signal receiving means for receiving image signals generated by camera imaging for a plurality of cameras, temporary storage means for storing a plurality of image signals received by the signal receiving means, and a plurality of image signals cyclically for each camera The image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or a multiple of the number of lines is read from the temporary storage means and output to the input interface of 1 and Output control means for generating a switching control signal indicating the timing at which a plurality of image signals are switched and outputting the switching control signal to the one input interface.
ことを特徴とする切替装置。 A switching device characterized by that.
[3] 前記複数の画像信号は、垂直同期信号および水平同期信号からなる所定の同期 信号に従ったタイミングで同期して生成され、 [3] The plurality of image signals are generated in synchronization with timing according to a predetermined synchronization signal including a vertical synchronization signal and a horizontal synchronization signal,
前記出力制御手段は、前記所定の水平同期信号に基づいたタイミングで、画像信
号を切り替えて出力する The output control means is an image signal at a timing based on the predetermined horizontal synchronization signal. Switching between issues
ことを特徴とする請求項 2記載の切替装置。 The switching device according to claim 2.
[4] 前記出力制御手段は、前記所定ライン数分の画像信号が前記信号受信手段によ り受信されたことを前記所定の水平同期信号に基づいて検知するデータ取り込み制 御部と、 [4] The output control means includes a data capturing control section for detecting, based on the predetermined horizontal synchronizing signal, that the image receiving signals for the predetermined number of lines are received by the signal receiving means;
前記検知の都度、所定ライン数分に相当する画像信号を受信するのに要する期間 内に、前記一時記憶手段により記憶されている前記所定ライン数分の画像信号を巡 回的にそれぞれ読み出して出力するバッファ選択制御部とを含む Each time the detection is performed, the image signals corresponding to the predetermined number of lines stored in the temporary storage unit are read out and output within a period required to receive the image signals corresponding to the predetermined number of lines. Including a buffer selection control unit
ことを特徴とする請求項 3記載の切替装置。 The switching device according to claim 3.
[5] 前記一時記憶手段は、各画像信号に対応して設けられる FIFO型の複数のバッファ メモリであり、前記バッファメモリ各々は、 2つの記憶部からなり、 [5] The temporary storage means is a plurality of FIFO type buffer memories provided corresponding to each image signal, and each of the buffer memories includes two storage units,
前記一時記憶手段は、前記信号受信手段により受信した画像信号それぞれを、対 応するバッファメモリにおいてそれぞれ記憶し、前記バッファメモリ各々は、前記 2つ の記憶部が選択的に切り替わって、いずれか一方において、前記受信される画像信 号が書き込まれて記憶され、 The temporary storage means stores each image signal received by the signal receiving means in a corresponding buffer memory, and each of the buffer memories is selectively switched between the two storage units. The received image signal is written and stored,
前記データ取り込み制御部は、前記所定ライン数分の画像信号が前記信号受信 手段により受信されたことを検知するたびに、前記記憶部の切り替えを行い、 前記バッファ選択制御部は、前記 2つの記憶部のうち、前記所定ライン数分の画像 信号が既に書き込み完了している方から画像信号の前記読み出しを行う ことを特徴とする請求項 4記載の切替装置。 The data capture control unit switches the storage unit each time it detects that the signal reception unit has received image signals for the predetermined number of lines, and the buffer selection control unit is configured to store the two storage units. 5. The switching device according to claim 4, wherein the reading of the image signal is performed from the one in which the image signals for the predetermined number of lines have already been written.
[6] 各カメラは、そのうちの 1のカメラが出力する同期信号に示されるタイミングに同期し て撮像を行い、 [6] Each camera captures images in synchronization with the timing indicated by the synchronization signal output by one of the cameras.
前記出力制御手段は、 The output control means includes
前記 1のカメラが出力する同期信号の入力を受け付ける同期信号入力部を含み、 前記所定の同期信号とは、前記同期信号入力部により受け付けた同期信号である ことを特徴とする請求項 3記載の切替装置。 4. The synchronization signal input unit that receives an input of a synchronization signal output from the one camera, wherein the predetermined synchronization signal is a synchronization signal received by the synchronization signal input unit. Switching device.
[7] 前記画像符号化の最小単位となるライン数とは、マクロブロック分のライン数のこと である
ことを特徴とする請求項 2記載の切替装置。 [7] The number of lines that is the minimum unit of image coding is the number of lines for a macroblock. The switching device according to claim 2.
切替装置が切り替えて出力する複数の画像信号を、同期信号入力部と 1の画像信 号入力部とからなる 1の入力インターフェースにより受信して各画像信号を符号化す
Multiple image signals switched and output by the switching device are received by one input interface consisting of a synchronization signal input unit and one image signal input unit, and each image signal is encoded.
前記 1の入力インターフェースを含み、前記切替装置により所定ライン数分ごとに切 り替えて出力される画像信号それぞれと、画像信号の切り替わりのタイミングを示す 切替制御信号とを、前記 1の画像信号入力部および前記同期信号入力部により受信 し、受信した画像信号のそれぞれを前記切替制御信号に示される前記タイミングによ り区別して符号化する符号化手段とを備える Each of the image signals that includes the input interface of 1 and that is output by switching by the switching device every predetermined number of lines, and a switching control signal that indicates a switching timing of the image signal are input to the image signal of 1 And a synchronization signal input unit, and encoding means for distinguishing and encoding each of the received image signals according to the timing indicated by the switching control signal
ことを特徴とするビデオエンコーダ。 A video encoder characterized by that.
[9] 前記符号化手段は、 [9] The encoding means includes:
前記切替制御信号に示される切り替わりのタイミングになる都度、受信済みの所定 ライン数分の画像信号を符号化する Each time the switching timing indicated by the switching control signal is reached, a predetermined number of received image signals are encoded.
ことを特徴とする請求項 8記載のビデオエンコーダ。 The video encoder according to claim 8, wherein
[10] 前記画像信号は、前記ビデオエンコーダにおレ、て、所定ライン数分の画像信号を 記憶する記憶領域を有する 1のメモリ領域に記憶され、画像信号各々は、それぞれ 異なるメモリ領域に記憶され、 [10] The image signal is stored in one memory area having a storage area for storing a predetermined number of lines of image signals in the video encoder, and each image signal is stored in a different memory area. And
前記符号化手段は、前記切替制御信号に示される切り替わりのタイミングの都度、 割り込みを発生させて前記画像信号の受信処理を行い、前記所定ライン数分の画像 信号を受信すると前記受信処理を終了し、前記切り替わりのタイミングのたびに、画 像信号を記憶するメモリ領域を切り替える The encoding means generates an interrupt at each switching timing indicated by the switching control signal to perform reception processing of the image signal, and ends the reception processing when receiving the image signals for the predetermined number of lines. The memory area for storing the image signal is switched at each switching timing.
ことを特徴とする請求項 8記載のビデオエンコーダ。 The video encoder according to claim 8, wherein
[11] 複数の動画像を符号化する動画像符号化システムであって、 [11] A moving image encoding system for encoding a plurality of moving images,
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信手段と、 前記信号受信手段により受信される複数の画像信号を記憶する一時記憶手段と、 複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数 またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶手段 から読み出して、読み出した画像信号と、画像信号を識別するための付加信号との
組を出力するとともに、付加信号と画像信号とを区別するための重畳タイミング信号 を生成して出力する出力制御手段と、 A signal receiving means for receiving image signals generated by imaging of a camera for a plurality of cameras, a temporary storage means for storing a plurality of image signals received by the signal receiving means, and switching the plurality of image signals for each camera. The image signal corresponding to the predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or the number of lines that is a multiple thereof is read from the temporary storage means, and the read image signal and the additional signal for identifying the image signal With Output control means for outputting a set and generating and outputting a superposition timing signal for distinguishing the additional signal and the image signal;
符号化手段とを備え、 Encoding means,
前記符号化手段は、同期信号入力部と 1の画像信号入力部とからなる 1の入力イン ターフェースを含み、前記出力制御手段により切り替えて出力される前記所定ライン 数分の画像信号それぞれと前記付加信号と前記重畳タイミング信号とを、前記 1の入 力インターフェースにより受信し、受信した前記所定ライン数分の画像信号と前記付 加信号とを、受信した前記重畳タイミング信号により区別し、受信した前記所定ライン 数分の画像信号を、前記付加信号を用いて識別することにより、画像信号のそれぞ れを区別して符号化する The encoding unit includes one input interface including a synchronization signal input unit and one image signal input unit. Each of the image signals for the predetermined number of lines output by switching by the output control unit The additional signal and the superposition timing signal are received by the input interface of 1, and the received image signals for the predetermined number of lines and the additional signal are distinguished by the received superposition timing signal and received. By identifying the image signals for the predetermined number of lines using the additional signal, each image signal is distinguished and encoded.
ことを特徴とする動画像符号化システム。 A video encoding system characterized by the above.
[12] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する切替装置であって、 [12] A switching device for switching a plurality of moving images and outputting the video encoder to one input interface including a synchronization signal input unit and one image signal input unit of the video encoder,
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信手段と、 前記信号受信手段により受信される複数の画像信号を記憶する一時記憶手段と、 複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数 またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶手段 から読み出して、読み出した画像信号と、画像信号を識別するための付加信号との 組を前記 1の入力インターフェースへ出力するとともに、付加信号と画像信号とを区 別するための重畳タイミング信号を生成して前記 1の入力インターフェースへ出力す る出力制御手段とを備えることを特徴とする切替装置。 A signal receiving means for receiving image signals generated by imaging of a camera for a plurality of cameras, a temporary storage means for storing a plurality of image signals received by the signal receiving means, and switching the plurality of image signals for each camera. The image signal corresponding to the predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or the number of lines that is a multiple thereof is read from the temporary storage means, and the read image signal and the additional signal for identifying the image signal Output control means for generating a superposition timing signal for distinguishing an additional signal from an image signal and outputting the generated signal to the input interface. Switching device characterized.
[13] 前記出力制御手段は、 [13] The output control means includes:
画像信号の生成にかかる同期信号を、画像信号それぞれについて受信する同期 信号受信部を含み、 A synchronization signal receiving unit that receives a synchronization signal for generating an image signal for each of the image signals;
前記同期信号受信部により受信する同期信号それぞれに基づいて、前記画像信 号と前記付加信号との組の前記切り替えての出力と、前記重畳タイミング信号の出力 とを行う Based on each synchronization signal received by the synchronization signal receiver, the switching output of the set of the image signal and the additional signal and the output of the superimposition timing signal are performed.
ことを特徴とする請求項 12記載の切替装置。
[[1144]] 前前記記出出力力制制御御手手段段はは、、前前記記同同期期信信号号受受信信部部にによよりり受受信信すするる同同期期信信号号そそれれぞぞれれのの 水水平平同同期期信信号号にに基基づづいいてて、、前前記記複複数数のの画画像像信信号号そそれれぞぞれれににつついいてて、、前前記記所所定定ラライイ ンン数数分分のの画画像像信信号号がが前前記記信信号号受受信信手手段段にによよりり受受信信さされれたたここととをを検検知知すするるデデーータタ取取りり 込込みみ制制御御部部とと、、 The switching device according to claim 12, wherein: [[1144]] The previously described output force control control means stage is the same synchronization period signal that is received and received by the aforementioned same period signal reception / reception unit. Based on each horizontal horizontal sync signal signal, each of the above-mentioned multiple image signal signals can be connected to each other. In this case, the image signal signals corresponding to the predetermined number of predetermined lines are received and received by the previous receiving signal receiving / receiving means means. A data take-in control unit that detects and detects the event, and
付付加加信信号号をを生生成成すするる付付加加情情報報生生成成部部とと、、 An additional additional information generating section for generating an additional additional signal,
前前記記デデーータタ取取りり込込みみ制制御御部部にによよりり検検知知ががななさされれたた順順にに、、所所定定ラライインン数数分分のの画画像像信信号号 をを前前記記一一時時記記憶憶手手段段かからら読読みみ出出ししてて、、読読みみ出出ししたた所所定定ラライインン数数分分のの画画像像信信号号とと、、当当 該該画画像像信信号号ににつついいてて前前記記付付加加情情報報生生成成部部にによよりり生生成成さされれたた付付加加信信号号ととをを出出力力すするる 選選択択部部ととをを含含むむ In the order in which the data detection and detection control was made by the data acquisition and control unit, the image signals corresponding to the predetermined number of lines are stored. A signal image is read and read out from the temporary memory storage means, and the image is displayed for a predetermined number of lines. And the signal generated and generated by the previously described additional additional information information generating unit in accordance with the image signal. And a selection / selection part that outputs and outputs an additional signal signal.
ここととをを特特徴徴ととすするる請請求求項項 1133記記載載のの切切替替装装置置。。 The switching device according to claim 1133, wherein this is a special feature. .
[[1155]] 前前記記付付加加信信号号はは、、画画像像信信号号のの識識別別情情報報をを含含むむ [[1155]] The above-mentioned additional additive signal includes the information information for identifying the image signal.
ここととをを特特徴徴ととすするる請請求求項項 1122記記載載のの切切替替装装置置。。 The switching device according to claim 1122, wherein this is a special feature. .
[[1166]] 前前記記付付加加信信号号はは、、画画像像信信号号がが 11フフレレーームムのの画画像像ににおおけけるるどどののラライインンかかをを示示すすママククロロ ブブロロッッククラライインン情情報報、、ままたたはは、、 11ラライインンののササイイズズをを示示すすラライインンササイイズズ情情報報のの少少ななくくとともも 11つつ をを含含むむ [[1166]] The above-mentioned additional additive signal number indicates which line in the image image signal the image signal signal has in 11 frames. Mamakuro Chloroblock Clarion Information Information, 11 or 11 Including tsutsu
ここととをを特特徴徴ととすするる請請求求項項 1155記記載載のの切切替替装装置置。。 The switching device according to claim 1155, wherein this is a special feature. .
[[1177]] 切切替替装装置置がが切切りり替替ええてて出出力力すするる複複数数のの画画像像信信号号をを、、同同期期信信号号入入力力部部とと 11のの画画像像信信 号号入入力力部部ととかかららななるる 11のの入入力力イインンタターーフフェェーーススにによよりり受受信信ししてて各各画画像像信信号号をを符符号号化化すす
[[1177]] Multiple image signals that are output by the switching device are switched and output to the same period signal input input section. The 11 input image input signals and 11 input image input signals are received and received according to the interface surface. Each image signal is converted into a sign code.
前記 1の入力インターフェースを含み、前記切替装置により所定ライン数分ごとに切 り替えて出力される画像信号それぞれと、画像信号を識別するための付加信号との 組、および、付加信号と画像信号とを区別するための重畳タイミング信号を、前記 1 の入力インターフェースにより受信し、受信した前記所定ライン分の画像信号と前記 付加信号とを、受信した前記重畳タイミング信号により区別し、受信した前記所定ライ ン分の画像信号を、前記付加信号を用いて識別することにより、画像信号のそれぞ れを区別して符号化する符号化手段を備える A set of each of the image signals including the input interface of 1 and switched and output every predetermined number of lines by the switching device and an additional signal for identifying the image signal, and the additional signal and the image signal Is received by the input interface of 1 and the received image signal for the predetermined line and the additional signal are distinguished by the received superimposition timing signal, and the received predetermined signal is received. It comprises coding means for distinguishing and coding each of the image signals by identifying the image signals for the lines using the additional signal.
ことを特徴とするビデオエンコーダ。 A video encoder characterized by that.
同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフェースを備え
るビデオエンコーダと、前記 1の入力インターフェースに複数の動画像を切り替えて 出力する切替装置とからなる動画像符号化システムにおいて複数の動画像を符号 化する動画像符号化方法であって、 1 input interface consisting of sync signal input section and 1 image signal input section A moving image encoding method for encoding a plurality of moving images in a moving image encoding system comprising a video encoder and a switching device that switches and outputs a plurality of moving images to the first input interface,
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信ステップと 前記信号受信ステップにより受信される複数の画像信号を前記切替装置の一時記 憶手段により記憶させる一時記憶ステップと、 A signal receiving step for receiving image signals generated by imaging by a plurality of cameras; a temporary storage step for storing a plurality of image signals received by the signal receiving step by a temporary storage means of the switching device;
複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶手段から読み出して出力するとともに、前記複数の画像信号が切り替わるタイミ ングを示す切替制御信号を生成して出力する出力制御ステップと、 A plurality of image signals are cyclically switched for each camera, and image signals corresponding to a predetermined number of lines consisting of the number of lines as a minimum unit of image encoding or a multiple of the number of lines are read from the temporary storage means and output. And an output control step for generating and outputting a switching control signal indicating a timing at which the plurality of image signals are switched;
前記出力制御ステップにより切り替えて出力される前記所定ライン数分の画像信号 それぞれと前記切替制御信号とを、前記 1の入力インターフェースにより受信し、受 信した画像信号のそれぞれを前記切替制御信号に示される前記タイミングにより区 別して符号化する符号化ステップとを含む Each of the predetermined number of image signals switched and output in the output control step and the switching control signal are received by the input interface of 1, and each of the received image signals is indicated in the switching control signal. And a coding step for performing coding separately according to the timing
ことを特徴とする動画像符号化方法。 A video encoding method characterized by the above.
同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフェースを備え るビデオエンコーダと、前記 1の入力インターフェースに複数の動画像を切り替えて 出力する切替装置とからなる動画像符号化システムにおいて複数の動画像を符号 化する動画像符号化方法であって、 A video encoding system comprising a video encoder having one input interface comprising a synchronization signal input unit and one video signal input unit, and a switching device for switching and outputting a plurality of video images to the one input interface A moving image encoding method for encoding a plurality of moving images in
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信ステップと 前記信号受信ステップにより受信される複数の画像信号を前記切替装置の一時記 憶手段により記憶させる一時記憶ステップと、 A signal receiving step for receiving image signals generated by imaging by a plurality of cameras; a temporary storage step for storing a plurality of image signals received by the signal receiving step by a temporary storage means of the switching device;
複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数 またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶手段 から読み出して、読み出した画像信号と、画像信号を識別するための付加信号との 組を出力するとともに、付加信号と画像信号とを区別するための重畳タイミング信号
を生成して出力する出力制御ステップと、 A plurality of image signals are switched in units of cameras, and image signals for a predetermined number of lines consisting of the number of lines that are the minimum unit of image encoding or a number of lines that is a multiple thereof are read from the temporary storage means, and the read image signals A superimposition timing signal for discriminating between the additional signal and the image signal while outputting a set of the additional signal for identifying the image signal Output control step for generating and outputting
前記出力制御ステップにより切り替えて出力される前記所定ライン数分の画像信号 それぞれと前記付加信号と前記重畳タイミング信号とを、前記 1の入力インターフエ ースにより受信し、受信した前記所定ライン数分の画像信号と前記付加信号とを、受 信した前記重畳タイミング信号により区別し、受信した前記所定ライン数分の画像信 号を、前記付加信号を用いて識別することにより、画像信号のそれぞれを区別して符 号化する符号化ステップとを含む The image signals corresponding to the predetermined number of lines that are switched and output in the output control step, the additional signal, and the superimposition timing signal are received by the input interface of 1, and the number of the received predetermined lines The image signal and the additional signal are distinguished from each other by the received superposition timing signal, and the received image signals for the predetermined number of lines are identified using the additional signal, whereby each of the image signals is identified. Including an encoding step for distinguishing and encoding
ことを特徴とする動画像符号化方法。 A video encoding method characterized by the above.
[20] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する切替装置に用いられる集積回 路であって、 [20] An integrated circuit used in a switching device that switches a plurality of moving images and outputs the video encoder to one input interface including a synchronization signal input unit and one image signal input unit.
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信部と、 前記信号受信部により受信される複数の画像信号を記憶する一時記憶部と、 複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶部から読み出して前記 1の入力インターフェースへ出力するとともに、前記複数 の画像信号が切り替わるタイミングを示す切替制御信号を生成して前記 1の入力イン ターフェースへ出力する出力制御部とを含む A signal receiving unit that receives image signals generated by the imaging of a camera for a plurality of cameras, a temporary storage unit that stores a plurality of image signals received by the signal receiving unit, and a plurality of image signals that are cyclic for each camera The image signal for a predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or the number of lines that is a multiple thereof is read from the temporary storage unit and output to the input interface of 1 and And an output control unit that generates a switching control signal indicating the timing at which the image signal of the image signal is switched and outputs the switching control signal to the input interface of 1
ことを特徴とする集積回路。 An integrated circuit characterized by that.
[21] 切替装置が切り替えて出力する複数の画像信号を、同期信号入力部と 1の画像信 号入力部とからなる 1の入力インターフェースにより受信して各画像信号を符号化す るビデオエンコーダに用いられる集積回路であって、 [21] Used for a video encoder that receives a plurality of image signals switched and output by a switching device through one input interface including a synchronization signal input unit and one image signal input unit and encodes each image signal. Integrated circuit
前記 1の入力インターフェースにより受信され、前記切替装置により所定ライン数分 ごとに切り替えて出力される画像信号それぞれを、 Each of the image signals received by the one input interface and switched and output every predetermined number of lines by the switching device,
前記切替装置から出力されて前記 1の入力インターフェースにより受信される、画 像信号の切り替わりのタイミングを示す切替制御信号により区別して符号化する符号 化部を含む An encoding unit that distinguishes and encodes by a switching control signal that indicates the switching timing of an image signal that is output from the switching device and received by the first input interface;
ことを特徴とする集積回路。
[22] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する切替装置に用いられる集積回 路であって、 An integrated circuit characterized by that. [22] An integrated circuit used in a switching device that switches a plurality of moving images and outputs the video encoder to one input interface including a synchronization signal input unit and one image signal input unit.
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信部と、 前記信号受信部により受信される複数の画像信号を記憶する一時記憶部と、 複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数 またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶部か ら読み出して、読み出した画像信号と、画像信号を識別するための付加信号との組 を前記 1の入力インターフェースへ出力するとともに、付加信号と画像信号とを区別 するための重畳タイミング信号を生成して前記 1の入力インターフェースへ出力する 出力制御部とを含む A signal receiving unit that receives image signals generated by camera imaging for a plurality of cameras, a temporary storage unit that stores a plurality of image signals received by the signal receiving unit, and a plurality of image signals that are switched on a camera-by-camera basis. The image signal for the predetermined number of lines consisting of the number of lines that is the minimum unit of image encoding or the number of lines that is a multiple thereof is read from the temporary storage unit, and the read image signal is added to identify the image signal An output control unit that outputs a set of signals to the input interface of 1 and generates a superposition timing signal for distinguishing between the additional signal and the image signal and outputs the signal to the input interface of 1
ことを特徴とする集積回路。 An integrated circuit characterized by that.
[23] 切替装置が切り替えて出力する複数の画像信号を、同期信号入力部と 1の画像信 号入力部とからなる 1の入力インターフェースにより受信して各画像信号を符号化す るビデオエンコーダに用いられる集積回路であって、 [23] Used for a video encoder that receives a plurality of image signals switched and output by a switching device through one input interface including a synchronization signal input unit and one image signal input unit, and encodes each image signal. Integrated circuit
前記切替装置から所定ライン数分ごとに切り替えて出力されて前記 1の入力インタ 一フェースにより受信される画像信号それぞれ、画像信号を識別するための付加信 号、前記付加信号と画像信号とを区別するための重畳タイミング信号、を用いて、前 記付加信号と前記所定ライン数分の画像信号とを重畳タイミング信号により区別し、 前記所定ライン分の画像信号を、前記付加信号を用いて識別することにより、画像信 号のそれぞれを区別して符号化する符号化部を含む Each of the image signals that are switched from the switching device every predetermined number of lines and output and received by the input interface of 1 is distinguished from the additional signal for identifying the image signal, the additional signal and the image signal. Using the superimposition timing signal to distinguish the additional signal and the image signal for the predetermined number of lines by the superimposition timing signal, and identify the image signal for the predetermined line using the additional signal. An encoding unit that distinguishes and encodes each of the image signals.
ことを特徴とする集積回路。 An integrated circuit characterized by that.
[24] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する処理を切替装置に行わせるた めの制御プログラムであって、 [24] A control program for switching a plurality of moving images and causing the switching device to perform a process of outputting to one input interface including a synchronization signal input unit and one image signal input unit of a video encoder. And
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信ステップと 前記信号受信ステップにより受信される複数の画像信号を前記切替装置の一時記
憶手段に記憶させる一時記憶ステップと、 A signal receiving step for receiving image signals generated by camera imaging for a plurality of cameras, and a plurality of image signals received by the signal receiving step for temporarily storing the switching device. A temporary storage step to be stored in the memory means;
複数の画像信号をカメラ単位で巡回的に切り替えて、画像符号化の最小単位とな るライン数またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時 記憶手段から読み出して前記 1の入力インターフェースへ出力するとともに、前記複 数の画像信号が切り替わるタイミングを示す切替制御信号を生成して前記 1の入カイ ンターフェースへ出力する出力制御ステップとを含む A plurality of image signals are cyclically switched in units of cameras, and image signals for a predetermined number of lines consisting of the number of lines as a minimum unit of image encoding or a multiple of the number of lines are read from the temporary storage means and the 1 And an output control step of generating a switching control signal indicating a timing at which the plurality of image signals are switched and outputting the switching control signal to the first input interface.
ことを特徴とする制御プログラム。 A control program characterized by that.
[25] 同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフェースを備え るビデオエンコーダに、切替装置が切り替えて出力する複数の画像信号を前記 1の 入力インターフェースにより受信させて各画像信号を符号化させる処理を行わせるた めの制御プログラムであって、 [25] A video encoder having one input interface composed of a synchronization signal input unit and one image signal input unit receives a plurality of image signals output by the switching device by the switching device, and receives each of the image signals. A control program for performing processing for encoding an image signal,
前記切替装置により所定ライン数分ごとに切り替えて出力されて前記 1の入力イン ターフェースにより受信される画像信号それぞれを、 Each of the image signals that are switched and output every predetermined number of lines by the switching device and received by the input interface of 1,
前記切替装置から出力されて前記 1の入力インターフェースにより受信される、画 像信号の切り替わりのタイミングを示す切替制御信号により区別して符号化する符号 化ステップを含む An encoding step of distinguishing and encoding by a switching control signal indicating a switching timing of an image signal, which is output from the switching device and received by the input interface of 1
ことを特徴とする制御プログラム。 A control program characterized by that.
[26] 複数の動画像を切り替えて、ビデオエンコーダの、同期信号入力部と 1の画像信号 入力部とからなる 1の入力インターフェースへ出力する処理を切替装置に行わせるた めの制御プログラムであって、 [26] A control program for switching a plurality of moving images and causing the switching device to perform processing to output to one input interface including a synchronization signal input unit and one image signal input unit of the video encoder. And
カメラの撮像により生成される画像信号を複数カメラ分受信する信号受信ステップと 前記信号受信ステップにより受信される複数の画像信号を前記切替装置の一時記 憶手段により記憶させる一時記憶ステップと、 A signal receiving step for receiving image signals generated by imaging by a plurality of cameras; a temporary storage step for storing a plurality of image signals received by the signal receiving step by a temporary storage means of the switching device;
複数の画像信号をカメラ単位で切り替えて、画像符号化の最小単位となるライン数 またはその倍数のライン数からなる所定ライン数分の画像信号を前記一時記憶手段 から読み出して、読み出した画像信号と、画像信号を識別するための付加信号との 組を前記 1の入力インターフェースへ出力するとともに、付加信号と画像信号とを区
別するための重畳タイミング信号を生成して前記 1の入力インターフェースへ出力す る出力制御ステップとを含む A plurality of image signals are switched in units of cameras, and image signals for a predetermined number of lines consisting of the number of lines that are the minimum unit of image encoding or a number of lines that is a multiple thereof are read from the temporary storage means, and the read image signals A set of additional signals for identifying the image signal is output to the input interface 1 and the additional signal is separated from the image signal. An output control step of generating a superimposition timing signal for output to the input interface of 1
ことを特徴とする制御プログラム。 A control program characterized by that.
同期信号入力部と 1の画像信号入力部とからなる 1の入力インターフェースを備え るビデオエンコーダに、切替装置が切り替えて出力する複数の画像信号を前記 1の 入力インターフェースにより受信させて各画像信号を符号化させる処理を行わせるた めの制御プログラムであって、 A video encoder having one input interface consisting of a synchronization signal input unit and one image signal input unit receives a plurality of image signals switched and output by the switching device through the first input interface to receive each image signal. A control program for performing a process of encoding,
前記切替装置により所定ライン数分ごとに切り替えて出力される画像信号と、前記 所定ライン数分の画像信号を識別するための付加信号との組、および、付加信号と 前記所定ライン数分の画像信号とを区別するための重畳タイミング信号を、前記 1の 入力インターフェースにより受信し、受信した前記所定ライン数分の画像信号と前記 付加信号とを、受信した前記重畳タイミング信号により区別し、受信した前記所定ライ ン数分の画像信号を、前記付加信号を用いて識別することにより、画像信号のそれ ぞれを区別して符号化する符号化ステップを含む A set of an image signal switched and output every predetermined number of lines by the switching device and an additional signal for identifying the image signal for the predetermined number of lines, and the additional signal and the image for the predetermined number of lines The superimposition timing signal for distinguishing the signal is received by the input interface of 1, and the received image signal for the predetermined number of lines and the additional signal are distinguished by the received superimposition timing signal and received. A coding step of distinguishing and coding each of the image signals by identifying the image signals for the predetermined number of lines using the additional signal;
ことを特徴とする制御プログラム。
A control program characterized by that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-230059 | 2006-08-28 | ||
JP2006230059 | 2006-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008026545A1 true WO2008026545A1 (en) | 2008-03-06 |
Family
ID=39135828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/066561 WO2008026545A1 (en) | 2006-08-28 | 2007-08-27 | Moving image encoding system, switching apparatus and video encoder |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008026545A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01264393A (en) * | 1988-04-15 | 1989-10-20 | Hitachi Ltd | Multiple encoding device and multiple decoding device |
JPH08181994A (en) * | 1994-12-22 | 1996-07-12 | Ricoh Co Ltd | Moving image coder |
JPH1023413A (en) * | 1996-07-03 | 1998-01-23 | Fuji Xerox Co Ltd | Encoding device |
JPH10276365A (en) * | 1997-03-31 | 1998-10-13 | Hitachi Ltd | Video data compression device, video recording / reproducing device, and video data compression encoding method |
JP2002034038A (en) * | 2000-07-14 | 2002-01-31 | Hitachi Kokusai Electric Inc | Image coding device |
JP2003061100A (en) * | 2001-07-23 | 2003-02-28 | Samsung Electronics Co Ltd | Apparatus and method for encoding multi-channel image |
JP2004040260A (en) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Pixel block data generator and pixel block data generating method |
-
2007
- 2007-08-27 WO PCT/JP2007/066561 patent/WO2008026545A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01264393A (en) * | 1988-04-15 | 1989-10-20 | Hitachi Ltd | Multiple encoding device and multiple decoding device |
JPH08181994A (en) * | 1994-12-22 | 1996-07-12 | Ricoh Co Ltd | Moving image coder |
JPH1023413A (en) * | 1996-07-03 | 1998-01-23 | Fuji Xerox Co Ltd | Encoding device |
JPH10276365A (en) * | 1997-03-31 | 1998-10-13 | Hitachi Ltd | Video data compression device, video recording / reproducing device, and video data compression encoding method |
JP2002034038A (en) * | 2000-07-14 | 2002-01-31 | Hitachi Kokusai Electric Inc | Image coding device |
JP2003061100A (en) * | 2001-07-23 | 2003-02-28 | Samsung Electronics Co Ltd | Apparatus and method for encoding multi-channel image |
JP2004040260A (en) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Pixel block data generator and pixel block data generating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05207460A (en) | Image signal multiplexing transmission apparatus and system | |
KR100461339B1 (en) | Device and Method for transmitting picture data | |
US20180270448A1 (en) | Image processing system | |
KR101000580B1 (en) | An image processing apparatus and an image processing method, and a recording medium | |
KR20140102605A (en) | Image processing device | |
JP2018198406A (en) | Surveillance camera system and image processing apparatus | |
US8149285B2 (en) | Video camera which executes a first process and a second process on image data | |
JP2004304387A (en) | Image processing apparatus | |
US20090033760A1 (en) | Apparatus and method for processing image data | |
WO2021020224A1 (en) | Sending device, receiving device, and communication system | |
TWI856991B (en) | Receiving device and transmitting device | |
KR101280443B1 (en) | apparatus of processing regional image and method thereof | |
US9807255B2 (en) | Image processing apparatus | |
US8922676B2 (en) | Video frame buffer | |
US20120249345A1 (en) | Data processing device and data processing method | |
US20100328514A1 (en) | Image processing device, imaging apparatus, and thumbnail image displaying method | |
WO2008026545A1 (en) | Moving image encoding system, switching apparatus and video encoder | |
WO2019193842A1 (en) | Transmission device, reception device, and communication system | |
CN101467439B (en) | Imaging apparatus | |
JP7584497B2 (en) | Receiving device and transmission system | |
JP2002351439A (en) | Digital camera with on-screen function and its operation control method | |
US11616929B2 (en) | Electronic apparatus and method of controlling the same, and storage medium | |
WO2024121928A1 (en) | Information transfer system, transmission device, receiving device, information transfer method and program | |
TWI424371B (en) | Video processing device and processing method thereof | |
JP5328549B2 (en) | Image processing apparatus and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07806102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07806102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |