[go: up one dir, main page]

WO2008020575A1 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
WO2008020575A1
WO2008020575A1 PCT/JP2007/065740 JP2007065740W WO2008020575A1 WO 2008020575 A1 WO2008020575 A1 WO 2008020575A1 JP 2007065740 W JP2007065740 W JP 2007065740W WO 2008020575 A1 WO2008020575 A1 WO 2008020575A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
resin
light emitting
light
emitting device
Prior art date
Application number
PCT/JP2007/065740
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Aihara
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2008020575A1 publication Critical patent/WO2008020575A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/854Encapsulations characterised by their material, e.g. epoxy or silicone resins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/882Scattering means

Definitions

  • the present invention excites the phosphor dispersed in the resin sealing portion by the emitted light of the light emitting diode (hereinafter, abbreviated as "LED” in the present specification), and the emitted light of the LED Related to semiconductor light-emitting devices that emit mixed light of phosphor and excitation light from a phosphor to the outside
  • a white LED is a blue LED that emits blue light, a resin sealing portion that seals the periphery of the blue LED, and a blue light that is dispersed within the resin sealing portion and emitted from the blue LED. It is composed of a phosphor that absorbs yellow light that is complementary to red and green and excites yellow light. The resin mixes blue light emitted from the blue LED and yellow light excited by the phosphor. The light is emitted from the sealing portion to the outside.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-135983
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-333097
  • blue light emitted from a blue LED is appropriately absorbed by a phosphor, and yellow light having a complementary color relationship between red and green is excited with high efficiency. It is important that blue light and yellow light are mixed uniformly.
  • the present invention has been made to solve the problems of the conventional technology, and the purpose thereof is to provide a semiconductor light emitting device that is easy to manufacture and has stable light emission characteristics. To do ⁇ ⁇ .
  • the present invention firstly, an LED, a resin sealing portion that seals the periphery of the LED, and the light emitted from the LED dispersed in the resin sealing portion.
  • a semiconductor light emitting device that has a phosphor that excites excitation light having a wavelength different from that of the emitted light, and emits mixed light of the emitted light and the excitation light from the resin sealing portion to the outside
  • the refractive index whose particle diameter is smaller than the wavelength of the emitted light is the same as or smaller than the refractive index of the phosphor and larger than the refractive index of the resin sealing portion.
  • the configuration is such that fine particles for scatter of radiation are attached.
  • the refractive index whose particle diameter is smaller than the wavelength of the emitted light of the LED is the same as or smaller than the refractive index of the phosphor and larger than the refractive index of the resin sealing portion.
  • Adhering fine particles for scattering of radiated light allows the radiated light of the LED to be sufficiently Rayleigh scattered within the resin-sealed part, so that the incident efficiency of the radiated light of the LED on the phosphor can be increased. Also, since the light distribution from the LED and the excitation light of the phosphor can be matched, each of these lights can be mixed uniformly.
  • LED radiation can be sufficiently scattered within the resin-encapsulated part without increasing the phosphor content in the resin-encapsulated part, making it easy to handle the encapsulating resin containing the phosphor.
  • the dispersion of the phosphor in the sealing resin can be made uniform.
  • the fine particles have a diameter in a range of S40 to 100 nm.
  • the fine particles are fine particles of silica or alumina
  • the resin sealing portion is an epoxy resin or
  • the composition is made of silicone resin.
  • Silica and alumina fine particles have light scattering properties and are chemically stable.
  • Epoxy resins and silicone resins are excellent in translucency and have a lower refractive index than silica or alumina.
  • the refractive index at which the particle diameter is smaller than the wavelength of the emitted light of the LED is the same as or smaller than the refractive index of the phosphor. Since the particles for scattering scattered light larger than the refractive index of the resin-encapsulated part are attached, the emitted light from the LED is sufficiently contained in the resin-encapsulated part without increasing the phosphor content in the resin-encapsulated part. Can make Rayleigh tongue L to force S.
  • the in-plane distribution of color coordinates of the semiconductor light emitting device having the LED, the phosphor excited by the emitted light of the LED, and the resin sealing portion that disperses the phosphor can be stabilized, and the sealing can be performed. Resin handling can be facilitated, and the manufacture of this type of semiconductor light emitting device can be facilitated.
  • FIG. 1 is a configuration diagram of the semiconductor light emitting device according to the embodiment
  • FIG. 2 is an explanatory view showing a dispersion state of the phosphor with fine particles in the resin sealing portion
  • FIG. 3 is a phosphor with fine particles dispersed in the resin sealing portion.
  • FIG. 4 is a graph showing a comparison between the emission light spectrum of the semiconductor light emitting device according to the conventional example and the emission light spectrum of the semiconductor light emitting device according to the embodiment
  • FIG. 5 is a graph of the semiconductor light emitting device according to the conventional example.
  • the semiconductor light emitting device of this example is installed in the cup 2 with a blue LED chip 1, an adhesive leg 3 having a cup 2 for installing the blue LED chip 1.
  • the resin sealing part 4 that seals the periphery of the blue LED chip 1, the leg 6 that is placed opposite to the adhesive leg 3 via the insulator 5, and the terminal part of the LED chip 1 and each leg 3, 6 It consists of conducting wires 7 and 8.
  • the resin sealing portion 4 is formed by uniformly dispersing the phosphor 12 with fine particles in the sealing resin 11.
  • the phosphor 12 with fine particles has a refractive index smaller than the wavelength of the blue light (460 nm to 470 nm) emitted from the blue LED chip 1 on the outer surface of the phosphor 12a formed in a particle shape.
  • the blue light scattering fine particles 12b that are equal to or smaller than the refractive index of the sealing resin 11 and larger than the refractive index of the sealing resin 11 are attached. The smaller the particle size of the blue light scattering fine particles 12b, the easier it is to scatter blue light.
  • the adhesion of blue light scattering fine particles 12b to phosphor 12a is performed on the outer surface of phosphor 12a as shown in Fig. 3 using a mechanical fine particle composite device NC-LAB-P manufactured by Hosokawa Micron. It can be made to adhere densely.
  • NC-LAB-P manufactured by Hosokawa Micron. It can be made to adhere densely.
  • the number of layers of the blue light scattering fine particles 12b should be about 2 to 5 on average in consideration of the balance between the degree of blue light scattering and the degree of blue light incident on the phosphor 12a. desirable.
  • sealing resin 11 constituting the resin sealing portion 4 an epoxy resin or a silicone resin can be used.
  • a silicone resin having a refractive index of 1.41 was used.
  • a YAG phosphor having an average particle diameter of 5 ⁇ m to 10 ⁇ m was used.
  • alumina particles or silica particles can be used as the blue light scattering fine particles 12b.
  • a phosphor with 30 vol% of the fine particles adhered thereto was mixed in a silicone resin, and the LED was sealed and compared with the case where fine particles were not adhered.
  • the semiconductor light-emitting device of the present example has particles around the phosphor 12a dispersed in the sealing resin 11. Blue light scattering with a refractive index smaller than the wavelength of the blue light emitted from the LED chip 1 is the same as or smaller than the refractive index of the phosphor 12a and larger than the refractive index of the sealing resin 11 Since the fine particles 12b are attached, the blue light emitted from the blue LED chip 1 can be sufficiently Rayleigh scattered in the resin sealing portion 4 and the efficiency of blue light incident on the phosphor 12a can be increased. .
  • the blue light is sufficiently Rayleigh scattered
  • the light distribution of the blue light emitted from the blue LED chip 1 and the yellow light, which is the excitation light of the phosphor 12a can be matched. Can be mixed uniformly.
  • the sealing resin 11 containing the phosphor 12a 11 The viscosity of the resin can be kept low, facilitating the handling thereof, and the dispersion of the phosphor in the sealing resin 11 can be made uniform. Therefore, the semiconductor light emitting device of this example is easy to manufacture and can emit white light with stable in-plane distribution of color coordinates.
  • the blue light emitted from the blue LED chip 1 and the yellow light that is the excitation light of the phosphor 12a match and the blue light and yellow light are easily mixed! /, S force,
  • the semiconductor light emitting element that includes the blue LED chip 1 and emits white light has been described as an example.
  • the gist of the present invention is not limited to this, and the LED radiation is not limited thereto. Applicable to all semiconductor light emitting devices that excite phosphors dispersed in resin-sealed parts with light and emit mixed light of LED radiation and phosphor excitation light from resin-sealed parts to the outside Can do.
  • FIG. 1 is a configuration diagram of a semiconductor light emitting device according to an embodiment.
  • FIG. 2 is an explanatory view showing a dispersion state of a phosphor with fine particles in a resin sealing portion.
  • FIG. 3 is a cross-sectional view of a phosphor with fine particles dispersed in a resin sealing portion.
  • FIG. 4 is a graph showing a comparison between an emitted light spectrum of a semiconductor light emitting device according to a conventional example and an emitted light spectrum of a semiconductor light emitting device according to an embodiment.
  • FIG. 5 is a graph showing a comparison between an in-plane distribution of color coordinates of a semiconductor light emitting device according to a conventional example and an in-plane distribution of color coordinates of a semiconductor light emitting device according to an embodiment.

Landscapes

  • Led Device Packages (AREA)

Abstract

[PROBLEMS] To provide a semiconductor light emitting device which can be easily manufactured and has stable light emitting characteristics. [MEANS FOR SOLVING PROBLEMS] A semiconductor light emitting device is provided with a blue LED chip (1) and a resin sealing section (4) for sealing the blue LED chip (1) with a resin. In the semiconductor light emitting device, phosphor (12) having fine particles is uniformly dispersed in the sealing resin (11). The phosphor (12) is formed by adhering blue light scattering fine particles (12b) on an outer surface of a particulate phosphor (12a). The blue light scattering fine particle has a particle diameter larger than the wavelength of blue light emitted from the blue LED Chip (1), and a refraction index equivalent to or smaller than that of the phosphor (12a) but is larger than that of the sealing resin (11). One or more layers of the blue light scattering fine particles (12b) are adhered on the external surface of the phosphor (12a). As the sealing resin (11), an epoxy resin or a silicone resin can be used, and as the phosphor (12a), a YAG phosphor can be used and as the blue light scattering particles (12b), alumina or silica can be used.

Description

明 細 書  Specification

半導体発光装置  Semiconductor light emitting device

技術分野  Technical field

[0001] 本発明は、発光ダイオード(以下、本明細書においては、これを「LED」と略称する 。)の放射光により樹脂封止部内に分散された蛍光体を励起し、 LEDの放射光と蛍 光体の励起光との混合光を樹脂封止部から外部に出射する半導体発光装置に関す 背景技術  [0001] The present invention excites the phosphor dispersed in the resin sealing portion by the emitted light of the light emitting diode (hereinafter, abbreviated as "LED" in the present specification), and the emitted light of the LED Related to semiconductor light-emitting devices that emit mixed light of phosphor and excitation light from a phosphor to the outside

[0002] 白色 LEDは、青色光を放射する青色 LEDと、当該青色 LEDの周囲を封止する樹 脂封止部と、当該樹脂封止部内に分散され、青色 LEDから放射された青色光を吸 収して赤色と緑色の補色関係にある黄色光を励起する蛍光体とから構成されており、 青色 LEDから放射された青色光と蛍光体によって励起された黄色光との混合光を樹 脂封止部から外部に出射するようになっている。蛍光体としては、粒子径が 5 111〜1 m程度の粒子状の YAG等が用いられ、樹脂封止部を構成する封止樹脂として は、エポキシ樹脂やシリコーン樹脂等が用いられる(例えば、特許文献 1 , 2参照。)。 特許文献 1 :特開 2005— 135983号公報  [0002] A white LED is a blue LED that emits blue light, a resin sealing portion that seals the periphery of the blue LED, and a blue light that is dispersed within the resin sealing portion and emitted from the blue LED. It is composed of a phosphor that absorbs yellow light that is complementary to red and green and excites yellow light. The resin mixes blue light emitted from the blue LED and yellow light excited by the phosphor. The light is emitted from the sealing portion to the outside. As the phosphor, a particulate YAG having a particle diameter of about 5 111 to 1 m is used, and an epoxy resin, a silicone resin, or the like is used as a sealing resin constituting the resin sealing portion (for example, a patent) See references 1 and 2.) Patent Document 1: Japanese Unexamined Patent Publication No. 2005-135983

特許文献 2:特開 2005— 333097号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-333097

発明の開示  Disclosure of the invention

発明が解決しょうとする課題  Problems to be solved by the invention

[0003] ところで、効率的な白色 LEDを作製するためには、青色 LEDから放射された青色 光が適度に蛍光体に吸収され、赤色と緑色の補色関係にある黄色光が高い効率で 励起され、かつ青色光と黄色光とが均一に混合されることが重要である。  By the way, in order to produce an efficient white LED, blue light emitted from a blue LED is appropriately absorbed by a phosphor, and yellow light having a complementary color relationship between red and green is excited with high efficiency. It is important that blue light and yellow light are mixed uniformly.

[0004] 青色 LEDから放射される青色光と蛍光体の励起光である黄色光とを均一に混合す るためには、これら各色光の配光を一致させる必要があり、特に青色 LEDから放射さ れる青色光をランベルト配光とする必要がある力 青色光をランベルト配光とするた めには、樹脂封止部内で青色光を十分に散乱させる必要があり、樹脂封止部内にお ける蛍光体の含有量を増加する必要がある。し力もながら、樹脂封止部内における 蛍光体の含有量を増加すると、青色光の吸収量が増加し、かつ黄色光の光量が増 加するため、出射光の色座標がシフトしてしまうという問題が生じる。また、蛍光体が 含有された封止樹脂の粘性が高くなるため、封止樹脂のハンドリングが困難になるば 力、りでなぐ樹脂封止部内における蛍光体の分散が不均一になって、色むらが生じ やすくなるという問題も生じる。 [0004] In order to uniformly mix the blue light emitted from the blue LED and the yellow light that is the excitation light of the phosphor, it is necessary to match the light distribution of each color light, especially from the blue LED. Force that needs blue light to be Lambert light distribution To make blue light Lambert light distribution, it is necessary to sufficiently scatter blue light in the resin sealing part, and in the resin sealing part There is a need to increase the phosphor content. In the resin sealing part When the phosphor content is increased, the amount of blue light absorbed increases and the amount of yellow light increases, resulting in a problem that the color coordinates of the emitted light shift. In addition, since the viscosity of the sealing resin containing the phosphor is increased, if the sealing resin is difficult to handle, the dispersion of the phosphor in the resin sealing portion that is connected with the glue becomes non-uniform, resulting in a color change. There is also a problem that unevenness is likely to occur.

[0005] なお、前記においては、白色 LEDを例にとって説明した力 LEDと、 LEDの放射 光によって励起される蛍光体と、蛍光体を分散する樹脂封止部を有する全ての半導 体発光素子について、同様の不都合がある。  [0005] In the above description, all semiconductor light emitting elements having the power LED described by taking the white LED as an example, the phosphor excited by the emitted light of the LED, and the resin sealing portion for dispersing the phosphor Have the same disadvantages.

[0006] 本発明は、力、かる従来技術の問題点を解決するためになされたものであり、その目 的は、製造が容易で、光の出射特性が安定している半導体発光装置を提供すること にめ ·ο。  [0006] The present invention has been made to solve the problems of the conventional technology, and the purpose thereof is to provide a semiconductor light emitting device that is easy to manufacture and has stable light emission characteristics. To do · ο.

課題を解決するための手段  Means for solving the problem

[0007] 本発明は、上記の課題を解決するため、第 1に、 LEDと、当該 LEDの周囲を封止 する樹脂封止部と、当該樹脂封止部内に分散され、前記 LEDの放射光を吸収して 前記放射光とは波長が異なる励起光を励起する蛍光体とを有し、前記放射光と前記 励起光との混合光を前記樹脂封止部から外部に出射する半導体発光装置において 、前記蛍光体の周囲に、粒子径が前記放射光の波長よりも小さぐ屈折率が前記蛍 光体の屈折率と同じかそれよりも小さくて、前記樹脂封止部の屈折率よりも大きい放 射光散乱用の微粒子を付着するという構成にした。  [0007] In order to solve the above-mentioned problem, the present invention firstly, an LED, a resin sealing portion that seals the periphery of the LED, and the light emitted from the LED dispersed in the resin sealing portion. A semiconductor light emitting device that has a phosphor that excites excitation light having a wavelength different from that of the emitted light, and emits mixed light of the emitted light and the excitation light from the resin sealing portion to the outside In the periphery of the phosphor, the refractive index whose particle diameter is smaller than the wavelength of the emitted light is the same as or smaller than the refractive index of the phosphor and larger than the refractive index of the resin sealing portion. The configuration is such that fine particles for scatter of radiation are attached.

[0008] 前記蛍光体の周囲に、粒子径が LEDの放射光の波長よりも小さぐ屈折率が蛍光 体の屈折率と同じかそれよりも小さくて、樹脂封止部の屈折率よりも大きい放射光散 乱用の微粒子を付着すると、樹脂封止部内で LEDの放射光を十分にレイリー散乱さ せることができるので、蛍光体に対する LEDの放射光の入射効率を高めることができ る。また、 LEDからの放射光と蛍光体の励起光との配光を一致させることができるの で、これらの各光を均一に混合することができる。さらに、樹脂封止部内における蛍 光体の含有量を増加することなぐ樹脂封止部内で LEDの放射光を十分に散乱させ ることができるので、蛍光体を含有した封止樹脂のハンドリングを容易化できると共に 、封止樹脂内における蛍光体の分散を均一化することができる。 [0009] また、本発明は、第 2に、前記第 1の構成の半導体発光装置において、前記微粒子 の径カ S40〜100nmの範囲にあるという構成にした。 [0008] Around the phosphor, the refractive index whose particle diameter is smaller than the wavelength of the emitted light of the LED is the same as or smaller than the refractive index of the phosphor and larger than the refractive index of the resin sealing portion. Adhering fine particles for scattering of radiated light allows the radiated light of the LED to be sufficiently Rayleigh scattered within the resin-sealed part, so that the incident efficiency of the radiated light of the LED on the phosphor can be increased. Also, since the light distribution from the LED and the excitation light of the phosphor can be matched, each of these lights can be mixed uniformly. In addition, LED radiation can be sufficiently scattered within the resin-encapsulated part without increasing the phosphor content in the resin-encapsulated part, making it easy to handle the encapsulating resin containing the phosphor. In addition, the dispersion of the phosphor in the sealing resin can be made uniform. [0009] In addition, according to the present invention, secondly, in the semiconductor light emitting device having the first configuration, the fine particles have a diameter in a range of S40 to 100 nm.

[0010] 微粒子の粒子径は、小さ!/、ほど青色光を散乱させやす!/、ので、本構成により青色 光の散乱の効率を向上させることができる。 [0010] Since the particle diameter of the fine particles is small! /, The blue light is easily scattered! /, The present configuration can improve the efficiency of the blue light scattering.

[0011] また、本発明は、第 3に、前記第 1又は第 2の構成の半導体発光装置において、前 記微粒子が、シリカ又はアルミナの微粒子であり、前記樹脂封止部が、エポキシ樹脂 又はシリコーン樹脂からなるという構成にした。 [0011] Further, according to the third aspect of the present invention, in the semiconductor light emitting device having the first or second configuration, the fine particles are fine particles of silica or alumina, and the resin sealing portion is an epoxy resin or The composition is made of silicone resin.

[0012] シリカ及びアルミナの微粒子は、光の散乱性を有し、かつ化学的に安定であるので[0012] Silica and alumina fine particles have light scattering properties and are chemically stable.

、封止樹脂内に含有する光散乱性の粒子として特に優れる。また、エポキシ樹脂及 びシリコーン樹脂は、透光性に優れ、かつ屈折率がシリカやアルミナよりも小さいのでParticularly excellent as light-scattering particles contained in the sealing resin. Epoxy resins and silicone resins are excellent in translucency and have a lower refractive index than silica or alumina.

、樹脂封止部を構成する封止樹脂として特に優れる。 In particular, it is excellent as a sealing resin constituting the resin sealing portion.

発明の効果  The invention's effect

[0013] 本発明は、樹脂封止部に分散される蛍光体の周囲に、粒子径が LEDの放射光の 波長よりも小さぐ屈折率が蛍光体の屈折率と同じかそれよりも小さくて、樹脂封止部 の屈折率よりも大きい放射光散乱用の微粒子を付着したので、樹脂封止部内におけ る蛍光体の含有量を増加することなぐ樹脂封止部内で LEDの放射光を十分にレイ リー散舌 Lさせること力 Sできる。よって、 LEDと、当該 LEDの放射光により励起される蛍 光体と、当該蛍光体を分散する樹脂封止部とを有する半導体発光装置の色座標の 面内分布を安定化できると共に、封止樹脂のハンドリングを容易なものにすることが できて、この種の半導体発光装置の製造を容易化できる。  [0013] In the present invention, around the phosphor dispersed in the resin sealing portion, the refractive index at which the particle diameter is smaller than the wavelength of the emitted light of the LED is the same as or smaller than the refractive index of the phosphor. Since the particles for scattering scattered light larger than the refractive index of the resin-encapsulated part are attached, the emitted light from the LED is sufficiently contained in the resin-encapsulated part without increasing the phosphor content in the resin-encapsulated part. Can make Rayleigh tongue L to force S. Therefore, the in-plane distribution of color coordinates of the semiconductor light emitting device having the LED, the phosphor excited by the emitted light of the LED, and the resin sealing portion that disperses the phosphor can be stabilized, and the sealing can be performed. Resin handling can be facilitated, and the manufacture of this type of semiconductor light emitting device can be facilitated.

発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION

[0014] 以下、本発明に係る半導体発光装置の実施形態を、図 1乃至図 5を用いて説明す る。図 1は実施形態に係る半導体発光装置の構成図、図 2は樹脂封止部内における 微粒子付き蛍光体の分散状態を示す説明図、図 3は樹脂封止部内に分散される微 粒子付き蛍光体の断面図、図 4は従来例に係る半導体発光装置の出射光スペクトル と実施形態に係る半導体発光装置の出射光スペクトルとを比較して示すグラフ図、図 5は従来例に係る半導体発光装置の色座標の面内分布と実施形態に係る半導体発 光装置の色座標の面内分布を比較して示すグラフ図である。 [0015] 図 1に示すように、本例の半導体発光装置は、青色 LEDチップ 1と、青色 LEDチッ プ 1を設置するためのカップ 2を有する接着脚 3と、カップ 2内に設置された青色 LED チップ 1の周囲を封止する樹脂封止部 4と、絶縁物 5を介して接着脚 3と対向に配置 された脚 6と、 LEDチップ 1の端子部と各脚 3, 6とを接続する導線 7, 8とから構成さ れている。 Hereinafter, embodiments of the semiconductor light emitting device according to the present invention will be described with reference to FIGS. 1 to 5. FIG. 1 is a configuration diagram of the semiconductor light emitting device according to the embodiment, FIG. 2 is an explanatory view showing a dispersion state of the phosphor with fine particles in the resin sealing portion, and FIG. 3 is a phosphor with fine particles dispersed in the resin sealing portion. FIG. 4 is a graph showing a comparison between the emission light spectrum of the semiconductor light emitting device according to the conventional example and the emission light spectrum of the semiconductor light emitting device according to the embodiment, and FIG. 5 is a graph of the semiconductor light emitting device according to the conventional example. FIG. 5 is a graph showing a comparison between in-plane distribution of color coordinates and in-plane distribution of color coordinates of the semiconductor light emitting device according to the embodiment. [0015] As shown in FIG. 1, the semiconductor light emitting device of this example is installed in the cup 2 with a blue LED chip 1, an adhesive leg 3 having a cup 2 for installing the blue LED chip 1. The resin sealing part 4 that seals the periphery of the blue LED chip 1, the leg 6 that is placed opposite to the adhesive leg 3 via the insulator 5, and the terminal part of the LED chip 1 and each leg 3, 6 It consists of conducting wires 7 and 8.

[0016] 樹脂封止部 4は、図 2に示すように、封止樹脂 11中に微粒子付き蛍光体 12を均一 に分散してなる。微粒子付き蛍光体 12は、粒子状に形成された蛍光体 12aの外面に 、粒子径が青色 LEDチップ 1から放射される青色光の波長(460nm〜470nm)より も小さぐ屈折率が蛍光体 12aの屈折率と同じかそれよりも小さくて、封止樹脂 11の 屈折率よりも大きい青色光散乱用微粒子 12bを付着してなる。なお、青色光散乱用 微粒子 12bの粒子径は、小さいほど青色光を散乱させやすいので、望ましくは青色 光の波長の 1/4以下、さらに望ましくは青色光の波長の 1/10以下に調製される。 蛍光体 12aに対する青色光散乱用微粒子 12bの付着は、ホソカワミクロン社製の機 械的微粒子複合化装置 NC— LAB— Pなどを用いて、図 3に示すように、蛍光体 12a の外面に 1層以上密に付着させることができる。青色光散乱用微粒子 12bの層数に ついては、青色光の散乱の程度と蛍光体 12aへの青色光の入射の程度とのバランス を考慮して、平均で 2層乃至 5層程度とすることが望ましい。  As shown in FIG. 2, the resin sealing portion 4 is formed by uniformly dispersing the phosphor 12 with fine particles in the sealing resin 11. The phosphor 12 with fine particles has a refractive index smaller than the wavelength of the blue light (460 nm to 470 nm) emitted from the blue LED chip 1 on the outer surface of the phosphor 12a formed in a particle shape. The blue light scattering fine particles 12b that are equal to or smaller than the refractive index of the sealing resin 11 and larger than the refractive index of the sealing resin 11 are attached. The smaller the particle size of the blue light scattering fine particles 12b, the easier it is to scatter blue light. Therefore, it is preferably adjusted to 1/4 or less of the wavelength of blue light, more preferably 1/10 or less of the wavelength of blue light. The As shown in Fig. 3, the adhesion of blue light scattering fine particles 12b to phosphor 12a is performed on the outer surface of phosphor 12a as shown in Fig. 3 using a mechanical fine particle composite device NC-LAB-P manufactured by Hosokawa Micron. It can be made to adhere densely. The number of layers of the blue light scattering fine particles 12b should be about 2 to 5 on average in consideration of the balance between the degree of blue light scattering and the degree of blue light incident on the phosphor 12a. desirable.

[0017] 樹脂封止部 4を構成する封止樹脂 11としては、エポキシ樹脂やシリコーン樹脂を用 いること力 Sできる。本実施例においては、屈折率 1. 41のシリコーン樹脂を使用した。 また、蛍光体 12aとしては、平均粒子径が 5 μ m〜10 μ mの YAG蛍光体を用いた。  [0017] As the sealing resin 11 constituting the resin sealing portion 4, an epoxy resin or a silicone resin can be used. In this example, a silicone resin having a refractive index of 1.41 was used. As the phosphor 12a, a YAG phosphor having an average particle diameter of 5 μm to 10 μm was used.

YAG蛍光体の屈折率が略々 1. 8であることから、この蛍光体においては、青色光散 乱用微粒子 12bとしては、アルミナ粒子やシリカ粒子を用いることができる。本実施例 においては、平均粒径 80nmのシリカ微粒子(平均屈折率 = 1. 50)を平均三層付着 させた。シリコーン樹脂中へ 30vol%の前記微粒子を付着させた蛍光体を混ぜ合わ せ、 LEDを封止し、微粒子を付着させない場合との比較を行った。  Since the refractive index of the YAG phosphor is approximately 1.8, in this phosphor, alumina particles or silica particles can be used as the blue light scattering fine particles 12b. In this example, an average of three layers of silica fine particles having an average particle diameter of 80 nm (average refractive index = 1.50) were deposited. A phosphor with 30 vol% of the fine particles adhered thereto was mixed in a silicone resin, and the LED was sealed and compared with the case where fine particles were not adhered.

[0018] 半導体発光装置のその他の部分については、公知に属する事項であり、かつ本発 明の要旨でもないので、説明を省略する。  [0018] The other parts of the semiconductor light emitting device are well-known matters and are not the gist of the present invention, so the description is omitted.

[0019] 本例の半導体発光装置は、封止樹脂 11中に分散される蛍光体 12aの周囲に、粒 子径が青色 LEDチップ 1から放射される青色光の波長よりも小さぐ屈折率が蛍光体 12aの屈折率と同じかそれよりも小さくて、封止樹脂 11の屈折率よりも大きい青色光 散乱用微粒子 12bを付着したので、樹脂封止部 4内で青色 LEDチップ 1から放射さ れる青色光を十分にレイリー散乱させることができ、蛍光体 12aに対する青色光の入 射効率を高めることができる。また、青色光が十分にレイリー散乱されることから、青 色 LEDチップ 1から放射される青色光と蛍光体 12aの励起光である黄色光との配光 を一致させることができ、各色の光を均一に混合することができる。さらに、樹脂封止 部 4内における蛍光体 12aの含有量を増加することなぐ樹脂封止部 4内で青色光を 十分にレイリー散乱させることができるので、蛍光体 12aを含有した封止樹脂 11の粘 度を低く抑えることができてそのハンドリングを容易化できると共に、封止樹脂 11内に おける蛍光体の分散を均一化することができる。よって、本例の半導体発光装置は、 製造が容易で、色座標の面内分布が安定な白色光を出射することができる。 [0019] The semiconductor light-emitting device of the present example has particles around the phosphor 12a dispersed in the sealing resin 11. Blue light scattering with a refractive index smaller than the wavelength of the blue light emitted from the LED chip 1 is the same as or smaller than the refractive index of the phosphor 12a and larger than the refractive index of the sealing resin 11 Since the fine particles 12b are attached, the blue light emitted from the blue LED chip 1 can be sufficiently Rayleigh scattered in the resin sealing portion 4 and the efficiency of blue light incident on the phosphor 12a can be increased. . In addition, since the blue light is sufficiently Rayleigh scattered, the light distribution of the blue light emitted from the blue LED chip 1 and the yellow light, which is the excitation light of the phosphor 12a, can be matched. Can be mixed uniformly. Further, since the blue light can be sufficiently Rayleigh scattered in the resin sealing portion 4 without increasing the content of the phosphor 12a in the resin sealing portion 4, the sealing resin 11 containing the phosphor 12a 11 The viscosity of the resin can be kept low, facilitating the handling thereof, and the dispersion of the phosphor in the sealing resin 11 can be made uniform. Therefore, the semiconductor light emitting device of this example is easy to manufacture and can emit white light with stable in-plane distribution of color coordinates.

[0020] 即ち、図 4に示すように、実施形態例に係る半導体発光装置は、従来例に係る半導 体発光装置に比べて、短波長成分 (青色光)の強度が低下して長波長成分 (黄色光 )の強度が増加しており、青色 LEDチップ 1から放射される青色光の蛍光体 12aへの 入射効率が高められていることが分かる。また、図 5に示すように、従来例に係る半導 体発光装置は、 x = 0. 31、y=0. 32を中心として、 x方向及び y方向とも色座標の面 内変化が約 0. 01であったのに対し、実施形態例に係る半導体発光装置は、 x = 0. 31、y=0. 32を中心として、 x方向及び y方向とも色座標の面内変化が 0. 005以下 になっており、青色 LEDチップ 1から放射される青色光と蛍光体 12aの励起光である 黄色光との配光が一致し、青色光と黄色光とが混合されやすくなつて!/、ること力 S分力、 That is, as shown in FIG. 4, the semiconductor light emitting device according to the embodiment has a shorter wavelength component (blue light) due to a lower intensity than the semiconductor light emitting device according to the conventional example. It can be seen that the intensity of the component (yellow light) has increased, and the incidence efficiency of the blue light emitted from the blue LED chip 1 on the phosphor 12a is increased. Further, as shown in FIG. 5, the semiconductor light emitting device according to the conventional example has about 0 in-plane change of the color coordinate in both the x direction and the y direction with x = 0.31 and y = 0.32. In contrast, in the semiconductor light emitting device according to the embodiment, the in-plane change of the color coordinate in the x direction and the y direction centered on x = 0.31 and y = 0.32 is 0.00. As shown below, the blue light emitted from the blue LED chip 1 and the yellow light that is the excitation light of the phosphor 12a match and the blue light and yellow light are easily mixed! /, S force,

[0021] なお、前記実施形態においては、青色 LEDチップ 1を備え、白色光を出射する半 導体発光素子を例にとって説明したが、本発明の要旨はこれに限定されるものでは なぐ LEDの放射光により樹脂封止部内に分散された蛍光体を励起し、 LEDの放射 光と蛍光体の励起光との混合光を樹脂封止部から外部に出射する全ての半導体発 光装置に適用することができる。 In the above-described embodiment, the semiconductor light emitting element that includes the blue LED chip 1 and emits white light has been described as an example. However, the gist of the present invention is not limited to this, and the LED radiation is not limited thereto. Applicable to all semiconductor light emitting devices that excite phosphors dispersed in resin-sealed parts with light and emit mixed light of LED radiation and phosphor excitation light from resin-sealed parts to the outside Can do.

図面の簡単な説明 [0022] [図 1]実施形態に係る半導体発光装置の構成図である。 Brief Description of Drawings FIG. 1 is a configuration diagram of a semiconductor light emitting device according to an embodiment.

[図 2]樹脂封止部内における微粒子付き蛍光体の分散状態を示す説明図である。  FIG. 2 is an explanatory view showing a dispersion state of a phosphor with fine particles in a resin sealing portion.

[図 3]樹脂封止部内に分散される微粒子付き蛍光体の断面図である。  FIG. 3 is a cross-sectional view of a phosphor with fine particles dispersed in a resin sealing portion.

[図 4]従来例に係る半導体発光装置の出射光スペクトルと実施形態に係る半導体発 光装置の出射光スペクトルとを比較して示すグラフ図である。  FIG. 4 is a graph showing a comparison between an emitted light spectrum of a semiconductor light emitting device according to a conventional example and an emitted light spectrum of a semiconductor light emitting device according to an embodiment.

[図 5]従来例に係る半導体発光装置の色座標の面内分布と実施形態に係る半導体 発光装置の色座標の面内分布を比較して示すグラフ図である。  FIG. 5 is a graph showing a comparison between an in-plane distribution of color coordinates of a semiconductor light emitting device according to a conventional example and an in-plane distribution of color coordinates of a semiconductor light emitting device according to an embodiment.

符号の説明  Explanation of symbols

[0023] 1 青色 LEDチップ [0023] 1 Blue LED chip

4 樹脂封止部  4 Resin sealing part

11 封止樹脂  11 Sealing resin

12 微粒子付き蛍光体  12 Phosphor with fine particles

12a 蛍光体  12a phosphor

12b 青色光散乱用微粒子  12b Blue light scattering fine particles

Claims

請求の範囲 The scope of the claims [1] 発光ダイオードと、当該発光ダイオードの周囲を封止する樹脂封止部と、当該樹脂 封止部内に分散され、前記発光ダイオードの放射光を吸収して前記放射光とは波長 が異なる励起光を励起する蛍光体とを有し、前記放射光と前記励起光との混合光を 前記樹脂封止部から外部に出射する半導体発光装置において、  [1] A light emitting diode, a resin sealing portion that seals the periphery of the light emitting diode, and an excitation that is dispersed in the resin sealing portion and absorbs the light emitted from the light emitting diode and has a wavelength different from that of the emitted light In a semiconductor light emitting device that has a phosphor that excites light and emits mixed light of the emitted light and the excitation light to the outside from the resin sealing portion, 前記蛍光体の周囲に、粒子径が前記放射光の波長よりも小さぐ屈折率が前記蛍 光体の屈折率と同じかそれよりも小さくて、前記樹脂封止部の屈折率よりも大きい放 射光散乱用の微粒子を付着したことを特徴とする半導体発光装置。  Around the phosphor, a refractive index whose particle diameter is smaller than the wavelength of the emitted light is equal to or smaller than the refractive index of the phosphor, and larger than the refractive index of the resin sealing portion. A semiconductor light emitting device, wherein fine particles for scattering light are attached. [2] 前記微粒子の径が 40 100nmの範囲にあることを特徴とする請求項 1に記載の 半導体発光装置。  [2] The semiconductor light emitting device according to [1], wherein the diameter of the fine particles is in the range of 40 to 100 nm. [3] 前記微粒子が、シリカ又はアルミナの微粒子であり、前記樹脂封止部が、エポキシ 樹脂又はシリコーン樹脂からなることを特徴とする請求項 1に記載の半導体発光装置  3. The semiconductor light emitting device according to claim 1, wherein the fine particles are fine particles of silica or alumina, and the resin sealing portion is made of an epoxy resin or a silicone resin. [4] 前記微粒子が、シリカ又はアルミナの微粒子であり、前記樹脂封止部が、エポキシ 樹脂又はシリコーン樹脂からなることを特徴とする請求項 2に記載の半導体発光装置 4. The semiconductor light emitting device according to claim 2, wherein the fine particles are fine particles of silica or alumina, and the resin sealing portion is made of an epoxy resin or a silicone resin.
PCT/JP2007/065740 2006-08-14 2007-08-10 Semiconductor light emitting device WO2008020575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006221016 2006-08-14
JP2006-221016 2006-08-14

Publications (1)

Publication Number Publication Date
WO2008020575A1 true WO2008020575A1 (en) 2008-02-21

Family

ID=39082100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065740 WO2008020575A1 (en) 2006-08-14 2007-08-10 Semiconductor light emitting device

Country Status (1)

Country Link
WO (1) WO2008020575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186886A (en) * 2009-02-12 2010-08-26 Yuichi Suzuki Fluorescence conversion light-emitting diode
JP2011129661A (en) * 2009-12-17 2011-06-30 Nichia Corp Light emitting device
EP2657999A3 (en) * 2012-04-27 2015-08-12 Kabushiki Kaisha Toshiba Wavelength converter and semiconductor light emitting device
JP2016194709A (en) * 2016-06-23 2016-11-17 セイコーエプソン株式会社 Light source device and projector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286351A (en) * 2005-06-06 2005-10-13 Toshiba Corp Manufacturing method of light-emitting device
JP2006114637A (en) * 2004-10-13 2006-04-27 Toshiba Corp Semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114637A (en) * 2004-10-13 2006-04-27 Toshiba Corp Semiconductor light emitting device
JP2005286351A (en) * 2005-06-06 2005-10-13 Toshiba Corp Manufacturing method of light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186886A (en) * 2009-02-12 2010-08-26 Yuichi Suzuki Fluorescence conversion light-emitting diode
JP2011129661A (en) * 2009-12-17 2011-06-30 Nichia Corp Light emitting device
US8552448B2 (en) 2009-12-17 2013-10-08 Nichia Corporation Light emitting device
US8647906B2 (en) 2009-12-17 2014-02-11 Nichia Corporation Method for manufacturing a light emitting device
EP2657999A3 (en) * 2012-04-27 2015-08-12 Kabushiki Kaisha Toshiba Wavelength converter and semiconductor light emitting device
JP2016194709A (en) * 2016-06-23 2016-11-17 セイコーエプソン株式会社 Light source device and projector

Similar Documents

Publication Publication Date Title
CN101325195B (en) Semiconductor light emitting apparatus
US6635363B1 (en) Phosphor coating with self-adjusting distance from LED chip
JP5707697B2 (en) Light emitting device
JP5777705B2 (en) Light emitting device and manufacturing method thereof
US7906892B2 (en) Light emitting device
CN103262267B (en) Optoelectronic semiconductor component
CN101493216B (en) LED light source module
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
CN108966666A (en) Light supply apparatus and light emitting device
KR100659900B1 (en) White light emitting device and its manufacturing method
JP2012531043A (en) Phosphor conversion infrared LED related applications
JP2013247067A5 (en) Inorganic molded body for wavelength conversion and light emitting device
WO2005091387A1 (en) Light-emitting device and illuminating device
CN101567366A (en) Light emitting diode
CN102484924A (en) Light emitting structure comprising diffuser particles comprising a phosphor host material
JPWO2007018039A1 (en) Semiconductor light emitting device
WO2014181757A1 (en) Circuit board, optical semiconductor device and manufacturing method for same
JP2013216800A5 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
CN107408610B (en) Light emitting device
CN102263190A (en) light emitting device
US8299487B2 (en) White light emitting device and vehicle lamp using the same
WO2008020575A1 (en) Semiconductor light emitting device
JP2017215568A (en) Wavelength conversion element, light source device, and image projection device
JP2015192096A (en) Light emitting device
CN101684933B (en) Encapsulation structure and encapsulation method of white light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP