WO2008019583A1 - A PROCESS FOR SYNTHESIZING SAPO-34 MOLECULAR SIEVE ENRICHED WITH A Si(4Al) STRUCTURE IN THE SKELETON - Google Patents
A PROCESS FOR SYNTHESIZING SAPO-34 MOLECULAR SIEVE ENRICHED WITH A Si(4Al) STRUCTURE IN THE SKELETON Download PDFInfo
- Publication number
- WO2008019583A1 WO2008019583A1 PCT/CN2007/002332 CN2007002332W WO2008019583A1 WO 2008019583 A1 WO2008019583 A1 WO 2008019583A1 CN 2007002332 W CN2007002332 W CN 2007002332W WO 2008019583 A1 WO2008019583 A1 WO 2008019583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecular sieve
- sapo
- content
- coordination
- skeleton
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/82—Phosphates
- C07C2529/84—Aluminophosphates containing other elements, e.g. metals, boron
- C07C2529/85—Silicoaluminophosphates (SAPO compounds)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Definitions
- the framework is rich in Si (4AD structure of SAPO-34 molecular sieve synthesis method)
- the invention relates to a method for synthesizing SAPO-34 molecular sieve rich in Si(4Al) structure, relating to the technical field of molecular sieve synthesis, wherein the Si coordination environment in the molecular sieve skeleton synthesized by the method is mainly Si(4Al) structure, and the relative content thereof is 70 -100%. Background technique
- SAPO-n silica-alumina series molecular sieves
- USP 4,440,871 Phosphorus-alumina SAPO molecular sieves are composed of phosphorus, silicon, aluminum and oxygen.
- Molecular sieves of the zeolitic structure In 1984, UCC developed a series of new silica-alumina series molecular sieves (SAPO-n) (USP 4,440,871). Phosphorus-alumina SAPO molecular sieves are composed of phosphorus, silicon, aluminum and oxygen. Molecular sieves of the zeolitic structure.
- the structure unit composed of a P0 2 +, Si0 2 tetrahedra and ⁇ 10 2 ⁇ anhydrous chemical composition can be expressed as:
- R is a templating agent present in the micropores of the molecular sieve crystal
- m is the number of moles of R
- SAPO-17, SAPO-18, SAPO-34 methanol to light olefin
- SAPO-44 molecular sieves which have a pore size of about 0.43 nm, are a good type of shape-selective catalyst.
- SAPO-34 molecular sieve exhibits excellent catalytic performance in MTO reaction due to its suitable acidity and pore structure.
- the acidity of the SAPO type molecular sieve can be regarded as caused by the substitution of Si into the framework of the aluminum phosphate molecular sieve by substitution.
- the aluminum phosphate molecular sieve ⁇ 1 ⁇ 0 4 - ⁇ is formed by AK tetrahedron and P0 2 + tetrahedron in strict proportion of 1:1.
- the whole skeleton is electrically neutral, has no obvious B acid center, and the overall acidity is very weak.
- the skeleton is formed by three tetrahedrons of AKV, P0 2 + and Si0 2 , and the skeleton generates a net negative charge, so that the molecular sieve has a protonic acidity.
- the Si-0-Al there are also only two ways of bonding Si in the SAPO molecular sieve, one in the form of Si-0-Al and the other in the form of Si-0-Si. From the formation principle of the molecular sieve and the analysis of the skeleton structure, the Si-0-Al structure has various forms in the skeleton.
- the Si atoms can be connected to 0 to 4 aluminum atoms through oxygen to form various Si coordination structures, which can be represented separately. It is Si(0Al), Si(lAl), Si(2Al), Si(3Al), Si(4Al).
- the acid center strength of different silicon-aluminum structures is enhanced in the order of Si(OAl), Si(4Al), Si(3Al), Si(2Al), Si(lAl), so the strength of the acid center in the molecular sieve framework
- the number and number are closely related to the structure and number of the skeleton silicon atoms (J. Phys.
- An object of the present invention is to provide a method for synthesizing SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure.
- Another object of the present invention is to provide a SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure.
- the present invention has been completed through intensive work by the inventors.
- a method for synthesizing a SAPO-34 molecular sieve rich in Si(4Al) structure wherein the relative amount of Si(4Al) structure in the molecular sieve skeleton accounts for 70-100 of the Si coordination environment. %; This method includes the following steps:
- R/- Al 2 0 3 l ⁇ 5, wherein R is a templating agent.
- the templating agent is one of triethylamine and diethylamine, or a mixture of the two.
- the fluoride is a soluble acid or salt of a fluoride ion.
- the fluoride is one of HF and NH 4 F, or a mixture of the two.
- the crystallization time in the step b) is from 2 to 120 hours.
- the Si coordination environment in the SAPO-34 molecular sieve rich in Si(4Al) coordination structure based on the relative content percentage of the Si coordination environment: the molar percentage content of Si(4Al) 70 ⁇ 100%; Si(3Al) has a molar percentage of 0 ⁇ 30%; Si(2Al) has a molar percentage of 0 ⁇ 20%; Si(lAl) has a molar percentage of 0 ⁇ 10%; Si( The molar percentage of OAl) is 0 to 5%, provided that the ratio of the molar percentage content of Si(4Al), Si(3Al), Si(2Al), Si(lAl), and Si(OAl) is 100%.
- the invention provides a SAPO-34 molecular sieve having a framework rich in Si(4Al) structure prepared by the process as described above.
- the present invention provides a SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure, wherein in a Si coordination environment in a SAPO-34 molecular sieve rich in Si(4Al) coordination structure
- Si coordination environment the content of Si (4Al) is 70 ⁇ 100% ; the content of Si (3Al) is 0 ⁇ 30%; the content of Si (2Al) is 0 ⁇ 20%; Si (lAl) has a molar percentage of 0 to 10%; Si (OAl) has a molar percentage of 0 to 5%, provided that: Si(4Al), Si(3Al), Si(2Al), Si The ratio of the molar percentage content of (lAl) to Si (OAl) is 100%.
- the present invention provides the use of a SAPO-34 molecular sieve having a skeleton-rich Si(4Al) structure as described above for the methanol to olefin reaction.
- Fig. 1 is a XRD chart of a product synthesized under different HF ratio conditions and Comparative Example 1 in the absence of HF in Example 1 of the present invention.
- Figure 2 XRD spectrum of the product synthesized under different HF ratio conditions and Comparative Example 2 without HF in Example 4 of the present invention.
- Figure 3 XRD spectrum of the synthesized product in different NH 4 F ratios in Example 7 of the present invention.
- the object of the present invention is to analyze the influence of the strength and number of surface acid center of SAPO-34 molecular sieve on the reaction performance of methanol to olefin (MTO), and provide a synthetic method of SAPO-34 molecular sieve with Si (4Al) structure.
- MTO methanol to olefin
- fluoride is added to control the Si into the molecular sieve skeleton, and the SAPO-34 molecular sieve with Si(4AI) as the main coordination form is synthesized, thereby achieving the purpose of adjusting the acid center strength and number on the surface of the molecular sieve.
- the technical solution of the present invention is to provide a method for synthesizing a SAPO-34 molecular sieve rich in Si (4Al) structure, and a Si (4Al) structure of a Si coordination environment in the molecular sieve skeleton has a relative content of 70 -100%; a gel mixture of a SAPO-34 molecular sieve having a synthetic skeleton rich in Si(4Al) structure, including a fluoride, a templating agent, a silicon source, an aluminum source, a phosphorus source, and water;
- the templating agent is one of or a mixture of triethylamine and diethylamine.
- the fluoride is a soluble acid or salt of a fluoride ion.
- the fluoride is one or a mixture of two of HF, NF.
- the Si coordination environment of the SAPO-34 molecular sieve rich in Si(4Al) coordination structure is calculated by the relative content percentage of the Si coordination environment: Si(4Al) is 70 ⁇ 100; Si(3Al) It is 30 ⁇ 0; Si(2AI) is 20 ⁇ 0; Si(lAl) is 10 ⁇ 0; Si(OAl) is 5 ⁇ 0.
- the fluorine-containing ion gel mixture obtained in the step a) is placed in a stainless steel synthetic kettle lined with polytetrafluoroethylene, sealed and heated to a crystallization temperature, and subjected to constant temperature crystallization under autogenous pressure; to be crystallized After completion, the solid product is separated by centrifugation, washed with deionized water to neutrality, and dried in air at 120 ° C to obtain a raw material rich in Si (4Al) structure SAPO-34 molecular sieve;
- the SAPO-34 molecular sieve raw powder obtained in the step b) is calcined in air at 500-600 ° C for 3-8 hours to obtain a SAPO-34 molecular sieve catalyst rich in Si (4Al) structure.
- SiO 2 /Al 2 O 3 0.1 to 2.0;
- R is a templating agent.
- the crystallization temperature in the step b) is 100-250 ° C, and the crystallization time is 2-120 hours.
- the synthesis of the Si(4Al)-rich SAPO-34 molecular sieve catalyst obtained by the synthesis is used to effectively increase the selectivity of ethylene and propylene when the methanol is used for the olefin reaction.
- the invention is characterized in that the structure of the molecular sieve is restricted by the interaction of the F ion and the gel component.
- the controlled synthesis of the coordination coordination environment of the SAPO-34 molecular sieve framework Si can improve the coordination structure of the Si(4Al) framework of the molecular sieve framework, thereby adjusting the acid center strength and number of the SAPO-34 molecular sieve.
- the choice of controlling the synthesis of Si(4Al)-rich SAPO-34 molecular sieve catalyst for the methanol to olefin reaction can improve the selectivity of ethylene and propylene and greatly improve the life of the catalyst.
- Example 1 The sample No. SP34 obtained in Example I was numbered SPF34-1, SPF34-2, SPF34-3 and Comparative Example 1 was subjected to 29 Si solid nuclear magnetic characterization to determine the Si coordination environment of the molecular sieve skeleton, and the relative contents of various Si coordination structures. As shown in Table 1.
- the sample No. SP34 obtained in Example 1 and having the numbers SPF34-1, SPF34-2, SPF34-3 and Comparative Example 1 was calcined at 550 ° C for 4 hours to obtain a SAPO-34 molecular sieve catalyst for methanol-to-olefin catalytic reaction.
- 0.6 g of a sample of 20-40 mesh granules of catalyst was separately charged into the reactor, and activated at 55 (TC for 1 hour with nitrogen gas, and then cooled to 450 ° C.
- the nitrogen was used as a diluent gas to carry the raw material methanol, and the nitrogen flow rate was 40ml/min, methanol weight space velocity 2.01 ⁇ .
- the composition of the reaction product was analyzed by online gas chromatography. The results are shown in Table 2. Shown.
- the gel mixture was formulated at an initial gel ratio of 3.0 TEA: 0.2 SiO 2 : P 2 0 5 : A1 2 0 3 : 50H 2 O (TEA is a triethylamine templating agent).
- TEA is a triethylamine templating agent.
- 30.3 g of TEA, 4.4 g of silica sol, 20.6 g of phosphoric acid, 13.6 g of pseudoboehmite and 67.5 g of H 2 0 were mixed, and the mixture was further stirred to form a gel, which was placed in a synthetic PTFE-lined synthetic kettle, and sealed and heated. 200'C, under constant pressure, crystallized for 12 hours.
- Example 4 The No. SPF34-9 obtained in Example 4 and the No. SP34-2 sample obtained in Comparative Example 2 were subjected to 29 Si solid nuclear magnetic characterization, and the molecular sieve skeleton Si coordination environment was determined. The relative contents of various Si coordination structures are shown in Table 3. .
- Example 4 The sample No. SP34-2 obtained in Example 4, which was numbered SPF34-8, SPF34-9, SPF34-10, SPF34-11, SPF34-12 and Comparative Example 2, was calcined at 550 ° C for 4 hours to obtain SAPO-34 molecular sieve.
- the catalyst is used for methanol to olefin catalytic reaction.
- a sample of 0.6 g of a 20-40 mesh particulate catalyst was separately charged into a reactor, activated by nitrogen at 550 ° C for 1 hour, and then cooled to 450 Torr for reaction.
- the raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity was 2.0 h.
- the composition of the reaction product was analyzed by on-line gas chromatography, and the results are shown in Table 4.
- the sample No. SP34-2 obtained in Example 7 and designated as SPF34-a, SPF34-b and Comparative Example 2 was calcined at 550 ° C for 4 hours to obtain a SAPO-34 molecular sieve catalyst for methanol-to-olefin catalytic reaction.
- a sample of 0.6 g of a 20-40 mesh particulate catalyst was separately charged into a reactor, activated by nitrogen at 55 CTC for 1 hour, and then cooled to 450 ° C for reaction.
- the raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity 2.011 was analyzed by on-line gas chromatography. The results are shown in Table 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
A process for synthesizing SAPO-34 molecular sieve enriched with a Si(4Al) structure in the skeleton relates to molecular sieve synthesis technology, the molecular sieve synthesized by the process predominately has Si(4Al) structure in skeleton Si coordination environment. In the present process, the fluorides are added to a starting synthesis gel to control a manner in which Si enters into molecular sieve skeleton, thereby to reduce the formation of Si(0Al), Si(1Al), Si(2Al) and Si(3Al) coordination structure and to facilitate the entrance of Si into molecular sieve skeleton in Si(4Al) coordination form. The synthesized SAPO-34 molecular sieve enriched with a Si(4Al) structure is used as MTO catalyst after being baked and could improve efficiently the selectivity of ethene and propene.
Description
骨架富含 Si(4AD结构的 SAPO-34分子筛合成方法 The framework is rich in Si (4AD structure of SAPO-34 molecular sieve synthesis method)
技术领域 Technical field
本发明一种骨架富含 Si(4Al)结构的 SAPO-34分子筛合成方法, 涉及分子筛合成 技术领域, 该方法合成的分子筛骨架中 Si配位环境主要为 Si(4Al)结构, 其相对含量 为 70-100%。 背景技术 The invention relates to a method for synthesizing SAPO-34 molecular sieve rich in Si(4Al) structure, relating to the technical field of molecular sieve synthesis, wherein the Si coordination environment in the molecular sieve skeleton synthesized by the method is mainly Si(4Al) structure, and the relative content thereof is 70 -100%. Background technique
1984 年, 美国联合碳化物公可 (UCC)开发了系列新型磷酸硅铝系列分子筛 (SAPO-n)(USP 4,440,871), 磷硅铝 SAPO分子筛是一种由磷、 硅、 铝和氧组成的具有 类菱沸石结构的分子筛。其结构单元由 P02+ 、 Si02和 Α102·四面体构成, 无水化学组 成可表示为:
上式中 R 为存在于分子筛晶体微孔中的模板剂, m 为 R的摩尔数, x、 y、 z分别 Si、 Al、 P的摩尔分数, 并满足 x+y+z= l。 随着磷酸 硅铝系列分子筛的问世, 人们开始将这种小孔的酸性适中的分子筛用于甲醇制低碳烯 烃 (MTO)反应, 所述的分子筛如 SAPO-17, SAPO-18, SAPO-34, SAPO-44分子筛, 它们的孔径大约为 0.43nm, 是一类较好的择形催化剂。 其中 SAPO-34分子筛由于具 有适宜的酸性和孔道结构在 MTO反应中呈现出优异的催化性能。 In 1984, UCC developed a series of new silica-alumina series molecular sieves (SAPO-n) (USP 4,440,871). Phosphorus-alumina SAPO molecular sieves are composed of phosphorus, silicon, aluminum and oxygen. Molecular sieves of the zeolitic structure. The structure unit composed of a P0 2 +, Si0 2 tetrahedra and Α10 2 · anhydrous chemical composition can be expressed as: In the above formula, R is a templating agent present in the micropores of the molecular sieve crystal, m is the number of moles of R, x, y, z are the molar fractions of Si, Al, and P, respectively, and satisfies x + y + z = l. With the advent of the silicoaluminophosphate series of molecular sieves, the use of such small pores of moderately acidic molecular sieves for the methanol to light olefin (MTO) reaction, such as SAPO-17, SAPO-18, SAPO-34, has begun. , SAPO-44 molecular sieves, which have a pore size of about 0.43 nm, are a good type of shape-selective catalyst. Among them, SAPO-34 molecular sieve exhibits excellent catalytic performance in MTO reaction due to its suitable acidity and pore structure.
SAPO类分子筛的酸性可以看作是由 Si通过取代方式进入磷酸铝分子筛骨架引 起的。 磷酸铝分子筛 Α1Ρ04-η由 AK 四面体和 P02+四面体严格按照 1 : 1的比例连接 而成, 整个骨架呈电中性, 没有明显的 B酸中心, 且总体酸性非常弱。 当磷酸铝骨架 中引进 Si原子形成 SAPO-n分子筛后, 骨架由 AKV, P02+和 Si02三种四面体连接而 成, 骨架产生净的负电荷, 使分子筛具备质子酸性。 与硅铝分子筛相似, 在 SAPO分 子筛中同样只存在两种 Si的成键方式,一种是以 Si-0-Al形式存在,另一种是以 Si-0-Si 形式存在。 从分子筛的形成原理和骨架结构分析, Si-0-Al 结构在骨架中有多种存在 形式, Si原子可以通过氧与 0至 4个铝原子相连, 形成多样的 Si配位结构, 可以分别 表示为 Si(0Al), Si(lAl), Si(2Al), Si(3Al), Si(4Al)。 理论上, 不同硅铝结构形成的酸 中心强度按 Si(OAl), Si(4Al), Si(3Al), Si(2Al), Si(lAl)的顺序依次增强, 因此分子筛 骨架中酸中心的强度和数目与骨架硅原子的结构和数目密切相关 (J. Phys. Chem, 1997, 101 , 5249-5262), 即 SAPO分子筛的骨架硅含量及配位环境对其酸性具有强烈影响。
对于 SAPO-34分子筛催化剂,分子筛骨架中酸性中心的强度和数目直接影响 SAPO-34 分子筛的 MTO催化性能, 酸性较强的酸性中心利于烷烃分子的生成, 酸性较弱的酸 性中心则有可能使甲醇不能完全转化, 中等强度的酸性中心可以限制垸烃和芳烃的生 成, 有利于提高乙烯和丙烯等低碳烯烃的选择性。 The acidity of the SAPO type molecular sieve can be regarded as caused by the substitution of Si into the framework of the aluminum phosphate molecular sieve by substitution. The aluminum phosphate molecular sieve Α1Ρ0 4 -η is formed by AK tetrahedron and P0 2 + tetrahedron in strict proportion of 1:1. The whole skeleton is electrically neutral, has no obvious B acid center, and the overall acidity is very weak. When a Si atom is introduced into the aluminum phosphate framework to form a SAPO-n molecular sieve, the skeleton is formed by three tetrahedrons of AKV, P0 2 + and Si0 2 , and the skeleton generates a net negative charge, so that the molecular sieve has a protonic acidity. Similar to the silicoalumino molecular sieve, there are also only two ways of bonding Si in the SAPO molecular sieve, one in the form of Si-0-Al and the other in the form of Si-0-Si. From the formation principle of the molecular sieve and the analysis of the skeleton structure, the Si-0-Al structure has various forms in the skeleton. The Si atoms can be connected to 0 to 4 aluminum atoms through oxygen to form various Si coordination structures, which can be represented separately. It is Si(0Al), Si(lAl), Si(2Al), Si(3Al), Si(4Al). Theoretically, the acid center strength of different silicon-aluminum structures is enhanced in the order of Si(OAl), Si(4Al), Si(3Al), Si(2Al), Si(lAl), so the strength of the acid center in the molecular sieve framework The number and number are closely related to the structure and number of the skeleton silicon atoms (J. Phys. Chem, 1997, 101, 5249-5262), that is, the skeleton silicon content of the SAPO molecular sieve and the coordination environment have a strong influence on its acidity. For SAPO-34 molecular sieve catalyst, the strength and number of acid centers in the molecular sieve framework directly affect the MTO catalytic performance of SAPO-34 molecular sieve. The acidic acid center is more favorable for the formation of alkane molecules, and the acidity of the weak acid center may make methanol. Incomplete conversion, medium-strength acid centers can limit the formation of terpene and aromatics, and contribute to the selectivity of low-carbon olefins such as ethylene and propylene.
1998年, Abbad等人 (Microporous and Mesoporous Materials, 1998, 21 , 12-18) 利用含有 HF的晶化液合成出了纯的 SAPO-31分子筛, 他们认为, HF不仅可以起到 矿化作用, 还可以像模板剂一样起到结构导向和稳定分子筛结构的作用。 刘红星等人 (催化学报, 2003, 24, 279-283)在合成 SAPO-34分子筛时加入 HF, 认为氟离子提高 了分子筛的结晶度, 并有利于形成较大的比表面和孔体积。 对于使用 Γ离子控制合成 以 Si(4Al)为主要配位形式的 SAPO-34分子筛未见报道。 In 1998, Abbad et al. (Microporous and Mesoporous Materials, 1998, 21, 12-18) synthesized pure SAPO-31 molecular sieves using fluorinated liquid containing HF. They believed that HF could not only mineralize, but also It acts like a templating agent to structure and stabilize the molecular sieve structure. Liu Hongxing et al. (Acta catalysis, 2003, 24, 279-283) added HF to the synthesis of SAPO-34 molecular sieves. It is believed that fluoride ions increase the crystallinity of molecular sieves and facilitate the formation of larger specific surface and pore volume. SAPO-34 molecular sieves using Si(4Al) as the main coordination form for the synthesis of ruthenium ions have not been reported.
因此, 需要一种骨架富含 Si(4Al)结构的 SAPO-34分子筛及其制备方法-, 该分子 筛有利于在 MTO反应中提高乙烯和丙烯等低碳烯烃的选择性。 发明内容 Therefore, there is a need for a SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure and a preparation method thereof, which is advantageous for improving the selectivity of low-carbon olefins such as ethylene and propylene in an MTO reaction. Summary of the invention
本发明的一个目的在于提供一种骨架富含 Si(4Al)结构的 SAPO-34分子筛合成方 法。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for synthesizing SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure.
本发明的另一个目的在于提供一种骨架富含 Si(4Al)结构的 SAPO-34分子筛。 经过本发明人深入细致的工作, 完成了本发明。 Another object of the present invention is to provide a SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure. The present invention has been completed through intensive work by the inventors.
具体而言, 在本发明的一个方面, 提供一种骨架富含 Si(4Al)结构的 SAPO-34分 子筛合成方法, 该分子筛骨架中 Si(4Al)结构相对数量占 Si配位环境的 70-100%; 该 方法包括以下步骤: Specifically, in one aspect of the present invention, there is provided a method for synthesizing a SAPO-34 molecular sieve rich in Si(4Al) structure, wherein the relative amount of Si(4Al) structure in the molecular sieve skeleton accounts for 70-100 of the Si coordination environment. %; This method includes the following steps:
a) 配制含有氟化物、 Si02、 A1203、 P205、 模板剂和水的凝胶混合物; a) preparing a gel mixture containing fluoride, SiO 2 , A1 2 0 3 , P 2 0 5 , a templating agent, and water;
b)将凝胶混合物在 IOO-250'C之间的恒定温度, 在自生压力下, 进行晶化, 得 到固体产物; b) crystallization of the gel mixture at a constant temperature between 1000-250 ° C under autogenous pressure to obtain a solid product;
c) 将固体产物用水洗涤至中性, 并且干燥, 得到 SAPO-34分子筛原粉; d) 将 SAPO-34 分子筛原粉在 400-600°C空气中焙烧 3-8 小时, 得到骨架富含 Si(4Al)结构的 SAPO-34分子筛, c) The solid product is washed with water to neutrality and dried to obtain a raw powder of SAPO-34 molecular sieve; d) the raw powder of SAPO-34 molecular sieve is calcined in air at 400-600 ° C for 3-8 hours to obtain a skeleton rich in Si (4Al) structure of SAPO-34 molecular sieve,
其中, 在所述的凝胶混合物中, 按摩尔比计: Wherein, in the gel mixture, in molar ratio:
F7 Al2O3 = 0.0!〜 2.0; F7 Al 2 O 3 = 0.0! ~ 2.0;
SiO2/Al2O3 = 0.1〜2.0;
Ρ2Ο5/ Α12Ο3 = 0.5〜15; SiO 2 /Al 2 O 3 = 0.1 to 2.0; Ρ 2 Ο 5 / Α1 2 Ο 3 = 0.5~15;
H20/ A1203 = 10〜100; 且 H 2 0/ A1 2 0 3 = 10~100;
R/— Al203 = l〜5, 其中 R为模板剂。 R/- Al 2 0 3 = l~5, wherein R is a templating agent.
在本发明一个优选的方面, 所述模板剂为三乙胺和二乙胺中的一种, 或二种的混 合物。 In a preferred aspect of the invention, the templating agent is one of triethylamine and diethylamine, or a mixture of the two.
在本发明另一个优选的方面, 所述氟化物为含氟离子的可溶性酸或盐。 In another preferred aspect of the invention, the fluoride is a soluble acid or salt of a fluoride ion.
在本发明再一个优选的方面, 所述氟化物为 HF和 NH4F中的一种, 或两种的混 合物。 In still another preferred aspect of the invention, the fluoride is one of HF and NH 4 F, or a mixture of the two.
在本发明一个优选的方面, 所述步骤 b)中的晶化时间为 2-120小时。 In a preferred aspect of the invention, the crystallization time in the step b) is from 2 to 120 hours.
在本发明另一个优选的方面, 在富含 Si(4Al)配位结构的 SAPO-34分子筛中的 Si 配位环境中, 以 Si 配位环境相对含量百分数计: Si(4Al)的摩尔百分比含量为 70〜 100%; Si(3Al)的摩尔百分比含量为 0〜30%; Si(2Al) 的摩尔百分比含量为 0~20%; Si(lAl) 的摩尔百分比含量为 0〜10%; Si(OAl) 的摩尔百分比含量为 0〜5%, 条件是: Si(4Al)、 Si(3Al)、 Si(2Al)、 Si(lAl)和 Si(OAl)的摩尔百分比含量之比为 100%。 In another preferred aspect of the invention, in the Si coordination environment in the SAPO-34 molecular sieve rich in Si(4Al) coordination structure, based on the relative content percentage of the Si coordination environment: the molar percentage content of Si(4Al) 70~100%; Si(3Al) has a molar percentage of 0~30%; Si(2Al) has a molar percentage of 0~20%; Si(lAl) has a molar percentage of 0~10%; Si( The molar percentage of OAl) is 0 to 5%, provided that the ratio of the molar percentage content of Si(4Al), Si(3Al), Si(2Al), Si(lAl), and Si(OAl) is 100%.
在本发明的另一方面,本发明提供如上所述的方法制备的骨架富含 Si(4Al)结构的 SAPO-34分子筛。 In another aspect of the invention, the invention provides a SAPO-34 molecular sieve having a framework rich in Si(4Al) structure prepared by the process as described above.
在本发明的另一方面, 本发明提供一种骨架富含 Si(4Al)结构的 SAPO-34分子筛, 其中在富含 Si(4Al)配位结构的 SAPO-34分子筛中的 Si配位环境中,以 Si配位环境相 对含量百分数计: Si(4Al)的摩尔百分比含量为 70〜100%; Si(3Al)的摩尔百分比含量 为 0〜30%; Si(2Al) 的摩尔百分比含量为 0〜20%; Si(lAl) 的摩尔百分比含量为 0~ 10%; Si(OAl) 的摩尔百分比含量为 0〜5%,条件是: Si(4Al)、 Si(3Al)、 Si(2Al)、 Si(lAl) 和 Si(OAl)的摩尔百分比含量之比为 100%。 In another aspect of the present invention, the present invention provides a SAPO-34 molecular sieve having a skeleton rich in Si(4Al) structure, wherein in a Si coordination environment in a SAPO-34 molecular sieve rich in Si(4Al) coordination structure According to the relative content percentage of Si coordination environment: the content of Si (4Al) is 70~100% ; the content of Si (3Al) is 0~30%; the content of Si (2Al) is 0~ 20%; Si (lAl) has a molar percentage of 0 to 10%; Si (OAl) has a molar percentage of 0 to 5%, provided that: Si(4Al), Si(3Al), Si(2Al), Si The ratio of the molar percentage content of (lAl) to Si (OAl) is 100%.
在本发明的再一方面, 本发明提供如上所述的骨架富含 Si(4Al)结构的 SAPO-34 分子筛在甲醇制烯烃反应中的应用。 附图说明 In still another aspect of the present invention, the present invention provides the use of a SAPO-34 molecular sieve having a skeleton-rich Si(4Al) structure as described above for the methanol to olefin reaction. DRAWINGS
图 1 : 本发明实施例 1中不同 HF比例条件下和对比例 1无 HF条件下合成产物 的 XRD谱图。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a XRD chart of a product synthesized under different HF ratio conditions and Comparative Example 1 in the absence of HF in Example 1 of the present invention.
图 2: 本发明实施例 4中不同 HF比例条件下和对比例 2无 HF条件下合成产物 的 XRD谱图。
图 3: 本发明实施例 7不同 NH4F比例条件下合成产物的 XRD谱图。 具体实施方式 Figure 2: XRD spectrum of the product synthesized under different HF ratio conditions and Comparative Example 2 without HF in Example 4 of the present invention. Figure 3: XRD spectrum of the synthesized product in different NH 4 F ratios in Example 7 of the present invention. detailed description
本发明的目的是针对 SAPO-34 分子筛表面酸中心强度和数目对甲醇制烯烃 (MTO)反应性能的影响, 提供了一种骨架富含 Si(4Al)结构的 SAPO-34分子筛合成方 法,采用在合成分子筛凝胶混合物中加入氟化物控制 Si进入分子筛骨架的方式,合成 出以 Si(4AI)为主要配位形式的 SAPO-34分子筛, 从而达到调变分子筛表面酸中心强 度和数目的目的。 The object of the present invention is to analyze the influence of the strength and number of surface acid center of SAPO-34 molecular sieve on the reaction performance of methanol to olefin (MTO), and provide a synthetic method of SAPO-34 molecular sieve with Si (4Al) structure. In the synthetic molecular sieve gel mixture, fluoride is added to control the Si into the molecular sieve skeleton, and the SAPO-34 molecular sieve with Si(4AI) as the main coordination form is synthesized, thereby achieving the purpose of adjusting the acid center strength and number on the surface of the molecular sieve.
为达到上述目的, 本发明的技术解决方案是提供一种骨架富含 Si(4Al)结构的 SAPO-34分子筛合成方法, 该分子筛骨架中 Si配位环境的 Si(4Al)结构, 相对含量为 70-100%; 其合成骨架富含 Si(4Al)结构的 SAPO-34分子筛的凝胶混合物包括氟化物、 模板剂、 硅源、 铝源、 磷源和水; In order to achieve the above object, the technical solution of the present invention is to provide a method for synthesizing a SAPO-34 molecular sieve rich in Si (4Al) structure, and a Si (4Al) structure of a Si coordination environment in the molecular sieve skeleton has a relative content of 70 -100%; a gel mixture of a SAPO-34 molecular sieve having a synthetic skeleton rich in Si(4Al) structure, including a fluoride, a templating agent, a silicon source, an aluminum source, a phosphorus source, and water;
因在 SAPO-34合成凝胶混合物中加入氟化物,控制了 Si进入分子筛骨架的方式, 促进 Si以 Si(4Al)的配位形式进入分子筛骨架, 降低 Si(OAl), Si(lAl), Si(2Al), Si(3Al) -的配位环境的形成。 By adding fluoride to the SAPO-34 synthetic gel mixture, the way of Si entering the molecular sieve skeleton is controlled, and Si is promoted to form a Si(4Al) coordination form into the molecular sieve skeleton, reducing Si(OAl), Si(lAl), Si. (2Al), formation of a coordination environment of Si(3Al)-.
在所述的方法中, 所述模板剂为三乙胺、 二乙胺其中的一种或二者的混合物。 在所述的方法中, 所述氟化物为含氟离子的可溶性酸或盐。 In the method, the templating agent is one of or a mixture of triethylamine and diethylamine. In the method, the fluoride is a soluble acid or salt of a fluoride ion.
在所述的方法中, 所述氟化物为 HF、 N F其中的一种或两种的混合物。 In the method, the fluoride is one or a mixture of two of HF, NF.
在所述的方法中, 富含 Si(4Al)配位结构的 SAPO-34分子筛的 Si配位环境, 以 Si配位环境相对含量百分数计: Si(4Al)为 70〜100; Si(3Al)为 30〜0; Si(2AI)为 20〜0; Si(lAl)为 10〜0; Si(OAl)为 5〜0。 In the method, the Si coordination environment of the SAPO-34 molecular sieve rich in Si(4Al) coordination structure is calculated by the relative content percentage of the Si coordination environment: Si(4Al) is 70~100; Si(3Al) It is 30~0; Si(2AI) is 20~0; Si(lAl) is 10~0; Si(OAl) is 5~0.
在所述的方法中, 其操作步骤为: In the method described, the operation steps are:
a) 将氟化物、 模板剂、 硅源、 铝源、 磷源和水配制合成 SAPO-34分子筛的凝胶 混合物; a) preparing a gel mixture of SAPO-34 molecular sieve by formulating fluoride, templating agent, silicon source, aluminum source, phosphorus source and water;
b)将步骤 a)中得到的含氟离子的凝胶混合物装入内衬聚四氟乙烯的不锈钢合成 釜中, 密闭加热到晶化温度, 在自生压力下, 进行恒温晶化; 待晶化完全后, 固体产 物经离心分离, 用去离子水洗涤至中性, 在 120'C空气中干燥, 得到富含 Si(4Al)结构 SAPO-34分子筛原粉; b) the fluorine-containing ion gel mixture obtained in the step a) is placed in a stainless steel synthetic kettle lined with polytetrafluoroethylene, sealed and heated to a crystallization temperature, and subjected to constant temperature crystallization under autogenous pressure; to be crystallized After completion, the solid product is separated by centrifugation, washed with deionized water to neutrality, and dried in air at 120 ° C to obtain a raw material rich in Si (4Al) structure SAPO-34 molecular sieve;
c) 将步骤 b)得到的 SAPO-34分子筛原粉在 500-600'C空气中焙烧 3-8小时, 得 到富含 Si(4Al)结构的 SAPO-34分子筛催化剂。
在所述的方法中, 所述步骤 a)中凝胶混合物各组分氧化物摩尔比为- F7 Al2O3 = 0.01〜2.0。 c) The SAPO-34 molecular sieve raw powder obtained in the step b) is calcined in air at 500-600 ° C for 3-8 hours to obtain a SAPO-34 molecular sieve catalyst rich in Si (4Al) structure. In the method, the molar ratio of each component oxide of the gel mixture in the step a) is -F7 Al 2 O 3 = 0.01 to 2.0.
SiO2/Al2O3 = 0.1〜2.0; SiO 2 /Al 2 O 3 = 0.1 to 2.0;
Ρ2θ5/ Α12Ο3 = 0.5〜15; Ρ2θ 5 / Α1 2 Ο 3 = 0.5~15;
Η2Ο/ Α12Ο3 = 10〜100; Η 2 Ο / Α 1 2 Ο 3 = 10~100;
R/ A1203 = 1〜5, R为模板剂。 R / A1 2 0 3 = 1~5 , R is a templating agent.
在所述的方法中, 所述步骤 b)中晶化温度为 100-250°C, 晶化时间为 2-120小时。 在所述的方法中, 控制合成得到的富含 Si(4Al)结构的 SAPO-34分子筛催化剂应 用于甲醇制烯烃反应时, 有效提高乙烯和丙烯选择性。 In the method, the crystallization temperature in the step b) is 100-250 ° C, and the crystallization time is 2-120 hours. In the method described, the synthesis of the Si(4Al)-rich SAPO-34 molecular sieve catalyst obtained by the synthesis is used to effectively increase the selectivity of ethylene and propylene when the methanol is used for the olefin reaction.
本发明特点在于通过 F离子与凝胶组分相互作用的特点, 限制分子筛骨架中 The invention is characterized in that the structure of the molecular sieve is restricted by the interaction of the F ion and the gel component.
Si(OAl), Si(lAl), Si(2Al), Si(3Al)的配位环境的形成, 促进 Si以 Si(4Al)的配位形式 进入分子筛骨架。 The formation of a coordination environment of Si(OAl), Si(lAl), Si(2Al), and Si(3Al) promotes the entry of Si into the molecular sieve skeleton in a coordinated form of Si(4Al).
本发明对 SAPO-34分子筛骨架 Si配位环境的控制合成, 可以达到提高分子筛骨 架 Si(4Al)配位结构的目的, 从而调节 SAPO-34分子筛表面酸中心强度和数目。 选择 控制合成富含 Si(4Al)结构的 SAPO-34分子筛催化剂应用于甲醇制烯烃反应, 能够提 高乙烯和丙烯选择性, 并能大大提高催化剂的寿命。 The controlled synthesis of the coordination coordination environment of the SAPO-34 molecular sieve framework Si can improve the coordination structure of the Si(4Al) framework of the molecular sieve framework, thereby adjusting the acid center strength and number of the SAPO-34 molecular sieve. The choice of controlling the synthesis of Si(4Al)-rich SAPO-34 molecular sieve catalyst for the methanol to olefin reaction can improve the selectivity of ethylene and propylene and greatly improve the life of the catalyst.
下面通过实施例详述本发明。 The invention is described in detail below by way of examples.
实施例 1 Example 1
以初始凝胶比例 3.0TEA: 0.6SiO2: P205: A1203: 50H2O: xHF (TEA为三乙胺 模板剂, x=0.09, 0.22, 0.33, 0.45, 0.65, 0.75, 1.00)配置凝胶混合物。首先将 30.3gTEA、 13.2g硅溶胶、 20.6g磷酸、 13.6g拟薄水铝石和 73.9gH20混合搅拌均匀, 然后分别加 入 0.45g、 Ug、 1.65g、 2.25g、 3.25、 3.75和 5.0g浓度为 40 %的 HF水溶液, 继续 充分搅拌成凝胶混合物, 将凝胶混合物装入内衬聚四氟乙烯的合成釜中, 密闭加热到 200 °C , 在自生压力下, 进行恒温晶化 12小时。 然后, 固体产物经离心分离, 用去离 子水洗涤至中性, 在 120°C空气中干燥后, XRD分析如图 1所示, 得 SAPO-34分子 筛原粉 (编号为 SPF34-1 , SPF34-2, SPF34-3, SPF34-4; SPF34-5, SPF34-6和 SPF34-7, 它们分别对应于 x=0.09, 0.22, 0.33, 0.45, 0.65, 0.75和 1.00)。 对比例 1(无 HF) Initial gel fraction 3.0TEA: 0.6SiO 2: P 2 0 5: A1 2 0 3: 50H 2 O: xHF (TEA triethylamine templating agent, x = 0.09, 0.22, 0.33 , 0.45, 0.65, 0.75, 1.00) Configure the gel mixture. First, 30.3 g of TEA, 13.2 g of silica sol, 20.6 g of phosphoric acid, 13.6 g of pseudoboehmite and 73.9 g of H 2 0 were mixed and stirred uniformly, and then 0.45 g, Ug, 1.65 g, 2.25 g, 3.25, 3.75 and 5.0 g were respectively added. For 40% aqueous HF solution, continue to stir into a gel mixture, put the gel mixture into a synthetic tank filled with polytetrafluoroethylene, heat it to 200 °C, and auto-crystallization for 12 hours under autogenous pressure. . Then, the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C. XRD analysis was carried out as shown in Fig. 1, and the original powder of SAPO-34 molecular sieve (No. SPF34-1, SPF34-) was obtained. 2, SPF34-3, SPF34-4; SPF34-5, SPF34-6 and SPF34-7, which correspond to x=0.09, 0.22, 0.33, 0.45, 0.65, 0.75 and 1.00, respectively. Comparative Example 1 (no HF)
以初始凝胶比例 3.0TEA: 0.6SiO2: P205: A1203 : 50H2O(TEA为三乙胺模板剂)配
置凝胶混合物。将 30.3gTEA、 13.2g硅溶胶、 20.6g磷酸、 13.6g拟薄水铝石和 73.9gH20 混合, 充分搅拌成均匀凝胶, 装入内衬聚四氟乙烯的合成釜中, 密闭加热到 200'C, 在自生压力下, 进行恒温晶化 12 小时。 然后, 固体产物经离心分离, 用去离子水洗 涤至中性,在 120'C空气中干燥后, XRD分析如图 1所示,得 SAPO-34分子筛原粉 (编 号为 SP34)。 实施例 2 With an initial gel ratio of 3.0TEA: 0.6SiO 2 : P 2 0 5 : A1 2 0 3 : 50H 2 O (TEA is a triethylamine template) Place the gel mixture. Mix 30.3 g of TEA, 13.2 g of silica sol, 20.6 g of phosphoric acid, 13.6 g of pseudoboehmite and 73.9 g of H 2 0, stir well to form a uniform gel, and put it into a synthetic tank lined with polytetrafluoroethylene, and heat it to 200. 'C, under constant pressure, crystallized for 12 hours. Then, the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C, and XRD analysis was carried out as shown in Fig. 1 to obtain a SAPO-34 molecular sieve raw powder (No. SP34). Example 2
将实施例 I得到编号 SPF34-1 , SPF34-2, SPF34-3和对比例 1得到的编号 SP34 样品进行 29Si固体核磁表征, 测定分子筛骨架 Si配位环境, 各种 Si配位结构的相对 含量如表 1所示。 The sample No. SP34 obtained in Example I was numbered SPF34-1, SPF34-2, SPF34-3 and Comparative Example 1 was subjected to 29 Si solid nuclear magnetic characterization to determine the Si coordination environment of the molecular sieve skeleton, and the relative contents of various Si coordination structures. As shown in Table 1.
表 1 Table 1
样品 HF/Al203(mol) 硅配位结构 相对含量(%) Sample HF/Al 2 0 3 (mol) relative content of silicon coordination structure (%)
Si(4Al) 54.2 Si(4Al) 54.2
SP34 Si(3Al) 19.7 SP34 Si(3Al) 19.7
Si(OAl) 26.1 Si(OAl) 26.1
Si(4Al) 81.2 Si(4Al) 81.2
SPF34-1 0.09 Si(3Al) 10.3 SPF34-1 0.09 Si(3Al) 10.3
Si(OAl) 8.5 Si(OAl) 8.5
Si(4Al) 96.4 Si(4Al) 96.4
SPF34-2 0.22 SPF34-2 0.22
Si(3Al) 3.6 Si(3Al) 3.6
Si(4AI) 98.5 Si(4AI) 98.5
SPF34-3 0.33 SPF34-3 0.33
Si(3Al) 1.5 实施例 3 Si(3Al) 1.5 Example 3
将实施例 1得到的编号为 SPF34-1 , SPF34-2, SPF34-3和对比例 1得到的编号 SP34样品在 550'C焙烧 4小时得到 SAPO-34分子筛催化剂用于甲醇制烯烃催化反应。 分别取 0.6克 20-40 目的颗粒催化剂样品, 装入反应器中, 在 55(TC下通氮气活化 1 小时, 然后降温至 450°C进行反应。 以氮气为稀释气携带原料甲醇, 氮气流速为 40ml/min, 甲醇重量空速 2.01^。 反应产物组成采用在线气相色谱分析, 结果如表 2
所示。 The sample No. SP34 obtained in Example 1 and having the numbers SPF34-1, SPF34-2, SPF34-3 and Comparative Example 1 was calcined at 550 ° C for 4 hours to obtain a SAPO-34 molecular sieve catalyst for methanol-to-olefin catalytic reaction. 0.6 g of a sample of 20-40 mesh granules of catalyst was separately charged into the reactor, and activated at 55 (TC for 1 hour with nitrogen gas, and then cooled to 450 ° C. The nitrogen was used as a diluent gas to carry the raw material methanol, and the nitrogen flow rate was 40ml/min, methanol weight space velocity 2.01^. The composition of the reaction product was analyzed by online gas chromatography. The results are shown in Table 2. Shown.
结果表明, 初始凝胶中 HF/A1203摩尔比为 0.09时合成的 SPF34-1样品, 反应产 物中乙烯和丙烯选择性没有变化。 当初始凝胶中 HF/A1203摩尔比大于 0.22时合成的 SPF34-2和 SPF34-3样品, 其产物中乙烯和丙烯选择性明显提高。 The results showed that the SPF34-1 sample synthesized in the initial gel at a molar ratio of HF/A1 2 0 3 had no change in the selectivity of ethylene and propylene in the reaction product. When the initial gel had a HF/A1 2 0 3 molar ratio greater than 0.22, the synthesized SPF34-2 and SPF34-3 samples showed a significant increase in ethylene and propylene selectivity.
表 2 Table 2
编号 SP34 SPF34-1 SPF34-2 SPF34-3 No. SP34 SPF34-1 SPF34-2 SPF34-3
HF/Al203(mol) 0.00 0.09 0.22 0.33 进料时间 (min) 120 160 200 220 甲醇转化率 (wt%) 100 100 100 100 产物分布 (wt%) HF/Al 2 0 3 (mol) 0.00 0.09 0.22 0.33 Feed time (min) 120 160 200 220 Methanol conversion (wt%) 100 100 100 100 Product distribution (wt%)
CH4 0.93 1.02 1.23 0.89 CH 4 0.93 1.02 1.23 0.89
C2H4 40.29 40.41 45.66 47.66 C 2 H 4 40.29 40.41 45.66 47.66
C2H6 0.84 0.97 0.86 0.69 C 2 H 6 0.84 0.97 0.86 0.69
C3H6 39.55 39.04 37.49 37.41 C 3 H 6 39.55 39.04 37.49 37.41
C3H8 4.04 4.80 3.45 2.83 C 3 H 8 4.04 4.80 3.45 2.83
C4 + 9.72 9.59 8.13 7.50 C 4 + 9.72 9.59 8.13 7.50
C5 + 4.63 4.17 3.18 3.02C 5 + 4.63 4.17 3.18 3.02
∑C2=-C3 = 79.84 79.45 83.15 85.07 寿命111 (min) 120-140 160-180 200-220 220-240 ∑C 2 =-C 3 = 79.84 79.45 83.15 85.07 Lifetime 111 (min) 120-140 160-180 200-220 220-240
*指甲醇转化率为 100%时的进料累计时间。 实施例 4 * Refers to the cumulative feed time when the methanol conversion is 100%. Example 4
以初始凝胶比例 3.0TEA: 0.2SiO2: P205: A1203: 50H2O: xHF (TEA为三乙胺 模板剂, x=0.04, 0.09, 0.12, 0.21 , 0.34) 配置凝胶混合物。 首先将 30.3gTEA、 4.4g 硅溶胶、 20.6g磷酸、 13.6g拟薄水铝石和 67.5gH20混合搅拌均匀,然后分别加入 0.2g, 0.45g、 0.6g、 1.05g和 1.7g浓度为 40^%的1^水溶液, 继续充分搅拌成凝胶, 装入 内衬聚四氟乙烯的合成釜中, 密闭加热到 200°C, 在自生压力下, 进行恒温晶化 24小 时。 然后, 固体产物经离心分离, 用去离子水洗涤至中性, 在 120°C空气中干燥后, XRD分析如图 2所示,得 SAPO-34分子筛原粉 (编号为 SPF34-8, SPF34-9, SPF34-10, SPF34-11 ; SPF34-12)。
对比例 2(无 HF) Initial gel fraction 3.0TEA: 0.2SiO 2: P 2 0 5: A1 2 0 3: 50H 2 O: xHF (TEA triethylamine templating agent, x = 0.04, 0.09, 0.12 , 0.21, 0.34) arranged condensate Glue mixture. First, 30.3 g of TEA, 4.4 g of silica sol, 20.6 g of phosphoric acid, 13.6 g of pseudoboehmite and 67.5 g of H 2 0 were mixed and stirred uniformly, and then 0.2 g, 0.45 g, 0.6 g, 1.05 g and 1.7 g were respectively added to a concentration of 40^. The % aqueous solution of 1% was continuously stirred into a gel, placed in a synthetic PTFE-lined synthetic kettle, sealed and heated to 200 ° C, and subjected to constant temperature crystallization under autogenous pressure for 24 hours. Then, the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C. XRD analysis was carried out as shown in Fig. 2 to obtain SAPO-34 molecular sieve raw powder (No. SPF34-8, SPF34- 9, SPF34-10, SPF34-11; SPF34-12). Comparative Example 2 (no HF)
以初始凝胶比例 3.0TEA: 0.2SiO2: P205: A1203: 50H2O(TEA为三乙胺模板剂)配 置凝胶混合物。 首先将 30.3gTEA、 4.4g 硅溶胶、 20.6g 磷酸、 13.6g拟薄水铝石和 67.5gH20混合, 继续充分搅拌成凝胶, 装入内衬聚四氟乙烯的合成釜中, 密闭加热到 200'C, 在自生压力下, 进行恒温晶化 12小时。 然后, 固体产物经离心分离, 用去离 子水洗涤至中性, 在 120'C空气中干燥后, XRD分析如图 2所示, 得 SAPO-34分子 筛原粉 (编号为 SP34-2)。 实施例 5 The gel mixture was formulated at an initial gel ratio of 3.0 TEA: 0.2 SiO 2 : P 2 0 5 : A1 2 0 3 : 50H 2 O (TEA is a triethylamine templating agent). First, 30.3 g of TEA, 4.4 g of silica sol, 20.6 g of phosphoric acid, 13.6 g of pseudoboehmite and 67.5 g of H 2 0 were mixed, and the mixture was further stirred to form a gel, which was placed in a synthetic PTFE-lined synthetic kettle, and sealed and heated. 200'C, under constant pressure, crystallized for 12 hours. Then, the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C, and XRD analysis was carried out as shown in Fig. 2 to obtain a SAPO-34 molecular sieve raw powder (No. SP34-2). Example 5
将实施例 4得到的编号 SPF34-9和对比例 2得到的编号 SP34-2样品进行 29Si固 体核磁表征, 测定分子筛骨架 Si配位环境, 各种 Si配位结构的相对含量如表 3所示。 The No. SPF34-9 obtained in Example 4 and the No. SP34-2 sample obtained in Comparative Example 2 were subjected to 29 Si solid nuclear magnetic characterization, and the molecular sieve skeleton Si coordination environment was determined. The relative contents of various Si coordination structures are shown in Table 3. .
表 3 table 3
样品 HF/Al203(mol) 硅配位结构 相对含量 (%) Sample HF/Al 2 0 3 (mol) relative content of silicon coordination structure (%)
Si(4Al) 98.4 Si(4Al) 98.4
SP34-2 ― SP34-2 ―
Si(3Al) 1.6 Si(3Al) 1.6
Si(4Al) 100 Si(4Al) 100
SPF34-9 0.09 SPF34-9 0.09
Si(3Al) 0 Si(3Al) 0
实施例 6 Example 6
将实施例 4得到的编号为 SPF34-8, SPF34-9, SPF34-10, SPF34-11 , SPF34-12 和对比例 2得到的编号 SP34-2样品在 550'C焙烧 4小时得到 SAPO-34分子筛催化剂 用于甲醇制烯烃催化反应。 分别取 0.6克 20-40目的颗粒催化剂样品, 装入反应器中, 在 550°C下通氮气活化 1小时, 然后降温至 450Ό进行反应。 以氮气为稀释气携带原 料甲醇, 氮气流速为 40ml/min, 甲醇重量空速 2.0h— 反应产物组成采用在线气相色 谱分析, 结果如表 4所示。 The sample No. SP34-2 obtained in Example 4, which was numbered SPF34-8, SPF34-9, SPF34-10, SPF34-11, SPF34-12 and Comparative Example 2, was calcined at 550 ° C for 4 hours to obtain SAPO-34 molecular sieve. The catalyst is used for methanol to olefin catalytic reaction. A sample of 0.6 g of a 20-40 mesh particulate catalyst was separately charged into a reactor, activated by nitrogen at 550 ° C for 1 hour, and then cooled to 450 Torr for reaction. The raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity was 2.0 h. The composition of the reaction product was analyzed by on-line gas chromatography, and the results are shown in Table 4.
结果表明, 初始凝胶中 HF/A1203摩尔比大于 0.04时合成的样品, 其产物中乙烯 和丙烯选择性均明显提高, 催化剂寿命延长。
表 4 The results show that the selectivity of ethylene and propylene in the HF/A1 2 3 molar ratio of the initial gel is significantly higher, and the catalyst life is prolonged. Table 4
― 编号 SP34-2 SPF34-8 SPF34-9 SPF34-10 SPF34-11 SPF34-12 ― No. SP34-2 SPF34-8 SPF34-9 SPF34-10 SPF34-11 SPF34-12
HF/A1203 (摩尔比) 0 0.04 0.09 0.12 0.21 0.34 进料时间 (min) 120 220 220 220 260 280 甲醇转化率 (wt%) 100 100 100 100 100 100 产物分布 (wt%) HF/A1 2 0 3 (molar ratio) 0 0.04 0.09 0.12 0.21 0.34 Feed time (min) 120 220 220 220 260 280 Methanol conversion (wt%) 100 100 100 100 100 100 Product distribution (wt%)
CH4 0.71 0.77 1.05 1.36 1.32 0.99CH 4 0.71 0.77 1.05 1.36 1.32 0.99
C2H4 40.12 48.96 50.86 51.83 52.52 52.76C 2 H 4 40.12 48.96 50.86 51.83 52.52 52.76
C2¾ 0.30 0.33 0.37 0.42 0.47 0.38C 2 3⁄4 0.30 0.33 0.37 0.42 0.47 0.38
C3H6 42.38 40.47 39.24 37.78 37.86 37.34C 3 H 6 42.38 40.47 39.24 37.78 37.86 37.34
C3H8 1.62 1.54 1.46 1.42 1.55 1.45C 3 H 8 1.62 1.54 1.46 1.42 1.55 1.45
C4+ 10.39 6.05 5.56 5.46 5.13 5.19C 4 + 10.39 6.05 5.56 5.46 5.13 5.19
C5 + 4.48 1.88 1.46 1.73 1.15 1.89C 5 + 4.48 1.88 1.46 1.73 1.15 1.89
∑C= 2-C=3 82.50 89.43 90.10 89.61 89.38 90.10 寿命 *(min) 120-140 220-240 220-240 220-240 260-280 280-300∑C = 2 -C = 3 82.50 89.43 90.10 89.61 89.38 90.10 Life*(min) 120-140 220-240 220-240 220-240 260-280 280-300
*指甲醇转化率为 100%时的进料累计时间。 实施例 7 * Refers to the cumulative feed time when the methanol conversion is 100%. Example 7
以初始凝胶比例 3.0TEA: 0.2SiO2: P205: A1203 : 50H2O: xNH4F (TEA为模板 剂, χ=0·05, 0.10, 0.20) 配置凝胶混合物。 首先将 30.3gTEA、 4.4g硅溶胶、 20.6g 磷酸、 13.6g拟薄水铝石和 67.5gH20混合搅拌均匀, 然后分别加入 0.475g, 0.95g和 1.9g浓度为 40^%的>¾^水溶液, 继续充分搅拌成凝胶, 装入内衬聚四氟乙烯的合 成釜中, 密闭加热到 200°C, 在自生压力下, 进行恒温晶化 24小时。 然后, 固体产物 经离心分离,用去离子水洗涤至中性,在 120'C空气中干燥后, XRD分析如图 3所示, 得 SAPO-34分子筛原粉 (编号为 SPF34-a, SPF34-b, SPF34-c)。 实施例 8 The gel mixture was formulated at an initial gel ratio of 3.0 TEA: 0.2 SiO 2 : P 2 0 5 : A1 2 0 3 : 50H 2 O: xNH 4 F (TEA as a template, χ=0.05, 0.10, 0.20). First 30.3gTEA, 4.4g silica sol, 20.6 g of phosphoric acid, 13.6 g of boehmite and pseudoboehmite 67.5gH 2 0 were mixed and stirred uniformly, and then were added 0.475g, 0.95g, and 1.9 g of a concentration of 40% ^> ¾ ^ aq The mixture was further stirred to form a gel, placed in a synthetic PTFE-lined synthetic kettle, sealed and heated to 200 ° C, and subjected to constant temperature crystallization for 24 hours under autogenous pressure. Then, the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C. XRD analysis was carried out as shown in Fig. 3 to obtain SAPO-34 molecular sieve raw powder (No. SPF34-a, SPF34- b, SPF34-c). Example 8
将实施例 7得到的编号 SPF34-b和对比例 2得到的编号 SP34-2样品进行 29Si固 体核磁表征, 测定分子筛骨架 Si配位环境, 各种 Si配位结构的相对含量如表 5所示。
表 5 The sample No. SPF34-b obtained in Example 7 and the sample No. SP34-2 obtained in Comparative Example 2 were subjected to 29 Si solid nuclear magnetic characterization, and the molecular sieve skeleton Si coordination environment was determined. The relative contents of various Si coordination structures are shown in Table 5. . table 5
样品 NI^F/A OaCmol) 硅配位结构 相对含量 (%) Sample NI^F/A OaCmol) Silicon coordination structure Relative content (%)
Si(4Al) 98.4 Si(4Al) 98.4
SP34-2 一 SP34-2 one
Si(3Al) 1.6 Si(3Al) 1.6
Si(4Al) 100 Si(4Al) 100
SPF34-b 0.10 SPF34-b 0.10
Si(3Al) 0 实施例 9 Si(3Al) 0 Example 9
将实施例 7得到的编号为 SPF34-a, SPF34-b和对比例 2得到的编号 SP34-2样品 在 550°C焙烧 4小时得到 SAPO-34分子筛催化剂用于甲醇制烯烃催化反应。分别取 0.6 克 20-40目的颗粒催化剂样品, 装入反应器中, 在 55CTC下通氮气活化 1小时, 然后 降温至 450'C进行反应。 以氮气为稀释气携带原料甲醇, 氮气流速为 40ml/min, 甲醇 重量空速 2.011 反应产物组成采用在线气相色谱分析, 结果如表 6所示。 The sample No. SP34-2 obtained in Example 7 and designated as SPF34-a, SPF34-b and Comparative Example 2 was calcined at 550 ° C for 4 hours to obtain a SAPO-34 molecular sieve catalyst for methanol-to-olefin catalytic reaction. A sample of 0.6 g of a 20-40 mesh particulate catalyst was separately charged into a reactor, activated by nitrogen at 55 CTC for 1 hour, and then cooled to 450 ° C for reaction. The raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity 2.011 was analyzed by on-line gas chromatography. The results are shown in Table 6.
表 6 Table 6
编号 SP34-2 SPF34-a SPF34-b No. SP34-2 SPF34-a SPF34-b
NH4F/Al203(mol) 0 0.05 0.10 NH 4 F / Al 2 0 3 (mol) 0 0.05 0.10
进料时间 (min) 120 240 180 甲醇转化率 (wt%) 100 100 100 Feed time (min) 120 240 180 Methanol conversion rate (wt%) 100 100 100
C¾ 0.71 1.07 1.66 C3⁄4 0.71 1.07 1.66
C2H4 40.12 50.49 47.06 C 2 H 4 40.12 50.49 47.06
C2H6 0.30 0.43 0.32 C 2 H 6 0.30 0.43 0.32
C3¾ 42.38 39.26 40.19 C 3 3⁄4 42.38 39.26 40.19
C3Hg 1.62 1.74 1.80 C 3 H g 1.62 1.74 1.80
C4Hg 10.39 5.61 6.21 C 4 H g 10.39 5.61 6.21
C4H10 4.48 1.40 2.76 C4H10 4.48 1.40 2.76
∑C2 =~C3 = 82.50 89.75 87.25 ∑C 2 = ~C 3 = 82.50 89.75 87.25
寿命 *(min) 120-140 240-260 180-200 Lifetime *(min) 120-140 240-260 180-200
*指甲醇转化率为 100%时的进料累计时间。
结果表明, 初始凝胶中 NH4F/A1203摩尔比大于 0.05时合成的样品, 其产物中乙 烯和丙烯选择性均明显提高, 催化剂寿命延长。
* refers to the cumulative time of feed when the methanol conversion is 100%. The results show that the selectivity of ethylene and propylene in the product synthesized in the initial gel with NH 4 F/A1 2 3 molar ratio greater than 0.05 is significantly improved, and the catalyst life is prolonged.
Claims
1、一种骨架富含 Si(4Al)结构的 SAPO-34分子筛合成方法,该分子筛骨架中 Si(4Al) 结构相对数量占 Si配位环境的 70-100%; 该方法包括以下步骤: 1. A method for synthesizing SAPO-34 molecular sieve rich in Si(4Al) structure, wherein the relative amount of Si(4Al) structure in the molecular sieve skeleton accounts for 70-100% of the Si coordination environment; the method comprises the following steps:
a)配制含有氟化物、 Si02、 A1203、 P205、 模板剂和水的凝胶混合物; a) preparing a gel mixture containing fluoride, SiO 2 , A1 2 0 3 , P 2 0 5 , a templating agent and water;
b)将凝胶混合物在 IOO-250'C之间的恒定温度, 在自生压力下, 进行晶化, 得 到固体产物; b) crystallization of the gel mixture at a constant temperature between 1000-250 ° C under autogenous pressure to obtain a solid product;
c)将固体产物用水洗涤至中性, 并且干燥, 得到 SAPO-34分子筛原粉; c) the solid product is washed with water to neutrality and dried to obtain a raw powder of SAPO-34 molecular sieve;
d) 将 SAPO-34 分子筛原粉在 400-60(TC空气中焙烧 3-8 小时, 得到骨架富含 Si(4Al)结构的 SAPO-34分子筛, d) SAPO-34 molecular sieve raw powder is calcined in 400-60 (TC air for 3-8 hours to obtain SAPO-34 molecular sieve with Si(4Al) structure.
其中, 在所述的凝胶混合物中, 按摩尔比计: Wherein, in the gel mixture, in molar ratio:
F7 Al2O3 = 0.01〜2.0; F7 Al 2 O 3 = 0.01~2.0;
SiO2/Al2O3 = 0.1〜2,0; SiO 2 /Al2O 3 = 0.1~2,0;
Ρ2Ο5/ Α12Ο3 = 0·5〜15;Ρ 2 Ο 5 / Α1 2 Ο 3 = 0·5~15;
0/ Α1203 = 10〜100; 且 0/ Α1 2 0 3 = 10~100;
R/ A1203 = 1〜5, 其中 R为模板剂。 R / A1 2 0 3 = 1~5 , wherein R is a templating agent.
2、 按照权利要求 1所述的方法, 其中所述模板剂为三乙胺和二乙胺中的一种, 或二种的混合物。 2. The method according to claim 1, wherein the templating agent is one of triethylamine and diethylamine, or a mixture of two.
3、 按照权利要求 1所述的方法, 其中所述氟化物为含氟离子的可溶性酸或盐。 3. A method according to claim 1 wherein said fluoride is a soluble acid or salt of a fluoride ion.
4、 按照权利要求 1所述的方法, 其中所述氟化物为 HF和 NH4F中的一种, 或两 种的混合物。 4. The method according to claim 1, wherein the fluoride is one of HF and NH 4 F, or a mixture of two.
5、 按照权利要求 1所述的方法, 其中所述步骤 b)中的晶化时间为 2-120小时。 5. A method according to claim 1 wherein the crystallization time in said step b) is from 2 to 120 hours.
6、按照权利要求 1所述的方法,其中在富含 Si(4Al)配位结构的 SAPO-34分子筛 中的 Si配位环境中, 以 Si配位环境相对含量百分数计: Si(4Al)的摩尔百分比含量为 70〜100%; Si(3Al)的摩尔百分比含量为 0〜30%; Si(2Al) 的摩尔百分比含量为 0〜 20%; Si(lAl) 的摩尔百分比含量为 0〜10%; Si(OAl) 的摩尔百分比含量为 0〜5%, 条件是: Si(4Al)、 Si(3Al)、 Si(2Al)、 Si(lAl)和 Si(OAl)的摩尔百分比含量之比为 100%。 6. The method according to claim 1, wherein in the Si coordination environment in the SAPO-34 molecular sieve rich in Si(4Al) coordination structure, based on the relative content percentage of the Si coordination environment: Si(4Al) The molar percentage content is 70~100%; the content of Si(3Al) is 0~30%; the molar content of Si(2Al) is 0~20%; the molar content of Si(lAl) is 0~10% The molar percentage of Si(OAl) is 0 to 5%, provided that the ratio of the molar percentage of Si(4Al), Si(3Al), Si(2Al), Si(lAl), and Si(OAl) is 100. %.
7、一种骨架富含 Si(4Al)结构的 SAPO-34分子筛,其中在富含 Si(4Al)配位结构的 SAPO-34分子筛中的 Si配位环境中, 以 Si配位环境相对含量百分数计: Si(4Al)的摩
尔百分比含量为 70〜100%; Si(3Al)的摩尔百分比含量为 0〜30%; Si(2Al) 的摩尔百 分比含量为 0〜20%; Si(lAl) 的摩尔百分比含量为 0〜10%; Si(OAl) 的摩尔百分比含 量为 0〜5%, 条件是: Si(4Al)、 Si(3Al)、 Si(2Al)、 Si(lAl)和 Si(OAl)的摩尔百分比含量 之比为 100%。 7. A SAPO-34 molecular sieve rich in Si(4Al) structure, wherein the relative content of the Si coordination environment is in the Si coordination environment in the SAPO-34 molecular sieve rich in Si(4Al) coordination structure. Meter: Si (4Al) The percentage content of Si (3Al) is 0~30%; the content of Si(2Al) is 0~20%; the content of Si(lAl) is 0~10% ; molar percentage of Si (OAl) is 0~5%, with the proviso that: Si (4Al), Si ( 3Al), Si (2Al), the molar ratio of the percentage content of the Si (lAl) and Si (OAl) 100 %.
8、根据权利要求 7所述的骨架富含 Si(4Al)结构的 SAPO-34分子筛在甲醇制烯烃 反应中的应用。
The use of the SAPO-34 molecular sieve rich in Si(4Al) structure according to claim 7 for the methanol to olefin reaction.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610089177 | 2006-08-08 | ||
CN200610089177.9 | 2006-08-08 | ||
CNA2006101278715A CN101121528A (en) | 2006-08-08 | 2006-09-22 | Synthesis method of SAPO-34 molecular sieve with framework rich in Si(4Al) structure |
CN200610127871.5 | 2006-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008019583A1 true WO2008019583A1 (en) | 2008-02-21 |
Family
ID=39081927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/002332 WO2008019583A1 (en) | 2006-08-08 | 2007-08-03 | A PROCESS FOR SYNTHESIZING SAPO-34 MOLECULAR SIEVE ENRICHED WITH A Si(4Al) STRUCTURE IN THE SKELETON |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101121528A (en) |
WO (1) | WO2008019583A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107055563A (en) * | 2017-05-17 | 2017-08-18 | 汕头大学 | A kind of molecular sieves of nano whiskers SAPO 34 and its preparation and application |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104193569B (en) * | 2014-08-07 | 2016-06-01 | 清华大学 | The starting method of alcohol ether olefine reaction-regenerating unit |
CN109796027B (en) * | 2017-11-16 | 2020-08-25 | 神华集团有限责任公司 | SAPO-34 molecular sieve aggregate, preparation method thereof and method for preparing olefin from methanol |
CN108566593A (en) * | 2018-01-17 | 2018-09-21 | 瑞声科技(南京)有限公司 | A kind of loud speaker of sound-absorbing material and its preparation method and application the sound-absorbing material |
CN108275696A (en) * | 2018-01-04 | 2018-07-13 | 瑞声科技(新加坡)有限公司 | A kind of preparation method of the loudspeaker enclosure and the molecular sieve of molecular sieve including the molecular sieve |
CN110817898B (en) * | 2018-08-13 | 2021-09-03 | 中国科学院大连化学物理研究所 | Silicon-aluminum phosphate molecular sieve with ATS framework structure and preparation method and application thereof |
CN112604710A (en) * | 2020-12-10 | 2021-04-06 | 大连理工大学盘锦产业技术研究院 | Novel efficient denitration catalyst and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1467155A (en) * | 2002-07-10 | 2004-01-14 | 中国石油化工股份有限公司 | Method for preparing aluminium silicophosphate molecular sieve |
CN1659102A (en) * | 2002-06-12 | 2005-08-24 | 埃克森美孚化学专利公司 | Synthesis of aluminophosphates and silicoaluminophosphates |
-
2006
- 2006-09-22 CN CNA2006101278715A patent/CN101121528A/en active Pending
-
2007
- 2007-08-03 WO PCT/CN2007/002332 patent/WO2008019583A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1659102A (en) * | 2002-06-12 | 2005-08-24 | 埃克森美孚化学专利公司 | Synthesis of aluminophosphates and silicoaluminophosphates |
CN1467155A (en) * | 2002-07-10 | 2004-01-14 | 中国石油化工股份有限公司 | Method for preparing aluminium silicophosphate molecular sieve |
Non-Patent Citations (1)
Title |
---|
LIU H. ET AL.: "Synthesis of SAPO-34 Molecular Sieve Using hydrogen Fluoride and Triethylamine as Composite Template", CHINES JOURNAL OF CATALYSIS, vol. 24, no. 4, April 2003 (2003-04-01), pages 279 - 283 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107055563A (en) * | 2017-05-17 | 2017-08-18 | 汕头大学 | A kind of molecular sieves of nano whiskers SAPO 34 and its preparation and application |
CN107055563B (en) * | 2017-05-17 | 2019-05-17 | 汕头大学 | A kind of nano whiskers SAPO-34 molecular sieve and its preparation and application |
Also Published As
Publication number | Publication date |
---|---|
CN101121528A (en) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100584758C (en) | A kind of rapid synthesis method of phosphorus silicon aluminum SAPO-34 molecular sieve | |
CN109701619B (en) | Molecular sieve with SSZ-13/SSZ-39 composite structure and synthesis method thereof | |
WO2008019583A1 (en) | A PROCESS FOR SYNTHESIZING SAPO-34 MOLECULAR SIEVE ENRICHED WITH A Si(4Al) STRUCTURE IN THE SKELETON | |
DK2902107T3 (en) | SAPO-34 MOLECULES AND METHOD OF SYNTHESIS THEREOF | |
CN103787371B (en) | A kind of preparation method of submicron SAPO-18 molecular sieve | |
KR20150027171A (en) | Cha type zeolitic materials and methods for their preparation using cycloalkylammonium compounds | |
JP2014506227A (en) | Method for solvent thermal synthesis of SAPO molecular sieve and catalyst prepared thereby | |
CN101121527B (en) | Method for preparing SAPO molecular sieve enriched with Si(4Al) coordination structure | |
CN103482646B (en) | There is metal silicon aluminum phosphate molecular sieve of RHO skeleton structure and preparation method thereof | |
WO2008019586A1 (en) | An insitu synthesis method of a microsphere catalyst used for converting oxygen compound to olefine | |
CN103011195B (en) | One-step preparation method for hydrogen type multistage pore molecular sieve with SAPO-5 and SAPO-34 symbiosis | |
CN103663492B (en) | A kind of SAPO-34 molecular sieve and synthetic method thereof | |
CN101121530B (en) | Synthesis method of SAPO-34 molecular sieve with framework rich in Si(4Al) structure | |
CN114105166B (en) | A kind of organic template and its preparation method and application and high silicon KFI zeolite molecular sieve and its preparation method and application | |
CN103553073A (en) | SAPO-44 molecular sieve with rich Si(4Al) and multistage pore sizes, molecular sieve catalyst thereof and preparation methods thereof | |
CN104108726A (en) | Silicoaluminophosphate molecular sieve with high silica-alumina ratio and CHA structure, and synthetic method thereof | |
CN111099623B (en) | AEI/MFI composite structure molecular sieve and synthetic method thereof | |
CN104108727B (en) | ZSM-11/SAPO-11 binary structure zeolite and synthetic method thereof | |
CN109701618B (en) | AEI composite molecular sieve and synthesis method thereof | |
CN106660026A (en) | Crystalline porous silicoaluminophosphates and metal-substituted silicoaluminophosphates with a hierarchical pore structure comprising micropores and mesopores, methods for making the same, and processes for converting oxygenates to olefins via reactions catalyzed by the same | |
CN106824260B (en) | Co-SSZ-13 catalyst, preparation method and its usage | |
CN103663489B (en) | A kind of SAPO-44 molecular sieve and synthetic method thereof | |
CN114054082A (en) | A kind of nanometer hierarchical pore SAPO-11 molecular sieve and its preparation method and application | |
CN106542547A (en) | A kind of preparation method of 34 molecular sieves of SAPO of high activity low silicon content | |
CN106824261A (en) | Ni-SSZ-13 catalyst, preparation method and its usage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07785246 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07785246 Country of ref document: EP Kind code of ref document: A1 |