WO2008012883A1 - Wireless communication device - Google Patents
Wireless communication device Download PDFInfo
- Publication number
- WO2008012883A1 WO2008012883A1 PCT/JP2006/314803 JP2006314803W WO2008012883A1 WO 2008012883 A1 WO2008012883 A1 WO 2008012883A1 JP 2006314803 W JP2006314803 W JP 2006314803W WO 2008012883 A1 WO2008012883 A1 WO 2008012883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- supply voltage
- power
- path
- amplifier
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
Definitions
- the present invention relates to a wireless communication apparatus including a Doherty amplifier using a battery as a power source.
- FIG. 1 is a schematic configuration diagram of a commonly known Dono / Tee amplifier.
- the Doherty amplifier includes two amplifiers, a carrier amplifier 1 and a peak amplifier 2, and a ⁇ 4 transmission line A, ⁇ , and C force.
- the characteristic impedance of ⁇ ⁇ 4 transmission line ⁇ is Z
- the characteristic impedance of ⁇ Z4 transmission line B is Z
- the characteristic impedance of transmission line C is ⁇ . Of the two amplifiers, only the carrier amplifier 1 operates in the low power region and the carrier amplifier 1 and the peak amplifier 2 operate in the high power region. ) Is bias controlled by a bias circuit (not shown).
- FIG. 2 is an equivalent circuit when the Dono and tee amplifier shown in FIG. 1 operates in the low power region
- FIG. 3 shows the Dono and tee amplifier shown in FIG. 1 in the high power region.
- This is an equivalent circuit.
- the equivalent circuit diagrams in Figs. 2 and 3 connect impedance ⁇ as load 3.
- the output power is a predetermined level.
- the impedance when looking at the load 3 side is 2Z.
- the impedance when looking at the 3 side is also Z.
- the load impedance of the carrier amplifier 1 is 2Z during low power operation.
- the impedance of the carrier amplifier 1 viewed from the load 3 side is high impedance, and when operating at high power, the impedance of the carrier amplifier 1 viewed from the load 3 side is low impedance. Therefore, when the load impedance is 2Z (that is, low power
- the carrier amplifier 1 is designed so that the saturation power is reduced but the efficiency is high, and the saturation power is increased when the load impedance is Z (that is, during high power operation).
- the Dono and Tee amplifiers can realize highly efficient power amplification over a wide dynamic range.
- Patent Document 1 Special Table 2001-520828
- Patent Document 2 JP 2001-518731
- the power source mounted on the portable terminal or the like is generally a secondary battery such as a lithium ion battery
- the electromotive force decreases with time. Therefore, if the usage time of the portable terminal becomes longer, the power supply voltage of the Dono / Tee amplifier built into the portable terminal will decrease, and as a result, the distortion characteristics of the Dono / Tee amplifier will deteriorate. The linearity of the output power will deteriorate. In other words, even if high-efficiency power amplification is obtained over a wide dynamic range by the Doherty amplifier, distortion is degraded due to a decrease in the power supply voltage caused by the secondary battery, and output power with good linearity cannot be obtained. End up.
- the present invention has been made in view of such circumstances, and provides a wireless communication apparatus including a Doherty amplifier that can prevent distortion deterioration due to a decrease in power supply voltage with a simple circuit configuration. Objective.
- FIG. 1 Schematic configuration diagram of commonly known Dono and Tee amplifiers
- FIG. 5 is a basic circuit diagram of a radio communication apparatus according to Embodiment 1 of the present invention.
- FIG. 6 is a basic circuit diagram of a radio communication apparatus according to Embodiment 2 of the present invention.
- FIG. 7 is a basic circuit diagram of a radio communication apparatus according to Embodiment 3 of the present invention.
- FIG. 8 is a basic circuit diagram of a radio communication apparatus according to Embodiment 4 of the present invention.
- the Dono and Tee amplifiers applied to the wireless communication apparatus of the present invention pay attention to the fact that the distortion deteriorates when the power supply voltage of the carrier amplifier decreases almost without being affected by the decrease of the power supply voltage of the peak amplifier.
- a constant power supply means for keeping the power supply voltage of only the carrier amplifier constant. This makes it high over a wide dynamic range.
- Dono and Tee amplifiers applied to the wireless communication apparatus of the present invention will be described in detail. Note that in the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant description will be omitted as much as possible.
- the inventors have found from experimental results that, in the carrier amplifier and the peak amplifier constituting the Doherty amplifier, the distortion of the Dono and Tee amplifiers deteriorates when the power supply voltage of the carrier amplifier decreases.
- the distortion characteristics of the Doherty amplifier depend on the power supply voltage of the carrier amplifier.
- FIG. 4 is a characteristic diagram showing the relationship of distortion degradation due to a drop in power supply voltage in the Doherty amplifier, where the horizontal axis shows output power and the vertical axis shows distortion.
- the distortion characteristics of the Donoty amplifier (a) the Doherty amplifier gradually increases in distortion as the output power increases, and exceeds a predetermined output power. The distortion suddenly increases.
- the distortion characteristic (b) shown by the broken line when the power supply voltage of only the peak amplifier is lowered is almost the same as the distortion characteristic (a) of the Dono and Tee amplifiers.
- the distortion characteristics when the power supply voltage of the carrier amplifier alone is lowered are greatly deteriorated.
- the distortion characteristic (c) when the power supply voltage of only the carrier amplifier is lowered the distortion increases rapidly even when the output power is relatively small.
- the distortion characteristics when the power supply voltage of both the peak amplifier and the carrier amplifier are lowered are shown by the broken line (d). It is almost the same as (c).
- the distortion characteristics of the carrier amplifier are almost equal to the distortion characteristics of the Doherty amplifier.
- the distortion of the Doherty amplifier is greatly deteriorated.
- the Dono / Tee amplifier since the power source mounted on the mobile terminal is generally a secondary battery such as a lithium ion battery, the power supply voltage of the carrier amplifier decreases as the usage time of the mobile terminal increases. As a result, distortion of the Doherty amplifier deteriorates and the linearity of the output power deteriorates. Therefore, the Dono / Tee amplifier according to the first embodiment of the present invention is provided with constant power supply voltage supply means for making the power supply voltage of only the carrier amplifier constant.
- FIG. 5 is a basic circuit diagram of the radio communication apparatus according to Embodiment 1 of the present invention.
- the Doherty amplifier 101 applied to the radio communication apparatus of the present invention has a configuration in which a carrier amplifier 102 and a peak amplifier 103 are connected in parallel, and the carrier amplifier 102 includes a first amplifier Power is supplied from the battery 104 via the constant power supply voltage supply means 106, and the peak amplifier 103 is configured to be supplied with power directly from the second battery 105.
- the first battery 104 and the second battery 105 may be the same battery.
- the carrier amplifier 102, the peak amplifier 103, and the ⁇ 4 transmission line inserted into the output circuit are omitted.
- the constant power supply voltage supply means 106 has a function of supplying a power supply voltage of a constant voltage to the carrier amplifier 102, and the circuit is integrated to make it one chip or high. It can be realized by a DC-DC converter with a bridge configuration and SiP (System in Package). Such DC-DC converters are widely put into practical use by circuit configurations such as switching regulators and ringing choke converters (RCC).
- the DC-DC converter used as the constant power supply voltage supply means 106 can output a constant voltage even when the battery voltage of the first battery 104 drops, whether it is a step-up DC-DC converter or a step-down DC-DC converter. Any constant voltage power supply may be used.
- the Doherty amplifier 101 can maintain high-efficiency power amplification and low distortion characteristics over a wide dynamic range.
- the Doherty amplifier 101 when the output power supplied to the load 110 is in the low power mode lower than the predetermined value, only the carrier amplifier 102 performs the amplification operation, and when the output power is in the high power mode higher than the predetermined value.
- the carrier amplifier 102 and the peak amplifier 103 perform the amplification operation, so that the low power mode power and the high efficiency power amplification are performed over a wide dynamic range up to the high power mode.
- the Dono-Tee amplifier 101 is continuously used, the power of reducing the voltage of the first battery 104 and the second battery 105 is reduced even if the voltage of the first battery 104 is reduced. Constant power supply voltage A constant voltage is always supplied to the carrier amplifier 102 by the constant voltage action of the supply means 106. On the other hand, when the voltage of the second battery 105 decreases, a voltage in a state where the battery voltage is decreased is supplied to the peak amplifier 103.
- the power supply voltage of the carrier amplifier 102 is held at a constant voltage, even if the power supply voltage of the peak amplifier 103 decreases, the Dono / Tee amplifier 101 has a low distortion level. Can be maintained. In other words, the Dono-Tee amplifier 101 can continue to operate while maintaining good linearity with high efficiency and low distortion over a wide dynamic range even when the battery voltage drops.
- the Doherty amplifier 101 does not allow the carrier amplifier 102 and the peak amplifier 103 to operate in a balanced configuration as a class AB amplifier! /, So the constant power supply voltage supply means 106 is replaced with a carrier amplifier. If only 102 is provided, it is possible to prevent distortion deterioration, so that the rated level of the constant power supply voltage supply means 106 can be reduced. Therefore, it is possible to lower the rating of circuit elements that are constituent elements of a DC-DC converter and reduce the circuit scale, so that it is also possible to reduce the cost of wireless communication devices.
- the DC-DC converter since the DC-DC converter only needs to supply power to one of the amplifiers (that is, the carrier amplifier 102), the load current of the DC-DC converter can be reduced. As a result, the battery (That is, the lifetime of the first battery 104) can be extended. In other words, it is possible to extend the life of the battery used in the wireless communication device, and as a result, it is possible to further reduce the size of the wireless communication device by reducing the size of the battery.
- the power supply voltage supply path switching unit 108 supplies power from the first battery 104 to the carrier amplifier 102 depending on whether the voltage of the first battery 104 is in the normal range or decreases. Are switched to a first path that bypasses constant power supply means 106 and a second path that passes constant power supply means 106.
- the power supply voltage drop detection means 107 is a means for detecting a voltage drop of the first battery 104, and can be realized by, for example, a DC voltage detection sensor. Further, the power supply voltage supply path switching means 108 is used when the power supply voltage drop detecting means 107 does not detect a voltage drop of the first battery 104 (that is, when the voltage of the first battery 104 is in a normal range).
- the path is switched so that the path of the first battery 104 becomes the first path bypassing the constant power supply voltage supply means 106, and the power supply voltage drop detection means 107 detects the voltage drop of the first battery 104 (That is, when the voltage of the first battery 104 drops below a predetermined level), the path of the first battery 104 becomes a second path that passes through the constant power supply voltage supply means 106. Perform path switching.
- a power supply voltage supply path switching means 108 can be realized by, for example, a semiconductor switch that is turned ON / OFF by a signal from the power supply voltage drop detection means 107.
- the constant power supply voltage supply means 106 is always used. However, in the wireless communication device of the second embodiment shown in FIG. Whether or not the constant power supply voltage supply means 106 is used is determined depending on whether or not a voltage drop of the battery 104 is detected. That is, depending on whether or not the voltage of the first battery 104 is lower than a predetermined voltage threshold, Whether to use the power supply voltage supply means 106 is determined.
- the power supply voltage drop detection means 107 does not send a battery voltage drop signal to the power supply voltage supply path switching means 108.
- the path switching means 108 supplies the power to the carrier amplifier 102 by bypassing the constant power supply voltage supply means 106 with the path of the first battery 104 as the first path.
- the power supply voltage drop detection means 107 transmits a battery voltage drop signal to the power supply voltage supply path switching means 108. Then, the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path and supplies power to the carrier amplifier 102 using the constant power supply voltage supply means 106. As a result, even when the voltage of the first battery 104 falls below the voltage threshold, a constant voltage power source can be supplied to the carrier amplifier 102.
- FIG. 7 is a basic circuit diagram of a radio communication apparatus according to Embodiment 3 of the present invention.
- the wireless communication device of the third embodiment shown in FIG. 7 is different from the wireless communication device of the first embodiment shown in FIG. 5 in that an RF input level detection means 109 and a power supply voltage supply path switching means 108 are added. Is a point.
- the RF input level detection means 109 has a function of detecting whether or not the power level of the RF input signal is higher than the power threshold.
- the power supply voltage supply path switching means 108 connects the first battery 104 to the carrier amplifier 102 by bypassing the constant power supply voltage supply means 106 based on the detection result of the RF input level detection means 109. 1 has a function of switching between a first path and a second path that connects the first battery 104 to the carrier amplifier 102 through the constant power supply voltage supply means 106.
- the power supply voltage supply path switching means 108 is a constant power supply voltage supply means for supplying power from the first battery 104 to the carrier amplifier 102 depending on whether the power level of the RF input signal is low or high.
- the first path that bypasses 106 and the second path that passes the constant power supply voltage supply means 106 are switched. That is, the power supply voltage supply path switching unit 108 determines whether or not to use the constant power supply voltage supply means 106 according to the power level of the RF input signal.
- the power supply voltage supply path switching means 108 is not connected to the first battery 104.
- the power supply is supplied to the carrier amplifier 102 by bypassing the constant power supply means 106 by using the first path as a first path. This is because when the power level of the RF input signal is low, the distortion of the RF input signal is small, so even if the voltage supplied to the carrier amplifier 102 decreases, there is almost no distortion degradation of the Doherty amplifier 101. This means that the voltage of the first battery 104 may be supplied to the carrier amplifier 102 by bypassing the voltage supply means 106.
- the RF input level detection means 109 sends a signal indicating that the power level of the RF input signal has increased to the power supply voltage supply path switching means 108. Therefore, the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path, passes the constant power supply voltage supply means 106, and supplies power to the carrier amplifier 102. This is because when the power level of the RF input signal is high, the distortion of the RF input signal is also large. Therefore, when the voltage supplied to the carrier amplifier 102 is decreased, the distortion deterioration of the Doherty amplifier 101 is increased. This means that a constant voltage is supplied to the carrier amplifier 102 via the constant power supply voltage supply means 106.
- FIG. 8 is a basic circuit diagram of the radio communication apparatus according to Embodiment 4 of the present invention.
- the wireless communication apparatus of the fourth embodiment shown in FIG. 8 is a combination of the wireless communication apparatus of the second embodiment shown in FIG. 6 and the wireless communication apparatus of the third embodiment shown in FIG. That is, the wireless communication apparatus according to the fourth embodiment determines whether the voltage of the first battery 104 has decreased below a predetermined voltage threshold, and whether the power level of the RF input signal has exceeded a predetermined power threshold. Accordingly, whether or not to use the constant power supply means 106 is determined. Therefore, the power supply path of the carrier amplifier 102 in the wireless communication apparatus of the fourth embodiment shown in FIG. 8 is the constant power supply voltage supply means 106, the power supply voltage drop detection means 107, the power supply voltage supply path switching means 108, and the RF The input level detecting means 109 is configured.
- power supply voltage drop detection means 107 detects that the voltage of first battery 104 has fallen below a predetermined voltage threshold value
- RF input level detection means 109 detects the power of the RF input signal.
- the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path passing through the constant power supply voltage supply means 106. This is because distortion deterioration is likely to occur when the power level of the RF input signal is high and the voltage of the first battery 104 is low. In such a state, the first battery 104 supplies a constant power supply voltage supply means. This means that a constant voltage is supplied to the carrier amplifier 102 via 106.
- the power level of the RF input signal is low, distortion degradation is unlikely to occur even if the voltage of the first battery 104 is low. This means that the power supply voltage may be supplied to
- the Dono and Tee amplifiers can be made highly efficient and low distortion with a simple circuit configuration, and therefore can be effectively used for mobile communication terminals such as portable terminals. Is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
A wireless communication device having a simple circuit construction, free of deterioration of distortion due to reduction of the power supply voltage, and having a Doherty amplifier. When the voltage of a first cell (104) is normal, power supply voltage reduction detecting means (107) does not send a signal indicating the voltage reduction to power supply voltage supply path changing means (108). With this, the power supply voltage supply path changing mean (108) changes the path to a first path bypassing constant power supply voltage supplying means (106) so as to supply the voltage of the first cell (104) to a carrier amplifier (102). When the voltage of the first cell (104) lowers below a voltage threshold, the power supply voltage reduction detecting means (107) sends the signal indicating the voltage reduction to the power supply voltage supply path changing mean (108). With this, the power supply voltage supply path changing means (108) changes the path of the first cell (104) to a second one, and supplies power of a constant voltage to the carrier amplifier (102) by using the constant power supply voltage supplying means (106).
Description
明 細 書 Specification
無線通信装置 Wireless communication device
技術分野 Technical field
[0001] 本発明は、電池を電源とするドハティ増幅器を備えた無線通信装置に関する。 TECHNICAL FIELD [0001] The present invention relates to a wireless communication apparatus including a Doherty amplifier using a battery as a power source.
背景技術 Background art
[0002] 近年、高速無線伝送を実現可能な通信方式として、マルチパスやフェージングに 強いマルチキャリア方式が注目を集めている。このようなマルチキャリア方式では、複 数のキャリア (搬送波)に重畳された送信信号が時間軸上で加算されるため、マルチ キャリア信号に高いピーク電力が生じる。そこで、このような高いピーク電力を有する マルチキャリア信号であっても高効率に増幅を行うことが可能な電力増幅器として、ド ハティ増幅器が知られている (例えば、非特許文献 1参照)。 In recent years, multi-carrier schemes that are resistant to multipath and fading are attracting attention as communication schemes capable of realizing high-speed wireless transmission. In such a multi-carrier scheme, transmission signals superimposed on a plurality of carriers (carrier waves) are added on the time axis, resulting in high peak power in the multi-carrier signal. Therefore, a Doherty amplifier is known as a power amplifier that can amplify even a multicarrier signal having such a high peak power with high efficiency (see, for example, Non-Patent Document 1).
[0003] 図 1は、一般的に知られているドノ、ティ増幅器の概略的な構成図である。図 1に示 すように、ドハティ増幅器は、キャリア増幅器 1とピーク増幅器 2の 2個の増幅器及び λ Ζ4伝送線路 A, Β, C力も構成されている。なお、 λ Ζ4伝送線路 Αの特性インピ 一ダンスは Zであり、 λ Z4伝送線路 Bの特性インピーダンスは Zであり、かつ、 λ / FIG. 1 is a schematic configuration diagram of a commonly known Dono / Tee amplifier. As shown in FIG. 1, the Doherty amplifier includes two amplifiers, a carrier amplifier 1 and a peak amplifier 2, and a λΖ4 transmission line A, Β, and C force. Note that the characteristic impedance of λ Ζ4 transmission line Α is Z, the characteristic impedance of λ Z4 transmission line B is Z, and λ /
0 0 0 0
4伝送線路 Cの特性インピーダンスは Ζである。 2個の増幅器のうち、低電力領域で はキャリア増幅器 1のみが動作し、高電力領域ではキャリア増幅器 1とピーク増幅器 2 が動作するように、それぞれの増幅器 (つまり、キャリア増幅器 1とピーク増幅器 2)が 図示しないバイアス回路によってバイアス制御される。 4 The characteristic impedance of transmission line C is Ζ. Of the two amplifiers, only the carrier amplifier 1 operates in the low power region and the carrier amplifier 1 and the peak amplifier 2 operate in the high power region. ) Is bias controlled by a bias circuit (not shown).
[0004] 次に、図 1に示すドノ、ティ増幅器が高効率な増幅を行う動作について説明する。図 [0004] Next, an operation in which the Dono / Tee amplifier shown in FIG. 1 performs high-efficiency amplification will be described. Figure
2は、図 1に示すドノ、ティ増幅器が低電力領域にぉ 、て動作するときの等価回路であ り、図 3は、図 1に示すドノ、ティ増幅器が高電力領域において動作するときの等価回 路である。つまり、図 2及び図 3の等価回路図は、負荷 3としてインピーダンス Ζを接 2 is an equivalent circuit when the Dono and tee amplifier shown in FIG. 1 operates in the low power region, and FIG. 3 shows the Dono and tee amplifier shown in FIG. 1 in the high power region. This is an equivalent circuit. In other words, the equivalent circuit diagrams in Figs. 2 and 3 connect impedance Ζ as load 3.
0 続したときの各ノードから負荷 3側を見たときのインピーダンスを表わしている。 0 Indicates the impedance when viewing the load 3 side from each node when connected.
[0005] 図 2に示すように、負荷 3のインピーダンス Ζ [0005] As shown in FIG.
0は、その負荷 3に直接接続された λ Ζ 0 is λ さ れ directly connected to load 3
4伝送線路 Cによってインピーダンス Ζ Ζ2に変換される。また、出力電力が所定のレ 4Converted to impedance Ζ Ζ2 by transmission line C. Also, the output power is a predetermined level.
0 0
ベルより低い低電力時においてはピーク増幅器 2が OFFとなるため、ピーク増幅器 2
の出力インピーダンスは開放される。したがって、 λ Z4伝送線路 Aから負荷 3側を見 たインピーダンスはそのまま Z Z2となる。さら〖こ、このインピーダンス Z /2が特性ィ Since the peak amplifier 2 is OFF at low power lower than the bell, the peak amplifier 2 The output impedance of is open. Therefore, the impedance when the load 3 side is viewed from the λ Z4 transmission line A becomes Z Z2 as it is. Sarako, this impedance Z / 2 is characteristic
0 0 0 0
ンピーダンス Zの λ Ζ4伝送線路 Αでインピーダンス変換され、キャリア増幅器 1から Impedance is transformed by impedance λ Ζ4 transmission line 、, and from carrier amplifier 1
0 0
負荷 3側を見たインピーダンスは 2Zになる。 The impedance when looking at the load 3 side is 2Z.
0 0
[0006] 一方、出力電力が所定のレベルより高い高電力時には、図 3に示すように、ピーク 増幅器 2が ONとなって、ピーク増幅器 2が負荷 3に電力を供給するようになる。このと き、 λ Ζ4伝送線路 Cの入力側のインピーダンスは Ζ Ζ2であるので、 λ Ζ4伝送線 On the other hand, when the output power is higher than a predetermined level, the peak amplifier 2 is turned on and the peak amplifier 2 supplies power to the load 3 as shown in FIG. At this time, since the impedance on the input side of λ Ζ4 transmission line C is Ζ Ζ2, λ Ζ4 transmission line
0 0
路 Α力も負荷 3側を見たインピーダンスとピーク増幅器 2から負荷 3側を見たインピー ダンスは共に Zとなる。また、 λ /4伝送線路 Αから負荷 3側を見たインピーダンス Ζ In the roadside force, the impedance when looking at the load 3 side and the impedance when looking at the load 3 side from the peak amplifier 2 are both Z. Also, the impedance when looking at the load 3 side from λ / 4 transmission line Α
0 0 と λ Z4伝送線路 Aの特性インピーダンス Zは等しいため、キャリア増幅器 1から負荷 Since the characteristic impedance Z of 0 0 and λ Z4 transmission line A are equal, load from carrier amplifier 1
0 0
3側を見たインピーダンスも Zとなる。 The impedance when looking at the 3 side is also Z.
0 0
[0007] 以上のことから、キャリア増幅器 1の負荷インピーダンスは、低電力動作時には 2Z [0007] From the above, the load impedance of the carrier amplifier 1 is 2Z during low power operation.
0 となり、高電力動作時には zとなることがわ力る。言い換えると、低電力動作時におい 0, which means that it becomes z when operating at high power. In other words, when operating at low power
0 0
ては、キャリア増幅器 1から負荷 3側を見たインピーダンスは高インピーダンスとなり、 高電力動作時にぉ 、ては、キャリア増幅器 1から負荷 3側を見たインピーダンスは低 インピーダンスとなる。そこで、負荷インピーダンスが 2Zのときは(つまり、低電力動 Thus, the impedance of the carrier amplifier 1 viewed from the load 3 side is high impedance, and when operating at high power, the impedance of the carrier amplifier 1 viewed from the load 3 side is low impedance. Therefore, when the load impedance is 2Z (that is, low power
0 0
作時には)、飽和電力は低下するが高効率になるようにキャリア増幅器 1を設計し、負 荷インピーダンスが Zのときは(つまり、高電力動作時には)飽和電力が高くなるよう The carrier amplifier 1 is designed so that the saturation power is reduced but the efficiency is high, and the saturation power is increased when the load impedance is Z (that is, during high power operation).
0 0
にキャリア増幅器 1を設計すると、ドノ、ティ増幅器は広いダイナミックレンジに亘つて 高効率な電力増幅を実現することが可能となる。 If the carrier amplifier 1 is designed, the Dono and Tee amplifiers can realize highly efficient power amplification over a wide dynamic range.
[0008] ところが、ドハティ増幅器によって高効率な電力増幅が行われると同時に、そのドハ ティ増幅器は歪を発生させるという問題がある。し力も、歪と効率は一般にトレードォ フの関係にあるため高効率になると歪が劣化する。そこで、ドハティ増幅器において 歪劣化を抑制しながら効率を高くする技術が種々開示されている。例えば、パラレル に接続された 2つの増幅器 (つまり、キャリア増幅器とピーク増幅器)のそれぞれに印 カロされる各電源電圧を可変にすることによって歪劣化の抑制と高効率動作を実現さ せている。つまり、歪レベルが許容できる状況では電源電圧を下げることによって効 率を高め、歪レベルが許容できない状況では電源電圧を上げることによって歪劣化
の抑制を図っている(例えば、特許文献 1参照)。 However, there is a problem that the Doherty amplifier generates distortion at the same time that the Doherty amplifier performs high-efficiency power amplification. As for the force, strain and efficiency generally have a trade-off relationship. Therefore, various techniques for increasing efficiency while suppressing distortion degradation in a Doherty amplifier have been disclosed. For example, by suppressing the power supply voltage applied to each of two amplifiers connected in parallel (that is, a carrier amplifier and a peak amplifier), distortion degradation is suppressed and high-efficiency operation is realized. In other words, in a situation where the distortion level is acceptable, the efficiency is increased by lowering the power supply voltage, and in a situation where the distortion level is not acceptable, the power supply voltage is increased, so that (For example, refer to Patent Document 1).
[0009] また、ドハティ増幅器にぉ 、て、 RF信号の入力レベルと電源電圧を共に制御して 歪劣化の抑制と高効率動作を実現させる技術も知られている。つまり、 RF信号の入 カレベルが閾値を下回って歪レベルが許容できる場合には、電源電圧を下げること によって効率を高め、 RF信号の入力レベルが閾値を上回って歪レベルが許容でき ない場合には、電源電圧を上げることにより歪劣化の抑制を図っている(例えば、特 許文献 2参照)。 [0009] Further, a technique for controlling distortion input and realizing high-efficiency operation by controlling both the input level of the RF signal and the power supply voltage is also known for the Doherty amplifier. In other words, when the input level of the RF signal is below the threshold and the distortion level is acceptable, the efficiency is increased by lowering the power supply voltage, and when the input level of the RF signal is above the threshold and the distortion level is not acceptable. Therefore, distortion degradation is suppressed by raising the power supply voltage (see, for example, Patent Document 2).
非特許文献 1: W.H.Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proc. IRE, vol.24, no.9, Sept. 1936, ppl 163— 1182 Non-Patent Document 1: W.H.Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proc. IRE, vol.24, no.9, Sept. 1936, ppl 163— 1182
特許文献 1:特表 2001— 520828号公報 Patent Document 1: Special Table 2001-520828
特許文献 2:特表 2001— 518731号公報 Patent Document 2: JP 2001-518731
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0010] し力しながら、携帯端末などに搭載されている電源は、一般的にはリチウムイオン電 池などの二次電池であるため、時間の経過と共に起電力が低下する。したがって、携 帯端末の使用時間が長くなると、その携帯端末に組み込まれているドノ、ティ増幅器 の電源電圧が低下してしまい、結果的に、ドノ、ティ増幅器の歪特性が劣化して出力 電力の線形性が悪くなつてしまう。つまり、ドハティ増幅器により広いダイナミックレン ジに亘つて高効率な電力増幅が得られても、二次電池に起因する電源電圧の低下 によって歪が劣化して線形性の良い出力電力が得られなくなってしまう。 [0010] However, since the power source mounted on the portable terminal or the like is generally a secondary battery such as a lithium ion battery, the electromotive force decreases with time. Therefore, if the usage time of the portable terminal becomes longer, the power supply voltage of the Dono / Tee amplifier built into the portable terminal will decrease, and as a result, the distortion characteristics of the Dono / Tee amplifier will deteriorate. The linearity of the output power will deteriorate. In other words, even if high-efficiency power amplification is obtained over a wide dynamic range by the Doherty amplifier, distortion is degraded due to a decrease in the power supply voltage caused by the secondary battery, and output power with good linearity cannot be obtained. End up.
[0011] 本発明は、このような事情に鑑みてなされたもので、簡単な回路構成で電源電圧の 低下による歪の劣化を防ぐことができるドハティ増幅器を備えた無線通信装置を提供 することを目的とする。 The present invention has been made in view of such circumstances, and provides a wireless communication apparatus including a Doherty amplifier that can prevent distortion deterioration due to a decrease in power supply voltage with a simple circuit configuration. Objective.
課題を解決するための手段 Means for solving the problem
[0012] 本発明の無線通信装置は、全ての電力領域で電力増幅を行うキャリア増幅器と、 所定の電力より高い高電力領域で電力増幅を行うピーク増幅器とが並列に構成され たドノ、ティ増幅器を備えた無線通信装置であって、キャリア増幅器に対して一定電圧 の電源電圧を供給する一定電源電圧供給手段を備える構成を採る。
発明の効果 The wireless communication apparatus of the present invention includes a carrier amplifier that performs power amplification in all power regions and a peak amplifier that performs power amplification in a high power region higher than a predetermined power in parallel. A wireless communication apparatus including an amplifier is configured to include constant power supply voltage supply means for supplying a constant power supply voltage to the carrier amplifier. The invention's effect
[0013] 本発明の無線通信装置に適用されるドハティ増幅器によれば、キャリア増幅器に対 してのみ一定の電源電圧を供給する一定電源電圧供給手段を備えることにより、ドハ ティ増幅器における歪劣化を防止して良好な線形性を維持することができる。また、 歪劣化を抑えることが可能なことから、ドハティ増幅器を定格仕様の限界まで使用す ること可能となり、ドハティ増幅器の定格に対するノ ックオフを小さくすることができる 。その結果、ドハティ増幅器を構成するデバイスを小容量ィ匕することができるので、無 線通信装置の仕様効率 (スぺシフィケーシヨン)を向上させることが可能となる。 [0013] According to the Doherty amplifier applied to the radio communication apparatus of the present invention, by providing the constant power supply voltage supply means for supplying a constant power supply voltage only to the carrier amplifier, distortion degradation in the Doherty amplifier is reduced. And good linearity can be maintained. Further, since distortion deterioration can be suppressed, the Doherty amplifier can be used up to the limit of the rated specification, and the knock-off with respect to the rating of the Doherty amplifier can be reduced. As a result, since the devices constituting the Doherty amplifier can be reduced in capacity, it is possible to improve the specification efficiency (specification) of the radio communication apparatus.
[0014] さらに、キャリア増幅器に一定電圧を供給する一定電源電圧供給手段として例えば DC - DCコンバータを使用した場合、 DC - DCコンバータはピーク増幅器への電源 供給を行わないので、 DC— DCコンバータの負荷電流を小さくすることができる。そ の結果、 DC— DCコンバータの回路規模や素子容量を小さくすることができる。また 、電源に二次電池を使用する場合は、二次電池の高寿命化を図ることができる。 図面の簡単な説明 [0014] Further, when a DC-DC converter is used as a constant power supply voltage supply means for supplying a constant voltage to the carrier amplifier, for example, the DC-DC converter does not supply power to the peak amplifier. The load current can be reduced. As a result, the circuit scale and element capacity of the DC-DC converter can be reduced. In addition, when a secondary battery is used as a power source, the life of the secondary battery can be increased. Brief Description of Drawings
[0015] [図 1]一般的に知られているドノ、ティ増幅器の概略的な構成図 [0015] [FIG. 1] Schematic configuration diagram of commonly known Dono and Tee amplifiers
[図 2]図 1に示すドハティ増幅器が低電力領域において動作するときの等価回路 [図 3]図 1に示すドハティ増幅器が高電力領域において動作するときの等価回路 圆 4]ドハティ増幅器における電源電圧低下による歪劣化の関係を示す特性図 [Fig. 2] Equivalent circuit when Doherty amplifier shown in Fig. 1 operates in the low power region [Fig. 3] Equivalent circuit when Doherty amplifier shown in Fig. 1 operates in the high power region 圆 4] Power supply voltage in Doherty amplifier Characteristic diagram showing the relationship of distortion deterioration due to lowering
[図 5]本発明の実施の形態 1における無線通信装置の基本的な回路図 FIG. 5 is a basic circuit diagram of a radio communication apparatus according to Embodiment 1 of the present invention.
[図 6]本発明の実施の形態 2における無線通信装置の基本的な回路図 FIG. 6 is a basic circuit diagram of a radio communication apparatus according to Embodiment 2 of the present invention.
[図 7]本発明の実施の形態 3における無線通信装置の基本的な回路図 FIG. 7 is a basic circuit diagram of a radio communication apparatus according to Embodiment 3 of the present invention.
[図 8]本発明の実施の形態 4における無線通信装置の基本的な回路図 FIG. 8 is a basic circuit diagram of a radio communication apparatus according to Embodiment 4 of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 〈発明の概要〉 <Outline of the Invention>
本発明の無線通信装置に適用されるドノ、ティ増幅器は、ピーク増幅器の電源電圧 の低下には殆んど影響されることなぐキャリア増幅器の電源電圧が低下すると歪が 劣化することに着目して、キャリア増幅器のみの電源電圧を一定に保持するための 一定電源電圧供給手段を設ける。これによつて、広いダイナミックレンジに亘つて高
効率を維持することができると共に、歪の劣化を防止して線形性の良いドノ、ティ増幅 器、及びそのドハティ増幅器を搭載した無線通信装置を実現することができる。 The Dono and Tee amplifiers applied to the wireless communication apparatus of the present invention pay attention to the fact that the distortion deteriorates when the power supply voltage of the carrier amplifier decreases almost without being affected by the decrease of the power supply voltage of the peak amplifier. Thus, there is provided a constant power supply means for keeping the power supply voltage of only the carrier amplifier constant. This makes it high over a wide dynamic range. In addition to maintaining efficiency, it is possible to realize a Dono, Tee amplifier, and a wireless communication apparatus equipped with the Doherty amplifier having good linearity by preventing deterioration of distortion.
[0017] 次に、本発明の無線通信装置に適用されるドノ、ティ増幅器の具体的な実施の形態 の幾つかについて詳細に説明する。なお、以下の各実施の形態で用いる図面にお いて、同一の構成要素は同一の符号を付し、かつ重複する説明は可能な限り省略す る。 [0017] Next, some specific embodiments of Dono and Tee amplifiers applied to the wireless communication apparatus of the present invention will be described in detail. Note that in the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant description will be omitted as much as possible.
[0018] 〈実施の形態 1〉 <Embodiment 1>
発明者らは、ドハティ増幅器を構成するキャリア増幅器とピーク増幅器において、キ ャリア増幅器の電源電圧が低下するとドノ、ティ増幅器の歪が劣化することを実験結果 により見出した。以下、本発明の理解を容易にするために、ドハティ増幅器の歪特性 はキャリア増幅器の電源電圧に依存されることについて説明する。 The inventors have found from experimental results that, in the carrier amplifier and the peak amplifier constituting the Doherty amplifier, the distortion of the Dono and Tee amplifiers deteriorates when the power supply voltage of the carrier amplifier decreases. Hereinafter, in order to facilitate understanding of the present invention, it will be described that the distortion characteristics of the Doherty amplifier depend on the power supply voltage of the carrier amplifier.
[0019] 図 4は、ドハティ増幅器における電源電圧低下による歪劣化の関係を示す特性図 であり、横軸は出力電力、縦軸は歪を示している。すなわち、図 4の実線で示すドノ、 ティ増幅器の歪特性 (a)のように、ドハティ増幅器は出力電力が大きくなるにしたがつ て歪が徐々に大きくなり、所定の出力電力を超えると急激に歪が大きくなる。 FIG. 4 is a characteristic diagram showing the relationship of distortion degradation due to a drop in power supply voltage in the Doherty amplifier, where the horizontal axis shows output power and the vertical axis shows distortion. In other words, as shown in the solid line in FIG. 4, the distortion characteristics of the Donoty amplifier (a), the Doherty amplifier gradually increases in distortion as the output power increases, and exceeds a predetermined output power. The distortion suddenly increases.
[0020] ここで、ピーク増幅器のみの電源電圧を低下させたときの破線で示す歪特性 (b)は 、 ドノ、ティ増幅器の歪特性 (a)と殆んど変わらない。ところが、キャリア増幅器のみの 電源電圧を低下させたときの歪特性は、破線 (c)で示すように歪の劣化がかなり大き くなる。つまり、キャリア増幅器のみの電源電圧を低下させたときの歪特性 (c)に示す ように、出力電力が比較的小さいときでも歪が急激に大きくなつてしまう。また、ピーク 増幅器とキャリア増幅器の両増幅器の電源電圧を低下させたときの歪特性は破線 (d )で示すように、歪の劣化はキャリア増幅器のみの電源電圧を低下させたときの歪特 性 (c)と殆んど同じである。言い換えると、出力電力の殆んどがキャリア増幅器によつ て増幅されて 、るので、キャリア増幅器の歪特性はドハティ増幅器の歪特性とほぼ等 しいと云える。このように、キャリア増幅器の電源電圧が低下するとドハティ増幅器の 歪が大きく劣化してしまう。 Here, the distortion characteristic (b) shown by the broken line when the power supply voltage of only the peak amplifier is lowered is almost the same as the distortion characteristic (a) of the Dono and Tee amplifiers. However, the distortion characteristics when the power supply voltage of the carrier amplifier alone is lowered, as shown by the broken line (c), are greatly deteriorated. In other words, as shown in the distortion characteristic (c) when the power supply voltage of only the carrier amplifier is lowered, the distortion increases rapidly even when the output power is relatively small. The distortion characteristics when the power supply voltage of both the peak amplifier and the carrier amplifier are lowered are shown by the broken line (d). It is almost the same as (c). In other words, since most of the output power is amplified by the carrier amplifier, it can be said that the distortion characteristics of the carrier amplifier are almost equal to the distortion characteristics of the Doherty amplifier. As described above, when the power supply voltage of the carrier amplifier is lowered, the distortion of the Doherty amplifier is greatly deteriorated.
[0021] 一方、携帯端末に搭載される電源は一般にリチウムイオン電池などの二次電池で あるので、携帯端末の使用時間が長くなるとキャリア増幅器の電源電圧が低下してし
まい、結果的に、ドハティ増幅器の歪が劣化して出力電力の線形性が悪くなつてしま う。そこで、本発明による実施の形態 1のドノ、ティ増幅器では、キャリア増幅器のみの 電源電圧を一定にするための一定電源電圧供給手段を設ける。 [0021] On the other hand, since the power source mounted on the mobile terminal is generally a secondary battery such as a lithium ion battery, the power supply voltage of the carrier amplifier decreases as the usage time of the mobile terminal increases. As a result, distortion of the Doherty amplifier deteriorates and the linearity of the output power deteriorates. Therefore, the Dono / Tee amplifier according to the first embodiment of the present invention is provided with constant power supply voltage supply means for making the power supply voltage of only the carrier amplifier constant.
[0022] 図 5は、本発明の実施の形態 1における無線通信装置の基本的な回路図である。 FIG. 5 is a basic circuit diagram of the radio communication apparatus according to Embodiment 1 of the present invention.
図 5に示すように、本発明の無線通信装置に適用されるドハティ増幅器 101は、キヤ リア増幅器 102とピーク増幅器 103が並列に接続された構成となっていて、キャリア 増幅器 102は、第 1の電池 104から一定電源電圧供給手段 106を介して電源が供 給され、ピーク増幅器 103は第 2の電池 105から、直接、電源が供給されるように構 成されている。ここで、第 1の電池 104と第 2の電池 105は同一の電池であっても構わ ない。なお、図 5に示すドハティ増幅器 101では、キャリア増幅器 102、ピーク増幅器 103、及び出力回路にそれぞれ挿入される λ Ζ4伝送線路は省略されている。 As shown in FIG. 5, the Doherty amplifier 101 applied to the radio communication apparatus of the present invention has a configuration in which a carrier amplifier 102 and a peak amplifier 103 are connected in parallel, and the carrier amplifier 102 includes a first amplifier Power is supplied from the battery 104 via the constant power supply voltage supply means 106, and the peak amplifier 103 is configured to be supplied with power directly from the second battery 105. Here, the first battery 104 and the second battery 105 may be the same battery. In the Doherty amplifier 101 shown in FIG. 5, the carrier amplifier 102, the peak amplifier 103, and the λΖ4 transmission line inserted into the output circuit are omitted.
[0023] 図 5において、一定電源電圧供給手段 106は、キャリア増幅器 102に対して一定電 圧の電源電圧を供給する機能を備えて ヽて、回路を集積ィ匕して 1チップィ匕したりハイ ブリツド構成にして SiP(System in Package)化した DC— DCコンバータなどによって 実現することができる。このような DC— DCコンバータは、スイッチングレギユレータゃ リンギングチョークコンバータ (RCC)などの回路構成によって広く実用化されている 。一定電源電圧供給手段 106として用いる DC— DCコンバータは、昇圧型 DC— D Cコンバータでも降圧型 DC— DCコンバータでもよぐ第 1の電池 104の電池電圧が 低下しても定電圧を出力できるような定電圧電源であればよい。 In FIG. 5, the constant power supply voltage supply means 106 has a function of supplying a power supply voltage of a constant voltage to the carrier amplifier 102, and the circuit is integrated to make it one chip or high. It can be realized by a DC-DC converter with a bridge configuration and SiP (System in Package). Such DC-DC converters are widely put into practical use by circuit configurations such as switching regulators and ringing choke converters (RCC). The DC-DC converter used as the constant power supply voltage supply means 106 can output a constant voltage even when the battery voltage of the first battery 104 drops, whether it is a step-up DC-DC converter or a step-down DC-DC converter. Any constant voltage power supply may be used.
[0024] 次に、図 5の無線通信装置において、ドハティ増幅器 101が広いダイナミックレンジ に亘つて高効率な電力増幅と低歪な特性を維持できる動作にっ 、て説明する。ドハ ティ増幅器 101は、負荷 110へ供給される出力電力が所定の値より低い低電力モー ドのときはキャリア増幅器 102のみが増幅動作を行い、出力電力が所定の値より高い 高電力モードのときはキャリア増幅器 102とピーク増幅器 103が増幅動作を行うこと により、低電力モード力 高電力モードまでの広いダイナミックレンジに亘つて高効率 な電力増幅を行う。 Next, in the wireless communication apparatus of FIG. 5, the operation in which the Doherty amplifier 101 can maintain high-efficiency power amplification and low distortion characteristics over a wide dynamic range will be described. In the Doherty amplifier 101, when the output power supplied to the load 110 is in the low power mode lower than the predetermined value, only the carrier amplifier 102 performs the amplification operation, and when the output power is in the high power mode higher than the predetermined value. The carrier amplifier 102 and the peak amplifier 103 perform the amplification operation, so that the low power mode power and the high efficiency power amplification are performed over a wide dynamic range up to the high power mode.
[0025] このとき、ドノ、ティ増幅器 101の使用状態が継続されると、第 1の電池 104及び第 2 の電池 105の電圧が低下する力 第 1の電池 104の電圧が低下しても一定電源電圧
供給手段 106の定電圧作用によってキャリア増幅器 102に対しては常に一定電圧が 供給される。一方、第 2の電池 105の電圧が低下するとピーク増幅器 103に対しては 電池電圧が低下した状態の電圧が供給される。ここで、前述したように、キャリア増幅 器 102の電源電圧は一定電圧に保持されているので、ピーク増幅器 103の電源電 圧が低下しても、ドノ、ティ増幅器 101としては低い歪レベルを維持することができる。 すなわち、ドノ、ティ増幅器 101は、電池電圧が低下しても、広いダイナミックレンジに 亘つて高効率かつ低歪で良好な線形性を維持しながら動作を継続することができる [0025] At this time, if the Dono-Tee amplifier 101 is continuously used, the power of reducing the voltage of the first battery 104 and the second battery 105 is reduced even if the voltage of the first battery 104 is reduced. Constant power supply voltage A constant voltage is always supplied to the carrier amplifier 102 by the constant voltage action of the supply means 106. On the other hand, when the voltage of the second battery 105 decreases, a voltage in a state where the battery voltage is decreased is supplied to the peak amplifier 103. Here, as described above, since the power supply voltage of the carrier amplifier 102 is held at a constant voltage, even if the power supply voltage of the peak amplifier 103 decreases, the Dono / Tee amplifier 101 has a low distortion level. Can be maintained. In other words, the Dono-Tee amplifier 101 can continue to operate while maintaining good linearity with high efficiency and low distortion over a wide dynamic range even when the battery voltage drops.
[0026] このようにして、広い電力範囲に亘つてドノ、ティ増幅器 101の歪劣化を抑制すること ができるので、 ドノ、ティ増幅器 101を定格仕様の限界まで使用することが可能となる 。つまり、ドノ、ティ増幅器 101の定格に対するノックオフを小さくすることが可能となる 。その結果、 1ランク下の定格仕様を有するデバイス (つまり、ドハティ増幅器 101)を 使用することができるので、無線通信装置のさらなる原価低減を図りながら高効率ィ匕 と低歪化を実現することが可能となる。 [0026] In this way, distortion degradation of the Dono and tee amplifier 101 can be suppressed over a wide power range, so that the Dono and tee amplifier 101 can be used up to the limit of the rated specification. . That is, the knock-off with respect to the rating of the Dono / Tee amplifier 101 can be reduced. As a result, it is possible to use a device with a rating specification that is one rank lower (i.e., Doherty amplifier 101), thus achieving higher efficiency and lower distortion while further reducing the cost of wireless communication equipment. It becomes possible.
[0027] さらに、ドハティ増幅器 101は、キャリア増幅器 102とピーク増幅器 103が AB級増 幅器としてバランス構成で動作して ヽるのではな!/、ので、一定電源電圧供給手段 10 6をキャリア増幅器 102のみに設ければ歪劣化の防止を実現できるため、一定電源 電圧供給手段 106の定格レベルを小さくすることが可能となる。したがって、 DC— D Cコンバータの構成要素である回路素子の定格を下げたり回路規模を削減すること ができるので、この面力もも無線通信装置の原価低減を図ることが可能となる。 [0027] Further, the Doherty amplifier 101 does not allow the carrier amplifier 102 and the peak amplifier 103 to operate in a balanced configuration as a class AB amplifier! /, So the constant power supply voltage supply means 106 is replaced with a carrier amplifier. If only 102 is provided, it is possible to prevent distortion deterioration, so that the rated level of the constant power supply voltage supply means 106 can be reduced. Therefore, it is possible to lower the rating of circuit elements that are constituent elements of a DC-DC converter and reduce the circuit scale, so that it is also possible to reduce the cost of wireless communication devices.
[0028] さらに、 DC— DCコンバータは一方の増幅器(つまり、キャリア増幅器 102)の電源 供給のみを行えばよいので、 DC— DCコンバータの負荷電流を小さくすることが可能 となり、その結果、電池(つまり、第 1の電池 104)の長寿命化を図ることができる。つ まり、無線通信装置で使用される電池の長寿命化を図ることができ、結果的に、電池 を小型にして無線通信装置をさらに小型化することが可能となる。 [0028] Furthermore, since the DC-DC converter only needs to supply power to one of the amplifiers (that is, the carrier amplifier 102), the load current of the DC-DC converter can be reduced. As a result, the battery ( That is, the lifetime of the first battery 104) can be extended. In other words, it is possible to extend the life of the battery used in the wireless communication device, and as a result, it is possible to further reduce the size of the wireless communication device by reducing the size of the battery.
[0029] 〈実施の形態 2〉 <Embodiment 2>
図 6は、本発明の実施の形態 2における無線通信装置の基本的な回路図である。 図 6に示す実施の形態 2の無線通信装置が図 5に示す実施の形態 1の無線通信装
置と異なるところは、電源電圧低下検出手段 107と電源電圧供給経路切替手段 108 が追加された点である。電源電圧低下検出手段 107は、第 1の電池 104の電圧が電 圧閾値より低下したカゝ否かを検出する機能を備えている。また、電源電圧供給経路 切替手段 108は、電源電圧低下検出手段 107の検出結果に基づいて、一定電源電 圧供給手段 106をバイパスしてキャリア増幅器 102へ第 1の電池 104を接続する第 1 の経路と、一定電源電圧供給手段 106を通過させてキャリア増幅器 102へ第 1の電 池 104を接続する第 2の経路との切り替えを行う機能を備えている。 FIG. 6 is a basic circuit diagram of the radio communication apparatus according to Embodiment 2 of the present invention. The wireless communication device of the second embodiment shown in FIG. 6 is the wireless communication device of the first embodiment shown in FIG. The difference is that power supply voltage drop detection means 107 and power supply voltage supply path switching means 108 are added. The power supply voltage drop detecting means 107 has a function of detecting whether or not the voltage of the first battery 104 has fallen below the voltage threshold. Further, the power supply voltage supply path switching means 108 bypasses the constant power supply voltage supply means 106 and connects the first battery 104 to the carrier amplifier 102 based on the detection result of the power supply voltage drop detection means 107. It has a function of switching between the path and the second path that passes the constant power supply voltage supply means 106 and connects the first battery 104 to the carrier amplifier 102.
[0030] すなわち、電源電圧供給経路切替手段 108は、第 1の電池 104の電圧が正常範囲 にあるか低下して 、るかによって、第 1の電池 104からキャリア増幅器 102へ電源を 供給する経路を、一定電源電圧供給手段 106をバイパスする第 1の経路と、一定電 源電圧供給手段 106を通過させる第 2の経路とに切り替えている。 That is, the power supply voltage supply path switching unit 108 supplies power from the first battery 104 to the carrier amplifier 102 depending on whether the voltage of the first battery 104 is in the normal range or decreases. Are switched to a first path that bypasses constant power supply means 106 and a second path that passes constant power supply means 106.
[0031] 言い換えると、電源電圧低下検出手段 107は第 1の電池 104の電圧低下を検出す る手段であって、例えば、直流電圧検出センサなどによって実現することができる。ま た、電源電圧供給経路切替手段 108は、電源電圧低下検出手段 107が第 1の電池 104の電圧低下を検出しないときは(つまり、第 1の電池 104の電圧が正常な範囲に あるときは)、第 1の電池 104の経路が一定電源電圧供給手段 106をバイパスする第 1の経路となるように経路切替えを行い、電源電圧低下検出手段 107が第 1の電池 1 04の電圧低下を検出したときは(つまり、第 1の電池 104の電圧が所定のレベル以下 に低下したきは)、第 1の電池 104の経路が一定電源電圧供給手段 106を通過する 第 2の経路となるように経路切替えを行う。このような電源電圧供給経路切替手段 10 8は、例えば、電源電圧低下検出手段 107からの信号によって ONZOFFする半導 体スィッチによって実現することができる。 In other words, the power supply voltage drop detection means 107 is a means for detecting a voltage drop of the first battery 104, and can be realized by, for example, a DC voltage detection sensor. Further, the power supply voltage supply path switching means 108 is used when the power supply voltage drop detecting means 107 does not detect a voltage drop of the first battery 104 (that is, when the voltage of the first battery 104 is in a normal range). ), The path is switched so that the path of the first battery 104 becomes the first path bypassing the constant power supply voltage supply means 106, and the power supply voltage drop detection means 107 detects the voltage drop of the first battery 104 (That is, when the voltage of the first battery 104 drops below a predetermined level), the path of the first battery 104 becomes a second path that passes through the constant power supply voltage supply means 106. Perform path switching. Such a power supply voltage supply path switching means 108 can be realized by, for example, a semiconductor switch that is turned ON / OFF by a signal from the power supply voltage drop detection means 107.
[0032] 次に、図 6に示す実施の形態 2における無線通信装置の動作について実施の形態 1と重複しない範囲で説明する。図 5に示す実施の形態 1の無線通信装置では常に 一定電源電圧供給手段 106を使用していたが、図 6に示す実施の形態 2の無線通信 装置では、電源電圧低下検出手段 107が第 1の電池 104の電圧低下を検出したか 否かによって一定電源電圧供給手段 106を使用するかどうかを決定して 、る。つまり 、第 1の電池 104の電圧が所定の電圧閾値より低下しているか否かに応じて、一定
電源電圧供給手段 106を使用するか否かを決定している。 Next, the operation of the wireless communication apparatus in the second embodiment shown in FIG. 6 will be described within a range that does not overlap with the first embodiment. In the wireless communication device of the first embodiment shown in FIG. 5, the constant power supply voltage supply means 106 is always used. However, in the wireless communication device of the second embodiment shown in FIG. Whether or not the constant power supply voltage supply means 106 is used is determined depending on whether or not a voltage drop of the battery 104 is detected. That is, depending on whether or not the voltage of the first battery 104 is lower than a predetermined voltage threshold, Whether to use the power supply voltage supply means 106 is determined.
[0033] すなわち、第 1の電池 104の電圧が正常範囲にあるときは、電源電圧低下検出手 段 107は電池電圧低下の信号を電源電圧供給経路切替手段 108へ送出しないの で、電源電圧供給経路切替手段 108は、第 1の電池 104の経路を第 1の経路にして 一定電源電圧供給手段 106をバイパスしてキャリア増幅器 102へ電源を供給する。 [0033] That is, when the voltage of the first battery 104 is in the normal range, the power supply voltage drop detection means 107 does not send a battery voltage drop signal to the power supply voltage supply path switching means 108. The path switching means 108 supplies the power to the carrier amplifier 102 by bypassing the constant power supply voltage supply means 106 with the path of the first battery 104 as the first path.
[0034] 次に、第 1の電池 104の電圧が所定の電圧閾値を下回ると、電源電圧低下検出手 段 107が電池電圧低下の信号を電源電圧供給経路切替手段 108へ送信する。する と、電源電圧供給経路切替手段 108は、第 1の電池 104の経路を第 2の経路に切り 替えて一定電源電圧供給手段 106を使用してキャリア増幅器 102へ電源を供給する 。これによつて、第 1の電池 104の電圧が電圧閾値を下回っても、キャリア増幅器 102 へ一定電圧の電源を供給することができる。 Next, when the voltage of the first battery 104 falls below a predetermined voltage threshold, the power supply voltage drop detection means 107 transmits a battery voltage drop signal to the power supply voltage supply path switching means 108. Then, the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path and supplies power to the carrier amplifier 102 using the constant power supply voltage supply means 106. As a result, even when the voltage of the first battery 104 falls below the voltage threshold, a constant voltage power source can be supplied to the carrier amplifier 102.
[0035] 〈実施の形態 3〉 <Embodiment 3>
図 7は、本発明の実施の形態 3における無線通信装置の基本的な回路図である。 図 7に示す実施の形態 3の無線通信装置が図 5に示す実施の形態 1の無線通信装 置と異なるところは、 RF入力レベル検出手段 109と電源電圧供給経路切替手段 10 8が追加された点である。 RF入力レベル検出手段 109は、 RF入力信号の電カレべ ルが電力閾値より高いか否かを検出する機能を備えている。また、電源電圧供給経 路切替手段 108は、 RF入力レベル検出手段 109の検出結果に基づいて、一定電 源電圧供給手段 106をバイパスしてキャリア増幅器 102へ第 1の電池 104を接続す る第 1の経路と、一定電源電圧供給手段 106を通過させてキャリア増幅器 102へ第 1 の電池 104を接続する第 2の経路との切り替えを行う機能を備えている。 FIG. 7 is a basic circuit diagram of a radio communication apparatus according to Embodiment 3 of the present invention. The wireless communication device of the third embodiment shown in FIG. 7 is different from the wireless communication device of the first embodiment shown in FIG. 5 in that an RF input level detection means 109 and a power supply voltage supply path switching means 108 are added. Is a point. The RF input level detection means 109 has a function of detecting whether or not the power level of the RF input signal is higher than the power threshold. The power supply voltage supply path switching means 108 connects the first battery 104 to the carrier amplifier 102 by bypassing the constant power supply voltage supply means 106 based on the detection result of the RF input level detection means 109. 1 has a function of switching between a first path and a second path that connects the first battery 104 to the carrier amplifier 102 through the constant power supply voltage supply means 106.
[0036] すなわち、電源電圧供給経路切替手段 108は、 RF入力信号の電力レベルが低い か高いかによつて、第 1の電池 104からキャリア増幅器 102へ電源を供給する経路を 、一定電源電圧供給手段 106をバイパスする第 1の経路と、一定電源電圧供給手段 106を通過させる第 2の経路とに切り替えている。つまり、電源電圧供給経路切替手 段 108は、 RF入力信号の電力レベルに応じて、一定電源電圧供給手段 106を使用 する力否かを決定している。 That is, the power supply voltage supply path switching means 108 is a constant power supply voltage supply means for supplying power from the first battery 104 to the carrier amplifier 102 depending on whether the power level of the RF input signal is low or high. The first path that bypasses 106 and the second path that passes the constant power supply voltage supply means 106 are switched. That is, the power supply voltage supply path switching unit 108 determines whether or not to use the constant power supply voltage supply means 106 according to the power level of the RF input signal.
[0037] 言い換えると、 RF入力信号の電力レベルが所定の閾値を上回っていないときは、
RF入力レベル検出手段 109は RF入力信号の電力レベルが増加した旨の信号を電 源電圧供給経路切替手段 108へ送信しな 1ゝので、電源電圧供給経路切替手段 108 は、第 1の電池 104の経路を第 1の経路にして一定電源電圧供給手段 106をバイパ スしてキャリア増幅器 102へ電源を供給する。このことは、 RF入力信号の電力レベル が低いときは RF入力信号の歪も少ないため、キャリア増幅器 102へ供給する電圧が 低下してもドハティ増幅器 101の歪劣化は殆んどないので、一定電源電圧供給手段 106をバイパスして第 1の電池 104の電圧をキャリア増幅器 102へ供給してもよいこと を意味している。 [0037] In other words, when the power level of the RF input signal does not exceed the predetermined threshold, Since the RF input level detecting means 109 does not send a signal indicating that the power level of the RF input signal has increased to the power supply voltage supply path switching means 108, the power supply voltage supply path switching means 108 is not connected to the first battery 104. The power supply is supplied to the carrier amplifier 102 by bypassing the constant power supply means 106 by using the first path as a first path. This is because when the power level of the RF input signal is low, the distortion of the RF input signal is small, so even if the voltage supplied to the carrier amplifier 102 decreases, there is almost no distortion degradation of the Doherty amplifier 101. This means that the voltage of the first battery 104 may be supplied to the carrier amplifier 102 by bypassing the voltage supply means 106.
[0038] また、 RF入力信号の電力レベルが所定の閾値を上回ったときは、 RF入力レベル 検出手段 109は RF入力信号の電力レベルが増加した旨の信号を電源電圧供給経 路切替手段 108へ送信するので、電源電圧供給経路切替手段 108は、第 1の電池 1 04の経路を第 2の経路に切り替えて一定電源電圧供給手段 106を通過してキャリア 増幅器 102へ電源を供給する。このことは、 RF入力信号の電力レベルが高いときは RF入力信号の歪も大きいため、キャリア増幅器 102へ供給する電圧が低下するとド ハティ増幅器 101の歪劣化が大きくなるので、第 1の電池 104から一定電源電圧供 給手段 106を介して一定電圧をキャリア増幅器 102へ供給することを意味している。 [0038] When the power level of the RF input signal exceeds a predetermined threshold value, the RF input level detection means 109 sends a signal indicating that the power level of the RF input signal has increased to the power supply voltage supply path switching means 108. Therefore, the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path, passes the constant power supply voltage supply means 106, and supplies power to the carrier amplifier 102. This is because when the power level of the RF input signal is high, the distortion of the RF input signal is also large. Therefore, when the voltage supplied to the carrier amplifier 102 is decreased, the distortion deterioration of the Doherty amplifier 101 is increased. This means that a constant voltage is supplied to the carrier amplifier 102 via the constant power supply voltage supply means 106.
[0039] 〈実施の形態 4〉 <Embodiment 4>
図 8は、本発明の実施の形態 4における無線通信装置の基本的な回路図である。 図 8に示す実施の形態 4の無線通信装置は、図 6に示す実施の形態 2の無線通信装 置と図 7に示す実施の形態 3の無線通信装置を複合ィ匕したものである。すなわち、実 施の形態 4の無線通信装置は、第 1の電池 104の電圧が所定の電圧閾値より低下し たか否か、及び RF入力信号の電力レベルが所定の電力閾値を上回った力否かに 応じて、一定電源電圧供給手段 106を使用するかどうかを決定している。そのため、 図 8に示す実施の形態 4の無線通信装置におけるキャリア増幅器 102の電源供給経 路は、一定電源電圧供給手段 106、電源電圧低下検出手段 107、電源電圧供給経 路切替手段 108、及び RF入力レベル検出手段 109によって構成されている。 FIG. 8 is a basic circuit diagram of the radio communication apparatus according to Embodiment 4 of the present invention. The wireless communication apparatus of the fourth embodiment shown in FIG. 8 is a combination of the wireless communication apparatus of the second embodiment shown in FIG. 6 and the wireless communication apparatus of the third embodiment shown in FIG. That is, the wireless communication apparatus according to the fourth embodiment determines whether the voltage of the first battery 104 has decreased below a predetermined voltage threshold, and whether the power level of the RF input signal has exceeded a predetermined power threshold. Accordingly, whether or not to use the constant power supply means 106 is determined. Therefore, the power supply path of the carrier amplifier 102 in the wireless communication apparatus of the fourth embodiment shown in FIG. 8 is the constant power supply voltage supply means 106, the power supply voltage drop detection means 107, the power supply voltage supply path switching means 108, and the RF The input level detecting means 109 is configured.
[0040] すなわち、電源電圧低下検出手段 107が第 1の電池 104の電圧が所定の電圧閾 値を下回ったことを検出し、かつ、 RF入力レベル検出手段 109が RF入力信号の電
カレベルが所定の電力閾値を上回ったことを検出したときに、電源電圧供給経路切 替手段 108は第 1の電池 104の経路が一定電源電圧供給手段 106を通過する第 2 の経路に切り替える。このことは、 RF入力信号の電力レベルが高ぐかつ第 1の電池 104の電圧が低いときに歪劣化が生じやすいので、このような状態のときには、第 1 の電池 104から一定電源電圧供給手段 106を介して一定電圧をキャリア増幅器 102 へ供給することを意味している。また、 RF入力信号の電力レベルが低いときは、第 1 の電池 104の電圧が低くても歪劣化を生じ難いので、第 1の電池 104から一定電源 電圧供給手段 106をバイパスしてキャリア増幅器 102へ電源電圧を供給してもよいこ とを意味している。 That is, power supply voltage drop detection means 107 detects that the voltage of first battery 104 has fallen below a predetermined voltage threshold value, and RF input level detection means 109 detects the power of the RF input signal. When it is detected that the power level exceeds a predetermined power threshold, the power supply voltage supply path switching means 108 switches the path of the first battery 104 to the second path passing through the constant power supply voltage supply means 106. This is because distortion deterioration is likely to occur when the power level of the RF input signal is high and the voltage of the first battery 104 is low. In such a state, the first battery 104 supplies a constant power supply voltage supply means. This means that a constant voltage is supplied to the carrier amplifier 102 via 106. In addition, when the power level of the RF input signal is low, distortion degradation is unlikely to occur even if the voltage of the first battery 104 is low. This means that the power supply voltage may be supplied to
産業上の利用可能性 Industrial applicability
本発明の無線通信装置によれば、簡単な回路構成によってドノ、ティ増幅器の高効 率化と低歪化を実現することができるので、携帯端末などの移動通信端末に有効に 利用することが可能となる。
According to the wireless communication device of the present invention, the Dono and Tee amplifiers can be made highly efficient and low distortion with a simple circuit configuration, and therefore can be effectively used for mobile communication terminals such as portable terminals. Is possible.
Claims
[1] 全ての電力領域で電力増幅を行うキャリア増幅器と、所定の電力より高い高電力領 域で電力増幅を行うピーク増幅器とが並列に構成されたドハティ増幅器を備えた無 線通信装置であって、 [1] A wireless communication device including a Doherty amplifier in which a carrier amplifier that performs power amplification in all power regions and a peak amplifier that performs power amplification in a high power region higher than a predetermined power are configured in parallel. And
前記キャリア増幅器に対して一定電圧の電源電圧を供給する一定電源電圧供給 手段を備える無線通信装置。 A wireless communication apparatus comprising a constant power supply voltage supply means for supplying a constant power supply voltage to the carrier amplifier.
[2] 前記電源電圧が電圧閾値より低下したか否かを検出する電源電圧低下検出手段 と、 [2] power supply voltage drop detecting means for detecting whether or not the power supply voltage has fallen below a voltage threshold;
前記電源電圧低下検出手段の検出結果に基づいて、前記一定電源電圧供給手 段をバイパスして前記キャリア増幅器へ前記電源電圧を供給する第 1の経路と該ー 定電源電圧供給手段を通過させて該キャリア増幅器へ前記電源電圧を供給する第 2 の経路との切り替えを行う電源電圧供給経路切替手段とを備える請求項 1に記載の 無線通信装置。 Based on the detection result of the power supply voltage drop detection means, the constant power supply voltage supply means is bypassed through the first path for supplying the power supply voltage to the carrier amplifier and the constant power supply voltage supply means is passed. 2. The wireless communication apparatus according to claim 1, further comprising power supply voltage supply path switching means for switching to a second path for supplying the power supply voltage to the carrier amplifier.
[3] 前記電源電圧供給経路切替手段は、前記電源電圧低下検出手段が検出した電源 電圧が前記電圧閾値より低いときは前記第 2の経路へ切り替え、該電源電圧低下検 出手段が検出した電源電圧が前記電圧閾値より高いときは前記第 1の経路へ切り替 える請求項 2に記載の無線通信装置。 [3] The power supply voltage supply path switching means switches to the second path when the power supply voltage detected by the power supply voltage drop detection means is lower than the voltage threshold, and the power supply detected by the power supply voltage drop detection means 3. The wireless communication apparatus according to claim 2, wherein when the voltage is higher than the voltage threshold, switching to the first path is performed.
[4] RF入力信号の電力レベルが電力閾値より高いか否かを検出する RF入力レベル検 出手段と、 [4] RF input level detection means for detecting whether the power level of the RF input signal is higher than the power threshold;
前記 RF入力レベル検出手段の検出結果に基づいて、前記一定電源電圧供給手 段をバイパスして前記キャリア増幅器へ前記電源電圧を供給する第 1の経路と該ー 定電源電圧供給手段を通過させて該キャリア増幅器へ前記電源電圧を供給する第 2 の経路との切り替えを行う電源電圧供給経路切替手段とを備える請求項 1に記載の 無線通信装置。 Based on the detection result of the RF input level detection means, a first path for supplying the power supply voltage to the carrier amplifier bypassing the constant power supply voltage supply means and the constant power supply voltage supply means are passed. 2. The wireless communication apparatus according to claim 1, further comprising power supply voltage supply path switching means for switching to a second path for supplying the power supply voltage to the carrier amplifier.
[5] 前記電源電圧供給経路切替手段は、前記 RF入力レベル検出手段が検出した RF 入力信号の電力レベルが前記電力閾値より高いときは前記第 2の経路へ切り替え、 該 RF入力レベル検出手段が検出した RF入力信号の電力レベルが前記電力閾値よ り低いときは前記第 1の経路へ切り替える請求項 4に記載の無線通信装置。
[5] The power supply voltage supply path switching means switches to the second path when the power level of the RF input signal detected by the RF input level detection means is higher than the power threshold, and the RF input level detection means 5. The wireless communication apparatus according to claim 4, wherein when the detected power level of the RF input signal is lower than the power threshold, switching to the first path is performed.
[6] 電源電圧が電圧閾値より低下したか否かを検出する電源電圧低下検出手段と、[6] A power supply voltage drop detecting means for detecting whether or not the power supply voltage has fallen below a voltage threshold;
RF入力信号の電力レベルが前記電力閾値より高いか否かを検出する RF入カレべ ル検出手段と、 RF input level detection means for detecting whether the power level of the RF input signal is higher than the power threshold;
前記電源電圧低下検出手段の検出結果及び前記 RF入力レベル検出手段の検出 結果に基づ ヽて、前記一定電源電圧供給手段をバイパスして前記キャリア増幅器へ 前記電源電圧を供給する第 1の経路と該一定電源電圧供給手段を通過させて該キ ャリア増幅器へ前記電源電圧を供給する第 2の経路との切り替えを行う電源電圧供 給経路切替手段とを備える請求項 1に記載の無線通信装置。 Based on the detection result of the power supply voltage drop detection means and the detection result of the RF input level detection means, a first path for supplying the power supply voltage to the carrier amplifier by bypassing the constant power supply voltage supply means; 2. The wireless communication apparatus according to claim 1, further comprising power supply voltage supply path switching means for switching to a second path for supplying the power supply voltage to the carrier amplifier through the constant power supply voltage supply means.
[7] 前記電源電圧供給経路切替手段は、前記 RF入力レベル検出手段が検出した RF 入力信号の電力レベルが前記電力閾値より高いときは、前記電源電圧低下検出手 段が検出した電源電圧のレベルに応じて、前記第 2の経路への切り替えと前記第 1 の経路への切り替えを適宜に行い、該 RF入力レベル検出手段が検出した RF入力 信号の電力レベルが電力閾値より低いときは、前記電源電圧低下検出手段が検出し た電源電圧の如何に関わらず前記第 1の経路へ切り替える請求項 6に記載の無線通 信装置。
[7] When the power level of the RF input signal detected by the RF input level detection means is higher than the power threshold, the power supply voltage supply path switching means detects the level of the power supply voltage detected by the power supply voltage drop detection means. Accordingly, switching to the second path and switching to the first path are appropriately performed, and when the power level of the RF input signal detected by the RF input level detection means is lower than the power threshold, 7. The wireless communication device according to claim 6, wherein switching to the first path is performed regardless of the power supply voltage detected by the power supply voltage drop detection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/314803 WO2008012883A1 (en) | 2006-07-26 | 2006-07-26 | Wireless communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/314803 WO2008012883A1 (en) | 2006-07-26 | 2006-07-26 | Wireless communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008012883A1 true WO2008012883A1 (en) | 2008-01-31 |
Family
ID=38981198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314803 WO2008012883A1 (en) | 2006-07-26 | 2006-07-26 | Wireless communication device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008012883A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018023043A (en) * | 2016-08-04 | 2018-02-08 | 富士通株式会社 | Power amplification device, semiconductor integrated circuit, and control method of power amplification device |
WO2022113476A1 (en) * | 2020-11-25 | 2022-06-02 | 株式会社村田製作所 | Power amplification circuit, high frequency circuit and communication device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001320288A (en) * | 2000-03-03 | 2001-11-16 | Matsushita Electric Ind Co Ltd | Device and method for controlling power supply voltage |
JP2002094392A (en) * | 2000-09-14 | 2002-03-29 | Matsushita Electric Ind Co Ltd | Transmission power control method and transmission power controller, and mobile wireless station |
JP2003051725A (en) * | 2001-06-08 | 2003-02-21 | Trw Inc | Hemt-hbt doherty microwave amplifier |
JP2005033558A (en) * | 2003-07-14 | 2005-02-03 | Toyota Motor Corp | Operational amplifier |
-
2006
- 2006-07-26 WO PCT/JP2006/314803 patent/WO2008012883A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001320288A (en) * | 2000-03-03 | 2001-11-16 | Matsushita Electric Ind Co Ltd | Device and method for controlling power supply voltage |
JP2002094392A (en) * | 2000-09-14 | 2002-03-29 | Matsushita Electric Ind Co Ltd | Transmission power control method and transmission power controller, and mobile wireless station |
JP2003051725A (en) * | 2001-06-08 | 2003-02-21 | Trw Inc | Hemt-hbt doherty microwave amplifier |
JP2005033558A (en) * | 2003-07-14 | 2005-02-03 | Toyota Motor Corp | Operational amplifier |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018023043A (en) * | 2016-08-04 | 2018-02-08 | 富士通株式会社 | Power amplification device, semiconductor integrated circuit, and control method of power amplification device |
US10270406B2 (en) | 2016-08-04 | 2019-04-23 | Fujitsu Limited | Power amplifier, semiconductor integrated circuit, and method of controlling the power amplifier |
WO2022113476A1 (en) * | 2020-11-25 | 2022-06-02 | 株式会社村田製作所 | Power amplification circuit, high frequency circuit and communication device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7368985B2 (en) | High frequency power amplifier and transmitter | |
JP5119961B2 (en) | Envelope tracking power supply circuit and high-frequency amplifier including the same | |
JP4175545B2 (en) | Wireless communication terminal | |
JP2004007405A (en) | Efficient power amplifier | |
US7486133B2 (en) | Transmitting output stage with adjustable output power and process for amplifying a signal in a transmitting output stage | |
JP2002314345A (en) | High frequency amplifier circuit and radio communication equipment using the same | |
US8285229B2 (en) | Switching power supply | |
US6181208B1 (en) | Switchable path power amplifier with schotky diode combining network | |
KR101664718B1 (en) | Average power tracking mode power amplifier using dual bias voltage levels | |
JP2005513943A (en) | Power amplifier | |
US6472935B2 (en) | Combining networks for switchable path power amplifiers | |
US20130249626A1 (en) | Multiple power mode amplifier | |
JPWO2012098863A1 (en) | High frequency power amplifier | |
US6950637B2 (en) | Power rate enhancement circuit for an RF power amplifier in a dual mode mobile phone | |
JP2006512847A (en) | High efficiency multimode power amplifier | |
KR101691077B1 (en) | Envelope tracking power amplifier using power source voltage of multi-level | |
KR20130055843A (en) | Power amplifier and method thereof | |
JP2005210316A (en) | Reflected power suppressing circuit | |
US7005923B2 (en) | Adaptive bias circuit for a power amplifier | |
JP2003008365A (en) | Circuit for power amplification, control method of circuit for power amplification and portable terminal device | |
WO2008012883A1 (en) | Wireless communication device | |
KR101681048B1 (en) | Highly efficient and high speed envelope tracking type power amplifier for various bandwidth signals | |
US7554392B2 (en) | Multiple output power mode amplifier | |
WO2008050440A1 (en) | Power amplifier | |
JP2014187432A (en) | Communication signal amplifying circuit and control method for communication signal amplifying circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06781715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |