WO2008011771A1 - Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique - Google Patents
Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique Download PDFInfo
- Publication number
- WO2008011771A1 WO2008011771A1 PCT/CN2007/000997 CN2007000997W WO2008011771A1 WO 2008011771 A1 WO2008011771 A1 WO 2008011771A1 CN 2007000997 W CN2007000997 W CN 2007000997W WO 2008011771 A1 WO2008011771 A1 WO 2008011771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching path
- network
- segment
- mpls
- gmpls
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 102
- 238000005516 engineering process Methods 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 37
- 230000006870 function Effects 0.000 claims description 25
- 238000011144 upstream manufacturing Methods 0.000 claims description 16
- 239000003292 glue Substances 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 5
- 101100455541 Drosophila melanogaster Lsp2 gene Proteins 0.000 description 11
- 101000984710 Homo sapiens Lymphocyte-specific protein 1 Proteins 0.000 description 10
- 102100027105 Lymphocyte-specific protein 1 Human genes 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000006855 networking Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/50—Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
- H04L45/502—Frame based
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4641—Virtual LANs, VLANs, e.g. virtual private networks [VPN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0077—Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0088—Signalling aspects
Definitions
- the present invention relates to network interconnection technologies, and more particularly to a method, network device and system for establishing a switching path in an optical internet.
- Multi- Protocol Label Switch is a switching technology that combines Layer 2 and Layer 3. It introduces a label-based mechanism that separates routing from data forwarding and specifies a packet by label. The path through the network.
- the MPLS network consists of the core part of the Label Switch Router (LSR) and the edge part of the Label Edge Router (LER).
- LSR Label Switch Router
- LER Label Edge Router
- the role of the LSR can be seen as the combination of an Asynchronous Transfer Mode (ATM) switch and a traditional router, consisting of a control unit and a switching unit.
- ATM Asynchronous Transfer Mode
- the role of the LER is to analyze the IP header to determine the corresponding transmission level and label switching.
- Label Switch Path LSP
- MPLS technology is currently widely used in IP networks.
- MPLS-TE is an extended protocol for MPLS to support Traffic Engineer (TE).
- PSC Packet Switch Capable
- L2SC Layer 2 Switch Capable
- Traffic engineering refers to the process of selecting paths based on data traffic in order to balance the traffic load on network links, routers, and switches.
- the main goal of traffic engineering is to optimize network resource usage and communication performance with efficient and reliable network operations.
- the core implementation of MPLS-TE is to use constrained routing to calculate explicit paths, use explicit paths to establish LSPs, and use LSPs for traffic distribution.
- IP + Light technology that is, optical Internet or IP optimized optical Internet, is a core backbone data communication network composed of high-performance Wavelength Division Multiplexing (WDM) devices and T-bit routers.
- IP technology and WDM-based optical network technology enable backbone routers to connect directly to the optical core network layer through WDM, enabling IP and optical layers Optimized configuration of traffic engineering, protection recovery, quality of service (QoS) and network management to form a simple and efficient network architecture.
- IP+ optical the core problem in technology is the convergence of the existing IP/MPLS network and optical core network. This problem directly determines the final topology of the optical internet and the related equipment needs to be upgraded.
- GMPLS General Multi- Protocol Label Switch
- GMPLS provides a good idea for the integration of IP and optical network technologies.
- GMPLS inherits the features and protocols of almost all MPLS and is an extension of MPLS to optical networks.
- GMPLS also requires that the starting point and the ending point of an LSP be the same type of device.
- the nodes on the LSP are also called labels.
- Switch router LSR (although it may actually be a device that supports wavelength switching LSC).
- GMPLS can manage multiple networks with different technologies by using a unified control plane, which provides an important guarantee for the network structure, network management cost reduction and network performance optimization.
- FIG. 1 is a schematic structural diagram of an overlapping networking system of an optical internet network in the prior art, where 11 and 12 are IP/MPLS networks, and 10 is an optical core network.
- the overlapping networking model is also called the client-server model, that is, the optical layer network acts as the server and the IP network layer acts as the client layer, and the two have independent control planes.
- the characteristic is that the signaling, addressing, and routing establishment at the optical transmission level are different from the protocols used for the signaling, addressing, and routing establishment required by the switching layer of the services provided by the upper layer (mainly the IP/MPLS network).
- the necessary information exchange between the two is performed through the User Network Interface (UNI) of the optical network, and the internal information of the network is not exchanged between the edge client layer device and the core network layer device (for example, the optical network topology) Information, etc.), implement independent routing.
- UNI User Network Interface
- the internal information of the network is not exchanged between the edge client layer device and the core network layer device (for example, the optical network topology) Information, etc.), implement independent routing.
- the solution has better networking flexibility and can effectively utilize existing resources.
- the IP router cannot obtain the resource information inside the optical core network, it cannot implement the calculation of the entire network traffic engineering required by the ' ⁇ + light' technology.
- Separate control planes cause duplication of functions, so that service-level routing cannot effectively utilize the topological resources of the optical transport layer, resulting in waste of resources, and the establishment of an optimal LSP for the entire network end-to-end.
- FIG. 2 is a schematic structural diagram of a peer-to-peer networking system of an optical internet network in the prior art, where 21 and 22 are IP/MPLS networks, and 20 is an optical core network. From the control point of view, the protocols used in the IP/MPLS network and the optical core network for addressing, signaling, and routing establishment are all based on GMPLS, that is, in the IP/MPLS network 21 and the optical core network. Between 20 and 22 IP/MPLS networks All end-to-end optical paths are established based on GMPLS signaling. 201 is the LSP calculated by the entire network TE. It is characterized in that the control intelligence of the optical transport layer is transferred to the IP layer, and the end-to-end control is implemented by the IP layer. At this point, the optical transport network and the IP network form an integrated network, and the unified control plane maintains a single topology. The optical switch and the IP router can freely exchange all information and run the same routing and signaling protocol to achieve integration. Management and traffic engineering.
- the peer-to-peer networking solution can well complete the TE path calculation of the entire network, and can utilize the topology and resource information of the IP/MPLS network and the optical core network, it requires the routers of the entire network to support the GMPLS protocol. Peer relationship between nodes. This kind of networking scheme has a very large scope for the changes of the existing network, and it is difficult to implement. In addition, operators of optical core networks are often reluctant to disclose their internal network information (such as topology information) to customers. They want optical core networks to be as stable as possible, while peer-to-peer models make the topology and resources of optical core networks. Information is learned by all routers in the IP/MPLS network.
- the present invention mainly provides a method for establishing a switching path in an optical Internet, and establishing an exchange path between an IP/MPLS network domain and a GMPLS network domain, especially an optical core network, in a case where only minor changes are made to the network, The need for MPLS domain and GMPLS domain convergence.
- the present invention also provides a network device for establishing a switching path across an MPLS network domain and a GMPLS network domain to meet the requirements of MPLS network domain and GMPLS network domain convergence.
- the present invention also provides an optical internet system in which a switching path is established across an MPLS network domain and a GMPLS network domain, with only minor changes to the network, to meet the needs of the fusion of the MPLS network domain and the GMPLS domain domain.
- the method for establishing a switching path in an optical Internet includes the following steps: establishing a first segment switching path in a first metropolitan area network supporting MPLS technology;
- the network device configured to establish a switching path, including a processor, a memory, and a plurality of ports, in the MPLS network domain and the GMPLS network domain, and further includes:
- MPLS-TE functional interface for connecting to a domain based on MPLS technology
- GMPLS function interface used to connect to the GMPLS technology-based domain.
- the optical interconnection system provided by the embodiment of the present invention includes a first metropolitan area network supporting MPLS technology and an optical core network supporting GMPLS technology, where the first metropolitan area network is connected to the optical core network through a network device, where
- the network equipment includes:
- An MPLS-TE function interface configured to connect to the first metropolitan area network
- a GMPLS function interface is configured to connect to the optical core network.
- the network-wide traffic engineering TE across the MPLS network domain and the GMPLS network domain can be implemented under the condition that only a few network devices are upgraded. Establishing the end-to-end optimal switching path of the entire network, and ensuring that the GMPLS domain hides the topology and resource information of the network from the IP/MPLS network, and satisfies some of the GMPLS domains, especially the optical network operators. The need to hide resources.
- FIG. 1 is a schematic structural diagram of an overlapping networking system of an optical internet network in the prior art
- FIG. 2 is a schematic structural diagram of a peer-to-peer networking system of an optical internet network in the prior art
- FIG. 3 is a flowchart of establishing an LSP in an optical internet according to an embodiment of the present invention.
- FIG. 4 is a structural diagram of a backbone router according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an optical internet system according to an embodiment of the present invention.
- the embodiment of the invention provides an optical internet system model.
- the metropolitan area network is connected to the optical core network serving as the backbone network through the backbone router.
- the backbone router supports both the MPLS-TE function and the GMPLS function, and can determine the creation of the carrier network.
- the LSP requests information, and when the upstream node and the downstream node are in different network segments respectively, the LSP creation process initiated by the upstream node is terminated by the egress node to form a segment LSP.
- the backbone router is also capable of bonding the LSPs connected to the metropolitan area network side and the optical core network side to implement the convergence of the IP/MPLS network and the optical core network.
- the method for establishing an LSP in the optical Internet uses the bone-throw router as a demarcation point to establish an optimal LSP for each network segment through the TE, wherein the carrier network segment is based on the MPLS that supports traffic engineering.
- Optimum LSP establishes an optimal LSP based on GMPLS in the optical core network segment; the backbone router glues the LSPs connected to the metropolitan area network side and the optical core network side to implement the fusion of the IP/MPLS network node and the optical core network.
- FIG. 3 is a flowchart of a method for establishing a switching path in an optical internet according to an embodiment of the present invention.
- the method includes the following steps: Step 301: Establish a segment optimal optimal label switching path LSP1 of the network segment between the first metropolitan area network and the ingress backbone router located at the edge of the optical core network (serving the backbone network).
- the first metropolitan area network is a network supporting MPLS technology
- the interface of the ingress backbone router on the metropolitan area side is an interface supporting MPLS technology.
- the step specifically includes: initiating a label allocation request for establishing an LSP by the label edge router LER1 located in the first metropolitan area network, where the request message includes a destination address, an input/output port, and the destination address of the request is a second city.
- the label edge router LER2 of the domain network after receiving the label allocation request, the ingress backbone router performs node information judgment; the ingress backbone router finds that its downstream node is located in the optical core network, and decides to act as an egress node of the label allocation request;
- the MPLS technology supporting traffic engineering establishes a segment-optimized label switching path LSP1 between the first metropolitan area network and the ingress backbone router.
- Step 302 Establish a segment-optimized label switching path LSP2 between the ingress backbone router and the egress backbone router connected to the optical core network.
- the ingress backbone router supports The interface of the GMPLS technology sends a label allocation request for establishing an LSP, and the egress backbone router receives the above request from an interface supporting the GMPLS technology.
- the LSP2 establishment process of the network segment includes: The ingress backbone router does not forward the label allocation request sent by the LER1, and stores the label switching path LSP1 established between the LER1 and the LER1, and generates a label for establishing the LSP with the LER2 as the destination address.
- the egress backbone router After receiving the above request, the egress backbone router determines that its downstream node is located in the second metropolitan area network; the egress backbone router decides to act as an egress node for the label allocation request on the optical core network; based on GMPLS technology in this network
- the segment establishes a segment-optimized label switching path LSP2.
- the foregoing process is similar to the first step. The difference is that the content of the label request message changes, mainly in the label allocation request message, such as the LSP type, the payload type, and the link protection mode.
- Step 303 Establish a segment optimal optimal label switching path LSP3 of the network segment between the egress backbone router located at the edge of the optical core network and the second metropolitan area network.
- the process of establishing the label switching path includes: the exit backbone router terminates the entrance bone After the label distribution request sent by the dry router and the label switching path LSP2 are established and stored by the ingress backbone router, a label allocation request for establishing an LSP with the LER2 as the destination address is generated; after receiving the label allocation request, the LER2 determines that it is The egress node; LER2 establishes a segment-optimized label switching path LSP3 of the network segment based on the MPLS technology supporting traffic engineering between itself and the egress backbone router.
- the LSP3 and the LSP3 are bound to become a new label switching path LSP23, and the label switching path is sent to the egress backbone router for forwarding.
- Floor After the LSP3 is successfully established, the LSP3 and the LSP3 are bound to become a new label switching path LSP23, and the label switching path is sent to the egress backbone router for forwarding. Floor.
- the bonding process of the egress backbone router includes: the egress backbone router receives the label allocated by the LER2 of the second metropolitan area network, and determines that the LSP3 has been successfully established; the egress backbone router searches the local tag management library for the same purpose as the LSP3. In the embodiment, the egress backbone router finds the LSP2; the egress backbone router glues the LSP2 and the LSP3 into one of the tag management tables to form a new one.
- the label switching path LSP23 is delivered to the forwarding layer of the egress backbone router.
- Step 305 After the LSP2 and the LSP3 of the egress backbone router form an ingress backbone router to the label switching path LSP23 of the second metropolitan area network, generate an LSP notification message, and notify the ingress backbone router to bind LSP2 and LSP3 to form a new label switching path. LSP23.
- the content of the LSP notification message mainly includes the destination address of the new label switching path LSP23, the input/output port information of the ingress backbone router at the egress backbone router, and the input label of the LSP2 in the egress backbone router, to uniquely identify the sticky The combined label switching path LSP23.
- Step 306 The ingress backbone router receives the foregoing LSP notification message, and binds LSP1 and LSP23 to form a label switching path LSP13 of the first metropolitan area network to the second metropolitan area network.
- the bonding process of the ingress backbone router includes: the ingress backbone router receives a message that the LSP 23 sent by the egress backbone router is successfully established; the ingress backbone router searches the local tag management table for the destination address with the LSP 23, and the output label thereof is In the present embodiment, the ingress backbone router finds LSP1; the ingress backbone router glues LSP23 and LSP1 into one of the label management tables to form the first metropolitan area network optical core network. The label switching path LSP13 of the second metropolitan area network is delivered to the forwarding layer of the ingress backbone router.
- Step 307 After the ingress gateway routers LSP23 and LSP1 form the first metropolitan area network optical core network to the label switching path LSP13 of the second metropolitan area network, an LSP notification message is generated to notify the first metropolitan area network that the LSP13 has been generated.
- the content of the LSP notification message mainly includes the destination address of the new label switching path LSP13, the input/output port of LER1 at the ingress backbone router, and the input label of the LSP1 at the ingress backbone router, to uniquely identify the glued label.
- Label switching path LSP13 the optimal LSP between the first metropolitan area network and the second metropolitan area network is successfully established.
- FIG. 4 is a structural diagram of a backbone router, that is, a network device according to an embodiment of the present invention, including:
- the backbone router includes: an MPLS-TE function interface 41 and a GMPLS function interface 42.
- the MPLS-TE function interface 41 is used to connect to the MPLS-based network domain;
- the GMPLS function interface 42 is used to connect to the GMPLS-based network domain.
- the node information judging module 401 and the switching path request message termination module 402 are configured to obtain the switching path received by the MPLS-TE function interface 41 and/or the GMPLS function interface 42.
- the switching path request message termination module 402 terminates the request.
- the backbone router is further provided with a switching path bonding module 404 for bonding two segment switching paths located on the metropolitan area network side and the optical core network side.
- the end-to-end optimal LSP of the entire network TE is further provided with a switching path bonding module 404 for bonding two segment switching paths located on the metropolitan area network side and the optical core network side.
- the backbone router further includes: a switching path request message generating module 403 and a switching path notification message generating module 405.
- the switching path request message generating module 403 uses the network device as a starting node to generate a new switching path request message according to the destination address of the segment switching path. And sent out through the GMPLS function interface 42.
- the switching path bonding module 404 bonds the segment switching paths located on the metropolitan area network side and the optical core network side of the network device
- the switching path notification message generating module 405 generates an exchange path notification message and passes the MPLS-TE function interface 41. The upstream node is notified that the segment switching path of the adjacent network segment has been successfully established.
- the node router After receiving the label allocation request message, the node router determines whether the downstream node and the upstream node are in the same network segment. If the downstream node and the upstream node are in the same network segment, the bone router continues to pass the upstream node to the downstream node. A tag allocation request sent;
- the switching path request message termination module of the backbone router terminates the label allocation request sent by the upstream node, and uses itself as an egress node to establish a label switching path with the upstream node; then the backbone router
- the exchange path request message generation module generates a new label allocation request and transmits it to the downstream node.
- the switching path bonding module glues the segment label switching path of different network segments connected to form an end-to-end LSP, which is then generated by the switching path notification message generating module.
- the path notification message is exchanged, and the upstream node is notified that the end-to-end LSP has been built.
- FIG. 5 it is a structural diagram of an optical internet system according to an embodiment of the present invention.
- the system includes: a metropolitan area network 51, 52 supporting MPLS technology, and an optical core network 50 supporting GMPLS technology.
- the first metropolitan area network 51 is connected to the optical core network 50 through the ingress backbone router 501, and the optical core network 50 is passed through the egress backbone router.
- the 502 is connected to the second metropolitan area network 52, and the ingress backbone router 501 and the egress backbone router 502 have the same structure, including: an MPLS-TE functional interface connecting the metropolitan area network and a GMPLS functional interface connecting the core network.
- the backbone router can establish a segment label switching path of different network segments when the downstream node and the upstream node are respectively located in different types of network segments, and can be bonded to the metropolitan area network.
- the segment label switching path LSP on the side and the optical core network side forms a cross-network label switching path.
- the backbone router provided by the embodiment of the present invention can learn the topology of the entire network.
- other routers in the metropolitan area network such as LER1 and LER2
- routing devices in the optical core network such as Optical Cross Connect or OXC, can only be viewed.
- OXC Optical Cross Connect
- LER1 initiates a label allocation request with the LER2 as the destination address to the ingress backbone router.
- the ingress backbone router receives the above label allocation request, and no longer sends the label allocation request to the optical cross-connector OXC in the optical core network, but uses itself as an egress node of the MPLS network, and LERl establishes a segment label switching path LSP1. Then, the ingress backbone router re-initiates the label allocation request in the optical core network with itself as the starting node.
- the egress backbone router takes the same steps as the ingress backbone router to establish the segment label switching path LSP2 of the optical core network with the ingress backbone router. Then, the egress backbone router re-initiates a label allocation request with the LER as the destination address in the second metropolitan area network.
- the LER2 and the egress backbone router establish a segmentation label switching path LSP3 of the second metropolitan area network according to the existing MPLS technology.
- the egress backbone router receives the label allocated by the LER2, and determines that the LSP3 is successfully established.
- the LSP2 and the LSP3 form a label switching path LSP23 across the optical core network and the second metropolitan area network, and send a notification message that the LSP23 is successfully established to the ingress backbone router.
- the ingress LSP1 and the LSP23 form a label switching path LSP13 that connects the LER1 and the LER2 across the optical core network, and sends a notification message that the LSP13 is successfully established to the LER1.
- LER1 After receiving the notification message from the ingress backbone router, LER1 transmits data to LER2.
- the method and system provided by the embodiments of the present invention support the MPLS function and the GMPLS function by upgrading the backbone router at the edge of the optical core network, respectively establishing an optimal label path LSP for each network segment, and bonding the LSPs to each segment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Description
在光互联网中建立交换路径的方法、 网络设备和系统 本申请要求于 2006 年 7 月 19 日提交中国专利局、 申请号为 200610061727.6、 发明名称为"建立交换路径的方法、 网络设备和系统"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络互连技术,尤其涉及一种在光互联网中建立交换路径的方 法、 网络设备和系统。
背景技术
多协议标签交换 ( Multi- Protocol Label Switch, MPLS )是一种结合第二 层和第三层的交换技术, 引入了基于标签的机制, 它把路由选择和数据转发分 开, 由标签来规定一个分组通过网络的路径。 MPLS网络由核心部分的标签交 换路由器( Label Switch Router, LSR )、边缘部分的标签边缘路由器( Label Edge Router, LER ) 组成。 LSR 的作用可以看作是异步传输模式 (Asynchronous Transfer Mode, ATM )交换机与传统路由器的结合, 由控制单元和交换单元组 成; LER的作用是分析 IP 包头, 用于决定相应的传送级别和标签交换路径 ( Label Switch Path, LSP )。
MPLS技术目前广泛应用于 IP网络中。
MPLS-TE是 MPLS支持流量工程( Traffic Engineer, TE ) 的扩展协议, 在 控制平面规定了包交换(Packet Switch Capable, PSC )和第 2层交换的(Layer 2 Switch Capable, L2SC )接口。 流量工程是指为了平衡网络链路、 路由器和 交换机上的流量负载根据数据流量来选择路径的过程。流量工程的主要目标是 采用有效与可靠的网络操作来优化网络资源使用和通信性能。 MPLS- TE最核 心的实现方法是利用约束路由计算显式路径、利用显式路径建立 LSP、利用 LSP 进行流量分配。
"IP +光"技术, 即光互联网或 IP优化光互联网, 是一种由高性能波分复用 ( Wavelength Division Multiplexing , WDM )设备、 T比特路由器组成的核心 骨干数据通信网络, 该网络综合利用 IP技术和基于 WDM的光网络技术, 使得 骨干路由器可以通过 WDM直接连至光核心网络层, 从而可以在 IP层与光学层
之间实现流量工程、 保护恢复、 服务质量(Quality of Service, QoS )和网络管 理等的优化配置, 形成一种简单高效的网络体系结构。 "IP+光,,技术中最核心 问题是现有的 IP/MPLS网络和光核心的网络采用何种组网方案实现融合, 该问 题直接决定了光互联网絡的最终拓朴, 以及相关设备需要升级支持的各种特 性。
通用多协议标签交换( General Multi- Protocol Label Switch , GMPLS )为 IP和光网络技术的相互融合提供了一个良好的思路。 GMPLS继承了几乎所有 MPLS的特性和协议, 是 MPLS向光网络的扩展, 例如, GMPLS同样要求一条 LSP的起始点和终结点是同一类型的设备, 在 GMPLS中, LSP上的节点同样称 为标签交换路由器 LSR (虽然实际上可能是支持波长交换 LSC的设备)。 GMPLS 可以用统一的控制平面来管理多种不同技术组建的网络, 从而为筒化网络结 构、 降低网络管理成本和优化网络性能提供了重要保证。
图 1为现有技术中的光互联网络的重叠组网系统结构示意图, 其中, 11和 12为 IP/MPLS网络, 10为光核心网络。 重叠组网模型又称客户一服务器模型, 即光层网络作为服务器, IP网络层做为客户层, 两者具有独立的控制平面。 其 特点在于, 光传输层面的信令、 寻址、 路由建立等与其上层(主要指 IP/MPLS 网络)所提供业务的交换层面所需要的信令、寻址和路由建立等所用协议不同 且相互独立, 两者之间必要的信息交流是通过光网络的用户网絡接口 (User Network Interface , UNI )进行 , 而边缘客户层设备和核心网络层设备之间不交 换网络内部信息 (例如光网络拓朴信息等) , 实施独立选路。
该方案具有较好的组网灵活性, 能够有效利用现有资源, 但由于 IP路由器 无法获取光核心网内部的资源信息, 因而无法实施' ΊΡ +光"技术要求的全网流 量工程的计算,分离的控制平面造成功能的重复,使业务层面的路由不能有效 地利用光传送层面的拓朴资源,造成资源浪费, 也无法建立全网端到端的最优 的 LSP。
图 2为现有技术中光互联网络的对等组网系统结构示意图, 其中, 21和 22为 IP/MPLS网络, 20为光核心网絡。 从控制角度看, 这种方案中 IP/MPLS 网絡和光核心网络的寻址、 信令、 路由的建立等所用的协议都是基于 GMPLS 的, 也就是说, 在 IP/MPLS网络 21、 光核心网络 20和 22IP/MPLS网络之间
全部基于 GMPLS信令建立端到端的光路, 如图中 201 为全网 TE计算出的 LSP。 其特点是光传送层的控制智能被转移到 IP层, 由 IP层来实施端到端的 控制。 此时, 光传送网和 IP网形成一个集成的网络, 统一的控制平面维护单 一的拓朴, 光交换机和 IP路由器可以自由地交换所有信息并运行同样的选路 和信令协议, 实现一体化的管理和流量工程。
这种对等组网方案虽然可以很好地完成全网的 TE路径计算, 同时能够利 用 IP/MPLS 网络和光核心网络的拓朴和资源信息, 但是它要求全网的路由器 都支持 GMPLS协议, 形成各节点之间的对等关系。 这种组网方案对现有网络 改动的范围非常大, 实现起来比较困难。 此外, 光核心网络的运营商往往不愿 意向客户公开其内部网络信息 (例如拓朴信息等), 他们希望光核心网络尽可 能地稳定, 而对等模型则使得光核心网的拓朴和资源信息被 IP/MPLS 网络中 的所有路由器都可以学习到。
发明内容
本发明主要提供一种在光互联网中建立交换路径的方法,在仅对网络作出 较少改动的情况下,建立 IP/MPLS网域与 GMPLS网域尤其是光核心网络之间 的交换路径 , 满足 MPLS网域和 GMPLS网域融合的需要。
本发明同时还提供了一种网络设备,用于跨 MPLS网域和 GMPLS网域建 立交换路径, 满足 MPLS网域和 GMPLS网域融合的需要。
本发明还提供一种光互联网系统,在仅对网络作出较少改动的情况下,跨 MPLS网域和 GMPLS网域建立交换路径, 满足 MPLS网域和 GMPLS网域融 合的需要。
本发明实施例提供的在光互联网中建立交换路径的方法, 包括以下步骤: 在支持 MPLS技术的第一城域网内建立第一分段交换路径;
在支持 GMPLS技术的光核心网内建立第二分段交换路径;
粘合所述第一分段交换路径和所述第二分段交换路径,形成跨第一城域网 和光核心网的交换路径。
本发明实施例提供的一种网络设备,用于跨 MPLS网域和 GMPLS网域建 立交换路径, 包括处理器、 存储器和若干端口, 还包括:
MPLS-TE功能接口, 用于连接基于 MPLS技术的网域; 和
GMPLS功能接口, 用于连接基于 GMPLS技术的网域。
本发明实施例提供的光互联系统, 包括支持 MPLS技术的第一城域网和 支持 GMPLS技术的光核心网,所述第一城域网通过网絡设备连接到光核心网, 其特征在于, 所述网络设备包括:
MPLS- TE功能接口, 用于连接所述第一城域网; 和
GMPLS功能接口 , 用于连接所述光核心网。
通过使用本发明实施例所提供的设备和实施本发明实施例所提供的方法, 能够在只升级较少的网络设备的情况下实现跨 MPLS网域和 GMPLS网域的全 网流量工程 TE, 满足建立全网端到端最优交换路径的需求, 同时还可以保证 GMPLS网域对 IP/MPLS网络隐藏了网络的拓朴和资源信息,满足部分 GMPLS 网域尤其是光网络运营商对拓朴和资源隐藏的需要。
附图说明
图 1为现有技术中光互联网络的重叠组网系统结构示意图;
图 2为现有技术中光互联网络的对等组网系统结构示意图;
图 3为本发明实施例中在光互联网中建立 LSP的流程图;
图 4为本发明实施例中骨干路由器的结构图;
图 5为本发明实施例中光互联网系统结构示意图。
具体实施方式
本发明实施例提出了一种光互联网系统模型,城域网通过骨干路由器连接 到充当骨干网的光核心网络,该骨干路由器同时支持 MPLS-TE功能和 GMPLS 功能, 能够判断运营商网络发送的创建 LSP请求信息, 并且在其上游节点和 下游节点分别处于不同网段时以自身为出口节点终结上游节点发起的 LSP创 建过程, 形成分段 LSP。该骨干路由器还能够粘合其所连接的城域网侧和光核 心网络侧的 LSP , 实现 IP/MPLS网络和光核心网的融合。
本发明实施例提出的在光互联网中建立 LSP的方法, 以骨千路由器为分 界点, 通过 TE对各网段分别建立最优 LSP, 其中, 在运营商网络段基于支持 流量工程的 MPLS建立最优 LSP;在光核心网络段基于 GMPLS建立最优 LSP; 骨干路由器粘合其所连接的城域网侧和光核心网络侧的 LSP, 实现 IP/MPLS 网结和光核心网的融合。
下面通过具体实施例和附图对本发明故进一步详细说明。
图 3为本发明实施例在光互联网中建立交换路径方法的流程图。 包括: 步驟 301、 在第一城域网和位于光核心网 (充当骨干网)边缘的入口骨干 路由器之间建立该网段的分段最优标签交换路径 LSP1。
典型地,该第一城域网为支持 MPLS技术的网络,该入口骨干路由器城域 网侧的接口为支持 MPLS技术的接口。该步骤具体包括: 由位于所述第一城域 网的标签边缘路由器 LER1发起建立 LSP的标签分配请求,该请求消息中包括 了目的地址、 输入 \输出端口, 该请求的目的地址为第二城域网的标签边缘路 由器 LER2; 入口骨干路由器收到该标签分配请求后, 进行节点信息判断; 入 口骨干路由器发现自己的下游节点位于光核心网后,决定自己充当该标签分配 请求的出口节点;通过支持流量工程的 MPLS技术,在第一城域网和入口骨干 路由器之间建立分段最优的标签交换路径 LSP1。
步骤 302、在连接光核心网的入口骨干路由器和出口骨干路由器之间建立 分段最优的标签交换路径 LSP2。
典型地,在这一网段中, 由于光核心网支持的是 GMPLS技术,而 GMPLS 技术要求起始节点和终止节点支持同一类型的网络设备, 所以在这一网段中, 入口骨干路由器从支持 GMPLS技术的接口发出建立 LSP的标签分配请求,而 出口骨干路由器从支持 GMPLS技术的接口接收上述请求。 这个网段的 LSP2 的建立过程包括: 入口骨干路由器不再转发 LER1发出的标签分配请求, 将自 身和 LER1之间建立的标签交换路径 LSP1进行存储后, 生成以 LER2为目的 地址的建立 LSP的标签分配请求; 出口骨干路由器收到上述请求后, 判断出 自己的下游节点位于第二城域网;出口骨干路由器决定自己充当在光核心网上 的标签分配请求的出口节点;基于 GMPLS技术在这一网段建立分段最优标签 交换路径 LSP2。 上述过程与步骤 1类似, 不同的是, 标签请求消息的内容发 生了变化, 主要表现在标签分配请求消息中多了 LSP类型、 载荷类型、 链路 保护方式等字段。
步骤 303、 在位于光核心网边缘的出口骨干路由器和第二城域网间建立该 网段的分段最优标签交换路径 LSP3。
典型地,这段标签交换路径的建立过程包括: 出口骨干路由器终结入口骨
干路由器发出的标签分配请求并和入口骨干路由器建立标签交换路径 LSP2并 对其进行存储后,生成以 LER2为目的地址的建立 LSP的标签分配请求; LER2 收到上述标签分配请求后, 确定自己为出口节点; LER2在自己和出口骨干路 由器间基于支持流量工程的 MPLS技术建立该网段的分段最优标签交换路径 LSP3。
步骤 304、出口骨干路由器确认步骤 303中所述的 LSP3已经建立成功后, 粘合 LSP2和 LSP3 , 使之成为一条新的标签交换路径 LSP23 , 并将该标签交 换路径下发到出口骨干路由器的转发层。
典型地, 出口骨干路由器的粘合过程包括: 出口骨干路由器收到第二城域 网的 LER2分配的标签, 确定 LSP3已经建立成功; 出口骨干路由器在本地的 标记管理库中查找与 LSP3具有相同目的地址、 并且其输出标签为 LSP3的输 入标签的标签交换路径, 在本实施例中, 出口骨干路由器查找到 LSP2; 出口 骨干路由器将 LSP2和 LSP3粘合成标记管理表中的一项, 形成一条新的标签 交换路径 LSP23 , 并将其下发到出口骨干路由器的转发层。
步骤 305、 出口骨干路由器粘合 LSP2和 LSP3形成入口骨干路由器到第 二城域网的标签交换路径 LSP23后, 生成 LSP通知消息, 通知入口骨干路由 器已经将 LSP2和 LSP3粘合形成新的标签交换路径 LSP23。
典型地,这个 LSP通知消息携带的内容主要包括新的标签交换路径 LSP23 的目的地址、 入口骨干路由器在出口骨干路由器的输入 \输出端口信息以及 LSP2 在出口骨干路由器的输入标签, 用以唯一标识粘合后的标签交换路径 LSP23。
步骤 306、入口骨干路由器收到上述 LSP通知消息,粘合 LSP1和 LSP23 , 形成第一城域网到第二城域网的标签交换路径 LSP13。
典型地,入口骨干路由器的粘合过程包括: 入口骨干路由器收到出口骨干 路由器发送的 LSP23 建立成功的消息; 入口骨干路由器在本地的标记管理表 中查找与 LSP23具有目的地址、 并且其输出标签为 LSP23的输入标签的标签 交换路径, 在本实施例中, 入口骨干路由器查找到 LSP1 ; 入口骨干路由器将 LSP23和 LSP1粘合成标记管理表中的一项, 形成第一城域网经光核心网络到 第二城域网的标签交换路径 LSP13, 并将其下发到入口骨干路由器的转发层。
步據 307、 入口骨干路由器粘合 LSP23和 LSP1形成第一城域网经光核心 网络到第二城域网的标签交换路径 LSP13后, 生成 LSP通知消息, 通知第一 城域网已经生成 LSP13。
典型地,这个 LSP通知消息携带的内容主要包括新的标签交换路径 LSP13 的目的地址、 LER1在入口骨干路由器的输入 \输出端口以及 LSP1在入口骨干 路由器的输入标签, 用以唯一标识粘合后的标签交换路径 LSP13。 至此, 第一 城域网和第二城域网之间的最优 LSP建立成功。
图 4为本发明实施例中骨干路由器, 即本发明实施例网絡设备的结构图, 包括:
该骨干路由器除了具有一般路由器所具有的处理器、 存储器和若干端口 夕卜, 还包括: MPLS-TE功能接口 41和 GMPLS功能接口 42。 其中, MPLS- TE 功能接口 41用于连接基于 MPLS技术的网域; GMPLS功能接口 42用于连接 基于 GMPLS技术的网域。 除此之外, 还可包括: 节点信息判断模块 401、 交 换路径请求消息终结模块 402 , 其中, 节点信息判断模块 401 用于获取 MPLS-TE功能接口 41和 /或 GMPLS功能接口 42接收的交换路径请求消息中 的节点信息, 并根据所述节点信息判断下游节点与上游节点是否位于同一网 段; 如果下游节点与上游节点位于不同网段时,则由交换路径请求消息终结模 块 402终结转发该请求消息, 并以自身为出口节点,建立并存储与发起请求消 息的节点之间的分段交换路径。
为了实现支持 MPLS 的城域网和光核心网的融合, 所述骨干路由器中还 设置有交换路径粘合模块 404, 以粘合位于城域网侧和光核心网侧的两条分段 交换路径, 实现全网 TE的端到端最优 LSP。
另外, 为了保证城域网到城域网的传输, 所述骨干路由器还包括: 交换 路径请求消息生成模块 403和交换路径通知消息生成模块 405。 在交换路径请 求消息终结模块 402建立一条分段交换路径后, 交换路径请求消息生成模块 403以该网络设备为起始节点, 根据所述分段交换路径的目的地址生成新的交 换路径请求消息, 并通过 GMPLS功能接口 42发送出去。 在交换路径粘合模 块 404粘合位于网络设备城域网侧和光核心网侧的分段交换路径后,交换路径 通知消息生成模块 405生成交换路径通知消息,并通过 MPLS-TE功能接口 41
通知上游节点已经成功建立相邻网段的分段交换路径。
本实施例中所述骨干路由器的工作过程如下:
骨干路由器收到标签分配请求消息后, 由节点信息判断模块判断下游节 点与上游节点是否位于同一网段; 如果下游节点与上游节点位于同一网段, 则 骨千路由器继续向下游节点通传上游节点发来的标签分配请求;
如果下游节点与上游节点位于不同网段, 骨干路由器的交换路径请求消 息终结模块终结上游节点发来的标签分配请求,将自己作为出口节点,建立与 上游节点之间的标签交换路径;然后骨干路由器的交换路径请求消息生成模块 生成新的标签分配请求,传到下游节点。骨干路由器与下游节点之间建立标签 交换路径后,由交换路径粘合模块粘合其所连接的不同网段的分段标签交换路 径, 形成端到端的 LSP, 然后由交换路径通知消息生成模块生成交换路径通知 消息, 向其上游节点通告已经建成端到端的 LSP。
参见图 5, 为本发明实施例中光互联网系统的结构图。 该系统包括: 支持 MPLS技术的城域网 51、 52, 支持 GMPLS技术的光核心网 50, 第 一城域网 51通过入口骨干路由器 501连接到光核心网 50, 光核心网 50通过 出口骨干路由器 502连接到第二城域网 52, 并且入口骨干路由器 501和出口 骨干路由器 502的结构相同, 包括: 连接城域网的 MPLS-TE功能接口和连接 核心网的 GMPLS功能接口。该骨干路由器能够在下游节点与上游节点分别位 于不同类型网段时, 以自身为分段出口节点,建立不同网段的分段标签交换路 径,并且能够粘合其所连接的分别位于城域网侧和光核心网侧的分段标签交换 路径 LSP形成跨网段标签交换路径。
基于所述骨干路由器具有的上述技术特征,本发明实施例提供的骨干路由 器能够学习到整个网络的拓朴结构。 但是城域网中的其他路由器, 例如 LER1 和 LER2只能看到 MPLS网络的拓朴结构; 而光核心网中的路由设备, 例如光 交叉连接器(Optical Cross Connect or, OXC ),只能看到光核心网的拓朴结构。
本发明实施例中的上述系统的运作过程如下:
LER1向入口骨干路由器发起以 LER2为目的地址的标签分配请求。
入口骨干路由器收到了上述标签分配请求,不再向光核心网中的光交叉连 接器 OXC下发该标签分配请求, 而是将自己作为 MPLS网络的出口节点, 与
LERl建立分段标签交换路径 LSP1。然后,入口骨干路由器在光核心网内以自 己为起始节点重新发起标签分配请求。
出口骨干路由器采取与入口骨干路由器类似的步骤, 在自己与入口骨干 路由器建立光核心网的分段标签交换路径 LSP2。 然后, 出口骨干路由器在第 二城域网内重新发起以 LER 为目的地址的标签分配请求。
LER2和出口骨干路由器之间依据现有 MPLS技术建立第二城域网的分段 标签交换路径 LSP3。
出口骨干路由器收到 LER2分配的标签,确定 LSP3建立成功; 粘合 LSP2 和 LSP3形成跨光核心网和第二城域网的标签交换路径 LSP23 , 并向入口骨干 路由器发送 LSP23建立成功的通知消息。
入口骨干路由器确定 LSP23建立成功后, 粘合 LSP1和 LSP23形成跨光 核心网连接 LER1和 LER2的标签交换路径 LSP13 ,并向 LER1发送 LSP13建 立成功的通知消息。
LER1收到入口骨干路由器的通知消息后, 向 LER2传输数据了。
本发明实施例提供的方法和系统通过升级光核心网边缘的骨干路由器使 其同时支持 MPLS功能和 GMPLS功能,对各网段分别建立最优标签路径 LSP, 并粘合各段 LSP, 实现了 "IP+光"技术要求的全网 TE建立端到端最优 LSP的 动:、 U 、 、 "
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉该技术的人在本发明所揭露的技术范围内, 可轻易想到的变 化或替换, 都应涵盖在本发明的保护范围之内。
Claims
1、 一种在光互联网中建立交换路径的方法, 其特征在于, 包括以下步骤: 在支持 MPLS技术的第一城域网内建立第一分段交换路径;
在支持 GMPLS技术的光核心网内建立第二分段交换路径;
粘合所述第一分段交换路径和所述第二分段交换路径,形成跨第一城域网 和光核心网的交换路径。
2、 如权利要求 1所述的方法, 其特征在于, 所述第一分段交换路径和第 二分段交换路径具有相同的目的地址,并且所述第二分段交换路径以所述第一 分段交换路径的输出端口为输入端口。
3、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括:
在支持 MPLS技术的第二城域网内建立第三分段交换路径;
粘合所述第二分段交换路径和所述第三分段交换路径 ,形成光核心网和第 二城域网的交换路径。
4、 如权利要求 3所述的方法, 其特征在于, 所述第二分段交换路径和第 三分段交换路径具有相同的目的地址,并且所述第三分段交换路径以所述笫二 分段交换路径的输出端口为输入端口。
5、 如权利要求 4所述的方法, 其特征在于, 所述交换路径包括标签交换 路径。
6、 如权利要求 5所述的方法, 其特征在于, 所述在支持 MPLS技术的第 一城域网内建立第一分段交换路径的步骤包括:
在所述第一城域网的标签边缘路由器和连接所述第一城域网和所述光核 心网的入口骨干路由器之间基于 MPLS技术建立分段最优的标签交换路径。
7、 如权利要求 6所述的方法, 其特征在于, 所述在支持 GMPLS技术的 网域内建立第二分段交换路径的步骤包括:
在所述光核心网的入口骨干路由器和出口骨干路由器之间基于 GMPLS技 术建立最优标签交换路径。
8、 如权利要求 6所述的方法, 其特征在于, 所述方法还包括:
所述入口骨干路由器保存所述基于 MPLS技术建立的分段最优的标签交 换路径。
9、 如权利要求 6所述的方法, 其特征在于, 所述在支持 MPLS技术的第 二城域网内建立第三分段交换路径的步骤包括:
在所述光核心网的出口骨干路由器和所述第一城域网的标签边缘路由器 之间基于 MPLS技术建立分段最优的标签交换路径。
10、 如权利要求 9所述的方法, 其特征在于, 所述方法还包括: 所述出口骨干路由器保存所述基于 GMPLS技术建立的分段最优的标签交 换路径。
11、 如权利要求 5至 10任一项所述的方法, 其特征在于, 所述粘合所述 第二分段交换路径和所述第三分段交换路径的步骤包括:
在所述出口骨干路由器上以目的地址、 输入\输出端口为关联信息粘合所 述第二分段交换路径和所述第三分段交换路径。
12、 如权利要求 5至 10任一项所述的方法, 其特征在于, 所述粘合所述 第一分段交换路径和所述第二分段交换路径的步骤包括:
以目的地址、 输入 \输出端口为关联信息粘合所述第一分段交换路径和所 述第二分段交换路径。
13、 如权利要求 5至 10任一项所述的方法, 其特征在于, 当所述交换路 时, 只粘合 MPLS网域的交换路径与 GMPLS网域相应层次的交换路径。
14、 一种网络设备, 包括处理器、 存储器和若干端口, 其特征在于, 还 包括:
MPLS-TE功能接口, 用于连接基于 MPLS技术的网域; 和
GMPLS功能接口, 用于连接基于 GMPLS技术的网域。
15、如权利要求 14所述的网络设备, 其特征在于, 所述网络设备还包括: 节点信息判断模块, 用于获取所述 MPLS-TE功能接口和 /或所述 GMPLS 功能接口接收的交换路径请求消息中的节点信息,并根据所述节点信息判断下
游节点与上游节点是否位于同一网段;
交换路径请求消息终结模块, 用于在所述节点信息判断模块的判断结果 为下游节点与上游节点位于不同网段时, 终结转发该请求消息, 并以自身为出 口节点, 建立并存储与发起请求消息的节点之间的分段交换路径。
16、 如权利要求 15所述的网络设备, 其特征在于, 所述该网络设备还包 括:
交换路径请求消息生成模块, 在所述请求消息终结模块建立一条分段交 换路径后, 以该网络设备为起始节点,根据所述分段交换路径的目的地址生成 新的交换路径请求消息, 并通过所述 GMPLS功能接口发送。
17、 如权利要求 14至 16任一项所述的网絡设备, 其特征在于, 所述网 络设备还包括:
交换路径粘合模块, 用于粘合位于所述网络设备城域网侧和光核心网侧 的两条分段交换路径。
18、 如权利要求 17所述的网络设备, 其特征在于, 所述该网络设备还包 括:
交换路径通知消息生成模块, 在所述交换路径粘合模块粘合位于网络设 备城域网侧和光核心网侧的分段交换路径后,生成交换路径通知消息, 并通过 所述 MPLS-TE 功能接口通知上游节点已经成功建立相邻网段的分段交换路 径。
19、一种光互联网系统,包括支持 MPLS技术的第一城域网和支持 GMPLS 技术的光核心网,所述第一城域网通过网络设备连接到光核心网,其特征在于, 所述网络设备包括:
MPLS-TE功能接口, 用于连接所述第一城域网; 和
GMPLS功能接口, 用于连接所述光核心网。
20、 如权利要求 19所述的系统, 其特征在于,
所述 MPLS-TE功能接口与所述第一城域网的标签边缘路由器之间建有基 于 MPLS技术的标签交换路径。
21、 如权利要求 20所述的系统, 其特征在于,
当所述网絡设备作为所述核心网的入口骨干路由器时,所述 GMPLS功能 接口与所述光核心网的出口骨干路由器之间建有基于 GMPLS技术的标签交换 路径。
22、 如权利要求 21所述的系统, 其特征在于, 所述网络设备还包括: 交换路径粘合模块,用于粘合位于所述网络设备城域网侧和光核心网侧的 两条分别基于 MPLS技术和 GMPLS技术的标签交换路径,形成跨网段交换路 径。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100617276A CN1901497A (zh) | 2006-07-19 | 2006-07-19 | 建立交换路径的方法、网络设备和系统 |
CN200610061727.6 | 2006-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008011771A1 true WO2008011771A1 (fr) | 2008-01-31 |
Family
ID=37657244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/000997 WO2008011771A1 (fr) | 2006-07-19 | 2007-03-28 | Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1901497A (zh) |
WO (1) | WO2008011771A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629236B2 (en) | 2011-03-31 | 2017-04-18 | Plasyl Limited | Improvements for electrical circuits |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8238238B2 (en) * | 2008-05-16 | 2012-08-07 | Microsoft Corporation | Performing networking tasks based on destination networks |
CN101415005B (zh) | 2008-11-24 | 2013-04-17 | 华为技术有限公司 | 一种实现业务转发的方法、系统和设备 |
CN103312610A (zh) * | 2012-03-16 | 2013-09-18 | 中兴通讯股份有限公司 | 网络互通装置及方法 |
CN109995655A (zh) * | 2018-01-03 | 2019-07-09 | 中兴通讯股份有限公司 | 一种实现无缝最优跨域路径的方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095922A1 (en) * | 2002-10-22 | 2004-05-20 | Yasushi Sasagawa | Method and apparatus for interconnecting networks |
WO2004086704A1 (ja) * | 2003-03-26 | 2004-10-07 | Nippon Telegraph And Telephone Corporation | Gmpls+ip/mplsノードおよびip/mplsノード |
WO2005043928A2 (en) * | 2003-10-20 | 2005-05-12 | Cisco Technology, Inc. | TRANSPARENT RE-ROUTING OF MPLS TRAFFIC ENGINEERING LSPs WITHIN A LINK BUNDLE |
JP2006128999A (ja) * | 2004-10-28 | 2006-05-18 | Kddi Corp | ネットワークトポロジ処理方法および異ネットワーク間接続処理方法 |
-
2006
- 2006-07-19 CN CNA2006100617276A patent/CN1901497A/zh active Pending
-
2007
- 2007-03-28 WO PCT/CN2007/000997 patent/WO2008011771A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095922A1 (en) * | 2002-10-22 | 2004-05-20 | Yasushi Sasagawa | Method and apparatus for interconnecting networks |
WO2004086704A1 (ja) * | 2003-03-26 | 2004-10-07 | Nippon Telegraph And Telephone Corporation | Gmpls+ip/mplsノードおよびip/mplsノード |
WO2005043928A2 (en) * | 2003-10-20 | 2005-05-12 | Cisco Technology, Inc. | TRANSPARENT RE-ROUTING OF MPLS TRAFFIC ENGINEERING LSPs WITHIN A LINK BUNDLE |
JP2006128999A (ja) * | 2004-10-28 | 2006-05-18 | Kddi Corp | ネットワークトポロジ処理方法および異ネットワーク間接続処理方法 |
Non-Patent Citations (1)
Title |
---|
LIU S. ET AL.: "The researching about the signaling and routing technology used in establishment of inter-domain LSP based on GMPLS", OPTICAL COMMUNICATION TECHNOLOGY, no. 6, June 2006 (2006-06-01), pages 46 - 48 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629236B2 (en) | 2011-03-31 | 2017-04-18 | Plasyl Limited | Improvements for electrical circuits |
Also Published As
Publication number | Publication date |
---|---|
CN1901497A (zh) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Porwal et al. | Traffic Analysis of MPLS and Non MPLS Network including MPLS Signaling Protocols and Traffic distribution in OSPF and MPLS | |
CN102907051B (zh) | 标记交换路径建立方法、数据转发方法及设备 | |
WO2009092252A1 (zh) | 一种路由计算方法、系统及路径计算单元 | |
JP2006211661A (ja) | Mpls基盤のvpn提供装置及びvpn提供方法 | |
WO2006007769A1 (fr) | Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit | |
WO2008125359A1 (en) | Method and apparatus for reserving network resources for pseudo point-to-point connections | |
WO2005006670A1 (ja) | ラベルスイッチネットワークにおけるセッション確立方法及びラベルスイッチノード | |
JP2004146915A (ja) | ネットワークを相互に接続する方法、及びそのための装置 | |
JP2008252439A (ja) | 通信ネットワークシステム | |
WO2005122493A1 (fr) | Procede de realisation d'une transmission d'acheminement dans un reseau | |
WO2006029572A1 (en) | A method for forwarding route in the network | |
WO2008011771A1 (fr) | Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique | |
US8902909B2 (en) | Method, system, and device for implementing service forwarding | |
EP2239956B1 (en) | Method, apparatus and system for ip/optical convergence | |
WO2015024440A1 (zh) | 一种获取ip链路的链路开销值的方法及系统 | |
CN101764732B (zh) | 建立以太网虚拟连接的方法、网络和节点设备 | |
WO2002017542A2 (en) | System and method of binding mpls labels to virtually concatenated sonet/sdh transport connections | |
Harrison et al. | Protection and restoration in MPLS networks | |
Bongale et al. | Analysis of link utilization in MPLS enabled network using OPNET IT Guru | |
JP4553304B2 (ja) | ネットワークトポロジ処理方法および異ネットワーク間接続処理方法 | |
Liu et al. | GMPLS-based control plane for optical networks: early implementation experience | |
Durresi et al. | IP over all-optical networks-issues | |
JP2004282572A (ja) | パケット通信方法及び通信システム | |
Martínez et al. | Requirements and enhancements for the evolution of the GMPLS control plane of the ADRENALINE testbed to support multi-layer (MPLS-TP/WSON) capabilities | |
Das et al. | A method of designing a path restoration scheme for MPLS based network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07720571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07720571 Country of ref document: EP Kind code of ref document: A1 |