[go: up one dir, main page]

WO2008001537A1 - Negative electrode for polymeric electrolyte secondary battery - Google Patents

Negative electrode for polymeric electrolyte secondary battery Download PDF

Info

Publication number
WO2008001537A1
WO2008001537A1 PCT/JP2007/058245 JP2007058245W WO2008001537A1 WO 2008001537 A1 WO2008001537 A1 WO 2008001537A1 JP 2007058245 W JP2007058245 W JP 2007058245W WO 2008001537 A1 WO2008001537 A1 WO 2008001537A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
particles
negative electrode
secondary battery
material layer
Prior art date
Application number
PCT/JP2007/058245
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyoshi Matsushima
Shinji Ishii
Yoshiki Sakaguchi
Kiyotaka Yasuda
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2008001537A1 publication Critical patent/WO2008001537A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a polymer electrolyte secondary battery such as a lithium polymer secondary battery.
  • the present applicant has previously described an active material comprising a pair of current collecting surface layers whose surfaces are in contact with an electrolytic solution, and particles of an active material having a high ability to form a lithium compound, interposed between the surface layers.
  • a negative electrode for a non-aqueous electrolyte secondary battery provided with a layer has been proposed (see Patent Document 1).
  • the active material layer of the negative electrode is infiltrated with a metal material having a low lithium compound forming ability, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, the negative electrode is less likely to fall off even if it becomes fine due to expansion and contraction of the particles due to charge / discharge. As a result, the use of this negative electrode has the advantage of increasing the battery's lifetime.
  • Patent Document 1 US2006— 0115735A1
  • an object of the present invention is to provide a negative electrode for a polymer electrolyte secondary battery having further improved performance as compared with the above-described conventional negative electrode.
  • the present invention includes an active material layer containing particles of an active material, and at least a part of the surface of the particles has a low ability to form a potassium compound, is coated with a metal material !, and Voids are formed between the particles coated with a metal material, and mercury intrusion method CFIS R 1655)
  • the negative electrode for a polymer electrolyte secondary battery is characterized in that the porosity of the active material layer measured in accordance with the above is 15 to 45%.
  • FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of a negative electrode for a polymer electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic view showing an enlarged main part of a cross section of the active material layer in the negative electrode shown in FIG.
  • FIG. 3 (a) to FIG. 3 (d) are process diagrams showing a method for manufacturing the negative electrode shown in FIG. Detailed Description of the Invention
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a polymer electrolyte secondary battery of the present invention.
  • the negative electrode 10 of the present embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof.
  • the active material layer 12 is formed only on one side of the current collector 11 to show the state! /, But the active material layer is formed on both sides of the current collector. Have you been?
  • the active material layer 12 includes particles 12a of the active material.
  • the active material a material capable of occluding and releasing lithium ions is used. Examples of such materials include silicon-based materials, tin-based materials, aluminum-based materials, and germanium-based materials.
  • the tin-based material for example, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used.
  • a silicon-based material is particularly preferable.
  • the silicon-based material a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination.
  • the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds.
  • a particularly preferable silicon-based material is silicon or silicon oxide having a high lithium storage capacity.
  • the active material layer 12 at least a part of the surface of the particle 12a is covered with a metal material having a low ability to form a lithium compound.
  • the metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12a coated with the metal material. That is, the metal material covers the surface of the particle 12a in a state in which a gap is provided so that the polymer gel electrolyte can reach the particle 12a.
  • the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a.
  • “Low ability to form lithium compound” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, the amount of lithium is very small or very unstable.
  • the metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, and alloys of these metals.
  • the metal material 13 is preferably a highly ductile material in which even if the active material particles 12a expand and contract, the surface coating of the particles 12a is not easily broken. It is preferable to use copper as such a material.
  • the metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12.
  • the active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off.
  • the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. This is particularly advantageous when a semiconductor is used as the active material and electron conductivity is poor, and a material such as a silicon-based material is used.
  • Metal material 13 is active material particles 12a throughout the thickness direction of active material layer 12 It can be confirmed by electron microscope mapping with the material 13 as a measurement target.
  • the metal material 13 covers the surfaces of the particles 12a continuously or discontinuously.
  • the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form fine voids in the coating of the metal material 13 that allow the polymer gel electrolyte to flow.
  • the polymer gel electrolyte is supplied to the particle 12a through the portion of the surface of the particle 12a that is covered with the metal material 13. .
  • the metal material 13 may be deposited on the surface of the particle 12a by, for example, electrolytic plating according to the conditions described later.
  • the average thickness of the metal material 13 covering the surfaces of the active material particles 12a is preferably 0.05 to 2 / ⁇ ⁇ , more preferably 0.1 to 0.25 / zm. / !, thin! /. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. This prevents the dropout due to the particles 12a from expanding and contracting due to charge and discharge to be pulverized while increasing the energy density.
  • the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particles 12a not covered with the metal material 13 is not used as the basis for calculating the average value.
  • the void formed between the particles 12a coated with the metal material 13 serves as a flow path of the polymer gel electrolyte.
  • the polymer gel electrolyte smoothly circulates in the thickness direction of the active material layer 12 due to the presence of the voids, so that the cycle characteristics can be improved.
  • the voids formed between the particles 12a also serve as a space for relieving stress caused by the volume change of the active material particles 12a due to charge and discharge.
  • the increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, it is difficult for the fine particles of the particles 12a to be generated, and significant deformation of the negative electrode 10 is effectively prevented.
  • the presence of the polymer gel electrolyte in the voids also has the advantage of acting as a cushion material that relieves the stress generated by the expansion and contraction of the polymer gel electrolyte force particles 12a.
  • the active material When the present inventors examined the voids formed in the active material layer 12, the active material When the porosity of the layer 12 is set to 15 to 45%, preferably 20 to 40%, more preferably 25 to 35%, the distribution of the polymer gel electrolyte in the active material layer 12 becomes extremely good, and the active material It was found to be extremely effective for stress relaxation accompanying the expansion and contraction of particles 12a. Furthermore, it has been found that the liquid retention of the polymer gel electrolyte in the voids is good. In particular, setting the upper limit to 35% is extremely effective in improving the conductivity and maintaining the strength in the active material layer, and setting the lower limit to 25% can broaden the choice of electrolyte.
  • the porosity in this range is higher than the porosity in the conventional negative electrode active material layer, for example, the porosity in the negative electrode described in Patent Document 1 described above.
  • the negative electrode 10 having such a high porosity active material layer it is possible to use a polymer gel electrolyte which is a material having low fluidity.
  • the void amount of the active material layer 12 is measured by a mercury intrusion method (JIS R 1655).
  • the mercury intrusion method is a technique for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid.
  • the principle of the mercury intrusion method is to apply pressure to mercury to inject it into the pores of the measurement object and measure the relationship between the pressure applied at that time and the volume of mercury that has been pushed in (intruded). In this case, mercury enters the active material layer 12 in the order of the large void force.
  • the void amount measured at a pressure of 90 MPa is regarded as the entire void amount.
  • the porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area. Calculated by multiplying by 100.
  • the active material layer 12 is preferably an electrolytic plating using a predetermined plating bath on a coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. And the metal material 13 is deposited between the particles 1 and 2a. The degree of precipitation of the metal material 13 affects the porosity value of the active material layer 12. In order to achieve a desired porosity, it is necessary that a space in which the plating solution can permeate is formed in the coating film. As a result of the examination by the present inventors, it was found that the particle size distribution of the active material particles 12a is a major factor in forming a space in which the plating solution can penetrate into the coating film as necessary and sufficient. did.
  • the particle size distribution represented by D / ⁇ as active material particles 12a is preferably 0. 05-0.5, more preferably 0.1 to 0.3, a desired degree of space is formed in the coating film, and sufficient penetration of the plating solution may occur. found. It has also been found that the coating film can be effectively prevented from peeling off when it is electrolyzed. D ZD force Si
  • the particles 12a having a sharp particle size distribution By using the particles 12a having a sharp particle size distribution, the voids between the particles can be increased when the particles 12a are packed at a high density. Conversely, when particles having a broad particle size distribution are used, small particles are likely to enter between large particles, and it is not easy to increase the voids between the particles.
  • the use of the particles 12a having a sharp particle size distribution has an advantage that the reaction varies.
  • the particle size of the active material particles 12a is also important, taking into account that the particle size distribution of the active material particles 12a is within the above-mentioned range.
  • the particle size of the active material particles 12a is excessively large, the particles 12a are easily expanded and contracted, so that fine particles are easily formed. As a result, the generation of electrically isolated particles 12g frequently occurs. If the particle size of the active material particles 12a is too small, the gaps between the particles 12a may be too small, and the gaps may be filled by penetration penetration described later. This has a negative effect on the improvement of the cycle characteristics. Therefore, in the present embodiment, the active material particles 12a have an average particle diameter of 0.1 to 5 111, particularly 0.2 to 3 / ⁇ ⁇ .
  • the particle size distribution D / ⁇ and the average particle size D of the active material particles 12a are determined by laser diffraction scattering.
  • the porosity of the active material layer 12 it is preferable to sufficiently infiltrate the plating solution into the coating film.
  • the conditions for depositing the metal material 13 appropriate by electrolytic plating using the plating solution.
  • the plating conditions include the composition of the mating bath, the pH of the plating bath, and the current density of electrolysis.
  • the pH of the plating bath it is preferable to adjust it to more than 7 and 11 or less, particularly 7.1 or more and 11 or less.
  • the metal material 13 covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a.
  • the current efficiency is deteriorated and gas generation is likely to occur, which may reduce the production stability.
  • a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used, the size of the voids formed between the active material particles 12a and the number of polymer gels in the active material layer 12 This is very advantageous for electrolyte distribution.
  • the bath composition, electrolysis conditions, and pH are preferably as follows.
  • the calculated void ratio of the active material layer 12 measured by the mercury intrusion method is within the above range, in lOMPa It is preferable that the calculated void ratio of the active material layer 12 measured by the mercury injection method is 10 to 40%. Further, it is preferable that the porosity calculated from the void amount of the active material layer 12 measured by the mercury intrusion method in IMPa is 0.5 to 15%. Furthermore, it is preferable that the porosity calculated from the porosity force of the active material layer 12 measured by the mercury intrusion method at 5 MPa is 1 to 35%. As described above, the mercury intrusion conditions are gradually increased in the mercury intrusion measurement.
  • the porosity measured at pressure IMPa is mainly derived from large voids.
  • the porosity measured at pressure lOMPa V reflects the presence of small voids.
  • the active material layer 12 is preferably prepared by subjecting a coating film obtained by applying and drying a slurry containing particles 12a and a binder to electrolysis using a predetermined plating bath. It is formed by depositing and depositing the metal material 13 between the particles 12a. Therefore, as shown in FIG. 2, the above-mentioned large void S1 is mainly derived from the space between the particles 12a, while the small void S2 described above is mainly a metal material that precipitates on the surface of the particle 12a. It is thought that it originates in the space between the crystal grains 14 of. Large void S1 is the main As a space to relieve stress caused by the expansion and contraction of the particles 12a. On the other hand, the small void S2 mainly serves as a route for supplying the polymer gel electrolyte to the particles 12a. By balancing the abundance of these large voids S1 and small voids S2, the cycle characteristics are further improved.
  • the thickness of the active material layer 12 is preferably 10 to 40 / ⁇ ⁇ , more preferably 15 to 30 ⁇ m, and still more preferably 18 to 25 ⁇ m.
  • a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer.
  • the thickness of the surface layer is as thin as 0.25 ⁇ m or less, preferably 0.1 ⁇ m or less. There is no limit to the lower limit of the thickness of the surface layer.
  • the negative electrode 10 When the negative electrode 10 is thin or has a surface layer or has the surface layer, a secondary battery is assembled using the negative electrode 10, and the battery is initially charged. The overvoltage can be reduced. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
  • the surface layer covers the surface of the active material layer 12 continuously or discontinuously.
  • the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12. Have, prefer to have. It is preferable that the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the polymer gel electrolyte to circulate. The role of the fine voids is to supply the polymer gel electrolyte into the active material layer 12.
  • the fine voids are the proportion of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less.
  • the size is preferably 60% or less.
  • the surface layer is composed of a metal compound having a low lithium compound forming ability.
  • This metal material may be the same as or different from the metal material 13 present in the active material layer 12.
  • the surface layer may have a structure of two or more layers having two or more different metal material forces. Considering the ease of production of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
  • the negative electrode 10 of the present embodiment has high resistance to bending because the porosity in the active material layer 12 is a high value.
  • the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, more preferably 50 times or more.
  • the high folding resistance is extremely advantageous since the negative electrode 10 is folded when the negative electrode 10 is folded or wound and accommodated in the battery container.
  • the MIT folding device for example, Toyo Seiki Seisakusho's film folding fatigue tester (Part No. 54 9) is used, with a bending radius of 0.8 mm, a load of 0.5 kgf, and a sample size of 15 X 150 mm. can do.
  • the current collector 11 in the negative electrode 10 may be the same as that conventionally used as the current collector of the negative electrode for a polymer electrolyte secondary battery. It is preferable that the current collector 11 has a low ability to form a lithium compound as described above and has a metal material strength. Examples of such metal materials are as described above. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used.
  • JIS C 2318 normal tensile strength
  • a current collector having a normal elongation CFIS C 2318) of 4% or more is also preferable to use. This is because when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack.
  • the thickness of the current collector 11 is preferably 9 to 35 / ⁇ ⁇ in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density.
  • chromate treatment, triazole compound and imidazole compound are used. It is preferable to carry out an antifungal treatment using an organic compound such as
  • a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then the coating is electrolyzed.
  • a current collector 11 is prepared as shown in FIG. Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15.
  • the surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 / ⁇ ⁇ at the maximum height of the contour curve. When the maximum height exceeds 4 m, the accuracy of forming the coating film 15 is reduced, and current concentration tends to occur at the protrusions. When the maximum height is less than 0, the adhesion of the active material layer 12 tends to decrease.
  • the active material particles 12a those having the above-described particle size distribution and average particle size are preferably used.
  • the slurry contains a binder and a diluting solvent.
  • the slurry may also contain a small amount of conductive carbon material particles such as acetylene black and graphite.
  • the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a.
  • the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and a uniform void. Become.
  • the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and a good coating is formed.
  • binder styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene monomer (EPDM), or the like is used.
  • SBR styrene butadiene rubber
  • PVDF polyvinylidene fluoride
  • PE polyethylene
  • EPDM ethylene propylene monomer
  • diluting solvent N-methylpyrrolidone, cyclohexane or the like is used.
  • the amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight.
  • the amount of the binder is preferably about 0.4 to 4% by weight.
  • a dilute solvent is added to these to form a slurry.
  • the formed coating film 15 has a large number of minute spaces between the particles 12a.
  • the current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a metal material having a low ability to form a lithium compound. By immersion in the plating bath, the plating solution penetrates into the minute space in the coating film 15. And reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating). The penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
  • the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side. Specifically, as shown in FIGS. 3B to 3D, the interfacial force between the coating film 15 and the current collector 11 is also electrolyzed so that the deposition of the metal material 13 proceeds toward the coating film surface. Make a mess.
  • the surface of the active material particles 12a can be successfully coated with the metal material 13, and a void is successfully formed between the particles 12a coated with the metal material 13. can do.
  • the porosity of the voids can be easily set within the preferred range described above.
  • the conditions for the penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above.
  • the deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film.
  • fine particles 13a that have a substantially constant thickness and also have a nucleating force of the metal material 13 are present in layers.
  • the adjacent fine particles 13a are combined to form larger particles, and when the deposition proceeds further, the particles are combined to continuously cover the surface of the active material particles 12a. It becomes like this.
  • the penetration staking is terminated when the metal material 13 is deposited in the entire thickness direction of the coating film 15.
  • a surface layer (not shown) can be formed on the upper surface of the active material layer 12. In this way, the target negative electrode is obtained as shown in FIG. 3 (d).
  • the negative electrode 10 is preferably subjected to an antifouling treatment.
  • an organic antifungal using a triazole compound such as benzotriazole, carboxybenzotriazole, tolyltriazole and imidazole, or an inorganic protective using cobalt, nickel, chromate or the like can be employed.
  • the negative electrode 10 thus obtained is suitably used as a negative electrode for a polymer electrolyte secondary battery such as a lithium ion polymer secondary battery.
  • the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in a suitable solvent to prepare a positive electrode mixture, applying this to a current collector, drying, roll rolling, It can be obtained by pressing, cutting and punching.
  • the active material layer of the positive electrode is previously impregnated with a polymer gel electrolyte to be combined.
  • the positive electrode active material conventionally known positive electrode active materials such as lithium-containing metal composite oxides such as lithium nickel composite oxide, lithium mangan composite oxide, lithium cobalt composite oxide and the like are used.
  • LiCoO LiCoO
  • a lithium transition metal composite oxide containing at least both Zr and Mg and a lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni be able to.
  • the use of a positive electrode active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability.
  • the average primary particle diameter of the positive electrode active material is 5 ⁇ m or more and 10 ⁇ m or less, and the weight average molecular weight of the binder used for the positive electrode is preferably 3 in view of the balance between packing density and reaction area.
  • the polyvinylideneidene is from 50,000 to 2,000,000. This is because it can be expected to improve the discharge characteristics in a low temperature environment.
  • the polymer gel electrolyte includes a matrix polymer, an organic solvent, and a lithium salt.
  • a matrix polymer polyethylene oxide, polypropylene oxide, polytetrafluoroethylene, polyvinylidene fluoride, polyfluoride bur, polyacrylic acid, polymethacrylic acid, polyacrylonitrile, polycarbonate, polyethylene glycol and the like can be used.
  • Lithium salts include LiCIO, LiAlCl, LiPF, LiAsF, LiSb
  • Examples thereof include F, LiBF, LiSCN, LiCl, LiBr, Lil, LiCFSO, and LiCFSO.
  • organic solvent examples include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, y-butyrolatone, and the like.
  • a current collector having an electrolytic copper foil strength of 18 / zm in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds.
  • a slurry containing Si particles was applied on the current collector to a thickness of 15 m to form a coating film.
  • the average particle size D of Si particles is 2
  • D ZD is a microtrack particle size distribution measuring instrument (No. 9320-X10) manufactured by Nikkiso Co., Ltd.
  • the current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition, and by electrolysis, copper penetrated into the coating film to form an active material layer. did.
  • the electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
  • the penetration staking was terminated when copper was deposited over the entire thickness direction of the coating film, and washed with water and subjected to an anti-bacterial treatment with benzotriazole (BTA) to obtain a target negative electrode.
  • BTA benzotriazole
  • Si particles with the average particle size D and particle size distribution D / ⁇ shown in Table 1 are used.
  • a negative electrode was obtained in the same manner as in Example 1 except that.
  • Si particles with the average particle size D and particle size distribution D / ⁇ shown in Table 1 are used.
  • Example 2 In place of the copper pyrophosphate bath used in Example 1, a copper sulfate bath having the following composition was used. The current density was 5AZdm 2 and the bath temperature was 40 ° C. DSE electrode is used for anode It was. A DC power source was used as the power source. A negative electrode was obtained in the same manner as Example 1 except for these.
  • Si particles with the average particle size D and particle size distribution D / ⁇ shown in Table 1 are used.
  • a negative electrode was obtained in the same manner as in Example 1 except that.
  • the negative electrodes obtained in the examples and comparative examples were measured with a mercury porosimeter. The results are shown in Table 1. Separately, lithium ion polymer secondary batteries were manufactured using the negative electrodes obtained in Examples and Comparative Examples. LiCo Ni Mn O is used as the positive electrode
  • the positive electrode active material layer was impregnated with the following polymer gel electrolyte.
  • the capacity retention rate up to 100 cycles was measured for the secondary battery.
  • the capacity retention rate was calculated by measuring the discharge capacity at each cycle, dividing the value by the initial discharge capacity, and multiplying by 100.
  • the charging conditions were 0.5C and 4.2V, and constant current * constant voltage (CCCV).
  • the discharge conditions were 0.5C and 2.7V, and constant current (CC).
  • the first cycle was set to 0.05C
  • the 2nd to 4th cycles were set to 0.1C
  • the 5th to 7th cycles were set to 0.5C
  • the 8th to 10th cycles were set to 1C. The results are shown in Table 1.
  • a low-fluidity even a polymer gel electrolyte can be circulated through the active material layer with a necessary and sufficient path so that the polymer gel electrolyte can easily reach the active material layer. Therefore, the entire region in the thickness direction of the active material layer is used for the electrode reaction. As a result, cycle characteristics are improved. In addition, even if fine particles are generated due to the expansion and contraction of the particles due to charge and discharge, the particles do not easily fall off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A negative electrode (10) for use in a polymeric electrolyte secondary battery comprises an active material layer (12) containing a particle (12a) of an active material. At least a part of the surface of the particle (12a) is coated with a metal material (13) having a poor ability of forming a lithium compound. A void is formed between the particles (12a) that are coated with the metal material (13). The active material layer has a void ratio of 15 to 45%. Preferably, the metal material (13) is present over the entire area of such a part of the surface of the particle that extends in the thickness-wise direction of the active material layer. Also preferably, the particle (12a) of the active material is composed of a silicone material, and the active material layer (12) contains a conductive carbon material in an amount of 1 to 3% by weight relative to the weight amount of the particle (12a) of the active material.

Description

明 細 書  Specification
高分子電解質二次電池用負極  Negative electrode for polymer electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、リチウムポリマー二次電池などの高分子電解質二次電池用の負極に関 する。  The present invention relates to a negative electrode for a polymer electrolyte secondary battery such as a lithium polymer secondary battery.
背景技術  Background art
[0002] 本出願人は先に、表面が電解液と接する一対の集電用表面層と、該表面層間に介 在配置された、リチウム化合物の形成能の高い活物質の粒子を含む活物質層とを備 えた非水電解液二次電池用負極を提案した (特許文献 1参照)。この負極の活物質 層には、リチウム化合物の形成能の低い金属材料が浸透しており、浸透した該金属 材料中に活物質の粒子が存在して 、る。活物質層がこのような構造になって 、るの で、この負極においては、充放電によって該粒子が膨張収縮することに起因して微 粉ィ匕しても、その脱落が起こりづらくなる。その結果、この負極を用いると、電池のサ イタル寿命が長くなるという利点がある。  [0002] The present applicant has previously described an active material comprising a pair of current collecting surface layers whose surfaces are in contact with an electrolytic solution, and particles of an active material having a high ability to form a lithium compound, interposed between the surface layers. A negative electrode for a non-aqueous electrolyte secondary battery provided with a layer has been proposed (see Patent Document 1). The active material layer of the negative electrode is infiltrated with a metal material having a low lithium compound forming ability, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, the negative electrode is less likely to fall off even if it becomes fine due to expansion and contraction of the particles due to charge / discharge. As a result, the use of this negative electrode has the advantage of increasing the battery's lifetime.
[0003] ところでリチウムイオンの吸蔵放出を利用した二次電池には、前記の非水電解液二 次電池の他に、ポリマーゲル電解質を用いた高分子電解質二次電池が知られて!/ヽ る。高分子電解質二次電池に用いられるポリマーゲル電解質は低流動性のものであ る。従って、流動性の高い液である非水電解液を用いた二次電池用の負極を、その まま高分子電解質二次電池用の負極に転用しても、所望の特性を有する電池を得る ことはできない。  [0003] By the way, as the secondary battery using the insertion and extraction of lithium ions, in addition to the non-aqueous electrolyte secondary battery, a polymer electrolyte secondary battery using a polymer gel electrolyte is known! / ヽThe The polymer gel electrolyte used in the polymer electrolyte secondary battery is of low fluidity. Therefore, even if a negative electrode for a secondary battery using a non-aqueous electrolyte, which is a highly fluid liquid, is used as it is for a negative electrode for a polymer electrolyte secondary battery, a battery having desired characteristics can be obtained. I can't.
[0004] 特許文献 1 :US2006— 0115735A1  [0004] Patent Document 1: US2006— 0115735A1
[0005] 従って本発明の目的は、前述した従来技術の負極よりも性能が一層向上した高分 子電解質二次電池用負極を提供することにある。  [0005] Accordingly, an object of the present invention is to provide a negative electrode for a polymer electrolyte secondary battery having further improved performance as compared with the above-described conventional negative electrode.
発明の開示  Disclosure of the invention
[0006] 本発明は、活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部 カ^チゥム化合物の形成能の低!、金属材料で被覆されて!、ると共に、該金属材料で 被覆された該粒子どうしの間に空隙が形成されており、水銀圧入法 CFIS R 1655) に準拠して測定された該活物質層の空隙率が 15〜45%であることを特徴とする高 分子電解質二次電池用負極を提供するものである。 [0006] The present invention includes an active material layer containing particles of an active material, and at least a part of the surface of the particles has a low ability to form a potassium compound, is coated with a metal material !, and Voids are formed between the particles coated with a metal material, and mercury intrusion method CFIS R 1655) The negative electrode for a polymer electrolyte secondary battery is characterized in that the porosity of the active material layer measured in accordance with the above is 15 to 45%.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]図 1は、本発明の高分子電解質二次電池用負極の一実施形態の断面構造を 示す模式図である。  [0007] FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of a negative electrode for a polymer electrolyte secondary battery of the present invention.
[図 2]図 2は、図 1に示す負極における活物質層の断面の要部を拡大して示す模式 図である。  FIG. 2 is a schematic view showing an enlarged main part of a cross section of the active material layer in the negative electrode shown in FIG.
[図 3]図 3 (a)ないし図 3 (d)は、図 1に示す負極の製造方法を示す工程図である。 発明の詳細な説明  FIG. 3 (a) to FIG. 3 (d) are process diagrams showing a method for manufacturing the negative electrode shown in FIG. Detailed Description of the Invention
[0008] 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図 1 には本発明の高分子電解質二次電池用負極の一実施形態の断面構造の模式図が 示されている。本実施形態の負極 10は、集電体 11と、その少なくとも一面に形成さ れた活物質層 12を備えている。なお図 1においては、便宜的に集電体 11の片面に のみ活物質層 12が形成されて 、る状態が示されて!/、るが、活物質層は集電体の両 面に形成されて 、てもよ 、。  Hereinafter, the present invention will be described based on its preferred embodiments with reference to the drawings. FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a polymer electrolyte secondary battery of the present invention. The negative electrode 10 of the present embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. In FIG. 1, for the sake of convenience, the active material layer 12 is formed only on one side of the current collector 11 to show the state! /, But the active material layer is formed on both sides of the current collector. Have you been?
[0009] 活物質層 12は、活物質の粒子 12aを含んでいる。活物質としては、リチウムイオン の吸蔵放出が可能な材料が用いられる。そのような材料としては、例えばシリコン系 材料やスズ系材料、アルミニウム系材料、ゲルマニウム系材料が挙げられる。スズ系 材料としては、例えばスズと、コバルトと、炭素と、ニッケル及びクロムのうちの少なくと も一方とを含む合金が好ましく用いられる。負極重量あたりの容量密度を向上させる 上では、特にシリコン系材料が好ましい。  [0009] The active material layer 12 includes particles 12a of the active material. As the active material, a material capable of occluding and releasing lithium ions is used. Examples of such materials include silicon-based materials, tin-based materials, aluminum-based materials, and germanium-based materials. As the tin-based material, for example, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used. In order to improve the capacity density per weight of the negative electrode, a silicon-based material is particularly preferable.
[0010] シリコン系材料としては、リチウムの吸蔵が可能で且つシリコンを含有する材料、例 えばシリコン単体、シリコンと金属との合金、シリコン酸ィ匕物などを用いることができる 。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。前記 の金属としては、例えば Cu、 Ni、 Co、 Cr、 Fe、 Ti、 Pt、 W、 Mo及び Auからなる群か ら選択される 1種類以上の元素が挙げられる。これらの金属のうち、 Cu、 Ni、 Coが好 ましぐ特に電子伝導性に優れる点、及びリチウム化合物の形成能の低さの点から、 Cu、 Niを用いることが望ましい。また、負極を電池に組み込む前に、又は組み込ん だ後に、シリコン系材料力もなる活物質に対してリチウムを吸蔵させてもよい。特に好 ましいシリコン系材料は、リチウムの吸蔵量の高さの点力 シリコン又はシリコン酸ィ匕 物である。 [0010] As the silicon-based material, a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination. Examples of the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds. Also, before or after incorporating the negative electrode into the battery After that, lithium may be occluded in the active material having a silicon-based material strength. A particularly preferable silicon-based material is silicon or silicon oxide having a high lithium storage capacity.
[0011] 活物質層 12においては、粒子 12aの表面の少なくとも一部力 リチウム化合物の形 成能の低い金属材料で被覆されている。この金属材料 13は、粒子 12aの構成材料と 異なる材料である。該金属材料で被覆された該粒子 12aの間には空隙が形成されて いる。つまり該金属材料は、ポリマーゲル電解質が粒子 12aへ到達可能なような隙間 を確保した状態で該粒子 12aの表面を被覆している。図 1中、金属材料 13は、粒子 1 2aの周囲を取り囲む太線として便宜的に表されている。なお同図においては、活物 質層 12に含まれる粒子 12aのうち、他の粒子との間に接触がな 、ように描かれて ヽ るものが存在する力 これは活物質層 12を二次元的にみたことに起因するものであり 、実際は各粒子は他の粒子と直接ないし金属材料 13を介して接触している。「リチウ ム化合物の形成能の低い」とは、リチウムと金属間化合物若しくは固溶体を形成しな いか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であること を意味する。  [0011] In the active material layer 12, at least a part of the surface of the particle 12a is covered with a metal material having a low ability to form a lithium compound. The metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12a coated with the metal material. That is, the metal material covers the surface of the particle 12a in a state in which a gap is provided so that the polymer gel electrolyte can reach the particle 12a. In FIG. 1, the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. In the figure, among the particles 12a included in the active material layer 12, there is a force that is drawn so that there is no contact with other particles. In fact, each particle is in direct contact with other particles or through a metal material 13. “Low ability to form lithium compound” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, the amount of lithium is very small or very unstable.
[0012] 金属材料 13は導電性を有するものであり、その例としては銅、ニッケル、鉄、コバル ト又はこれらの金属の合金などが挙げられる。特に金属材料 13は、活物質の粒子 12 aが膨張収縮しても該粒子 12aの表面の被覆が破壊されにくい延性の高い材料であ ることが好ま U、。そのような材料としては銅を用いることが好ま 、。  [0012] The metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, and alloys of these metals. In particular, the metal material 13 is preferably a highly ductile material in which even if the active material particles 12a expand and contract, the surface coating of the particles 12a is not easily broken. It is preferable to use copper as such a material.
[0013] 金属材料 13は、活物質層 12の厚み方向全域にわたって活物質の粒子 12aの表 面に存在して 、ることが好ま 、。そして金属材料 13のマトリックス中に活物質の粒 子 12aが存在していることが好ましい。これによつて、充放電によって該粒子 12aが膨 張収縮することに起因して微粉ィ匕しても、その脱落が起こりづらくなる。また、金属材 料 13を通じて活物質層 12全体の電子伝導性が確保されるので、電気的に孤立した 活物質の粒子 12aが生成すること、特に活物質層 12の深部に電気的に孤立した活 物質の粒子 12aが生成することが効果的に防止される。このことは、活物質として半 導体であり電子伝導性の乏 、材料、例えばシリコン系材料を用いる場合に特に有 利である。金属材料 13が活物質層 12の厚み方向全域にわたって活物質の粒子 12a の表面に存在していることは、該材料 13を測定対象とした電子顕微鏡マッピングによ つて確認でさる。 [0013] The metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12. The active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. This is particularly advantageous when a semiconductor is used as the active material and electron conductivity is poor, and a material such as a silicon-based material is used. Metal material 13 is active material particles 12a throughout the thickness direction of active material layer 12 It can be confirmed by electron microscope mapping with the material 13 as a measurement target.
[0014] 金属材料 13は、粒子 12aの表面を連続に又は不連続に被覆している。金属材料 1 3が粒子 12aの表面を連続に被覆している場合には、金属材料 13の被覆に、ポリマ 一ゲル電解質の流通が可能な微細な空隙を形成することが好ましい。金属材料 13 が粒子 12aの表面を不連続に被覆している場合には、粒子 12aの表面のうち、金属 材料 13で被覆されて ヽな 、部位を通じて該粒子 12aへポリマーゲル電解質が供給 される。このような構造の金属材料 13の被覆を形成するためには、例えば後述する 条件に従う電解めつきによって金属材料 13を粒子 12aの表面に析出させればよい。  [0014] The metal material 13 covers the surfaces of the particles 12a continuously or discontinuously. When the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form fine voids in the coating of the metal material 13 that allow the polymer gel electrolyte to flow. In the case where the metal material 13 discontinuously covers the surface of the particle 12a, the polymer gel electrolyte is supplied to the particle 12a through the portion of the surface of the particle 12a that is covered with the metal material 13. . In order to form the coating of the metal material 13 having such a structure, the metal material 13 may be deposited on the surface of the particle 12a by, for example, electrolytic plating according to the conditions described later.
[0015] 活物質の粒子 12aの表面を被覆している金属材料 13は、その厚みの平均が好まし くは 0. 05〜2 /ζ πι、更に好ましくは 0. 1〜0. 25 /z mと! /、う薄!/、ものである。つまり金 属材料 13は最低限の厚みで以て活物質の粒子 12aの表面を被覆して 、る。これに よって、エネルギー密度を高めつつ、充放電によって粒子 12aが膨張収縮して微粉 化することに起因する脱落を防止している。ここでいう「厚みの平均」とは、活物質の 粒子 12aの表面のうち、実際に金属材料 13が被覆している部分に基づき計算された 値である。従って活物質の粒子 12aの表面のうち金属材料 13で被覆されていない部 分は、平均値の算出の基礎にはされない。  [0015] The average thickness of the metal material 13 covering the surfaces of the active material particles 12a is preferably 0.05 to 2 / ζ πι, more preferably 0.1 to 0.25 / zm. / !, thin! /. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. This prevents the dropout due to the particles 12a from expanding and contracting due to charge and discharge to be pulverized while increasing the energy density. Here, the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particles 12a not covered with the metal material 13 is not used as the basis for calculating the average value.
[0016] 金属材料 13で被覆された粒子 12a間に形成された空隙は、ポリマーゲル電解質の 流通の経路としての働きを有して 、る。この空隙の存在によってポリマーゲル電解質 が活物質層 12の厚み方向へ円滑に流通するので、サイクル特性を向上させることが できる。更に、粒子 12a間に形成されている空隙は、充放電で活物質の粒子 12aが 体積変化することに起因する応力を緩和するための空間としての働きも有する。充電 によって体積が増加した活物質の粒子 12aの体積の増加分は、この空隙に吸収され る。その結果、該粒子 12aの微粉ィ匕が起こりづらくなり、また負極 10の著しい変形が 効果的に防止される。前記空隙内にポリマーゲル電解質が存在していることで、該ポ リマーゲル電解質力 粒子 12aの膨張収縮によって発生する応力を緩和するクッショ ン材として作用すると 、う利点もある。  [0016] The void formed between the particles 12a coated with the metal material 13 serves as a flow path of the polymer gel electrolyte. The polymer gel electrolyte smoothly circulates in the thickness direction of the active material layer 12 due to the presence of the voids, so that the cycle characteristics can be improved. Further, the voids formed between the particles 12a also serve as a space for relieving stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, it is difficult for the fine particles of the particles 12a to be generated, and significant deformation of the negative electrode 10 is effectively prevented. The presence of the polymer gel electrolyte in the voids also has the advantage of acting as a cushion material that relieves the stress generated by the expansion and contraction of the polymer gel electrolyte force particles 12a.
[0017] 活物質層 12に形成されている空隙について本発明者らが検討したところ、活物質 層 12の空隙率を 15〜45%、好ましくは 20〜40%、更に好ましくは 25〜35%に設 定すると、活物質層 12内におけるポリマーゲル電解質の流通が極めて良好になり、 また活物質の粒子 12aの膨張収縮に伴う応力緩和に極めて有効であることが判明し た。更に、空隙内におけるポリマーゲル電解質の保液性が良好になることが判明した 。特に、上限を 35%とすることで活物質層内の導電性の向上と強度維持に極めて効 果的であり、下限を 25%とすることで電解液の選択の幅を広げることができる。この範 囲の空隙率は、従来の負極活物質層における空隙率、例えば先に述べた特許文献 1に記載の負極における空隙率よりも高 、値である。このような高空隙率の活物質層 を備えた負極 10を用いることで、流動性の低!、材料であるポリマーゲル電解質を用 いることが可能になる。 [0017] When the present inventors examined the voids formed in the active material layer 12, the active material When the porosity of the layer 12 is set to 15 to 45%, preferably 20 to 40%, more preferably 25 to 35%, the distribution of the polymer gel electrolyte in the active material layer 12 becomes extremely good, and the active material It was found to be extremely effective for stress relaxation accompanying the expansion and contraction of particles 12a. Furthermore, it has been found that the liquid retention of the polymer gel electrolyte in the voids is good. In particular, setting the upper limit to 35% is extremely effective in improving the conductivity and maintaining the strength in the active material layer, and setting the lower limit to 25% can broaden the choice of electrolyte. The porosity in this range is higher than the porosity in the conventional negative electrode active material layer, for example, the porosity in the negative electrode described in Patent Document 1 described above. By using the negative electrode 10 having such a high porosity active material layer, it is possible to use a polymer gel electrolyte which is a material having low fluidity.
[0018] 活物質層 12の空隙量は、水銀圧入法 (JIS R 1655)で測定される。水銀圧入法 は、固体中の細孔の大きさやその容積を測定することによって、その固体の物理的 形状の情報を得るための手法である。水銀圧入法の原理は、水銀に圧力を加えて測 定対象物の細孔中へ圧入し、その時に加えた圧力と、押し込まれた (浸入した)水銀 容積の関係を測定することにある。この場合、水銀は活物質層 12内に存在する大き な空隙力 順に浸入して 、く。  [0018] The void amount of the active material layer 12 is measured by a mercury intrusion method (JIS R 1655). The mercury intrusion method is a technique for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid. The principle of the mercury intrusion method is to apply pressure to mercury to inject it into the pores of the measurement object and measure the relationship between the pressure applied at that time and the volume of mercury that has been pushed in (intruded). In this case, mercury enters the active material layer 12 in the order of the large void force.
[0019] 本発明にお 、ては、圧力 90MPaで測定した空隙量を全体の空隙量とみなして ヽ る。本発明において、活物質層 12の空隙率 (%)は、前記の方法で測定された単位 面積当たりの空隙量を、単位面積当たりの活物質層 12の見力けの体積で除し、それ に 100を乗じることにより求める。  In the present invention, the void amount measured at a pressure of 90 MPa is regarded as the entire void amount. In the present invention, the porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area. Calculated by multiplying by 100.
[0020] 活物質層 12は、好適には粒子 12a及び結着剤を含むスラリーを集電体上に塗布し 乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めつきを行い、粒子 1 2a間に金属材料 13を析出させることで形成される。金属材料 13の析出の程度は、 活物質層 12の空隙率の値に影響を及ぼす。所望の空隙率を達成するためには、前 記の塗膜中に、めっき液の浸透が可能な空間が形成されている必要がある。めっき 液の浸透が可能な空間を塗膜内に必要且つ十分に形成するためには、活物質の粒 子 12aの粒度分布が大きな要因となっていることが本発明者らの検討の結果判明し た。詳細には、活物質の粒子 12aとして D /Ό で表される粒度分布が好ましくは 0 . 05-0. 5、更に好ましくは 0. 1〜0. 3であるものを採用することで、塗膜内に所望 とする程度の空間が形成され、めっき液の浸透が十分となることが判明した。また電 解めつき時に塗膜の剥がれ落ちを効果的に防止し得ることが判明した。 D ZD 力 Si [0020] The active material layer 12 is preferably an electrolytic plating using a predetermined plating bath on a coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. And the metal material 13 is deposited between the particles 1 and 2a. The degree of precipitation of the metal material 13 affects the porosity value of the active material layer 12. In order to achieve a desired porosity, it is necessary that a space in which the plating solution can permeate is formed in the coating film. As a result of the examination by the present inventors, it was found that the particle size distribution of the active material particles 12a is a major factor in forming a space in which the plating solution can penetrate into the coating film as necessary and sufficient. did. Specifically, the particle size distribution represented by D / Ό as active material particles 12a is preferably 0. 05-0.5, more preferably 0.1 to 0.3, a desired degree of space is formed in the coating film, and sufficient penetration of the plating solution may occur. found. It has also been found that the coating film can be effectively prevented from peeling off when it is electrolyzed. D ZD force Si
10 90 に近ければ近いほど、粒子 12aの粒径が単分散に近くなるから、前記の範囲の粒度 分布はシャープなものであることが判る。つまり本実施形態にぉ 、ては粒度分布がシ ヤープな粒子 12aを用いることが好ましい。粒度分布がシャープな粒子 12aを用いる ことで、該粒子 12aを高密度充填した場合に、粒子間の空隙を大きくすることができる 。逆に粒度分布がブロードな粒子を用いると、大きな粒子間に小さな粒子が入り込み 易くなり、粒子間の空隙を大きくすることが容易でない。また、粒度分布がシャープな 粒子 12aを用いると、反応にばらつきが生じに《なるという利点もある。  The closer to 10 90, the closer the particle size of the particles 12a is to monodisperse, so it can be seen that the particle size distribution in the above range is sharp. That is, for this embodiment, it is preferable to use the particles 12a having a sharp particle size distribution. By using the particles 12a having a sharp particle size distribution, the voids between the particles can be increased when the particles 12a are packed at a high density. Conversely, when particles having a broad particle size distribution are used, small particles are likely to enter between large particles, and it is not easy to increase the voids between the particles. In addition, the use of the particles 12a having a sharp particle size distribution has an advantage that the reaction varies.
[0021] サイクル特性に優れた負極を得るためには、活物質の粒子 12aの粒度分布が上述 の範囲内であることにカ卩えて該粒子 12a自体の粒径も重要である。活物質の粒子 12 aの粒径が過度に大きい場合には、粒子 12aが膨張収縮を繰り返すことで微粉ィ匕し やすくなり、それによつて電気的に孤立した粒子 12gの生成が頻発する。また活物質 の粒子 12aの粒径が小さすぎる場合には、該粒子 12a間の空隙が小さくなりすぎて、 後述する浸透めつきによって空隙が埋められてしまうおそれがある。このことはサイク ル特性の向上の点からはマイナスに作用する。そこで本実施形態においては、活物 質の粒子 12aとしてその平均粒径が D で表して 0. 1〜5 111、特に0. 2〜3 /ζ πιで [0021] In order to obtain a negative electrode having excellent cycle characteristics, the particle size of the active material particles 12a is also important, taking into account that the particle size distribution of the active material particles 12a is within the above-mentioned range. When the particle size of the active material particles 12a is excessively large, the particles 12a are easily expanded and contracted, so that fine particles are easily formed. As a result, the generation of electrically isolated particles 12g frequently occurs. If the particle size of the active material particles 12a is too small, the gaps between the particles 12a may be too small, and the gaps may be filled by penetration penetration described later. This has a negative effect on the improvement of the cycle characteristics. Therefore, in the present embodiment, the active material particles 12a have an average particle diameter of 0.1 to 5 111, particularly 0.2 to 3 / ζ πι.
50  50
あることが好ましい。  Preferably there is.
[0022] 活物質の粒子 12aの粒度分布 D /Ό 及び平均粒径 D の値は、レーザー回折散  [0022] The particle size distribution D / Ό and the average particle size D of the active material particles 12a are determined by laser diffraction scattering.
10 90 50  10 90 50
乱式粒度分布測定や、電子顕微鏡観察 (SEM観察)によって測定される。  It is measured by random particle size distribution measurement or electron microscope observation (SEM observation).
[0023] 活物質層 12の空隙率を前記の範囲内とするためには、前記の塗膜内にめっき液を 十分浸透させることが好ましい。これにカ卩えて、該めっき液を用いた電解めつきによつ て金属材料 13を析出させるための条件を適切なものとすることが好ましい。めっきの 条件にはめつき浴の組成、めっき浴の pH、電解の電流密度などがある。めっき浴の p Hに関しては、これを 7超 11以下、特に 7. 1以上 11以下に調整することが好ましい。 pHをこの範囲内とすることで、活物質の粒子 12aの溶解が抑制されつつ、該粒子 12 aの表面が清浄ィ匕されて、粒子表面へのめっきが促進され、同時に粒子 12a間に適 度な空隙が形成される。 pHの値は、めっき時の温度において測定されたものである [0023] In order to keep the porosity of the active material layer 12 within the above range, it is preferable to sufficiently infiltrate the plating solution into the coating film. In addition to this, it is preferable to make the conditions for depositing the metal material 13 appropriate by electrolytic plating using the plating solution. The plating conditions include the composition of the mating bath, the pH of the plating bath, and the current density of electrolysis. Regarding the pH of the plating bath, it is preferable to adjust it to more than 7 and 11 or less, particularly 7.1 or more and 11 or less. By keeping the pH within this range, the dissolution of the active material particles 12a is suppressed, the surface of the particles 12a is cleaned, and plating on the particle surfaces is promoted. Moderate voids are formed. The pH value is measured at the plating temperature.
[0024] めっきの金属材料 13として銅を用いる場合には、ピロリン酸銅浴を用いることが好ま しい。また該金属材料としてニッケルを用いる場合には、例えばアルカリニッケル浴を 用いることが好ましい。特に、ピロリン酸銅浴を用いると、活物質層 12を厚くした場合 であっても、該層の厚み方向全域にわたって、前記の空隙を容易に形成し得るので 好ましい。また、活物質の粒子 12aの表面には金属材料 13が析出し、且つ該粒子 1 2a間では金属材料 13の析出が起こりづらくなるので、該粒子 12a間の空隙が首尾良 く形成されるという点でも好ましい。ピロリン酸銅浴を用いる場合、その浴組成、電解 条件及び ρΗは次の通りであることが好まし 、。 [0024] When copper is used as the metal material 13 for plating, it is preferable to use a copper pyrophosphate bath. When nickel is used as the metal material, for example, an alkaline nickel bath is preferably used. In particular, it is preferable to use a copper pyrophosphate bath because the voids can be easily formed over the entire thickness direction of the layer even when the active material layer 12 is thickened. Further, since the metal material 13 is deposited on the surface of the active material particles 12a and the metal material 13 is less likely to be deposited between the particles 12a, the voids between the particles 12a are successfully formed. This is also preferable. When a copper pyrophosphate bath is used, the bath composition, electrolysis conditions and ρ 及 び are preferably as follows.
'ピロリン酸銅三水和物: 85〜120gZl  'Copper pyrophosphate trihydrate: 85-120gZl
-ピ13ジン カジクム: 300〜600g/l  -Pig 13 gin Kazikum: 300-600g / l
'硝酸カリウム: 15〜65gZl  'Potassium nitrate: 15-65gZl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: l ~ 7AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH7. 1〜9. 5になるように調整する。  • pH: Add ammonia water and polyphosphoric acid to adjust the pH to 7.1 to 9.5.
[0025] ピロリン酸銅浴を用いる場合には特に、 P Oの重量と Cuの重量との比(P O ZCu [0025] Especially when using a copper pyrophosphate bath, the ratio of the weight of PO to Cu (P O ZCu
2 7 2 7 2 7 2 7
)で定義される P比が 5〜12であるものを用いることが好ましい。 P比が 5未満のものを 用いると、活物質の粒子 12aを被覆する金属材料 13が厚くなる傾向となり、粒子 12a 間に所望の空隙を形成させづらい場合がある。また、 P比が 12を超えるものを用いる と、電流効率が悪くなり、ガス発生などが生じやすくなることから生産安定性が低下す る場合がある。更に好ましいピロリン酸銅浴として、 P比が 6. 5〜10. 5であるものを 用いると、活物質の粒子 12a間に形成される空隙のサイズ及び数力 活物質層 12内 でのポリマーゲル電解質の流通に非常に有利になる。 It is preferable to use one having a P ratio defined by When the P ratio is less than 5, the metal material 13 covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a. In addition, if a P ratio exceeding 12 is used, the current efficiency is deteriorated and gas generation is likely to occur, which may reduce the production stability. When a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used, the size of the voids formed between the active material particles 12a and the number of polymer gels in the active material layer 12 This is very advantageous for electrolyte distribution.
[0026] アルカリニッケル浴を用いる場合には、その浴組成、電解条件及び pHは次の通り であることが好ましい。 [0026] When an alkaline nickel bath is used, the bath composition, electrolysis conditions, and pH are preferably as follows.
'硫酸ニッケル: 100〜250gZl  'Nickel sulfate: 100-250gZl
'塩化アンモ-ゥム: 15〜30gZl 'ホウ酸: 15〜45gZl 'Ammonium chloride: 15-30gZl 'Boric acid: 15-45gZl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: l ~ 7AZdm 2
• pH: 25重量0 /0アンモニア水: 100〜300gZlの範囲で ρΗ8〜 11となるように調整 する。 • pH: 25 weight 0/0 aqueous ammonia: 100~300GZl adjusted to be Roita8~ 11 in the range of.
このアルカリニッケル浴と前述のピロリン酸銅浴とを比べると、ピロリン酸銅浴を用い た場合の方が活物質層 12内に適度な空隙が形成される傾向があり、負極の長寿命 化を図りやす 、ので好まし 、。  When this alkaline nickel bath and the above-described copper pyrophosphate bath are compared, there is a tendency that moderate voids are formed in the active material layer 12 when the copper pyrophosphate bath is used, thereby prolonging the life of the negative electrode. It's easy to draw, so I like it.
[0027] 前記の各種めつき浴に、タンパク質、活性硫黄化合物、セルロース等の銅箔製造 用電解液に用いられる各種添加剤を加えることにより、金属材料 13の特性を適宜調 整することも可能である。  [0027] It is also possible to appropriately adjust the characteristics of the metal material 13 by adding various additives used in electrolyte solutions for producing copper foil such as proteins, active sulfur compounds, and cellulose to the various baths described above. It is.
[0028] 本実施形態の負極 10にお ヽては、水銀圧入法で測定された活物質層 12の空隙 量力も算出された空隙率が前記の範囲内であることにカ卩えて、 lOMPaにおいて水 銀圧入法で測定された活物質層 12の空隙量力も算出された空隙率が 10〜40%で あることが好ましい。また、 IMPaにおいて水銀圧入法で測定された活物質層 12の 空隙量から算出された空隙率が 0. 5〜15%であることが好ましい。更に、 5MPaに おいて水銀圧入法で測定された活物質層 12の空隙量力も算出された空隙率が 1〜 35%であることが好ましい。上述した通り、水銀圧入法よる測定では、水銀の圧入条 件を次第に高くしていく。そして低圧の条件下では大きな空隙に水銀が圧入され、高 圧の条件下では小さな空隙に水銀が圧入される。従って圧力 IMPaにおいて測定さ れた空隙率は、主として大きな空隙に由来するものである。一方、圧力 lOMPaにお V、て測定された空隙率は、小さな空隙の存在も反映されたものである。  [0028] For the negative electrode 10 of the present embodiment, in view of the fact that the calculated void ratio of the active material layer 12 measured by the mercury intrusion method is within the above range, in lOMPa It is preferable that the calculated void ratio of the active material layer 12 measured by the mercury injection method is 10 to 40%. Further, it is preferable that the porosity calculated from the void amount of the active material layer 12 measured by the mercury intrusion method in IMPa is 0.5 to 15%. Furthermore, it is preferable that the porosity calculated from the porosity force of the active material layer 12 measured by the mercury intrusion method at 5 MPa is 1 to 35%. As described above, the mercury intrusion conditions are gradually increased in the mercury intrusion measurement. Under low pressure conditions, mercury is injected into large voids, and under high pressure conditions, mercury is injected into small voids. Therefore, the porosity measured at pressure IMPa is mainly derived from large voids. On the other hand, the porosity measured at pressure lOMPa V reflects the presence of small voids.
[0029] 先に述べた通り、活物質層 12は、好適には粒子 12a及び結着剤を含むスラリーを 塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めつきを行い、 粒子 12a間に金属材料 13を析出させることで形成されるものである。従って、図 2に 示すように、上述した大きな空隙 S1は、主として粒子 12a間の空間に由来するもので あり、一方、上述した小さな空隙 S2は、主として粒子 12aの表面に析出する金属材 料 13の結晶粒 14間の空間に由来するものであると考えられる。大きな空隙 S1は、主 として粒子 12aの膨張収縮に起因する応力を緩和するための空間としての働きを有 している。一方、小さな空隙 S2は、主としてポリマーゲル電解質を粒子 12aに供給す る経路としての働きを有している。これら大きな空隙 S1と小さな空隙 S2の存在量をバ ランスさせることで、サイクル特性が一層向上する。 [0029] As described above, the active material layer 12 is preferably prepared by subjecting a coating film obtained by applying and drying a slurry containing particles 12a and a binder to electrolysis using a predetermined plating bath. It is formed by depositing and depositing the metal material 13 between the particles 12a. Therefore, as shown in FIG. 2, the above-mentioned large void S1 is mainly derived from the space between the particles 12a, while the small void S2 described above is mainly a metal material that precipitates on the surface of the particle 12a. It is thought that it originates in the space between the crystal grains 14 of. Large void S1 is the main As a space to relieve stress caused by the expansion and contraction of the particles 12a. On the other hand, the small void S2 mainly serves as a route for supplying the polymer gel electrolyte to the particles 12a. By balancing the abundance of these large voids S1 and small voids S2, the cycle characteristics are further improved.
[0030] 負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向 上させにくぐ逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向に ある。これらを勘案すると、活物質層 12の厚みは、好ましくは 10〜40 /ζ πι、更に好ま しくは 15〜30 μ m、一層好ましくは 18〜25 μ mである。  [0030] If the amount of the active material relative to the entire negative electrode is too small, it is difficult to sufficiently increase the energy density of the battery. On the other hand, if the amount is too large, the strength tends to decrease and the active material tends to fall off. Considering these, the thickness of the active material layer 12 is preferably 10 to 40 / ζ πι, more preferably 15 to 30 μm, and still more preferably 18 to 25 μm.
[0031] 本実施形態の負極 10においては、活物質層 12の表面に薄い表面層(図示せず) が形成されていてもよい。また負極 10はそのような表面層を有していなくてもよい。表 面層の厚みは、 0. 25 μ m以下、好ましくは 0. 1 μ m以下という薄いものである。表面 層の厚みの下限値に制限はない。表面層を形成することで、微粉化した活物質の粒 子 12aの脱落を一層防止することができる。尤も、本実施形態においては、活物質層 12の空隙率を上述した範囲内に設定することによって、表面層を用いなくても微粉 化した活物質の粒子 12aの脱落を十分に防止することが可能である。  In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer. The thickness of the surface layer is as thin as 0.25 μm or less, preferably 0.1 μm or less. There is no limit to the lower limit of the thickness of the surface layer. By forming the surface layer, the pulverized active material particles 12a can be further prevented from falling off. However, in this embodiment, by setting the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the pulverized active material particles 12a from dropping without using a surface layer. Is possible.
[0032] 負極 10が前記の厚みの薄 、表面層を有するか又は該表面層を有して ヽな 、こと によって、負極 10を用いて二次電池を組み立て、当該電池の初期充電を行うときの 過電圧を低くすることができる。このことは、二次電池の充電時に負極 10の表面でリ チウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の 原因となるデンドライトの発生につながる。  [0032] When the negative electrode 10 is thin or has a surface layer or has the surface layer, a secondary battery is assembled using the negative electrode 10, and the battery is initially charged. The overvoltage can be reduced. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
[0033] 負極 10が表面層を有している場合、該表面層は活物質層 12の表面を連続又は不 連続に被覆している。表面層が活物質層 12の表面を連続に被覆している場合、該 表面層は、その表面にお!、て開孔し且つ活物質層 12と通ずる多数の微細空隙(図 示せず)を有して 、ることが好ま 、。微細空隙は表面層の厚さ方向へ延びるように 表面層中に存在して 、ることが好ま 、。微細空隙はポリマーゲル電解質の流通が 可能なものである。微細空隙の役割は、活物質層 12内にポリマーゲル電解質を供給 すること〖こある。微細空隙は、負極 10の表面を電子顕微鏡観察により平面視したとき 、金属材料 13で被覆されている面積の割合、即ち被覆率が 95%以下、特に 80%以 下、とりわけ 60%以下となるような大きさであることが好ましい。 When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer continuously covers the surface of the active material layer 12, the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12. Have, prefer to have. It is preferable that the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the polymer gel electrolyte to circulate. The role of the fine voids is to supply the polymer gel electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by an electron microscope, the fine voids are the proportion of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less. In particular, the size is preferably 60% or less.
[0034] 表面層は、リチウム化合物の形成能の低!、金属材料力 構成されて 、る。この金属 材料は、活物質層 12中に存在している金属材料 13と同種でもよぐ或いは異種でも よい。また表面層は、異なる 2種以上の金属材料力 なる 2層以上の構造であっても よい。負極 10の製造の容易さを考慮すると、活物質層 12中に存在している金属材料 13と、表面層を構成する金属材料とは同種であることが好ましい。 [0034] The surface layer is composed of a metal compound having a low lithium compound forming ability. This metal material may be the same as or different from the metal material 13 present in the active material layer 12. The surface layer may have a structure of two or more layers having two or more different metal material forces. Considering the ease of production of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
[0035] 本実施形態の負極 10は、活物質層 12中の空隙率が高い値になっているので、折 り曲げに対する耐性が高いものである。具体的には、 JIS C 6471に従い測定され た MIT耐折性が好ましくは 30回以上、更に好ましくは 50回以上という高耐折性を有 している。耐折性が高いことは、負極 10を折り畳んだり卷回したりして電池容器内に 収容する場合に、負極 10に折れが生じに《なることから極めて有利である。 MIT耐 折装置としては、例えば東洋精機製作所製の槽付フィルム耐折疲労試験機 (品番 54 9)が用いられ、屈曲半径 0. 8mm、荷重 0. 5kgf、サンプルサイズ 15 X 150mmで 柳』定することができる。 [0035] The negative electrode 10 of the present embodiment has high resistance to bending because the porosity in the active material layer 12 is a high value. Specifically, the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, more preferably 50 times or more. The high folding resistance is extremely advantageous since the negative electrode 10 is folded when the negative electrode 10 is folded or wound and accommodated in the battery container. As the MIT folding device, for example, Toyo Seiki Seisakusho's film folding fatigue tester (Part No. 54 9) is used, with a bending radius of 0.8 mm, a load of 0.5 kgf, and a sample size of 15 X 150 mm. can do.
[0036] 負極 10における集電体 11としては、高分子電解質二次電池用負極の集電体とし て従来用いられているものと同様のものを用いることができる。集電体 11は、先に述 ベたリチウム化合物の形成能の低 、金属材料力も構成されて 、ることが好ま 、。そ のような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等か らなることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可 能である。更に集電体として、常態抗張力 (JIS C 2318)が好ましくは 500MPa以 上である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を 形成したものを用いることもできる。更に集電体として常態伸度 CFIS C 2318)が 4 %以上のものを用いることも好ま 、。抗張力が低 、と活物質が膨張した際の応力に よりシヮが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからであ る。これらの集電体を用いることで、上述した負極 10の耐折性を一層高めることが可 能となる。集電体 11の厚みは、負極 10の強度維持と、エネルギー密度向上とのバラ ンスを考慮すると、 9〜35 /ζ πιであることが好ましい。なお、集電体 11として銅箔を使 用する場合には、クロメート処理や、トリァゾール系化合物及びイミダゾール系化合物 などの有機化合物を用いた防鲭処理を施しておくことが好ましい。 [0036] The current collector 11 in the negative electrode 10 may be the same as that conventionally used as the current collector of the negative electrode for a polymer electrolyte secondary battery. It is preferable that the current collector 11 has a low ability to form a lithium compound as described above and has a metal material strength. Examples of such metal materials are as described above. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is also preferable to use a current collector having a normal elongation CFIS C 2318) of 4% or more. This is because when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack. By using these current collectors, it is possible to further improve the folding resistance of the negative electrode 10 described above. The thickness of the current collector 11 is preferably 9 to 35 / ζ πι in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density. When copper foil is used as the current collector 11, chromate treatment, triazole compound and imidazole compound are used. It is preferable to carry out an antifungal treatment using an organic compound such as
[0037] 次に、本実施形態の負極 10の好ましい製造方法について、図 3を参照しながら説 明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体 11上に塗膜を形成し、次いでその塗膜に対して電解めつきを行う。  Next, a preferred method for producing the negative electrode 10 of the present embodiment will be described with reference to FIG. In this production method, a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then the coating is electrolyzed.
[0038] 先ず図 3 (a)に示すように集電体 11を用意する。そして集電体 11上に、活物質の 粒子 12aを含むスラリーを塗布して塗膜 15を形成する。集電体 11における塗膜形成 面の表面粗さは、輪郭曲線の最大高さで 0. 5〜4 /ζ πιであることが好ましい。最大高 さが 4 mを超えると塗膜 15の形成精度が低下する上、凸部に浸透めつきの電流集 中が起こりやすい。最大高さが 0. を下回ると、活物質層 12の密着性が低下し やすい。活物質の粒子 12aとしては、好適に上述した粒度分布及び平均粒径を有す るものを用いる。  First, a current collector 11 is prepared as shown in FIG. Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15. The surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 / ζ πι at the maximum height of the contour curve. When the maximum height exceeds 4 m, the accuracy of forming the coating film 15 is reduced, and current concentration tends to occur at the protrusions. When the maximum height is less than 0, the adhesion of the active material layer 12 tends to decrease. As the active material particles 12a, those having the above-described particle size distribution and average particle size are preferably used.
[0039] スラリーは、活物質の粒子の他に、結着剤及び希釈溶媒などを含んで!/、る。またス ラリーはアセチレンブラックやグラフアイトなどの導電性炭素材料の粒子を少量含ん でいてもよい。特に、活物質の粒子 12aがシリコン系材料力も構成されている場合に は、該活物質の粒子 12aの重量に対して導電性炭素材料を 1〜3重量%含有するこ とが好ましい。導電性炭素材料の含有量が 1重量%未満であると、スラリーの粘度が 低下して活物質の粒子 12aの沈降が促進されるため、良好な塗膜 15及び均一な空 隙を形成しにくくなる。また導電性炭素材料の含有量が 3重量%を超えると、該導電 性炭素材料の表面にめっき核が集中し、良好な被覆を形成しに《なる。  [0039] In addition to the active material particles, the slurry contains a binder and a diluting solvent. The slurry may also contain a small amount of conductive carbon material particles such as acetylene black and graphite. In particular, when the active material particles 12a also have a silicon-based material force, it is preferable that the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a. When the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and a uniform void. Become. On the other hand, if the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and a good coating is formed.
[0040] 結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビ-リデン(PVDF)、 ポリエチレン(PE)、エチレンプロピレンジェンモノマー(EPDM)などが用いられる。 希釈溶媒としては N—メチルピロリドン、シクロへキサンなどが用いられる。スラリー中 における活物質の粒子 12aの量は 30〜70重量%程度とすることが好ましい。結着剤 の量は 0. 4〜4重量%程度とすることが好ましい。これらに希釈溶媒をカ卩えてスラリー とする。  [0040] As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene monomer (EPDM), or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilute solvent is added to these to form a slurry.
[0041] 形成された塗膜 15は、粒子 12a間に多数の微小空間を有する。塗膜 15が形成さ れた集電体 11を、リチウム化合物の形成能の低 ヽ金属材料を含むめっき浴中に浸 漬する。めっき浴への浸漬によって、めっき液が塗膜 15内の前記微小空間に浸入し て、塗膜 15と集電体 11との界面にまで達する。その状態下に電解めつきを行い、め つき金属種を粒子 12aの表面に析出させる(以下、このめつきを浸透めつきともいう)。 浸透めつきは、集電体 11を力ソードとして用い、めっき浴中にアノードとしての対極を 浸漬し、両極を電源に接続して行う。 [0041] The formed coating film 15 has a large number of minute spaces between the particles 12a. The current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a metal material having a low ability to form a lithium compound. By immersion in the plating bath, the plating solution penetrates into the minute space in the coating film 15. And reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating). The penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
[0042] 浸透めつきによる金属材料の析出は、塗膜 15の一方の側力 他方の側に向力つて 進行させることが好ましい。具体的には、図 3 (b)ないし (d)に示すように、塗膜 15と 集電体 11との界面力も塗膜の表面に向けて金属材料 13の析出が進行するように電 解めつきを行う。金属材料 13をこのように析出させることで、活物質の粒子 12aの表 面を金属材料 13で首尾よく被覆することができると共に、金属材料 13で被覆された 粒子 12a間に空隙を首尾よく形成することができる。しかも、該空隙の空隙率を前述 した好まし 、範囲にすることが容易となる。  [0042] It is preferable that the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side. Specifically, as shown in FIGS. 3B to 3D, the interfacial force between the coating film 15 and the current collector 11 is also electrolyzed so that the deposition of the metal material 13 proceeds toward the coating film surface. Make a mess. By precipitating the metal material 13 in this way, the surface of the active material particles 12a can be successfully coated with the metal material 13, and a void is successfully formed between the particles 12a coated with the metal material 13. can do. In addition, the porosity of the voids can be easily set within the preferred range described above.
[0043] 前述のように金属材料 13を析出させるための浸透めつきの条件には、めっき浴の 組成、めっき浴の pH、電解の電流密度などがある。このような条件については既に 述べた通りである。  [0043] As described above, the conditions for the penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above.
[0044] 図 3 (b)ないし (d)に示されているように、塗膜 15と集電体 11との界面から塗膜の表 面に向けて金属材料 13の析出が進行するようにめつきを行うと、析出反応の最前面 部においては、ほぼ一定の厚みで金属材料 13のめつき核力もなる微小粒子 13aが 層状に存在している。金属材料 13の析出が進行すると、隣り合う微小粒子 13aどうし が結合して更に大きな粒子となり、更に析出が進行すると、該粒子どうしが結合して 活物質の粒子 12aの表面を連続的に被覆するようになる。  [0044] As shown in FIGS. 3 (b) to (d), the deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. When plating is performed, in the forefront portion of the precipitation reaction, fine particles 13a that have a substantially constant thickness and also have a nucleating force of the metal material 13 are present in layers. As the precipitation of the metal material 13 proceeds, the adjacent fine particles 13a are combined to form larger particles, and when the deposition proceeds further, the particles are combined to continuously cover the surface of the active material particles 12a. It becomes like this.
[0045] 浸透めつきは、塗膜 15の厚み方向全域に金属材料 13が析出した時点で終了させ る。めっきの終了時点を調節することで、活物質層 12の上面に表面層(図示せず)を 形成することができる。このようにして、図 3 (d)に示すように、目的とする負極が得ら れる。  [0045] The penetration staking is terminated when the metal material 13 is deposited in the entire thickness direction of the coating film 15. By adjusting the end point of plating, a surface layer (not shown) can be formed on the upper surface of the active material layer 12. In this way, the target negative electrode is obtained as shown in FIG. 3 (d).
[0046] 浸透めつき後、負極 10を防鲭処理することも好ましい。防鲭処理としては、例えば ベンゾトリァゾール、カルボキシベンゾトリァゾール、トリルトリァゾール等のトリァゾー ル系化合物及びイミダゾール等を用いる有機防鲭や、コバルト、ニッケル、クロメート 等を用いる無機防鲭を採用できる。 [0047] このようにして得られた負極 10は、例えばリチウムイオンポリマー二次電池等の高 分子電解質二次電池用の負極として好適に用いられる。この場合、電池の正極は、 正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤 を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、更に裁断、打ち 抜きすること〖こより得られる。正極の活物質層にはポリマーゲル電解質を予め含浸さ せ複合化しておく。正極活物質としては、リチウムニッケル複合酸ィ匕物、リチウムマン ガン複合酸化物、リチウムコバルト複合酸化物等の含リチウム金属複合酸化物を始 めとする従来公知の正極活物質が用いられる。また、正極活物質として、 LiCoOに [0046] After the penetration, the negative electrode 10 is preferably subjected to an antifouling treatment. As the antifungal treatment, for example, an organic antifungal using a triazole compound such as benzotriazole, carboxybenzotriazole, tolyltriazole and imidazole, or an inorganic protective using cobalt, nickel, chromate or the like can be employed. [0047] The negative electrode 10 thus obtained is suitably used as a negative electrode for a polymer electrolyte secondary battery such as a lithium ion polymer secondary battery. In this case, the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in a suitable solvent to prepare a positive electrode mixture, applying this to a current collector, drying, roll rolling, It can be obtained by pressing, cutting and punching. The active material layer of the positive electrode is previously impregnated with a polymer gel electrolyte to be combined. As the positive electrode active material, conventionally known positive electrode active materials such as lithium-containing metal composite oxides such as lithium nickel composite oxide, lithium mangan composite oxide, lithium cobalt composite oxide and the like are used. As a positive electrode active material, LiCoO
2 少なくとも Zrと Mgの両方を含有させたリチウム遷移金属複合酸ィ匕物と、層状構造を 有し、少なくとも Mnと Niの両方を含有するリチウム遷移金属複合酸化物と混合したも のも好ましく用いることができる。力かる正極活物質を用いることで充放電サイクル特 性及び熱安定性の低下を伴うことなぐ充電終止電圧を高めることが期待できる。正 極活物質の一次粒子径の平均値は 5 μ m以上 10 μ m以下であることが、充填密度と 反応面積との兼ね合いから好ましぐ正極に使用する結着剤の重量平均分子量は 3 50, 000以上 2, 000, 000以下のポリフツイ匕ビニリデンであること力好ましい。低温 環境での放電特性を向上させることが期待できるからである。  2 Also preferably used is a lithium transition metal composite oxide containing at least both Zr and Mg and a lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni be able to. The use of a positive electrode active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability. The average primary particle diameter of the positive electrode active material is 5 μm or more and 10 μm or less, and the weight average molecular weight of the binder used for the positive electrode is preferably 3 in view of the balance between packing density and reaction area. Preferably, the polyvinylideneidene is from 50,000 to 2,000,000. This is because it can be expected to improve the discharge characteristics in a low temperature environment.
[0048] ポリマーゲル電解質は、マトリクスポリマー、有機溶媒及びリチウム塩を含むもので ある。マトリクスポリマーとしては、ポリエチレンオキサイド、ポリプロピレンオキサイド、 ポリテトラフルォロエチレン、ポリフッ化ビ-リデン、ポリフッ化ビュル、ポリアクリル酸、 ポリメタクリル酸、ポリアクリロニトリル、ポリカーボネート、ポリエチレングリコール等を 用いることができる。リチウム塩としては、 LiCIO、 LiAlCl、 LiPF、 LiAsF、 LiSb [0048] The polymer gel electrolyte includes a matrix polymer, an organic solvent, and a lithium salt. As the matrix polymer, polyethylene oxide, polypropylene oxide, polytetrafluoroethylene, polyvinylidene fluoride, polyfluoride bur, polyacrylic acid, polymethacrylic acid, polyacrylonitrile, polycarbonate, polyethylene glycol and the like can be used. Lithium salts include LiCIO, LiAlCl, LiPF, LiAsF, LiSb
4 4 6 6 4 4 6 6
F、 LiBF、 LiSCN、 LiCl、 LiBr、 Lil、 LiCF SO、 LiC F SO等が例示される。有Examples thereof include F, LiBF, LiSCN, LiCl, LiBr, Lil, LiCFSO, and LiCFSO. Yes
6 4 3 3 4 9 3 6 4 3 3 4 9 3
機溶媒としては、例えばエチレンカーボネート、ジェチルカーボネート、ジメチルカ一 ボネート、プロピレンカーボネート、ブチレンカーボネート、 y ブチロラタトン等が挙 げられる。  Examples of the organic solvent include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, y-butyrolatone, and the like.
実施例  Example
[0049] 以下、実施例により本発明を更に詳細に説明する。し力しながら本発明の範囲はか 力る実施例に制限されるものではな 、。 [0050] 〔実施例 1〕 [0049] Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited to such embodiments. [Example 1]
厚さ 18 /z mの電解銅箔力もなる集電体を室温で 30秒間酸洗浄した。処理後、 15 秒間純水洗浄した。集電体上に Siの粒子を含むスラリーを膜厚 15 mになるように 塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジエンラバー (結着剤) :アセチレンブラック = 100 : 1. 7 : 2 (重量比)であった。 Siの粒子の平均粒径 D は 2  A current collector having an electrolytic copper foil strength of 18 / zm in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied on the current collector to a thickness of 15 m to form a coating film. The composition of the slurry was particles: styrene butadiene rubber (binder): acetylene black = 100: 1.7: 2 (weight ratio). The average particle size D of Si particles is 2
50 50
. 5 /z mであった。粒度分布 D ZD は 0. 07であった。平均粒径 D 及び粒度分布 5 / z m. The particle size distribution D ZD was 0.07. Average particle size D and particle size distribution
10 90 50  10 90 50
D ZD は、 日機装 (株)製のマイクロトラック粒度分布測定装置 (No. 9320-X10 D ZD is a microtrack particle size distribution measuring instrument (No. 9320-X10) manufactured by Nikkiso Co., Ltd.
10 90 10 90
0)を使用して測定した。  0).
[0051] 塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電 解により、塗膜に対して銅の浸透めつきを行い、活物質層を形成した。電解の条件は 以下の通りとした。陽極には DSEを用いた。電源は直流電源を用いた。 [0051] The current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition, and by electrolysis, copper penetrated into the coating film to form an active material layer. did. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
'ピロリン酸銅三水和物: 105gZl  'Copper pyrophosphate trihydrate: 105gZl
•ピロリン酸カリウム: 450g/l  • Potassium pyrophosphate: 450g / l
'硝酸カリウム: 30gZl  'Potassium nitrate: 30gZl
•P比: 7. 7  • P ratio: 7.7
'浴温度: 50°C  'Bath temperature: 50 ° C
•電流密度: 3AZdm2 • Current density: 3AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH8. 2になるように調整した。  • pH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.
[0052] 浸透めつきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させ、水 洗、ベンゾトリアゾール (BTA)による防鲭処理を施して目的とする負極を得た。 [0052] The penetration staking was terminated when copper was deposited over the entire thickness direction of the coating film, and washed with water and subjected to an anti-bacterial treatment with benzotriazole (BTA) to obtain a target negative electrode.
[0053] 〔実施例 2〜5〕 [Examples 2 to 5]
Siの粒子として、表 1に示す平均粒径 D 及び粒度分布 D /Ό を有するものを用  Si particles with the average particle size D and particle size distribution D / Ό shown in Table 1 are used.
50 10 90  50 10 90
いる以外は実施例 1と同様にして負極を得た。  A negative electrode was obtained in the same manner as in Example 1 except that.
[0054] 〔比較例 1及び 2〕 [Comparative Examples 1 and 2]
Siの粒子として、表 1に示す平均粒径 D 及び粒度分布 D /Ό を有するものを用  Si particles with the average particle size D and particle size distribution D / Ό shown in Table 1 are used.
50 10 90  50 10 90
いた。また、実施例 1で用いたピロリン酸銅浴に代えて、以下の組成を有する硫酸銅 の浴を用いた。電流密度は 5AZdm2、浴温は 40°Cであった。陽極には DSE電極を 用い た。電源は直流電源を用いた。これら以外は実施例 1と同様にして負極を得た。
Figure imgf000017_0001
It was. Further, in place of the copper pyrophosphate bath used in Example 1, a copper sulfate bath having the following composition was used. The current density was 5AZdm 2 and the bath temperature was 40 ° C. DSE electrode is used for anode It was. A DC power source was used as the power source. A negative electrode was obtained in the same manner as Example 1 except for these.
Figure imgf000017_0001
[0055] 〔比較例 3及び 4〕  [Comparative Examples 3 and 4]
Siの粒子として、表 1に示す平均粒径 D 及び粒度分布 D /Ό を有するものを用  Si particles with the average particle size D and particle size distribution D / Ό shown in Table 1 are used.
50 10 90  50 10 90
いる以外は実施例 1と同様にして負極を得た。  A negative electrode was obtained in the same manner as in Example 1 except that.
[0056] 〔評価〕 [0056] [Evaluation]
実施例及び比較例で得られた負極にっ 、て、水銀ポロシメータによる測定を行った 。その結果を表 1に示す。これとは別に、実施例及び比較例で得られた負極を用いて リチウムイオンポリマー二次電池を製造した。正極としては LiCo Ni Mn Oを用  The negative electrodes obtained in the examples and comparative examples were measured with a mercury porosimeter. The results are shown in Table 1. Separately, lithium ion polymer secondary batteries were manufactured using the negative electrodes obtained in Examples and Comparative Examples. LiCo Ni Mn O is used as the positive electrode
1/3 1/3 1/3 2 いた。正極活物質層に以下のポリマーゲル電解質を含浸複合ィ匕させた。ポリマーゲ ル電解質としては、ポリアクリロニトリルを 6重量0 /0、エチレンカーボネートを 40重量0 /0 、ジェチルカーボネートを 44重量%、 LiPFを 10重量%含むものを用いた。得られ 1/3 1/3 1/3 2 The positive electrode active material layer was impregnated with the following polymer gel electrolyte. The Porimage Le electrolyte, polyacrylonitrile 6 wt 0/0, 40 weight ethylene carbonate 0/0, the oxygenate chill carbonate 44 wt%, was used containing LiPF 10 wt%. Obtained
6  6
た二次電池について 100サイクルまでの容量維持率を測定した。容量維持率は、各 サイクル目の放電容量を測定し、それらの値を初期放電容量で除し、 100を乗じて算 出した。充電条件は 0. 5C、 4. 2Vで、定電流 *定電圧(CCCV)とした。放電条件は 0. 5C、 2. 7Vで、定電流(CC)とした。但し、 1サイクル目は 0. 05Cとし、 2〜4サイク ル目は 0. 1C、 5〜7サイクル目は 0. 5C、 8〜10サイクル目は 1Cとした。結果を表 1 に示す。  Further, the capacity retention rate up to 100 cycles was measured for the secondary battery. The capacity retention rate was calculated by measuring the discharge capacity at each cycle, dividing the value by the initial discharge capacity, and multiplying by 100. The charging conditions were 0.5C and 4.2V, and constant current * constant voltage (CCCV). The discharge conditions were 0.5C and 2.7V, and constant current (CC). However, the first cycle was set to 0.05C, the 2nd to 4th cycles were set to 0.1C, the 5th to 7th cycles were set to 0.5C, and the 8th to 10th cycles were set to 1C. The results are shown in Table 1.
[0057] [表 1] [0057] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
表 1に示す結果力も明らか 'なように、実施例の負極を備えた二次電池は、比較例の 負極を備えた二次電池に比ベてサイクル特性が良好であることが判る。なお表には 示していないが、各実施例の負極においては、表裏間において電気的導通がとれて いることが確認された。 As is clear from the results shown in Table 1, it can be seen that the secondary battery including the negative electrode of the example has better cycle characteristics than the secondary battery including the negative electrode of the comparative example. In the table Although not shown, in the negative electrode of each example, it was confirmed that electrical conduction was established between the front and back sides.
産業上の利用可能性 Industrial applicability
本発明によれば、流動性の低!、ポリマーゲル電解質であってもその流通が可能な 経路が活物質層内に必要且つ十分に形成され、ポリマーゲル電解質が活物質層内 へ容易に到達するので、活物質層の厚み方向全域が電極反応に利用される。その 結果、サイクル特性が向上する。その上、充放電によって該粒子が膨張収縮すること に起因して微粉ィ匕しても、その脱落が起こりづらくなる。  According to the present invention, a low-fluidity, even a polymer gel electrolyte can be circulated through the active material layer with a necessary and sufficient path so that the polymer gel electrolyte can easily reach the active material layer. Therefore, the entire region in the thickness direction of the active material layer is used for the electrode reaction. As a result, cycle characteristics are improved. In addition, even if fine particles are generated due to the expansion and contraction of the particles due to charge and discharge, the particles do not easily fall off.

Claims

請求の範囲 The scope of the claims
[1] 活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部がリチウム 化合物の形成能の低!ヽ金属材料で被覆されて!ヽると共に、該金属材料で被覆され た該粒子どうしの間に空隙が形成されており、該活物質層の空隙率が 15〜45%で あることを特徴とする高分子電解質二次電池用負極。  [1] An active material layer including particles of an active material is provided, and at least a part of the surface of the particles is covered with a metal material having a low ability to form a lithium compound and is coated with the metal material. A negative electrode for a polymer electrolyte secondary battery, wherein voids are formed between the particles, and the porosity of the active material layer is 15 to 45%.
[2] 前記金属材料が、前記活物質層の厚み方向全域にわたって前記粒子の表面に存 在している請求の範囲第 1項記載の高分子電解質二次電池用負極。 2. The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the metal material is present on the surface of the particles over the entire thickness direction of the active material layer.
[3] 前記粒子の粒度分布が、 D ZD で表して 0. 05〜0. 5である請求の範囲第 1項 [3] The particle size distribution of the particles according to claim 1, wherein the particle size distribution is 0.05 to 0.5 expressed by D ZD.
10 90  10 90
又は第 2項記載の高分子電解質二次電池用負極。  Or a negative electrode for a polymer electrolyte secondary battery according to item 2.
[4] 前記粒子の平均粒径が D で表して 0. 1〜5 /ζ πιである請求の範囲第 1項記載の [4] The average particle diameter of the particles according to claim 1, wherein the average particle diameter is 0.1 to 5 / ζ πι in terms of D.
50  50
高分子電解質二次電池用負極。  A negative electrode for a polymer electrolyte secondary battery.
[5] 前記活物質の粒子がシリコン系材料で構成されており、前記活物質層中に導電性 炭素材料を該活物質の粒子の重量に対して 1〜3重量%含む請求の範囲第 1項記 載の高分子電解質二次電池用負極。 [5] The active material particles are composed of a silicon-based material, and the active material layer includes a conductive carbon material in an amount of 1 to 3% by weight based on the weight of the active material particles. The negative electrode for a polymer electrolyte secondary battery as described in the paragraph.
[6] 前記金属材料の被覆が、 pHが 7超 11以下のめっき浴を用いた電解めつきによって 形成されている請求の範囲第 1項記載の高分子電解質二次電池用負極。 6. The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the coating of the metal material is formed by electrolytic plating using a plating bath having a pH of more than 7 and 11 or less.
[7] lOMPaにおいて水銀圧入法 (JIS R 1655)で測定された前記活物質層の空隙 率が 10〜40%である請求の範囲第 1項記載の高分子電解質二次電池用負極。 [7] The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the porosity of the active material layer measured by mercury porosimetry (JIS R 1655) at lOMPa is 10 to 40%.
[8] IMPaにおいて水銀圧入法 (JIS R 1655)で測定された前記活物質層の空隙率 が 0. 5〜15%である請求の範囲第 1項記載の高分子電解質二次電池用負極。 [8] The negative electrode for a polymer electrolyte secondary battery according to claim 1, wherein the porosity of the active material layer measured by the mercury intrusion method (JIS R 1655) at IMPa is 0.5 to 15%.
[9] 水銀圧入法 (JIS R 1655)で測定された前記活物質層の空隙の細孔径分布の 最大ピーク値が 100〜2000nmの間にある請求の範囲第 1項記載の高分子電解質 二次電池用負極。 [9] The polymer electrolyte according to claim 1, wherein the maximum peak value of the pore size distribution of the voids of the active material layer measured by mercury porosimetry (JIS R 1655) is between 100 and 2000 nm. Battery negative electrode.
[10] 請求の範囲第 1項記載の高分子電解質二次電池用負極を備えた高分子電解質二 次電池。  [10] A polymer electrolyte secondary battery comprising the negative electrode for a polymer electrolyte secondary battery according to claim 1.
PCT/JP2007/058245 2006-06-30 2007-04-16 Negative electrode for polymeric electrolyte secondary battery WO2008001537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-182831 2006-06-30
JP2006182831A JP2008016196A (en) 2006-06-30 2006-06-30 Negative electrode for polymer electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2008001537A1 true WO2008001537A1 (en) 2008-01-03

Family

ID=38845309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058245 WO2008001537A1 (en) 2006-06-30 2007-04-16 Negative electrode for polymeric electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2008016196A (en)
WO (1) WO2008001537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054969A (en) * 2009-11-04 2011-05-11 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998358B2 (en) * 2008-04-08 2012-08-15 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US9431146B2 (en) 2009-06-23 2016-08-30 A123 Systems Llc Battery electrodes and methods of manufacture
JP5515785B2 (en) * 2010-01-27 2014-06-11 ソニー株式会社 Lithium ion secondary battery and negative electrode for lithium ion secondary battery
JP5510084B2 (en) 2010-06-03 2014-06-04 ソニー株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system
EP3507844A1 (en) * 2016-08-30 2019-07-10 Wacker Chemie AG Anodes of lithium ion batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2005285581A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Cathode for lithium secondary battery and lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2005285581A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Cathode for lithium secondary battery and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054969A (en) * 2009-11-04 2011-05-11 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same

Also Published As

Publication number Publication date
JP2008016196A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP5192710B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
KR101113480B1 (en) Non-aqueous electrolyte secondary battery
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4944648B2 (en) Anode for non-aqueous electrolyte secondary battery
EP1947714A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2013519968A (en) Rechargeable electrochemical battery cell
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2008001537A1 (en) Negative electrode for polymeric electrolyte secondary battery
JP2009176703A (en) Negative electrode for nonaqueous electrolytic secondary battery
WO2008001536A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
JP5968870B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2008001541A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2009272243A (en) Nonaqueous electrolyte secondary battery
WO2009084329A1 (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
JP2008047307A (en) Nonaqueous electrolyte secondary battery
JP2008016191A (en) Anode for nonaqueous electrolyte secondary battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
JP2008251255A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2008018208A1 (en) Non-aqueous electrolyte secondary battery
JP2009283315A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2008001535A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
WO2008001568A1 (en) Rechargeable battery with nonaqueous electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741681

Country of ref document: EP

Kind code of ref document: A1