WO2007145165A1 - Stage apparatus, exposure apparatus and device manufacturing method - Google Patents
Stage apparatus, exposure apparatus and device manufacturing method Download PDFInfo
- Publication number
- WO2007145165A1 WO2007145165A1 PCT/JP2007/061721 JP2007061721W WO2007145165A1 WO 2007145165 A1 WO2007145165 A1 WO 2007145165A1 JP 2007061721 W JP2007061721 W JP 2007061721W WO 2007145165 A1 WO2007145165 A1 WO 2007145165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- moving member
- light
- exposure apparatus
- wafer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims 2
- 238000003384 imaging method Methods 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 82
- 230000003287 optical effect Effects 0.000 description 45
- 238000005286 illumination Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000201776 Steno Species 0.000 description 1
- WCQRWCFGZARAMR-UHFFFAOYSA-N [F].[F] Chemical compound [F].[F] WCQRWCFGZARAMR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7085—Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
Definitions
- the present invention relates to a stage apparatus and an exposure apparatus using this stage apparatus.
- the present invention relates to an exposure apparatus used in the lithographic process when manufacturing electronic devices such as semiconductor elements (integrated circuits) and liquid crystal display elements.
- a projection exposure apparatus is used in a lithographic process for manufacturing electronic devices such as semiconductor elements (integrated circuits, etc.) and liquid crystal display elements.
- a step-and-repeat reduction projection exposure apparatus that transfers a mask (or reticle) pattern image to each of a plurality of shot areas on a photosensitive substrate such as a wafer or a glass plate coated with a photosensitive agent. It is mainly used for such things as loose stenos) and step-and-scan type projection exposure equipment (so-called scanning stepper (also called scanner)).
- NA numerical aperture
- Patent Document 1 Japanese Patent Laid-Open No. 2004-128308
- An object of the present invention is to propose a stage apparatus, an exposure apparatus, and a device manufacturing method that can lighten a table that moves while holding a substrate.
- the base portion (63), the first moving member (62) movable relative to the base portion, the object (W) are held, and the first moving member And a second moving member (61) movable relative to the measuring device (100, 120) for measuring the characteristics of the energy beam (EL) irradiated to the object, at least a part of which is installed on the first moving member.
- a stage device is provided.
- the second moving member can be reduced in weight and size, so that the second moving member can be moved at high speed and with high accuracy.
- An exposure apparatus using a substrate stage is provided.
- the productivity (throughput) of the exposure apparatus can be improved.
- a method for manufacturing a device including a lithographic process wherein the manufacturing method using the exposure apparatus (EX) according to the second aspect is provided in accordance with the lithographic process. Provided.
- a high-performance device can be manufactured with high efficiency. The invention's effect
- the second moving member can be reduced in weight or size, and the second moving member can be moved with high accuracy and high speed. Is possible.
- the high throughput of the exposure apparatus can be achieved, so that a high-performance and inexpensive device can be manufactured.
- FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment.
- FIG. 2 is a perspective view showing a configuration of a wafer stage according to the embodiment.
- FIG. 3 is an enlarged perspective view of a wafer stage according to the embodiment.
- FIG. 4 is a cross-sectional view showing a schematic configuration of a wafer stage according to the embodiment.
- FIG. 5 is a flowchart showing an example of a manufacturing process of a microdevice according to an embodiment.
- FIG. 1 is a view showing the schematic arrangement of an exposure apparatus EX according to the embodiment of the present invention.
- the exposure apparatus EX transfers the pattern PA formed on the reticle R to each shot area on the wafer W via the projection optical system PL while synchronously moving the reticle R and the wafer W in the one-dimensional direction.
- This is a step-and-scan type scanning exposure apparatus, that is, a so-called scanning stepper.
- the exposure apparatus EX projects onto the wafer W the illumination optical system IL that illuminates the reticle R with the exposure light EL, the reticle stage RST that can move while holding the reticle R, and the exposure light EL that is emitted from the reticle R.
- the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction
- the direction perpendicular to the X-axis direction, Z-axis direction, and Y-axis direction (non-scanning direction) is the Y-axis direction.
- the rotation (inclination) directions around the X, Y, and Z axes are 0 X, 0 ⁇ , and 0 mm, respectively.
- the illumination optical system IL illuminates the reticle R supported by the reticle stage RST with the exposure light EL.
- the illumination optical system IL consists of an exposure light source that emits exposure light EL, an optical integrator that equalizes the illuminance of the exposure light EL that also emits the exposure light source power, a condenser lens that collects the exposure light EL from the optical integrator, and a relay lens.
- System, variable field stop (not shown) that sets the illumination area on reticle R by exposure light EL in a slit shape.
- the predetermined illumination area on the reticle R is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
- Illumination optical system IL force The emitted exposure light EL is, for example, a mercury lamp force emitted in the ultraviolet region (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm).
- ultraviolet region g-line, h-line, i-line
- KrF excimer laser light wavelength 248nm.
- ArF excimer laser light wavelength 193nm
- F laser light wavelength 1
- Vacuum ultraviolet light such as 57 nm is used.
- Reticle stage RST is movable while holding reticle R, and is a reticle holder. Hold reticle R by vacuum suction with RH.
- Reticle stage RST can be moved two-dimensionally in a plane perpendicular to optical axis AX of projection optical system PL, that is, in the XY plane, and can be slightly rotated in the ⁇ Z direction.
- Reticle stage RST is driven by a reticle stage drive unit RSTD such as a linear motor.
- Reticle stage drive unit RSTD is controlled by control device CONT. The detailed configuration of reticle holder RH will be described later.
- a movable mirror 51 is provided on the reticle stage RST.
- a laser interferometer 52 is provided at a position facing the moving mirror 51.
- the position of reticle R on reticle stage RST in the two-dimensional direction (XY direction) and the rotation angle in ⁇ Z direction (including rotation angles in 0 X and 0 Y directions in some cases) are measured in real time by laser interferometer 52. Is done.
- the measurement result of the laser interferometer 52 is output to the control device CONT.
- the control device CONT controls the position of the reticle R supported by the reticle stage RST by driving the reticle stage drive unit RSTD based on the measurement result of the laser interferometer 52.
- Projection optical system PL projects and exposes the pattern of reticle R onto wafer W at a predetermined projection magnification ⁇ .
- Projection optical system PL is composed of a plurality of optical elements including an optical element provided at the front end portion on the wafer W side. These optical elements are supported by a lens barrel PK.
- the projection optical system PL is a reduction system in which the projection magnification j8 is 1Z4, 1/5, or 1Z8, for example.
- the projection optical system PL may be any one of a reduction system, a unity magnification system, and an enlargement system.
- the optical element at the tip of the projection optical system PL is provided so as to be detachable (replaceable) with respect to the barrel PK.
- Wafer stage WST moves while supporting wafer W, and includes fine movement table 61, coarse movement table 62, wafer surface plate 63, and the like.
- Fine movement table 61 holds wafer W via wafer holder WH, and relative to coarse movement table 62 (or wafer surface plate 63) in the X-axis direction, Y-axis direction, Z-axis direction, 0 X-direction, 0 Small drive is possible in 6 degrees of freedom in the Y and 0Z directions.
- the coarse movement table 62 is movable in three degrees of freedom in the Y axis direction, the X axis direction, and the ⁇ Z direction while supporting the fine movement table 61 (substantially in the Z axis direction).
- Wafer surface plate 63 supports coarse movement table 62 so as to be movable in the XY plane.
- Wafer stage WST is a wafer stage drive unit such as a linear motor WSTD (X-axis linear Motor 70, Y-axis linear motor 80, etc., see Fig. 2).
- the wafer stage drive unit WSTD is controlled by the controller CONT.
- the controller CONT By driving the coarse motion table 62, the position in the XY direction of the wafer W (position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled.
- the X-axis direction, Y-axis direction, Z-axis direction (focus position), 0 X direction, 0 Y direction of the wafer W held by the wafer holder WH on the fine movement table 61
- the position in the 0Z direction is controlled with high accuracy.
- a movable mirror 53 is provided on wafer stage WST (fine movement table 61).
- a laser interferometer 54 is provided at a position facing the moving mirror 53.
- the position and rotation angle of wafer W on wafer stage W ST in the two-dimensional direction are measured in real time by laser interferometer 54, and the measurement result is output to controller CONT.
- the controller CONT is supported by the wafer stage WST by driving the wafer stage WST via the wafer stage drive unit WSTD based on the measurement result of the laser interferometer 54. Position in the Y axis direction and 0 Z direction.
- the exposure apparatus EX includes a focus detection system 56 that detects the position (focus position) of the surface of the wafer W with respect to the image plane of the projection optical system PL.
- the focus detection system detects substrate surface position information by measuring position information in the Z-axis direction of the substrate at each of the measurement points.
- the focus detection system 56 includes a light projecting unit 56A that projects detection light obliquely with respect to the surface of the wafer W, and a light receiving unit 56B that receives detection light (reflected light) reflected from the surface of the wafer W. It is equipped with.
- the light reception result of the light receiving unit 56B is output to the control device CONT.
- the control device CONT drives the wafer stage WST (fine adjustment table 61) via the wafer stage drive unit WSTD based on the detection result of the focus detection system 56, thereby determining the position of the surface of the wafer W.
- Depth of focus of the projection optical system PL Fit in. That is, fine movement table 61 controls the focus position and tilt angle of wafer W to adjust the surface of wafer W to the image plane of projection optical system PL by the autofocus method and the auto leveling method.
- FIG. 2 is a perspective view showing a configuration of wafer stage WST.
- Wafer stage WST is a wafer surface plate 63 provided on frame caster FC, and wafer stage WST which is arranged above wafer surface plate 63 and moves along upper surface 63A of wafer surface plate 63.
- a laser interferometer 54 that detects the position of these wafer stages WST, an X-axis linear motor 70 that drives the wafer stage WST, a Y-axis linear motor 80 (see the wafer stage drive unit WSTD in FIG. 1), etc. /!
- the frame caster FC is a member formed in a substantially flat plate shape, and is placed on the floor via a vibration removal unit (not shown).
- a wafer surface plate 63 is levitated and supported by a static gas bearing (not shown) (for example, an air bearing) via a predetermined clearance.
- Wafer surface plate 63 is levitated because the reaction force generated by the movement of wafer stage WST causes wafer surface plate 63 to move in the opposite direction as a counter mass, and this reaction force is canceled by the law of conservation of momentum. Because.
- Upper surface 63A of wafer surface plate 63 is finished with a very high degree of flatness, and serves as a guide surface when wafer stage WST moves along the XY plane.
- Wafer stage WST includes coarse movement table 62 arranged on wafer surface plate 63 and fine movement table 61 mounted on coarse movement table 62 via a 6-degree-of-freedom fine movement mechanism (not shown).
- the 6-degree-of-freedom fine movement mechanism actually includes an actuator 90 that supports the fine movement table 61 at a plurality of locations on the coarse movement table 62 (see FIG. 4).
- a voice coil motor or the like is preferably used as the actuator 90.
- the fine movement table 61 is slightly moved in six degrees of freedom in the X axis direction, Y axis direction, Z axis direction, 0 X direction, 0 Y direction, and 0 Z direction.
- the coarse motion table 62 is configured by a hollow member having a rectangular frame shape extending in the X-axis direction.
- a gas static pressure bearing (not shown) (for example, an air bearing) (not shown) is disposed on the lower surface of the coarse motion table 62, and the coarse motion table 62 is supported to float through a predetermined clearance.
- a magnet unit 72 having a permanent magnet group as a mover in the X-axis direction is provided inside the coarse motion table 62.
- An X-axis stator 74 extending in the X-axis direction is inserted into the internal space of the magnet unit 72.
- This X-axis stator 74 is located along the X-axis direction. It is composed of an armature unit containing a plurality of armature coils arranged at regular intervals.
- a moving magnet type X-axis reduced motor 70 for driving the wafer stage WST in the X-axis direction is constituted by the magnet unit 72 and the X-axis stator 74 including the armature unit.
- a moving coil type linear motor may be used instead of the moving magnet type linear motor.
- Movable elements 82 are fixed to both ends in the longitudinal direction of the X-axis stator 74, respectively.
- the mover 82 is composed of, for example, an armature unit containing a plurality of armature coils arranged at predetermined intervals along the Y-axis direction.
- Y axis driving stators 84 At both ends in the X direction of the wafer surface plate 63, Y axis driving stators 84 extending in the Y direction are disposed.
- the Y-axis stator 84 is configured as a magnetic pole unit having a plurality of permanent magnet group forces. Each of the above-described movers 82 is inserted into the Y-axis stator 84 inside.
- a moving coil type Y-axis linear motor 80 for driving wafer stage WST in the Y-axis direction is constituted by a mover 82 made of an electric unit and a Y-axis stator 84 made of a magnetic pole unit.
- a moving magnet type linear motor may be used instead of the moving coil type linear motor.
- wafer stage WST is driven in the X-axis direction by X-axis linear motor 70, and driven in the Y-axis direction integrally with X-axis linear motor 70 by a pair of Y-axis linear motors 80. Is done.
- the X-axis stator 74 can move in the ⁇ Z direction. Is also driven in the ⁇ Z direction.
- FIG. 3 is an enlarged perspective view of wafer stage WST
- FIG. 4 is a cross-sectional view showing a schematic configuration of wafer stage WST.
- a wafer holder WH for holding a wafer W having a diameter of 300 mm is provided in the approximate center on the fine movement table 61! /.
- a reference mark member FM (Fiducial Mark) is provided in the vicinity of the wafer holder WH.
- the reference mark member FM is a light transmissive member, and for example, cross marks are formed on the upper surface thereof at predetermined intervals.
- the coarse motion table 62 includes a first sensor 100 for measuring the characteristics (illuminance and illuminance unevenness) of the exposure light EL irradiated through the projection optical system PL, and a reticle R and a wafer W. Position A part of the second sensor 120 for measuring the exposure light EL is attached to measure the engagement.
- the first sensors 100 are an exposure amount sensor 102 that measures the illuminance (light quantity) of the exposure light EL that has passed through the projection optical system PL, and a wavefront aberration sensor 104 that measures the wavefront aberration of the projection optical system PL. And an illuminance unevenness sensor 106 that measures unevenness (light amount distribution) of the exposure light EL via the projection optical system PL, each of which is provided on the coarse motion table 62 via the adjustment stage 65.
- the first sensors 100 are not limited to a detector having a photodiode or a CCD.
- the first sensors 100 may include members necessary for various measurements such as a pinhole mirror or a diffraction grating disposed on the light receiving surface. Further, the first sensors 100 may be anything that measures the characteristics of the exposure light EL that is not limited to the exposure amount sensor 102, the wavefront aberration sensor 104, and the illuminance unevenness sensor 106. Further, the first sensors 100 may measure measurement light other than the exposure light EL.
- the coarse motion table 62 has a plurality of extension portions 62B in a part thereof.
- the first sensors 100 are arranged on the upper part of the extension part 62B via the surface adjustment mechanism 66. As a result, the first sensors 100 (the exposure amount sensor 102, the wavefront aberration sensor 104, and the illuminance unevenness sensor 106) are positioned on the side of the fine movement table 61! /.
- the surface adjustment mechanism 66 for example, three piezoelectric actuator cam mechanisms and the like are preferably used.
- the detection surface (upper surface) of the first sensors 100 can be adjusted in the Z-axis direction, the 0x direction, and the 0y direction.
- the surface adjustment mechanism 66 is used to make the detection surface of the first sensors 100 coincide with the image formation surface of the projection optical system PL. In other words, the exposure light EL is measured under the same conditions as during the wafer W exposure process.
- the second sensor 120 includes an incident light guide 122 that receives the exposure light EL, an intermediate light guide 124, an output light guide 126 that emits the exposure light EL, A light receiving sensor 128 (see FIG. 1) that receives the light emitted from the outgoing light guide 126; Further, like the first sensor 100, the second sensor 120 may measure measurement light other than the exposure light EL.
- the incident light guide unit 122 can receive light traveling in the Z-axis direction, has a configuration in which a plurality of optical lenses LI and L2 are arranged in a cylindrical member, and is located on the side of the fine movement table 61. Be placed.
- the projection light guide unit 126 has a configuration in which a reference mark member FM and an optical lens L3 are disposed in a cylindrical member that passes through the fine movement table 61 in the vertical direction (Z-axis direction).
- the intermediate light guide unit 124 guides light incident on the incident light guide unit 122 to the output light guide unit 126, and an optical fiber or a plurality of optical elements (not shown) are arranged in the cylindrical member.
- the intermediate light guide unit 124 is attached to the coarse motion table 62 by a clasp or the like, and has a configuration in which the incident light guide unit 122 is fixedly held at one end thereof. The other end of the intermediate light guide 124 is separated from the output light guide 126 (fine movement table 61).
- a gap is formed between the outgoing light guide 126 and the intermediate light guide 124. Light is sent from the intermediate light guide 124 to the output light guide 126 via the gap.
- the reason why a gap is provided between the intermediate light guide part 124 and the outgoing light guide part 126 is to prevent the movement of the fine movement table 61 from being hindered.
- a bellows or the like formed of a flexible material may be arranged around or near the gap so that dust or unnecessary external light does not enter.
- the light receiving sensor 128 is a sensor that is emitted in the Z-axis direction from the output light guide 126 (reference mark member FM), and receives light that passes through the projection optical system PL and the reticle R above the reticle R. It consists of a CCD camera.
- the exposure light EL enters the incident light guide 122, it is guided to the output light guide 126 via the intermediate light guide 124, and illuminates the reference mark member FM also with a downward force.
- the light that illuminates the reference mark member FM is emitted in the Z-axis direction, and is received by the light receiving sensor 128 via the projection optical system PL and the reticle R.
- alignment marks are formed on the outer periphery of the pattern PA of the reticle R.
- the light receiving sensor 128 acquires an image including the reference mark formed on the reference mark member FM and the alignment mark formed on the reticle R.
- the relative positions of the reticle R and the fine movement table 61 can be measured.
- reticle scale alignment is performed based on the result of this position measurement.
- the exposure light EL that has passed through the reticle R and the projection optical system PL is incident on the output light guide 126.
- the light receiving sensor 128 disposed near the wafer stage WST may receive light through the intermediate light guide 124 and the incident light guide 122.
- the first sensor 100 and the majority force of the second sensor 120 are provided on the coarse movement table 62. It has been. These sensors 100 and 120 are conventionally arranged on the upper surface of the fine movement table 61. Therefore, the fine movement table 61 can be reduced in weight and size accordingly. Further, the positioning accuracy of the fine movement table 61 can be improved.
- the present invention includes the following modifications.
- the interferometer system is used as the measurement system, and the present invention is not limited to the one that measures the position information of the mask stage and the substrate stage.
- a hybrid system equipped with both an encoder system that detects the scale (diffraction grating) provided on the upper surface of the substrate stage and an interferometer system is adopted, and the measurement results of the interferometer system are used to measure the measurement results of the encoder system. May be calibrated. You can also switch the interferometer system and encoder system, or use both to control the position of the board stage!
- two mask patterns are passed through a projection optical system. It is possible to apply an exposure apparatus that synthesizes on the substrate and performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
- the substrate not only a semiconductor wafer for manufacturing a semiconductor device but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an original mask or reticle used in an exposure apparatus ( Synthetic quartz, silicon wafers) or film members are applied.
- the substrate is a rectangle whose shape is not limited to a circle. Other shapes may be used.
- the exposure apparatus EX is disclosed in, for example, Japanese Patent Laid-Open No. 11-135400 (corresponding international publication 1999/23692) and Japanese Patent Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963).
- the measurement stage is movable independently of the substrate stage that holds the substrate, and includes a measurement member (for example, a reference member on which a reference mark is formed and Z or various photoelectric sensors). Can be provided.
- an electronic mask also referred to as a variable shaping mask, an active mask, or a pattern generator
- an electronic mask that generates a variable pattern
- a DMD DeformaDle Micro-mirror Device X ⁇ Digital Micro-mirror Device
- SLM Spatial Light Modulator
- the DMD has a plurality of reflective elements (micromirrors) that are driven based on predetermined electronic data.
- the plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD, and are driven by element units for exposure.
- the angle of the reflecting surface of each reflecting element is adjusted.
- the operation of the DMD can be controlled by a controller.
- the control device drives the DMD reflecting element based on electronic data (pattern information) corresponding to the pattern to be formed on the substrate, and patterns the exposure light emitted from the illumination system with the reflecting element.
- DMD eliminates the need for mask replacement work and mask alignment on the mask stage when the pattern is changed. become.
- the mask stage may not be provided, and the substrate may be simply moved in the X-axis and Y-axis directions by the substrate stage.
- An exposure apparatus using DMD is disclosed in, for example, JP-A-8-313842, JP-A-2004-304135, and US Pat. No. 6,778,257.
- the exposure apparatus EX may be an immersion type exposure apparatus that exposes the wafer W through this liquid while disposing a liquid between the projection optical system PL and the wafer W.
- the immersion method is disclosed in, for example, WO99Z49504 pamphlet.
- water pure water
- PFPE perfluorinated polyether
- fluorine Fluorine-based fluids such as oils or cedar oils
- a liquid having a higher refractive index with respect to exposure light than water for example, a refractive index of about 1.6 to 1.8 may be used.
- the application of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor, or an exposure apparatus for liquid crystal that exposes a liquid crystal display element pattern on a square glass plate. It can be widely applied to exposure equipment for manufacturing CCD), micromachines, MEMS, DNA chips, reticles or masks.
- the exposure apparatus EX of the present embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
- various optical systems are adjusted to achieve optical accuracy
- various mechanical systems are adjusted to achieve mechanical accuracy
- Various subsystem forces are adjusted to achieve electrical accuracy for the system.
- the assembly process to the exposure equipment involves mechanical connections, electrical circuit wiring connections, pneumatic circuit piping connections, etc. among various subsystems. included. It is a matter of course that there is an assembly process for each subsystem before the assembly process for the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
- the semiconductor device has a function / performance design step 201, a mask (reticle) production step 202 based on the design step, and a substrate (device substrate) ( Ueno, a glass plate) 203, a substrate processing step 204 for exposing the pattern of the reticle R onto the wafer W by the exposure apparatus of the above-described embodiment, a device assembly step (dicing process, bonding process, package) 205), inspection step 206 and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
A stage apparatus (WST) is provided with a base section (63); a first moving member (62) which can relatively move to the base section (63); a second moving member (61) which holds a subject (W) and can relatively move to the first moving member (62); and measuring apparatuses (100, 200) for measuring characteristics of an energy beam (EL) to be applied on the subject (W). At least a part of the measuring apparatuses (100, 120) is arranged on the first moving member (62).
Description
明 細 書 Specification
ステージ装置、露光装置及びデバイスの製造方法 Stage apparatus, exposure apparatus, and device manufacturing method
技術分野 Technical field
[0001] 本発明は、ステージ装置、またこのステージ装置を使った露光装置に係り、詳しくは The present invention relates to a stage apparatus and an exposure apparatus using this stage apparatus.
、半導体素子 (集積回路)、液晶表示素子などの電子デバイスを製造する際にリソグ ラフイエ程で用 ヽられる露光装置に関する。 The present invention relates to an exposure apparatus used in the lithographic process when manufacturing electronic devices such as semiconductor elements (integrated circuits) and liquid crystal display elements.
本願は、 2006年 6月 12日に出願された特願 2006— 162252号に基づき優先権 を主張し、その内容をここに援用する。 This application claims priority based on Japanese Patent Application No. 2006-162252 filed on June 12, 2006, the contents of which are incorporated herein by reference.
背景技術 Background art
[0002] 従来より、半導体素子 (集積回路等)、液晶表示素子等の電子デバイスを製造する リソグラフイエ程では、投影露光装置が用いられる。マスク(又はレチクル)のパターン の像を感光剤が塗布されたウェハ又はガラスプレート等の感光性基板上の複数のシ ヨット領域の各々に転写するステップ'アンド'リピート方式の縮小投影露光装置 (いわ ゆるステツノ )や、ステップ ·アンド'スキャン方式の投影露光装置( 、わゆるスキヤニン グ 'ステツパ (スキャナとも呼ばれる))など力 主として用いられている。 Conventionally, a projection exposure apparatus is used in a lithographic process for manufacturing electronic devices such as semiconductor elements (integrated circuits, etc.) and liquid crystal display elements. A step-and-repeat reduction projection exposure apparatus (so-called “repeat”) that transfers a mask (or reticle) pattern image to each of a plurality of shot areas on a photosensitive substrate such as a wafer or a glass plate coated with a photosensitive agent. It is mainly used for such things as loose stenos) and step-and-scan type projection exposure equipment (so-called scanning stepper (also called scanner)).
[0003] 投影露光装置では、高生産性のため、ステージ上のテーブルを非常に速く動かす 必要があり、テーブルを駆動するリニアモータの大型化が図られてきた。しかし、リニ ァモータを大型化すればするほど、電力消費および製造コストが増大する。 In a projection exposure apparatus, it is necessary to move a table on a stage very quickly for high productivity, and the size of a linear motor for driving the table has been increased. However, the larger the linear motor, the higher the power consumption and manufacturing cost.
[0004] その一方で、集積回路の高集積ィ匕によるパターンの微細化に伴って、より高!ヽ解像 力 (解像度)が年々要求されるようになり、そのために露光光の短波長化及び投影光 学系の開口数 (NA)の増大化が次第に進んできた。このことは、投影露光装置の解 像力を向上させる反面、焦点深度の狭小化を招き、テーブルの高さ (焦点深度方向) の調整が困難となる。また、テーブルを非常に速く動力ゝしながら、高精度にテーブル の移動方向の位置を調整する必要もある。 [0004] On the other hand, with the miniaturization of patterns due to high integration of integrated circuits, higher resolution (resolution) is required year by year. The numerical aperture (NA) of projection optical systems has been gradually increasing. This improves the resolving power of the projection exposure apparatus, but also reduces the depth of focus and makes it difficult to adjust the height of the table (in the depth of focus direction). It is also necessary to adjust the position of the table in the moving direction with high accuracy while powering the table very quickly.
[0005] これらの解決方策の一つとして、移動物体であるテーブルの軽量化がある。テープ ルを軽量化すれば、テーブルを高速に且つ高精度に動かすことが容易になる。この ため、軽量で高剛性のセラミックス製のテーブルが使われている。しかし、テーブルの
ウェハ又はガラスプレート等の感光性基板が大型化しており、テーブルの軽量化も 困難を極めている。 [0005] One solution to these problems is to reduce the weight of a table that is a moving object. If the weight of the table is reduced, it becomes easier to move the table at high speed and with high accuracy. For this reason, lightweight and highly rigid ceramic tables are used. But the table Photosensitive substrates such as wafers or glass plates are becoming larger, making it difficult to reduce the weight of the table.
特許文献 1:特開 2004— 128308号公報 Patent Document 1: Japanese Patent Laid-Open No. 2004-128308
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] 投影光学系を介してウェハ又はガラスプレート等の感光性基板に転写露光する際 には、エネルギビーム(露光光)の光量、ビームの光量ムラなどを測る必要がある。こ のため、テーブル上面には、様々なセンサおよびそれに付随する部品が取り付けら れている。また、投影光学系とテーブルとの位置関係を確認するためのセンサおよび それに付随する部品なども取り付けられている。これらのセンサ類の存在も、テープ ルの軽量ィヒ及び小型化を妨げる原因となっていた。 When performing transfer exposure on a photosensitive substrate such as a wafer or a glass plate via a projection optical system, it is necessary to measure the amount of energy beam (exposure light), unevenness in the amount of light of the beam, and the like. For this reason, various sensors and accompanying parts are attached to the upper surface of the table. In addition, a sensor for confirming the positional relationship between the projection optical system and the table and its accompanying parts are also attached. The presence of these sensors also prevented the light weight and miniaturization of the table.
[0007] 本発明は、基板を保持しつつ移動するテーブルを軽量ィ匕することができるステージ 装置、露光装置及びデバイスの製造方法を提案することを目的とする。 An object of the present invention is to propose a stage apparatus, an exposure apparatus, and a device manufacturing method that can lighten a table that moves while holding a substrate.
課題を解決するための手段 Means for solving the problem
[0008] 本発明に係るステージ装置、露光装置及びデバイスの製造方法では、実施の形態 に示す各図に対応付けした以下の構成を採用している。但し、各要素に付した括弧 付き符号はその要素の例示に過ぎず、各要素を限定するものではない。 [0008] In the stage apparatus, the exposure apparatus, and the device manufacturing method according to the present invention, the following configuration corresponding to each drawing shown in the embodiment is adopted. However, the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
[0009] 本発明の第 1態様に従えば、ベース部(63)と、ベース部に対して移動可能な第一 移動部材 (62)と、物体 (W)を保持すると共に第一移動部材に対して移動可能な第 二移動部材 (61)と、その少なくとも一部が第 1移動部材に設置され、物体に照射さ れるエネルギビーム (EL)の特性を計測する計測装置( 100, 120)とを備えるステー ジ装置が提供される。 According to the first aspect of the present invention, the base portion (63), the first moving member (62) movable relative to the base portion, the object (W) are held, and the first moving member And a second moving member (61) movable relative to the measuring device (100, 120) for measuring the characteristics of the energy beam (EL) irradiated to the object, at least a part of which is installed on the first moving member. A stage device is provided.
この第 1態様によれば、第二移動部材の軽量ィ匕及び小型化が可能となるので、第 二移動部材の高速且つ高精度な移動が実現できる。 According to the first aspect, the second moving member can be reduced in weight and size, so that the second moving member can be moved at high speed and with high accuracy.
[0010] 本発明の第 2態様に従えば、基板ステージ (WST)上に保持された基板 (W)に所 定の像を形成する露光装置 (EX)であって、第 1態様に係るステージ装置を基板ステ ージを用いる露光装置が提供される。この第 2態様によれば、露光装置の生産性 (ス ループット)を向上することができる。
[0011] 本発明の第 3態様に従えば、リソグラフイエ程を含むデバイスの製造方法であって、 前記リソグラフイエ程にぉ 、て第 2態様に係る露光装置 (EX)を用いる製造方法が提 供される。この発明によれば、高性能なデバイスを高効率に製造することができる。 発明の効果 [0010] According to the second aspect of the present invention, there is provided an exposure apparatus (EX) for forming a predetermined image on the substrate (W) held on the substrate stage (WST), the stage according to the first aspect. An exposure apparatus using a substrate stage is provided. According to the second aspect, the productivity (throughput) of the exposure apparatus can be improved. [0011] According to the third aspect of the present invention, there is provided a method for manufacturing a device including a lithographic process, wherein the manufacturing method using the exposure apparatus (EX) according to the second aspect is provided in accordance with the lithographic process. Provided. According to the present invention, a high-performance device can be manufactured with high efficiency. The invention's effect
[0012] 本発明の各態様によれば、計測装置が第一移動部材に設置されるため、第二移動 部材の軽量化又は小型化が可能となり、第二移動部材の高精度且つ高速な移動が 可能となる。 [0012] According to each aspect of the present invention, since the measuring device is installed on the first moving member, the second moving member can be reduced in weight or size, and the second moving member can be moved with high accuracy and high speed. Is possible.
したがって、露光装置の高スループットィ匕が図られるので、高性能で安価なデバイ スを製造することが可能となる。 Therefore, the high throughput of the exposure apparatus can be achieved, so that a high-performance and inexpensive device can be manufactured.
図面の簡単な説明 Brief Description of Drawings
[0013] [図 1]実施形態に係る露光装置の概略構成を示す図である。 FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment.
[図 2]実施形態に係るウェハステージの構成を示す斜視図である。 FIG. 2 is a perspective view showing a configuration of a wafer stage according to the embodiment.
[図 3]実施形態に係るウェハステージの拡大斜視図である。 FIG. 3 is an enlarged perspective view of a wafer stage according to the embodiment.
[図 4]実施形態に係るウェハステージの概略構成を示す断面図である。 FIG. 4 is a cross-sectional view showing a schematic configuration of a wafer stage according to the embodiment.
[図 5]実施形態に係るマイクロデバイスの製造工程の一例を示すフローチャート図で ある。 FIG. 5 is a flowchart showing an example of a manufacturing process of a microdevice according to an embodiment.
符号の説明 Explanation of symbols
[0014] 61· ··微動テーブル (第二移動部材) 62· ··粗動テーブル (第一移動部材) 63· ·· ウェハ定盤 (ベース部) 67· ··面調整機構 (位置調整装置) 90· ··ァクチユエ一タ( 駆動装置) 100…第一センサ類 (計測装置) 102…露光量センサ 104…波面収 差センサ 106…照度ムラセンサ 120…第二センサ (計測装置) 122· ··入射導光 部 (受光部) 124· ··中間導光部 (導光部) 126…出射導光部 (送光部) 128…受 光センサ(センサ部) EX…露光装置 EL…露光光(エネルギビーム) R…レチタ ル(マスク) PA…パターン WST…ウェハステージ (ステージ装置、基板ステージ) W…ウェハ (物体、感光基板、基板) [0014] 61 ··· Fine movement table (second moving member) 62 ··· Rough movement table (first moving member) 63 · · · Wafer surface plate (base) 67 · · Surface adjustment mechanism (position adjustment device 90 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··· Incident light guiding part (light receiving part) 124 ··· Intermediate light guiding part (light guiding part) 126 ... Output light guiding part (light transmitting part) 128 ... Light receiving sensor (sensor part) EX ... Exposure device EL ... Exposure light ( Energy beam) R ... Retal (mask) PA ... Pattern WST ... Wafer stage (stage device, substrate stage) W ... Wafer (object, photosensitive substrate, substrate)
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明に係るステージ装置、露光装置及びデバイスの製造方法の実施形態
について、図を参照して説明する。 Hereinafter, embodiments of a stage apparatus, an exposure apparatus, and a device manufacturing method according to the present invention will be described. Will be described with reference to the drawings.
図 1は、本発明の実施形態に係る露光装置 EXの概略構成を示す図である。 FIG. 1 is a view showing the schematic arrangement of an exposure apparatus EX according to the embodiment of the present invention.
[0016] 露光装置 EXは、レチクル Rとウェハ Wとを一次元方向に同期移動しつつ、レチクル Rに形成されたパターン P Aを投影光学系 PLを介してウェハ W上の各ショット領域に 転写するステップ ·アンド'スキャン方式の走査型露光装置、すなわち、いわゆるスキ ャニング ·ステツパである。 The exposure apparatus EX transfers the pattern PA formed on the reticle R to each shot area on the wafer W via the projection optical system PL while synchronously moving the reticle R and the wafer W in the one-dimensional direction. This is a step-and-scan type scanning exposure apparatus, that is, a so-called scanning stepper.
[0017] 露光装置 EXは、露光光 ELによりレチクル Rを照明する照明光学系 IL、レチクル R を保持して移動可能なレチクルステージ RST、レチクル Rから射出される露光光 EL をウェハ W上に投射する投影光学系 PL、ウェハ Wをウェハホルダ WHを介して保持 しつつ移動可能なウェハステージ WST、露光装置 EXを統括的に制御する制御装 置 CONT等を備える。 The exposure apparatus EX projects onto the wafer W the illumination optical system IL that illuminates the reticle R with the exposure light EL, the reticle stage RST that can move while holding the reticle R, and the exposure light EL that is emitted from the reticle R. Projection optical system PL, wafer stage WST that can move while holding wafer W via wafer holder WH, and control device CONT that controls exposure apparatus EX in an integrated manner.
[0018] なお、以下の説明において、投影光学系 PLの光軸 AXと平行な方向を Z軸方向、 Z 軸方向に垂直な平面内でレチクル Rとウェハ Wとの同期移動方向(走査方向)を X軸 方向、 Z軸方向及び Y軸方向に垂直な方向(非走査方向)を Y軸方向とする。また、 X 軸、 Y軸及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 0 ¥及び0∑方向とす る。 [0018] In the following description, the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction, and the synchronous movement direction (scanning direction) of the reticle R and the wafer W in a plane perpendicular to the Z-axis direction. The direction perpendicular to the X-axis direction, Z-axis direction, and Y-axis direction (non-scanning direction) is the Y-axis direction. The rotation (inclination) directions around the X, Y, and Z axes are 0 X, 0 ¥, and 0 mm, respectively.
[0019] 照明光学系 ILは、レチクルステージ RSTに支持されているレチクル Rを露光光 EL で照明するものである。照明光学系 ILは、露光光 ELを射出する露光用光源、露光 用光源力も射出された露光光 ELの照度を均一化するオプティカルインテグレータ、 オプティカルインテグレータからの露光光 ELを集光するコンデンサレンズ、リレーレン ズ系、露光光 ELによるレチクル R上の照明領域をスリット状に設定する可変視野絞り 等 (いずれも不図示)を備える。レチクル R上の所定の照明領域は、照明光学系 ILに より均一な照度分布の露光光 ELで照明される。 The illumination optical system IL illuminates the reticle R supported by the reticle stage RST with the exposure light EL. The illumination optical system IL consists of an exposure light source that emits exposure light EL, an optical integrator that equalizes the illuminance of the exposure light EL that also emits the exposure light source power, a condenser lens that collects the exposure light EL from the optical integrator, and a relay lens. System, variable field stop (not shown) that sets the illumination area on reticle R by exposure light EL in a slit shape. The predetermined illumination area on the reticle R is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
[0020] 照明光学系 IL力 射出される露光光 ELとしては、例えば水銀ランプ力 射出され る紫外域の輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光 (波長 248nm)等の遠 紫外光(DUV光)や、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 1 [0020] Illumination optical system IL force The emitted exposure light EL is, for example, a mercury lamp force emitted in the ultraviolet region (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm). Ultraviolet light (DUV light), ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 1)
2 2
57nm)等の真空紫外光 (VUV光)などが用いられる。 Vacuum ultraviolet light (VUV light) such as 57 nm) is used.
[0021] レチクルステージ RSTは、レチクル Rを保持して移動可能であって、レチクルホルダ
RHによりレチクル Rを真空吸着して保持して 、る。 [0021] Reticle stage RST is movable while holding reticle R, and is a reticle holder. Hold reticle R by vacuum suction with RH.
レチクルステージ RSTは、投影光学系 PLの光軸 AXに垂直な平面内、すなわち、 XY平面内で 2次元移動可能及び θ Z方向に微小回転可能である。 Reticle stage RST can be moved two-dimensionally in a plane perpendicular to optical axis AX of projection optical system PL, that is, in the XY plane, and can be slightly rotated in the θZ direction.
レチクルステージ RSTは、リニアモータ等のレチクルステージ駆動部 RSTDにより 駆動される。レチクルステージ駆動部 RSTDは、制御装置 CONTにより制御される。 なお、レチクルホルダ RHの詳細構成については、後述する。 Reticle stage RST is driven by a reticle stage drive unit RSTD such as a linear motor. Reticle stage drive unit RSTD is controlled by control device CONT. The detailed configuration of reticle holder RH will be described later.
[0022] レチクルステージ RST上には、移動鏡 51が設けられている。移動鏡 51に対向する 位置には、レーザ干渉計 52が設けられている。レチクルステージ RST上のレチクル Rの 2次元方向(XY方向)の位置及び θ Z方向の回転角(場合によっては 0 X、 0 Y 方向の回転角も含む)は、レーザ干渉計 52によりリアルタイムで計測される。レーザ 干渉計 52の計測結果は、制御装置 CONTに出力される。制御装置 CONTは、レー ザ干渉計 52の計測結果に基づいてレチクルステージ駆動部 RSTDを駆動すること でレチクルステージ RSTに支持されているレチクル Rの位置を制御する。 A movable mirror 51 is provided on the reticle stage RST. A laser interferometer 52 is provided at a position facing the moving mirror 51. The position of reticle R on reticle stage RST in the two-dimensional direction (XY direction) and the rotation angle in θ Z direction (including rotation angles in 0 X and 0 Y directions in some cases) are measured in real time by laser interferometer 52. Is done. The measurement result of the laser interferometer 52 is output to the control device CONT. The control device CONT controls the position of the reticle R supported by the reticle stage RST by driving the reticle stage drive unit RSTD based on the measurement result of the laser interferometer 52.
[0023] 投影光学系 PLは、レチクル Rのパターンを所定の投影倍率 βでウェハ Wに投影露 光する。投影光学系 PLは、ウェハ W側の先端部に設けられた光学素子を含む複数 の光学素子で構成されている。これら光学素子は鏡筒 PKで支持されている。投影光 学系 PLは、投影倍率 j8が、例えば 1Z4、 1/5,あるいは 1Z8の縮小系である。 なお、投影光学系 PLは、縮小系、等倍系及び拡大系のいずれでもよい。投影光学 系 PLの先端部の光学素子は鏡筒 PKに対して着脱 (交換)可能に設けられる。 Projection optical system PL projects and exposes the pattern of reticle R onto wafer W at a predetermined projection magnification β. Projection optical system PL is composed of a plurality of optical elements including an optical element provided at the front end portion on the wafer W side. These optical elements are supported by a lens barrel PK. The projection optical system PL is a reduction system in which the projection magnification j8 is 1Z4, 1/5, or 1Z8, for example. The projection optical system PL may be any one of a reduction system, a unity magnification system, and an enlargement system. The optical element at the tip of the projection optical system PL is provided so as to be detachable (replaceable) with respect to the barrel PK.
[0024] ウェハステージ WSTは、ウェハ Wを支持しつつ移動するものであって、微動テープ ル 61と粗動テーブル 62とウェハ定盤 63等を備えている。微動テーブル 61は、ゥェ ハ Wを、ウェハホルダ WHを介して保持し、粗動テーブル 62 (もしくはウェハ定盤 63) に対して X軸方向、 Y軸方向、 Z軸方向、 0 X方向、 0 Y方向及び 0 Z方向の 6自由 度方向に微小駆動可能である。粗動テーブル 62は、微動テーブル 61を支持 (略 Z 軸方向に支持)しつつ、 Y軸方向、 X軸方向、および θ Z方向の 3自由度方向に移動 可能である。ウェハ定盤 63は、粗動テーブル 62を XY平面内で移動可能に支持す る。 Wafer stage WST moves while supporting wafer W, and includes fine movement table 61, coarse movement table 62, wafer surface plate 63, and the like. Fine movement table 61 holds wafer W via wafer holder WH, and relative to coarse movement table 62 (or wafer surface plate 63) in the X-axis direction, Y-axis direction, Z-axis direction, 0 X-direction, 0 Small drive is possible in 6 degrees of freedom in the Y and 0Z directions. The coarse movement table 62 is movable in three degrees of freedom in the Y axis direction, the X axis direction, and the θ Z direction while supporting the fine movement table 61 (substantially in the Z axis direction). Wafer surface plate 63 supports coarse movement table 62 so as to be movable in the XY plane.
[0025] ウェハステージ WSTは、リニアモータ等のウェハステージ駆動部 WSTD (X軸リニ
ァモータ 70, Y軸リニアモータ 80等、図 2参照)により駆動される。ウェハステージ駆 動部 WSTDは、制御装置 CONTにより制御される。粗動テーブル 62を駆動すること により、ウェハ Wの XY方向における位置 (投影光学系 PLの像面と実質的に平行な 方向の位置)が制御される。更に、微動テーブル 61を駆動することにより、微動テー ブル 61上のウェハホルダ WHに保持されているウェハ Wの X軸方向、 Y軸方向、 Z軸 方向(フォーカス位置)、 0 X方向、 0 Y方向及び 0 Z方向における位置が高精度に 制御される。 [0025] Wafer stage WST is a wafer stage drive unit such as a linear motor WSTD (X-axis linear Motor 70, Y-axis linear motor 80, etc., see Fig. 2). The wafer stage drive unit WSTD is controlled by the controller CONT. By driving the coarse motion table 62, the position in the XY direction of the wafer W (position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. Furthermore, by driving the fine movement table 61, the X-axis direction, Y-axis direction, Z-axis direction (focus position), 0 X direction, 0 Y direction of the wafer W held by the wafer holder WH on the fine movement table 61 And the position in the 0Z direction is controlled with high accuracy.
[0026] ウェハステージ WST (微動テーブル 61)上には、移動鏡 53が設けられている。移 動鏡 53に対向する位置には、レーザ干渉計 54が設けられている。ウェハステージ W ST上のウェハ Wの 2次元方向の位置及び回転角はレーザ干渉計 54によりリアルタ ィムで計測され、計測結果は制御装置 CONTに出力される。制御装置 CONTは、レ 一ザ干渉計 54の計測結果に基づいてウェハステージ駆動部 WSTDを介してウェハ ステージ WSTを駆動することで、ウェハステージ WSTに支持されて!、るウェハ Wの X軸、 Y軸方向及び 0 Z方向の位置決めを行う。 A movable mirror 53 is provided on wafer stage WST (fine movement table 61). A laser interferometer 54 is provided at a position facing the moving mirror 53. The position and rotation angle of wafer W on wafer stage W ST in the two-dimensional direction are measured in real time by laser interferometer 54, and the measurement result is output to controller CONT. The controller CONT is supported by the wafer stage WST by driving the wafer stage WST via the wafer stage drive unit WSTD based on the measurement result of the laser interferometer 54. Position in the Y axis direction and 0 Z direction.
[0027] また、露光装置 EXは、投影光学系 PLの像面に対するウェハ W表面の位置 (フォ 一カス位置)を検出するフォーカス検出系 56を備えている。フォーカス検出系は、例 えば米国特許第 6,608,681号などに開示されるように、その複数の計測点でそれぞ れ基板の Z軸方向の位置情報を計測することで、基板の面位置情報を検出するもの である。本実施形態において、フォーカス検出系 56は、ウェハ W表面に対して斜め 方向より検出光を投射する投光部 56Aと、ウェハ W表面で反射した検出光 (反射光) を受光する受光部 56Bとを備えて 、る。 In addition, the exposure apparatus EX includes a focus detection system 56 that detects the position (focus position) of the surface of the wafer W with respect to the image plane of the projection optical system PL. For example, as disclosed in US Pat. No. 6,608,681, the focus detection system detects substrate surface position information by measuring position information in the Z-axis direction of the substrate at each of the measurement points. To do. In the present embodiment, the focus detection system 56 includes a light projecting unit 56A that projects detection light obliquely with respect to the surface of the wafer W, and a light receiving unit 56B that receives detection light (reflected light) reflected from the surface of the wafer W. It is equipped with.
[0028] 受光部 56Bの受光結果は、制御装置 CONTに出力される。制御装置 CONTは、 フォーカス検出系 56の検出結果に基づいてウェハステージ駆動部 WSTDを介して ウェハステージ WST (微動テーブル 61)を駆動することで、ウェハ W表面の位置を 投影光学系 PLの焦点深度内に収める。すなわち、微動テーブル 61は、ウェハ Wの フォーカス位置及び傾斜角を制御してウェハ Wの表面をオートフォーカス方式及び オートレべリング方式で投影光学系 PLの像面に合わせ込む。 [0028] The light reception result of the light receiving unit 56B is output to the control device CONT. The control device CONT drives the wafer stage WST (fine adjustment table 61) via the wafer stage drive unit WSTD based on the detection result of the focus detection system 56, thereby determining the position of the surface of the wafer W. Depth of focus of the projection optical system PL Fit in. That is, fine movement table 61 controls the focus position and tilt angle of wafer W to adjust the surface of wafer W to the image plane of projection optical system PL by the autofocus method and the auto leveling method.
[0029] 次に、ウェハステージ WSTの詳細な構成について説明する。
図 2は、ウェハステージ WSTの構成を示す斜視図である。 Next, a detailed configuration of wafer stage WST will be described. FIG. 2 is a perspective view showing a configuration of wafer stage WST.
[0030] ウェハステージ WSTは、フレームキャスタ FC上に設けられたウェハ定盤 63と、ゥェ ハ定盤 63の上方に配置されると共にウェハ定盤 63の上面 63Aに沿って移動するゥ ェハステージ WSTと、これらのウェハステージ WST、の位置を検出するレーザ干渉 計 54と、ウェハステージ WSTを駆動する X軸リニアモータ 70, Y軸リニアモータ 80 ( 図 1におけるウェハステージ駆動部 WSTD参照)等を備えて!/、る。 [0030] Wafer stage WST is a wafer surface plate 63 provided on frame caster FC, and wafer stage WST which is arranged above wafer surface plate 63 and moves along upper surface 63A of wafer surface plate 63. And a laser interferometer 54 that detects the position of these wafer stages WST, an X-axis linear motor 70 that drives the wafer stage WST, a Y-axis linear motor 80 (see the wafer stage drive unit WSTD in FIG. 1), etc. /!
[0031] フレームキャスタ FCは、概略平板状に形成された部材であって、不図示の除震ュ ニットを介して床面上に載置される。フレームキャスタ FCの上面にはウェハ定盤 63が 不図示の気体静圧軸受(例えばエアベアリング)によって、所定のクリアランスを介し て浮上支持されている。ウェハ定盤 63を浮上させているのは、ウェハステージ WST の移動により発生した反力により、ウェハ定盤 63がカウンタマスとして逆方向に移動 して、この反力を運動量保存の法則により相殺するためである。 [0031] The frame caster FC is a member formed in a substantially flat plate shape, and is placed on the floor via a vibration removal unit (not shown). On the upper surface of the frame caster FC, a wafer surface plate 63 is levitated and supported by a static gas bearing (not shown) (for example, an air bearing) via a predetermined clearance. Wafer surface plate 63 is levitated because the reaction force generated by the movement of wafer stage WST causes wafer surface plate 63 to move in the opposite direction as a counter mass, and this reaction force is canceled by the law of conservation of momentum. Because.
[0032] ウェハ定盤 63の上面 63Aは、平坦度が非常に高く仕上げられ、ウェハステージ W STの XY平面に沿った移動の際のガイド面とされている。 [0032] Upper surface 63A of wafer surface plate 63 is finished with a very high degree of flatness, and serves as a guide surface when wafer stage WST moves along the XY plane.
[0033] ウェハステージ WSTは、ウェハ定盤 63上に配置された粗動テーブル 62と、粗動テ 一ブル 62上に不図示の 6自由度微動機構を介して搭載された微動テーブル 61とを 備えている。 6自由度微動機構は、実際には粗動テーブル 62上で微動テーブル 61 を複数箇所で支持するァクチユエータ 90等を含んで構成される(図 4参照)。ァクチュ エータ 90としては、例えば、ボイスコイルモータ等が好適に用いられる。ァクチユエ一 タ 90を制御装置 CONTにより制御することで、微動テーブル 61を X軸方向、 Y軸方 向、 Z軸方向、 0 X方向、 0 Y方向、 0 Z方向の 6自由度方向に微小移動させる。 Wafer stage WST includes coarse movement table 62 arranged on wafer surface plate 63 and fine movement table 61 mounted on coarse movement table 62 via a 6-degree-of-freedom fine movement mechanism (not shown). I have. The 6-degree-of-freedom fine movement mechanism actually includes an actuator 90 that supports the fine movement table 61 at a plurality of locations on the coarse movement table 62 (see FIG. 4). For example, a voice coil motor or the like is preferably used as the actuator 90. By controlling the actuator 90 with the control device CONT, the fine movement table 61 is slightly moved in six degrees of freedom in the X axis direction, Y axis direction, Z axis direction, 0 X direction, 0 Y direction, and 0 Z direction. Let
[0034] 粗動テーブル 62は、断面矩形枠状で X軸方向に延びる中空部材によって構成さ れている。この粗動テーブル 62の下面には、不図示の気体静圧軸受(例えばエアべ ァリング)が配置され、所定のクリアランスを介して粗動テーブル 62が浮上支持されて いる。 The coarse motion table 62 is configured by a hollow member having a rectangular frame shape extending in the X-axis direction. A gas static pressure bearing (not shown) (for example, an air bearing) (not shown) is disposed on the lower surface of the coarse motion table 62, and the coarse motion table 62 is supported to float through a predetermined clearance.
[0035] 粗動テーブル 62の内部には、 X軸方向の可動子としての永久磁石群を有する磁石 ユニット 72が設けられている。磁石ユニット 72の内部空間には、 X軸方向に延びる X 軸用の固定子 74が挿入されている。この X軸用の固定子 74は、 X軸方向に沿って所
定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットによって構成さ れている。この場合、磁石ユニット 72と電機子ユニットからなる X軸用の固定子 74とに よって、ウェハステージ WSTを X軸方向に駆動するムービングマグネット型の X軸リ ユアモータ 70が構成されている。なお、 X軸リニアモータ 70として、ムービングマグネ ット型のリニアモータに代えて、ムービングコイル型のリニアモータを用いてもよい。 Inside the coarse motion table 62, a magnet unit 72 having a permanent magnet group as a mover in the X-axis direction is provided. An X-axis stator 74 extending in the X-axis direction is inserted into the internal space of the magnet unit 72. This X-axis stator 74 is located along the X-axis direction. It is composed of an armature unit containing a plurality of armature coils arranged at regular intervals. In this case, a moving magnet type X-axis reduced motor 70 for driving the wafer stage WST in the X-axis direction is constituted by the magnet unit 72 and the X-axis stator 74 including the armature unit. As the X-axis linear motor 70, a moving coil type linear motor may be used instead of the moving magnet type linear motor.
[0036] X軸用の固定子 74の長手方向両側端部には、可動子 82がそれぞれ固定されてい る。可動子 82は、例えば Y軸方向に沿って所定間隔で配置された複数の電機子コィ ルを内蔵する電機子ユニットからなる。ウェハ定盤 63の X方向の両端には、 Y方向に 延びる Y軸駆動用の固定子 84が配設されている。 Y軸用の固定子 84は、複数の永 久磁石群力もなる磁極ユニットとして構成されて 、る。上述した可動子 82のそれぞれ は、 Y軸用の固定子 84にそれぞれ内側に挿入されている。すなわち、電気ユニットか らなる可動子 82と磁極ユニットからなる Y軸用の固定子 84とによって、ウェハステー ジ WSTを Y軸方向に駆動するムービングコイル型の Y軸リニアモータ 80が構成され ている。なお、 Y軸リニアモータ 80として、ムービングコイル型のリニアモータに代えて 、ムービングマグネット型のリニアモータを用いてもよ 、。 [0036] Movable elements 82 are fixed to both ends in the longitudinal direction of the X-axis stator 74, respectively. The mover 82 is composed of, for example, an armature unit containing a plurality of armature coils arranged at predetermined intervals along the Y-axis direction. At both ends in the X direction of the wafer surface plate 63, Y axis driving stators 84 extending in the Y direction are disposed. The Y-axis stator 84 is configured as a magnetic pole unit having a plurality of permanent magnet group forces. Each of the above-described movers 82 is inserted into the Y-axis stator 84 inside. That is, a moving coil type Y-axis linear motor 80 for driving wafer stage WST in the Y-axis direction is constituted by a mover 82 made of an electric unit and a Y-axis stator 84 made of a magnetic pole unit. As the Y-axis linear motor 80, a moving magnet type linear motor may be used instead of the moving coil type linear motor.
[0037] このような構成により、ウェハステージ WSTは、 X軸リニアモータ 70により X軸方向 に駆動されるとともに、一対の Y軸リニアモータ 80により X軸リニアモータ 70と一体で Y軸方向に駆動される。また、 2個ある Y軸リニアモータ 80の駆動力に差をつけること によって X軸用の固定子 74が θ Z方向に動けるようになっており、これにともなってゥ ェハステージ WSTの粗動テーブル 62も θ Z方向に駆動される。 [0037] With this configuration, wafer stage WST is driven in the X-axis direction by X-axis linear motor 70, and driven in the Y-axis direction integrally with X-axis linear motor 70 by a pair of Y-axis linear motors 80. Is done. In addition, by making a difference in the driving force of the two Y-axis linear motors 80, the X-axis stator 74 can move in the θZ direction. Is also driven in the θZ direction.
[0038] 図 3はウェハステージ WSTの拡大斜視図であり、図 4はウェハステージ WSTの概 略構成を示す断面図である。 FIG. 3 is an enlarged perspective view of wafer stage WST, and FIG. 4 is a cross-sectional view showing a schematic configuration of wafer stage WST.
[0039] 微動テーブル 61上の略中央には、直径 300mmのウェハ Wを保持するウェハホル ダ WHが設けられて!/、る。ウェハホルダ WHの近傍には基準マーク部材 FM (Fiduci al Mark)が設けられている。この基準マーク部材 FMは光透過性の部材であって、 その上面に、例えば十字形マークが所定間隔で形成されている。 [0039] A wafer holder WH for holding a wafer W having a diameter of 300 mm is provided in the approximate center on the fine movement table 61! /. A reference mark member FM (Fiducial Mark) is provided in the vicinity of the wafer holder WH. The reference mark member FM is a light transmissive member, and for example, cross marks are formed on the upper surface thereof at predetermined intervals.
[0040] 粗動テーブル 62には、投影光学系 PLを介して照射される露光光 ELの特性 (照度 や照度ムラ)を計測するための第一センサ類 100と、レチクル Rとウェハ Wとの位置関
係を測定するために露光光 ELを計測する第二センサ 120の一部が取り付けられて いる。 [0040] The coarse motion table 62 includes a first sensor 100 for measuring the characteristics (illuminance and illuminance unevenness) of the exposure light EL irradiated through the projection optical system PL, and a reticle R and a wafer W. Position A part of the second sensor 120 for measuring the exposure light EL is attached to measure the engagement.
[0041] 第一センサ類 100は、投影光学系 PLを通過した露光光 ELの照度 (光量)を測定 する露光量センサ 102と、投影光学系 PLの波面収差を測定する波面収差センサ 10 4と、投影光学系 PLを介した露光光 ELのムラ (光量分布)を計測する照度ムラセンサ 106とを含み、それぞれが調整ステージ 65を介して粗動テーブル 62上に設けられて いる。 [0041] The first sensors 100 are an exposure amount sensor 102 that measures the illuminance (light quantity) of the exposure light EL that has passed through the projection optical system PL, and a wavefront aberration sensor 104 that measures the wavefront aberration of the projection optical system PL. And an illuminance unevenness sensor 106 that measures unevenness (light amount distribution) of the exposure light EL via the projection optical system PL, each of which is provided on the coarse motion table 62 via the adjustment stage 65.
[0042] なお、第一センサ類 100は、フォトダイオード又は CCDなどを有する検出器に限定 されない。第一センサ類 100は、受光面に配置されたピンホールミラー又は回折格 子など各種測定に必要な部材を含んでもよい。また、第一センサ類 100は、露光量 センサ 102、波面収差センサ 104及び照度ムラセンサ 106に限定されることなぐ露 光光 ELの特性を計測するものであればよい。また、第一センサ類 100が露光光 EL 以外の計測光を計測するようにしてもよい。 [0042] The first sensors 100 are not limited to a detector having a photodiode or a CCD. The first sensors 100 may include members necessary for various measurements such as a pinhole mirror or a diffraction grating disposed on the light receiving surface. Further, the first sensors 100 may be anything that measures the characteristics of the exposure light EL that is not limited to the exposure amount sensor 102, the wavefront aberration sensor 104, and the illuminance unevenness sensor 106. Further, the first sensors 100 may measure measurement light other than the exposure light EL.
[0043] 粗動テーブル 62は、その一部に複数の延長部分 62Bを有している。その延長部分 62Bの上部に面調整機構 66を介して第一センサ類 100が配置されている。これによ り、微動テーブル 61の側方に、第一センサ類 100 (露光量センサ 102、波面収差セ ンサ 104、照度ムラセンサ 106)が位置するようになって!/、る。 [0043] The coarse motion table 62 has a plurality of extension portions 62B in a part thereof. The first sensors 100 are arranged on the upper part of the extension part 62B via the surface adjustment mechanism 66. As a result, the first sensors 100 (the exposure amount sensor 102, the wavefront aberration sensor 104, and the illuminance unevenness sensor 106) are positioned on the side of the fine movement table 61! /.
[0044] 面調整機構 66としては、例えば、 3つの圧電ァクチユエータゃカム機構等が好適に 用いられる。面調整機構 66を制御装置 CONTにより制御することで、第一センサ類 100の検出面(上面)を Z軸方向、 0 x方向、 0 y方向に調整可能である。 As the surface adjustment mechanism 66, for example, three piezoelectric actuator cam mechanisms and the like are preferably used. By controlling the surface adjustment mechanism 66 by the control device CONT, the detection surface (upper surface) of the first sensors 100 can be adjusted in the Z-axis direction, the 0x direction, and the 0y direction.
[0045] 面調整機構 66を用いるのは、第一センサ類 100の検出面を投影光学系 PLの結像 面と一致させるためである。つまり、ウェハ Wの露光処理時と同一条件で露光光 EL の計測を行うようにしている。 The surface adjustment mechanism 66 is used to make the detection surface of the first sensors 100 coincide with the image formation surface of the projection optical system PL. In other words, the exposure light EL is measured under the same conditions as during the wafer W exposure process.
[0046] 図 3及び図 4に示すように、第二センサ 120は、露光光 ELを受光する入射導光部 1 22、中間導光部 124、露光光 ELを出射する出射導光部 126、出射導光部 126から 射出された光を受光する受光センサ 128 (図 1参照)とを有する。また、第一のセンサ 類 100と同様、第二センサ 120が露光光 EL以外の計測光を計測するようにしてもよ い。
[0047] 入射導光部 122は、 Z軸方向に進む光が入射可能であり、円筒部材内に複数の光 学レンズ LI, L2が配置された構成を有し、微動テーブル 61の側方に配置される。出 射導光部 126は、微動テーブル 61を上下 (Z軸方向)に貫く円筒部材内に基準マー ク部材 FMや光学レンズ L3が配置された構成を有する。中間導光部 124は、入射導 光部 122に入射した光を出射導光部 126に導くものであって、筒状部材内に光ファ ィバ又は複数の光学素子 (不図示)が配置された構成を有する。中間導光部 124は 、留め金等により粗動テーブル 62に取り付けられており、その一端に入射導光部 12 2が固定保持された構成を有する。中間導光部 124の他端は、出射導光部 126 (微 動テーブル 61)から離間している。つまり、出射導光部 126と中間導光部 124との間 には空隙が形成されて 、る。この空隙を介して中間導光部 124から出射導光部 126 に向けて光が送られる。中間導光部 124と出射導光部 126との間に、空隙を設ける のは、微動テーブル 61の動きを妨げないためである。ホコリ又は不要な外光が入り 込まないように、柔軟な材料により形成された蛇腹などを空隙の周りや近傍に配置し てもよい。 As shown in FIGS. 3 and 4, the second sensor 120 includes an incident light guide 122 that receives the exposure light EL, an intermediate light guide 124, an output light guide 126 that emits the exposure light EL, A light receiving sensor 128 (see FIG. 1) that receives the light emitted from the outgoing light guide 126; Further, like the first sensor 100, the second sensor 120 may measure measurement light other than the exposure light EL. [0047] The incident light guide unit 122 can receive light traveling in the Z-axis direction, has a configuration in which a plurality of optical lenses LI and L2 are arranged in a cylindrical member, and is located on the side of the fine movement table 61. Be placed. The projection light guide unit 126 has a configuration in which a reference mark member FM and an optical lens L3 are disposed in a cylindrical member that passes through the fine movement table 61 in the vertical direction (Z-axis direction). The intermediate light guide unit 124 guides light incident on the incident light guide unit 122 to the output light guide unit 126, and an optical fiber or a plurality of optical elements (not shown) are arranged in the cylindrical member. Have a configuration. The intermediate light guide unit 124 is attached to the coarse motion table 62 by a clasp or the like, and has a configuration in which the incident light guide unit 122 is fixedly held at one end thereof. The other end of the intermediate light guide 124 is separated from the output light guide 126 (fine movement table 61). That is, a gap is formed between the outgoing light guide 126 and the intermediate light guide 124. Light is sent from the intermediate light guide 124 to the output light guide 126 via the gap. The reason why a gap is provided between the intermediate light guide part 124 and the outgoing light guide part 126 is to prevent the movement of the fine movement table 61 from being hindered. A bellows or the like formed of a flexible material may be arranged around or near the gap so that dust or unnecessary external light does not enter.
[0048] 受光センサ 128は、出射導光部 126 (基準マーク部材 FM)から Z軸方向に射出さ れ、投影光学系 PL及びレチクル Rを経由した光を、レチクル Rの上方において受光 するセンサであって、 CCDカメラ等からなる。 [0048] The light receiving sensor 128 is a sensor that is emitted in the Z-axis direction from the output light guide 126 (reference mark member FM), and receives light that passes through the projection optical system PL and the reticle R above the reticle R. It consists of a CCD camera.
[0049] このような構成において、露光光 ELが入射導光部 122に入射すると、中間導光部 124を介して出射導光部 126に導かれ、基準マーク部材 FMを下方力も照らす。基 準マーク部材 FMを照らした光は、 Z軸方向に出射し、投影光学系 PL及びレチクル R を経由して受光センサ 128に受光される。 In such a configuration, when the exposure light EL enters the incident light guide 122, it is guided to the output light guide 126 via the intermediate light guide 124, and illuminates the reference mark member FM also with a downward force. The light that illuminates the reference mark member FM is emitted in the Z-axis direction, and is received by the light receiving sensor 128 via the projection optical system PL and the reticle R.
[0050] この場合、レチクル Rのパターン P Aの外周部にはァライメントマーク(不図示)が形 成されている。受光センサ 128は、基準マーク部材 FMに形成された基準マークとレ チクル Rに形成されたァライメントマークとを含む画像を取得する。この基準マークと ァライメントマークの位置ずれ量を計測することで、レチクル Rと微動テーブル 61の相 対的な位置が計測可能である。更に、この位置計測の結果に基づいてレチクル尺の ァライメントが行われる。 In this case, alignment marks (not shown) are formed on the outer periphery of the pattern PA of the reticle R. The light receiving sensor 128 acquires an image including the reference mark formed on the reference mark member FM and the alignment mark formed on the reticle R. By measuring the positional deviation between the reference mark and the alignment mark, the relative positions of the reticle R and the fine movement table 61 can be measured. Furthermore, reticle scale alignment is performed based on the result of this position measurement.
[0051] なお、レチクル R及び投影光学系 PLを経た露光光 ELが出射導光部 126に入射し
、中間導光部 124及び入射導光部 122を介して、ウェハステージ WST近傍に配置 した受光センサ 128で受光される構成でもよ 、。 Note that the exposure light EL that has passed through the reticle R and the projection optical system PL is incident on the output light guide 126. Alternatively, the light receiving sensor 128 disposed near the wafer stage WST may receive light through the intermediate light guide 124 and the incident light guide 122.
[0052] このように、露光装置 EXでは、微動テーブル 61及び粗動テーブル 62を有するゥェ ハステージ WSTにおいて、第一センサ類 100と、第二センサ 120の大部分力 粗動 テーブル 62に設けられている。これらのセンサ類 100, 120は、従来は微動テープ ル 61の上面に配置されていたものである。したがって、その分だけ微動テーブル 61 の軽量化、小型化を図ることができる。更に、微動テーブル 61の位置決め精度等の 向上が図られる。 Thus, in the exposure apparatus EX, in the wafer stage WST having the fine movement table 61 and the coarse movement table 62, the first sensor 100 and the majority force of the second sensor 120 are provided on the coarse movement table 62. It has been. These sensors 100 and 120 are conventionally arranged on the upper surface of the fine movement table 61. Therefore, the fine movement table 61 can be reduced in weight and size accordingly. Further, the positioning accuracy of the fine movement table 61 can be improved.
[0053] 以上、本発明の実施の形態について説明した力 上述した実施の形態において示 した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本 発明の主旨から逸脱しない範囲においてプロセス条件や設計要求等に基づき種々 変更可能である。 [0053] The power described in the embodiment of the present invention has been described above. The operation procedure shown in the above-described embodiment, the shapes and combinations of the constituent members, etc. are examples, and the scope does not depart from the gist of the present invention. Various changes can be made based on process conditions and design requirements.
本発明は、例えば以下のような変更をも含むものとする。 For example, the present invention includes the following modifications.
[0054] 計測システムとして干渉計システムを用いて、マスクステージ及び基板ステージの 位置情報を計測するものに限定されない。例えば基板ステージの上面に設けられる スケール(回折格子)を検出するエンコーダシステムと、干渉計システムとの両方を備 えるハイブリッドシステムを採用し、干渉計システムの計測結果を用いてエンコーダシ ステムの計測結果の較正(キャリブレーション)を行ってもよい。また、干渉計システム とエンコーダシステムとを切り替えて用いる、あるいはその両方を用いて、基板ステー ジの位置制御を行うようにしてもよ!、。 [0054] The interferometer system is used as the measurement system, and the present invention is not limited to the one that measures the position information of the mask stage and the substrate stage. For example, a hybrid system equipped with both an encoder system that detects the scale (diffraction grating) provided on the upper surface of the substrate stage and an interferometer system is adopted, and the measurement results of the interferometer system are used to measure the measurement results of the encoder system. May be calibrated. You can also switch the interferometer system and encoder system, or use both to control the position of the board stage!
[0055] 他の実施形態において、例えば特表 2004— 519850号公報 (対応米国特許第 6 , 611, 316号)に開示されているように、 2つのマスクのパターンを、投影光学系を介 して基板上で合成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ 同時に二重露光する露光装置を適用することができる。 In another embodiment, as disclosed in, for example, JP-T-2004-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are passed through a projection optical system. It is possible to apply an exposure apparatus that synthesizes on the substrate and performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
[0056] なお、基板としては、半導体デバイス製造用の半導体ウェハのみならず、ディスプ レイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウエノ、、あるいは露光装 置で用いられるマスクまたはレチクルの原版 (合成石英、シリコンウェハ)、またはフィ ルム部材等が適用される。また、基板はその形状が円形に限られるものでなぐ矩形
など他の形状でもよい。 [0056] As the substrate, not only a semiconductor wafer for manufacturing a semiconductor device but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an original mask or reticle used in an exposure apparatus ( Synthetic quartz, silicon wafers) or film members are applied. In addition, the substrate is a rectangle whose shape is not limited to a circle. Other shapes may be used.
[0057] 他の実施形態において、露光装置 EXは、例えば特開平 11— 135400号公報 (対 応国際公開 1999/23692)、及び特開 2000— 164504号公報 (対応米国特許第 6,897,963号)などに開示されているように、基板を保持する基板ステージとは独立 に移動可能であるとともに、計測部材 (例えば、基準マークが形成された基準部材及 び Z又は各種の光電センサ)を搭載した計測ステージを備えることが可能である。 In another embodiment, the exposure apparatus EX is disclosed in, for example, Japanese Patent Laid-Open No. 11-135400 (corresponding international publication 1999/23692) and Japanese Patent Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963). As disclosed, the measurement stage is movable independently of the substrate stage that holds the substrate, and includes a measurement member (for example, a reference member on which a reference mark is formed and Z or various photoelectric sensors). Can be provided.
[0058] 本実施形態では、パターンを形成するためにマスクを用いた力 これに代えて、可 変のパターンを生成する電子マスク(可変成形マスク、アクティブマスク、あるいはパ ターンジェネレータとも呼ばれる)を用いることができる。電子マスクとして、例えば非 発光型画像表示素子(空間光変調器: Spatial Light Modulator (SLM)とも呼ばれる) の一種で teる DMD (DeformaDle Micro-mirror DeviceX ^Digital Micro— mirror Devi ce)を用い得る。 DMDは、所定の電子データに基づいて駆動する複数の反射素子( 微小ミラー)を有し、複数の反射素子は、 DMDの表面に 2次元マトリックス状に配列 され、かつ素子単位で駆動されて露光光を反射、偏向する。各反射素子はその反射 面の角度が調整される。 DMDの動作は、制御装置により制御され得る。制御装置は 、基板上に形成すべきパターンに応じた電子データ (パターン情報)に基づいて DM Dの反射素子を駆動し、照明系により照射される露光光を反射素子でパターンィ匕す る。 DMDを使用することにより、パターンが形成されたマスク(レチクル)を用いて露 光する場合に比べて、パターンが変更されたときに、マスクの交換作業及びマスクス テージにおけるマスクの位置合わせ操作が不要になる。なお、電子マスクを用いる露 光装置では、マスクステージを設けず、基板ステージによって基板を X軸及び Y軸方 向に移動するだけでもよい。なお、 DMDを用いた露光装置は、例えば特開平 8— 3 13842号公報、特開 2004— 304135号公報、米国特許第 6,778,257号公報に開 示されている。 In this embodiment, force using a mask to form a pattern is used. Instead, an electronic mask (also referred to as a variable shaping mask, an active mask, or a pattern generator) that generates a variable pattern is used. be able to. As the electronic mask, for example, a DMD (DeformaDle Micro-mirror Device X ^ Digital Micro-mirror Device) which is a kind of non-light emitting image display element (also called Spatial Light Modulator (SLM)) can be used. The DMD has a plurality of reflective elements (micromirrors) that are driven based on predetermined electronic data. The plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD, and are driven by element units for exposure. Reflects and deflects light. The angle of the reflecting surface of each reflecting element is adjusted. The operation of the DMD can be controlled by a controller. The control device drives the DMD reflecting element based on electronic data (pattern information) corresponding to the pattern to be formed on the substrate, and patterns the exposure light emitted from the illumination system with the reflecting element. Compared to exposure using a mask (reticle) on which a pattern is formed, DMD eliminates the need for mask replacement work and mask alignment on the mask stage when the pattern is changed. become. In an exposure apparatus using an electronic mask, the mask stage may not be provided, and the substrate may be simply moved in the X-axis and Y-axis directions by the substrate stage. An exposure apparatus using DMD is disclosed in, for example, JP-A-8-313842, JP-A-2004-304135, and US Pat. No. 6,778,257.
[0059] 露光装置 EXとしては、投影光学系 PLとウェハ Wとの間に液体を配置しつつ、この 液体を介してウェハ Wの露光を行う液浸型露光装置であってもよい。液浸法は、例え ば国際公開第 99Z49504号パンフレット等に開示されている。液体としては、水(純 水)を用いてもよいし、水以外のもの、例えば過フッ化ポリエーテル(PFPE)やフッ素
系オイル等のフッ素系流体、あるいはセダー油などを用いてもよい。また、液体として は、水よりも露光光に対する屈折率が高い液体、例えば屈折率が 1. 6〜1. 8程度の ものを使用してもよい。 The exposure apparatus EX may be an immersion type exposure apparatus that exposes the wafer W through this liquid while disposing a liquid between the projection optical system PL and the wafer W. The immersion method is disclosed in, for example, WO99Z49504 pamphlet. As the liquid, water (pure water) may be used, or other than water, such as perfluorinated polyether (PFPE) or fluorine Fluorine-based fluids such as oils or cedar oils may be used. As the liquid, a liquid having a higher refractive index with respect to exposure light than water, for example, a refractive index of about 1.6 to 1.8 may be used.
[0060] 露光装置 EXの用途としては、半導体製造用の露光装置や、角型のガラスプレート に液晶表示素子パターンを露光する液晶用の露光装置に限定されることなぐ薄膜 磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS、 DNAチップ、あるいはレチ クル又はマスクなどを製造するための露光装置にも広く適用できる。 The application of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor, or an exposure apparatus for liquid crystal that exposes a liquid crystal display element pattern on a square glass plate. It can be widely applied to exposure equipment for manufacturing CCD), micromachines, MEMS, DNA chips, reticles or masks.
[0061] なお、法令で許容される限りにおいて、上記各実施形態及び変形例で引用した露 光装置などに関する全ての公開公報及び米国特許などの開示を援用して本文の記 載の一部とする。 [0061] As long as permitted by law, the disclosure of all publications and US patents related to the exposure apparatus and the like cited in each of the above embodiments and modifications is incorporated as part of the description of the text. To do.
[0062] 本実施形態の露光装置 EXは、各構成要素を含む各種サブシステムを、所定の機 械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。こ れら各種精度を確保するために、この組み立ての前後には、各種光学系については 光学的精度を達成するための調整、各種機械系については機械的精度を達成する ための調整、各種電気系については電気的精度を達成するための調整が行われる 各種サブシステム力 露光装置への組み立て工程は、各種サブシステム相互の、 機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種 サブシステム力 露光装置への組み立て工程の前に、各サブシステム個々の組み立 て工程があることは 、うまでもな 、。各種サブシステムの露光装置への組み立て工程 が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。 なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行 うことが望ましい。 The exposure apparatus EX of the present embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, Various subsystem forces are adjusted to achieve electrical accuracy for the system. The assembly process to the exposure equipment involves mechanical connections, electrical circuit wiring connections, pneumatic circuit piping connections, etc. among various subsystems. included. It is a matter of course that there is an assembly process for each subsystem before the assembly process for the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
[0063] 半導体デバイスは、図 5に示すように、デバイスの機能 ·性能設計を行うステップ 20 1、この設計ステップに基づいたマスク(レチクル)を製作するステップ 202、デバイス の基材である基板 (ウエノ、、ガラスプレート)を製造するステップ 203、前述した実施 形態の露光装置によりレチクル Rのパターンをウェハ Wに露光する基板処理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ
程を含む) 205、検査ステップ 206等を経て製造される。
[0063] As shown in FIG. 5, the semiconductor device has a function / performance design step 201, a mask (reticle) production step 202 based on the design step, and a substrate (device substrate) ( Ueno, a glass plate) 203, a substrate processing step 204 for exposing the pattern of the reticle R onto the wafer W by the exposure apparatus of the above-described embodiment, a device assembly step (dicing process, bonding process, package) 205), inspection step 206 and the like.
Claims
[1] ベース部と、 [1] a base section;
前記ベース部に対して移動可能な第一移動部材と、 A first moving member movable relative to the base portion;
物体を保持すると共に前記第一移動部材に対して移動可能な第二移動部材と、 その少なくとも一部が前記第一移動部材に設置され、前記物体に照射されるエネ ルギビームの特性を計測する計測装置と、を備えることを特徴とするステージ装置。 A second moving member that holds the object and is movable with respect to the first moving member, and at least a part of the second moving member is installed on the first moving member, and measures the characteristics of the energy beam irradiated on the object And a stage device.
[2] 前記物体は、感光基板であり、 [2] The object is a photosensitive substrate,
前記計測装置は、前記エネルギビームの照度を検出する照度センサと、前記エネ ルギビームの照度ムラを計測する照度ムラセンサとの少なくとも 1つを含むことを特徴 とする請求項 1に記載のステージ装置。 2. The stage apparatus according to claim 1, wherein the measuring device includes at least one of an illuminance sensor that detects illuminance of the energy beam and an illuminance unevenness sensor that measures illuminance unevenness of the energy beam.
[3] 前記計測装置は、前記エネルギビームを検出する検出面を前記エネルギビームの 結像面に略一致させる位置調整装置を備えていることを特徴とする請求項 2に記載 のステージ装置。 3. The stage device according to claim 2, wherein the measuring device includes a position adjusting device that substantially matches a detection surface for detecting the energy beam with an imaging surface of the energy beam.
[4] 前記計測装置は、前記エネルギビームを受光する受光部と、前記受光部で受光し たビームを伝送する導光部と、前記導光部からのビームを受光するセンサ部とを含み 、少なくとも前記導光部が前記第一移動部材に設置されていることを特徴とする請求 項 1から請求項 3のうちいずれか一項に記載のステージ装置。 [4] The measurement device includes a light receiving unit that receives the energy beam, a light guide unit that transmits the beam received by the light receiving unit, and a sensor unit that receives the beam from the light guide unit. The stage apparatus according to any one of claims 1 to 3, wherein at least the light guide section is installed on the first moving member.
[5] 前記計測装置は、前記エネルギビームを前記センサ部に送光する送光部をさらに 備え、該送光部が前記第二移動部材に設置されていることを特徴とする請求項 4に 記載のステージ装置。 [5] The measurement apparatus according to claim 4, wherein the measurement device further includes a light transmission unit that transmits the energy beam to the sensor unit, and the light transmission unit is installed on the second moving member. The stage apparatus as described.
[6] 前記第二移動部材は、少なくとも 6自由度に移動可能であることを特徴とする請求 項 1から請求項 5のうちいずれか一項に記載のステージ装置。 [6] The stage device according to any one of claims 1 to 5, wherein the second moving member is movable in at least six degrees of freedom.
[7] その一部が前記第 1移動部材に設置され、前記第二移動部材を前記第一移動部 材に対して移動させる駆動装置をさらに備えることを特徴とする請求項 1から請求項 6 のうちいずれか一項に記載のステージ装置。 [7] The apparatus according to any one of claims 1 to 6, further comprising a drive device, a part of which is installed on the first moving member and moves the second moving member relative to the first moving member. The stage apparatus as described in any one of these.
[8] 基板ステージ上に保持された基板に所定の像を形成する露光装置であって、 前記基板ステージとして請求項 1から請求項 7のうちいずれか一項に記載のステー ジ装置を用いることを特徴とする露光装置。
[8] An exposure apparatus that forms a predetermined image on a substrate held on a substrate stage, wherein the stage device according to any one of claims 1 to 7 is used as the substrate stage. An exposure apparatus characterized by the above.
[9] マスクステージに保持されたマスクのパターンの像を基板ステージに保持された基 板に形成する露光装置であって、 [9] An exposure apparatus for forming an image of a mask pattern held on a mask stage on a substrate held on a substrate stage,
前記マスクステージと前記基板ステージの少なくとも一方に、請求項 1から請求項 7 のうち 、ずれか一項に記載のステージ装置を用いることを特徴とする露光装置。 An exposure apparatus using the stage apparatus according to claim 1 for at least one of the mask stage and the substrate stage.
[10] リソグラフイエ程を含むデバイスの製造方法であって、前記リソグラフイエ程におい て請求項 8または請求項 9に記載の露光装置を用いることを特徴とするデバイスの製 造方法。
[10] A device manufacturing method including a lithographic process, wherein the exposure apparatus according to claim 8 or 9 is used in the lithographic process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008521189A JP5182089B2 (en) | 2006-06-12 | 2007-06-11 | Exposure apparatus and device manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-162252 | 2006-06-12 | ||
JP2006162252 | 2006-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007145165A1 true WO2007145165A1 (en) | 2007-12-21 |
Family
ID=38831679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061721 WO2007145165A1 (en) | 2006-06-12 | 2007-06-11 | Stage apparatus, exposure apparatus and device manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5182089B2 (en) |
TW (1) | TWI439814B (en) |
WO (1) | WO2007145165A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010147245A3 (en) * | 2009-06-19 | 2011-09-29 | Nikon Corporation | Exposure apparatus and device manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11135400A (en) * | 1997-10-31 | 1999-05-21 | Nikon Corp | Exposure system |
JP2000058628A (en) * | 1998-08-04 | 2000-02-25 | Nikon Corp | Pre-alignment device |
JP2000283889A (en) * | 1999-03-31 | 2000-10-13 | Nikon Corp | Inspection device and method of projection optical system, aligner, and manufacture of micro device |
JP2002359170A (en) * | 2001-05-30 | 2002-12-13 | Nikon Corp | Stage apparatus and aligner |
JP2006060152A (en) * | 2004-08-24 | 2006-03-02 | Nikon Corp | Optical characteristic measuring apparatus, stage apparatus and exposure device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260709A (en) * | 1998-03-10 | 1999-09-24 | Nikon Corp | Aligner and mask used for the aligner |
-
2007
- 2007-06-11 JP JP2008521189A patent/JP5182089B2/en active Active
- 2007-06-11 WO PCT/JP2007/061721 patent/WO2007145165A1/en active Application Filing
- 2007-06-11 TW TW096120949A patent/TWI439814B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11135400A (en) * | 1997-10-31 | 1999-05-21 | Nikon Corp | Exposure system |
JP2000058628A (en) * | 1998-08-04 | 2000-02-25 | Nikon Corp | Pre-alignment device |
JP2000283889A (en) * | 1999-03-31 | 2000-10-13 | Nikon Corp | Inspection device and method of projection optical system, aligner, and manufacture of micro device |
JP2002359170A (en) * | 2001-05-30 | 2002-12-13 | Nikon Corp | Stage apparatus and aligner |
JP2006060152A (en) * | 2004-08-24 | 2006-03-02 | Nikon Corp | Optical characteristic measuring apparatus, stage apparatus and exposure device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010147245A3 (en) * | 2009-06-19 | 2011-09-29 | Nikon Corporation | Exposure apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW200807177A (en) | 2008-02-01 |
JPWO2007145165A1 (en) | 2009-10-29 |
JP5182089B2 (en) | 2013-04-10 |
TWI439814B (en) | 2014-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10126661B2 (en) | Exposure apparatus and device fabrication method | |
JP5494621B2 (en) | EXPOSURE APPARATUS, DEVICE MANUFACTURING METHOD USING THE EXPOSURE APPARATUS, AND EXPOSURE MASK | |
KR102072076B1 (en) | Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method | |
TWI457978B (en) | A stage device, an exposure device, and a device manufacturing method | |
JP5218049B2 (en) | Exposure apparatus and exposure method | |
JP5181451B2 (en) | Mask, exposure apparatus, exposure method, and device manufacturing method | |
WO2001027978A1 (en) | Substrate, stage device, method of driving stage, exposure system and exposure method | |
JPWO2009084199A1 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
JPWO2005048325A1 (en) | Stage driving method, stage apparatus, and exposure apparatus | |
TW200302507A (en) | Stage device and exposure device | |
JP2009177184A (en) | Exposure apparatus, and manufacturing method and supporting method thereof | |
US20090097009A1 (en) | Holding device and exposure apparatus | |
US20070188732A1 (en) | Stage apparatus and exposure apparatus | |
US7738114B2 (en) | Exposure apparatus configured to minimize effects of mechanism for measuring stage position on peripheral mechanism and device-manufacturing method | |
JP5182089B2 (en) | Exposure apparatus and device manufacturing method | |
TW514983B (en) | Stage device and exposure device | |
JP5233483B2 (en) | Stage apparatus, exposure apparatus, and device manufacturing method | |
JP5594328B2 (en) | Exposure apparatus, exposure method, and device manufacturing method. | |
JP2005032812A (en) | Stage equipment and aligner | |
JP2011060844A (en) | Stage apparatus, exposure apparatus, exposure method, and method of manufacturing device | |
HK1125490A (en) | Exposure apparatus and exposure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07745011 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008521189 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07745011 Country of ref document: EP Kind code of ref document: A1 |