WO2007145119A1 - Composite optical device - Google Patents
Composite optical device Download PDFInfo
- Publication number
- WO2007145119A1 WO2007145119A1 PCT/JP2007/061478 JP2007061478W WO2007145119A1 WO 2007145119 A1 WO2007145119 A1 WO 2007145119A1 JP 2007061478 W JP2007061478 W JP 2007061478W WO 2007145119 A1 WO2007145119 A1 WO 2007145119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- composite
- resin
- optical element
- optical unit
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 249
- 239000002131 composite material Substances 0.000 title claims abstract description 72
- 229920005989 resin Polymers 0.000 claims description 69
- 239000011347 resin Substances 0.000 claims description 69
- 238000000465 moulding Methods 0.000 description 43
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0037—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0073—Optical laminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00769—Producing diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
- G02B27/4238—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in optical recording or readout devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4272—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4272—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
- G02B27/4277—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1353—Diffractive elements, e.g. holograms or gratings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B7/1374—Objective lenses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1392—Means for controlling the beam wavefront, e.g. for correction of aberration
- G11B7/13922—Means for controlling the beam wavefront, e.g. for correction of aberration passive
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B2007/0003—Recording, reproducing or erasing systems characterised by the structure or type of the carrier
- G11B2007/0006—Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B2007/13727—Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing
Definitions
- the present invention relates to a composite optical element, and more particularly to a composite optical element in which a second optical part and a third optical part are joined to a first optical part.
- a composite optical element having two or more optical parts is known.
- a second optical part is bonded to the first optical part.
- Such composite optical elements are used in various optical systems. For example, they can be used as lenses by forming a diffractive structure on the joint surface.
- the diffractive structure formed on the joint surface is a slit-like or groove-like shape having a fine equidistant interval of several tens to several hundreds per minute interval (about 1 mm).
- a diffracted light beam is generated in a direction determined by the pitch (interval) of the slits and grooves and the wavelength of the light. Then, by collecting the diffracted light flux at one point, the composite optical element having such a diffractive structure can be used as a lens.
- the composite optical element is used as a lens
- a composite optical element in which a second optical part made of a resin is joined to a first optical part made of glass is used.
- This structure makes it possible to use the h-line (404. (7nm) force is also possible to increase the diffraction efficiency to 90% or more in a wide wavelength range up to C-line (656.3 nm).
- Patent Document 1 Japanese Patent Laid-Open No. 11-287904
- the composite optical element has two or more optical parts as described above, and each optical part often has a different material force, which may lead to deterioration of optical characteristics.
- the present invention has been made in view of efforts, and an object of the present invention is to provide a composite optical element capable of improving optical characteristics.
- the present invention includes first, second and third optical units.
- the first optical unit has a first optical functional surface.
- the second optical unit is bonded to the first optical unit on the first optical functional surface, and has the second optical functional surface on the side opposite to the first bonding surface bonded to the first optical unit.
- the third optical unit is bonded to the second optical unit on the second optical functional surface, and has the third optical functional surface on the side opposite to the second bonding surface bonded to the second optical unit.
- the first and second uneven surface portions are present on a part of each of the second and third optical function surfaces.
- FIG. 1 is a schematic cross-sectional view of a composite optical element according to a first embodiment.
- FIG. 2 (a) Force (f) in FIG. 2 is a cross-sectional view showing a method for manufacturing a composite optical element according to Embodiment 1.
- FIG. 3 is a schematic cross-sectional view of a composite optical element that is useful for the first modification of Embodiment 1.
- FIG. 4 is a schematic cross-sectional view of a composite optical element that works on the second modification of Embodiment 1.
- FIG. 5 is a schematic cross-sectional view of a composite optical element that can be applied to the third modification of the first embodiment.
- FIG. 6 is a schematic cross-sectional view of a composite optical element that works on the fourth modification of Embodiment 1.
- FIG. 7 is a schematic cross-sectional view of a composite optical element according to the second embodiment.
- FIG. 8 is a schematic cross-sectional view of a composite optical element according to Embodiment 3.
- Embodiment 1 a composite lens is given as an example of a composite optical element, and its structure and its manufacturing method are shown.
- FIG. 1 is a schematic cross-sectional view showing a configuration of a composite optical element 1 according to the present embodiment.
- the composite optical element 1 includes first, second and third optical units 10, 20 and 30.
- the first optical unit 10 has a lens surface (first optical functional surface) 12 and a lens surface (fourth optical functional surface) 13.
- the second optical unit 20 is bonded to the first optical unit 10 at the lens surface 12, and a lens surface (second optical function surface) 22 is provided on the side opposite to the first bonding surface 21.
- the third optical unit 30 is bonded to the second optical unit 20 at the lens surface 22, and has a lens surface (third optical functional surface) 32 on the side opposite to the second bonding surface 31.
- a first uneven surface portion 22a exists on a part of the lens surface 22, and a second uneven surface portion 32a exists on a part of the lens surface 32.
- the composite optical element 1 In the composite optical element 1 according to the present embodiment, the first and second concavo-convex surface portions 22a and 32a are present on part of the lens surfaces 22 and 32, respectively. For this reason, the composite optical element 1 that is effective in this embodiment has the uneven surface portion formed into a desired shape with high accuracy compared to the composite optical element in which the uneven surface portion exists on the entire lens surface. Degradation of optical characteristics (such as aberration and light collection rate) can be prevented.
- the composite optical element 1 according to the present embodiment is shown in detail.
- the first optical unit 10 is made of a first resin, and the first resin may be an energy curable resin or a thermoplastic resin.
- the energy curable resin is, for example, a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or the like, and is cured by applying predetermined energy (heat, ultraviolet ray, electron beam, etc.). It is fat.
- the lens surfaces 12 and 13 are each formed as an aspheric surface and are formed smoothly.
- the second optical unit 20 comprises a second resin, and the second resin may be an energy curable resin or a thermoplastic resin, but the melting temperature thereof is the melting of the first resin. Lower than temperature.
- the lens surface 22 includes a first uneven surface portion 22a and smoothly formed first and second smooth surface portions (both not shown). Specifically, the lens surface 22 has a first smooth surface portion, a first uneven surface portion 22a, and a second smooth surface portion in a direction from the optical axis toward the periphery, and is centered on one point on the optical axis. Are arranged on a concentric circle. Therefore, in the lens surface 22, the optical power is different between the first and second smooth surface portions and the first uneven surface portion 22a.
- the third optical unit 30 is composed of a third resin, and the third resin may be an energy curable resin or a thermoplastic resin, but the melting temperature thereof is the first and second resins. It is lower than the melting temperature of fat. The melting temperature of this resin will be shown when explaining the molding method of the composite optical element 1 described later.
- the lens surface 32 includes a second uneven surface portion 32a and a smoothly formed third smooth surface portion (not shown). Specifically, the lens surface 32 has a third smooth surface portion and The second concavo-convex surface portion 32a exists in the direction from the optical axis toward the periphery, and is disposed on a concentric circle centered on one point on the optical axis. Therefore, in the lens surface 32, the optical power differs between the third smooth surface portion and the second uneven surface portion 32a.
- the second concavo-convex surface portion 32a exists in the periphery of the first concavo-convex surface portion 22a without overlapping the first concavo-convex surface portion 22a in the optical axis direction of the composite optical element 1. ing. That is, in the optical axis direction of the composite optical element 1, the first smooth surface portion overlaps a part of the third smooth surface portion, and the first uneven surface portion 22a overlaps the remaining portion of the third smooth surface portion. 2 The smooth surface portion overlaps the second uneven surface portion 32a. Therefore, since the composite optical element 1 as a whole has three portions having different optical powers, three types of light having different wavelengths can be condensed.
- FIGS. 2A to 2F are cross-sectional views showing a method for manufacturing the composite optical element 1 according to the present embodiment.
- the first optical member 155 is press-molded in the steps shown in FIGS. 2 (a) and (b), and the press-molding method is used in the steps shown in FIGS. 2 (c) and (d).
- the second optical member 165 is bonded to the first optical member 155, and the third optical member 185 is bonded to the second optical member 165 using a press molding method in the steps shown in FIGS. 2 (e) and (f). If you let it, it is a natural thing.
- the composite optical element 1 is manufactured by using the press molding method in this way, the aspherical lens surface and the uneven surface portion having a sawtooth cross section can be molded by one molding, and can be easily and molded. It can be molded with high accuracy. Specifically,
- a first resin preform 150 and a molding apparatus are prepared.
- the first resin preform 150 may be an energy-cured resin or a thermoplastic resin, preferably melted in advance before being set in the molding apparatus.
- the molding apparatus includes an upper mold 71 and a lower mold 72, and the upper mold 71 is used to mold the upper lens surface of the first optical member 155 (the lens surface serving as the lens surface 13 of the first optical unit 10).
- the lower mold 72 has a molding surface 72a for molding the lower lens surface of the first optical member 155 (the lens surface serving as the lens surface 12 of the first optical unit 10). ing. Then, after setting the lower mold 72 with the molding surface 72a facing upward, the molten first resin preform 150 is set on the molding surface 72a, and the molding surface 71a is placed on the first resin preform 150. Set the upper die 71 downward.
- the molding surfaces 71a and 72a of the upper die 71 and the lower die 72 are pressed. Are transferred to the surface of the first slag preform 150, respectively.
- the upper mold 71 and the lower mold 72 can be pressed against the surface of the first resin preform 150 by pressing the lower mold 72 against the surface of the first resin preform 150. May be pressed against the surface of the first resin preform 150, respectively. Then, it is solidified. As a result, the first optical member 155 can be molded.
- a second resin preform 160 and a molding apparatus shown in Fig. 2 (c) are prepared.
- the second resin preform 160 is preferably melted in advance before being set in the molding apparatus, and the soft resin temperature thereof is made of a resin lower than the soft resin temperature of the first resin preform 150. It is preferable.
- the molding apparatus includes a lower mold 81.
- the molding surface 81a of the lower mold 81 is for molding the lens surface of the second optical member 165. Therefore, a part of the molding surface 81a is the first mold. It is formed to be uneven so as to correspond to the uneven surface portion.
- the softened second resin preform 160 is set on the molding surface 81a, and the first optical member is placed on the second resin preform 160.
- Set 155 When setting the first optical member 155, if the first optical member 155 is set on the lower die 81 so that the optical axis of the first optical member 155 coincides with the central axis of the molding surface 81a of the lower die 81, the light The second optical member 165 can be joined to the first optical member 155 with the axial direction aligned.
- the first optical member 155 is pressed against the lower mold 81 and pressed.
- the molten second resin preform 160 is used as the first optical member. Even when bonded to 155, melting of the first optical member 155 at the bonded surface can be prevented, and as a result, deformation of the lower lens surface of the first optical member 155 can be prevented. Further, the second resin preform 160 flows in accordance with the shape of the lens surface of the second optical member 165 and enters the irregularities of the molding surface 81a, and the shape of the molding surface 81a is the same as that of the second resin preform 160. It is suitably transferred to the surface. Thereby, the joined body 175 in which the second optical member 165 is joined to the first optical member 155 can be molded.
- a third resin preform 180 and a molding apparatus shown in Fig. 2 (e) are prepared. It is preferable that the third resin preform 180 is melted in advance before being set in the molding apparatus.
- the soft temperature of the third resin preform 180 is higher than that of the first and second resin preforms 150 and 160. Is also low It is preferable that it consists of rosin.
- the molding apparatus includes a lower mold 91, and the lower mold 91 has a molding surface 91a.
- the molding surface 91a is used to mold the lens surface of the third optical member 186. Therefore, a part of the molding surface 91a is formed to be uneven so as to correspond to the second uneven surface portion.
- the softened third resin preform 180 is set on the molding surface 91a, and the joined body 175 is set on the third resin preform 180.
- the joined body 175 if the joined body 175 is set on the lower mold 91 so that the optical axis of the joined body 175 coincides with the center axis of the molding surface 91a of the lower mold 91, the optical axis directions are aligned and joined.
- the third optical member 185 can be joined to the body 175.
- the joined body 175 is pressed against the lower die 91 and pressed.
- the soft temperature of the third resin preform 180 is lower than the soft temperature of the second resin preform 160
- the molten third resin preform 180 is bonded to the bonded body 175.
- the third resin preform 180 flows in accordance with the shape of the lens surface of the third optical member 185 and enters into the irregularities of the molding surface 91a, and the shape of the molding surface 91a is the same as the second resin preform 160. It is preferably transferred onto the surface of the third resin preform 180. Thereby, the composite optical element 1 shown in FIG. 1 can be molded.
- the first and second concave convex surface portions 22a and 32a are present on a part of each of the lens surfaces 22 and 32.
- the shape of the concavo-convex portion can be accurately formed into a desired shape. That is, since the concave and convex shape that functions as the diffractive portion can be accurately formed, it is possible to prevent deterioration of the optical characteristics.
- the composite optical element 1 that works according to the present embodiment is molded using a press molding method, even an aspheric lens can be molded with high accuracy.
- the first and second uneven surface portions 22a and 32a can be formed by devising the shape of the molding surface of the mold.
- Such a composite optical element 1 can be mounted on an optical apparatus such as an imaging device, an illuminating device, or an optical disc recording / reproducing device.
- the imaging device is a device for photographing a subject, for example, a digital still camera or a digital video camera.
- the illumination device is a device for irradiating light on an object to be illuminated, and is, for example, a projector.
- Optical disk recording / playback devices include digital versatile discs (hereinafter referred to as DVD), compact discs (hereinafter referred to as CD), Blu-ray discs (registered trademark, hereinafter referred to as BD (registered trademark)), etc.
- DVDs, CDs, and BDs have different light source wavelengths and optical disc thicknesses for recording and playback, so that a single optical disc recording and playback device can record and playback DVDs, CDs, and BDs.
- the composite optical element 1 which is effective in the present embodiment is used, an optical disc recording / reproducing apparatus compatible with a plurality of types of information recording media can be realized.
- first, second, and third optical units are not limited to the above shapes, and may be the shapes described in the following first to fourth modifications.
- shapes of the first and second uneven surface portions are not limited to the above shapes, and may be the shapes described in the following first to fourth modifications.
- FIG. 3 is a schematic cross-sectional view of the composite optical element 101 that works on the first modification.
- the first optical unit 110 is formed in a plate shape, and the first and second uneven surface portions 122a and 132a are diffractive portions formed in a stepped cross section.
- the first optical unit 110 has a planar lens surface 112 and a lens surface 113
- the second optical unit 120 is joined to the first optical unit 110 at the lens surface 112.
- the second optical unit 120 has a lens surface 122 on the side opposite to the first bonding surface 121
- the third optical unit 130 is bonded to the second optical unit 120 on the lens surface 122.
- the third optical unit 130 has a lens surface 132 on the side opposite to the second joint surface 131.
- the first uneven surface portion 122a exists on a part of the lens surface 122 of the second optical unit 120
- the second uneven surface portion 132a exists on a part of the lens surface 132 of the third optical unit 130. ing.
- the composite optical element 101 that works in this modification functions as a diffractive portion, as in the first embodiment. Since the first and second uneven surface portions 122a and 132a are provided, the same effects as those of the first embodiment can be obtained.
- FIG. 4 is a schematic cross-sectional view of a composite optical element 201 that works on the second modification.
- the first optical unit 110 is plate-like, as with the composite optical element 101 that works according to the first modification, but the first and second uneven surface parts 122a, 132a Are both lens array portions in which a plurality of concave lenses are arranged.
- 132a is a lens array part, so that light having a wavelength is incident on the first uneven surface part 122a to be condensed, and light having a wavelength ( ⁇ ⁇ ) is incident on the second uneven surface part 132a to be condensed.
- FIG. 5 is a schematic cross-sectional view of a composite optical element 301 that works on the third modification.
- the composite optical element 301 according to the present modification is formed substantially the same as the composite optical element 1 according to the first embodiment, but the first and second uneven surface portions 322a and 332a are phase step portions having a stepped cross section. It is.
- both the first and second uneven surface portions 322a and 332a are phase step portions, the first and second uneven surface portions 322a and 332a The phase of the incident light flux is changed at the first and second uneven surface portions 322a and 332a, respectively.
- FIG. 6 is a schematic cross-sectional view of a composite optical element 401 that works on the fourth modification.
- the composite optical element 401 according to this modification is formed substantially the same as the composite optical element 1 according to the first embodiment, but the first and second uneven surface portions 422a and 433a are antireflection portions.
- each of the first and second uneven surface portions 422a and 433a has a plurality of cone-shaped projections, and the pitch between the projections is substantially the same as the wavelength for preventing reflection.
- the first and second uneven surface portions 422a and 433a are antireflection portions, so that reflection of light having a wavelength of about the pitch is prevented.
- the pitch on the first uneven surface portion 422a is different from the pitch on the second uneven surface portion 433a, reflection of two lights having different wavelengths can be prevented.
- FIG. 7 is a schematic sectional view of the composite optical element 2 according to the second embodiment.
- the third uneven surface portion 43 a exists on the lens surface (fourth optical function surface) 43 of the first optical portion 40.
- the third uneven surface portion 43a may be a diffractive portion having a sawtooth cross section as described in the first embodiment, or may have the shape described in the first to fourth modifications. .
- FIG. 8 is a schematic sectional view of the composite optical element 3 according to the third embodiment.
- the fourth optical unit 50 is bonded to the lens surface 13 of the composite optical element 1 of the first embodiment.
- the fourth optical unit 50 has a lens surface (fifth optical function surface) 52 on the side opposite to the third bonding surface 51, and the lens surface 52 has a fourth uneven surface portion 52 a.
- the fourth concavo-convex surface portion 52a may be a diffractive portion formed in the shape of a sawtooth cross section as described in the first embodiment, the same as the third concavo-convex surface portion 43a of the second embodiment, and the first to fourth The shape described in the modification may be used.
- the fourth optical unit 50 is composed of a fourth resin.
- the soft temperature of the 4th resin is lower than the soft temperature of the 1st resin, but regarding the high and low of the soft temperature of the 2nd resin and the 3rd resin Depends on the order. For example, when the first optical member is molded, then the second and third optical members are formed, and when the fourth optical member is finally formed, the soft temperature of the fourth resin is the second and third optical members. The temperature is preferably lower than the soft temperature of the third resin. Conversely, after the first optical member is molded, the fourth optical member is molded and the force is applied. When the second and third optical members are molded, the soft temperature of the fourth resin is the second and third. It is preferable that the temperature is higher than the soft temperature of the resin. If molding is performed using a resin preform having a low softening temperature in the molding order, the composite optical element 4 can be molded without softening the already molded optical member.
- the present invention may have the following configurations for the first to third embodiments.
- the lens surface may be an aspherical surface, a flat surface, or a spherical surface, a cylindrical surface, an elliptical surface, or a toric surface.
- the material of the optical part is not limited to the above description! The material may be!, And the deviation may be glass. Some optical parts may have glass power and the remaining optical parts may be made of resin. For example, when the first, second, and third optical parts are made of glass, the glass transition temperature only needs to be designed so as to decrease in the molding order. Further, an impurity that does not affect the optical characteristics may be mixed in the optical unit.
- the first optical part is not limited to one formed by a press molding method, and may be one formed by etching or one formed by injection molding. Further, the second optical part may be one that is applied to the lens surface of the first optical part by a coating method such as spin coating or squeezing, and then cured.
- the position of the uneven surface portion on the lens surface is not limited to the above description. Further, two or more types of uneven surface portions may exist on the same lens surface.
- the fourth optical unit may be bonded to the first optical unit while being connected to the lens surface where the third uneven surface portion exists.
- the present invention can be mounted on an optical disc recording / reproducing apparatus.
- an image pickup apparatus digital still camera, digital video camera, etc.
- a display apparatus projector, etc.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Disclosed is a composite optical device, particularly a composite optical device wherein a second optical unit and a third optical unit are joined to a first optical unit. This composite optical device is improved in optical characteristics. Specifically disclosed is a composite optical device (1) comprising first, second and third optical units (10, 20, 30). The first optical unit (10) has lens surfaces (12, 13). The second optical unit (20) is joined to the first optical unit (10) on the lens surface (12), and has a lens surface (22) which is opposite to a first contact surface (21). The third optical unit (30) is joined to the second optical unit (20) on the lens surface (22), and has a lens surface (32) which is opposite to a second contact surface (31). A part of the lens surface (22) has a first rough surface portion (22a), and a part of the lens surface (32) has a second rough surface portion (32a).
Description
明 細 書 Specification
複合光学素子 Compound optical element
技術分野 Technical field
[0001] 本発明は、複合光学素子に関し、特に、第 1光学部に第 2および第 3光学部が接合 された複合光学素子に関する。 The present invention relates to a composite optical element, and more particularly to a composite optical element in which a second optical part and a third optical part are joined to a first optical part.
背景技術 Background art
[0002] 従来より、 2つ以上の光学部を有する複合光学素子が知られており、例えば 2つの 光学部を有する複合光学素子では、第 1光学部に第 2光学部が接合されている。こ のような複合光学素子は種々の光学系に用いられており、例えば接合面に回折構造 を形成することによりレンズとして用いることができる。 Conventionally, a composite optical element having two or more optical parts is known. For example, in a composite optical element having two optical parts, a second optical part is bonded to the first optical part. Such composite optical elements are used in various optical systems. For example, they can be used as lenses by forming a diffractive structure on the joint surface.
[0003] 接合面に形成される回折構造は、例えば特許文献 1に開示されているように、微小 間隔 (約 lmm)当たり数十〜数百本程度の細かい等間隔のスリット状もしくは溝状の 格子構造である場合が多ぐこのような回折構造に光が入射されると、スリットや溝の ピッチ(間隔)と光の波長とで定まる方向に回折光束が発生する。そして、この回折光 束を一点に集めることにより、このような回折構造を有する複合光学素子をレンズとし て使用することができる。 [0003] As disclosed in Patent Document 1, for example, the diffractive structure formed on the joint surface is a slit-like or groove-like shape having a fine equidistant interval of several tens to several hundreds per minute interval (about 1 mm). When light is incident on such a diffractive structure, which is often a grating structure, a diffracted light beam is generated in a direction determined by the pitch (interval) of the slits and grooves and the wavelength of the light. Then, by collecting the diffracted light flux at one point, the composite optical element having such a diffractive structure can be used as a lens.
[0004] 複合光学素子をレンズとして用いる場合、例えば、ガラス力 なる第 1光学部に榭脂 からなる第 2光学部が接合された複合光学素子を用いる。このような構造とすること〖こ より、ガラス単体ゃ榭脂単体力 なる通常のレンズとは逆の波長特性、すなわち長波 長ほど屈折率が高くなるという性質を利用して、 h線 (404. 7nm)力も C線 (656. 3n m)までの広波長領域で回折効率を 90%以上とすることが可能になっている。 [0004] When the composite optical element is used as a lens, for example, a composite optical element in which a second optical part made of a resin is joined to a first optical part made of glass is used. This structure makes it possible to use the h-line (404. (7nm) force is also possible to increase the diffraction efficiency to 90% or more in a wide wavelength range up to C-line (656.3 nm).
特許文献 1:特開平 11― 287904号公報 Patent Document 1: Japanese Patent Laid-Open No. 11-287904
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 複合光学素子は上述のように 2つ以上の光学部を有しており、それぞれの光学部 は互いに異なる材質力 なる場合が多いので、光学特性の低下を招来する虞がある
[0006] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、光学特 性の向上を図ることができる複合光学素子を提供することである。 [0005] The composite optical element has two or more optical parts as described above, and each optical part often has a different material force, which may lead to deterioration of optical characteristics. [0006] The present invention has been made in view of efforts, and an object of the present invention is to provide a composite optical element capable of improving optical characteristics.
課題を解決するための手段 Means for solving the problem
[0007] 本発明は、第 1、第 2および第 3光学部を備えている。第 1光学部は、第 1光学機能 表面を有している。第 2光学部は、第 1光学機能表面において第 1光学部に接合され ており、第 1光学部に接合された第 1接合面とは反対側に第 2光学機能表面を有して いる。第 3光学部は、第 2光学機能表面において第 2光学部に接合されており、第 2 光学部に接合された第 2接合面とは反対側に第 3光学機能表面を有している。そし て、第 2および第 3光学機能表面のそれぞれの一部には第 1および第 2凹凸面部が 存在している。 [0007] The present invention includes first, second and third optical units. The first optical unit has a first optical functional surface. The second optical unit is bonded to the first optical unit on the first optical functional surface, and has the second optical functional surface on the side opposite to the first bonding surface bonded to the first optical unit. The third optical unit is bonded to the second optical unit on the second optical functional surface, and has the third optical functional surface on the side opposite to the second bonding surface bonded to the second optical unit. The first and second uneven surface portions are present on a part of each of the second and third optical function surfaces.
発明の効果 The invention's effect
[0008] 本発明によれば、光学特性の向上を図ることができる。 [0008] According to the present invention, it is possible to improve optical characteristics.
図面の簡単な説明 Brief Description of Drawings
[0009] [図 1]図 1は、実施形態 1にかかる複合光学素子の概略断面図である。 FIG. 1 is a schematic cross-sectional view of a composite optical element according to a first embodiment.
[図 2]図 2の (a)力 (f)は実施形態 1にかかる複合光学素子の製造方法を示す断面 図である。 FIG. 2 (a) Force (f) in FIG. 2 is a cross-sectional view showing a method for manufacturing a composite optical element according to Embodiment 1.
[図 3]図 3は、実施形態 1の第 1の変形例に力かる複合光学素子の概略断面図である FIG. 3 is a schematic cross-sectional view of a composite optical element that is useful for the first modification of Embodiment 1.
[図 4]図 4は、実施形態 1の第 2の変形例に力かる複合光学素子の概略断面図である FIG. 4 is a schematic cross-sectional view of a composite optical element that works on the second modification of Embodiment 1.
[図 5]図 5は、実施形態 1の第 3の変形例に力かる複合光学素子の概略断面図である FIG. 5 is a schematic cross-sectional view of a composite optical element that can be applied to the third modification of the first embodiment.
[図 6]図 6は、実施形態 1の第 4の変形例に力かる複合光学素子の概略断面図である FIG. 6 is a schematic cross-sectional view of a composite optical element that works on the fourth modification of Embodiment 1.
[図 7]図 7は、実施形態 2にかかる複合光学素子の概略断面図である。 FIG. 7 is a schematic cross-sectional view of a composite optical element according to the second embodiment.
[図 8]図 8は、実施形態 3にかかる複合光学素子の概略断面図である。 FIG. 8 is a schematic cross-sectional view of a composite optical element according to Embodiment 3.
符号の説明
[0010] 1, 2, 101, 201, 301, 401 複合光学素子 Explanation of symbols [0010] 1, 2, 101, 201, 301, 401 Compound optical element
10, 40 第 1光学部 10, 40 1st optical part
12 レンズ面 (第 1光学機能表面) 12 Lens surface (first optical function surface)
13, 43 レンズ面 (第 4光学機能表面) 13, 43 Lens surface (4th optical function surface)
20 第 2光学部 20 Second optical part
21 第 1接合面 21 First joint surface
22 レンズ面 (第 2光学機能表面) 22 Lens surface (second optical function surface)
22a 第 1凹凸面部 22a First uneven surface
30 第 3光学部 30 Third optical section
31 第 2接合面 31 Second joint surface
32 レンズ面 (第 3光学機能表面) 32 Lens surface (third optical function surface)
32a 第 2凹凸面部 32a Second uneven surface
43a 第 3凹凸面部 43a 3rd uneven surface
50 第 4光学部 50 4th optical part
51 第 3接合面 51 3rd joint surface
52 レンズ面 (第 5光学機能表面) 52 Lens surface (5th optical function surface)
52a 第 4凹凸面部 52a 4th uneven surface
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以 下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
[0012] 《発明の実施形態 1》 [Embodiment 1 of the Invention]
実施形態 1では、複合光学素子の一例として複合レンズを挙げ、その構造およびそ の製造方法を示す。 In Embodiment 1, a composite lens is given as an example of a composite optical element, and its structure and its manufacturing method are shown.
[0013] 図 1は、本実施形態にかかる複合光学素子 1の構成を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing a configuration of a composite optical element 1 according to the present embodiment.
[0014] 本実施形態にかかる複合光学素子 1は、第 1、第 2および第 3光学部 10, 20, 30を 備えている。第 1光学部 10は、レンズ面 (第 1光学機能表面) 12およびレンズ面 (第 4 光学機能表面) 13を有している。第 2光学部 20は、レンズ面 12において第 1光学部 10に接合されており、第 1接合面 21とは反対側にレンズ面 (第 2光学機能表面) 22を
有している。第 3光学部 30は、レンズ面 22において第 2光学部 20に接合されており 、第 2接合面 31とは反対側にレンズ面 (第 3光学機能表面) 32を有している。そして、 レンズ面 22の一部には第 1凹凸面部 22aが存在しており、レンズ面 32の一部には第 2凹凸面部 32aが存在している。 The composite optical element 1 according to the present embodiment includes first, second and third optical units 10, 20 and 30. The first optical unit 10 has a lens surface (first optical functional surface) 12 and a lens surface (fourth optical functional surface) 13. The second optical unit 20 is bonded to the first optical unit 10 at the lens surface 12, and a lens surface (second optical function surface) 22 is provided on the side opposite to the first bonding surface 21. Have. The third optical unit 30 is bonded to the second optical unit 20 at the lens surface 22, and has a lens surface (third optical functional surface) 32 on the side opposite to the second bonding surface 31. A first uneven surface portion 22a exists on a part of the lens surface 22, and a second uneven surface portion 32a exists on a part of the lens surface 32.
[0015] 一般に、凹凸面部を回折部等として機能させるためにはその凹凸面部を精度良く 成形する必要がある。本実施形態にかかる複合光学素子 1では、第 1および第 2凹凸 面部 22a, 32aがそれぞれレンズ面 22, 32の一部に存在している。そのため、本実 施形態に力かる複合光学素子 1は、凹凸面部がレンズ面全体に存在している複合光 学素子に比べて、凹凸面部を所望の形状に精度良く成形させやすぐその結果、光 学特性 (収差や集光率など)の劣化を防止することができる。 [0015] Generally, in order for an uneven surface portion to function as a diffractive portion or the like, it is necessary to accurately form the uneven surface portion. In the composite optical element 1 according to the present embodiment, the first and second concavo-convex surface portions 22a and 32a are present on part of the lens surfaces 22 and 32, respectively. For this reason, the composite optical element 1 that is effective in this embodiment has the uneven surface portion formed into a desired shape with high accuracy compared to the composite optical element in which the uneven surface portion exists on the entire lens surface. Degradation of optical characteristics (such as aberration and light collection rate) can be prevented.
[0016] 本実施形態にかかる複合光学素子 1を詳細に示す。第 1光学部 10は第 1榭脂から なり、第 1榭脂はエネルギー硬化樹脂であってもよく熱可塑性榭脂であってもよい。こ こで、エネルギー硬化樹脂とは、例えば熱硬化榭脂、紫外線硬化榭脂および電子線 硬化榭脂等であり、所定のエネルギー (熱、紫外線、電子線等)を付与することにより 硬化する榭脂である。また、レンズ面 12, 13はそれぞれ非球面に形成されているとと もに滑らかに形成されて 、る。 [0016] The composite optical element 1 according to the present embodiment is shown in detail. The first optical unit 10 is made of a first resin, and the first resin may be an energy curable resin or a thermoplastic resin. Here, the energy curable resin is, for example, a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or the like, and is cured by applying predetermined energy (heat, ultraviolet ray, electron beam, etc.). It is fat. Further, the lens surfaces 12 and 13 are each formed as an aspheric surface and are formed smoothly.
[0017] 第 2光学部 20は第 2榭脂からなり、第 2榭脂はエネルギー硬化樹脂であっても熱可 塑性榭脂であってもよいが、その溶融温度は第 1榭脂の溶融温度よりも低い。レンズ 面 22には、第 1凹凸面部 22aと、滑らかに形成された第 1および第 2滑面部(どちらも 不図示)とが存在している。具体的には、レンズ面 22には、第 1滑面部、第 1凹凸面 部 22aおよび第 2滑面部が、光軸から周縁へ向かう方向に存在しており、光軸上の一 点を中心とする同心円上に配置されている。そのため、レンズ面 22では、光学的パヮ 一が第 1および第 2滑面部と第 1凹凸面部 22aとで相異なる。 [0017] The second optical unit 20 comprises a second resin, and the second resin may be an energy curable resin or a thermoplastic resin, but the melting temperature thereof is the melting of the first resin. Lower than temperature. The lens surface 22 includes a first uneven surface portion 22a and smoothly formed first and second smooth surface portions (both not shown). Specifically, the lens surface 22 has a first smooth surface portion, a first uneven surface portion 22a, and a second smooth surface portion in a direction from the optical axis toward the periphery, and is centered on one point on the optical axis. Are arranged on a concentric circle. Therefore, in the lens surface 22, the optical power is different between the first and second smooth surface portions and the first uneven surface portion 22a.
[0018] 第 3光学部 30は第 3榭脂からなり、第 3榭脂はエネルギー硬化樹脂であっても熱可 塑性榭脂であってもよいが、その溶融温度は第 1および第 2榭脂の溶融温度よりも低 い。この樹脂の溶融温度については、後述の複合光学素子 1の成形方法を説明する 際に示す。また、レンズ面 32には、第 2凹凸面部 32aと、滑らかに形成された第 3滑 面部(不図示)とが存在している。具体的には、レンズ面 32には、第 3滑面部および
第 2凹凸面部 32aが、光軸から周縁へ向かう方向に存在しており、光軸上の一点を 中心とする同心円上に配置されている。そのため、レンズ面 32では、光学的パワー が第 3滑面部と第 2凹凸面部 32aとで相異なる。 [0018] The third optical unit 30 is composed of a third resin, and the third resin may be an energy curable resin or a thermoplastic resin, but the melting temperature thereof is the first and second resins. It is lower than the melting temperature of fat. The melting temperature of this resin will be shown when explaining the molding method of the composite optical element 1 described later. Further, the lens surface 32 includes a second uneven surface portion 32a and a smoothly formed third smooth surface portion (not shown). Specifically, the lens surface 32 has a third smooth surface portion and The second concavo-convex surface portion 32a exists in the direction from the optical axis toward the periphery, and is disposed on a concentric circle centered on one point on the optical axis. Therefore, in the lens surface 32, the optical power differs between the third smooth surface portion and the second uneven surface portion 32a.
[0019] そして、複合光学素子 1全体としては、第 2凹凸面部 32aは、複合光学素子 1の光 軸方向において、第 1凹凸面部 22aに重なることなく第 1凹凸面部 22aよりも周縁に 存在している。すなわち、複合光学素子 1の光軸方向において、第 1滑面部は第 3滑 面部の一部に重なっており、第 1凹凸面部 22aは第 3滑面部の残りの部分に重なつ ており、第 2滑面部は第 2凹凸面部 32aに重なっている。そのため、複合光学素子 1 は、全体として、光学的パワーが互いに異なる 3つの部分を有しているので、互いに 波長が異なる 3種類の光を集光することができる。 [0019] As the entire composite optical element 1, the second concavo-convex surface portion 32a exists in the periphery of the first concavo-convex surface portion 22a without overlapping the first concavo-convex surface portion 22a in the optical axis direction of the composite optical element 1. ing. That is, in the optical axis direction of the composite optical element 1, the first smooth surface portion overlaps a part of the third smooth surface portion, and the first uneven surface portion 22a overlaps the remaining portion of the third smooth surface portion. 2 The smooth surface portion overlaps the second uneven surface portion 32a. Therefore, since the composite optical element 1 as a whole has three portions having different optical powers, three types of light having different wavelengths can be condensed.
[0020] 図 2 (a)〜 (f)は、本実施形態にかかる複合光学素子 1の製造方法を示す断面図で ある。複合光学素子 1の製造方法は、図 2 (a)および (b)に示す工程において第 1光 学部材 155をプレス成形し、図 2 (c)および (d)に示す工程においてプレス成形法を 用いて第 1光学部材 155に第 2光学部材 165を接合させ、図 2 (e)および (f)に示す 工程においてプレス成形法を用いて第 2光学部材 165に第 3光学部材 185を接合さ せると 、うものである。このようにプレス成形法を用 、て複合光学素子 1を製造するの で、非球面のレンズ面や断面鋸歯状の凹凸面部を一回の成形で成形することができ 、また、容易に且つ成形精度良く成形することができる。具体的に示す。 FIGS. 2A to 2F are cross-sectional views showing a method for manufacturing the composite optical element 1 according to the present embodiment. In the method of manufacturing the composite optical element 1, the first optical member 155 is press-molded in the steps shown in FIGS. 2 (a) and (b), and the press-molding method is used in the steps shown in FIGS. 2 (c) and (d). The second optical member 165 is bonded to the first optical member 155, and the third optical member 185 is bonded to the second optical member 165 using a press molding method in the steps shown in FIGS. 2 (e) and (f). If you let it, it is a natural thing. Since the composite optical element 1 is manufactured by using the press molding method in this way, the aspherical lens surface and the uneven surface portion having a sawtooth cross section can be molded by one molding, and can be easily and molded. It can be molded with high accuracy. Specifically,
[0021] まず、図 2 (a)に示すように、第 1榭脂プリフォーム 150および成形装置を用意する。 First, as shown in FIG. 2 (a), a first resin preform 150 and a molding apparatus are prepared.
第 1榭脂プリフォーム 150は、成形装置にセットする前に予め溶融されていることが好 ましぐエネルギー硬化榭脂であっても熱可塑性榭脂であってもよい。成形装置は、 上型 71と下型 72とを備えており、上型 71は第 1光学部材 155の上側レンズ面 (第 1 光学部 10のレンズ面 13となるレンズ面)を成形するための成形面 71aを有しており、 下型 72は第 1光学部材 155の下側レンズ面 (第 1光学部 10のレンズ面 12となるレン ズ面)を成形するための成形面 72aを有している。そして、成形面 72aを上向けて下 型 72をセットした後、成形面 72aの上に溶融した第 1榭脂プリフォーム 150をセットし 、第 1榭脂プリフォーム 150の上に成形面 71aを下向けて上型 71をセットする。 The first resin preform 150 may be an energy-cured resin or a thermoplastic resin, preferably melted in advance before being set in the molding apparatus. The molding apparatus includes an upper mold 71 and a lower mold 72, and the upper mold 71 is used to mold the upper lens surface of the first optical member 155 (the lens surface serving as the lens surface 13 of the first optical unit 10). The lower mold 72 has a molding surface 72a for molding the lower lens surface of the first optical member 155 (the lens surface serving as the lens surface 12 of the first optical unit 10). ing. Then, after setting the lower mold 72 with the molding surface 72a facing upward, the molten first resin preform 150 is set on the molding surface 72a, and the molding surface 71a is placed on the first resin preform 150. Set the upper die 71 downward.
[0022] 次に、図 2 (b)に示すようにプレスして、上型 71および下型 72の成形面 71a, 72a
をそれぞれ第 1榭脂プリフォーム 150の表面に転写する。プレスする際、上型 71を第 1榭脂プリフォーム 150の表面に押し付けてもよぐ下型 72を第 1榭脂プリフォーム 15 0の表面に押し付けてもよぐ上型 71および下型 72をそれぞれ第 1榭脂プリフォーム 150の表面に押し付けても良い。その後、固化させる。これにより、第 1光学部材 155 を成形することができる。 Next, as shown in FIG. 2 (b), the molding surfaces 71a and 72a of the upper die 71 and the lower die 72 are pressed. Are transferred to the surface of the first slag preform 150, respectively. When pressing, the upper mold 71 and the lower mold 72 can be pressed against the surface of the first resin preform 150 by pressing the lower mold 72 against the surface of the first resin preform 150. May be pressed against the surface of the first resin preform 150, respectively. Then, it is solidified. As a result, the first optical member 155 can be molded.
[0023] 続いて、図 2 (c)に示す第 2榭脂プリフォーム 160および成形装置を準備する。第 2 榭脂プリフォーム 160は、成形装置にセットする前に予め溶融されていることが好まし ぐその軟ィ匕温度が第 1榭脂プリフォーム 150の軟ィ匕温度よりも低い樹脂からなること が好ましい。また、成形装置は下型 81を備えており、下型 81の成形面 81aは第 2光 学部材 165のレンズ面を成形するためのものであり、そのため、成形面 81aの一部は 第 1凹凸面部に対応するように凹凸に形成されている。そして、成形面 81aを上向け て下型 81をセットした後、軟ィ匕した第 2榭脂プリフォーム 160を成形面 81aにセットし 、第 2榭脂プリフォーム 160の上に第 1光学部材 155をセットする。第 1光学部材 155 をセットする際、第 1光学部材 155の光軸が下型 81の成形面 81aの中心軸に一致す るように第 1光学部材 155を下型 81にセットすれば、光軸方向を揃えて第 1光学部材 155に第 2光学部材 165を接合することができる。 [0023] Subsequently, a second resin preform 160 and a molding apparatus shown in Fig. 2 (c) are prepared. The second resin preform 160 is preferably melted in advance before being set in the molding apparatus, and the soft resin temperature thereof is made of a resin lower than the soft resin temperature of the first resin preform 150. It is preferable. The molding apparatus includes a lower mold 81. The molding surface 81a of the lower mold 81 is for molding the lens surface of the second optical member 165. Therefore, a part of the molding surface 81a is the first mold. It is formed to be uneven so as to correspond to the uneven surface portion. Then, after setting the lower mold 81 with the molding surface 81a facing upward, the softened second resin preform 160 is set on the molding surface 81a, and the first optical member is placed on the second resin preform 160. Set 155. When setting the first optical member 155, if the first optical member 155 is set on the lower die 81 so that the optical axis of the first optical member 155 coincides with the central axis of the molding surface 81a of the lower die 81, the light The second optical member 165 can be joined to the first optical member 155 with the axial direction aligned.
[0024] 続いて、図 2 (d)に示すように第 1光学部材 155を下型 81に押し当ててプレスする。 Subsequently, as shown in FIG. 2 (d), the first optical member 155 is pressed against the lower mold 81 and pressed.
このとき、第 2榭脂プリフォーム 160の軟ィ匕温度は第 1榭脂プリフォーム 150の軟ィ匕温 度に比べて低 、ので、溶融した第 2榭脂プリフォーム 160を第 1光学部材 155に接合 させても、その接合面における第 1光学部材 155の溶融を防止することができ、その 結果、第 1光学部材 155の下側レンズ面の変形を防止することができる。また、第 2榭 脂プリフォーム 160は、第 2光学部材 165のレンズ面の形状に合わせて流動して成 形面 81aの凹凸に入り込み、成形面 81aの形状が第 2榭脂プリフォーム 160の表面 に好適に転写される。これにより、第 2光学部材 165が第 1光学部材 155に接合され た接合体 175を成形することができる。 At this time, since the soft temperature of the second resin preform 160 is lower than that of the first resin preform 150, the molten second resin preform 160 is used as the first optical member. Even when bonded to 155, melting of the first optical member 155 at the bonded surface can be prevented, and as a result, deformation of the lower lens surface of the first optical member 155 can be prevented. Further, the second resin preform 160 flows in accordance with the shape of the lens surface of the second optical member 165 and enters the irregularities of the molding surface 81a, and the shape of the molding surface 81a is the same as that of the second resin preform 160. It is suitably transferred to the surface. Thereby, the joined body 175 in which the second optical member 165 is joined to the first optical member 155 can be molded.
[0025] 続いて、図 2 (e)に示す第 3榭脂プリフォーム 180および成形装置を準備する。第 3 榭脂プリフォーム 180は、成形装置にセットする前に予め溶融されていることが好まし ぐその軟ィ匕温度が第 1および第 2榭脂プリフォーム 150, 160の軟ィ匕温度よりも低い
榭脂からなることが好ましい。また、成形装置は下型 91を備えており、下型 91は成形 面 91aを有している。この成形面 91aは第 3光学部材 186のレンズ面を成形するため のものであり、そのため、成形面 91aの一部は第 2凹凸面部に対応するように凹凸に 形成されている。そして、成形面 91aを上向けて下型 91をセットした後、軟化した第 3 榭脂プリフォーム 180を成形面 91aにセットし、第 3榭脂プリフォーム 180の上に上記 接合体 175をセットする。接合体 175をセットする際、接合体 175の光軸が下型 91の 成形面 91aの中心軸に一致するように接合体 175を下型 91にセットすれば、光軸方 向を揃えて接合体 175に第 3光学部材 185を接合することができる。 [0025] Subsequently, a third resin preform 180 and a molding apparatus shown in Fig. 2 (e) are prepared. It is preferable that the third resin preform 180 is melted in advance before being set in the molding apparatus. The soft temperature of the third resin preform 180 is higher than that of the first and second resin preforms 150 and 160. Is also low It is preferable that it consists of rosin. The molding apparatus includes a lower mold 91, and the lower mold 91 has a molding surface 91a. The molding surface 91a is used to mold the lens surface of the third optical member 186. Therefore, a part of the molding surface 91a is formed to be uneven so as to correspond to the second uneven surface portion. Then, after setting the lower die 91 with the molding surface 91a facing upward, the softened third resin preform 180 is set on the molding surface 91a, and the joined body 175 is set on the third resin preform 180. To do. When setting the joined body 175, if the joined body 175 is set on the lower mold 91 so that the optical axis of the joined body 175 coincides with the center axis of the molding surface 91a of the lower mold 91, the optical axis directions are aligned and joined. The third optical member 185 can be joined to the body 175.
[0026] それから、図 2 (f)に示すように接合体 175を下型 91に押し当ててプレスする。この とき、第 3榭脂プリフォーム 180の軟ィ匕温度は第 2榭脂プリフォーム 160の軟ィ匕温度 に比べて低いので、溶融した第 3榭脂プリフォーム 180を接合体 175に接合させても 、その接合面における第 3榭脂プリフォーム 180の溶融を防止することができ、その 結果、第 2光学部材 165のレンズ面の変形を防止することができる。また、第 3榭脂プ リフォーム 180は、第 2榭脂プリフォーム 160と同じく第 3光学部材 185のレンズ面の 形状に合わせて流動して成形面 91aの凹凸に入り込み、成形面 91aの形状が第 3榭 脂プリフォーム 180の表面に好適に転写される。これにより、図 1に示す複合光学素 子 1を成形することができる。 Then, as shown in FIG. 2 (f), the joined body 175 is pressed against the lower die 91 and pressed. At this time, since the soft temperature of the third resin preform 180 is lower than the soft temperature of the second resin preform 160, the molten third resin preform 180 is bonded to the bonded body 175. However, it is possible to prevent the third resin preform 180 from melting on the joint surface, and as a result, it is possible to prevent the lens surface of the second optical member 165 from being deformed. In addition, the third resin preform 180 flows in accordance with the shape of the lens surface of the third optical member 185 and enters into the irregularities of the molding surface 91a, and the shape of the molding surface 91a is the same as the second resin preform 160. It is preferably transferred onto the surface of the third resin preform 180. Thereby, the composite optical element 1 shown in FIG. 1 can be molded.
[0027] 以上説明したように、本実施形態にかかる複合光学素子 1では、第 1および第 2凹 凸面部 22a, 32a力レンズ面 22, 32のそれぞれの一部に存在しているので、レンズ 面の全体に存在している場合に比べて、凹凸部の形状を所望の形状に精度良く成 形することができる。すなわち、回折部として機能する凹凸形状を正確に形成できる ので、光学特性の低下を防止することができる。 As described above, in the composite optical element 1 according to the present embodiment, the first and second concave convex surface portions 22a and 32a are present on a part of each of the lens surfaces 22 and 32. Compared to the case where the entire surface is present, the shape of the concavo-convex portion can be accurately formed into a desired shape. That is, since the concave and convex shape that functions as the diffractive portion can be accurately formed, it is possible to prevent deterioration of the optical characteristics.
[0028] また、本実施形態に力かる複合光学素子 1はプレス成形法を用いて成形されてい るので、非球面レンズであっても精度良く成形することができる。また、成形型の成形 面の形状を工夫することにより、第 1および第 2凹凸面部 22a, 32aを形成することが できる。 [0028] In addition, since the composite optical element 1 that works according to the present embodiment is molded using a press molding method, even an aspheric lens can be molded with high accuracy. Further, the first and second uneven surface portions 22a and 32a can be formed by devising the shape of the molding surface of the mold.
[0029] さらに、榭脂の溶融温度が成形順に低くなるように設計されているので、プレス時に おいて、既に成形された光学部材の変形を防止することができる。
[0030] このような複合光学素子 1は、撮像装置、照明装置、光ディスク記録再生装置等の 光学機器に搭載することができる。撮像装置は、被写体を撮影するための装置であり 、例えばデジタルスチルカメラやデジタルビデオカメラである。照明装置は、被照明 対象物に光を照射するための装置であり、例えばプロジェクタである。また、光デイス ク記録再生装置は、デジタルバーサタイルディスク(以下、 DVDと称す)や、コンパ タトディスク(以下、 CDと称す)や、ブルレイディスク (登録商標、以下 BD (登録商標) と称す)などを記録再生する装置である。一般に、 DVD、 CDおよび BDでは、記録 再生するための光源の波長や光ディスクの厚みなどが互いに異なるので、一台の光 ディスク記録再生装置で DVDと CDと BDとを記録再生可能とするためには光学系を 工夫する必要があるが、本実施形態に力かる複合光学素子 1を用いれば複数種類 の情報記録媒体に対して互換性を有する光ディスク記録再生装置を実現することが できる。 [0029] Furthermore, since the melting temperature of the resin is designed to be lower in the molding order, it is possible to prevent deformation of the already molded optical member during pressing. [0030] Such a composite optical element 1 can be mounted on an optical apparatus such as an imaging device, an illuminating device, or an optical disc recording / reproducing device. The imaging device is a device for photographing a subject, for example, a digital still camera or a digital video camera. The illumination device is a device for irradiating light on an object to be illuminated, and is, for example, a projector. Optical disk recording / playback devices include digital versatile discs (hereinafter referred to as DVD), compact discs (hereinafter referred to as CD), Blu-ray discs (registered trademark, hereinafter referred to as BD (registered trademark)), etc. Is a device for recording and reproducing. Generally, DVDs, CDs, and BDs have different light source wavelengths and optical disc thicknesses for recording and playback, so that a single optical disc recording and playback device can record and playback DVDs, CDs, and BDs. However, it is necessary to devise an optical system. However, if the composite optical element 1 which is effective in the present embodiment is used, an optical disc recording / reproducing apparatus compatible with a plurality of types of information recording media can be realized.
[0031] なお、第 1、第 2および第 3光学部の形状は上記形状に限定されず、以下の第 1乃 至第 4の変形例に記載の形状であっても良い。また、第 1および第 2凹凸面部の形状 も上記形状に限定されず、以下の第 1乃至第 4の変形例に記載の形状であっても良 い。 Note that the shapes of the first, second, and third optical units are not limited to the above shapes, and may be the shapes described in the following first to fourth modifications. Further, the shapes of the first and second uneven surface portions are not limited to the above shapes, and may be the shapes described in the following first to fourth modifications.
[0032] (第 1の変形例) [0032] (First modification)
図 3は、第 1の変形例に力かる複合光学素子 101の概略断面図である。本変形例 にかかる複合光学素子 101では、第 1光学部 110は板状に形成されており、第 1およ び第 2凹凸面部 122a, 132aは断面階段状に形成された回折部である。 FIG. 3 is a schematic cross-sectional view of the composite optical element 101 that works on the first modification. In the composite optical element 101 according to this modification, the first optical unit 110 is formed in a plate shape, and the first and second uneven surface portions 122a and 132a are diffractive portions formed in a stepped cross section.
[0033] 具体的には、第 1光学部 110は平面状のレンズ面 112およびレンズ面 113を有して おり、レンズ面 112において第 2光学部 120が第 1光学部 110に接合されている。第 2光学部 120は第 1接合面 121とは反対側にレンズ面 122を有しており、レンズ面 12 2において第 3光学部 130が第 2光学部 120に接合されている。第 3光学部 130は第 2接合面 131とは反対側にレンズ面 132を有している。そして、第 2光学部 120のレン ズ面 122の一部には第 1凹凸面部 122aが存在しており、第 3光学部 130のレンズ面 132の一部には第 2凹凸面部 132aが存在している。 Specifically, the first optical unit 110 has a planar lens surface 112 and a lens surface 113, and the second optical unit 120 is joined to the first optical unit 110 at the lens surface 112. . The second optical unit 120 has a lens surface 122 on the side opposite to the first bonding surface 121, and the third optical unit 130 is bonded to the second optical unit 120 on the lens surface 122. The third optical unit 130 has a lens surface 132 on the side opposite to the second joint surface 131. The first uneven surface portion 122a exists on a part of the lens surface 122 of the second optical unit 120, and the second uneven surface portion 132a exists on a part of the lens surface 132 of the third optical unit 130. ing.
[0034] 本変形例に力かる複合光学素子 101は、上記実施形態 1と同じく回折部として機能
する第 1および第 2凹凸面部 122a, 132aを有しているので、上記実施形態 1と略同 一の効果を奏する。 [0034] The composite optical element 101 that works in this modification functions as a diffractive portion, as in the first embodiment. Since the first and second uneven surface portions 122a and 132a are provided, the same effects as those of the first embodiment can be obtained.
[0035] (第 2の変形例) [0035] (Second modification)
図 4は、第 2の変形例に力かる複合光学素子 201の概略断面図である。本変形例 にかかる複合光学素子 201では、上記第 1の変形例に力かる複合光学素子 101と同 じく第 1光学部 110は板状であるが、第 1および第 2凹凸面部 122a, 132aはどちらも 複数の凹状レンズが配置されたレンズアレイ部である。 FIG. 4 is a schematic cross-sectional view of a composite optical element 201 that works on the second modification. In the composite optical element 201 according to the present modification, the first optical unit 110 is plate-like, as with the composite optical element 101 that works according to the first modification, but the first and second uneven surface parts 122a, 132a Are both lens array portions in which a plurality of concave lenses are arranged.
[0036] このように本変形例に力かる複合光学素子 201では第 1および第 2凹凸面部 122a[0036] Thus, in the composite optical element 201 that is effective in the present modification, the first and second uneven surface portions 122a
, 132aがレンズアレイ部であるので、波長え の光を第 1凹凸面部 122aに入射させ て集光させ、波長え (≠λ )の光を第 2凹凸面部 132aに入射させて集光させること , 132a is a lens array part, so that light having a wavelength is incident on the first uneven surface part 122a to be condensed, and light having a wavelength (≠ λ) is incident on the second uneven surface part 132a to be condensed.
2 1 twenty one
ができる。 Can do.
[0037] (第 3の変形例) [0037] (Third Modification)
図 5は、第 3の変形例に力かる複合光学素子 301の概略断面図である。本変形例 にかかる複合光学素子 301では、上記実施形態 1にかかる複合光学素子 1と略同一 に形成されているが、第 1および第 2凹凸面部 322a, 332aは断面階段状の位相段 差部である。 FIG. 5 is a schematic cross-sectional view of a composite optical element 301 that works on the third modification. The composite optical element 301 according to the present modification is formed substantially the same as the composite optical element 1 according to the first embodiment, but the first and second uneven surface portions 322a and 332a are phase step portions having a stepped cross section. It is.
[0038] このように本変形例に力かる複合光学素子 301では、第 1および第 2凹凸面部 322 a, 332aがどちらも位相段差部であるので、第 1および第 2凹凸面部 322a, 332aに 入射された光束はそれぞれ第 1および第 2凹凸面部 322a, 332aにおいて位相が変 換される。 [0038] In the composite optical element 301 that works in this modification as described above, since both the first and second uneven surface portions 322a and 332a are phase step portions, the first and second uneven surface portions 322a and 332a The phase of the incident light flux is changed at the first and second uneven surface portions 322a and 332a, respectively.
[0039] (第 4の変形例) [0039] (Fourth modification)
図 6は、第 4の変形例に力かる複合光学素子 401の概略断面図である。本変形例 にかかる複合光学素子 401では、上記実施形態 1にかかる複合光学素子 1と略同一 に形成されているが、第 1および第 2凹凸面部 422a, 433aは反射防止部である。具 体的には、第 1および第 2凹凸面部 422a, 433aにはそれぞれ錐体状突起が複数形 成されており、突起間のピッチは反射を防止するための波長と略同一である。 FIG. 6 is a schematic cross-sectional view of a composite optical element 401 that works on the fourth modification. The composite optical element 401 according to this modification is formed substantially the same as the composite optical element 1 according to the first embodiment, but the first and second uneven surface portions 422a and 433a are antireflection portions. Specifically, each of the first and second uneven surface portions 422a and 433a has a plurality of cone-shaped projections, and the pitch between the projections is substantially the same as the wavelength for preventing reflection.
[0040] このように本変形例に力かる複合光学素子 401では、第 1および第 2凹凸面部 422 a, 433aが反射防止部であるので、上記ピッチ程度の波長の光の反射を防止するこ
とができるとともに、第 1凹凸面部 422aにおける上記ピッチと第 2凹凸面部 433aにお ける上記ピッチとを相異なるようにすれば波長が互いに異なる 2つの光の反射を防止 することができる。 In this way, in the composite optical element 401 that is effective in this modified example, the first and second uneven surface portions 422a and 433a are antireflection portions, so that reflection of light having a wavelength of about the pitch is prevented. In addition, if the pitch on the first uneven surface portion 422a is different from the pitch on the second uneven surface portion 433a, reflection of two lights having different wavelengths can be prevented.
[0041] 《発明の実施形態 2》 [Embodiment 2 of the Invention]
図 7は、実施形態 2にかかる複合光学素子 2の概略断面図である。本実施形態にか かる複合光学素子 2は、第 1光学部 40のレンズ面 (第 4光学機能表面) 43に第 3凹凸 面部 43aが存在している。第 3凹凸面部 43aは、上記実施形態 1に記載のように断面 鋸歯状に形成された回折部であってもよぐ上記第 1乃至第 4の変形例に記載の形 状であってもよい。 FIG. 7 is a schematic sectional view of the composite optical element 2 according to the second embodiment. In the composite optical element 2 according to the present embodiment, the third uneven surface portion 43 a exists on the lens surface (fourth optical function surface) 43 of the first optical portion 40. The third uneven surface portion 43a may be a diffractive portion having a sawtooth cross section as described in the first embodiment, or may have the shape described in the first to fourth modifications. .
[0042] 《発明の実施形態 3》 [Embodiment 3 of the Invention]
図 8は、実施形態 3にかかる複合光学素子 3の概略断面図である。本実施形態にか かる複合光学素子 3は、上記実施形態 1の複合光学素子 1のレンズ面 13に第 4光学 部 50が接合されている。第 4光学部 50は、第 3接合面 51とは反対側にレンズ面 (第 5 光学機能表面) 52を有しており、レンズ面 52には、第 4凹凸面部 52aが存在している 。第 4凹凸面部 52aは、上記実施形態 2の第 3凹凸面部 43aと同じぐ上記実施形態 1に記載のように断面鋸歯状に形成された回折部であってもよく上記第 1乃至第 4の 変形例に記載の形状であってもよい。 FIG. 8 is a schematic sectional view of the composite optical element 3 according to the third embodiment. In the composite optical element 3 according to the present embodiment, the fourth optical unit 50 is bonded to the lens surface 13 of the composite optical element 1 of the first embodiment. The fourth optical unit 50 has a lens surface (fifth optical function surface) 52 on the side opposite to the third bonding surface 51, and the lens surface 52 has a fourth uneven surface portion 52 a. The fourth concavo-convex surface portion 52a may be a diffractive portion formed in the shape of a sawtooth cross section as described in the first embodiment, the same as the third concavo-convex surface portion 43a of the second embodiment, and the first to fourth The shape described in the modification may be used.
[0043] また、第 4光学部 50は第 4榭脂からなる。第 4榭脂の軟ィ匕温度は、第 1榭脂の軟ィ匕 温度よりも低いが、第 2榭脂の軟ィ匕温度や第 3榭脂の軟ィ匕温度との高低に関しては 成形順に依存する。例えば、第 1光学部材を成形後、第 2および第 3光学部材を成 形して力も最後に第 4光学部材を成形する場合には、第 4榭脂の軟ィ匕温度は、第 2 および第 3榭脂の軟ィ匕温度よりも低い方が好ましい。逆に、第 1光学部材を成形後、 第 4光学部材を成形して力 第 2および第 3光学部材を成形する場合には、第 4榭脂 の軟ィ匕温度は、第 2および第 3榭脂の軟ィ匕温度よりも高い方が好ましい。成形順に軟 化温度の低 、榭脂プリフォームを用いて成形すれば、既に成形された光学部材を軟 ィ匕させることなく複合光学素子 4を成形できる。 [0043] The fourth optical unit 50 is composed of a fourth resin. The soft temperature of the 4th resin is lower than the soft temperature of the 1st resin, but regarding the high and low of the soft temperature of the 2nd resin and the 3rd resin Depends on the order. For example, when the first optical member is molded, then the second and third optical members are formed, and when the fourth optical member is finally formed, the soft temperature of the fourth resin is the second and third optical members. The temperature is preferably lower than the soft temperature of the third resin. Conversely, after the first optical member is molded, the fourth optical member is molded and the force is applied. When the second and third optical members are molded, the soft temperature of the fourth resin is the second and third. It is preferable that the temperature is higher than the soft temperature of the resin. If molding is performed using a resin preform having a low softening temperature in the molding order, the composite optical element 4 can be molded without softening the already molded optical member.
[0044] 《その他の実施形態》 << Other Embodiments >>
本発明は、上記実施形態 1乃至 3について、以下のような構成としてもよい。
[0045] レンズ面は非球面であってもよぐ平面であってもよぐさらには球面、円筒面、楕球 面およびトーリック面であってもよ ヽ。 The present invention may have the following configurations for the first to third embodiments. [0045] The lens surface may be an aspherical surface, a flat surface, or a spherical surface, a cylindrical surface, an elliptical surface, or a toric surface.
[0046] 光学部の材質は上記記載に限定されな!、。材質は!、ずれもガラスであってもよぐ 一部の光学部がガラス力もなり残りの光学部が樹脂からなってもよい。なお、例えば、 第 1、第 2および第 3光学部がガラスからなる場合、ガラス転移温度が成形順に低くな るように設計されていればよい。また、光学部には、光学特性に影響を与えない不純 物が混入されていてもよい。 [0046] The material of the optical part is not limited to the above description! The material may be!, And the deviation may be glass. Some optical parts may have glass power and the remaining optical parts may be made of resin. For example, when the first, second, and third optical parts are made of glass, the glass transition temperature only needs to be designed so as to decrease in the molding order. Further, an impurity that does not affect the optical characteristics may be mixed in the optical unit.
[0047] 第 1光学部は、プレス成形法により成形されたものに限定されず、エッチングにより 成形されたものであってもよぐ射出成形により成形されたものであっても良い。また、 第 2光学部は、スピンコーティング法ゃスクイ一ジング法等の塗布法により第 1光学部 のレンズ面に塗布された後に硬化されたものであってもよい。 [0047] The first optical part is not limited to one formed by a press molding method, and may be one formed by etching or one formed by injection molding. Further, the second optical part may be one that is applied to the lens surface of the first optical part by a coating method such as spin coating or squeezing, and then cured.
[0048] レンズ面における凹凸面部の位置は、上記記載に限定されない。また、二種以上 の凹凸面部が同一のレンズ面に存在していてもよい。 [0048] The position of the uneven surface portion on the lens surface is not limited to the above description. Further, two or more types of uneven surface portions may exist on the same lens surface.
[0049] また、上記実施形態 3において、第 4光学部は、第 3凹凸面部が存するレンズ面に ぉ 、て第 1光学部に接合されて 、てもよ 、。 [0049] In the third embodiment, the fourth optical unit may be bonded to the first optical unit while being connected to the lens surface where the third uneven surface portion exists.
産業上の利用可能性 Industrial applicability
[0050] 以上説明したように、本発明は、光ディスク記録再生装置に搭載可能であり、それ 以外にも、撮像装置 (デジタルスチルカメラやデジタルビデオカメラ等)や表示装置( プロジェクタ一等)〖こも搭載可能である。
[0050] As described above, the present invention can be mounted on an optical disc recording / reproducing apparatus. In addition, an image pickup apparatus (digital still camera, digital video camera, etc.) or a display apparatus (projector, etc.) can be used. It can be installed.
Claims
[1] 第 1光学機能表面を有する第 1光学部と、 [1] a first optical unit having a first optical functional surface;
前記第 1光学機能表面において前記第 1光学部に接合されており、当該第 1光学 部に接合された第 1接合面とは反対側に第 2光学機能表面を有する第 2光学部と、 前記第 2光学機能表面において前記第 2光学部に接合されており、当該第 2光学 部に接合された第 2接合面とは反対側に第 3光学機能表面を有する第 3光学部とを 備え、 A second optical unit that is bonded to the first optical unit on the first optical functional surface and has a second optical functional surface on the opposite side of the first bonding surface bonded to the first optical unit; A third optical unit that is bonded to the second optical unit on the second optical functional surface and has a third optical functional surface on the opposite side of the second bonding surface bonded to the second optical unit;
前記第 2および前記第 3光学機能表面のそれぞれの一部には第 1および第 2凹凸 面部が存在して 、ることを特徴とする複合光学素子。 A composite optical element characterized in that first and second uneven surface portions are present on a part of each of the second and third optical functional surfaces.
[2] 前記第 1光学部は、前記第 1光学機能表面とは反対側に前記第 4光学機能表面を 有しており、 [2] The first optical unit has the fourth optical functional surface on a side opposite to the first optical functional surface,
前記第 4光学機能表面には、第 3凹凸面部が存在していることを特徴とする請求項 1に記載の複合光学素子。 2. The composite optical element according to claim 1, wherein a third uneven surface portion is present on the fourth optical function surface.
[3] 前記第 1光学部は、前記第 1光学機能表面とは反対側に前記第 4光学機能表面を 有しており、 [3] The first optical unit has the fourth optical functional surface on a side opposite to the first optical functional surface,
前記第 4光学機能表面において前記第 1光学部に接合されており、当該第 1光学 部に接合された第 3接合面とは反対側に第 5光学機能表面を有する第 4光学部をさ らに備えており、 A fourth optical unit that is bonded to the first optical unit on the fourth optical functional surface and has a fifth optical functional surface on the side opposite to the third bonding surface bonded to the first optical unit is further provided. In preparation for
前記第 5光学機能表面の一部には、第 4凹凸面部が存在していることを特徴とする 請求項 1に記載の複合光学素子。 2. The composite optical element according to claim 1, wherein a fourth uneven surface portion is present on a part of the fifth optical function surface.
[4] 前記第 1および前記第 2凹凸面部は、それぞれ、回折部、複数の凸状または凹状 のレンズからなるレンズアレイ部、位相段差部および光反射防止部のうちの少なくとも 一つであることを特徴とする請求項 1に記載の複合光学素子。 [4] Each of the first and second concavo-convex surface portions is at least one of a diffraction portion, a lens array portion composed of a plurality of convex or concave lenses, a phase step portion, and a light reflection preventing portion. The composite optical element according to claim 1, wherein:
[5] 前記第 1、前記第 2および前記第 3光学部はそれぞれ第 1、第 2および第 3榭脂から なることを特徴とする請求項 1に記載の複合光学素子。 [5] The composite optical element according to [1], wherein the first, second, and third optical units are respectively composed of first, second, and third resins.
[6] 前記第 2榭脂の軟化温度は、前記第 1榭脂の軟化温度よりも低い一方、前記第 3榭 脂の軟ィ匕温度よりも高いことを特徴とする請求項 5に記載の複合光学素子。 [6] The softening temperature of the second resin may be lower than the softening temperature of the first resin but higher than the softening temperature of the third resin. Composite optical element.
[7] 前記第 1、第 2および第 3榭脂はいずれもエネルギー硬化榭脂であることを特徴と
する請求項 5に記載の複合光学素子。
[7] The first, second and third resins are all energy-cured resins. The composite optical element according to claim 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006163600 | 2006-06-13 | ||
JP2006-163600 | 2006-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007145119A1 true WO2007145119A1 (en) | 2007-12-21 |
Family
ID=38831636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061478 WO2007145119A1 (en) | 2006-06-13 | 2007-06-06 | Composite optical device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007145119A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0416910A (en) * | 1990-05-11 | 1992-01-21 | Omron Corp | Optical lens |
JP2004240417A (en) * | 2003-01-14 | 2004-08-26 | Nikon Corp | Optical element and manufacturing method thereof |
-
2007
- 2007-06-06 WO PCT/JP2007/061478 patent/WO2007145119A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0416910A (en) * | 1990-05-11 | 1992-01-21 | Omron Corp | Optical lens |
JP2004240417A (en) * | 2003-01-14 | 2004-08-26 | Nikon Corp | Optical element and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5147693B2 (en) | Compound optical element | |
JP5159621B2 (en) | Compound lens and manufacturing method thereof | |
JP4672058B2 (en) | Compound optical element | |
JP5147694B2 (en) | Compound optical element | |
JP4210265B2 (en) | Hybrid lens manufacturing method | |
US7161893B2 (en) | Stamper for fabrication of optical recording medium, method of forming information recording area and light transmissive layer, and optical recording medium | |
WO2007132834A1 (en) | Composite optical device | |
KR100624454B1 (en) | Hybrid lens dies and hybrid lens arrays | |
WO2007145119A1 (en) | Composite optical device | |
WO2007145116A1 (en) | Composite optical element and method for manufacturing same | |
JP2007333859A (en) | Composite optical element and manufacturing method thereof | |
US20050083586A1 (en) | Complex optical element and method for manufacturing thereof | |
JP2008203580A (en) | Compound optical element | |
WO2007132833A1 (en) | Composite lens and method of producing the same | |
JP2008151836A (en) | Optical element | |
JP2003232997A (en) | Joint objective lens, objective optical system for optical disc, and method of manufacturing joint objective lens | |
JP2007310000A (en) | Compound optical element | |
CN101405629A (en) | Composite optical element | |
JPH10268109A (en) | Compound lens and manufacture thereof | |
JP2008145736A (en) | Compound optical element | |
JP2010160860A (en) | Composite optical element and optical pickup equipped with composite optical element | |
JP2009192880A (en) | Composite optical element and manufacturing method thereof | |
JP2010160859A (en) | Composite optical element and optical pickup equipped with composite optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744821 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07744821 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |