WO2007136113A1 - Inorganic particle and production method thereof and production plant thereof and paper using it - Google Patents
Inorganic particle and production method thereof and production plant thereof and paper using it Download PDFInfo
- Publication number
- WO2007136113A1 WO2007136113A1 PCT/JP2007/060624 JP2007060624W WO2007136113A1 WO 2007136113 A1 WO2007136113 A1 WO 2007136113A1 JP 2007060624 W JP2007060624 W JP 2007060624W WO 2007136113 A1 WO2007136113 A1 WO 2007136113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sludge
- partition
- rotary kiln
- heat treatment
- kiln furnace
- Prior art date
Links
- 239000010954 inorganic particle Substances 0.000 title claims abstract description 182
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 93
- 238000010438 heat treatment Methods 0.000 claims abstract description 646
- 239000010802 sludge Substances 0.000 claims abstract description 518
- 238000000034 method Methods 0.000 claims abstract description 348
- 230000008569 process Effects 0.000 claims abstract description 149
- 239000000463 material Substances 0.000 claims abstract description 92
- 239000000049 pigment Substances 0.000 claims abstract description 85
- 239000000945 filler Substances 0.000 claims abstract description 66
- 238000005192 partition Methods 0.000 claims description 885
- 239000002994 raw material Substances 0.000 claims description 563
- 238000002485 combustion reaction Methods 0.000 claims description 358
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 322
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 154
- 238000011282 treatment Methods 0.000 claims description 143
- 239000002245 particle Substances 0.000 claims description 119
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 82
- 239000000725 suspension Substances 0.000 claims description 60
- 239000012298 atmosphere Substances 0.000 claims description 41
- 239000001569 carbon dioxide Substances 0.000 claims description 41
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 41
- 238000012546 transfer Methods 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000010298 pulverizing process Methods 0.000 claims description 21
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 13
- 230000005484 gravity Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 239000010432 diamond Substances 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000011146 organic particle Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 63
- 239000011248 coating agent Substances 0.000 abstract description 61
- 239000000123 paper Substances 0.000 description 265
- 239000000047 product Substances 0.000 description 235
- 229910052717 sulfur Inorganic materials 0.000 description 233
- 238000010304 firing Methods 0.000 description 106
- 239000007789 gas Substances 0.000 description 70
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 66
- 239000001301 oxygen Substances 0.000 description 66
- 229910052760 oxygen Inorganic materials 0.000 description 66
- 239000007787 solid Substances 0.000 description 66
- 238000010586 diagram Methods 0.000 description 59
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 54
- 238000001035 drying Methods 0.000 description 50
- 239000005995 Aluminium silicate Substances 0.000 description 49
- 235000012211 aluminium silicate Nutrition 0.000 description 49
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 45
- 239000000292 calcium oxide Substances 0.000 description 39
- 239000010893 paper waste Substances 0.000 description 39
- 208000005156 Dehydration Diseases 0.000 description 38
- 230000018044 dehydration Effects 0.000 description 38
- 238000006297 dehydration reaction Methods 0.000 description 38
- 239000010410 layer Substances 0.000 description 38
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 37
- 239000006185 dispersion Substances 0.000 description 37
- 235000012255 calcium oxide Nutrition 0.000 description 35
- 238000005469 granulation Methods 0.000 description 33
- 230000003179 granulation Effects 0.000 description 33
- 239000000203 mixture Substances 0.000 description 33
- 239000000976 ink Substances 0.000 description 32
- 238000012545 processing Methods 0.000 description 32
- 238000000354 decomposition reaction Methods 0.000 description 30
- 238000005259 measurement Methods 0.000 description 30
- 239000002002 slurry Substances 0.000 description 30
- 239000002351 wastewater Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 29
- 239000002761 deinking Substances 0.000 description 28
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 27
- 239000000920 calcium hydroxide Substances 0.000 description 27
- 235000011116 calcium hydroxide Nutrition 0.000 description 27
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 27
- 238000002441 X-ray diffraction Methods 0.000 description 25
- 239000000454 talc Substances 0.000 description 25
- 229910052623 talc Inorganic materials 0.000 description 25
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 24
- 239000011247 coating layer Substances 0.000 description 24
- 238000003756 stirring Methods 0.000 description 24
- 238000000638 solvent extraction Methods 0.000 description 22
- 239000004071 soot Substances 0.000 description 22
- 239000011575 calcium Substances 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 19
- 239000000567 combustion gas Substances 0.000 description 17
- 230000008021 deposition Effects 0.000 description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 238000001914 filtration Methods 0.000 description 16
- 238000007639 printing Methods 0.000 description 16
- 239000006229 carbon black Substances 0.000 description 15
- 238000003475 lamination Methods 0.000 description 15
- 229910021532 Calcite Inorganic materials 0.000 description 14
- 238000011088 calibration curve Methods 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- 239000002270 dispersing agent Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 238000005979 thermal decomposition reaction Methods 0.000 description 13
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 229910052791 calcium Inorganic materials 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000008187 granular material Substances 0.000 description 12
- 239000004570 mortar (masonry) Substances 0.000 description 12
- 239000011787 zinc oxide Substances 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 238000003763 carbonization Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 238000005188 flotation Methods 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 239000005416 organic matter Substances 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 10
- 230000001603 reducing effect Effects 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 229920001131 Pulp (paper) Polymers 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 8
- 239000004816 latex Substances 0.000 description 8
- 229920000126 latex Polymers 0.000 description 8
- 238000013441 quality evaluation Methods 0.000 description 8
- 238000004064 recycling Methods 0.000 description 8
- -1 soot and charcoal Chemical class 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000004408 titanium dioxide Substances 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000007664 blowing Methods 0.000 description 7
- 238000010000 carbonizing Methods 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000001254 oxidized starch Substances 0.000 description 7
- 235000013808 oxidized starch Nutrition 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000004537 pulping Methods 0.000 description 7
- 238000004513 sizing Methods 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003610 charcoal Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000004927 clay Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 239000001023 inorganic pigment Substances 0.000 description 6
- 239000003350 kerosene Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 239000012752 auxiliary agent Substances 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000295 fuel oil Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 239000002440 industrial waste Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000009279 wet oxidation reaction Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000012860 organic pigment Substances 0.000 description 3
- 238000001139 pH measurement Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- ABDDQTDRAHXHOC-QMMMGPOBSA-N 1-[(7s)-5,7-dihydro-4h-thieno[2,3-c]pyran-7-yl]-n-methylmethanamine Chemical compound CNC[C@@H]1OCCC2=C1SC=C2 ABDDQTDRAHXHOC-QMMMGPOBSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004826 Synthetic adhesive Substances 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 229910021489 α-quartz Inorganic materials 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical class [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000012482 calibration solution Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- PIDXZFLNYVHZCP-UHFFFAOYSA-N carbonic acid;ruthenium Chemical group [Ru].OC(O)=O PIDXZFLNYVHZCP-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000001047 purple dye Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000013053 water resistant agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/02—Oxides or hydroxides
- C01F11/04—Oxides or hydroxides by thermal decomposition
- C01F11/06—Oxides or hydroxides by thermal decomposition of carbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C11/00—Regeneration of pulp liquors or effluent waste waters
- D21C11/12—Combustion of pulp liquors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Definitions
- the present invention relates to sludge reuse, and relates to a method for producing inorganic particles using a sludge having a suitability as a coating pigment or a papermaking filler, a production plant thereof, and paper using the same.
- Persludge is wastewater discharged from various processes in the paper mill. (1) Wastewater generated during the washing process in the pulping process, (2) Removal of contaminants from the wastepaper processing process, deinking flotation treatment And wastewater generated during the washing process, (3) wastewater that flows out of papermaking wires as raw material loss during paper manufacture, and (4) various wastewater such as wastewater from biological wastewater treatment processes. As a sludge recovery process for these wastewaters, the solids contained in each wastewater are recovered as sludge by appropriately combining the steps of aggregation, precipitation, concentration, dehydration and the like.
- the various wastewaters described above may be individually sludge collected to collect various sludges such as deinking sludge, coated paper manufacturing sludge, and biological treatment surplus sludge.
- the various process sludge discharged from the plant is generically called paper sludge.
- This paper sludge contains various components derived from paper mill wastewater. For example, lignin and fine fibers extracted in the pulping process, fiber such as pulp derived from raw material loss, starch and synthetic components It contains organic substances mainly composed of adhesives, inorganic substances mainly composed of pigments for coating paper and internal additives, and printing ink derived from waste paper.
- Paper sludge which also generated paper mill power, was conventionally disposed of in landfills as industrial waste, but recently sludge has been used in incinerators such as fluidized bed furnaces and first-power furnaces. Organic sludge is burned and recovered as energy, while reducing the volume of paper sludge.
- incinerators such as fluidized bed furnaces and first-power furnaces.
- Organic sludge is burned and recovered as energy, while reducing the volume of paper sludge.
- paper sludge contains inorganic substances, there is a problem that a large amount of residue (incineration ash) remains after combustion.
- some of the incineration ash is mixed with cement, used as an antioxidant for iron making, and a soil conditioner, but most of it is landfilled as industrial waste.
- Patent Document 1 A method to improve the whiteness of sludge incineration ash by incinerating sludge incinerator ash by recombusting incinerator ash (Patent Document 1), causing combustion of organic materials in sludge.
- Patent Document 2 A method of producing an inorganic material that does not contain organic substances (Patent Document 2), a method that uses a fluidized bed furnace to burn unburnt carbon!
- Patent Document 3 A method of separating and using sludge incineration ash (Patent Document 3) ), Paper sludge is formed, incinerated with an internal combustion rotary kiln, etc., and pulverized (Patent Documents 4 and 5), paper sludge is granulated, formed, and rotary There has been proposed a method (Patent Document 6) in which organic components are efficiently combusted in a kiln in the drying, carbonization and calcination stages to obtain incinerated ash, and at the same time pulverized and neutralized with carbon dioxide gas.
- Patent Document 7 paper sludge is first pulverized and then coarsely pulverized, and the remaining organic component in the secondary combustion is combusted and further pulverized (Patent Document) 7), 1-7
- the heat treatment product is made into an aqueous suspension and carbon dioxide is blown (Patent Document 9). After drying the paper sludge, the organic content is removed in a combustion furnace.
- Patent Document 10 There have been proposed a method of completely burning and coarsely pulverizing or finely pulverizing into an aqueous dispersion and blowing in carbon dioxide gas (Patent Document 10) and a method of pulverizing between multistage combustion and combustion.
- Patent Document 11 a method of injecting carbon dioxide when burning a carbon component (Patent Document 11) has also been proposed.
- these methods are designed so that the calcium carbonate contained in the sludge is not decomposed during the heat treatment! /
- the equipment for the heat treatment process becomes complicated and requires a lot of cost and energy. It is not economical.
- incineration ash can be mixed and baked with an alkali metal compound to prevent the formation of a high hardness compound, and the mixed baked product can be treated with acid to form amorphous silica.
- a method for producing fine particles (Patent Document 13) has been proposed.
- a method for producing porous granules in which incinerated ash is contained in caustic acid by immersing the incinerated ash in an alkaline solution containing caic acid and neutralizing it with an acid has been proposed (Patent Document 14). ing. These methods allow reuse by converting sludge into functional materials, but do not reach the disposal of large amounts of paper sludge and cannot significantly reduce the amount of waste processed. .
- Patent Document 15 a method of carbonizing paper sludge at about 350-700 ° C and then combustion treatment at 650-800 ° C
- Patent Document 16 A method of carbonizing paper sludge under low oxygen conditions (preferably under oxygen-free conditions) at a temperature of less than 600 ° C and then combusting at 600 to 800 ° C
- Patent Document 17 After carbonization at 1000 ° C or lower, 450 ⁇ ; Method of burning at 1000 ° C (Patent Document 17), Paper sludge is gradually heated from 200 ° C in one kiln and dried.
- Patent Document 18 a method of carbonizing at 600 ° C. and then further heating and firing at 850 ° C.
- the deinking sludge content in the papermaking sludge is reduced to 700 ° C or lower using a cyclone furnace.
- Patent Document 19 Combustion treatment within 10 seconds, followed by 27 fire combustion process at 700 ° C or less (Patent Document 19), incinerated ash obtained by incinerating paper sludge at 800 ° C, 500 ⁇ ; 110 0 A method of burning again at ° C (Patent Document 19), and a method of combining dry oxidation and wet oxidation into sludge incineration ash, wet oxidation of papermaking sludge at 200 to 800 ° C, followed by 800 to 1100 ° C dry oxidation A method of wet oxidation after treatment or conversely dry oxidation (Patent Document 20) has also been proposed!
- Patent Document 1 Japanese Patent Laid-Open No. 11 310732
- Patent Document 2 Japanese Patent Publication No. 10-505055
- Patent Document 3 Japanese Patent Laid-Open No. 2001-11337
- Patent Document 4 Japanese Patent Laid-Open No. 2002-167523
- Patent Document 5 Japanese Patent No. 3611830
- Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-176208
- Patent Document 7 Japanese Unexamined Patent Publication No. 2001-262002
- Patent Document 8 Japanese Unexamined Patent Publication No. 2005-53984
- Patent Document 9 JP-A-10-29818
- Patent Document 10 Japanese Patent Laid-Open No. 2002-356629
- Patent Document 11 Japanese Unexamined Patent Application Publication No. 2004-262701
- Patent Document 12 Japanese Patent No. 3274141
- Patent Document 13 Japanese Patent Laid-Open No. 2001-348510
- Patent Document 14 Japanese Unexamined Patent Publication No. 2003-71404
- Patent Document 15 Japanese Unexamined Patent Application Publication No. 2005-161239
- Patent Document 16 Patent No. 3563707
- Patent Document 17 Japanese Unexamined Patent Application Publication No. 2002-308619
- Patent Document 18 Japanese Unexamined Patent Application Publication No. 2004-176209
- Patent Document 19 Patent No. 3831719
- Patent Document 20 JP 2001-026727 A
- the present invention provides a large amount of sludge discharged from an industrial plant or process, in particular paper sludge power, as inorganic particles for coating pigments or paper fillers. To provide an efficient method for producing inorganic particles, and to provide a production plant using the same and paper using the same.
- Paper sludge that needs to be processed is expected to eventually reach several hundred to thousands of tons per month.
- a large amount of paper is used in any of them.
- sludge incineration ash to be reused for papermaking materials should be as white as possible when blended with white paper. It is important to remove organic components (so-called carbides such as soot and charcoal) as much as possible.
- carbides such as soot and charcoal
- the higher the waste paper utilization rate the more carbon black derived from printing ink contained in papermaking sludge.
- this carbon black derived from printing ink is carefully carbonized so as not to leave ignitable impurities in order to eliminate the risk of ignition and explosion as a black pigment! , It becomes a property that is much harder to burn than originally!
- a general organic component has a molecular structure mainly composed of a carbon molecular chain. If the molecular structure has a functional group such as a carboxyl group, a hydroxyl group, an ester group, or an ether group, Starting from this functional group part (reaction starting point), thermal decomposition and combination with oxygen (ignition, oxidation, combustion) are promoted. Therefore, the organic component having the functional group ignites at a relatively low temperature, and can be easily removed by combustion by supplying sufficient oxygen while maintaining the temperature.
- a functional group such as a carboxyl group, a hydroxyl group, an ester group, or an ether group
- the organic component having the functional group when the organic component having the functional group is contained as a minor component such as an impurity, the functional group portion of the small amount of the organic component is not contained. Since it is the starting point for thermal decomposition and combustion, it can still ignite at a relatively low temperature, and the organic components can be easily removed by combustion by supplying sufficient oxygen while maintaining that temperature.
- the present invention efficiently uses high-quality white inorganic particles that can be effectively used as a papermaking filler or a coating pigment for papermaking materials from papermaking sludge discharged from a papermaking factory.
- the aim is to provide a method and plant that is well economical and large-scale.
- the present invention first employs the invention according to claims;! That is, the present invention according to claim 1 supplies sludge as a raw material from a sludge supply port installed at the end of the heat treatment apparatus, and a sludge discharge port installed at the end opposite to the sludge supply port.
- a method for producing inorganic particles comprising a heat treatment step of heat treatment by an indirect heating method in an excess air atmosphere during removal from the container, the heat treatment step The unburned matter carrying air flow is discharged by the heat treatment apparatus by discharging the unburned matter on the unburned matter carrying air flow to remove sludge force. It consists of a method.
- a cylindrical heat treatment apparatus as the heat treatment apparatus because the heat treatment apparatus can be reduced in scale. Furthermore, by dividing the inside of the cylindrical heat treatment device, the sludge stacking 'deposition is reduced, so that more sludge treatment can be performed and the heat treatment device can be made smaller! /.
- forcibly discharging the unburned matter conveying air stream from the vicinity of the sludge supply port effectively removes unburned matter as unburned matter conveying air. It is preferable for taking it out of a stream.
- the air for generating the air flow for transporting the unburned matter is sucked from the air supply loca provided in the vicinity of the sludge discharge port of the heat treatment device, so that the unburned matter is effectively unburned. It is preferable for taking it out on the air flow for conveying goods.
- the heat treatment step is performed at a sludge temperature of 600 to 850 ° C in order to appropriately perform the heat treatment, that is, to burn the sludge.
- the calcium carbonate in the sludge treated in the heat treatment step is decomposed in excess of 50%.
- the calcined product obtained in the heat treatment step is mixed with water and stirred to form a calcined product suspension into a calcined product suspension. And further comprising a carbonation step in which carbon dioxide is brought into contact, it is preferable to use the resulting inorganic particles as a coating pigment or a papermaking additive.
- the inorganic particles of the present invention are inorganic particles produced by the production method described above, and are preferred as inorganic particles for coating pigments or paper fillers as papermaking materials.
- the manufacturing plant of the present invention supplies sludge from the sludge supply port at the end of the cylindrical heat treatment apparatus in the cylinder axis direction, and is installed at the end opposite to the sludge supply port in the cylinder axis direction.
- a cylindrical heat treatment apparatus that heat-treats by an indirect heating method in an excess air atmosphere while being taken out from the sludge discharge port, and has an exhaust means for generating an unburned material carrying air flow as the sludge supply port. In the vicinity, unburned material from the fired sludge after heat treatment
- An inorganic particle production plant including a heat treatment apparatus configured to discharge an unburned matter carrying air stream so as to be put on and taken out.
- the present invention relates to a paper using the inorganic particles as a filler.
- the present invention also relates to a coated paper using the inorganic particles as a facial material.
- the present invention also employs the inventions according to claims 16 to 27 as means for solving the prior art.
- the method for producing inorganic particles according to claim 16 is a method for producing inorganic particles by using papermaking sludge as a raw material and carrying out a combustion treatment while being transferred through a cylindrical heat treatment furnace, wherein the combustion treatment comprises: A primary combustion process that burns and removes flammable organic components in sludge under an excess air atmosphere at a sludge temperature of 650 ° C or lower, and a non-combustible organic in sludge at a sludge temperature of 700 to 850 ° C in an excess air atmosphere It is characterized by undergoing at least two stages of combustion processes, including a secondary combustion process in which components are removed by combustion.
- the cylindrical heat treatment furnace is a rotary kiln furnace, the structure of claim 17, the structure of claim 18 in which the combustion treatment is performed by indirect heating, and at least 2 of the above
- a configuration according to claim 26 including a pulverizing step of pulverizing an object is a preferred embodiment.
- the inorganic particle production plant according to claim 27 of the present invention includes a cylindrical heat treatment furnace having one end side as a raw material supply port and the other end side as a fired product discharge port, and papermaking sludge to the raw material supply port.
- the Raw material supply means to be supplied transfer means for transferring the supplied sludge to the fired product outlet side, indirect heating means for bringing the inside of the cylindrical heat treatment furnace into a combustion state, and excess in the cylindrical heat treatment furnace
- Air supply means for making an air atmosphere and the above-mentioned cylindrical heat treatment furnace is composed of a 17-fire combustion section with a sludge temperature of 650 ° C or less and a secondary combustion section with a sludge temperature of 700-850 ° C
- the air supply means forcibly exhausts the air in the furnace from an exhaust port provided in the vicinity of the raw material supply port of the cylindrical heat treatment furnace, thereby providing an air supply provided in the vicinity of the fired product discharge port of the cylindrical heat treatment furnace.
- a high whiteness and high hardness composite can be obtained by efficient heat treatment using a large amount of sludge as a raw material.
- Inorganic particles suitable as paper fillers and coating pigments can be obtained
- the decrease in the whiteness of the sludge incineration ash is mainly caused by the mixed black carbide particles, but even if such carbide particles are included in the raw material sludge, it is common knowledge in the heat treatment step. It must burn and burn as carbon dioxide while being transferred to the outlet along with the sludge.
- the carbide particles remain in the sludge incineration ash obtained by the conventional method because the carbide particles scattered and suspended in the gas phase in the heat treatment apparatus immediately reach the outlet immediately before burning and are discharged from the outlet.
- the organic matter in the sludge burns in the heat treatment process. Therefore, it is assumed that contamination of unburned carbide particles in the heat-treated product was unavoidable with the conventional method.
- the heat treatment apparatus is a cylindrical type as in claim 2, particularly a single straight tubular type furnace as in claim 3, and further a rotary kiln furnace as in claim 8, the equipment configuration Will be simplified
- the space from the first half of the heat treatment process where the proportion of organic matter in the sludge is high and the amount of soot generated due to intense combustion, increases directly from the outlet to the outlet.
- the contamination is prevented by the air flow for conveying unburned matter.
- the air flow force for transporting unburned matter becomes counter-current to the moving direction of sludge and floats.
- the generation of a hard sintered product can be avoided.
- the calcium oxide generated by the decomposition of calcium carbonate in the heat treatment step can be returned to calcium carbonate again through the baked product suspension step and the carbonation step after the heat treatment step as in claim 11. .
- the inorganic particles according to claim 13 obtained by the production method and production plant of the present invention have high whiteness and do not contain a high-hardness composite, and are highly suitable as a papermaking filler and a coating pigment. have.
- the coated paper according to claim 14 coated with a coating solution containing such inorganic particles can provide excellent surface smoothness, opacity, and a fast ink set. Further, the paper of claim 15 using the inorganic particles as a filler is excellent in opacity and sublimation.
- the raw papermaking sludge is transferred in the cylindrical heat treatment furnace, and at least two of the one-fire combustion process and the secondary combustion process are performed under specific conditions.
- High quality white inorganic particles are efficiently produced on a large scale because the combustion process is performed through a staged combustion process. Can be manufactured.
- a combustion process is performed at a sludge temperature of 650 ° C or less in an excess air atmosphere.
- Organic components having functional groups such as carboxyl, hydroxyl, ester, ether, etc. are efficiently burned without carbonization by promoting thermal decomposition and ignition / combustion starting from the functional group.
- the flammable organic component disappears, the flammable organic component also burns with the functional group.
- combustion treatment is performed at a sludge temperature of 700 to 850 ° C. in an excess air atmosphere, so that it is difficult to remove carbon black derived from printing ink remaining at the end of the primary combustion process.
- Combustible organic components are also reliably burned and eliminated, and the formation of hard sintered products due to excessive high-temperature combustion can be avoided.
- the obtained inorganic particles do not contain carbides such as soot and charcoal, so they have high whiteness and do not contain hard sintered products, and are used as papermaking materials and papermaking fillers and coating pigments.
- High quality suitable for In addition, such a combustion process of at least two stages can surely prevent the conversion of easily combustible organic components into difficult-to-combust organic components, resulting in high combustion efficiency. It becomes possible to process well economically.
- the excess air atmosphere in both combustion processes can be easily set by the intake air at the transition from the 17-fire combustion process to the secondary combustion process.
- the temperature of the 17 combustion process can be controlled by the amount of intake.
- temperature control of both combustion processes can be easily performed independently. Yes.
- the alkali metal compound acts as a kind of catalyst in the combustion process, and the thermal decomposition and combustion of the organic component are further improved.
- the thermal decomposition and combustion of the organic component are further improved.
- the contact strength between the papermaking sludge and air is increased during the combustion process, and the combustion efficiency of organic components is increased accordingly. Will improve.
- the raw papermaking sludge contains calcium carbonate.
- calcium oxide converted from the calcium carbonate in the combustion process can be returned to calcium carbonate through calcium hydroxide, and various problems due to the presence of calcium oxide in the inorganic particles obtained can be avoided.
- a production plant that can be particularly preferably applied to the production of the inorganic particles is provided.
- FIG. 1 is a diagram showing a basic flow sheet of a method for producing inorganic particles using the sludge of the present invention as a raw material. The following description will be made according to the basic flow sheet.
- Sludge is a raw material for inorganic particles according to the present invention.
- Raw material paper sludge is a combination of processes such as agglomeration, precipitation, concentration, and dehydration as a sludge recovery process for wastewater discharged from various processes in the paper mill, such as pulping, paper manufacturing, and used paper recycling.
- the solids (various types of paper sludge) obtained by collecting the solids contained in each wastewater can be used alone or as a mixture and appropriately used as raw material sludge.
- sludge from the used paper recycling process is agglomerated with the deinking waste liquid separated and discharged from the used paper pulp by pressurized flotation (floatation or flotation) and / or washing in the used paper deinking process.
- deinking wastewater it is recommended to perform dehydration and collect the solid content in the deinking wastewater as deinking sludge.
- multiple sludge pressurization and / or washing steps can be added.
- the deinking sludge collected from the wastepaper deinking process is separated into high-quality wastepaper, newspaper wastepaper, magazine (coated paper) wastepaper, etc., and deinking sludge is prepared for each type of wastepaper.
- the deinked waste paper classified by type of waste paper can be used as a raw material sludge as appropriate, either alone or in combination.
- the inorganic component (ash) in the papermaking sludge is a main component in which kaolin (clay) and calcium carbonate derived from papermaking fillers and coated paper pigments account for about 80 to 95% by weight of the total inorganic components. It contains a small amount of talc, titanium dioxide, etc.
- the ratio of kaolin, which is the main component of the inorganic component, and calcium carbonate varies slightly depending on the type of waste paper to be treated, etc.
- the weight ratio of kaolin / calcium carbonate is generally in the range of 20/80 to 80/20.
- the ratio of the organic component and the inorganic component in the papermaking sludge varies somewhat depending on the type of waste paper to be treated and the deinking process, but the weight ratio of the inorganic component / organic component is generally 30/70. It is in the range of ⁇ 80/20.
- RPF Refused Paper & Plastic Fuel
- waste paper mainly low-grade waste paper that is difficult to reuse as a papermaking material and its associated plastic, is used as a raw material.
- Examples of methods for recovering raw material sludge from wastewater from various processes as solids include methods such as filtration, centrifugal separation, pressure dehydration, and squeezing. Get water-making paper sludge.
- a suitable filtration device there is a filtration device called a rotary screen, and as a dehydration device, there is a pressurization / squeeze dehydration device called a screw press, and these filtration devices and squeezing devices are used alone or Combinations can be used as appropriate.
- the solids concentration in the sludge varies depending on the capacity of the dehydrator, so it is usually 5 to 60% by mass. However, if the solid content exceeds 60% by mass, the capacity of the current dehydrator or concentrator It is difficult to achieve.
- the solid concentration of sludge used in the heat treatment step is not particularly limited, but from the viewpoint of reducing energy costs during the heat treatment step and from the viewpoint of reducing the heat treatment apparatus, the sludge solid concentration is Since it is preferable to make it as high as possible, it should be 70% or more.
- the solid content concentration is approximately 5 to 60% by mass, so it is recommended that the solid content concentration be further increased by drying treatment. .
- the dryers used in the drying process are not limited to direct heating rotary kilns, indirect heating rotary kilns, air dryers, fluidized bed dryers, vibratory fluid dryers, rotary / aeration rotary dryers (cyclones), etc.
- the power to use is S. Further, as the heat source of these dryers, it is possible to reduce the energy cost by using the exhaust heat of the baking treatment process described later.
- the temperature of the drying process is 60 ° C in order to prevent sludge from burning and carbonization in an apparatus that uses hot air such as an airflow dryer or a rotary 'aeration rotary dryer'. It is particularly preferable that the temperature be 250 ° C or less. If the hot air temperature is too high, sludge will ignite, and if the firing conditions are not appropriate, the combustible organic components may be carbonized and become non-combustible. Also, in the drying process, to improve the drying efficiency, sludge is forcibly removed with a stirrer or mechanical roll, etc., where it is preferable to unscrew the sludge. It is preferable to classify to about m and dry.
- the sludge used in the heat treatment step of the present invention is not particularly limited as long as it has a size and shape that can come into contact with oxygen when the sludge is laminated in the heat treatment apparatus.
- the sludge is made fine and the size is uniform, the sludge is layered like a close packing, and oxygen does not enter the layer, so the burning of organic matter, especially carbon, becomes insufficient and the whiteness does not improve there is a possibility. If the sludge is too large, the carbon cannot be burned completely and unburned carbon may remain in the center of the sludge lump.
- the sludge used in the present invention preferably has a length or diameter in the range of 2 mm to 30 mm.
- As the shape a cylindrical shape, a spherical shape, an ellipse, a triangle, another polygonal shape, or an uneven shape can be used.
- Sludge can be granulated by using a compression molding machine such as a rivet machine or roller compactor, a method using a semi-dry granulator such as a disk pelleter, a rolling granulation method or a stirring granulation method, There are extrusion molding methods.
- the size can be increased with a screw feeder or the like when the hydrous sludge is charged into the dryer or the dried sludge is charged into the heat treatment apparatus. It is also possible to adjust. It is also possible to adjust the size and shape with a sludge dryer.
- the heat treatment step of the present invention When the heat treatment step of the present invention is performed in an excess air (oxygen) atmosphere, the combustion efficiency is improved, so that the heat treatment apparatus can be reduced in size and labor can be saved.
- the heat treatment temperature is controlled by a method to be described later so that ink pigments such as carbon black in sludge and organic substances such as fibers and polymers can be stably burned.
- FIG. 2 is a configuration diagram of a heat treatment apparatus using an indirect heating type rotary kiln used in the heat treatment process of the present invention.
- the firing furnace that is the main part of the heat treatment process is not particularly limited. Box furnaces such as tunnel kilns, roller hanger kilns, pusher kilns, shuttle kilns, vertical cylindrical furnaces, rotary horizontal cylindrical furnaces, screws A horizontal horizontal cylindrical furnace or the like can be used. Provide sludge There are batch and continuous methods of feeding, but the continuous method is preferred because it can process a large amount. It is preferable to use a rotary horizontal cylindrical furnace that has good heat transfer to the sludge and allows the sludge in the heating furnace to come out to the surface more uniformly or a screw type horizontal cylindrical furnace that can flow.
- a rotary kiln that is a rotary horizontal cylindrical furnace that is as simple as possible from the viewpoint of maintenance of the equipment and requires less driving energy is preferable.
- Cylindrical and hexagonal types can be used for the rotary kiln firing chamber.
- As rotary kilns external heating continuous rotary kilns from Takasago Industry Co., Ltd., continuous external heating rotary kilns IRK type from Kurimoto Steel Works, indirect heating continuous rotary kiln RKC-SG type from Noritake Engineering Co., Ltd., It is possible to use an externally heated rotary kiln manufactured by Iwasa Machinery Co., Ltd.
- the multi-cylinder kiln and the kiln firing chamber have a multi-partition partition structure, which increases the heat transfer area, reduces sludge stacking in the kiln furnace, and reduces sludge contact with oxygen. Since heat transfer to the sludge is improved, the whiteness of the sludge fired product is improved, and uniform quality can be obtained.
- the firing chamber has a multi-partition partition structure, sludge stacking / deposition can be reduced as described above compared to conventional kilns, so that a large amount of sludge can be treated. Can be scaled down.
- the number of divisions in the firing chamber is not particularly limited, but is preferably 6 divisions or more, and more preferably 10 divisions or more.
- the heat treatment apparatus using these firing furnaces that can be suitably used in the heat treatment apparatus used in the heat treatment process of the present invention uses a horizontal or vertical cylinder! / It is called a processing device.
- FIG. 2 shows a configuration diagram of an example of a heat treatment apparatus preferably used in the heat treatment step of the present invention.
- sludge S which has been subjected to dehydration, drying, and granulation treatment alone or in combination, is sent from a drying device (not shown) and is an example of a cylindrical heat treatment device.
- the rotary kiln 1 is introduced into a supply hopper 2 serving as a sludge supply port installed at one end in the cylinder axis direction, and is rotated through a screw feeder 10. It is supplied to the firing chamber 9 in Run 1.
- the sludge S passes through the firing chamber 9 of the rotary kiln 1, the organic components therein are combusted.
- the sludge S after combustion is taken out of the furnace through a sludge discharge port 8 installed at the end opposite to the cylinder axis direction with respect to the sludge supply port, and sent to the next process.
- An exhaust fan 4 is installed as an exhaust means in the vicinity of the supply hopper 2, and the exhaust fan forcibly exhausts the air in the rotary kiln 1 to the rotary kiln 1 and in the vicinity of the sludge discharge port 8. Air is drawn into the rotary kiln 1 from the installed air supply port 3 as shown by the dashed arrow A. In this way, the air flow indicated by the broken-line arrow A from the air supply port 3 toward the exhaust fan 4 always occurs. This air flow becomes an air flow A for conveying unburned matter, which will be described later.
- This air amount control is performed by controlling the exhaust amount of the exhaust fan 4. This amount of air is preferably controlled so as to be excessively sucked so that the inside of the furnace is in an excess (rich) oxygen atmosphere. Details of this will be described later.
- the heat for heating the inside of the rotary kiln 1 is mainly supplied from the indirect heating means 5.
- the inside of the firing chamber 9 is indirectly heated by this heat.
- the heat generated by burning combustible components in the sludge in the firing chamber 9 of the rotary kiln 1 S, the heat supplied from the indirect heating means 5 is much greater than this heat .
- the temperature in the rotary kiln 1 is kept uniform.
- heating with a combustion gas of power kerosene or heavy oil which can be electrically heated, or heating with a gas burner is economically preferable.
- Combustion exhaust gas discharged from existing incineration facilities can be used, and steam can also be used. In the example shown in FIG. 2, the combustion exhaust gas is supplied as indirect heating means 5 by the circulation blower 17.
- the organic component in the sludge is basically burned in the firing chamber 9 of the rotary kiln 1 and a part of the unburned matter is taken out from the rotary kiln 1 on the air stream A. Since the air flow forcedly exhausted through the exhaust fan 4 is hot air, it is preferable to use the hot air circulation fan 6 to be blown to a sludge dryer (not shown) and reused as heat energy.
- the heat treatment step of the present invention is uniform in an excess air (oxygen) atmosphere. It is performed by an indirect heating method capable of controlling the temperature.
- the indirect heating method is a method of heating the firing chamber (inside the furnace) 9, and the indirect heating type combustion furnace prevents direct contact between the hot air generated by the combustion gas or combustion gas and the sludge. It is called this because there is a partition wall.
- As another heating method there is a direct heating method in which a flame, combustion gas, or hot air is blown from one end of a cylinder.
- the direct heating type firing furnace is a method of heating from one end of the firing chamber (inside the furnace), the temperature differs greatly between the heating side and the opposite side, and the temperature of the entire firing chamber (inside the furnace) is accurate. Cannot be controlled.
- the indirect heating method is a method in which the entire firing chamber (inside the furnace) is heated rather than a method in which combustion gas or hot air is blown from one end of the cylinder as in the direct heating method. Temperature control becomes easy. Uniform temperature control is important for the following reasons.
- the sludge contains ink components such as carbon black, organic substances such as fibers and polymers, and inorganic particles such as calcium carbonate, kaolin, and talc.
- ink components such as carbon black, organic substances such as fibers and polymers, and inorganic particles such as calcium carbonate, kaolin, and talc.
- carbon black which is a black ink component.
- combustion treatment time of at least 60 minutes at 600 ° C and 20 minutes at 850 ° C in an excess air atmosphere. It is better to make it higher.
- the temperature is set too high, the inorganic particles in the sludge will change in sintering, and the fired sludge will become hard, which is preferable as a papermaking material!
- Hardening of the inorganic particles by the high-temperature heat treatment is caused by a thermal alteration phenomenon of inorganic calcium carbonate and kaolin (clay), which are mainly contained in the following sludge. That is, calcium carbonate begins to be decarboxylated from above 600 ° C, and at least part of it begins to be decomposed into oxidizing power, and completely decomposes into calcium oxide at 900 ° C. Talc does not change its crystal structure up to 900 ° C. Titanium dioxide is stable at 1000 ° C and does not change at all. Kaolin is desorbed from around 400 ° C and exists as amorphous metakaolin from 500 to 850 ° C.
- This amorphous metakaolin which is called calcined kaolin, is an inorganic particle that is bulky and has good opacity and excellent smoothness. When it exceeds 900 ° C, ⁇ -alumina and mullite are produced. These ⁇ -alumina and mullite are very Since it is hard, wire wear and coating blade wear will deteriorate, making it unfavorable as a papermaking material. Also, in the region slightly above 850 ° C, the presence of amorphous metakaolin and calcium oxide decomposed from the above-mentioned carbonic acid power, the hard, reusable oleite and gorenite can be formed by chemical reaction. Generate.
- the sludge temperature in the heat treatment step of the present invention does not exceed 850 ° C. at which a hard fired product is not formed. Also, if the maximum temperature is less than 600 ° C, it takes a very long processing time to improve the whiteness, and the heat treatment apparatus that increases not only the energy cost increases, but this is not preferable in practice. Accordingly, a preferable sludge temperature is preferably 600 ° C or higher and 850 ° C or lower, more preferably 600 ° C or higher and 800 ° C or lower.
- the sludge temperature may be increased stepwise to a temperature not exceeding 850 ° C!
- the sludge temperature at the time of firing is set lower, and the organic content in the sludge S is completely burned. Is difficult, and there is a possibility that some unburned matter represented by carbon black remains.
- the temperature shown here is the sludge temperature at the time of firing in the firing chamber 9, and is strictly different from the ambient temperature in the heat treatment apparatus.
- the temperature in the heat treatment apparatus is a force that depends on the temperature of the supplied air. Usually, it is lower than the sludge temperature.
- the reason why the heat treatment apparatus is heat-treated in an excess air atmosphere, that is, in an oxygen-rich atmosphere is to efficiently burn organic substances contained in the sludge.
- the excess (rich) oxygen atmosphere here means that sufficient air (oxygen) necessary for combustion is applied to the organic matter to be combusted so that the residual oxygen concentration in the combustion exhaust gas is 5% or more. It is the state where the organic matter can be completely burned. It is also possible to adjust the sludge temperature according to the amount of air exhausted and the temperature of the intake air.
- the amount of air sucked into the heat treatment apparatus is preferably greater than or equal to the theoretical oxygen amount necessary for burning organic components.
- the combustion gas generated by burning organic components is larger than the amount of air equivalent to the theoretical oxygen amount, it is necessary to exhaust at least the generated combustion gas in order to achieve excess (rich) oxygenation. There is. Therefore, the amount of air to be sucked is controlled by adjusting the exhaust amount of the exhaust fan. This displacement is 1.1 times the theoretical air flow More preferably, it is 1.5 times or more, more preferably 2 times or more.
- the amount of intake air is too large, the sludge temperature is lowered, which is not preferable in terms of energy cost. Further, the inhaled air may contain more carbon dioxide than usual.
- the oxygen amount in the heat treatment apparatus is less than the theoretical oxygen amount, the oxygen is in an oxygen-deficient state, and the sludge is carbonized, leaving unburned carbon in the sludge.
- the oxygen is necessary to increase the heat treatment temperature or to treat for a long time. In the end, it is difficult to obtain the desired sludge fired product. Therefore, it is absolutely necessary to avoid making the inside of the furnace hypoxic.
- the force S that increases the whiteness of the sludge fired product by high-temperature treatment in order to burn the sludge S more completely in an excess (rich) oxygen atmosphere As mentioned above, hard fired products are easily generated.
- the air supply port 3 is installed in the vicinity of the sludge discharge port 8, and the exhaust fan 4 that discharges the unburned matter conveying air stream A is installed in the vicinity of the sludge supply port 2.
- the exhaust fan 4 that discharges the unburned matter conveying air stream A is installed in the vicinity of the sludge supply port 2.
- the method of generating the unburned matter conveying air flow A in the direction opposite to the traveling direction B of the sludge S is called a countercurrent method.
- This counter-current method allows the unburned product to be removed efficiently from the sludge fired product because the air flow for conveying the unburned product flows in the opposite direction to that sent to the sludge discharge port 8 side of the sludge fired product. It is preferable to improve the whiteness of the sludge burned product! In particular, unburned matter that is generated during combustion in the first stage of the heat treatment process is difficult to be completely burned until later, and can therefore be effectively removed by this counter-flow of unburned matter carrying air flow.
- the feature of the present invention is to obtain inorganic particles that have high whiteness and do not contain a high-hardness composite by overlooking the generation of a small amount of unburned matter and, rather, removing the unburned matter from the sludge burned product. There is.
- the above-mentioned unburned substances are unburned organic substances, most of which are Unburned carbon particles, in other words, carbide particles.
- the carbon black is a carbon black-like substance, and the carbon black has a size of 10 to 500 nm and a fine powder with a specific gravity of 1.8 to 1.9.
- the air in the furnace is exhausted by the exhaust fan 4 to generate an unburned matter transfer air flow A in the heat treatment apparatus, and the transfer air flow A is generated.
- the unburned material is taken out by placing it.
- the flow rate of the unburned product air flow by forced exhaust or the like is not particularly limited as long as it can remove the fine powdery unburned product, but if the flow rate is low, the air flow is supplied to the supply hopper 2. There is a concern that the unburned product cannot be removed well and mixed into the sludge fired product, resulting in a decrease in whiteness.
- the flow rate of the unburned matter conveying air stream carrying unburned matter containing carbon black having the above properties is preferably 0.4 m / min or more, more preferably 0.8 to 1.5 m / min. Above, particularly preferably 1.5 m / min or more.
- FIG. 3 shows an example of an air inflow method opposite to the other method of the counter flow method.
- FIG. 3 is a configuration diagram of another example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention.
- members denoted by the same reference numerals as those in FIG. 2 are the same as those described in FIG.
- the exhaust fan 4 is installed in the vicinity of the sludge discharge port 8! Therefore, the unburnt material carrying air flow A ′ and the sludge traveling direction B ′ are in the same direction.
- Such a method is called a parallel flow method in the present invention.
- the counter-flow method is more preferable because the unburned product is easily mixed into the sludge fired product even if the flow rate of the unburned product transport air flow is adjusted as described above.
- the air inflow amount is increased beyond a certain level so that excess sludge combustion heat is removed from the heat treatment apparatus by the air flow.
- the combustion temperature of the sludge S in the firing chamber 9 is reduced by discharging the high-temperature combustion exhaust gas in the firing chamber 9 of the rotary kiln 1 to the outside of the rotary kiln 1 by the exhaust fan 4 on the sludge supply side. Can do. Therefore, in this heat treatment apparatus, contrary to the above, even if the temperature is high! /, Even if it is, the sludge combustion heat is discharged outside the heat treatment apparatus by increasing the air inflow amount above a certain amount, that is, the rotary kiln.
- the temperature S can be reduced by discharging heat from the main body cylinder part to the outside of the sludge supply side together with the air flow.
- the air flow A for transporting unburned matter mentioned above also serves as an air flow for exhausting sludge combustion heat.
- the counterflow method has an exhaust port near the sludge supply port that discharges the airflow, so the sludge combustion heat that does not pass through the heat treatment device is heat-treated as compared to the parallel-flow method. It is more preferable because it can be discharged outside the device and the sludge temperature can be easily controlled.
- the unburned matter taken out by separation on the unburned matter carrying air stream A is separated from the hot air circulation fan. More preferably, it is removed by a bag filter provided subsequent to the tank 6 and / or collected and removed by combustion with exhaust gas (both not shown).
- Heat treatment equipment power The discharged hot air can be reused as a heat source for heat treatment equipment or a dryer by the heat circulation fan 6 to reduce energy costs.
- the time during which the sludge is heated to a constant temperature is not particularly limited, but the organic matter remaining in the firing chamber 9 is completely burned without being blown away by the air flow A for conveying the unburned air current. 1 hour or more is preferable because it is necessary to keep the time to perform. However, an unnecessarily long heat treatment time is not preferable in practice because it increases not only the energy cost but also the heat treatment apparatus. Therefore, the heat treatment time in the heat treatment step of the present invention is more preferably 1 to 5 hours.
- the decomposition rate of calcium carbonate is preferably 50% or more, more preferably 60% or more, and even more preferably 70%. ing.
- the fired product after the heat treatment step may be provided with a suspension step after the heat treatment step, in which the fired product is mixed with water and stirred to form a suspension of the fired product.
- the purpose of the suspension process is to convert calcium oxide (CaO) contained in the sludge calcined product into calcium hydroxide [Ca (OH)], and the suspension temperature of the calcined product is not particularly limited.
- Low processing temperature requires a long holding time, and high processing temperature is not economically preferable because it is necessary to maintain the temperature, so usually 20 to 80 ° C, more preferably 40 to 60 ° C. It is good to be done. For example, if the processing temperature is 60 ° C, a holding time of about 60 minutes is sufficient.
- the solid content concentration of the baked product suspension can be adjusted to a range of 5 to 20% by mass, so that the subsequent carbonation treatment can be performed efficiently! It is preferable in order to maintain good stirring properties and liquid feeding properties.
- the solid content concentration of the baked product suspension is less than 5% by mass, the productivity is inferior because it is inferior, and when it is higher than 20% by mass, the viscosity of the baked product suspension becomes high. This is not preferable because the stirring power increases and the operability is poor.
- calcium oxide (CaO: quick lime) or calcium hydroxide [Ca (OH): slaked lime] is separately added to the calcined product suspension as necessary. Attendant
- calcium oxide and calcium hydroxide are calcium hydroxide [Ca (Ca ( OH): slaked lime], for 100 parts by weight of the sludge burned product
- the calcined ash is made into an aqueous suspension, it becomes highly alkaline, and there are problems such as an increase in slurry viscosity and poor dispersion. Therefore, it is difficult to use it as it is as a paper filler or coating pigment.
- the sludge combustion efficiency is improved as in the heat treatment step of the present invention, decomposition of calcium carbonate is promoted.
- the whiteness of the calcined ash after the heat treatment step of the present invention and the decomposition rate of calcium carbonate are in a proportional relationship, and in order to obtain the desired white calcined ash, the calcium carbonate in the sludge is decomposed by more than 50%. ing.
- the carbonation step can be carried out in the same manner as the ordinary light calcium carbonate production step. That is, carbon dioxide gas or carbon dioxide-containing gas is blown into the fired product suspension.
- the gas used for carbonation is preferably a carbon dioxide-containing gas industrially.
- the carbon dioxide concentration in this case is not particularly limited, but is preferably 5 to 40% by volume, more preferably 10 to 35%.
- a volume% carbon dioxide containing gas is used.
- the carbon dioxide-containing gas is, for example, discharged from sludge calcined exhaust gas, limestone calcined exhaust gas, lime calcined exhaust gas, waste incineration exhaust gas, power generation boiler exhaust gas, or a caustic calcium carbonate calcined kiln used in pulp manufacturing processes.
- the exhaust gas may be used after dust removal by appropriate means.
- the carbon dioxide gas or carbon dioxide-containing gas is blown into the calcined suspension so that the carbon dioxide gas has a rate of 0.5 to 15 L / min per kg of calcium hydroxide as carbon dioxide gas. If the amount of carbon dioxide introduced is less than 0.5 L / min, the productivity will be inferior, and it will be possible to adopt an amount exceeding 15 L / min, and the power load necessary to increase the usage will be commensurate with this. The effect cannot be expected.
- the reaction start temperature for carbonation is preferably 30 to 80 ° C, more preferably 40 to 70 ° C.
- the shape of the regenerated calcium carbonate component contained in the regenerated inorganic particles can be in the form of rice, spindle, colloid, needle, cube, plate, etc. The shape is not particularly limited. Add seed crystals to obtain crystals of the desired shape.
- the inorganic particles after the carbonation treatment of the present invention are particles suitable for a paper-making filler because fine primary particles produced by the carbonation treatment aggregate to form secondary particles (aggregated particles). It may be a diameter.
- this suspension can be used as it is by mixing it with papermaking raw materials such as pulp as a papermaking filler.
- the recycled inorganic particle slurry (slurry after carbonation) of the present invention When used as a filler for papermaking, it may be filtered through a sieve such as a vibrating sieve. At this time, it is preferable to perform classification using a liquid cyclone before filtering with a sieve. By performing classification with a hydrocyclone, clogging of the sieve can be prevented. In addition, particles containing silicon such as ⁇ -quartz in the recycled inorganic particle slurry can be obtained by combining classification with a hydrocyclone and a vibrating sieve. And coarse particles can be removed, and wear of the papermaking wire can be reduced.
- a sieve such as a vibrating sieve.
- a dehydration step of dehydrating the composition regenerated inorganic particle slurry after the carbonation step into a dehydrated composition a dehydration step of dehydrating the composition regenerated inorganic particle slurry after the carbonation step into a dehydrated composition
- a dispersion step of adding water to the dehydrated composition obtained by the dehydration step to form a slurry-like dispersion composition can be performed by operations such as filtration, centrifugation, pressure dehydration, and pressing.
- a suitable dehydrating apparatus there is a press filtration apparatus called a filter press, which can obtain a dehydrated cake of a carbonized product.
- the dispersion process may be any process as long as water is added to the dehydrated composition obtained by the dehydration process to form a slurry dispersion composition. It is preferable to add a dispersing agent in addition to moisture during the dispersing step, because it is possible to satisfactorily disperse the regenerated inorganic particles using sludge as a raw material, improving the quality as a papermaking material and facilitating handling.
- a dispersing agent in addition to moisture during the dispersing step, because it is possible to satisfactorily disperse the regenerated inorganic particles using sludge as a raw material, improving the quality as a papermaking material and facilitating handling.
- the dispersant for example, general dispersants used in the manufacture of papermaking materials such as synthetic polymer dispersants such as sodium polyacrylate can be used.
- the pulverization step may be provided after the dispersion step.
- the pulverization treatment it is preferable because the regenerated inorganic particles can be made finer in particle size and smoothness is improved.
- a pulverizer used in the pulverization process it is possible to use a wet pulverizer such as a sand mill, a wet ball mill, a vibration mill, a stirring tank mill, a flow tube mill, and a coball mill. Moreover, you may grind
- the size (particle diameter) of the regenerated inorganic particles of the present invention is preferably an average particle diameter measured by laser diffraction particle size distribution of finally 0.
- it is particularly preferably from 0 ⁇ 3 to 5 111, and when used as a paper filler for internal addition, 3 to 15 m.
- This average particle size is excellent in opacity, whiteness, smoothness, and printability when finished as a paper product as a paper filler and coating pigment. Therefore, the particle size is selected so as to balance the operation and quality. Therefore, by setting the average particle size of the regenerated inorganic particles within the range of the particle size, the operation is performed. Can be handled in the same way as conventional paper fillers and coating pigments, and the quality of coated paper coated with recycled inorganic particles and coated paper coated with recycled inorganic particles It can exert the same quality as conventional paper fillers and coating pigments.
- the average particle size of regenerated inorganic particles is less than 0.1 m, it is effective for improving opacity, whiteness and smoothness, but for papermaking.
- the wire yield deteriorates, so a large amount of filler is required, which makes the operability unstable.
- sufficient coating layer strength when used as a coating pigment This is not preferable because it requires a remarkably large amount of adhesive in order to develop the above.
- the average particle size of the recycled inorganic particles exceeds 20 in, the wire yield of the filler is improved when used as a paper filler, but on the other hand, the wire wear resistance deteriorates and the wire is damaged.
- the smoothness and gloss of the coated paper product decrease, resulting in a decrease in printability, which is not preferable.
- the present invention it is preferable to provide a dispersion step and a pulverization step after the dehydration step so that the regenerated inorganic particles have the desired particle size described above.
- the average particle size of the regenerated inorganic particles after the dispersion treatment is If the particle diameter is in the above range, the pulverization step is not performed.
- the dispersion of the inorganic particles after the dispersion treatment may be used as it is as a paper filler and a coating pigment.
- the dehydrated composition of regenerated inorganic particles of the present invention is mixed with calcium carbonate slurry to form a mixed slurry, which is pulverized using a wet pulverizer, so that the quality is higher than that of calcium carbonate.
- the pulverization time can be made shorter than that of the calcium carbonate slurry, and a highly concentrated slurry can be prepared.
- the ratio between the regenerated inorganic particles and calcium carbonate can be adjusted according to the quality of the white paper of the coated paper, and is not particularly limited.
- the drying step is essential for the steps in this method
- the drying step, granulation step, suspension step, carbonation step, dehydration / dispersion step, and pulverization step can be appropriately selected and combined.
- S can.
- a single plant is constructed by combining the devices that perform these processes. Will be.
- the inorganic particles obtained by this method are mixed with inorganic pigments such as calcium carbonate, talc, kaolin, calcined kaolin, titanium dioxide, satin white, silica, etc. as necessary, and are used as coating pigments or papermaking fillers.
- inorganic pigments such as calcium carbonate, talc, kaolin, calcined kaolin, titanium dioxide, satin white, silica, etc. as necessary, and are used as coating pigments or papermaking fillers.
- inorganic pigments such as calcium carbonate, talc, kaolin, calcined kaolin, titanium dioxide, satin white, silica, etc.
- Paper using the regenerated inorganic particles obtained by this method as a filler can impart opacity and bulkiness, and can be paper that internally contains the regenerated inorganic particles of the present invention as with conventional fillers.
- Paper types include wrapping paper, paper containers, inkjet paper, recording paper such as PPC paper, newsprint paper, high-quality paper, medium-quality paper, and various types of coating paper.
- pulp examples include commonly used bleaching chemical pulps such as LBKP and NBKP, groundwood pulp (GP), pressurized groundwood pulp (PGW), refined groundwood pulp (RGP), and thermomechanical pulp (TMP).
- Etc. deinked waste paper pulp (DIP), waste paper, etc.
- one or more of pulp fiber, synthetic pulp, inorganic fiber and the like obtained from non-wood fiber raw materials such as kenaf can be blended in the base paper.
- Mechanical pulp and DIP can be used after being bleached if necessary, and the degree of bleaching can be performed arbitrarily.
- a bleaching process that does not use molecular chlorine such as chlorine gas or chlorine compounds such as chlorine dioxide is preferable from the viewpoint of environmental conservation.
- the processed pulp include ECF (Elemental Chlorine Free) pulp and TCF (Totally Chlorine Free) pulp.
- Regenerated inorganic particles obtained by this method are used as fillers generally used, for example, heavy calcium carbonate, light calcium carbonate, calcium sulfite, gypsum, talc, kaolin, clay, calcined kaolin, white Carbon, amorphous silica, delaminated kaolin, diatomaceous earth, magnesium carbonate, titanium dioxide, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide and other inorganic pigments, urea formalin resin fine particles, fine hollow particles, etc. It can also be used as a mixture with other organic pigments. Two or more fillers can be used in combination. The mixing ratio can be adjusted according to the paper quality and is not particularly limited.
- the filler content (base paper ash) is in the range of! ⁇ 30% by weight. It is particularly preferable to add so as to be in the range of 5 to 20%.
- the internal content paper of inorganic particles By making the internal content paper of inorganic particles into the filler content, it is possible to increase the scattering surface area of the paper and increase the opacity of the paper. Incidentally, when the filler content is less than 1% by weight, the paper quality such as the target opacity is lowered, which is not preferable. On the other hand, when the filler content exceeds 30% by weight, the tear strength is increased. Further, it is not preferable because the paper interlaminar strength and the paper quality of blisters and the like deteriorate.
- the amount of filler added to the base paper is less than 100% by weight.
- the addition of at least 10% by weight is preferred, but is not particularly limited.
- the paper contains an internal sizing agent, anionic, nonionic, cationic or amphoteric retention improver, drainage improver, paper strength enhancer, sizing agent, Various internal additives for papermaking exemplified by antifoaming agents, slime control agents, dyes, coloring pigments, fluorescent dyes and the like can be added as necessary.
- Specific examples of the internally added sizing agent include alkyl ketene dimer, alkenyl succinic anhydride, styrene acrylate, higher fatty acid, petroleum resin sizing agent, rosin sizing agent and the like.
- yield improvers include, for example, polyvalent metal compounds such as aluminum (specifically, sulfate bands, aluminum chloride, sodium aluminate, basic Aluminum compounds, etc.), various starches, polyacrylamides, urea resins, polyamide amide polyamine resins, polyethyleneimine, polyamines, polybutyl alcohol, polyethylene oxide and the like.
- aluminum specifically, sulfate bands, aluminum chloride, sodium aluminate, basic Aluminum compounds, etc.
- various starches polyacrylamides, urea resins, polyamide amide polyamine resins, polyethyleneimine, polyamines, polybutyl alcohol, polyethylene oxide and the like.
- Regenerated inorganic particles that have not been carbonated may interfere with the effect of the internal additive sizing agent due to the influence of free Ca ions, or may generate calcium sulfate due to reaction with the sulfuric acid band in the papermaking process. This may cause scale problems and decrease the filler yield, which may affect operability and productivity. Therefore, in order to avoid these problems, it is preferable to use carbonated regenerated inorganic particles.
- the papermaking filler containing the regenerated inorganic particles in the present invention When adding the papermaking filler containing the regenerated inorganic particles in the present invention to the pulp raw material, it is preferable to add the papermaking filler while sufficiently stirring the pulp raw material. Is preferably about 100 to 5000 rpm. Also, for pulp raw materials When adding the paper filler containing recycled inorganic particles, the paper filler is added after mixing the pulp raw materials, so it is added at a concentration that falls within the inlet concentration range of the paper machine. If there is no problem.
- Papermaking conditions are not particularly limited.
- Examples of papermaking machines include commercial-scale paper machines such as long net paper machines, gap former paper machines, circular net paper machines, and short net paper machines. It can be used by appropriately selecting according to the purpose.
- As the papermaking method acidic papermaking, neutral papermaking, weak alkaline papermaking, etc. can be used. It is also possible to perform size treatment on paper using various size presses and roll coaters with natural adhesives such as starch, and synthetic adhesives such as polybulal alcohol.
- the surface of the papermaking filler-added paper containing the regenerated inorganic particles in the present invention has various types of dampening generally used for improving and improving paper strength, coating suitability, printing suitability, and the like. It is also possible to apply a coating liquid mainly composed of sucrose, polybulal alcohols, polyacrylamides, and various surface sizing agents.
- various pigments commonly used for coating include heavy calcium carbonate, light calcium carbonate, talc, clay, kaolin, titanium dioxide, synthetic silica, aluminum hydroxide, etc.
- organic pigments and synthetic polymer fine particles such as polystyrene resin and urea formaldehyde resin, etc. as needed It can also be applied to the surface of paper.
- the regenerated inorganic particles obtained by this method can be produced by forming one or more coating layers mainly composed of a pigment containing regenerated inorganic particles obtained by this method and an adhesive on at least one side of a base paper.
- the regenerated inorganic particles obtained by this method have excellent properties such as smoothness, covering properties, opacity, and ink setting properties. In order to exhibit these effects, all the regenerated inorganic particles in the coating layer are used. It is preferable to contain 5% by mass or more of the pigment. If it is less than 5% by mass, smoothness and coverage It is difficult to impart an effect of improving opacity and ink setting.
- the coated layer containing the regenerated inorganic particles obtained by this method into contact with the base paper, it is possible to improve the smoothness, coverage, opacity, and ink setting properties, which is preferable.
- the average particle size of the regenerated inorganic particles by laser diffraction scattering method is preferably from 0.3 to 5 111, and more preferably 2.5 m or less from the viewpoint of smoothness.
- a dispersion-type adhesive is usually used for the adhesive component of the coating layer containing the pigment as described above.
- the dispersion-type adhesive include conjugated-gen polymer latex such as styrene-butadiene copolymer and methyl methacrylate-butadiene copolymer, acrylic polymer latex, and ethylene-based butyl copolymer. Illustrate coalesced latex etc. Use force S.
- a small amount of a water-soluble adhesive can be used in combination with the above dispersion-type adhesive.
- water-soluble adhesives include various starches such as oxidized starch, esterified starch, and cold-water soluble starch, proteins such as casein, soy protein, and synthetic protein, cellulose derivatives such as carboxymethylcellulose and methylcellulose, polybuty alcohol, Examples of such modified products can be given.
- the total amount of adhesive is 5 to 50 parts by mass per 100 parts by mass of pigment. 8 to 30 parts by mass It is particularly preferable to contain so that If the amount of the adhesive is less than 5 parts by weight per 100 parts by weight of the pigment, the strength of the pigment coating layer decreases, causing problems such as streaks, scratches, and picking. The amount is 100 parts by mass of pigment. When the amount exceeds 50 parts by mass, the strength of the pigment coating layer is sufficiently exhibited, but problems such as a decrease in smoothness and a deterioration in ink drying property are not preferable.
- a blue or purple dye or colored pigment, a fluorescent whitening dye, a thickening agent, a water retention agent, an antioxidant, an anti-aging agent may be used as necessary.
- Various auxiliary agents such as an agent, a conductive inducer, an antifoaming agent, an ultraviolet absorber, a dispersant, a pH adjuster, a mold release agent, a water-resistant agent, and a water-repellent agent can be appropriately blended.
- Regenerated inorganic particles that have not been carbonized have problems such as an increase in viscosity of the coating solution and poor dispersion due to the influence of free Ca ions, making it impossible to prepare a high concentration coating solution and drying.
- coated paper with a high pH on the paper may cause alkali burnt during the calendering process and storage, which may impair the appearance of the coated paper. Therefore, in order to avoid these problems, it is preferable to use carbonated regenerated inorganic particles.
- the coating layer provided on the base paper is a single layer or a multilayer of two or more layers is not particularly limited, it is not necessary for all to be the same. It is possible to adjust accordingly.
- the coating amount of the coating layer can be adjusted according to the blank paper quality, printing quality, etc. of the coated paper, which is not particularly limited, but in general, 5 to 40 g / m per side It is about 2 .
- various coating apparatuses used in the ordinary coated paper production field such as an air knife coater and various blade coaters. Ronore coater, Ronore coater. Thai coater, curtain coater, etc. can be used as appropriate.
- the base paper in the present invention particularly the basis weight of Nag in the limited base paper, one general, it is possible to use those appropriately adjusted in the range of about 30 to 500 g / m 2.
- the coated paper obtained in this manner may be subjected to product finishing by passing it through various known and publicly used finishing devices such as a super strength renderer, a dalos calender, a soft calender, a mat calender and the like.
- a base paper using recycled inorganic particles made from sludge as a raw material and a coating layer containing recycled inorganic particles made from sludge as a raw material may be combined to form a coated paper.
- the sample was coarsely crushed with a mortar until the particles disappeared, and measured using an X-ray diffractometer (M03XHF, manufactured by Mac Science Co., Ltd.) at measurement conditions of 40 KV, 20 mA, and measurement range: 5 to 50 degrees.
- M03XHF X-ray diffractometer
- the decomposition rate of calcium carbonate after heat treatment was determined in the following steps i) to vi).
- the amount of residual calcium carbonate in the fired product was determined and evaluated.
- Calcium carbonate with a crystal structure of calcite (Tamapearl 222H manufactured by Okutama Kogyo Co., Ltd.), zinc oxide (special grade reagent manufactured by Kishida Chemical Co., Ltd.) as an internal standard substance, weight ratio of 1: 5, 1: 1, 5: 1 Each was mixed. Next, after each mixture is sufficiently ground using a mortar, it is used with an X-ray diffractometer (M03XHF described by Max Science Co., Ltd.) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. A calibration curve of force-calcite calcium carbonate was prepared based on the X-ray diffraction 100% peak areas of calcite calcium carbonate and zinc oxide.
- a calibration curve for aragonite calcium carbonate was prepared in the same manner as the calibration curve for calcite calcium carbonate, except that calcium carbonate with a crystal structure of aragonite (Tama Pearl 123 manufactured by Okutama Kogyo Co., Ltd.) was used.
- the weighed absolute dry paper sludge was burned in a pine furnace at 350 ° C for 30 minutes, the weight of the resulting sludge fired product was weighed, and the ash content (%) of the sludge was measured by the following formula .
- Ash content (%) (Weight of sludge baked product / Weight of paper drying sludge) X 100
- the weighed sludge burned product was added and mixed with a weighed zinc oxide (special grade reagent mentioned above).
- a weighed zinc oxide special grade reagent mentioned above.
- the mixture was sufficiently ground using a mortar, and then measured using an X-ray diffraction apparatus (M03XHF described above) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees.
- Calcium calcite and aragonite carbonate power against zinc oxide X-ray diffraction 100% peak area of Lucium was calculated, and based on the calibration curve of each calcium carbonate described above, the amount of calcium carbonate contained in lg of sludge calcined product (g) was calculated.
- the amount of calcium carbonate (g) in the sludge fired product lg is A
- the amount of calcium carbonate (g) in the paper sludge lg is B
- the ash content (%) is C.
- the rate of decomposition was calculated.
- the inorganic particle sample obtained by grinding the inorganic particles! /, Coarse in a mortar! /, And ground until no particles are present is 40KV, 20mA, diffraction angle.
- the measurement range was 5 to 50 degrees, and the presence or absence of calcium oxide and calcium hydroxide as unregenerated calcium carbonate was examined.
- Flocculant is added to the foamy deinking flotation waste liquid that has been floated and separated from the wastepaper pulp by the floating sorting method (floatation method) in the wastepaper deinking process, which is mainly used for magazine wastepaper at a paper mill with wastepaper processing equipment.
- the solid content in the waste liquid was agglomerated, it was sequentially passed through a rotary screen and a screw press to recover papermaking sludge (deinking sludge) having a solid content of about 50%.
- the ash content in this paper sludge was 60%, and its composition was calcium carbonate 55%, kaolin 45%, and talc 5%.
- This heat treatment step was performed by a heat treatment apparatus (cocurrent flow method) having the configuration shown in FIG. Specifically, a continuous externally heated rotary kiln 1 (IRK-02, manufactured by Kurimoto Iron Works, heated part: ⁇ 25 La X I 80 cm) was used as a heat treatment apparatus. Paper sludge S was supplied at a rate of 3.5 kg / h from supply hopper 2, which is a sludge supply port. The sludge is conveyed into the rotary kiln 1 by a screw feeder 10 with a diameter of about 35 mm. While passing through the rotary kiln 1, the sludge S is heat-treated, that is, burned.
- a heat treatment apparatus cocurrent flow method having the configuration shown in FIG. Specifically, a continuous externally heated rotary kiln 1 (IRK-02, manufactured by Kurimoto Iron Works, heated part: ⁇ 25 La X I 80 cm) was used as a heat treatment apparatus. Paper sludge S was supplied at
- a combustion gas from a combustion boiler (not shown) is supplied from a circulation blower 7 and used.
- the gas in the kiln is discharged from the exhaust fan 4 as an unburned matter transport air flow A 'at 100 L / min (20 ° C conversion), and the sludge temperature is 850 ° by controlling the air flow rate and indirect heating.
- the mixture was heated to C and allowed to stay in the heated part for 50 minutes (kiln tilt: 2%, rotation speed: 1.2 rpm) to prepare a fired product.
- the composition after completion of the carbonation step was dehydrated with a filter press to obtain a dehydrated composition having a solid content of about 50%, and then the dehydrated composition was dispersed in water with a Coreless mixer so that the solid content was 48%.
- a polyacrylic acid type dispersant (trade name: ALON T-50, manufactured by Toa Gosei Co., Ltd.) is added to water in an amount of 1.0 part relative to the solid content of the composition (the dehydrated composition). And a slurry was prepared.
- the slurry composition after the dispersion step was pulverized using a sand grinder that is a wet pulverizer until the average particle size became 1.3 m.
- Example 2 It carried out like Example 1 except having added the following drying processes before the heat treatment process.
- Paper sludge was dried using a rotary dryer to a solid content of 75%, and used as a raw material for the heat treatment process.
- Paper sludge was dried using a rotary dryer to a solid content of 75%, and used as a raw material for the heat treatment process.
- This heat treatment step was performed by a heat treatment apparatus having the configuration shown in FIG. Specifically, continuous external heating rotary kiln 1 ( IRK 02 manufactured by Kurimoto Iron Works, heated part: ⁇ 25
- X I 80 cm was used as the heat treatment apparatus.
- Paper sludge S was supplied at a rate of 3.5 kg / h from supply hopper 2, which is a sludge supply port. Sludge S is conveyed into the rotary kiln 1 by a screw feeder 10. While passing through the rotary kiln 1, the sludge S is heat-treated, that is, burned.
- combustion gas from a combustion boiler (not shown) was supplied from a circulation blower 7 and used.
- the gas in the kiln is discharged from the exhaust fan 4 at 250 L / min (converted to 20 ° C) as the air flow A for unburned material transfer, and the sludge temperature is 850 ° by controlling the air flow rate and indirect heating.
- the mixture was heated to C and stayed in the heated part for 50 minutes (kiln inclination: 2%, rotation speed: 1.2 rpm) to prepare a sintered product.
- the obtained sludge fired product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate.
- Example 3 The same procedure as in Example 3 was performed except that the temperature of the heat treatment step was changed to 700 ° C.
- the obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 35% of calcium carbonate was decomposed into calcium oxide. Also, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- Example 4 The same procedure as in Example 4 was performed except that the heating time in the heat treatment step was changed to 90 minutes.
- the obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate.
- charcoal 70% of the calcium acid was broken down into calcium oxide.
- 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- Example 5 This was carried out in the same manner as in Example 5 except that the sludge size was changed to lmm in diameter.
- the obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 70% of calcium carbonate was decomposed into calcium oxide. Also, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- Example 6 This was performed in the same manner as in Example 6 except that the sludge size was changed to 20 mm in diameter and the air flow A for conveying unburned matter was 500 L / min.
- the resulting incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 100% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was transformed into calcined kaolin, and talc was not decomposed at all.
- X was formed to 5 mm and used as a raw material for the drying process and heat treatment process.
- the granulated paper sludge supply rate is 3.5 kg / h
- the unburned material transport air flow A is 300 L / min
- the sludge temperature is heated to 600 ° C. (Kiln inclination: 0.5%, rotation speed: 1.3 rpm)
- a calcined product was prepared in the same manner as in Example 7 except that it was retained.
- the obtained fired product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 30% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- Example 9 The same procedure as in Example 7 was performed except that the temperature of the heat treatment step was changed to 750 ° C. and the heating time was changed to 120 minutes. As a result, 100% of calcium carbonate was decomposed into calcium oxide, power oline was converted to 100% calcined kaolin, and talc was not decomposed at all.
- Example 7 It carried out like Example 7 except having changed the granulation process and the heat processing process.
- the sludge was molded to a diameter of 15 mm using a disk pelleter (manufactured by Dalton Co., Ltd.) and used as a raw material for the drying process and heat treatment process.
- the supply rate of the granulated paper sludge is 3.5 kg / h
- the flow rate of unburnt material transport air stream A is 250 L / min
- the sludge temperature is 600 ° C
- the heated part is 30 minutes (kiln slope: 2%, The number of rotations: 2. lrpm) was retained to prepare a primary-treated fired product.
- the prepared primary treatment calcined product is supplied again to the rotary kiln 1, the flow rate of the air flow A for conveying unburned material is 200 L / min
- the temperature of the secondary calcined product is 800 ° C, and the heating part is 70 minutes (kiln) (Tilt: 1%, rotation speed: 1. Orpm) was retained to prepare a fired product.
- the resulting incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 100% of calcium carbonate was decomposed into calcium oxide. Further, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- Example 4 This was carried out in the same manner as in Example 4 except that the calcined heat-treated product was used as it was as inorganic particles for papermaking fillers and coating pigments without performing the carbonation step.
- the obtained sludge fired product (inorganic particles) was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 35% of calcium carbonate was decomposed into calcium oxide. Kaolin was transformed into 100% calcined kaolin, and talc was not decomposed at all.
- the obtained sludge product was not mixed with unburned material.
- the obtained inorganic particles are used as they are when used as a filler for papermaking, and when used as a coating pigment, the following dispersion process and pulverization process are additionally performed, and the coating pigment is used. It was.
- the slurry composition after the dispersion step was pulverized using a sand grinder that is a wet pulverizer until the average particle size became 1.3 m.
- Example 7 It carried out like Example 7 except having changed the granulation process and the heat processing process.
- Sludge was formed into a ⁇ 5mm X length of 15 mm using a disk pelleter (Dalton Co., Ltd.) and used as a raw material for the heat treatment process.
- Paper sludge supply rate is 3.5 kg / h
- unburned material transport air flow rate is 500 L / min
- sludge temperature is 750 ° C
- heating time is 120 minutes (kiln slope: 1%
- a fired product was prepared in the same manner as in Example 7 except that it was retained. As a result, 100% of calcium carbonate was decomposed into calcium oxide, 100% of kaolin was transformed into 100% calcined kaolin, and talc was not decomposed at all.
- Paper sludge of 3.5 kg / h was supplied from one end of a continuous direct heating rotary kiln (heating part: ⁇ 25 la x 180 cm) and discharged from the other end.
- the maximum temperature was set to 750 ° C and the product was allowed to stay inside the kiln for 60 minutes to prepare a fired product. Because it is a direct heating type, the furnace was directly heated from the sludge supply side with a so-called combustion kerosene burner, and the temperature was adjusted according to the amount of combustion. At this time, it was difficult to uniformly adjust the temperature in the direct heating kiln.
- the incinerated product obtained was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. as a result In addition, 25% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
- the fired product obtained by heat treating the paper sludge and the regenerated inorganic particles produced by the paper sludge force were evaluated by the following methods.
- ⁇ ' The wire wearability is slightly poor, but is within the usable range.
- the resulting dispersion of inorganic particles was measured using a Lacom Tester pH meter (pHScanWPBN type / manufactured by Azwan), and the pH of the pigment dispersion was measured by immersing the pH electrode directly in the various pigment dispersions.
- the pH meter used for pH measurement the NIST standard calibration solution (pH 6.86, PH calibration was performed using 2 types of pH 9.18 and pH 9.18. Examples:! ⁇ 10, 12 In Comparative Example 1, the pH was 9.6 to 10.5, and in Example 11, the pH was 10.5.
- oxidized starch trade name: Ace B, manufactured by Oji Cornstarch
- styrene-butadiene copolymer latex trade name: T2628G, manufactured by JSR
- Fine kaolin (trade name: manufactured by Miragro Engelnode) 60% by mass, average particle size 1 ⁇ 3 ⁇ heavy calcium carbonate (trade name: Hyde Mouth Curve ⁇ -9, manufactured by Bihoku Flour & Chemical Co., Ltd.) 40 mass%
- oxidized starch (trade name: Ace ⁇ , as described above)
- styrene butadiene copolymer latex (trade name: T2628G, as described above) per 100 parts of pigment (both solid content)
- an antifoaming agent and a dye were added as auxiliary agents, and finally a coating solution having a solid concentration of 65% was prepared.
- Blade coater so that the dry weight per side is 7g / m 2 on the high-quality base paper (70.Og / m 2 ) with an intensity of 0.75g / cm 3 was used for both-side coating and drying to provide an undercoat coating layer.
- the coating solution for the top coating layer was coated on both sides using a blade coater and dried so that the dry weight per side was 9 g / m 2 , thereby providing a top coating layer.
- the coated paper thus obtained was passed through a super calendar at a temperature of 70 ° C. and a linear pressure of 2 OOKN / m to obtain a coated paper.
- a coated paper was obtained in the same manner as in Example 13 except that the undercoat coating layer was changed as follows.
- a coated paper was obtained in the same manner as in Example 14 except that the pigment of the undercoat coating layer was changed to the regenerated inorganic particle pigment obtained in Comparative Example 1 and a coating solution having a solid content concentration of 60% was finally prepared. It was.
- the coated paper was prepared in the same manner as in Example 14 except that the pigment of the undercoat coating layer was changed to the regenerated inorganic particle pigment obtained in Example 11 and finally a coating solution having a solid concentration of 50% was prepared. Obtained.
- a coated paper was obtained in the same manner as in Example 13 except that the undercoat coating layer was changed as follows.
- Average particle size 1.3 m Heavy calcium carbonate (Product name: No, Idoguchi curve K 9, previously described) 100% by weight of pigment slurry, 100 parts of pigment, oxidized starch (Product name: Ace B, as described above) 4 parts, styrene butadiene copolymer latex (trade name: T2628G, as described above) 6 parts (all in terms of solid content), defoamer and dye added as auxiliary, finally A coating solution having a solid concentration of 65% was prepared.
- a coated paper was obtained in the same manner as in Reference Example 2 except that the pigment of the undercoat coating layer was changed to an average particle size of 2.0 ⁇ m heavy calcium carbonate (trade name: Hyde Mouth Curve K 6, previously described). .
- a coated paper was obtained in the same manner as in Reference Example 2 except that the pigment of the undercoat coating layer was changed to fine kaolin (trade name: Miragro described above).
- printing ink (trade name: FUSION— G ink, S type, manufactured by Dainippon Ink Chemical Co., Ltd.) was printed using 0.1 lcc, and the transferred ink density (ink fillability) In addition, the transfer uniformity (printing smoothness) of the ink was comprehensively observed and evaluated.
- the ink set is particularly excellent very quickly.
- Heavy carbonate power Lucium (trade name: Hyde Mouth Curve K 9, already described) 35% by mass, fine kaolin (Miradaros), already described 50 parts by weight of pigment slurry, 100 parts of pigment, oxidized starch (trade name: Ace B, described above) 4 parts, styrene monobutadiene copolymer latex (trade name: T2628G, previously described) 7 parts
- a coated paper was obtained by passing through a super calendar at OKN / m.
- a coated paper was obtained in the same manner as in Example 15 except that the pigment of the coating layer was changed to the regenerated inorganic particle pigment obtained in Comparative Example 1.
- a coated paper was obtained in the same manner as in Example 14 except that the pigment in the coating layer was changed to the regenerated pigment obtained in Example 11 and a coating solution having a solid content concentration of 55% was finally prepared.
- a coated paper was obtained in the same manner as in Example 14 except that the pigment of the coating layer was changed to fine kaolin (trade name: Miragro described above) and a coating solution having a solid content concentration of 65% was finally prepared. .
- the prepared stock is made with an on-top twin-wire paper machine, dried, and then coated with a gate roll coater so that the coated amount of oxidized starch is 5 gZm 2 on both sides by dry weight.
- the machine calender was used to obtain a filler-added high-quality paper with a weight of 70 g / m 2 .
- a filler-added fine paper was obtained in the same manner as in Example 15 except that the filler in the fine paper was changed to the recycled inorganic particle filler obtained in Comparative Example 1. [0210] Reference Example 7
- a filler-added fine paper was obtained in the same manner as in Example 15 except that the filler in the fine paper was changed to 100% by mass of light calcium carbonate (trade name: TP-121, already described).
- Claim One embodiment of the present invention according to! To 15 is as described above. The force is as illustrated in FIGS. 1 to 3. Next, to solve the problems of the prior art described at the beginning The invention according to claims 16 to 27 is further adopted as a solution means. Claims 16-27 The embodiment of the invention is as illustrated in FIGS.
- FIG. 4 shows a preferred flowchart of the method for producing inorganic particles according to the present invention.
- the raw material paper sludge as shown in the figure has a pretreatment consisting of washing ⁇ alkali metal compound addition ⁇ dehydration ⁇ drying ⁇ granulation, and consists of 17 fire combustion processes and secondary combustion processes. Both are used for two-stage combustion treatment. Then, the fired product after the combustion treatment is recovered as white inorganic particles through a post-treatment comprising the steps of suspension, carbonation, dehydration, dispersion, and pulverization.
- raw material papermaking sludge is agglomerated and precipitated as a sludge recovery process for the wastewater discharged from various processes in the paper mill, such as the pulping process, paper manufacturing process, and used paper recycling process.
- ⁇ Concentration ⁇ Dehydration etc. can be used in combination as appropriate to recover the solids contained in each wastewater (various types of paper sludge) alone or mixed and used as raw material sludge.
- some of this paper sludge may contain low-grade waste paper that is difficult to reuse and RPF (Reibsed Paper & Plastic Fuel) mainly made of plastics.
- the organic component in the papermaking sludge is derived from pulp, adhesive, RPF, etc. and has a flammability having functional groups such as carboxyl group, hydroxyl group, ester group, ether group in the molecule. And those that are hardly flammable, such as carbon black derived from printing inks in recycled used paper.
- the inorganic component (ash content) in the paper sludge is a main component in which kaolin (clay) and calcium carbonate derived from paper filler and coated paper pigment account for about 90 to 95% by weight of the total inorganic component. However, a small amount of talc or titanium dioxide is mixed!
- the ratio of kaolin (clay), which is the main component of the inorganic component, and calcium carbonate varies slightly depending on the type of waste paper to be treated, etc.
- the weight ratio of kaolin / calcium carbonate is generally 20 / 80-80 The range is / 20.
- the content ratio of calcium (aluminum / aluminum) is 13-73 / 12-40 / 15-47.
- the ratio of organic components to inorganic components in paper sludge varies somewhat depending on the type of waste paper to be processed and the degree of deinking process. The range is 30 / 70-80 / 20.
- the combustion treatment in the present invention is performed while transporting the raw papermaking sludge in the cylindrical heat treatment furnace, and the primary combustion process is performed under a combustion condition with a sludge temperature of 650 ° C. or less in an excess air atmosphere.
- the combustion process is set to combustion conditions with a sludge temperature of 700 to 850 ° C under an excess air atmosphere.
- An excess air atmosphere means an air atmosphere that does not cause incomplete combustion by giving a sufficient amount of oxygen to the combustion of organic components!
- the sludge temperature in the seven-fire combustion process exceeds 650 ° C, as described above, the readily combustible organic component is carbonized and changed to a hardly combustible organic component, and the combustion efficiency deteriorates. become. Also, if the combustion temperature in this 17-fire combustion process is too low, even the flammable organic components will be pyrolyzed and ignited and the combustion efficiency will deteriorate, so the lower limit of the sludge temperature should be 250 ° C. Force S desirable. Furthermore, the most suitable firing conditions for the 17 fire combustion process are the ranges where the sludge temperature is 350 to 630 ° C.
- the sludge temperature in the secondary combustion process is less than 700 ° C, it takes time to burn the non-combustible organic components, and the combustion efficiency deteriorates.
- the sludge temperature becomes high temperature combustion exceeding 850 ° C. the suitability as a papermaking material is impaired by the formation of a hard sintered material generally called goulenite.
- goulenite a hard sintered material generally called goulenite.
- the combustion process as a transition section from these 7 fire combustion processes to the secondary combustion process is sandwiched. It is also possible to divide one or both of the primary and secondary combustion processes into a plurality of combustion processes having different combustion temperatures (sludge temperatures) so that there are three or more stages.
- Combustion treatment time in the 7-fire combustion process is preferably at least 10 minutes and not more than 5 hours, more preferably not less than 15 minutes and not more than 2 hours.
- combustion and removal of easily combustible organic components in the inside may be insufficient, and if it is too long, it will be a waste of heat energy. It is important to allow sufficient time for all flammable organic components to burn off.
- the combustion treatment time of the secondary combustion process be at least 10 minutes and not more than 5 hours. It is particularly preferable that the combustion treatment time is not less than 20 minutes and not more than 2 hours.
- the ratio of the combustion treatment time of the 17 fire combustion process and the secondary combustion process is preferably in the range of 1/10 to 10/1 in the 17 fire combustion process / secondary combustion process.
- the cylindrical heat treatment furnace used for the combustion treatment has a rotary kiln furnace called a rotary kiln and a screw kiln furnace depending on the transfer method of the workpiece.
- a rotary kiln furnace is preferable from the viewpoint of combustion efficiency. It is.
- the at least two stages of combustion treatment can be performed in a single cylindrical heat treatment furnace, or can be performed by using a plurality of cylindrical heat treatment furnaces different for each stage. It is more advantageous in terms of equipment efficiency and equipment cost to be performed based on the base.
- the temperature rising region generated between the seven-fire combustion step and the secondary combustion step specifically, the combustion temperature is 650 ° In the region where the temperature rises from C to 700 ° C, it is preferable to make it as short as possible, and it is particularly preferable that it be within 10 minutes. In this way, shortening the temperature rising region between the 17 fire combustion process and the secondary combustion process leads to compactness by shortening the overall length of the cylindrical heat treatment furnace, which is advantageous in terms of equipment efficiency and equipment cost. .
- the indirect heating method is preferable to the direct heating method (internal heating method).
- the direct heating method a large amount of air (oxygen) is consumed to burn the heat source gas in the processing furnace, so there is a concern that the combustion of the organic components contained in the papermaking sludge becomes incomplete due to air shortage.
- the combustion of the heat source gas makes it very difficult to control the furnace temperature (sludge temperature).
- the indirect heating method does not consume furnace air for the heat source, so that the inside of the furnace can be reliably set to an excess air atmosphere and the degree of heating from the outside can be freely changed. This makes it extremely easy to control the furnace temperature.
- a heating means in the above indirect heating method an electric heater or heating that can be induced by an induced current is possible.
- kerosene is enclosed in a heating jacket surrounding the cylindrical furnace body.
- Introducing combustion gas such as oil and heavy oil, combustion exhaust gas discharged from existing incinerators, high-temperature air, superheated steam, etc., or heating by blowing combustion gas from the gas burner to the peripheral wall of the processing furnace Recommended.
- high-temperature exhaust gas that has undergone combustion treatment in the furnace body and combustion exhaust gas from the pretreatment drying step can also be used as part of the heating medium and heat source of the heating means.
- the combustion air be supplied into the main body of the cylindrical heat treatment furnace from the fired product outlet side in order to produce a high-quality fired product. That is, air supply from the fired product outlet side causes the air flow direction in the furnace body to be opposite to the transfer direction of the workpiece (paper sludge and its fired product). Even if the unburned, non-combustible organic components are scattered in the furnace in the state of soot, the floating material such as soot is carried back to the raw material supply port side by the air flow and burned.
- the unburned, non-combustible organic components discharged to the outside of the cylindrical heat treatment furnace accompanying the exhaust are collected and removed by a bag filter, etc., and are combusted by an appropriate heating means together with the exhaust. It is better to make it disappear.
- air may be blown from the fired product discharge port side.
- the An inhalation method is preferred.
- forcibly exhausting from the raw material supply port side results in a negative pressure in the furnace, so if an air supply port is provided near the fired product discharge port, air is discharged from the air supply port by the negative pressure. It is automatically inhaled into the furnace.
- the air supply amount can be easily controlled by the exhaust amount, and air can be surely distributed over the entire length of the long furnace body by a stable air flow. That's the power S.
- the above air supply amount is 1.;! To 5 times the oxygen amount of theoretical oxygen required for complete combustion of organic components contained in paper sludge when the furnace body is in an excess air atmosphere.
- the power to set the amount to give the amount S is preferable. 1.
- the amount that gives 5 to 5 times the amount of oxygen is more preferable, and the amount that gives 2 to 5 times the amount of oxygen is desirable. If this amount of air supply is too small, it will be difficult to make the furnace body into an excess air atmosphere, and the whiteness of the fired product may be reduced by the carbides remaining due to incomplete combustion of organic components.
- the combustion air only needs to contain oxygen that sufficiently burns organic components! /, So the amount of carbon dioxide is higher than normal outside air. ,.
- FIG. 5 is a longitudinal side view schematically showing a rotary kiln furnace K1 of an indirect heating system which is a first structural example of a cylindrical heat treatment furnace used in the present invention.
- the outer periphery of a horizontal cylindrical rotary drum 9 that is a furnace body is surrounded by a heating jacket 20, and at one end of the rotary drum 9 on the raw material supply port 9a side,
- a raw material input port 2 is provided at a distance from the exhaust port 30, and a raw material supply means 10 such as a screw feeder is disposed between the raw material input port 2 and the raw material supply port 9a of the rotary drum 9.
- a raw material supply means 10 such as a screw feeder is disposed between the raw material input port 2 and the raw material supply port 9a of the rotary drum 9.
- firing the other end of the rotating drum 9 Facing the product discharge port 9b there is a power supply port 3 and a fired product discharge port 8!
- the rotary cylinder 9 is not shown in the strict illustration, the rotary cylinder 9 is inclined at a very gentle downward slope from the raw material supply port 9a side to the fired product discharge port 9b side. By the inclination and rotation of 9, the workpiece to be processed moves gradually from the raw material supply port 9a side to the fired product discharge port 9b side by gravity.
- the papermaking sludge S of the raw material charged into the raw material inlet 2 is supplied to the raw material In the process of feeding to the raw material supply port 9a of the rotation month 9 by means 10 and transferring to the calcined product discharge port 9b by the rotation of the rotation month 9, the indirect heating by hot air introduced into the heating jacket 20
- the organic components in the sludge S are combusted in two stages: the seven-fired combustion process and the secondary combustion process described above.
- the entire interior of the rotary drum 9 is maintained in an excess air atmosphere by the intake of air from the air supply port 3 accompanying the exhaust from the exhaust port 30 due to the operation of the exhaust means 4.
- the heating degree is adjusted by the temperature and the introduction speed of the hot air introduced into the front heating space 20a and the rear heating space 20b in the heating jacket 20, respectively.
- the sludge temperature 650 ° C or less (preferably 650 ° C or less At 250 ° C or more, optimally 350 to 630 ° C), and the sludge temperature 700 to 85 0 ° with the rear region in the rotary drum 9 corresponding to the rear heating space 20 b as the secondary combustion zone Z2 C (preferably 750 to 800 ° C).
- the papermaking sludge S is combusted and removed without carbonizing the combustible organic components contained in the process of passing through the seven-fired combustion zone Z1, and then contained in the process of passing through the secondary combustion zone Z2.
- the burned-off organic components are burned and removed, and are discharged from the burned product outlet 9b of the rotary drum 9 as a high-whiteness burned product that does not contain unburned organic components and hard sintered products. It is taken out of the furnace through the material outlet 8.
- the processing time (passing time) in both combustion zones Zl and Z2 may be set according to the rotational speed and the degree of inclination of the rotating drum 9. Further, the length ratio of both combustion sections Zl and Z2 in the rotary drum 9 is preferably in the range of 1/10 to 10/1 in the primary combustion process / secondary combustion process as described above.
- the indirect heating means 5A, 5B can be arbitrarily adjusted according to the relative ratio of the size of the region where hot air is introduced into the heating jacket 20 respectively.
- various measurement means such as thermocouples and infrared temperature sensors can be used for temperature measurement to control the combustion temperature (sludge temperature) in both combustion zones Zl and Z2. Thermocouples are preferred from the standpoint of performance and cost.
- Indirect heating means 5A, 5B is used as a hot air or part of the heat source. It is to be noted that combustion exhaust gas from a pretreatment drying process or the like can be used as the hot air of the indirect heating means 5A and 5B and its heat source.
- FIG. 6 is a longitudinal side view schematically showing a rotary kiln furnace K2 of the indirect heating method, which is a second structural example of the cylindrical heat treatment furnace used in the present invention.
- Constituent elements common to the rotary kiln furnace K1 in the first structural example shown are denoted by the same reference numerals.
- This rotary kiln furnace K2 has a force S that is almost the same as the rotary kiln furnace K1 in the first configuration example, and the front heating space 20a and the rear heating space 20b in the heating jacket 20 are blocked by the partition member 11.
- the partition member 11 is formed by shaping a material that can withstand the high temperature of the combustion process, such as metal, ceramics, and bricks, into a required shape.
- FIG. 7 is a longitudinal side view schematically showing a rotary kiln furnace K3 of the indirect heating method, which is a third structural example of the cylindrical heat treatment furnace used in the present invention.
- Constituent elements common to the rotary kiln furnaces Kl and K2 of the first and second configuration examples shown in FIG. 6 are denoted by the same reference numerals.
- the outer periphery of the rotary drum 9 is surrounded by heating jackets 20A and 20B separated into a raw material supply port 9a side and a fired product discharge port 9b side, and both heating jackets 20A and 20B are enclosed.
- An intermediate air inlet 3B is provided at the boundary.
- the front region in the rotary drum 9 corresponding to the front heating space 2OAa has a sludge temperature of 650 ° C or less (preferably 650 ° C or less In the primary combustion zone Z1 of 250 ° C or higher, optimally 350 to 630 ° C, the rear region in the rotary drum 9 corresponding to the rear heating space 20Bb is sludge temperature 700 to 850 ° C (preferably 750 ⁇ 800 ° C) is set in the secondary combustion zone Z2.
- the airflow A2 from the air supply port 3B is added to the airflow A1 from the air supply port 3A in the intermediate position to the airflow A1 from the air supply port 3B in the rotary drum 9, and both airflows Al
- the air flow A3 that merges A2 passes through the primary combustion section in the rotary drum 9 and is discharged from the exhaust port 30.
- FIG. 8 shows an example of the structure of the rotary drum 9 portion in the rotary kiln furnace K3 of the third configuration example.
- the rotating drum 9 has a structure in which cylindrical bodies 9A and 9B having different diameters are concentrically arranged so that they are partially overlapped so that the small diameter cylindrical body 9A is on the raw material supply port 9a side. An annular gap formed in the overlapping part is used as the intermediate air supply port 3B.
- the papermaking sludge S supplied to the raw material supply port 9a is sequentially moved in the small-diameter cylindrical body 9A and the large-diameter cylindrical body 9B as indicated by an arrow B by the rotation of the rotary cylinder 9 as a whole.
- the organic components are removed by combustion and discharged from the fired product outlet 9b.
- the intermediate air supply port 3B Fresh air is also inhaled as the air flow A2
- FIG. 8 Various structures other than those illustrated in Fig. 8 can be adopted for air supply from the intermediate position of the rotary drum 9 such as the rotary kiln furnace K3 of the third configuration example.
- the furnace body of the cylindrical heat treatment furnace used in the present invention is not limited to the horizontal cylindrical type such as the rotary drum 9 in the rotary kiln furnaces K1 to K3 of the first to third configuration examples described above.
- By providing partitions and partitions inside it is possible to adopt a rotating cylinder with a multi-divided structure in which the interior is divided into a plurality of compartments and a multi-cylinder (tube bundle) multi-chamber structure.
- Figures 9 to 11 show examples of these multi-divided structures and a multi-chamber structure with multiple bodies (tube bundles).
- 9 to 11 are cross-sectional views (radial cross-sectional views) in a direction orthogonal to the longitudinal direction of the horizontally long rotating drum, and the vertical direction of the figure matches the actual vertical direction. Yes.
- the rotating drum 9 shown in Fig. 9 (a) has a six-partitioned partition structure having a substantially hexagonal outer shell 12a. The inside is divided into six compartments 13... Having an equilateral triangular section by a partition wall 12 b having a hexagonal section.
- FIG. 9 (b) shows the stacking-deposition state of the papermaking sludge S in each compartment 13 when the rotating cylinder 9 supplied with the granulated material of the papermaking sludge S is rotated in the direction of arrow C. Yes.
- a rotating drum 9 shown in Fig. 10 (a) has a six-cylinder multi-cylinder (tube bundles) in which six pipe parts 14 ⁇ are bundled in a substantially annular shape by a donut plate-like pipe part fixing member 15.
- the central cavity portion 16 surrounded by the six pipe portions 14... Is communicated in the axial direction through the center hole 15a of the pipe portion fixing member 15.
- FIG. 10 (b) shows the lamination-deposition state of the papermaking sludge S in each pipe section 14 when the rotating cylinder 9 supplied with the granulated material of the papermaking sludge S is rotated in the direction of arrow C. Yes.
- the rotating drum 9 shown in Fig. 11 (a) has a 12-partitioned partition structure, and an annular space between the inner cylinder part 17a and the outer cylinder part 17b forming a double pipe is formed by 12 partition walls 17c ... Twelve compartments 18 are formed by dividing radially, and a hollow portion 16 is formed inside the inner cylindrical portion 17a.
- Figure 11 (b) shows the stack of papermaking sludge S in each compartment 18 when the rotating cylinder 9 supplied with the granulated material of papermaking sludge S rotates in the direction of arrow C.
- the horizontally long rotating cylinder 9 is formed into a multi-partition structure or a multi-cylinder (tube bundle) multi-chamber structure, the supplied papermaking sludge S is divided into a plurality of sections. Since it is distributed in small quantities to the chamber and torso, the object to be processed in the transfer process in the rotating cylinder 9 is compared with a simple horizontal cylindrical rotating cylinder that forms a single furnace space as a whole. As the accumulated thickness of (paper sludge S, fired product) becomes much smaller, the stir action of the object to be processed accompanying the rotation of the rotary drum 9 becomes stronger, and the air (oxygen) and the object to burn organic components are burned. The contact efficiency with the treated product is remarkably improved, so that the combustion efficiency of the organic component is remarkably increased, and a high-quality fired product and thus inorganic particles can be obtained.
- the number of divisions of the transfer path in such a multi-divided structure or tube bundle (multi-cylinder) multi-chamber structure is at least 6 or more in order to sufficiently exert the above-described effects.
- the divided structure of the rotary cylinder is not limited to the structure illustrated in FIGS. 9 to 11, but may be, for example, a multi-partition partition structure such as an 18-part type, a 24-part type, or a 36-part type described later, Various structures are possible, such as a rotating cylinder structure having a multi-cylinder / multi-divided structure in which a partition or partition is provided for each tubular member and the total number of divisions is 6 to 126.
- the inside of the tubular member is partitioned into a plurality of compartments by a partition wall, and a driven stirring blade having a shape similar to the partition wall described later is provided in the rotary drum and the tubular member. It is also possible to divide the inside of the rotary cylinder into a plurality of compartments and distribute the papermaking sludge S supplied to the compartments to the compartments! ,.
- Fig. 12 is a longitudinal side view schematically showing a rotary kiln furnace K4 of the indirect heating method, which is a fourth structural example of the cylindrical heat treatment furnace used in the present invention, and is described in Figs. Constituent elements common to the rotary kiln furnaces K1 to K3 of the first to third configuration examples shown in FIG.
- the rotary drum 9 has a hollow portion 16 along the axial direction as shown in Figs. 10 and 11, and is heated from the outside of the rotary drum 9.
- the cavity 16 is also provided with indirect heating means 5C and 5D for heating the rotary drum 9 from the inside.
- These indirect heating means 5C and 5D for the inside release the hot air sent through the respective hot air blowers 71 from the outside through a plurality of air supply ports 3A and into the hollow portion 16 respectively.
- the outlet 72 is divided into a front heating space 16a on the raw material supply port 9a side in the cavity 16 and a rear heating space 16b on the fired product discharge port 9b side. As shown in FIG.
- the front heating space 16a in the cavity 16 is divided into the front heating space 20a into which the hot air by the indirect heating means 5A in the heating jacket 20 is introduced.
- the rear heating space 16b corresponds to the rear heating space 20b into which hot air from the indirect heating means 5B in the heating jacket 20 is introduced.
- the sludge temperature is set to 650 ° C or less (preferably 650 ° C or less, 250 ° C or more, optimally 350 to 630 ° C) by indirect heating from inside and outside by heating means 5A and 5C.
- the rear region in the rotary drum 9 sandwiched between the inner and outer rear heating spaces 16b and 20b is formed as a secondary combustion zone Z2 by indirect heating from the inside and outside by indirect heating means 5B and 5D.
- Set the sludge degree to 700 to 850 o G (preferably 0.75 to 800 o G).
- the combustion treatment as described above it is contained in the raw paper sludge! /,
- the decomposition rate is preferably 90% or more, more preferably substantially 100%.
- the calcium oxide produced by the above pyrolysis can be returned to the original calcium carbonate in the post-treatment carbonation step described later, it is not necessary to suppress the production of calcium oxide in the combustion treatment.
- the firing treatment is performed at a temperature higher than the thermal decomposition temperature of calcium carbonate, 525 ° C, so that the organic components can be removed preferentially.
- the decomposition rate of calcium carbonate in the combustion process is less than 50%, as described above, the organic components in the sludge are burned and removed at the combustion temperature of 700 ° C or higher in the secondary combustion process. It is expected to have the opposite effect of suppressing the thermal decomposition of calcium carbonate that occurs at a temperature lower than about 525 ° C, so it must be inefficient and the desired high-grade sludge incineration It is not suitable for obtaining ash at a high rate.
- raw paper sludge is agglomerated, settled and concentrated as a sludge recovery process for wastewater discharged from various processes in the paper mill, such as the pulping process, paper manufacturing process, and used paper recycling process.
- ⁇ Use a combination of steps such as dehydration as appropriate to recover the solids contained in each wastewater (various types of papermaking sludge), either alone or mixed and used as a raw material sludge.
- sludge from the used paper recycling process is agglomerated and separated from the deinked waste liquid separated and discharged from the used paper pulp by pressurized flotation (flow-tessellation or flotation) and / or washing in the used paper deinking process. It is recommended to perform dehydration and collect the solid content in the deinking wastewater as deinking sludge. Also, when recovering waste paper raw materials with low whiteness and sludge, sufficiently perform deinking and flotation in the used paper recycling process to remove ink particles including carbon black as much as possible. Multiple sludge pressurization and / or washing steps can be added as needed.
- the deinking sludge collected from the used paper deinking process is classified into high-quality used paper, newspaper used paper, magazine (coating paper) used paper, etc., and deinked sludge for each type of used paper is prepared. It is possible to use deinked wastepaper by type of wastepaper alone or in combination as raw material sludge as appropriate.
- the alkali metal By adding an alkali metal compound to paper sludge as a raw material, the alkali metal is used for thermal decomposition and combustion of organic components in the subsequent combustion treatment.
- the alkali metal acts as a kind of catalyst, and combustion efficiency is improved. And it has been found that such effects are effective not only for flammable organic components, but also for non-flammable organic components that are poor in functional groups that are the starting point of thermal decomposition and ignition. ing.
- the alkali metal compound to be added is not particularly limited, but sodium or potassium hydroxides and carbonates are preferable from the viewpoint of the safety (harmful physical properties) of the alkali metal soluble in water. .
- halides such as sodium chloride and potassium chloride
- alkali metal strong acid salts such as nitrates such as sodium nitrate and potassium nitrate and sulfates such as sodium sulfate and potassium sulfate have an effect of improving the combustion efficiency as an alkali metal compound, but hydrogen halide ( Hydrogen chloride), nitric acid, sulfuric acid, and other strong acids are generated, which may cause corrosion of the metal material constituting the cylindrical heat treatment furnace.
- these alkali metal compounds may be added to sludge before and after dehydration treatment, including sludge before dehydration treatment, which may be in the form of granular or powdered solid and aqueous solutions, or misalignment. From the viewpoint of uniformity and ease of adjusting the addition amount, a method of adding to the raw material sludge before dehydration in the form of an aqueous solution or a method of spraying to the sludge before drying is preferable.
- the amount of alkali metal compound added to the papermaking sludge is within the range of 0.001 to 5.0 parts by weight in the absolute dry weight of 100 parts by weight of the sludge in the case of alkali metal hydroxide. In particular, the range of 0.;! To 1.0 parts by weight is optimal. Therefore, if this addition amount is too small, a sufficient effect cannot be obtained. On the other hand, if the amount added is too large, it is wasted and, when the alkali metal compound is a hydroxide, the pH of the sludge is strongly alkaline due to excess alkali, and care must be taken when handling the sludge. This is not preferable.
- Examples of methods for recovering raw material sludge as solids from papermaking sludge-containing wastewater include methods such as filtration, centrifugation, pressure dehydration, and pressing, as described above. Get rate papermaking sludge.
- a suitable filtration device there is a filtration device called a rotary screen, and as a dehydration device, there is a pressurization / squeeze dehydration device called a screw press. Or they can be used in appropriate combinations.
- the solids concentration in the sludge varies depending on the capacity of the dehydrator, so it is usually 5 to 60% by mass. However, if the solid content exceeds 60% by mass, the capacity of the current dehydrator or concentrator It is difficult to achieve.
- the solid content concentration of sludge used in the heat treatment step is particularly limited.
- the solid content concentration is approximately 5 to 60% by mass, so it is recommended to further increase the solid content concentration by drying treatment.
- the dryer used in the drying process is not limited to a direct heating type rotary kiln, an indirect heating type rotary kiln, an air flow dryer, a fluidized bed dryer, an oscillating fluid dryer, a rotary / aeration rotation. It is possible to use a dryer (cyclone). In addition, as a heat source for these dryers, it is possible to reduce the energy cost by using the exhaust heat of the baking treatment process described later.
- the temperature of the drying process is not limited to hot air to prevent sludge from burning or carbonization in an apparatus that uses hot air such as an air dryer or a rotary / aeration rotary dryer.
- the temperature is preferably 600 ° C or lower, and particularly preferably 250 ° C or lower. If this hot air temperature is too high, sludge will ignite, and if the firing conditions at that time are not appropriate, there is a concern that easily combustible organic components will carbonize and become non-combustible.
- the dried papermaking sludge is formed into an appropriate particle size by an appropriate means.
- the papermaking sludge used as a raw material in the present invention is too fine if it has a form and particle size that can burn organic components in contact with air (oxygen) while being transported in a cylindrical heat treatment furnace.
- air oxygen
- the air spreads to the inside of the lump even if it becomes coarse like a lump, and the combustibility of organic components deteriorates.
- pellet granulation is generally performed by a compression molding machine such as a pricket machine or a roller compactor, an extrusion molding machine such as a disk pelleter, and a rolling granulation method or a stirring granulation method.
- a compression molding machine such as a pricket machine or a roller compactor
- an extrusion molding machine such as a disk pelleter
- a rolling granulation method or a stirring granulation method In addition to a simple granulation method, when water-containing paper sludge after dehydration is put into a drying device or a cylindrical heat treatment furnace, it is granulated using a conveying device having a shearing action such as a screw feeder. It is also possible to carry out granulation using the paper sludge transport movement during the drying process.
- the granulated particle size is preferably in the range of about 2 to 30 mm in length or diameter, and more preferably in the range of 3 to 20 mm. If the particle size is out of this range, for example, about lmm, it will not be able to come into sufficient contact with the surrounding air during combustion, and it will easily become unburned. In addition, if it exceeds 30 mm, it becomes difficult to burn completely to the center.
- the particle shape of the granulation is not particularly limited, such as a columnar shape, a spherical shape, an ellipse, a triangle, other polygonal shapes, or those having concave and convex shapes.
- the fired product obtained by the combustion treatment is mixed with water and stirred to form a suspension, and a carbon dioxide gas is blown into the suspension to carbonize the fired product. This is because when the raw paper sludge contains carbonic acid lucium, the carbon dioxide (CaCO 3) to carbon dioxide (CaCO 3) in the combustion process.
- the purpose of the suspension process is to convert calcium oxide to calcium hydroxide before returning it to calcium carbonate as described above, there are no particular restrictions, but low V, treatment temperature
- the processing temperature is expensive and expensive to maintain, so it is preferable to set the processing temperature to 20 to 80 ° C.
- a temperature of 40 to 60 ° C is particularly preferable.
- the solid content concentration of the suspension is effective in performing the carbonation treatment in the subsequent carbonation step, and maintaining the viscosity of the suspension low to maintain good fluidity and fluidity.
- calcium oxide and calcium hydroxide are calcium hydroxide [Ca (Ca ( OH): slaked lime], for 100 parts by weight of the sludge burned product
- carbon dioxide gas is blown into the suspension of the calcined product.
- the carbon dioxide concentration is industrially 5-40.
- a carbon dioxide-containing gas of about volume%, particularly preferably about 10 to 35 volume%.
- Examples of such carbon dioxide-containing gas include sludge combustion exhaust gas, limestone calcined exhaust gas, lime calcined exhaust gas, waste incineration exhaust gas, power generation boiler exhaust gas, exhaust gas from causticized calcium carbonate calcined kiln used in pulp manufacturing process, etc.
- Various combustion exhaust gases can be used after dust removal by an appropriate means. If the carbon dioxide concentration of the blown gas is too low, the carbonation takes a long time, and the productivity of the inorganic particles decreases accordingly. On the other hand, a high preparation cost is required to set a high carbon dioxide concentration.
- the amount of carbon dioxide blown in the carbonation step is preferably 0.5 to 15 liters / minute as carbon dioxide gas with respect to 1 kg of calcium hydroxide solid content in the fired suspension. If the amount is too small, it takes time for carbonation to reduce the productivity of inorganic particles. On the other hand, if the amount is too large, the power load for blowing becomes large, which is uneconomical.
- the temperature of the calcined suspension during carbonation is preferably about 30 to 80 ° C, particularly 40 to 70 ° C, and if it is too low, the efficiency of the carbonation reaction is increased. Conversely, even if it is too high, the carbon dioxide gas is not sufficiently dissolved in the suspension, leading to a reduction in the efficiency of the carbonation reaction.
- the calcium carbonate to be produced is made into a desired crystal shape.
- a seed crystal of calcium carbonate having the crystal shape may be added to the fired product suspension.
- the carbonized product obtained by carbonating the fired product as described above is white inorganic particles having a large particle size suitable for a papermaking filler, a suspension of the carbonized product is obtained. As it is, it can be used as a filler for papermaking by blending it with raw materials for papermaking such as pulp.
- the carbonation product obtained from the carbonation step is dehydrated and then dispersed and pulverized to obtain a high-concentration slurry of fine white inorganic particles suitable as a pigment for coated paper.
- a carbonized product having a required water content is obtained from a suspension of the carbonated product by filtration, centrifugation, pressure dehydration, squeezing, etc. To do.
- a suitable dehydrating apparatus there is a press filtration apparatus called a filter press, and a dehydrated cake of a carbonized product can be obtained.
- the force of adding water to the dehydrated cake-like carbonated product to form a high-concentration slurry involves stirring, crushing, and dispersion performed in the usual dispersion treatment.
- Various methods can be adopted.
- a dispersing agent during the dispersing operation, the inorganic particles are in a favorable dispersed state, and the quality and handling properties as a papermaking material are improved.
- a dispersant a general dispersant used in the production of papermaking materials can be used, and specific examples thereof include synthetic polymer-based dispersants such as sodium polyacrylate.
- the suspension of the carbonation-treated product that has undergone the carbonation step is preferably filtered through a sieve such as a vibrating sieve before dehydration, and a liquid cyclone is used before the filtration.
- a classification treatment is preferably performed. That is, the above filtration treatment removes silicon-containing particles such as ⁇ -quartz and coarse particles mixed into the carbonized product, and thus wear of the papermaking tire can be reduced. Further, if the classification process using a liquid cyclone is performed before the filtration process, there is an advantage that clogging of the sieve of the subsequent filtration process can be prevented.
- the inorganic particles after the dispersion treatment are pulverized into fine particles, whereby the inorganic particles are made into high-quality white inorganic particles suitable as a coating pigment.
- a pulverizing apparatus for this pulverization step a sand mill, a wet type generally used in the manufacture of papermaking materials are used. Can use ball mills, vibration mills, stirring tank mills, flow tube mills, coball mills, etc.
- the inorganic particles obtained from the papermaking sludge as a raw material according to the present invention have a high whiteness and do not contain a hard sintered product. Therefore, as described above, a papermaking material such as a papermaking filler or a coating pigment is used as it is. It can be used as a material for paper, and can also be used by mixing with various inorganic pigments used as paper materials such as calcium carbonate, talc, kaolin, firing power, titanium dioxide, satin white, and silica.
- a flocculant is added to the foamy deinking flotation waste liquid that has been floated and separated from waste paper pulp by the floatation method (floatation method).
- the liquid was passed through a rotary screen and a screw press in order to recover papermaking sludge (deinking sludge) having a solid content of about 50%.
- a dryer to dry to a solid content of about 75%, and then granulate and form pellets with a diameter of about 5 mm and a length of about 15 mm using a disk pelleter, and finish the pretreatment. It was.
- the paper sludge granulated material after this pre-treatment is used in the rotary kiln furnace K2 (Takasago Kogyo Co., Ltd., externally heated rotary kiln manufactured by Takasago Industries, Ltd. ) Was used for combustion treatment.
- raw paper sludge granulated material S is supplied from the raw material input port 2 at a supply speed of 3.5 kg / h using a hopper, and is rotated by a screw feeder which is a raw material supply means 10.
- a two-stage combustion process was performed in the seven-fire combustion zone Z1 and the secondary combustion zone Z2 while being fed into the raw material supply port 9a of the barrel 9 and being transferred through the rotary drum 9.
- the combustion gas from the combustion boiler (not shown) is used as a heat source, and the combustion to the front and rear heating spaces 20a and 20b of the heating jacket 20 by the indirect heating means 5A and 5B is performed.
- the heat treatment temperature is controlled by the amount of gas introduced, and the seven-fire combustion zone Z1 is sludge temperature 600 ° C.
- the treatment time (sludge retention time) was set to about 40 minutes, and the secondary combustion zone Z2 was set to a sludge temperature of 800 ° C and the treatment time was set to about 90 minutes.
- combustion exhaust gas is exhausted from the rotary drum 9 by the exhaust fan of the exhaust means 4 at 100 L / min (air temperature converted to 20 ° C), and the same amount of exhaust gas exhausted from the exhaust port 30 due to the decompression action associated therewith. Outside air was sucked from the air supply port 3, and the entire inside of the rotating month 9 was always maintained in an excess air atmosphere.
- the composition of the fired product obtained by this combustion treatment was examined by X-ray diffraction. As a result, it did not contain a hard high-temperature sintered product (goulenite) and contained in paper sludge before the combustion treatment. All calcium carbonate was changed to calcium oxide. In addition to the components other than calcium carbonate, the force talc, in which all kaolin was changed to calcined kaolin, did not change at all.
- the fired product obtained by the above-mentioned combustion treatment is mixed with 60 ° C hot water using a suspension tank (dissolving tank), and the temperature of the suspension tank is adjusted to 60 ° C. While maintaining the temperature at 60 ° C., the mixture was stirred for 60 minutes to prepare a calcined product suspension having a solid content concentration of about 12%. Then, 10 kg of this calcined product suspension was charged into a carbonation reaction tank, and while maintaining the temperature of this carbonation reaction tank at 60 ° C, 20 liters of 25% by volume carbon dioxide-containing gas was added to the suspension. Carbonation was carried out by stirring for 60 minutes while blowing at / min. As a result of examining the composition of the inorganic particles after the carbonation treatment by X-ray diffraction, the total amount of calcium oxide produced / combusted by the combustion treatment was converted to calcium carbonate.
- a white inorganic particle slurry having a solid content of about 46% was prepared by dispersing in water using a core mixer.
- a polyacrylic acid-based dispersant (trade name: ALON T 50, manufactured by Toa Gosei Co., Ltd.) as a dispersant is 1.0 wt. Per 100 parts by weight of the solid content of the carbonized product. Part was added.
- the above-mentioned inorganic particle slurry was wet-ground using a sand grinder to obtain fine white inorganic particles suitable for a coating pigment.
- White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 15 mm and a length of about 15 mm.
- Example 1 except that the sludge temperature in the seven-fired combustion zone Z1 and the secondary combustion zone Z2 in the combustion process is 700 ° C, and the entire combustion process is in one stage (130 minutes as the combustion process time). In the same manner, white inorganic particles were obtained.
- White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the seven-fire combustion zone Z1 in the combustion treatment was 200 ° C.
- White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the one-fire combustion zone Z1 in the combustion treatment was 660 ° C.
- the seven-fire combustion process and the secondary combustion process are performed separately using two rotary kiln furnaces, and in the seven-fire combustion process, air supply to the rotary drum of the rotary kiln furnace is stopped and poor.
- White inorganic particles were obtained in the same manner as in Example 1 except that the combustion treatment (carbonization treatment) was performed in an oxygen atmosphere.
- White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 1 mm and a length of about 5 mm.
- White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 30 mm and a length of about 30 mm.
- the quality as a papermaking material was comprehensively evaluated in the following three stages from the data on the whiteness and presence / absence of a hard sintered product.
- the whiteness is less than 78% at the stage of inorganic particles finally obtained.
- the paper production sludge used as a raw material Since the machine particles undergo a two-step firing process under specific conditions, they have high whiteness and do not contain hard sintered products, and can be reused sufficiently as papermaking materials such as coating pigments and papermaking fillers. It is clear that it has good quality.
- inorganic particles obtained through a one-step firing process at various temperatures (Comparative Examples 5 to 8), inorganic particles obtained through a firing process in which the heat treatment temperature of the primary firing process is too low or too high in two stages (Comparative Examples 9 and 10)
- inorganic particles obtained through the firing process in which the primary firing process in two stages is performed in an oxygen-poor atmosphere (Comparative Example 11)
- the whiteness is low, or the hard particles are included, It is difficult to use as a papermaking material.
- the granulated material of the papermaking sludge as the raw material is too small (Reference Example 8) or conversely too large (Reference Example 9)
- the quality of the resulting inorganic particles is poor. It is also suggested.
- the decomposition rate of calcium carbonate after the combustion treatment was determined in the following steps i) to vi).
- the amount of calcium and residual calcium carbonate in the calcined sludge was determined and evaluated.
- no calcium carbonate peak was observed in the X-ray diffraction measurements of all the examples, and all the calcium carbonate in the sludge fired product was decomposed in the combustion treatment process.
- the amount of calcium carbonate (A) in the sludge calcined product in all examples obtained based on the following procedure is 0. ( ⁇ (0% by mass) per lg of sludge calcined product.
- the decomposition rate of calcium carbonate after the combustion treatment was 100%.
- a calibration curve for aragonite calcium carbonate was prepared in the same manner as the calibration curve for calcite calcium carbonate, except that calcium carbonate with a crystal structure of aragonite (Tama Pearl 123 manufactured by Okutama Kogyo Co., Ltd.) was used.
- the weighed absolute dry papermaking sludge was burned using a pine furnace to the same conditions as the rotary kiln furnace in the examples, and the weight of the resulting sludge fired product was weighed. Was used to measure the ash content (%) of the sludge.
- Ash content (%) (Weight of sludge baked product / Weight of paper drying sludge) X 100
- the weighed sludge burned product was added and mixed with a weighed zinc oxide (special grade reagent mentioned above).
- a weighed zinc oxide special grade reagent mentioned above.
- the mixture was sufficiently ground using a mortar, and then measured using an X-ray diffraction apparatus (M03XHF described above) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees.
- Calcium calcite and aragonite carbonate power against zinc oxide X-ray diffraction 100% peak area of Lucium was calculated, and based on the calibration curve of each calcium carbonate described above, the amount of calcium carbonate contained in lg of sludge calcined product (g) was calculated.
- the amount of calcium carbonate (g) in the sludge fired product lg is A
- the amount of calcium carbonate (g) in the paper sludge lg is B
- the ash content (%) is C.
- the rate of decomposition was calculated.
- the invention according to claims 28 to 44 proposes a method for producing inorganic particles according to the present invention and a rotary kiln furnace employed in a production plant. . This embodiment is illustrated in FIGS.
- the invention of claims 28 to 44 is a continuous type or batch type rotary kiln that includes a rotary drum inside and heats / fires the raw material charged in the rotary drum.
- the present invention relates to a furnace and a heat treatment apparatus including the kiln furnace.
- raw materials sludge, particularly papermaking sludge having suitability as a pigment for coated paper or a filler for papermaking, is preferably used.
- a rotary kiln furnace (also referred to as a rotary kiln) is a device that supplies raw materials into a rotary drum (also referred to as a furnace core tube or firing chamber), and heats, dries, and fires the raw materials.
- This rotary kiln furnace has a generally cylindrical shape of force S, and the raw materials charged in the rotary drum for heating and firing are stacked and deposited on the lower bottom of the rotary drum. Since it is difficult to mix, the raw materials have problems such as a problem that the raw material cannot be uniformly heated and fired, and a problem that the heat cannot be sufficiently fired.
- Patent Documents 21, 22, and 23 introduce a method of stirring the raw material in the rotating drum by providing a so-called “one”. Further, Patent Document 24 introduces a method of stirring a raw material in a rotary drum by introducing a movable stirring blade into the rotary drum of the kiln. Also, Patent Document 25 introduces a method for making the entire cross-sectional shape of the kiln's rotating drum different from a circular shape such as an ellipse or a triangle.
- Patent Documents 26, 27 and 28 introduce a method of partitioning the inside of the trunk.
- Patent Documents 29 and 30 introduce a method of introducing a plurality of small cylindrical tubes into the rotary cylinder of the kiln to make the rotary cylinder into a multi-cylinder type.
- Patent Literature 21 Japanese Utility Model Publication No. 53--077944
- Patent Document 22 Japanese Utility Model Publication 56--03398
- Patent Document 23 Japanese Patent Laid-Open No. 59-193123
- Patent Document 24 JP-A-2005-281069
- Patent Document 25 Japanese Patent Laid-Open No. 2003-120910
- Patent Document 26 Japanese Utility Model Publication No. 49-021223
- Patent Document 27 Japanese Patent Laid-Open No. 2001-311583
- Patent Document 28 Japanese Patent No. 89181
- Patent Document 29 Japanese Utility Model Publication No. 52- ⁇ 80046
- Patent document 30 JP-A-03-95389
- FIG. 25 is a cross-sectional view of a rotary drum as an example of a conventionally used rotary kiln furnace. It can be seen that the raw material particles Sa, Sa '"are accumulated in the bottom left corner. The reason why the raw material particles are unevenly distributed is that the raw material particles Sa, Sa' '' are introduced into the rotary cylinder 24.
- a rotary kiln furnace according to claim 28 of the present invention is a rotary kiln furnace provided with a rotary drum inside and firing raw materials introduced from one side, wherein the rotary drum has a plurality of rotary kilns therein.
- a multi-partitioned partition structure provided with compartments each having at least two or more compartments in the radial direction of the rotating drum, the compartments of the outermost layer region and the compartments of the central region in the radial direction of the rotary drum It is a rotary kiln furnace with at least one structure.
- the multi-partition partition structure according to claim 29 includes at least one compartment (eg, 150cl) constituting the central compartment (CS), and the outermost compartment compartment.
- This is a multi-partition partition structure that is configured to have a set of compartments (150 ⁇ , 150 ⁇ ⁇ ) with a certain shape, consisting of at least two or more compartments (eg 150ol and 150o2) that make up (OS) This is preferable for the efficient introduction of raw materials to each compartment (see Fig. 16 (a) and (b)).
- the cross section of the multi-partition partition wall structure portion according to claim 30 has a substantially regular hexagonal outline, and the substantially regular hexagonal outline is defined as a sectional shape that divides the inside of the substantially regular hexagonal outline.
- Divide the inside of the approximately regular hexagon into six approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by the straight line connecting the center of the square and each of the six vertices.
- the six divisions-regular triangular compartment has three straight lines that connect the approximate center of gravity of the substantially regular triangle and the approximate midpoints of the three sides, respectively.
- the partition structure is divided into 18 compartments as a total number of partitions. (Referred to as the structural part) is preferable for introducing the raw materials efficiently and evenly into each compartment.
- the cross section of the multi-partition partition wall structure portion according to claim 31 has a substantially regular hexagonal outline.
- the inside of the substantially regular hexagon is divided into six substantially regular triangles by a straight line connecting the center of the substantially regular hexagon and each of the six vertices.
- Divided into compartments (six divisions-regular triangle type compartments), and three straight lines connecting the approximate midpoints of each side of the regular triangles of the six divisions-regular triangle type compartments
- the total number of divisions is divided into 24 compartments. It is a cross section, and this partition wall structure part (referred to as a 24 divided A-type multi-partition partition wall structure part) is also preferable in efficiently introducing the raw material into each compartment.
- the cross section of the multi-partition partition wall structure portion according to Claim 32 has a substantially regular hexagonal outer shape, and the cross sectional shape that divides the inside of the substantially regular hexagonal outer shape is substantially regular 6
- Divide the inside of the approximately regular hexagon into six approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by the straight line connecting the center of the square and each of the six vertices.
- the six-divided-regular triangular compartment is divided into three substantially regular triangles and three hexagons, and one hexagon, which is divided into four compartments.
- This partition structure (referred to as the 24 partition B type multi-partition partition structure) is also used to efficiently and uniformly introduce raw materials into each compartment. preferable.
- the cross section of the multi-partition partition wall structure portion according to Claim 33 has a substantially regular hexagonal outline, and the substantially regular hexagonal outline is defined as a sectional shape dividing the inside of the substantially regular hexagonal outline.
- Divide the inside of the approximately regular hexagon into 6 approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by a straight line connecting the center of the square and each of the six vertices.
- the six-divided-regular triangular section chamber is divided into three substantially congruent triangles and three generally congruent rhombuses so as to be divided into six compartments.
- the rotating drum according to claim 34 is a rotating drum further including a small-divided partition wall structure portion having a single-layered compartment group on the side of the raw material in the multi-divided partition wall structure portion. That is, it is preferable to connect the small-divided partition wall structure portion in front of the multi-divided partition wall structure portion in order to introduce the raw materials efficiently and evenly into the compartments of each multi-divided partition wall structure portion.
- section of one compartment of the subdivided partition wall structure according to Claim 35 is configured to have substantially the same cross-sectional shape as the outline of the set of compartments of the uniform shape. This is preferable for efficiently and evenly introducing raw materials to each compartment.
- the subdivided partition wall structure portion according to claim 36 has a substantially regular hexagonal outline substantially the same as the multi-partition partition wall structure portion, and the inside of the substantially regular hexagonal outline is inside.
- a straight line connecting the center of the substantially regular hexagon and each of the six vertices, the interior of the substantially regular hexagon is divided into six generally regular triangular compartments (six-segmented-triangular section) It is preferable that the raw material is efficiently and evenly introduced into each of the compartments of the multi-partition partition structure.
- the rotating drum according to claim 37 is provided with a second subdivided partition wall structure portion and a second multi-partition partition wall structure portion on a side opposite to the raw material charging direction of the multi-partition partition wall structure portion.
- the rotary drum further includes one or more pairs in combination.
- the plate material constituting the divided partition wall structure portion according to claim 38 is a perforated metal plate.
- heating means for heating the rotary drum from the inside, surrounded by a group of compartments in a central region of the rotary kiln furnace provided with the multi-partition partition wall structure according to claim 39. It is possible to uniformly heat the raw materials introduced into the respective compartments of the multi-partition partition wall structure, and to provide a heating- It is preferable for improving the firing efficiency. Further, in order to provide the cavity inside the rotating drum, it is necessary to arrange a tubular member so as to penetrate at least the rotating drum and to make the tube wall a part of the partition wall of the multi-partition partition wall structure. Also good for communication!
- the heat treatment apparatus according to claim 40 of the present invention is configured to transfer the rotary kiln furnace to the rotary kiln furnace.
- a heat treatment apparatus further comprising an exhaust means around one end of the rotary kiln furnace on the raw material supply port side.
- a heating means for indirectly heating and baking the supplied raw material according to claim 41 is provided.
- the heating means according to claim 42 is provided, and the first heating means is a heating means for heating from the outside of the rotary drum constituting the rotary month of the rotary kiln furnace, and the second heating means.
- the means is a heating means for heating from the cavity inside the rotary drum inside the rotary drum, the raw material introduced divided into each compartment of the divided partition wall structure portion is uniformly heated and heated. It is preferable for improving the firing efficiency. Furthermore, it is preferable that the rotary kiln furnace according to claim 43 further comprises means for granulating the supplied raw material so that the diameter or length of the raw material is 2 to 30 mm. It is preferable that the raw material feed paper sludge supplied to the rotary kiln furnace according to claim 44.
- the raw materials are unloaded and distributed over the entire compartment to the central region and the outermost layer region of the rotating drum cross section.
- the stacking height of the raw material in the rotating drum is greatly reduced, and air (oxygen) is easily distributed in the raw material, thereby preventing incomplete combustion of the raw material. It is intended to obtain a high-quality, heat-treated product with high whiteness with little residual unburned carbon, and to be able to process many raw materials in a rotary kiln furnace.
- the method of indirectly heating and firing the rotary drum by the external heating method the direction opposite to the raw material traveling direction in the rotary drum
- the method of introducing air in the direction and the method of granulating and forming the raw material to be put into the rotating drum can be used to efficiently heat and sinter even raw materials containing organic components. It is intended to make it possible to obtain high-quality, high-quality heat-fired products.
- FIG. 26 is a conceptual diagram showing a stacked state of raw materials in an example in which a six-partitioned partition wall structure part 140 is simply used for the rotating drum.
- the raw material particles Sa, Sa- are deposited to some extent in each compartment, the force S existing in each compartment 130 ⁇ 1, 130 ⁇ 2, ⁇ ' ⁇ 130 ⁇ 6.
- the raw material particles Sa and Sa '" are unevenly distributed to some extent in each compartment.
- the reason why the raw material particles Sa and Sa'" are unevenly distributed as described above is that, as mentioned above, Since the raw material particles Sa, Sa '"are introduced in large quantities, the raw material particles Sa, Sa' ... are stacked.
- the partition wall structure 140 rotates in the direction of arrow C. Yes, it was found that if the stacking of raw material particles Sa and Sa '"increases to some extent, incomplete combustion occurs, there are many unburned carbon (soot), and only a heated and calcined product with low whiteness can be obtained. .
- FIG. 27 is a conceptual diagram showing a raw material lamination state in an example in which an 18-divided multi-divided partition wall structure portion 160 is simply used for the rotating drum.
- the compartments exist in two layers in the radial direction, such as the compartment group (OS) in the outermost layer region and the compartment chamber group (CS) in the central region.
- OS compartment group
- CS compartment chamber group
- FIG. 13 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 of the present invention.
- This heat treatment equipment is also called a continuous treatment type / indirect heating type (external heating type) rotary kiln.
- the raw material S containing organic components for example, papermaking sludge
- a drying device not shown
- the raw material is fed into the raw material supply port 2 (for example, supply hot bar) and supplied into the rotary drum 9 of the rotary kiln furnace 1 via the raw material introduction means 10 (for example, screw feeder) into the rotary drum 9. .
- the raw material S supplied into the rotary drum 9 is heated and baked after the organic components contained are burned while passing through the rotary drum 9 and the organic components are removed by combustion. It is taken out of the rotary kiln furnace 1 through the heating / fired material discharge port 8 installed at the end opposite to the raw material supply port 2 of the barrel 9 and, if necessary, heated / fired. It is sent to the next process for processing such as grinding.
- the raw material S containing an organic component is heated and baked to obtain a high-quality white and high-temperature heated and baked product, and then into the rotary drum 9 of the rotary kiln furnace 1.
- exhaust means 4 eg exhaust fan
- this exhaust means 4 forcibly exhausts the air in the rotary kiln furnace 1, thereby heating and firing processed material discharge port. Air is sucked into the rotary kiln furnace 1 from the air supply port 3 installed in the vicinity of 8 as indicated by an arrow A. In this way, the air flow indicated by the dashed arrow A always occurs from the air supply port 3 toward the exhaust means 4.
- This air flow becomes an air flow A for conveying unburned matter, which will be described later.
- This air amount is controlled by controlling the exhaust amount of the exhaust fan. This amount of air is excessive so that the inside of the rotary drum 9 of the rotary kiln furnace 1 is in an oxygen-rich atmosphere.
- the power is preferably controlled to be inhaled.
- the direction of air introduction is the direction indicated by the broken arrow A (opposite to the countercurrent direction), which is opposite to the direction indicated by the arrow B where the raw material is continuously supplied into the rotary drum 9 of the rotary kiln furnace 1 and proceeds. ) Is configured to introduce air from.
- the pressurized air is heated and the air installed in the vicinity of the calcined product discharge port 8 is used. Can be blown from supply port 3.
- the heating / calcined product discharge port is obtained by forcibly exhausting the air in the rotary drum 9 by the exhaust means 4 installed in the vicinity of the raw material supply port 2.
- a method is preferred in which air is sucked into the rotary moon 9 from the air supply port 3 installed in the vicinity of 8. This is because air has a low density and is easy to be compressed.
- the rotary cylinder 9 of the rotary kiln furnace 1 is long. Although it is difficult for air to reach the entire interior, the air inside the rotary drum 9 is forcibly exhausted by the exhaust means 4 provided on the opposite side of the air supply port 3 to make the pressure inside the rotary drum 9 negative.
- the air flow indicated by the arrow A from the supply port 3 to the exhaust means 4 direction is always generated in a stable manner, so that the air can be easily distributed to the raw material S in the rotary drum 9. It is.
- the rotary kiln furnace 1 is controlled by forced exhaustion by the exhaust means 4 described above.
- the amount of air supplied into the rotary drum 9 is an excess amount of oxygen relative to the amount of oxygen (theoretical oxygen amount) required to completely burn off the organic components contained in the raw material S.
- the amount of air supplied to the rotary drum 9 that is preferably set to the amount of air supplied (excess oxygen atmosphere) is 1. 1.! Magashi 1. A power of 5 to 5 times is more preferable, and 2 to 5 times is particularly preferable.
- the amount of air supplied into the rotary drum 9 is less than 1.1 times the amount of oxygen (theoretical air amount), the combustion of the organic components contained in the raw material S will be incomplete, and the heating / firing process This is not preferable because the whiteness of the object may be lowered.
- the amount of air exceeds 5 times the theoretical air volume, the temperature in the rotary drum 9 will be excessively cooled by the supplied air.
- an internal heating type heating-firing method may be used as a heating and firing method for the rotary kiln furnace 1, but as shown in FIG.
- the heat to be heated is mainly supplied from the indirect heating means 5 and is preferably an external heating type heating method in which the raw material S is indirectly heated (fired). This is because the introduction of a large amount of air is indispensable for burning raw materials containing organic components.
- the air inside the kiln furnace 1 oxygen
- the raw material S is heated from the outside of the rotating drum 9 by the indirect heating means 5 and air containing a large amount of oxygen is separately supplied from the air supply port 3 to the inside of the rotating drum 9.
- the raw material S it is preferable to make the raw material S stable and easy to burn.
- the temperature in the vicinity of the heating burner inevitably becomes high, and the temperature in the rotary drum 9 becomes uneven in temperature, causing heating.
- the temperature of the entire rotary cylinder 9 tends to be non-uniform, but in the case of external heating, indirect heating provided at various locations outside the rotary cylinder 9 This is preferable because the temperature inside the rotary drum 9 can be stably controlled using a plurality of burners of the means 5.
- the indirect heating means electrical heating is possible, but heating with a combustion gas of kerosene or heavy oil or heating with a gas burner is economically preferable.
- the indirect heating means described above includes combustion exhausted from existing incineration equipment. Exhaust gas can be used, and water vapor or the like can also be used.
- a circulation blower which is an example of the hot air circulation means 7 is used to perform a pre-process (drying) of the heat treatment apparatus provided with the rotary kiln furnace 1 of the present invention as shown in FIG.
- the combustion exhaust gas from the process, the primary firing step, etc.) can also be supplied as an indirect heating means.
- FIG. 14 is a configuration diagram for explaining the structure of the rotary kiln furnace 1 in the heat treatment apparatus shown in FIG. In the figure, description of components having the same reference numerals as those in FIG. 13 is omitted.
- the rotary drum 9a in the rotary kiln furnace 1 has a multi-partitioned partition structure 120 and its front side, that is, the raw material supply direction side of the multi-partition partition structure 120, in other words, the raw material supply of the rotary drum 9a.
- the multi-divided partition wall structure portion 120 and the subsequent parts are constituted by an outer cylindrical portion 8a having the same shape as the multi-divided partition wall structure portion 120.
- the multi-partition partition wall structure 120 of the present invention is basically divided into a plurality of compartments, and each compartment communicates from the raw material entrance side to the exit side of the multi-partition partition structure part 120.
- a compartment is provided so as to be multilayered in the radial direction (radial direction) of the rotary drum 9a.
- it is composed of two compartments, that is, a group of compartments of two regions, an outermost layer region and a central region.
- the multi-partition partition wall structure 120 has a compartment composed of multiple compartments, that is, two or more compartments in the radial direction (radial direction) of the rotation month 9a.
- a multi-layered compartment it is preferable to divide into 15 or more compartments in order to uniformly heat the raw materials.
- four examples of 18-partition type, 24-partition A-type, 24-part harm IJB type, and 36-partition type will be described below.
- FIG. 16 shows a / 3— / 3 ′ cross section in FIG. 14 when an 18-divided multi-partition partition structure part is used as the multi-partition partition structure part 120 in the rotary drum 9a shown in FIG. Figure 16
- FIG. 15 is a ⁇ -cross-sectional view when an example of a multi-partition partition structure part (18-partition type multi-partition partition structure part) provided with 18 compartments provided in the rotary drum 9a shown in FIG. a) is a sectional view showing each compartment, and (b) is a sectional view showing each compartment set.
- each of the compartments 150ol, 150 ⁇ 2 is a sectional view showing each compartment
- Each compartment to be made up of 150cl, 150c2---15006 power This is the partial force S18 split type multi-partition partition structure 160 that constitutes the partition walls and outer walls between these compartments.
- This 18-partitioned multi-partition partition structure 160 is shown in Fig. 16 (b).
- the cross section of the 18-divided multi-divided partition wall structure 160 has a substantially regular hexagonal outline, and the center of the substantially regular hexagon as a shape that divides the inside of the substantially regular hexagonal outline.
- the inside of the approximately regular hexagon is divided into six approximately regular triangular compartments 150 ⁇ , 150 ⁇ , * ⁇ ⁇ 150 ⁇ (six-segmented-triangle-shaped compartment) To be divided).
- the compartment set 150A is taken as an example by three straight lines that connect the approximate center of gravity of the roughly regular triangle of the compartment set 150A and the approximate midpoints of the three sides.
- the compartment set 150A is divided into three substantially congruent quadrangular compartments 150cl, 150ol, and 150o2.
- the example shown in this figure is an example of the most preferable structure portion as the 18-divided multi-divided partition wall structure portion. That is, the sectional areas of the compartments are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically, so this multi-partition partition structure is combined with a metal plate or the like. Easy to make.
- each compartment of the compartment group in the central region Is not a triangle, but includes such a case.
- the sectional areas of the compartments are substantially the same indicates that uniform heating and firing can be performed with little bias in the stacked and deposited state.
- the compartments in the outermost layer area o
- the partition wall structure is formed so that it is composed of two compartments, S) and the central compartment (CS), the sections shown in Fig. 16 (a) It is also possible to deform the cross section of the chamber into a polygon, a curve, a circle, or a combination thereof. However, the shape shown in FIG. 16 (a) is preferable for the uniform heating as described above and the ease of manufacturing the device. In the following, the power to explain the 24-split type and 36-split type is the same as the concept of the shape of each compartment, and the explanation is omitted.
- Fig. 17 shows the / 3— / 3 'cross section in Fig. 14 when a 24-divided A-type multi-divided wall structure is used as the multi-divided partition wall structure 120 in the rotary drum 9a shown in Fig. 14. It was.
- Fig. 17 is a 13-cross-sectional view when using an example of a multi-partition partition structure (24-part A-type multi-partition partition structure) with 24 compartments provided in the rotary drum 9a shown in Figure 14
- (A) is a cross-sectional view showing each compartment
- (b) is a cross-sectional view showing each compartment set.
- the 24-divided A-type multi-divided partition wall structure 180 has a substantially regular hexagonal cross section as shown in FIG. As a shape that divides the inside of the outline of the approximately regular hexagon, the interior of the approximately regular hexagon is divided into six approximately regular triangles by a straight line connecting the center of the approximately regular hexagon and the six vertices.
- ⁇ 170F (6 divisions-abbreviated as a regular triangular compartment). Furthermore, as shown in Fig. 17 (b), taking the compartment set 170A as an example, three straight lines connecting the approximate midpoints of the sides of the substantially regular triangle of the compartment set 170A, The compartment chamber set 170A is divided into four substantially congruent triangular compartments 170cl, 170ol, 170o2 and 170o3.
- At least the compartment (CS) of the central area One compartment, in this example 170cl, and a fixed shape consisting of at least two compartments that make up the outermost compartment (OS), in this example 170ol, 170o2, and 170o3,
- OS outermost compartment
- the example shown in this figure is an example of the most preferable structure part as a 24 division type multi-partition partition structure part.
- the sectional areas of the compartments are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically. Therefore, the multi-partition partition structure is combined with a metal plate or the like. Easy to manufacture [Explanation of 24-part B-type multi-partition partition structure]
- Fig. 18 shows the / 3— / 3 'cross section in Fig. 14 when a 24-divided B-type multi-divided wall structure is used as the multi-divided partition wall structure 120 in the rotary drum 9a shown in Fig. 14. It was.
- Fig. 18 shows / 3— / when using an example of a multi-partition partition structure part (24-part B-type multi-partition partition structure part) provided with 24 compartments provided in the rotary drum 9a shown in FIG. 3 'is a cross-sectional view, (a) is a cross-sectional view showing each compartment, (b) is a cross-sectional view showing each compartment set. As shown in Fig.
- each of the compartments that make up the compartment (OS) in the outermost layer area is divided into roughly regular triangular compartments 190 ⁇ 1, 190 ⁇ 2 ⁇ ' ⁇ 190 ⁇ 12, and hexagons. It consists of type compartments 190 ⁇ 13, 190 ⁇ 14 ⁇ 190 ⁇ 18, and respective compartments 190cl, 190c2---19006 that constitute the central compartment (CS).
- the part that constitutes the partition walls and outer walls between these compartments is the 24-part B-type multi-partition structure 200.
- the 24-divided B-type multi-divided partition wall structure portion 20 has a substantially hexagonal outer cross section as shown in FIG.
- the interior of the approximately regular hexagon is divided into six substantially regular triangular compartments by a straight line connecting the center of the approximately regular hexagon and each of the six vertices.
- 190 ⁇ ⁇ '190F (6 divisions-abbreviated as a regular triangular compartment).
- the substantially regular triangle of the compartment set 190A is divided into three substantially congruent triangles 190cl, 190ol, and 190o2.
- the example shown in this figure is an example of the most preferable structure part as a 24 division type multi-partition partition structure part. That is, the cross sections of the equilateral triangles and hexagonal compartments in each compartment set are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically! /, Therefore, it is easy when the multi-partition partition structure is manufactured by combining metal plates or the like.
- FIG. 19 shows a / 3— / 3 ′ cross section in FIG. 14 in the case where a 36-divided multi-partition partition structure part is used as the multi-partition partition structure part 120 in the rotary drum 9a shown in FIG.
- Fig. 19 shows a cross-sectional view of a 13-section using an example of a multi-partition partition structure with 36 compartments (36-part multi-partition structure) provided in the rotary drum 9a shown in Fig. 14
- (A) is a sectional view showing each compartment
- (b) is a sectional view showing each compartment set.
- each of the compartments that make up the compartment (OS) in the outermost layer area is divided into roughly regular triangular compartments 210ol, 210 ⁇ 2, ⁇ 210 ⁇ 6, and rhombus Section rooms 210 ⁇ 7, 210 ⁇ 8, ⁇ ' ⁇ 210 ⁇ 18, and each compartment that constitutes the section room group (MS) in the middle layer area is a substantially triangular type compartment 210ml, 210m2, "' 2100! 12
- Each of the compartments that make up the compartment (CS) in the central area is composed of diamond-shaped compartments 210cl, 210c2, ⁇ 21 ( ⁇ 6.
- the part constituting the partition walls and outer walls between these compartments is the 36-partitioned multi-partition partition structure part 22.
- This 36-partition type multi-partition partition structure part 220 is shown in FIG.
- the cross section of the 36-divided multi-divided partition wall structure 22 has a substantially regular hexagonal outline, and a shape that divides the interior of the substantially regular hexagonal outline.
- a straight line connecting the center of the approximately regular hexagon and the six vertices, the interior of the approximately regular hexagon is divided into six substantially regular triangular compartments 210 ⁇ , 210 ⁇ , Corner (It is abbreviated as a shape compartment).
- the substantially regular triangle of the compartment set 210A is divided into three substantially congruent triangles 210m1, 210m2, and 210ol. Divided into approximately six concentric rhombuses 210cl, 210o7, 210o8 and divided into 6 compartments. Are divided so as to occupy each.
- the example shown in the figure is an example of the most preferable structure as the 36-partition multi-partition partition structure.
- the sectional area of each of the regular triangular and rhombus compartments in each compartment set is substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically. This is easy when the multi-partition partition structure is manufactured by combining metal plates or the like.
- the substantially congruent rhomboid compartments constituting the outermost layer region (OS) and the center region (CS) are further divided into two substantially congruent positives.
- OS outermost layer region
- CS center region
- all compartments are roughly congruent and regular triangle-type compartments, and a 54-partition multi-partition partition structure with a total of 54 compartments (Fig. Multi-partitioned partition wall structure with 54 or more compartments as the total number of partitions by applying the concept of the 18-, 24-, and 36-partitions described above. It is also possible to do this.
- the heat transfer effect on the heating and firing process of the raw material is improved, and the uniform introduction of the raw material into each of the divided compartments is relatively easy.
- Stacking of raw materials in the cylinder 'Multi-divided partition wall structure that can greatly reduce the deposition state is the 18-segment type (160), 24-division A-type (180), 24-division B-type (200), and 36 4 types of multi-partition partition structure typical of the split type (220) are preferred.
- stacking of raw materials in a rotating cylinder with the largest number of divisions in the compartment The 36-divided multi-divided partition wall structure (220) is particularly preferable.
- the number of compartments dividing the inside of the kiln's rotary drum 9a (cross section / 3 ⁇ / 3 ′) is set to 15 or more, so that it was introduced into the rotary drum 9a. Since the raw material S can be widely distributed in the cross section of the rotary drum 9a, it is possible to sufficiently reduce the stacking of the raw material S and prevent the heated and fired product from being incompletely fired. Particularly preferred.
- FIG. 30 is a conceptual diagram of an example in which an introduction pipe is used as an example of the raw material introduction means 25 to the multi-partition partition structure 120 in the rotating drum. Besides the introduction pipe, A slider can be used as well.
- the raw material introduction means 26 into the compartments in the outermost layer region is also introduced into each compartment of the multi-partition partition structure 120 using an introduction pipe.
- the raw material introduction means 25 such as an independent screw feeder are connected to the raw material introduction means 25 in the central region and the raw material introduction means 26 in the outermost layer region, respectively.
- Raw material particles Sa, Sa-... can be introduced.
- the above-described (1) means for introducing the raw material into the compartment of the multi-partition partition structure is used.
- this (2) method of using the small partition wall structure part 110 in combination with the multi-partition wall structure part 120 does not require the introduction of special machinery for the introduction of raw materials. The principle is more preferable because it is very simple.
- This small-divided partition wall structure 110 is, as described above, "multi-divided partition having a compartment composed of multiple compartments, that is, two or more compartments in the radial direction (radial direction) of the rotating drum 9a. Unlike the “wall structure 120”, the “small partition wall structure 110 having a compartment composed of a single layer, that is, only one layer, in the radial direction (radial direction) of the rotating drum 9a”.
- the rotary cylinder 9a shown in FIG. 14 uses the 18-partitioned multi-partition structure 160 described above as the multi-partition structure 120 as the multi-partition structure 120, and the six-partition structure 110 as shown in FIG. 15 as the sub-partition structure 110.
- FIG. 15 shows an ⁇ -section in FIG. 14 when the mold with the multi-divided partition structure 140 is used.
- FIG. 15 is a cross-sectional view in the radial direction of an example of a six-partition small partition structure.
- the compartment is called the outermost layer region, it is composed of the single-layer compartments 130 ⁇ 1, 130 ⁇ 2 * ⁇ 130 ⁇ 6 that constitute the compartment (OS) of the area that can be called. It has been. As shown in FIG.
- the ⁇ — cross section of the subdivided partition wall structure 110 has a substantially regular hexagonal outline, and as a shape that divides the inside of the substantially regular hexagonal outline,
- the inside of the approximately regular hexagon is divided into six approximately regular triangular compartments 130 ⁇ , 130 ⁇ 2 ⁇ ' ⁇ 130 ⁇ 6 (abbreviated as 6 divisions-regular triangular compartment) by a straight line connecting the heart and each of the six apexes. It is divided into.
- the multi-partition partition structure 120 described above is provided in the rotary drum 9a of the kiln, and the multi-partition partition structure unit 110 is connected to the raw material input direction side of the multi-partition partition structure 120. Therefore, the reason why the raw material S is uniformly, naturally and automatically charged into each compartment of the multi-partition partition structure 120 is due to the following mechanism.
- the raw material particles Sa, Sa ' ⁇ ⁇ ⁇ are the compartments constituting the compartment (OS) of the outermost layer of the compartments of the 18-partition multi-partition partition structure 160 (in Fig. 16 (a), 150ol, 150o2, 1 50o3 ... 150ol8), each of the compartments constituting the compartment (CS) in the central region of the 18-partition multi-partition partition structure 160 (in FIG. 16 (a), 150cl, 150c2---1500 6) Since the raw material particles Sa, Sa '"are not introduced, the space in the cross section of the rotary cylinder 9a cannot be fully utilized.
- the inventors provided a multi-partition partition structure 120 in the rotary drum 9a of the kiln as shown in FIG.
- the raw material S is divided into sections by connecting the small partition wall structure 110 on the raw material input direction side. could be introduced evenly into the room.
- the state is shown in Figs. Fig. 28 shows the raw material particles Sa, Sa 'in each compartment of the 1 / 8-divided multi-divided partition structure 160 when the 6-divided sub-divided partition structure 140 and 18-divided multi-divided partition structure 160 are connected. It is a conceptual diagram showing a stacked state of. Fig.
- FIGS. 28 and 29 shows the raw material particles Sa and Sa in the compartments of the 36-partitioned multi-partition structure 220 when the 6-partition subpartition structure 140 and the 36-partition multipartition structure 220 are connected. It is a conceptual diagram which shows the lamination
- the compartments that make up the compartment (CS) in the central region of the multi-partition partition structure that had previously been difficult to introduce for example, 18 compartments
- the compartments 150cl, 150c2 ⁇ ' ⁇ 150.6, and 36 in the split-type multi-partition wall structure 220 in FIG. : 210c2 ⁇ ' ⁇ 210 ⁇ 6) and the compartments that make up the compartments (MS) in the middle layer area for example, in the 36-partitioned partition structure 220, in Fig.
- the raw material particles Sa, Sa '*' introduced into the 6-split-regular triangular compartment, 130ol as an example, are rotated by one rotation in the rotation month 9a.
- the bottom of the compartment 130ol or the bottom base angle When the kiln's rotary drum 9a makes one rotation, the rotary drum 9a is heated in the direction of 7 ' It moves little by little, but at that time, the 18-segment type (160), 24-segment A type (180), 24-segment B type (200), And 36 minutes
- the raw material particles Sa, Sa move in the compartments 130 ⁇ 1, 130 ⁇ 2, ⁇ 130 ⁇ 6 of the six-partition sub-partition structure 14 As shown in Figs.
- the 18-split type (160), 24-split A type (180), 24-split B type (200 ), And the 36-partition (220) multi-partition partition structure section are uniformly and naturally introduced into the outermost layer region, the intermediate layer region, and the center region of the multi-partition partition structure portion.
- the raw material particles Sa, Sa ',' are transported to all compartments including the outermost layer region, the middle layer region, and the central region, and are evenly distributed.
- the raw material S is transported from each compartment of the small partition structure 110 to each compartment of the multi-partition structure 120 and distributed uniformly. At least one of the 110 compartments that constitute the compartment (CS) in the central region of the multi-partition partition structure 120 and at least two compartments (OS) that constitute the outermost compartment (OS) Most preferably, it has the same cross section as a set of compartments of a certain shape constituted by compartments.
- FIGS. 20 and 21 show examples of structures in which the above-described small-divided partition wall structure portion 110 and multi-partition partition wall structure portion 120 are combined.
- FIG. 20 is a partial sectional view showing an example of the structure of the rotary drum 9 in the rotary kiln furnace 1 shown in FIG. 13, and shows an example in which a plurality of multi-partition partition wall structure portions 120 are provided in the rotary drum 9b. As shown in FIG. 20, a plurality of divided partition wall structures 120 can be installed in the kiln's rotary drum 9b as required.
- Fig. 20 shows an example in which multi-partitioned partition wall structure 120 is provided at three locations in the front, middle and rear of the rotary drum.)
- FIG. 21 shows the structure of rotary drum 9 in rotary kiln furnace 1 shown in Fig. 13. It is a partial sectional view showing an example, and shows an example in which the multi-partitioned partition wall structure portion 120 is provided in the most area in the rotating month 9c.
- the small partition wall structure 110 is provided in the vicinity of the raw material supply port 2 of the rotary month 9c, it continues until the heating / fired product discharge port 8 of the rotary barrel 9c.
- the multi-partition partition structure 120 in combination, almost the entire region of the rotation month 9c can be made into the multi-partition partition structure.
- the multi-partition partition structure 120 connected to the section 110 is a plurality of types of multi-partition partition structures.
- One type of multi-partition partition structure from 110 structures for example, 18-part type (160), 24-part type A (180), 24-part type B (200), and 36-part type (220) Any one kind of force may be selected and used.
- two or more types of multi-partition partition structures for example, 18-partition type (160 ), 24 split A type (180), 24 split B type (200), 36 split type (220) or more
- the length L1 of the small-divided partition wall structure portion 110 in the rotational barrel axis length direction of the present invention is such that the small-divided partition wall structure portion 110 stabilizes the raw material S. Since the raw material S needs to be stably and uniformly introduced into the multi-partition partition structure 120 that rotates while being held and is connected to the sub-partition structure 110 that follows the small-partition partition structure 110, 0.; 0 m is preferable, and 0.3 to 3. Om is particularly preferable.
- the raw material S into which the small partition wall structure part 110 is charged is held sufficiently stably and uniformly. It is not preferable because it is difficult to stir. If the length L1 of the small partition wall structure 110 in the longitudinal direction of the rotary cylinder exceeds 5. Om, the input raw materials are sufficiently stable in each compartment provided in the small partition wall structure 110. It is not preferable because it is held uniformly and wasted.
- the length L2 of the multi-partition partition wall structure portion 120 of the present invention in the rotational barrel axis length direction is the time required for heating and firing the raw material S
- the thickness is preferably 0.3 to 50 m, and particularly preferably 0.5 to 30 m.
- the length L2 of the multi-partition partition wall structure portion 120 in the rotational moon coaxial length direction is less than 0.3 m, it is preferable because it is difficult to secure the heating and firing time of the raw material S in the multi-partition partition wall structure portion 120. Absent.
- the length L2 of the multi-partition partition wall structure portion 120 in the length direction of the rotary cylinder exceeds 50 m. If this length is sufficient, the input raw material S can be sufficiently heated and fired in the section of the multi-partition partition structure 120, so it is useless to make it longer. It is because it becomes.
- the size L3 of one side that constitutes the compartment provided in the bulkhead structure 120 is a substantially congruent triangular shape, which is determined based on the size (diameter) of the rotation month 9a, 9b, 9c of the kiln.
- the size L3 of each side that basically constitutes each compartment is determined by the rotating cylinders 9a, 9b, although it is determined depending on the size (diameter) of 9c, it is preferable that the size L3 of each side constituting each compartment of the multi-partition partition structure 120 is 15 mm or more. It is particularly preferable to set it to 50 mm or more.
- each compartment of the multi-partition partition structure 120 When the size L3 of each side constituting each compartment of the multi-partition partition structure 120 is less than 15 mm, when the raw material S is granulated, each compartment of the multi-partition partition structure 120 It is not preferable because the raw material S is difficult to be introduced into the wall and the size of the divided compartments is too small, making it difficult to process and manufacture the multi-partition partition wall structure 120.
- the size L3 of one side constituting the compartment provided in the multi-partition partition wall structure 120 in the present invention is 2. Om or less, particularly 1.5m or less. Preferred.
- the size L3 of each side constituting each compartment of the multi-partition partition structure 120 exceeds 2.
- the kiln's rotating drum including the multi-partition partition structure 120 composed of each compartment 9a , 9b, 9c oversized by 8 mm, and the stacking of raw materials put into the rotary cylinders 9a, 9b, 9 c is sufficient.
- Om or less (L3) is sufficient This is because it can be alleviated, and more than that is useless.
- the rotary cylinder of the kiln has 15 or more compartments inside thereof, and the compartments (OS) in the outermost layer region in the radial direction of the rotary drum.
- 18-divided type 160
- 24-divided A-type 180
- 24-divided B-type 200
- 36-divided type 220
- FIG. 22 shows the multi-partition partition structure 120.
- FIG. 22 (a) is an exploded sectional view
- FIG. 22 (b) is after joining. Each cross-sectional view is shown.
- each compartment that constitutes the multi-partition partition structure for example, the outermost compartment compartments 150 ⁇ 1, 150 ⁇ 2 ⁇ ' ⁇ 150 ⁇ 12, and the central compartment compartment 150cl) , 150c2---15006), and then forming the desired multi-partition partition structure 120 (in this example, the 18-partition partition structure 160) by joining the compartments.
- I showed that I can do it.
- FIG. 23 shows an example of a method for forming the multi-partition partition structure by dividing the compartments by putting partitions inside the compartments.
- Fig. 23 shows an example of forming the multi-partitioned partition wall structure 120 by partitioning inside the compartment assembly and dividing it into compartments.
- Fig. 23 (a) is a cross-sectional view during assembly, and Fig. 23 (b) shows a sectional view after assembly.
- the basic structure is the 6-divided subdivided partition wall structure 14, and the multi-partition for each of the compartments 130 ⁇ 1, 130 ⁇ 2, ⁇ 130 ⁇ 6 of the 6-divided subdivided partition structure 14
- a partition for example, 18-divided partition 23
- a desired multi-divided partition wall structure 120 as an example, 18-divided multi-partition partition structure 160
- the shape is the same as the cross-sectional shape of the outline of the small partition structure 110 and the multi-partition structure 120.
- the cross-sectional shape of the outer shell is a substantially regular hexagonal six-partitioned subdivided partition wall structure 140, and the cross-sectional shape of the outer shell of the multi-partition partition wall structure 120 is also shown in FIGS.
- the cross-sectional shape of the outer shell is an approximately regular hexagonal 18-segment type (160), 24-divided A-type (180), 24-divided B-type (200), and 36-divided type (220 )
- the cross-sectional shape of the outer shell of the rotary cylinders 9a, 9b, 9c is also the small-partition partition structure part 110, and the multi-partition partition structure part 120. It is particularly preferred to Guo sectional shape as well as substantially regular hexagonal shape. This is a force in which the outer cross-sectional shape of the small partition wall structure part 110 and the multi-partition wall structure part 120 has a substantially regular hexagonal shape.
- the cross-sectional shapes of the rotary cylinders 9a, 9b and 9c are also the small partition wall structure part. 110 and multi-partition partition structure 120
- the rotating cylinders 9a, 9b, 9c and the subdivided partition wall structure part 110 are connected to the rotating cylinders 9, 9a, 9b and the subdivided partition wall structure part 110, and the multi-partition partition wall structure part 120.
- the multi-partitioned partition wall structure 120 without any gaps, so that all the raw materials S introduced into the rotary drums 9a, 9b, 9c can be connected through the small-partitioned partition structure 110. This is because the partition wall structure 120 can be introduced into each compartment.
- FIG. 31 is a configuration diagram of another example of a heat treatment apparatus including the rotary kiln furnace 1 of the present invention basically having the same configuration as Fig. 13 described above, and mainly includes components relating to the heating means. It is a block diagram to explain.
- Fig. 32 shows a cross section of the rotary drum of the same rotary kiln furnace. This example shows an 18-partitioned multi-partition partition structure (160).
- the configuration of FIG. 13 described above is partly changed to change the structure of the partition wall in the central region of the rotary drum 9 near the center of rotation of the divided chamber group, and a part of the partition wall in the center portion is changed.
- the tubular member 27 is constituted by the tube wall.
- the tubular member 27 is indicated by a solid line in FIG. 31 for easy understanding.
- the inside of the tubular member 27 constitutes a rotary cylinder cavity V.
- a heat treatment apparatus provided with two types of heating means, the first heating means 5a and the second heating means 5b, in the rotary kiln furnace 1 is provided. It can be configured.
- the tubular member 27 is disposed so as to penetrate at least the rotating drum, and the tube wall is made a part of the partition wall of the multi-partition partition wall structure. Is also preferable in terms of heat transfer from the second heating means to the compartments in the central region.
- the multi-partition partition wall structure portion having the outermost layer region compartment (OS) and the central region compartment (CS) is provided.
- OS outermost layer region compartment
- CS central region compartment
- 120 is provided as the rotary drum 9 in the rotary kiln furnace 1 (rotary drum 9b in FIG. 33)
- it is required to precisely control the heating and firing temperature for the raw material introduced into each compartment of the multi-partition partition structure 120 it is provided on both the outer and inner sides of the rotary drum 9 respectively.
- the heating means 5a and 5b can control the heating and firing temperature uniformly and accurately, which is a more preferable embodiment.
- the indirect (outside) heating means 5a as the first heating means described above, which is indirectly heated from the outside of the rotating drum 9, and the rotating drum 9 Inside It is very preferable to use both the indirect (inner side) heating means 5b as the second heating means to heat both the outer and inner forces of the rotary drum 9 together.
- FIG. 33 shows a configuration diagram of another example in which the tubular member 27 for housing the heating means described above is provided in the rotary drum 9.
- the second heating means 5b is accommodated in a configuration using a combination of a plurality of sets of the small partition wall structure portion 110 and the multiple partition wall structure portion 120.
- FIG. 6 is a configuration diagram showing an example in which a tubular member 27 is applied for this purpose.
- description of components having the same reference numerals as those in FIG. 13 is omitted.
- the heating means can be provided in the tube of the tubular member 27, it is needless to say that the same effect as the example shown in FIG. 31 described above can be expected.
- the indirect (inner) heating means 5b provided in the tubular member 27, as in the indirect (outer) heating means 5a electric heating, heating with a combustion gas of kerosene or heavy oil is performed.
- various heating means such as heating with combustion gas discharged from existing incineration facilities and heating with water vapor can be used.
- FIG. 31 by using a circulating blower that is an example of the hot air circulating means 7, the pre-process (drying process) of the heat treatment apparatus provided with the rotary kiln furnace 1 of the present invention as shown in FIG. Combustion exhaust gas from the primary firing step etc.) can also be supplied as a heating means.
- each compartment of the multi-partition partition wall structure 120 for example, the compartments 150 ⁇ 1, 150 ⁇ 2 ⁇ 150 ⁇ 12 in the outermost region of FIG. 32, and the compartments (150cl, 1
- each compartment of the multi-partition partition wall structure 120 for example, the compartments 150 ⁇ 1, 150 ⁇ 2 ⁇ 150 ⁇ 12 in the outermost region of FIG. 32, and the compartments (150cl, 1
- it is necessary to introduce a large amount of air into each compartment so air is introduced into the front and rear parts of the rotary drum 9. It is preferable that equipment, piping, etc. that obstruct the passage be placed as little as possible.
- the exhaust side of the rotary drum 9 that is, the side provided with the exhaust means 4, les, les, and in other words, the raw material supply port 2 side of the rotary drum 9 and the vicinity of the rotary drum 9 originally cannot be a raw material input means such as a screw feeder. It is provided for avoidance. It is preferable to avoid further placement of such obstacles as much as possible. In this regard, when the electric heating means described above is used, the electricity supply path is relatively small and is not such an obstacle, which is preferable.
- a heating means that uses a heating medium such as combustion exhaust gas.
- the heating medium enters the rotary month inner cavity V of the tubular member 27 from the entrance, passes through the rotation month inner cavity V, transfers heat to the compartment in the central region, and exits from the outlet. It is necessary to take the configuration. If such a structure is simply considered, a structure having a heating medium supply pipe and a heating medium discharge pipe communicating with the cavity V in the rotating drum is obtained. That is, as the tubular member 27, a heating medium pipe penetrating from the intake side to the tubular member 27 exhaust side is provided so as to penetrate the central axis direction of the rotary kiln furnace.
- the heating medium pipe has a double structure. That is, a concentric double pipe structure or a simple parallel double pipe structure is connected to the cavity V in the rotating cylinder, and the heating medium supply pipe opens in the cavity V, particularly near the rotating cylinder 9. Further, there is a structure in which the heating medium is discharged and the heat-radiated medium is sucked into the heating medium discharge pipe opened at the center in the cavity.
- a so-called maze-like piping structure for efficient indirect heating, a fin structure for improving heat conduction, and the like can be appropriately combined and arranged in the hollow portion of the rotating drum.
- the tubular member 27 has been described as an example of a cylindrical shape and a hexagonal column shape.
- the cross-sectional shape of the tubular member 27 in the present invention is not particularly limited, A tubular member having a cross-sectional shape of any shape such as a substantially elliptical shape, a substantially polygonal shape that is substantially triangular or more, or a substantially star shape can be selected and used.
- the tubular member 27 has a size (diameter) of 0.03 m or more, and a rotary kiln furnace 1
- the diameter of the rotating cylinder 9 is preferably 0.34 times or less, and more preferably 0.1 lm or more and less than 0.1 times the diameter of the rotating cylinder.
- the indirect (inner side) heating means 5b is provided inside the tubular member 27, if the diameter of the tubular member 27 is less than 0.03 m, the heating means 5b is provided inside the tubular member 27.
- the diameter of the tubular member 27 exceeds 0.34 times the diameter of the rotary drum 9, it is divided into multiple sections so that the cross section of the rotary drum 9 is almost uniform.
- a part of the cross section of the compartment in the central region for example, the compartments 150cl and 150c2---15006 shown in FIG.
- the material of the rotary drum 9 provided in the rotary kiln furnace 1 in the present invention that is, the material constituting the other parts such as the small partition wall structure part 110, the multiple partition wall structure part 120, the tubular member 27, etc. It is necessary to be made of a material that can withstand the heating and baking treatment, and a material that can withstand a temperature of about 1000 ° C. as the temperature during heating and baking is particularly preferable. In addition, when raw materials containing organic components are heated and baked, acidic and alkaline components may be generated. Therefore, it is highly preferred to be made of a material that can withstand acidic and alkaline properties. Steel materials with heat resistance and corrosion resistance such as
- the steel plate material constituting the small partition wall structure portion 110 and the multi-partition wall structure portion 120 in the present invention may be formed of the above-described metal plate such as stainless steel, but is further punched. It is preferable to comprise a perforated metal plate such as metal. This is because the perforated metal plate is used for the raw material S introduced into the compartments of the small partition wall structure part 110 and the multi-partition wall structure part 120 rather than the metal plate. Air (oxygen) is delivered to This is because it becomes easy to make it. There are various shapes and sizes of holes in this perforated metal plate
- the raw material S introduced into the rotary drum 9 of the rotary kiln furnace 1 reduces the stacking of the raw material S in the rotary drum 9 and improves the efficiency of contact with air (oxygen). For this reason, it is preferable to put into the rotary cylinder 9 after the granulation treatment (see FIG. 24).
- a compression molding machine such as a briquetting machine, a roller compactor, a granulating machine such as a disk pelleter, or the like is used as a granulating and molding method.
- the above-described granulation and molding method can be appropriately selected and used.
- the shape of the raw material S to be put into the kiln's rotary drum 9 is not particularly limited, and can be cylindrical, spherical, elliptical or triangular as long as it is within the size (diameter or length) range described below. It can be granulated and formed into other polygonal shapes, various particle shapes such as force, bowl shape, and uneven shape.
- the size of the raw material particles Sa when granulated as described above is preferably a diameter or a length force of 2 to 30 mm, a force S, particularly preferably 5 to 15 mm. If the diameter or length of the raw material particles Sa when granulated is less than 2 mm, the raw material particles Sa, Sa in the rotary chamber 9 of the kiln or the compartment of the multi-partition partition structure 120 are used. -Stacking of raw material particles Sa, Sa- ⁇ ⁇ ⁇ Air (oxygen) does not spread in the layers, and the combustion of organic components contained in the raw material particles Sa becomes incomplete, heating.
- Air oxygen
- the size of the raw material particles Sa is too large and is placed in the center of the raw material particles Sa.
- the raw material particle Sa when air (oxygen) is difficult to reach Incomplete combustion may remain in the core, which may reduce the quality of the heated and baked product, and the raw material particles Sa travel through the rotary drum 9 and the compartment of the multi-partition partition structure 120.
- the raw material particles Sa since the raw material particles Sa are too large, they may interfere with each other, and the raw material particles Sa may not be able to smoothly move through the compartments of the rotary drum 9 and the multi-partition partition structure 120, which is not preferable.
- the rotary kiln furnace 1 is a power that can be used for heating and baking treatment of various raw materials regardless of the components such as organic components and inorganic components. It is particularly preferable to treat paper sludge discharged from a paper mill as such a raw material, which is particularly preferred to be used in the process of removing the organic component by burning and recovering the remaining white inorganic component. .
- the heat treatment apparatus provided with the rotary kiln furnace 1 according to the present invention may be used alone as a heating and firing process apparatus to obtain a heated and fired processed product.
- a heat and calcined product may be obtained by performing a plurality of stages of heating and firing such as primary and secondary.
- FIG. 24 is an example of a flow sheet in which various treatment steps are added to the front and rear stages of the heat treatment apparatus of the present invention.
- the secondary firing process is shown.
- further treatments for suspending, carbonating, dehydrating, dispersing, and pulverizing may be added as appropriate to obtain regenerated inorganic particles.
- the outermost layer compartment chamber (OC) and the central compartment chamber (CS) in the radial direction of the rotor barrel.
- more raw materials can be efficiently heated and fired even in a rotary kiln furnace with the same outer diameter. Can do.
- (CS) At least one multi-partition partition structure part 120 provided with a plurality of compartments composed of a group of compartments of at least two layers is provided, and further on the raw material supply port 2 side of the multi-partition partition structure part 120 By connecting the small partition wall structure part 110 having a single-layered partition room group with less than 15 compartments in the rotation month 9, a raw material S is provided in each compartment of the multi-partition wall structure part 120.
- the raw material particles Sa, Sa ' ⁇ that move while rotating in the small partition wall structure 1 10 by the rotation of the rotating drum 9 without introducing special equipment.
- the raw material is uniformly, naturally and automatically in each compartment of the multi-partition partition structure 120 following the sub-partition structure 110 By introducing the raw material particles Sa, Sa ′..., The raw material particles Sa, Sa ′.
- a tubular member 27 for housing the heating means is provided in the center of the rotary drum 9, and the second heating means is indirectly (inner side) inside the rotary cylinder cavity V of the tubular member 27. )
- the heating means 5b By providing the heating means 5b, the heat transfer efficiency can be improved and the heating and firing efficiency of the raw materials can be improved.
- the inventions according to claims 45 to 61 according to other embodiments of the present invention include a rotary moon inside and heat the raw material charged into the rotary drum.
- the present invention relates to a continuous or batch rotary kiln furnace to be fired and a heat treatment apparatus equipped with the kiln furnace.
- sludge in particular, papermaking sludge having suitability as a pigment for coated paper or a filler for papermaking is preferably used.
- Patent Document 2 In the above-described rotary kiln furnace, as the prior art, Patent Document 2 described above;
- FIG. 34 is a cross-sectional view of a rotary drum 9 composed of a single substantially cylindrical tube portion as an example of a rotary drum of a rotary kiln conventionally used.
- FIG. 34 is a cross-sectional view of a rotary drum 9 composed of a single substantially cylindrical tube portion as an example of a rotary drum of a rotary kiln conventionally used.
- FIG. 35 (a) shows an example of a conventionally used rotary kiln furnace in which a plurality of substantially cylindrical pipe portions 40, 40... Are bundled by a pipe portion fixing member 30a.
- FIG. 35 (b) is a cross-sectional view of the tube bundle, and FIG. 35 (b) shows the case where the particulate raw materials S and S ′ '' are introduced into the tubes 40, 40 of the tube bundle.
- 40 is a conceptual diagram showing a state of being stacked and deposited on the lower bottom portion of 40.
- Papermaking sludge is an example of a material that is suitably used as a raw material containing such an organic component.
- Waste water generated during the washing process in the pulping process (2) Removal of contaminants from the waste paper processing process, Wastewater generated in the deinking flotation process and washing process, (3) Wastewater that flowed out through papermaking wires as raw material loss during paper manufacture, and (4) Wastewater from biological wastewater treatment process
- the power that can be used for wastewater The sludge recovery process for these wastewaters is a combination of processes such as agglomeration, precipitation, concentration and dehydration, and the solids contained in each wastewater are recovered as sludge.
- paper sludge contains various components derived from paper mill wastewater.For example, lignin and fine fibers washed out in the pulping process, fiber such as pulp derived from raw material loss, starch and synthetic components. This includes organic substances mainly composed of synthetic adhesives, inorganic substances mainly composed of pigments and internal additives for coated paper, and printing inks derived from waste paper.
- the rotary kiln furnace according to claim 45 of the present invention is a rotary kiln furnace provided with a rotary drum inside and firing raw material charged from one side, wherein the rotary drum has the raw material inside thereof.
- the plurality of tube portions are formed of a plurality of tube portions that pass therethrough, and the plurality of tube portions form a tube bundle that forms the outer peripheral portion of the rotating drum, and at the same time contain heating means for heating the rotating drum from the inside.
- It is a rotary kiln furnace which forms a hollow part in a rotary drum. In this case, it is preferable in terms of processing efficiency that the pipe parts come into direct or indirect contact with each other! /.
- the rotary kiln furnace includes a rotating drum inside and fires the raw material charged from one side according to claim 46, wherein the rotating drum has a plurality of pipe member forces through which the raw material passes.
- the tube portion has at least one partition wall structure portion for multi-division for dividing the inside thereof into a plurality of compartments by a partition wall, and the plurality of tube portions further include the rotating cylinder. It is the rotary kiln furnace which forms the tube part bundle
- the rotating cylinder according to Claim 47 is configured by a plurality of pipe parts through which raw materials pass, and the plurality of pipe parts are in direct or indirect contact with each other to perform the rotation.
- the tube section force in a rotary kiln furnace that forms a tube bundle that forms the outer periphery of the cylinder and at the same time forms a cavity in the rotary cylinder to accommodate heating means for heating the rotary cylinder from the inside, Having at least one multi-partition partition structure that divides the interior into multiple compartments by partition walls greatly reduces the stacking of the introduced raw materials and reduces the heating and firing efficiency of the raw materials. It is preferable for improving the ratio.
- the multi-partition partition structure according to claim 48 has a plurality of partition walls radially provided from the substantially center of the cross section of the tube portion in a contour direction. It is preferable that the inside of the pipe part is divided into a plurality of compartments by walls and that the sectional shapes of the compartments are substantially the same in order to equally introduce the raw materials into the compartments.
- the inner wall of the pipe portion according to claim 49 and / or the partition wall of the multi-partition partition wall structure portion is provided with a lifting plate (lifter 1) of the raw material introduced into the pipe portion. It is preferable for improving the stirring efficiency.
- the cross-sectional shape of the tube portion according to claim 50 is any one of a substantially circular shape, a substantially oval shape, or a substantially polygonal shape, so that the tube portion and the tube portion bundle are stably provided. It is preferable in constructing.
- the outer diameter of the pipe portion according to claim 51 is 1/8 to 1/2 of the cross-sectional outer diameter of the pipe portion bundle. This is preferable in order to achieve both heat and firing treatment amounts.
- the pipe portion according to claim 52 is for multi-division for forming a multi-division partition wall structure non-portion, that is, a multi-division partition wall structure portion on the input direction side of the raw material of the multi-division partition wall structure portion. It is preferable to have the multi-partition partition structure part so that there is a portion where no partition or the like is inserted, in order to uniformly introduce the raw material into each compartment provided in the multi-partition partition structure part.
- the pipe portion according to claim 53 has a second multi-divided partition wall structure portion non-part and a second multi-divided portion on the side opposite to the input direction of the raw material of the multi-divided partition wall structure portion.
- the multi-partition partition structure is a pipe part further including one or more sets of partition wall structure parts for use. This is preferable for efficiently introducing the raw material into each compartment of the section and improving the heating and firing efficiency of the raw material.
- the multi-partition partition structure according to claim 54 is formed by inserting a driven rotary multi-partition partition member into the pipe part.
- the driven rotary multi-dividing partition member according to claim 55 has a structure including a damming member in the vicinity of the front end portion of the partition plate portion.
- the plate material constituting the multi-partition partition wall structure portion according to claim 56 is a perforated metal plate.
- the heat treatment apparatus according to Claim 57 of the present invention further includes an exhaust means in the vicinity of one end of the rotary kiln furnace on the raw material supply port side as air introduction means to the rotary kiln furnace. It is preferable that it is a heat treatment apparatus.
- the heat treatment apparatus according to Claim 58 of the present invention preferably includes a heating means for indirectly heating and baking the raw material supplied to the rotating drum.
- the heating means according to claim 59 is provided, and the first heating means is a heating means for heating from the outside of the bundle of tube parts constituting the rotary drum of the rotary kiln furnace.
- the second heating means is a heating means for heating from the cavity inside the rotating drum inside the bundle of tube parts, and the raw material divided and introduced into each compartment of the multi-partition partition structure is uniformly distributed. It is preferable to improve the heating and firing efficiency.
- the raw material supplied to the rotary kiln furnace according to claim 60 is further provided with means for granulating and forming the raw material with a diameter or length of 2 to 30 mm.
- the raw material force S supplied to the rotary kiln furnace according to claim 61 and papermaking sludge are preferable.
- the pipe part constituting the above-described pipe part bundle is provided with a multi-divided partition wall structure part constituted by a plurality of compartments, and a plurality of raw materials introduced by dividing into a plurality of pipe parts are further provided.
- a multi-divided partition wall structure part constituted by a plurality of compartments
- a plurality of raw materials introduced by dividing into a plurality of pipe parts are further provided.
- the stacking height of the raw materials introduced into the rotating drum is greatly reduced.
- air (oxygen) easy to spread in the raw material, incomplete combustion of the raw material is prevented, and a high-quality, high-heated and fired fired product with little residual unburned carbon is obtained.
- many raw materials can be processed by a heat treatment apparatus equipped with a rotary kiln furnace.
- the method of improving the heating and firing efficiency of raw materials increases the heat transfer area in the conventional method in which a plurality of cylindrical tube portions are provided in a rotating drum to form a tube portion bundle.
- a plurality of cylindrical tube portions are provided in a rotating drum to form a tube portion bundle.
- it is possible to reduce the stacking of raw materials to some extent it is difficult to heat uniformly only by heating from the outside of the tube bundle, especially when the number of tubes constituting the tube bundle is increased. Further, it has been found that it is difficult to uniformly heat each tube portion.
- the conventional method in which a plurality of pipe portions are provided in the rotating drum to form a bundle of pipe portions increases the heat transfer area and stacks the raw materials.
- FIG. 35 (b) is a cross-sectional view of a tube section bundle in which the diameter of the tube section is smaller than that of FIG. 35 and 21 pipe sections more than FIG. 35 are bundled by the pipe section fixing member 30b.
- This is a conceptual diagram showing a state in which particulate raw materials S and S 'are put into the tube sections 40 and 40 of the bundle, and are stacked and deposited on the bottom bottom of the tube sections 40 and 40. is there.
- the raw materials S, S ... are put into each pipe 40, 40 ..., but the raw materials S, S ...
- This tube bundle is configured as a tubular tube bundle as a whole by a plurality of substantially cylindrical tubes.
- the plurality of pipe parts are in direct or indirect contact with each other to form a bundle of pipe parts forming the outer periphery of the rotating drum, and at the same time, within the rotating month for accommodating heating means for heating the rotating drum from the inside. It has a tube bundle structure that forms a cavity. Examples are shown in FIGS. 37, 38, and 39.
- FIG. 38 shows that the cavity V in the rotating cylinder is formed at the approximate center of the tube bundle.
- the pipe parts are in direct contact with each other to form a pipe part bundle part. Ask such efficiency If it is not the subject, it is possible to adopt a structure in which the pipe part is in indirect contact with the pipe part or a structure in which only the pipe part fixing member is in contact.
- FIG. 38 (a) shows a cut at ⁇ 1 — a 1 ′ of the tube portion bundle portion that does not include the tube portion fixing members 30cl, 30c2,...
- FIG. 39 (a) is a diagram of the tube bundle 300 including the tube fixing members 30c1, 30c2,...
- FIG. 39 (b) is a cross-sectional view of the cut surface 2
- FIG. 39 (b) shows a state in which the raw materials S and S. ”are put into the pipe portions 40, 40...
- FIG. 39 (b) shows a state in which the raw materials S and S. ”are put into the pipe portions 40, 40...
- This tube bundle is configured as a tubular tube bundle as a whole by a plurality of substantially columnar tubes.
- Each substantially cylindrical tube portion has at least one multi-divided partition wall structure for dividing the inside thereof into a plurality of compartments by partition walls, and the plurality of substantially cylindrical tube portions are It is configured to form a tube bundle that forms an outer peripheral portion of the rotating drum by directly or indirectly contacting each other. Examples thereof are shown in FIG. 40, FIG. 41, and FIG. FIG. 40 shows a combination of the pipe part 40 whose interior is divided by the partition wall 50 shown in FIG.
- FIG. 40C is a cross-sectional view of the cross-sectional view of the cut surface 3 at ⁇ 3 - ⁇ 3 ′ of the tube bundle member that does not include the tube fixing members 30cl, 30c2,.
- FIG. 41 (b) is a conceptual diagram showing a state in which raw materials S and S ′ ′′ are injected into the tube portions 40, 40... On the ⁇ 3- ⁇ 3 ′ cut surface, and are stacked and deposited.
- FIG. 42 (a) is a cross-sectional view of the tube bundle bundle portion including the tube fixing members 30cl, 30c2,...
- FIG. 42 (b) is a cross-sectional view of the cut surface in FIG. 42
- FIG. 42 (b) shows that the raw materials S and S '''are placed in the tube portions 40, 40. It is a conceptual diagram showing the state.
- the inside of the plurality of tube portions 40, 40... Constituting the tube bundle 300 as the rotating drum of the rotary kiln furnace is defined by the partition wall 50.
- the partition wall 50 By using a multi-partition partition structure divided into a plurality of compartments 60, 60 ..., the raw materials S, S- injected into each pipe 40, 40 ... Compared with the pipe bundle 300, which is composed of the pipe parts 40, 40, which are dispersed in the above and illustrated in FIG. 38 and FIG. Stacking of raw material S, 3— in chambers 60, 60 ... can significantly reduce deposition and improve heating and firing efficiency.
- the inside of the pipe sections 40, 40 ⁇ constituting the pipe bundle 300 as a rotary drum of the rotary kiln furnace described above is divided into a plurality of compartments 60, 60 ⁇ by the partition wall 50.
- the stacking-deposition of raw materials S, S '..., put into the pipes 40, 40 ... can be greatly reduced, but on the other hand
- a raw material input mechanism with a complicated structure different from the above is required.
- FIG. 38 is a cross-sectional view of the tube bundle 300 composed of the tube portions that are not divided into the tube portions 40, 40... FIG.
- the pipe part 40, 40... Is divided into a plurality of compartments 60, 60. 2 is a cross-sectional view of a tube bundle 300 composed of
- the multi-partition partition wall structure portion illustrated in FIG. 38 is provided on the raw material input direction side of the multi-partition partition wall structure portion of the pipe portions 40, 40.
- the pipe bundle 300 can be rotated by the rotation of the pipe bundle 300 without using a complicated raw material charging mechanism for charging the raw material S into the respective compartments 60, 60. It has been found that the raw material S can be distributed evenly and very simply into the compartments 60, 60.
- FIG. 43 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 according to the present invention, and mainly illustrates components related to the flow of raw materials S, S ′ ′′ and air (oxygen) in the rotary kiln furnace 1. .
- This heat treatment equipment is also called a continuous treatment type ⁇ indirectly heated (external heat type) rotary kiln.
- the rotating drum in the rotary kiln furnace 1 is composed of a plurality of pipe portions 40, 40... ′ Exemplified in conjunction with FIGS.
- the tube bundle 300a is formed so that the plurality of tube portions form the outer peripheral portion of the rotating drum, thereby forming a rotating drum.
- the inside of the tube bundle 300a is a cavity, and forms a rotary cylinder cavity V for accommodating a heating means for heating from the inside.
- raw materials S, S --- for example, papermaking sludge
- a drying device not shown
- one end of the tube bundle 300a of the rotary kiln furnace 1 is used.
- Each pipe provided in the tube bundle 300a of the rotary kiln furnace 1 is inserted into the raw material supply port 2 (for example, supply hot bar) installed in the section and through the raw material input means 10 (for example, screw feeder 1).
- the pipe sections 40, 40,... In FIG. 38 (For example, the pipe sections 40, 40,... In FIG. 38).
- the raw materials S and S 'supplied to the pipe portions 40 and 40 of the pipe bundle 300a are contained while passing through the pipe portions 40 and 40.
- Organic components are burned, organic components are burned off
- the heated and fired product is taken out of the rotary kiln furnace 1 through the heating and fired product discharge port 8 installed at the end opposite to the raw material supply port 2 of the tube bundle 300a. If necessary, the heated / baked product is sent to the next step for processing such as grinding.
- the tube bundle 300a is not shown in the drawings, but is inclined to a very gentle downward slope from the raw material supply port 2 side toward the heated and fired product discharge port 8 side. As a result of the inclination and rotation of this tube bundle 140a, the internal workpiece is gradually moved from the raw material supply port 2 side to the heated / baked product discharge port 8 side by gravity.
- a rotary kiln furnace 1 Introduce air into each of the pipes that make up the pipe bundle 300a (for example, the pipes 40, 40,... In FIG. 38) to remove the organic components contained in the raw materials S and S '' '. Burning is essential.
- exhaust means 4 eg, exhaust fan
- this exhaust means 4 forcibly exhausts the air in the rotary kiln furnace 1, thereby Air is sucked into the rotary kiln furnace 1 from the air supply port 3 installed in the vicinity as shown by the dashed arrow A (the figure is also changed).
- the air flow indicated by the broken line arrow A (the figure is also changed) from the air supply port 3 toward the exhaust means 4 is always generated.
- This air flow becomes the air flow A (not shown) for conveying unburned material, which will be described later.
- the air amount is controlled by controlling the exhaust amount of the exhaust means 4 (exhaust fan).
- This amount of air is controlled so as to be sucked in excessively so that the inside of each pipe section 40, 40 ⁇ 'provided in the pipe bundle 300a of the rotary kiln furnace 1 is in an excess (rich) oxygen atmosphere. I prefer that.
- the direction of this air introduction is indicated by the arrow B which advances by continuously supplying the raw materials S, S ′... To the respective pipe portions 40, 40,... Of the tube bundle 300a of the rotary kiln furnace 1.
- Air is introduced from a direction (abbreviated as a counterflow direction) indicated by a broken-line arrow A opposite to the direction.
- each pipe section for example, the pipe sections 40, 40,... In FIG. 38
- pressurized air can be blown from the air supply port 3 installed in the vicinity of the heated and baked product discharge port 8.
- the air of each pipe part 40, 40,... Of the pipe part bundle 300a is forced by the exhaust means 4 installed in the vicinity of the raw material supply port 2.
- a method is preferred in which air is sucked into the pipe portions 40, 40,... Of the pipe bundle 300a from the air supply port 3 installed in the vicinity of the heating / fired product discharge port 8 by exhausting.
- each of the pipe portions (for example, the pipe portions 40, 40 in Fig. 38) provided in the tube bundle 300a of the rotary kiln furnace 1 by forced exhaustion by the exhaust means 4 described above, etc.
- the amount of air supplied to the pipes 40, 40 ... ' is the amount of oxygen required to completely burn off the organic components contained in the raw materials S, S' ...
- the amount of air (excess (rich) oxygen atmosphere) that supplies an excessive amount of oxygen to the theoretical oxygen amount) is preferable.
- S preferably within each tube section 40, 40 ... of the tube bundle 300a
- the amount of air supplied is 1 to the amount of oxygen (theoretical air);! To 5 times, preferably 1.5 to 5 times, more preferably 2 to 5 times It is particularly preferable that
- each tube 40, 40 ⁇ of the tube bundle 300a is less than 1.1 times the theoretical air amount, each tube This is not preferable because the organic components contained in the raw materials S, S ′,... Contained in the parts 40, 40,.
- the pipe portion bundle 300a exceeds five times the above-described theoretical air amount, the pipe portion bundle 300a is caused by the supplied air.
- the temperature inside each pipe section 40, 40 ⁇ may be excessively cooled, while the temperature inside each pipe section 40, 40 ⁇ of the pipe bundle 300 is maintained. Therefore, it is necessary to increase heating by the heating means 5a and the heating means 5b described later, which is not preferable in terms of energy cost.
- FIG. 44 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 having the tube bundle 300a as the rotary drum of the present invention having the same configuration as that of FIG. 43 described above, and is mainly a rotary kiln furnace.
- FIG. 2 is a configuration diagram illustrating components related to heating means 5a and 5b in 1. In the figure, description of components having the same reference numerals as those in FIG. 43 is omitted.
- a heating / firing method of the rotary kiln furnace 1 in the present invention an internal heating type heating / firing method may be used. However, as illustrated in FIG. 44, the tube portion of the rotary kiln furnace 1 is used.
- the heat for heating each pipe section (for example, the pipe sections 40, 40... In FIG. 38) provided in the bundle 300a is supplied from an indirect heating means.
- This indirect heating means is formed mainly in the indirect (outside) heating means 5a for heating indirectly from the outside of the tube bundle 300a and inside the tube bundle 300a as shown in FIGS. 38 and 39.
- the inner force of the tube bundle 300a accommodated in the inner cavity V of the rotating cylinder is an indirect (inner) heating means 5b for heating indirectly.
- the raw materials S, S... Put into the pipe portions 40, 40... Can be indirectly heated and fired. Forces not shown in the figure are omitted
- a so-called heating jacket is provided on the outer periphery of the rotary kiln furnace, to which an indirect heating means 5a is connected.
- the means 5a and 5b can be used to stably control the temperature of the entire tube portion 40, 40... Of the tube bundle 300a in the longitudinal direction of the rotation axis, which is preferable.
- the air (oxygen) inside the kiln furnace 7 is consumed in large quantities for the combustion of the heating burner. This is not preferable.
- the internal heating type heating system it is inevitable that the temperature in the vicinity of the heating burner becomes high, and the gradient in the temperature in the direction of the rotation axis in the tube bundle 300a becomes uneven, resulting in the tube bundle 300a. Since it is difficult to control the whole to the desired constant heating and firing temperature, the entire temperature of the tube bundle 300a tends to be non-uniform.
- an indirect (outside) heating means 5a that indirectly heats from the outside of the tube bundle 300a described above, and the tube bundle 300a described above Indirect heating means 5b for heating from the inside is preferably used in combination with heating from both the outside and inside of the tube bundle 300a.
- the method for forming the inner cavity V for accommodating the heating means 5b for heating from the inside of the tube bundle 300a includes the above-described Fig. 37, Fig. 38, and Fig. 38.
- the force that can be formed as a hollow inner space V as the central cavity is inevitably generated by bundling a plurality of pipes 40, 40 ... in a cylindrical shape.
- the rotating month inner cavity V can be formed by providing the tube part 40c for the rotating month inner cavity at the center of the tube bundle 300a.
- the heating method used for the indirect heating means 5a and 5b of the present invention is an electric heater or a force that can be heated by induction current.
- the inside of the heating jacket that surrounds the cylindrical furnace body Introducing combustion gas such as kerosene and heavy oil, combustion exhaust gas discharged from existing incineration equipment, high-temperature air, superheated steam, etc., or heating by blowing combustion gas from the gas burner to the peripheral wall of the processing furnace Is recommended.
- high-temperature exhaust gas that has undergone combustion treatment in the furnace body and combustion exhaust gas from the pretreatment drying step can also be used as part of the heat source of the heating means.
- the heating means 5b for heating the tube bundle 300a For the cavity V in the rotating drum for accommodating the heating means 5b for heating the tube bundle 300a from the inside, if the heating means 5b can be accommodated, the front and rear ports of the cavity in the tube bundle 300a It is preferable to make a closed space between them for the reason explained below. That is, as described above, the combustion efficiency of the raw materials S, S ′,... Introduced into each pipe part of the pipe bundle 300a (for example, the pipe parts 40, 40,... In FIG. 38) is improved. Therefore, it is necessary to introduce a large amount of air into the pipe sections 40, 40 ... It is preferable not to arrange them.
- the pipe bundle bundle exhaust side that is, the side equipped with the exhaust means 4, in other words, the raw material supply port 2 side and the vicinity of the pipe bundle bundle is originally a material feeder such as a screw feeder. Step 10 is inevitable. It is preferable to avoid as many such obstacles as possible. In this regard, when the electric heating means described above is used, the electricity supply path is relatively small and is not such an obstacle, which is preferable.
- a heating means that uses a heating medium such as combustion exhaust gas.
- a heating medium such as combustion exhaust gas.
- the heating medium enters the rotary cylinder cavity V from the entrance, passes through the rotary cylinder cavity V, exhausts the heat to the pipe portion, and exits from the exit.
- a structure having a heating medium supply pipe and a heating medium discharge pipe communicating with the inner cavity V of the rotating month is obtained.
- a heating medium pipe penetrating from the pipe bundle bundle intake side to the pipe bundle bundle exhaust side is provided to penetrate the central axis direction of the rotary kiln furnace.
- the heating medium pipe has a double structure. That is, a concentric double pipe structure or a simple parallel double pipe structure is connected to the cavity V in the rotating drum, and the heating medium supply pipe is opened in the cavity V, particularly near the pipe 40c. In this structure, the heating medium is discharged, and the medium after heat release is sucked into the heating medium discharge pipe opened at the center of the cavity V.
- a known maze piping structure for efficient indirect heating is placed in the cavity V in the rotating drum with the force S.
- FIG. 40, FIG. 41, and FIG. 42 show the respective pipe parts (for example, the pipe parts 40, 40... In FIG. 38) of the pipe bundle 300a of the rotary kiln furnace 1 described above.
- FIG. 40, FIG. 41, and FIG. 42 show the respective pipe parts (for example, the pipe parts 40, 40... In FIG. 38) of the pipe bundle 300a of the rotary kiln furnace 1 described above.
- FIG. 40, FIG. 41, and FIG. 42 show the respective pipe parts (for example, the pipe parts 40, 40... In FIG. 38) of the pipe bundle 300a of the rotary kiln furnace 1 described above.
- FIG. 47 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 illustrated in FIG. 43 and FIG. 44 described above, and mainly relates to the tube bundle 300b in the rotary kiln furnace 1. It is a block diagram explaining a component. In the figure, description of components having the same reference numerals as those in FIGS. 43 and 44 is omitted.
- the basic configuration of the pipe bundle 300b in FIG. 47 is composed of a plurality of pipe parts 40, 40, and each pipe part 40, 40,. Force that is bundled by the tube portion fixing member 30c to form the tube portion bundle 300b. Further, in FIG. 47, a part of the tube portions 40, 40,...
- the structure of the multi-partition partition structure 320 in the tube bundle 300b of FIG. 47 the structure of the cut surface at ⁇ 8 — ⁇ 8 ′ is shown by the partition 50 illustrated in FIG. ⁇
- the inside has a structure divided into a plurality of compartments 60, 60 ⁇ ⁇ ⁇ .
- the tube bundle 300b in the rotary kiln furnace 1 is the front side of the multi-partition partition structure 320, that is, the raw material input direction side of the multi-partition partition structure 320, V
- the multi-partition partition wall structure portion (accommodating) portion 310 is provided on the raw material supply port 2 side of the tube bundle 300b.
- the pipe 40, 40,... Illustrated in FIG. It has a structure that is not divided into compartments.
- FIG. 1 the structure that is not divided into compartments.
- the multi-partition partition structure 320 and the subsequent parts that is, the heating and firing process side of the multi-partition partition structure 320, the discharge direction side of the fired product, V, and, in other words, the tube bundle 300b is heated and fired.
- the same structure portion as the multi-partition partition wall structure portion non-contained (accommodating) portion 310 is also provided on the object discharge port 8 side up to the end portion of the tube portion bundle 300b.
- the partition wall structure portion 320 for multi-division is basically the inside of the plurality of tube portions 40, 40,. Therefore, it is divided into a plurality of compartments 60, 60..., And each compartment 60, 60... Communicates from the raw material entrance side to the exit side of the multi-partition partition wall structure 320.
- the partition wall structure section 320 for multi-division a plurality of pipe sections 40, 40, ... by the partition wall 50
- the section chambers 60, 60 are divided radially from the center of the cross section of the pipe section 4, 4, ... in the outer direction of the pipe section.
- the partition wall 50 is provided to divide the inside of the pipe sections 40, 40... Into a plurality of partition chambers 60, 60..., And the partition chambers 60, 60.
- the compartments 60, 60,... are preferably formed so that their cross-sectional shapes are substantially congruent. This is because the internal parts of the pipe sections 40, 40 ... are divided into section chambers 60, 60 S, S— can be distributed almost uniformly into the respective compartments 60, 60 ..., and the raw materials S, S '''supplied to the pipes 40, 40 ... This is because heating and firing can be performed.
- the number of the compartments 60, 60,... Provided in the pipe parts 40, 40,. It is preferable to set the number of rooms to 12 or more and particularly preferably 6 to 8 rooms. This is because if the number of compartments 60, 60 "'divided by the radial partition wall 50 is 6-8, the compartments 60, 60 provided in the pipe sections 40, 40 ... Because the number increases appropriately, the raw materials S, S '..., which are put into each pipe section 40, 40 ... The raw materials S and S introduced into the compartments 60 and 60 can be sufficiently reduced and the sectional shapes of the compartments 60 and 60 have a relatively wide sectional area. This is because it can be sufficiently stirred and the heating and firing efficiency of the raw materials S, S -...
- each of the pipe sections 40, 40 ... is divided into compartments 60,
- the number of 60 ... as a matter of course, it is possible to exceed 12 chambers.
- the sectional shape of each compartment 60, 60 ... becomes very thin and narrow. ,cross section
- the heating / firing efficiency of the raw materials S, S ... may be reduced. It is not preferable.
- the method of using the multi-partition partition wall structure non-part 310 in the present invention in combination with the multi-partition partition structure 320 described above is a tube bundle 300b.
- the multi-partition partition wall structure part 310 is continuously provided on the raw material input direction side of the multi-partition partition structure part 320 in each of the pipe sections 40, 40.
- the multi-partition partition wall structure 320 is formed of a tube bundle.
- the multi-partition partition structure part no part 310 is provided on the raw material supply port 2 side of the multi-partition partition structure part 320 and is continuously combined with the multi-partition partition structure part 320. Therefore, the method of automatically introducing the raw materials S and S'H to the respective compartments 60 and 60 of the multi-partition partition structure 320 is as follows. ⁇ The structural principle that does not require the introduction of special and complex raw material input machinery for raw materials is also very preferred because it is very simple!
- Fig. 48 is a partial cross-sectional view showing an example of the structure of the tube bundle 300a or 300b in the rotary kiln furnace 1 illustrated in Fig. 43, Fig. 44, and Fig. 47 described above.
- a plurality of parts 320 are provided in each pipe part 40, 40,... Of the pipe part bundle 300c is shown.
- FIG. 48 shows the force as an example of the partition wall structure 320 for multi-division provided at the three front, middle, and rear positions in each tube 40, 40 ... of the tube bundle 300c.
- a plurality of partition wall structures 320 for multi-division can be installed in the pipe parts 40, 40,... Of the pipe part bundle 300c of the kiln as necessary.
- FIG. 49 is a partial cross-sectional view showing an example of the structure of the tube bundle 300a or 300b in the rotary kiln furnace 1 illustrated in FIGS. 43, 44, and 47 described above.
- Bulkhead structure 3 An example is shown in which 20 is provided in almost the entire region within each of the tube portions 40, 40... Of the tube bundle 300d.
- non-part 310 is provided in the vicinity of the raw material supply port 2 in each pipe part 40, 40 ...
- a multi-partition partition wall structure part 320 having only a six-partition type is provided at a plurality of parts.
- one type of multi-partition partition structure may be selected and used.
- the 3 to 8 division type multi-partition partition structure a 3 division type, a 6 division type, an 8 division type, etc. are provided together.
- two or more different types of multi-divided partition wall structures 320 having different cross-sectional shapes may be selected and used from among multiple types of multi-divided partition wall structures 320! /.
- the multi-partition partition wall structure in each of the pipe portions 40, 40 ⁇ ⁇ ⁇ of the pipe portion bundles 300b, 300c, 300d With respect to 320, the length L1 of the rotating barrel shaft length direction of the multi-partition partition wall structure non-part 310 provided on the raw material supply port 2 side of the multi-partition partition structure part 320 is 0. 0m is preferred 0.3-3. Om is particularly preferred.
- Multi-divided partition wall structure section 320 Because there is a need to feed raw materials S and S '' 'stably and evenly into each compartment 60, 60 ... This is because it is necessary to provide a certain area (length) as the portion 310 in the longitudinal direction of the rotating drum axis of the tube bundle 300.
- the length L1 of the multi-partition partition wall structure non-portion 310 in the longitudinal axis direction of the rotary cylinder is less than 0.1 lm
- the multi-partition partition wall structure non-portion 310 is inserted. It is preferable because it is difficult to keep the raw materials S, S '... Yes.
- the length LI of the multi-partition bulkhead structure 310 in the rotation moon coaxial length direction exceeds 5. Om, the input raw materials s, ⁇ In 310, the length L1 is 5. Om or less, and the length L1 can be held sufficiently stably and evenly.
- the multi-partition partition wall structure 320 provided for each of the pipe portions 40, 40,.
- the length L2 in the longitudinal direction of the rotary drum axis is preferably 0.3 to 50 m, and particularly preferably 0.5 to 30 m. This is because it is necessary to hold the raw materials S, S... In the multi-partition partition structure 320 for the time required for heating and baking the raw materials S and S′H. This is because it is necessary to provide a certain area (length) as the structural portion 320 in the direction of the length of the rotation axis of the tube bundle 300.
- the length L2 of the multi-partition partition wall structure 320 in the rotational barrel axis length direction is less than 0.3 m, the raw materials S, S. It is not preferable because it is difficult to ensure heating and firing time. In addition, it is unlikely that the length L2 of the multi-partition partition wall structure 320 in the axial direction of the rotary cylinder exceeds 50 m. If this length is sufficient, the input raw material S can be sufficiently heated and baked in the section of the multi-partition partition wall structure 320, so it is useless to make it longer. Because it becomes.
- the outer diameter of each of the pipe portions 40, 40, ... provided in the pipe bundle 300 is 1/8 or more of the outer diameter of the pipe bundle 300, 1 / 2 or less is preferable. This is because the outer diameter of the pipe sections 40, 40,... Provided in the pipe section bundle 300 is set to a size in the above-described range, so that the pipe sections 40, 40,. Increase the heat transfer area by increasing the number, and reduce the stacking / deposition of raw materials S and S '... and a tube part to heat and bake a sufficient amount of raw materials S, S' ... This is because it is possible to achieve both a volume of 40 and so on, which is preferable.
- the outer diameter of the pipe sections 40, 40... As 1/8 or more of the outer diameter of the pipe section bundle 300 as described above, as illustrated in FIG. A single tube can be provided in the tube bundle 14.
- the outer diameter of the pipe is the outer diameter of a circle with the same cross-sectional area when the cross section has a shape other than a circle.
- the outer diameter of the pipe portions 40, 40... Provided in the pipe bundle 300 is more than 1/2 of the outer diameter of the pipe bundle 300, a plurality of pipes 40, 40. It is not preferable because the pipe portions 40, 40... Cannot be provided in the pipe bundle 300, and the stacking-stacking of the raw materials S, S. ..
- the outer diameter of the pipe portions 40, 40... Provided in the pipe bundle 300 is less than 1/8 of the outer diameter of the pipe bundle 300, the above-mentioned 21 or more sufficient ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Since the total volume is significantly reduced, it is not possible to secure the kiln furnace volume necessary to heat and sinter raw materials S, S..., and increase the throughput of raw materials S, S ' ⁇ ⁇ ⁇ sufficiently I can't! /, Which is preferable for.
- the outer diameter of the tube bundle 300 in the present invention is preferably 0.2 to 8. Om, and more preferably 0.3 to 5. Om.
- the outer diameter of the tube bundle 300 as a rotating drum is less than 0.2 m, it is not preferable because it is difficult to process a desired amount of raw materials S, S '.
- the outer diameter of the bundle 300 exceeds 8. Om, the heat treatment apparatus becomes excessively large and becomes impractical.
- the outer diameter of the pipe portions 40, 40 ... provided in the pipe bundle 300 according to the present invention is determined depending on the outer diameter of the pipe bundle 300 as a rotating drum as described above. Therefore, the outer diameter of the pipe portions 40, 40... Is preferably 0.025-4.Om, and particularly preferably 0.0375 to 2.5 m.
- FIG. 51 illustrates a method of forming the multi-partition partition wall structure 320.
- a multi-partitioning partition 50c to be a partition wall 50 is placed inside each pipe section 40, 40 ..., and the inside of the pipe section 40, 40 ... is divided into a plurality of compartments 60, 60 ...
- An example of a method of forming a desired multi-partition partition wall structure 320 by dividing is shown.
- the section of the pipe portion where the multi-dividing partition 50c is not inserted becomes the multi-dividing partition wall structure portion 310.
- the multi-dividing partition 50c When the multi-dividing partition 50c is inserted into each of the pipe portions 40, 40 ⁇ , a part of the multi-dividing partition 50c is joined to the inner wall of the pipe portion 40 by welding or the like. Can be fixed. [0494] Further, the multi-partitioning partition 50c is inserted into the pipe part 40 but is not fixed, but can be rotated inside the pipe part (the driven rotary multi-partitioning partition 50s, see Fig. 53 described later). It may be. That is, as the tube bundle 300 is rotated, it is driven to rotate in the tube 40, which is called a driven rotation type.
- the multi-split partition 50c By making the multi-split partition 50c a driven rotary multi-split partition 50 s, it is easy to access the driven rotary multi-split partition 50s from the pipe section 40, 40 Furnace maintenance ⁇ There is an advantage that maintenance work becomes easy.
- FIG. Fig. 53 is an example of a 6-splitting driven rotary multi-division system 50s for dividing the pipe section 40, 40 ... into 6 compartments.
- FIG. 53 is a perspective view of the dividing partition 50s
- FIG. 53 (b) is a cross-sectional view in the horizontal direction orthogonal to the rotation axis of the multi-dividing partition 50s.
- the driven rotary multi-partitioning partition 50s as illustrated in FIG. 53 is inserted into each of the tube sections 40, 40.
- the interior can be divided into multiple compartments (in Fig. 51, one compartment is divided into 6 compartments).
- partition walls for the multi-partition partition 50s, and the force S was an example that can create six compartments.
- the number of partition walls can be adjusted as appropriate. It is the same as the range of the number, 3 to; a range where about 12 compartments can be formed is preferable.
- the outer diameter of the driven rotary multi-partitioning partition 50s is made smaller than the inner diameter of the pipe part.
- the outer diameter of the driven rotary multi-partitioning partition 50s should be 0.5-5 to 99 times larger than the inner diameter of the pipe sections 40, 40 ... It is particularly preferable that the ratio is 0 ⁇ 8 to 0 ⁇ 97 times.
- Pipe section 40, 40 ⁇ Following rotary multi-partitioning partition 50s inserted into inner diameter force S, less than 0.5 times the inner diameter of pipe section 40, 40 ⁇
- the size of the driven rotary multi-division partition 50s is too small, and the raw materials S and S 'placed in the pipe sections 40 and 40 can be sufficiently divided and held. This is not preferable because there is a risk of being unable to do so.
- the size of the outer diameter of the driven rotary multi-partitioning partition 50s inserted into the pipe 40, 40 ... is more than 0.99 times the size of the inner diameter of the 1S pipe 40, 40 ...
- the driven rotary multi-partitioning partition 50s has a small margin with respect to the inner diameter of the pipe section 40, 40 ... There is a risk that the driven rotation will stop, In maintenance and inspection, it may be difficult to insert or remove the driven rotary multi-partitioning partition 50s into or from the pipes 40, 40, etc. I don't like it.
- the driven rotary multi-partitioning partition 50s is shorter than the length of the inserted pipe part, but it may be divided into two or three. In such a case, the weight of one becomes smaller and the driven rotation becomes easier.
- the multi-splitting partition 50s is the driven rotary multi-splitting partition 50s as described above, a gap is formed between the multi-splitting partition having a reduced diameter and the inner wall of the pipe portion.
- the raw materials S, S,. 54 shows a conceptual diagram showing the accumulation state of the raw materials S, S ′... In the pipe 40 when the raw materials S, S... Are put into the pipe 40 into which the driven rotary multi-partition partition 50s is inserted. .
- the raw materials S, S... Put into the pipe part 40 are divided into six by the driven rotary multi-partitioning partition 5 Os and accumulated.
- This accumulated raw material S, S '" is a force that flows due to the rotation C of the pipe section 40.
- the space between the multi-partition partition 50s and the inner wall of the pipe section The raw materials S, S '' are caught in the gaps generated in the material, and the raw materials S, S ' ⁇ are probably crushed and shattered due to the weight of the dividing partition 50s.
- the shattering of the raw materials S, S '... disturbs the effect of improving the combustion efficiency due to the uniform heating of the raw materials by the granulation of the raw materials S, S' ... and the improved contact with air. This is not preferable.
- FIG. 55 is a configuration diagram of a multi-splitting partition 50sl in which a blocking member 390a is added to the vicinity of the outer peripheral tip of the partition plate having the configuration of the driven rotary multi-splitting partition 50s illustrated in FIG. 53.
- FIG. 55 (a) is a perspective view of the multi-dividing partition 50sl, and FIG.
- FIG. 55 (b) is a cross-sectional view in the lateral direction orthogonal to the rotation axis direction of the multi-dividing partition 50sl.
- FIG. 56 shows a damming member 3 attached to the outer peripheral tip portion of the partition plate having the configuration of the driven rotary multi-division partition 50s illustrated in FIG.
- Fig. 56 is a configuration diagram of multi-splitting partition 50s2 with 90b added, of which Fig. 56 (a) is a perspective view of multi-splitting cutting 50s2, and Fig. 56 (b) is the direction of the rotation axis of multi-splitting partition 50s2. It is sectional drawing of the horizontal direction orthogonal to.
- the position where the blocking members 390a and 390b are installed on the partition plate is within 50cm from the outer peripheral tip of the partition plate It is particularly preferable that the distance is within 10 cm.
- Positioning force to provide damming members 390a and 390b to the partition plate When the slab members 390a and 390b are separated from the tip of the outer periphery of the partition plate by 50 cm or more (approaching the center of the rotating shaft), Is prevented from spreading the raw materials S, S ′... On the partition plate, and the stacking of the raw materials S, S ′.
- the raw materials S and S... Put into the pipe part 40 are all received by the blocking members 390a and 390b, and the partition and the inner wall of the pipe part are Considering the input amount of raw materials S, S '..., and the stacking height of raw materials S, S *' in the pipe, etc.
- the stop members 390a and 390b can be provided by appropriately adjusting the height.
- each pipe part 40 constituting the pipe part bundle 300 of the rotary kiln furnace is used. 40 is used for purchase.
- a coating process such as plating, spraying, or the like may be performed.
- a plurality of lifting plates 380 are attached to the inner wall of the pipe sections 40, 40, and the surface of the partition wall 50, which is divided into the division chambers 60, 60.
- the shape and size of the above-described flying plate 380 there is no particular limitation within the pipe sections 40, 40... And the compartments 60, 60.
- the raw material particles 1, 1 ⁇ can be appropriately selected and used within a range that does not hinder the flow of the particles.
- each tube portion 40, 40 ⁇ constituting the tube portion bundle 300 in the present invention has been described by taking the cylindrical portion as the tube portion as an example.
- the tube portion having any cross-sectional shape such as a substantially circular shape, a substantially elliptical shape, or a substantially polygonal shape that is substantially triangular or more can be arbitrarily selected and used without limitation.
- the pipe bundle 300 provided in the rotary kiln furnace 1 according to the present invention that is, the pipe parts 40, 40, each pipe part fixing member 30cl, 30 ⁇ 2, ..., and the partition wall for multi-division
- the material of the material constituting the bulkhead 50 (multi-partitioning partition 50s, 50s) for constructing the structural part 320 and other parts related to the tube bundle 300 is composed of a material that can withstand heating and firing. It is particularly preferable that the material be able to withstand a temperature of about 1000 ° C as the temperature during heating and firing.
- stainless steel and titanium that are highly preferred to be made of materials that can withstand acidic and alkaline properties are preferred. Steel materials with heat resistance and corrosion resistance are preferred.
- the steel plate material constituting the partition wall 50 of the multi-partition partition structure 320 in the present invention may be formed of the above-described metal plate such as stainless steel, but is further perforated like a punching metal. It is preferable to use mushroom metal plates. This is perforated! /, N! /, The perforated metal plate is more divided than the metal plate for the raw materials S and S --- that are put in each compartment 60, 60... Air (oxygen) through holes provided in partition wall structure 320 This is because it becomes easier.
- the raw materials S and S— are put into the respective compartments 60 and 60 of the partition wall structure section 320 for multi-division, the raw materials S and S ′ '' are spilled from the holes provided in the partition wall 50, etc.
- perforated metal plates such as round, triangular, quadrangular, and slit shapes.
- the raw materials S, S which are charged into the pipe sections 40, 40 of the pipe bundle 300 of the rotary kiln furnace 1 are the pipe sections 40, 40,.
- the pipe sections 40, 40 In order to reduce the stacking of raw materials S, S ' ⁇ and improve the efficiency of contact with air (oxygen), after the granulation process, put it into the tube bundle 300 as a rotating month Is preferred (see FIG. 46).
- a compression granulation method using a compression molding machine such as a bucket machine or a roller compactor, rolling rolling Examples include a granulation method, an agitation granulation method, and an extrusion molding method, and a method of adjusting the size with a screw feeder or the like is given as a method of granulating and molding into a particle shape within a certain size range.
- a compression granulation method using a compression molding machine such as a bucket machine or a roller compactor, rolling rolling Examples
- a granulation method, an agitation granulation method, and an extrusion molding method and a method of adjusting the size with a screw feeder or the like is given as a method of granulating and molding into a particle shape within a certain size range.
- the shape of the raw material S, S ′ ′′ to be put into each pipe part 40, 40 ⁇ of the pipe bundle 300 is not particularly limited, and has a size (diameter or length) described later. If it is within the range, it can be granulated and formed into various particle shapes such as columnar, spherical, elliptical, triangular, other polygonal shapes, force, serrated shape, and uneven shape.
- the size for granulating the raw materials S, S ... in the present invention is such that the diameter or length is 2 to 30 mm, preferably S, and more preferably 5 to 15 mm.
- each pipe part 40, 40 ... The stacking of raw materials S, S '... in each compartment 60, 60 ..., etc. of partition wall structure 320 becomes overly dense, and air (oxygen) does not spread within the stacked raw material particles S, S' ... For this reason, the organic components contained in the raw material particles S, S ′... Are incompletely combusted, and the whiteness of the heated / baked product may be lowered.
- the rotary kiln furnace 1 is a power that can be used for heating and baking treatment of various raw materials regardless of the components such as organic components and inorganic components. It is particularly preferable to treat paper sludge discharged from a paper mill as such a raw material, which is particularly preferred to be used in the process of removing the organic component by burning and recovering the remaining white inorganic component. .
- the heat treatment apparatus provided with the rotary kiln furnace 1 in the present invention may be used alone as a heating / firing treatment apparatus to obtain a heated / firing treatment product, but as illustrated in FIG. 46 described above. After drying and granulating the raw materials, a heated and fired product may be obtained by performing a multiple-step heating and firing process such as primary and secondary.
- FIG. 46 is an example of a flow sheet in which various treatment steps are added to the front and rear stages of the heat treatment apparatus of the present invention. In the figure, the heat treatment apparatus of the present invention is shown as performing a secondary firing process.
- the tube bundle 300 is configured so as to bundle the plurality of tubes 40, 40... As the rotating drum of the rotary kiln furnace 1.
- the indirect (inner) heating means l ib which is the second heating means, is formed in the rotating moon inner cavity V in the central part of the rotating moon to improve the heat transfer efficiency. The heating and firing efficiency of the raw materials S and S 'can be improved.
- the raw material in each pipe 40, 40 ⁇ ⁇ ⁇ It is possible to greatly reduce the stacking of the materials s, s' ..., which can greatly improve the heat transfer efficiency and the contact efficiency between the raw material and the air for organic component combustion. Therefore, there is no residual unburned carbon, and the power to obtain a high-quality heated and fired product with high whiteness is possible. Even in a rotary kiln furnace with the same outer diameter, more raw materials can be obtained. It can be efficiently heated and fired.
- a plurality of compartments 60 divided by partition walls 50 in each of the pipe parts 40, 40 ⁇ of the pipe bundle 300 of the rotary kiln furnace 1 are provided. , 60 ⁇
- the multi-partition partition structure part 320 that follows the multi-partition partition structure part 310 is obtained.
- the raw materials S and S ' can be automatically and evenly supplied to the respective compartments 60 and 60.
- FIG. 1 A view showing a basic flow sheet of a method for producing inorganic particles using the sludge of the present invention as a raw material.
- FIG. 2 is a configuration diagram of an example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention.
- FIG. 3 is a configuration diagram of another example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention.
- FIG. 4 is a flowchart showing an example of a method for producing inorganic particles according to another embodiment of the present invention.
- FIG. 5 is a schematic longitudinal sectional side view showing a first configuration example of a rotary kiln furnace used in another embodiment of the present invention.
- FIG. 6 is a schematic longitudinal side view showing a second configuration example of the rotary kiln furnace.
- FIG. 7 is a schematic vertical side view showing a third configuration example of the rotary kiln furnace.
- FIG. 8 is a schematic perspective view showing a structural example of a rotating drum in the third configuration example.
- FIG. 12 is a schematic longitudinal side view showing a fourth configuration example of the rotary kiln furnace.
- FIG. 13 A configuration diagram of an example of a heat treatment apparatus including a rotary kiln furnace according to another embodiment of the present invention.
- FIG. 14 A partially longitudinal side view showing the structure of the rotary drum in the rotary kiln furnace shown in FIG.
- FIG. 15 is a radial cross-sectional view of an example of a six-partitioned, small-partition partition structure.
- FIG.17 / 3 — 13 'radial cross-sectional view of Fig. 14 when using an example of a multi-partition partition structure with 24 compartments (24-part C-type multi-partition partition structure) Sectional view showing each compartment, (b) Cross section showing each compartment set.
- FIG.18 / 3 — ⁇ 'radial cross-section of Fig. 14 when using an example of a multi-partition partition structure with 24 compartments (24-part B-type multi-partition structure) Sectional view showing each compartment, (b) Cross section showing each compartment set.
- FIG.19 / 3 — ⁇ ′ radial cross-sectional view of Fig. 14 when using an example of a multi-partition partition structure with 36 compartments (36-partition multi-partition structure), (a) Sectional view showing compartments, (b) Cross-sectional view showing each compartment set.
- FIG. 20 is a partially longitudinal side view showing another example of the structure of the rotary drum in the rotary kiln furnace shown in FIG.
- FIG. 21 is a partially longitudinal side view showing still another example of the structure of the rotary drum in the rotary kiln furnace shown in FIG.
- FIG. 22 An example of forming a multi-partition partition wall structure by combining compartment chamber structures, (a) is an exploded radial cross-sectional view, and (b) is a radial cross-sectional view after joining.
- FIG. 24 is an example of a flow sheet in which various treatment steps are added to the former stage and the latter stage of the heat treatment apparatus of the present invention.
- Gon 26 A conceptual diagram showing the state of raw material lamination in an example in which a six-partition partition wall structure is used for the rotating drum.
- FIG. 27 A conceptual diagram showing the state of raw material lamination in an example in which an 18-divided multi-divided partition wall structure is simply used for the rotating drum.
- FIG. 28 is a conceptual diagram showing a stacked state of raw materials in each compartment of the 18-divided multi-partition partition structure when the 6-divided sub-partition structure and 18-part multi-partition structure are connected.
- FIG. 29 is a conceptual diagram showing the lamination state of the raw materials in each compartment of the 36-divided multi-partition partition structure when the 6-divided sub-partition partition structure and the 36-divided multi-partition partition structure are connected.
- FIG. 30 is a conceptual diagram showing an example in which an introduction pipe is used as an example of a raw material introduction means to the multi-partition partition structure in the rotating drum.
- FIG. 31 A configuration diagram of an example in which a tubular member and indirect (inner side) heating means are provided at the center of the rotating drum in the example shown in FIG.
- FIG. 32 is a radial cross-sectional view of the rotary drum of the rotary kiln furnace shown in FIG. 31 (for example, when the multi-partition partition structure 120 is an 18-part multi-partition structure).
- FIG. 33 is a partially longitudinal side view showing an example of the structure of the rotary drum in the rotary kiln furnace of the example in which a tubular member is provided at the center of the rotary drum of the example shown in FIG.
- FIG. 34 is a diagram for explaining another embodiment of the present invention, in which raw materials are fed into the rotating moon composed of a single cylindrical tube portion.
- the conceptual diagram which shows a lamination
- FIG. 36 (a) Cross-sectional view of a 21-tube type tube bundle in a rotating drum (tube bundle) composed of a plurality of pipes, (b) Raw materials in the pipes when the raw materials are charged
- FIG. 37 is a configuration diagram of a tube bundle (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
- FIG. 38 (a) Radial cross-sectional structure diagram of the tube bundle at the ⁇ 1 — ⁇ 1 ′ cut surface of the tube bundle illustrated in FIG. 37, (b) The conceptual diagram of the lamination
- FIG. 39 is a (a) radial cross-sectional view of the tube bundle bundle at the ⁇ 2 - ⁇ 2 ′ cut surface of the tube bundle illustrated in FIG. 37, and (b) the inside of the tube portion when the raw materials are charged.
- FIG. 40 is a configuration diagram of a tube bundle having a multi-partition partition structure (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
- FIG. 44 is a partially longitudinal side view showing the structure of the heating means in the rotary kiln furnace shown in FIG.
- FIG. 45 is a configuration diagram of a tube bundle having a hollow tube at the center (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
- FIG. 46 An example of a flow sheet in which various treatment steps are added to the front and rear stages of the combustion apparatus of the present invention.
- 47 Partial longitudinal section showing an example of the structure of a bundle of pipe parts in the rotary kiln furnace shown in FIG. Side view.
- FIG. 48 is a partially longitudinal side view showing the structure of another example of a bundle of pipe parts in the rotary kiln furnace shown in FIG. 43.
- FIG. 49 is a partial longitudinal side view showing the structure of still another example of the tube bundle in the rotary kiln furnace shown in FIG. 43.
- FIG. 52 is a cross-sectional structure of an example in which a lifting plate is provided on the inner wall of the tube bundle and the surface of the partition wall.
- FIG. 52 (a) Diameter of an example in which a lifting plate is provided in the non-contained part of the partition wall structure portion for multi-division Cross-sectional structure diagram of direction, (b) radial cross-sectional structure diagram of an example provided with a lifting plate in the multi-partition partition structure.
- An example of a driven rotary multi-partition partition (without dam structure) (a) perspective view, (b) radial cross-sectional view.
- FIG. 37 Another example of a driven rotary multi-partition partition (an improved structure with a weir) (a) perspective view, (b) radial cross-sectional view.
- FIG. 58 An example of forming a multi-partition partition structure having a plurality of compartments by inserting a driven rotary multi-partition partition in the pipe part of the bundle of pipe parts (a) Radial cross-sectional view during assembly, (b) Radial sectional view after assembly.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Sludge (AREA)
Abstract
A production method of inorganic particles and equipment thereof which can recycle sludge discharged from industrial plants or processes, especially paper sludge discharged from paper making plants, as coating pigment or paper making filler as paper making materials. The production method of inorganic particles comprises the step of supplying sludge as a material from a sludge supply port (2) installed at the end in the cylindrical shaft direction of a cylindrical heat treating device (1), and the heat treating step of heat treating it by an indirect heating method under an air environment while it is taken out from a sludge discharge port (8) installed at the end opposite to the sludge supply port in the cylindrical shaft direction, characterized in that unburned matter carrying air stream (C) is discharged from the cylindrical heat treating device during the heat treating step so that the unburned matter is entrained in the unburned matter carrying air stream and taken out to be removed from the sludge.
Description
明 細 書 Specification
無機粒子その製造方法およびその製造プラント並びにそれを使用した紙 技術分野 INORGANIC PARTICLE MANUFACTURING METHOD, MANUFACTURING PLANT, AND PAPER TECHNOLOGY USING THE SAME
[0001] 本発明は、スラッジの再利用に関し、塗工用顔料や製紙用填料としての適性を有 するスラッジを原料とする無機粒子の製造方法およびその製造プラント並びにそれを 使用した紙に関する。 TECHNICAL FIELD [0001] The present invention relates to sludge reuse, and relates to a method for producing inorganic particles using a sludge having a suitability as a coating pigment or a papermaking filler, a production plant thereof, and paper using the same.
背景技術 Background art
[0002] 近年、環境保全の観点から生産に伴う活動からの産業廃棄物削減を余儀なくされ ている。製紙業界においても、ペーパースラッジの処理が問題となってきている。ぺ 一パースラッジとは、製紙工場の各種工程から排出される廃水として、(1)パルプ化 工程での洗浄過程で発生した廃水、(2)古紙処理工程の混入異物除去、脱墨浮選 処理、および洗浄処理過程で発生した廃水、(3)紙製造時に原料損失分として抄紙 用ワイヤー等を通過して流出した廃水、および (4)生物廃水処理工程の廃水などの 各種廃水が挙げられるが、これら廃水に対してスラッジ回収処理として、凝集'沈殿- 濃縮 ·脱水等の工程を適宜組合せて行って、各廃水が含有する固形分をスラッジとし て回収したものである。前記した各種廃水は個別にスラッジ回収処理を行って、脱墨 スラッジ、塗工紙製造系スラッジ、生物処理余剰汚泥などの各種スラッジを個別回収 する場合もあるが、一般的には前記した製紙工場から排出される各種工程スラッジを 総称してペーパースラッジ (製紙スラッジ)と呼ぶ。このペーパースラッジには、製紙ェ 場廃水由来の各種成分が含まれており、例えば、パルプ化工程で洗い出されたリグ ニンや微細繊維、原料損失分由来のパルプなどの繊維分、澱粉や合成接着剤を主 とする有機物、塗工紙用顔料や内添填料を主とする無機物、および古紙由来の印刷 インキ等が含まれている。 [0002] In recent years, from the viewpoint of environmental protection, it has been forced to reduce industrial waste from activities associated with production. Even in the paper industry, the treatment of paper sludge has become a problem. Persludge is wastewater discharged from various processes in the paper mill. (1) Wastewater generated during the washing process in the pulping process, (2) Removal of contaminants from the wastepaper processing process, deinking flotation treatment And wastewater generated during the washing process, (3) wastewater that flows out of papermaking wires as raw material loss during paper manufacture, and (4) various wastewater such as wastewater from biological wastewater treatment processes. As a sludge recovery process for these wastewaters, the solids contained in each wastewater are recovered as sludge by appropriately combining the steps of aggregation, precipitation, concentration, dehydration and the like. The various wastewaters described above may be individually sludge collected to collect various sludges such as deinking sludge, coated paper manufacturing sludge, and biological treatment surplus sludge. The various process sludge discharged from the plant is generically called paper sludge. This paper sludge contains various components derived from paper mill wastewater. For example, lignin and fine fibers extracted in the pulping process, fiber such as pulp derived from raw material loss, starch and synthetic components It contains organic substances mainly composed of adhesives, inorganic substances mainly composed of pigments for coating paper and internal additives, and printing ink derived from waste paper.
[0003] さらに、近年、古紙利用率の高まりとともに、古紙の脱墨工程由来のペーパースラッ ジが多くなつてきている。その中で、新聞古紙や上質古紙は古紙中に含まれる無機 物(無機顔料)が少な!/、のでペーパースラッジ発生量が比較的少なぐその再生紙へ の利用率が高いのに対し、雑誌古紙は古紙に含まれる無機物が多ぐその結果ぺー
パースラッジ発生量が多くなる。このことは、新聞古紙や上質古紙に比べて雑誌古紙 の利用率が低いことの一因となっている。今後、古紙利用を一層促進するためには、 雑誌古紙の利用率向上が必要となる力 S、反面その利用率が高まると、ペーパースラ ッジの発生量が増えるという新たな問題が発生する。 [0003] Furthermore, in recent years, paper sludge derived from the deinking process of used paper has been increasing along with an increase in the utilization rate of used paper. Among them, used newspapers and high-quality used papers contain a small amount of inorganic substances (inorganic pigments) in the used papers! Waste paper has a lot of inorganic substances in waste paper. Increases the generation amount of par sludge. This is partly due to the low utilization of used magazine paper compared to used newspaper and high-quality used paper. In the future, in order to further promote the use of waste paper, it will be necessary to improve the utilization rate of magazine waste paper.
[0004] 製紙工場力も発生したペーパースラッジは、従来は、産業廃棄物として、そのまま 埋め立て処分されることが多かったのに対し、最近は流動床炉ゃスト一力炉等の焼 却炉でスラッジ中の有機物を燃焼させてエネルギーとして回収すると同時に、ぺーパ ースラッジの減容化が図られている。しかし、ペーパースラッジ中には無機物も含ま れるため、燃焼後には多量の残渣 (焼却灰)が残るという問題がある。現在、焼却灰 の一部はセメントに混合されたり、製鉄の酸化防止剤、土壌改良剤等にも使用されて いるが、大半は産業廃棄物として埋め立て処分されている。今後、古紙の再利用が 進むにつれて、極めて大量のペーパースラッジが発生して、廃棄物処理が次第に困 難になることが予想され、また、年々高騰している処理費用が紙パルプ工業の収益を 圧迫することも予想される。このため、古紙を再生している製紙業界においては、ぺ 一パースラッジの問題は極めて深刻で、その対策の一環としてその有効活用が強く 求められている。このため、ペーパースラッジ焼却灰(無機物)を製紙用材料である製 紙用填料や塗工用顔料として、再利用することが出来れば、産業廃棄物の削減のみ ならず、古紙利用率の向上にも結びつけることができ、環境対策上の問題も解消す ること力 Sできる。し力もながら、これらの焼却灰は白色度が低ぐ硬度が高いため製紙 用材料としてそのまま使用できないのが現状である。 [0004] Paper sludge, which also generated paper mill power, was conventionally disposed of in landfills as industrial waste, but recently sludge has been used in incinerators such as fluidized bed furnaces and first-power furnaces. Organic sludge is burned and recovered as energy, while reducing the volume of paper sludge. However, since paper sludge contains inorganic substances, there is a problem that a large amount of residue (incineration ash) remains after combustion. At present, some of the incineration ash is mixed with cement, used as an antioxidant for iron making, and a soil conditioner, but most of it is landfilled as industrial waste. In the future, as waste paper is reused, it is expected that an extremely large amount of paper sludge will be generated and waste disposal will become increasingly difficult, and processing costs that are increasing year by year will increase the revenue of the pulp and paper industry. It is also expected to press. For this reason, in the paper industry that recycles used paper, the problem of paper sludge is extremely serious, and its effective use is strongly demanded as part of its countermeasures. For this reason, if paper sludge incineration ash (inorganic matter) can be reused as a paper filler and coating pigment, which is a papermaking material, it not only reduces industrial waste but also improves the waste paper utilization rate. Can solve the problem of environmental measures. However, these incineration ash cannot be used as it is as a papermaking material because of its low whiteness and high hardness.
[0005] このような社会的環境を理由にペーパースラッジを製紙用材料へ再生、再利用す るための方法が多数検討されている。 [0005] A number of methods for recycling and reusing paper sludge into papermaking materials have been studied for such a social environment.
スラッジを焼却炉で焼却した焼却灰を再燃焼させることにより、未燃焼カーボンを燃 焼させスラッジ焼却灰の白色度を向上させる方法(特許文献 1 )、スラッジ中の有機材 料の燃焼を生じさせ、有機物質を含まない無機材料を製造する方法 (特許文献 2)、 流動床炉を使用して燃焼させ未燃カーボンが少な!/、スラッジ焼却灰を分取し、使用 する方法(特許文献 3)、ペーパースラッジを成形し、内燃式ロータリーキルンなどで 焼却し、粉砕する方法 (特許文献 4、 5)、ペーパースラッジを造粒、成形し、ロータリ
一キルン内で乾燥、炭化、焼成段階で有機分を効率良く燃焼させ焼却灰を得、粉砕 と同時に炭酸ガスで中和する方法(特許文献 6)が提案されている。これらの方法の 熱処理工程は、いずれも高白色度の焼成品を得ようとして有機物中の黒色の炭化物 を焼成炉内で完全に燃焼させているため、無機成分が焼結硬化し、摩耗性が悪化し てしまう。また、無機成分の高硬度化合物の発生を防止するために低温で焼成した 場合は長時間の処理が必要であり、多量のペーパースラッジを処理するためには大 きな装置となり経済的ではなレ、。 A method to improve the whiteness of sludge incineration ash by incinerating sludge incinerator ash by recombusting incinerator ash (Patent Document 1), causing combustion of organic materials in sludge. , A method of producing an inorganic material that does not contain organic substances (Patent Document 2), a method that uses a fluidized bed furnace to burn unburnt carbon! /, A method of separating and using sludge incineration ash (Patent Document 3) ), Paper sludge is formed, incinerated with an internal combustion rotary kiln, etc., and pulverized (Patent Documents 4 and 5), paper sludge is granulated, formed, and rotary There has been proposed a method (Patent Document 6) in which organic components are efficiently combusted in a kiln in the drying, carbonization and calcination stages to obtain incinerated ash, and at the same time pulverized and neutralized with carbon dioxide gas. In each of the heat treatment steps of these methods, black carbides in organic matter are completely burned in a firing furnace in order to obtain a fired product with high whiteness, so that the inorganic components are sintered and hardened, and wear resistance is increased. It will get worse. In addition, when firing at a low temperature to prevent the generation of high-hardness compounds of inorganic components, a long treatment time is necessary, and it becomes a large device for treating a large amount of paper sludge, which is not economical. ,.
[0006] そこで、有機物中の黒色の炭化物を効率よく燃焼させるために、ペーパースラッジ を一次燃焼後、粗粉砕し、二次燃焼において残留した有機分を燃焼させ、さらに粉 砕する方法 (特許文献 7)、一 7火燃焼を着火機能とし、二次燃焼においては酸素との 接触を促進させながら燃焼する方法 (参考文献 8)、ペーパースラッジの有機化合物 を焼却する第一段階と、過剰の酸素供給下で残留炭質物質を焼却する第二段階の 熱処理後、熱処理生成物を水性懸濁液にし、二酸化炭素を吹き込む方法(特許文 献 9)、ペーパースラッジを乾燥後、燃焼炉で有機分を完全に燃焼させ粗粉砕あるい は微粉砕後に水分散液とし、二酸化炭素ガスを吹き込む方法 (特許文献 10)といつ た多段燃焼、燃焼の間に粉砕処理するといつた方法が提案されている。また、炭酸力 ルシゥムの分解の抑制と白色度を両立させるために、炭素成分を燃焼させる際に二 酸化炭素を吹き込む方法(特許文献 11)も提案されている。し力もながら、これらの方 法はスラッジに含まれる炭酸カルシウムを熱処理時に分解させな!/、ように工夫されて いるため、熱処理工程の装置が煩雑になったり、多くのコストとエネルギーを必要とす る場合があり、経済的ではない。 [0006] Therefore, in order to efficiently burn black carbide in organic matter, paper sludge is first pulverized and then coarsely pulverized, and the remaining organic component in the secondary combustion is combusted and further pulverized (Patent Document) 7), 1-7 The method of burning with an ignition function, and in the secondary combustion, burning while promoting contact with oxygen (Reference 8), the first stage of incinerating organic compounds in paper sludge, and excess oxygen After the second stage heat treatment in which residual carbonaceous material is incinerated under supply, the heat treatment product is made into an aqueous suspension and carbon dioxide is blown (Patent Document 9). After drying the paper sludge, the organic content is removed in a combustion furnace. There have been proposed a method of completely burning and coarsely pulverizing or finely pulverizing into an aqueous dispersion and blowing in carbon dioxide gas (Patent Document 10) and a method of pulverizing between multistage combustion and combustion. In order to achieve both suppression of decomposition of carbonic acid ruthenium and whiteness, a method of injecting carbon dioxide when burning a carbon component (Patent Document 11) has also been proposed. However, these methods are designed so that the calcium carbonate contained in the sludge is not decomposed during the heat treatment! / The equipment for the heat treatment process becomes complicated and requires a lot of cost and energy. It is not economical.
[0007] ペーパースラッジからの再生無機粒子の硬度を低減させるために、スラッジ中の炭 化水素物質が酸化される高い温度で焼却した灰粒子と水酸化カルシウムとのスラリ 一を作製し、スラリーを炭酸塩化して、灰粒子の表面に炭酸カルシウムを沈降させた 複合粒状物質を製造する方法 (特許文献 12)が提案されている。しかしながら、これ らの焼成灰を核とした軽質炭酸カルシウムの被覆は、高度かつ複雑な操作や管理が 必要となる。また、原料となる焼却灰の影響により最終製品の特性が変化し、品質が 安定しなレ、と!/、つた問題がある。
[0008] 再生無機粒子の硬度を低減させるその他の方法としては、焼却灰をアルカリ金属 化合物と混合焼成することで高硬度化合物の生成を防止でき、混合焼成物を酸処理 し、非晶質シリカ微粒子を製造する方法 (特許文献 13)が提案されている。ケィ酸を 含むアルカリ溶液中に焼却灰を浸漬し、これを酸により中和することで、焼却灰をケィ 酸などに包含させた多孔性粒体を製造する方法 (特許文献 14)が提案されている。 これらの方法は、スラッジを機能性材料に変換することで再利用は可能にするが、大 量のペーパースラッジを処理するまでには至らず、廃棄物処理量を大幅に減少させ ることはできない。 [0007] In order to reduce the hardness of recycled inorganic particles from paper sludge, a slurry of ash particles and calcium hydroxide burned at a high temperature at which the hydrocarbon material in the sludge is oxidized is prepared, and the slurry is There has been proposed a method (Patent Document 12) for producing a composite granular material obtained by carbonating and precipitating calcium carbonate on the surface of ash particles. However, the coating of light calcium carbonate with these calcined ash as the core requires sophisticated and complex operations and management. In addition, there is another problem that the quality of the final product changes due to the influence of the incinerated ash used as a raw material, and the quality is stable. [0008] As another method for reducing the hardness of the regenerated inorganic particles, incineration ash can be mixed and baked with an alkali metal compound to prevent the formation of a high hardness compound, and the mixed baked product can be treated with acid to form amorphous silica. A method for producing fine particles (Patent Document 13) has been proposed. A method for producing porous granules in which incinerated ash is contained in caustic acid by immersing the incinerated ash in an alkaline solution containing caic acid and neutralizing it with an acid has been proposed (Patent Document 14). ing. These methods allow reuse by converting sludge into functional materials, but do not reach the disposal of large amounts of paper sludge and cannot significantly reduce the amount of waste processed. .
[0009] また、製紙スラッジの燃焼処理前に炭化処理を行なう方法として、製紙スラッジを 35 0〜700°C程度で炭化した後、 650〜800°Cで燃焼処理する方法(特許文献 15)、 製紙スラッジを低酸素条件下 (好ましくは無酸素条件下) 600°C未満の温度で炭化 処理した後、 600〜800°Cで燃焼処理する方法(特許文献 16)、製紙スラッジを貧酸 素状況下 1000°C以下で炭化処理した後、 450〜; 1000°Cで燃焼処理する方法(特 許文献 17)、製紙スラッジを 1基のキルン内で 200°Cから徐々に昇温して乾燥させ、 600°Cで炭化させた後に更に昇温して 850°Cで焼成処理する方法(特許文献 18)な どが提案されている。 [0009] In addition, as a method of performing carbonization before the paper sludge combustion treatment, a method of carbonizing the paper sludge at about 350-700 ° C and then combustion treatment at 650-800 ° C (Patent Document 15), A method of carbonizing paper sludge under low oxygen conditions (preferably under oxygen-free conditions) at a temperature of less than 600 ° C and then combusting at 600 to 800 ° C (Patent Document 16). After carbonization at 1000 ° C or lower, 450 ~; Method of burning at 1000 ° C (Patent Document 17), Paper sludge is gradually heated from 200 ° C in one kiln and dried. For example, a method of carbonizing at 600 ° C. and then further heating and firing at 850 ° C. (Patent Document 18) has been proposed.
[0010] 一方、製紙スラッジを炭化処理せずに特定条件での燃焼処理を行なう方法として、 製紙スラッジの中の脱墨スラッジ分を 17火燃焼工程がサイクロン炉を用いて 700°C以 下、燃焼時間 10秒以内で燃焼処理し、次いで 27火燃焼工程が 700°C以下で燃焼処 理する方法(特許文献 19)、製紙スラッジを 800°Cで焼却した焼却灰を、 500〜; 110 0°Cで再度燃焼する方法 (特許文献 19)、乾式酸化と湿式酸化を組み合せてスラッジ 焼却灰とする方法として、製紙スラッジを 200〜800°Cで湿式酸化処理した後に 800 〜 1100°C乾式酸化処理したり,逆に乾式酸化処理後に湿式酸化処理する方法(特 許文献 20)も提案されて!/、る。 [0010] On the other hand, as a method for carrying out a combustion process under specific conditions without carbonizing the papermaking sludge, the deinking sludge content in the papermaking sludge is reduced to 700 ° C or lower using a cyclone furnace. Combustion treatment within 10 seconds, followed by 27 fire combustion process at 700 ° C or less (Patent Document 19), incinerated ash obtained by incinerating paper sludge at 800 ° C, 500 ~; 110 0 A method of burning again at ° C (Patent Document 19), and a method of combining dry oxidation and wet oxidation into sludge incineration ash, wet oxidation of papermaking sludge at 200 to 800 ° C, followed by 800 to 1100 ° C dry oxidation A method of wet oxidation after treatment or conversely dry oxidation (Patent Document 20) has also been proposed!
[0011] 特許文献 1 :特開平 11 310732号公報 Patent Document 1: Japanese Patent Laid-Open No. 11 310732
特許文献 2:特表平 10— 505055号公報 Patent Document 2: Japanese Patent Publication No. 10-505055
特許文献 3:特開 2001— 11337号公報 Patent Document 3: Japanese Patent Laid-Open No. 2001-11337
特許文献 4 :特開 2002— 167523号公報
特許文献 5:特許 3611830号公報 Patent Document 4: Japanese Patent Laid-Open No. 2002-167523 Patent Document 5: Japanese Patent No. 3611830
特許文献 6:特開 2004— 176208号公報 Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-176208
特許文献 7:特開 2001— 262002号公報 Patent Document 7: Japanese Unexamined Patent Publication No. 2001-262002
特許文献 8:特開 2005— 53984号公報 Patent Document 8: Japanese Unexamined Patent Publication No. 2005-53984
特許文献 9 :特開平 10— 29818号公報 Patent Document 9: JP-A-10-29818
特許文献 10 :特開 2002— 356629号公報 Patent Document 10: Japanese Patent Laid-Open No. 2002-356629
特許文献 11 :特開 2004— 262701号公報 Patent Document 11: Japanese Unexamined Patent Application Publication No. 2004-262701
特許文献 12:特許 3274141号公報 Patent Document 12: Japanese Patent No. 3274141
特許文献 13 :特開 2001— 348510号公報 Patent Document 13: Japanese Patent Laid-Open No. 2001-348510
特許文献 14 :特開 2003— 71404号公報 Patent Document 14: Japanese Unexamined Patent Publication No. 2003-71404
特許文献 15 :特開 2005— 161239号公報 Patent Document 15: Japanese Unexamined Patent Application Publication No. 2005-161239
特許文献 16:特許第 3563707号 Patent Document 16: Patent No. 3563707
特許文献 17 :特開 2002— 308619号公報 Patent Document 17: Japanese Unexamined Patent Application Publication No. 2002-308619
特許文献 18:特開 2004— 176209号公報 Patent Document 18: Japanese Unexamined Patent Application Publication No. 2004-176209
特許文献 19:特許第 3831719号 Patent Document 19: Patent No. 3831719
特許文献 20 :特開 2001- 026727号公報 Patent Document 20: JP 2001-026727 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0012] 本発明は、工業的なプラントまたはプロセスから排出されるスラッジ、特に製紙工場 力、ら排出されるペーパースラッジを製紙用材料である塗工用顔料や製紙用填料用の 無機粒子として大量に再利用できるように、効率的な無機粒子の製造方法それを利 用した製造プラント並びにそれを使用した紙を提供することにある。 [0012] The present invention provides a large amount of sludge discharged from an industrial plant or process, in particular paper sludge power, as inorganic particles for coating pigments or paper fillers. To provide an efficient method for producing inorganic particles, and to provide a production plant using the same and paper using the same.
[0013] 処理を要する製紙スラッジは最終的に 1月当たり数百トン〜数千トンにもなることが 予想されるが、前記従来の製紙スラッジの各種処理方法では、そのいずれにおいて も多量の製紙スラッジを効率的に処理できない上、白色度が高く高品位のスラッジ焼 却灰を得ることが困難であった。その理由は、次のように推測される。 [0013] Paper sludge that needs to be processed is expected to eventually reach several hundred to thousands of tons per month. However, in each of the conventional methods for treating paper sludge, a large amount of paper is used in any of them. In addition to being able to treat sludge efficiently, it was difficult to obtain sludge incineration ash with high whiteness and high quality. The reason is presumed as follows.
[0014] まず、製紙用材料に再利用するスラッジ焼却灰は, 白色の紙に配合する上で、でき るだけ白色度の高いものが望ましぐそのために白色度低下の要因となる未燃焼の
有機成分 (所謂、煤、炭などの炭化物)を極力除去することが重要であるが、古紙利 用率が高まるほど製紙スラッジに含まれる印刷インキ由来のカーボンブラックが多くな る。しかも、この印刷インキ由来のカーボンブラックは、黒色顔料として取り扱い時の 発火、爆発の危険性を除くために、発火しやすい不純物質などが残留しないように 入念に炭化処理されて!/、るから、元来より非常に燃焼しにくい性状になって!/、る。 [0014] First, sludge incineration ash to be reused for papermaking materials should be as white as possible when blended with white paper. It is important to remove organic components (so-called carbides such as soot and charcoal) as much as possible. However, the higher the waste paper utilization rate, the more carbon black derived from printing ink contained in papermaking sludge. In addition, this carbon black derived from printing ink is carefully carbonized so as not to leave ignitable impurities in order to eliminate the risk of ignition and explosion as a black pigment! , It becomes a property that is much harder to burn than originally!
[0015] 一方、一般的な有機成分は炭素分子鎖を主とする分子構造をもつが、その分子構 造内にカルボキシル基、ヒドロキシル基、エステル基、エーテル基などの官能基があ れば、この官能基部分を起点 (反応開始点)として熱分解や酸素との化合 (発火、酸 化、燃焼)が促進される。このため、該官能基を有する有機成分は、比較的低い温度 で発火し、その温度を保ったまま充分な酸素を供給することによって容易に燃焼除 去できる。また、有機成分の大部分が前記官能基を有していなくても、不純物質など の少量成分として該官能基を有する有機成分が含まれる場合には、この少量の有機 成分の官能基部分が熱分解や燃焼の起点になるため、やはり比較的低レ、温度で発 火し、その温度を維持しつつ充分な酸素を供給することで容易に有機成分を燃焼除 去できる。 [0015] On the other hand, a general organic component has a molecular structure mainly composed of a carbon molecular chain. If the molecular structure has a functional group such as a carboxyl group, a hydroxyl group, an ester group, or an ether group, Starting from this functional group part (reaction starting point), thermal decomposition and combination with oxygen (ignition, oxidation, combustion) are promoted. Therefore, the organic component having the functional group ignites at a relatively low temperature, and can be easily removed by combustion by supplying sufficient oxygen while maintaining the temperature. In addition, even if most of the organic component does not have the functional group, when the organic component having the functional group is contained as a minor component such as an impurity, the functional group portion of the small amount of the organic component is not contained. Since it is the starting point for thermal decomposition and combustion, it can still ignite at a relatively low temperature, and the organic components can be easily removed by combustion by supplying sufficient oxygen while maintaining that temperature.
[0016] これに対して、煤や炭に代表される炭化物は、有機成分を貧酸素雰囲気下でいぶ し焼き(炭化)して得られる力 その際に炭素分子鎖のほぼ全体が炭素 2重結合のグ ラフアイト構造( = C = C = C = C = )に変化し、分子構造内の官能基を殆ど失って非 常に発火しにくい状態となるため、高温でなければ発火、燃焼しなくなる。 [0016] On the other hand, carbides represented by soot and charcoal are obtained by sintering (carbonizing) organic components in an oxygen-poor atmosphere. It changes to a bond graphite structure (= C = C = C = C =), and it loses most of the functional groups in the molecular structure, making it extremely difficult to ignite.
[0017] しかるに、製紙スラッジの燃焼処理前に炭化処理を行なう前記従来の方法では、古 紙の印刷インキ由来のカーボンブラックに加え、製紙スラッジ中の元来は燃焼しやす い有機成分まで炭化処理でわざわざ燃焼しにくい炭化物に変化させることになるから 、燃焼処理の観点からは非合理的であり、実際に燃焼効率が悪い上、白色度の高い 無機粒子を得ることが困難である。 [0017] However, in the conventional method in which carbonization is performed before the paper sludge is burned, carbonization is performed up to organic components that are originally easily burned in addition to carbon black derived from used printing ink. Therefore, it is irrational from the viewpoint of combustion treatment, and it is actually difficult to obtain inorganic particles with high whiteness as well as poor combustion efficiency.
[0018] また、本発明者らの研究によれば、有機成分を急激に 650°Cを越える温度に上昇 させると,その分子構造内に含まれていた官能基、およびその周辺部分のみが先に 急速に焼失し、もって有機成分は発火 '熱分解の起点部分を失って炭化物と類似し た非常に燃焼しにくい状態になることが判明している。
[0019] 従って、製紙スラッジを炭化処理せずに 2段階の燃焼処理を行う前記従来の方法 でも、いずれも第 1段階の燃焼温度を 650°Cを越える温度にするため、有機成分を 初期に燃焼しにくい形に変えることになり、やはり非合理的かつ非効率的であると言 X·る。 [0018] Further, according to the study by the present inventors, when the organic component is suddenly raised to a temperature exceeding 650 ° C, only the functional group contained in the molecular structure and its peripheral part are first. It is known that the organic components are burned out rapidly, and the organic components lose their starting point of ignition and thermal decomposition, and become extremely incombustible, similar to carbides. [0019] Therefore, in both of the conventional methods in which the papermaking sludge is subjected to the two-stage combustion treatment without carbonizing, the organic component is initially set in order to set the first stage combustion temperature to a temperature exceeding 650 ° C. X is said to be irrational and inefficient.
[0020] 理化学辞典 第 4版 岩波書店 においては、純粋な炭酸カルシウムの熱分解は、 898°C (解離圧 latm)とされて!/、る。しかしながら、 JISP8251 (2003年)によれば、 紙中の炭酸カルシウムについては、前記温度よりも低い約 525°Cを超えた温度で熱 分解を起こすことが実際に知られている。また、既述した第 1段階の燃焼温度を 750 °C以下、第 2段階の燃焼温度を 800°C未満とする 2段階の燃焼処理によって製紙ス ラッジ中の炭酸カルシウムの熱分解を抑える方法は、一般的に炭酸カルシウム(CaC O )が 525°C以上で炭酸ガス(CO )を離脱して酸化カルシウム(CaO)に転化する [0020] In Ikenami Shoten, 4th edition of RIKEN, the thermal decomposition of pure calcium carbonate is assumed to be 898 ° C (dissociation pressure latm)! However, according to JISP8251 (2003), it is actually known that calcium carbonate in paper undergoes thermal decomposition at a temperature exceeding about 525 ° C, which is lower than the above temperature. In addition, the method of suppressing the thermal decomposition of calcium carbonate in paper sludge by the two-stage combustion process in which the first stage combustion temperature is 750 ° C or less and the second stage combustion temperature is less than 800 ° C as described above. Generally, when calcium carbonate (CaC 2 O 3) is 525 ° C or higher, carbon dioxide gas (CO 2) is released and converted to calcium oxide (CaO)
3 2 3 2
性質を持つことからすれば、燃焼温度 600°C以上でスラッジ中の有機成分を燃焼除 去させながら、その燃焼温度よりも低い温度(525°C)で生じる炭酸カルシウムの熱分 解を抑制するという相反的作用を期待することになるから、非効率的にならざるを得 ず、所望とする高品位なスラッジ焼却灰を高率で得るには不向きである。 Because of its properties, it suppresses the thermal decomposition of calcium carbonate that occurs at a temperature lower than the combustion temperature (525 ° C) while removing the organic components in the sludge at a combustion temperature of 600 ° C or higher. Therefore, it must be inefficient and is not suitable for obtaining the desired high-grade sludge incineration ash at a high rate.
[0021] なお、前記従来の製紙スラッジを乾式酸化と湿式酸化を組み合せて多段酸化処理 する方法は、処理工程および処理設備が複雑化するため、処理コストが非常に高く 付き、多量の製紙スラッジの燃焼処理には不向きである。 [0021] Note that the conventional method of performing multi-stage oxidation treatment by combining dry oxidation and wet oxidation with papermaking sludge complicates the treatment process and treatment equipment, and thus the treatment cost is very high, and a large amount of papermaking sludge is produced. Not suitable for combustion treatment.
[0022] 本発明は、上述の状況に鑑み、製紙工場から排出される製紙スラッジから、製紙用 材料の製紙用填料や塗工用顔料などとして有効利用できる高品質の白色の無機粒 子を効率よく経済的に且つ大規模に製造する方法及びプラントを提供することを目 的としている。 [0022] In view of the above-mentioned situation, the present invention efficiently uses high-quality white inorganic particles that can be effectively used as a papermaking filler or a coating pigment for papermaking materials from papermaking sludge discharged from a papermaking factory. The aim is to provide a method and plant that is well economical and large-scale.
課題を解決するための手段 Means for solving the problem
[0023] 上記課題を解決するために、本発明は、まず請求項;!〜 15に係る発明を採用する ものである。即ち、請求項 1に係る本発明は、スラッジを原料として熱処理装置の端部 に設置されるスラッジ供給口から供給し、該スラッジ供給口に対して反対側の端部に 設置されるスラッジ排出口から取り出す間に過剰空気雰囲気下で間接的加熱方法に より熱処理する熱処理工程を備える無機粒子の製造方法であって、その熱処理工程
の際に未燃焼物搬送用空気流を該熱処理装置力 排出することにより未燃焼物を該 未燃焼物搬送用空気流に載せて取り出し、スラッジ力 除去することを特徴とする無 機粒子の製造方法からなる。 [0023] In order to solve the above-mentioned problems, the present invention first employs the invention according to claims;! That is, the present invention according to claim 1 supplies sludge as a raw material from a sludge supply port installed at the end of the heat treatment apparatus, and a sludge discharge port installed at the end opposite to the sludge supply port. A method for producing inorganic particles comprising a heat treatment step of heat treatment by an indirect heating method in an excess air atmosphere during removal from the container, the heat treatment step The unburned matter carrying air flow is discharged by the heat treatment apparatus by discharging the unburned matter on the unburned matter carrying air flow to remove sludge force. It consists of a method.
[0024] 前記熱処理装置を筒型熱処理装置とすることで、熱処理装置を小規模化すること ができるので好ましい。さらに、筒型熱処理装置の内部を分割することで、スラッジ積 層'堆積が低減するため、より多くのスラッジ処理でき、熱処理装置をより小規模化す ることができるので好まし!/、。 [0024] It is preferable to use a cylindrical heat treatment apparatus as the heat treatment apparatus because the heat treatment apparatus can be reduced in scale. Furthermore, by dividing the inside of the cylindrical heat treatment device, the sludge stacking 'deposition is reduced, so that more sludge treatment can be performed and the heat treatment device can be made smaller! /.
[0025] さらに、前記熱処理工程にお!/、て、前記スラッジ供給口の近傍から未燃焼物搬送用 空気流を強制的に排出することが未燃焼物を効果的に未燃焼物搬送用空気流に載 せて取り出す上で好ましい。 [0025] Further, in the heat treatment step, forcibly discharging the unburned matter conveying air stream from the vicinity of the sludge supply port effectively removes unburned matter as unburned matter conveying air. It is preferable for taking it out of a stream.
[0026] さらに、前記未燃焼物搬送用空気流を発生させるための空気を前記熱処理装置の スラッジ排出口の近傍に設けた空気供給ロカ、ら吸入することが未燃焼物を効果的に 未燃焼物搬送用空気流に載せて取り出す上で好ましい。 [0026] Further, the air for generating the air flow for transporting the unburned matter is sucked from the air supply loca provided in the vicinity of the sludge discharge port of the heat treatment device, so that the unburned matter is effectively unburned. It is preferable for taking it out on the air flow for conveying goods.
[0027] さらに、前記熱処理工程が、スラッジ温度 600〜850°Cで処理することが熱処理す なわちスラッジの燃焼を適切に行う上で好ましい。 [0027] Further, it is preferable that the heat treatment step is performed at a sludge temperature of 600 to 850 ° C in order to appropriately perform the heat treatment, that is, to burn the sludge.
[0028] さらに、前記熱処理工程で処理されたスラッジ中の炭酸カルシウムを 50%を超えて 分解することが好ましい。 [0028] Furthermore, it is preferable that the calcium carbonate in the sludge treated in the heat treatment step is decomposed in excess of 50%.
[0029] さらに、前記熱処理工程の後に、該熱処理工程で得られた焼成物を水と混合、攪 拌し、焼成物懸濁液とする焼成物懸濁液化工程と、焼成物懸濁液に二酸化炭素を 接触させる炭酸化工程と、を更に備えると、得られる無機粒子を塗工用顔料、製紙用 添料として利用する上で好ましレ、。 [0029] Further, after the heat treatment step, the calcined product obtained in the heat treatment step is mixed with water and stirred to form a calcined product suspension into a calcined product suspension. And further comprising a carbonation step in which carbon dioxide is brought into contact, it is preferable to use the resulting inorganic particles as a coating pigment or a papermaking additive.
[0030] 本発明の無機粒子は以上のような製造方法によって製造された無機粒子であり、 製紙用材料である塗工用顔料や製紙用填料用の無機粒子として好ましい。 [0030] The inorganic particles of the present invention are inorganic particles produced by the production method described above, and are preferred as inorganic particles for coating pigments or paper fillers as papermaking materials.
[0031] 本発明の製造プラントは、スラッジを筒型熱処理装置の筒軸方向の端部のスラッジ 供給口から供給し、該スラッジ供給口に対して筒軸方向について反対側の端部に設 置されるスラッジ排出口から取り出す間に過剰空気雰囲気下で間接的加熱方法によ り熱処理する筒型熱処理装置であって、未燃焼物搬送空気流を発生するための排 気手段を該スラッジ供給口近傍に有し、未燃焼物を熱処理後の焼成物スラッジから
載せて取り出すように未燃焼物搬送空気流を排出するように構成した熱処理装置を 備える無機粒子の製造プラントである。 [0031] The manufacturing plant of the present invention supplies sludge from the sludge supply port at the end of the cylindrical heat treatment apparatus in the cylinder axis direction, and is installed at the end opposite to the sludge supply port in the cylinder axis direction. A cylindrical heat treatment apparatus that heat-treats by an indirect heating method in an excess air atmosphere while being taken out from the sludge discharge port, and has an exhaust means for generating an unburned material carrying air flow as the sludge supply port. In the vicinity, unburned material from the fired sludge after heat treatment An inorganic particle production plant including a heat treatment apparatus configured to discharge an unburned matter carrying air stream so as to be put on and taken out.
[0032] 本発明は、前記無機粒子を填料として使用した紙に係る。また、前記無機粒子を顔 料として使用した塗被紙に係る。 [0032] The present invention relates to a paper using the inorganic particles as a filler. The present invention also relates to a coated paper using the inorganic particles as a facial material.
[0033] 本発明は、また従来技術の解決手段として、請求項 16〜27に係る発明を採用する ものである。このうち、請求項 16に係る無機粒子の製造方法は、製紙スラッジを原料 とし、筒型熱処理炉内を移送しつつ燃焼処理を施して無機粒子を製造する方法であ つて、前記燃焼処理が、過剰空気雰囲気下、スラッジ温度 650°C以下でスラッジ中の 易燃焼性有機成分を燃焼除去する一次燃焼工程と、過剰空気雰囲気下、スラッジ温 度 700〜850°Cでスラッジ中の難燃焼性有機成分を燃焼除去する二次燃焼工程と の、少なくとも 2段階の燃焼工程を経ることを特徴として!/、る。 [0033] The present invention also employs the inventions according to claims 16 to 27 as means for solving the prior art. Among these, the method for producing inorganic particles according to claim 16 is a method for producing inorganic particles by using papermaking sludge as a raw material and carrying out a combustion treatment while being transferred through a cylindrical heat treatment furnace, wherein the combustion treatment comprises: A primary combustion process that burns and removes flammable organic components in sludge under an excess air atmosphere at a sludge temperature of 650 ° C or lower, and a non-combustible organic in sludge at a sludge temperature of 700 to 850 ° C in an excess air atmosphere It is characterized by undergoing at least two stages of combustion processes, including a secondary combustion process in which components are removed by combustion.
[0034] また、上記の無機粒子の製造方法において、筒型熱処理炉が回転キルン炉である 請求項 17の構成、燃焼処理を間接的加熱によって行う請求項 18の構成、前記の少 なくとも 2段階の燃焼工程を 1基の筒型熱処理炉の移送行程中に設定する請求項 19 の構成、筒型熱処理炉の一端の原料供給口側から炉内空気を強制的に排出するこ とにより、同他端の焼成物排出口側から空気を炉内へ吸入する請求項 20の構成、焼 成物排出口側からの空気吸入に加えて、前記一 7火燃焼工程から二次燃焼工程への 移行部でも空気を炉内へ吸入する請求項 21の構成、一 7火燃焼工程に対する間接的 加熱部と、二次燃焼工程に対する間接的加熱部とが分離されてなる請求項 22の構 成、原料の製紙スラッジにアルカリ金属化合物を添加する請求項 23の構成、原料の 製紙スラッジが造粒または塊状に成形されてなる請求項 24の構成、前記燃焼処理に より、原料の製紙スラッジに含まれる炭酸カルシウムの 50%以上を分解する請求項 2 5の構成、前記燃焼処理後の焼成物を水に混合、攪拌して懸濁液とする懸濁液化工 程と、該懸濁液に二酸化炭素を接触させて炭酸化処理物を得る炭酸化工程と、該炭 酸化処理物を粉砕する粉砕工程とを含んでなる請求項 26の構成、をそれぞれ好適 態様としている。 [0034] Further, in the method for producing inorganic particles, the cylindrical heat treatment furnace is a rotary kiln furnace, the structure of claim 17, the structure of claim 18 in which the combustion treatment is performed by indirect heating, and at least 2 of the above The configuration according to claim 19, wherein the staged combustion process is set during the transfer process of one cylindrical heat treatment furnace, by forcibly discharging the furnace air from the raw material supply port side at one end of the cylindrical heat treatment furnace, The structure according to claim 20, wherein air is sucked into the furnace from the calcined product outlet side of the other end, in addition to the air suction from the calcined product outlet side, from the 17 fire combustion process to the secondary combustion process. The configuration according to claim 21, wherein air is also sucked into the furnace at the transition part, and the indirect heating part for the seven-fire combustion process and the indirect heating part for the secondary combustion process are separated from each other, The composition according to claim 23, wherein an alkali metal compound is added to the raw papermaking sludge. 25. The configuration of claim 24, wherein the paper sludge is granulated or formed into a lump, and the combustion treatment decomposes 50% or more of calcium carbonate contained in the paper sludge as a raw material, the combustion treatment The subsequent baking product is mixed with water and stirred to form a suspension, a carbonation step in which carbon dioxide is brought into contact with the suspension to obtain a carbonized product, and the carbonization treatment A configuration according to claim 26 including a pulverizing step of pulverizing an object is a preferred embodiment.
[0035] 一方、本発明の請求項 27に係る無機粒子の製造プラントは、一端側を原料供給口 、他端側を焼成物排出口とする筒型熱処理炉と、その原料供給口へ製紙スラッジを
供給する原料供給手段と、供給されたスラッジを焼成物排出口側へ移送する移送手 段と、該筒型熱処理炉内を燃焼状態とする間接的加熱手段と、該筒型熱処理炉内を 過剰空気雰囲気とする空気供給手段とを備え、前記筒型熱処理炉内に、スラッジ温 度 650°C以下の一 7火燃焼区間と、スラッジ温度 700〜850°Cの二次燃焼区間とが構 成され、前記空気供給手段が、筒型熱処理炉の原料供給口近傍に設けた排気口か ら炉内空気を強制排気することより、同筒型熱処理炉の焼成物排出口近傍に設けた 給気口力、ら空気を炉内へ吸入するものとして!/、る。 On the other hand, the inorganic particle production plant according to claim 27 of the present invention includes a cylindrical heat treatment furnace having one end side as a raw material supply port and the other end side as a fired product discharge port, and papermaking sludge to the raw material supply port. The Raw material supply means to be supplied, transfer means for transferring the supplied sludge to the fired product outlet side, indirect heating means for bringing the inside of the cylindrical heat treatment furnace into a combustion state, and excess in the cylindrical heat treatment furnace Air supply means for making an air atmosphere, and the above-mentioned cylindrical heat treatment furnace is composed of a 17-fire combustion section with a sludge temperature of 650 ° C or less and a secondary combustion section with a sludge temperature of 700-850 ° C The air supply means forcibly exhausts the air in the furnace from an exhaust port provided in the vicinity of the raw material supply port of the cylindrical heat treatment furnace, thereby providing an air supply provided in the vicinity of the fired product discharge port of the cylindrical heat treatment furnace. As a means to inhale air and air into the furnace!
発明の効果 The invention's effect
[0036] 請求項 1〜; 11に係る無機粒子の製造方法ならびに請求項 12に係る製造プラントに よれば、多量のスラッジを原料として効率的な熱処理により、高白色度で且つ高硬度 合成物を含まず製紙用填料や塗工用顔料として好適な無機粒子を得ることができる [0036] According to the method for producing inorganic particles according to claims 1 to 11 and the production plant according to claim 12, a high whiteness and high hardness composite can be obtained by efficient heat treatment using a large amount of sludge as a raw material. Inorganic particles suitable as paper fillers and coating pigments can be obtained
〇 Yes
[0037] すなわち、スラッジ焼却灰の白色度の低下は主として混入した黒色の炭化物粒子に 起因するが、このような炭化物粒子が原料のスラッジ中に含まれていても、常識的に は熱処理工程でスラッジと共に出口まで移送される間に燃焼して炭酸ガスとして焼失 する箬である。しかるに、従来方法で得られるスラッジ焼却灰中に炭化物粒子が残留 するのは、熱処理装置内の気相中に飛散浮遊した炭化物粒子が燃焼する間もなく 一足飛びに出口付近に達し、出口から排出される熱処理物に付着することによると 考えられ、し力、も炭化物粒子はカーボンブラック等として原料のスラッジ中に元々存 在するものに加えて、当該スラッジ中の有機物が熱処理工程で燃焼する際に煤とし て多量に発生するから、従来方法では熱処理物への未燃焼の炭化物粒子の混入が 避けられなかったものと想定される。 [0037] That is, the decrease in the whiteness of the sludge incineration ash is mainly caused by the mixed black carbide particles, but even if such carbide particles are included in the raw material sludge, it is common knowledge in the heat treatment step. It must burn and burn as carbon dioxide while being transferred to the outlet along with the sludge. However, the carbide particles remain in the sludge incineration ash obtained by the conventional method because the carbide particles scattered and suspended in the gas phase in the heat treatment apparatus immediately reach the outlet immediately before burning and are discharged from the outlet. In addition to the force and carbide particles originally existing in the raw material sludge, such as carbon black, the organic matter in the sludge burns in the heat treatment process. Therefore, it is assumed that contamination of unburned carbide particles in the heat-treated product was unavoidable with the conventional method.
[0038] これに対し、本発明の請求項;!〜 11に係る無機粒子の製造方法では、熱処理装置 内の過剰空気雰囲気で気相中に飛散した炭化物粒子が燃焼し易い上、浮遊する未 燃焼の炭化物粒子は未燃焼物搬送用空気流に載って取り出されるから、熱処理物 へ未燃焼の炭化物粒子の混入を効果的に抑止できる。 [0038] On the other hand, in the method for producing inorganic particles according to the claims of the present invention;! To 11, the carbide particles scattered in the gas phase in an excess air atmosphere in the heat treatment apparatus are easily burned and are not floated. Since the burned carbide particles are taken out on the air flow for conveying the unburned material, it is possible to effectively prevent the unburned carbide particles from being mixed into the heat-treated product.
[0039] そして、熱処理装置が請求項 2のように筒型、特に請求項 3のように単一の直管状筒 型炉、更には請求項 8のように回転キルン炉である場合、設備構成が簡素になる反
面、スラッジ中の有機物比率が高ぐそれだけ激しい燃焼で煤発生量が多くなる熱処 理工程の前半領域から出口までの空間が直通しているから、元来は熱処理物に未 燃焼の炭化物粒子が混入し易いが、前記の未燃焼物搬送用空気流によって該混入 が防止される。とりわけ、請求項 5及び請求項 6のような未燃焼物搬送用空気流の給 排位置の設定により、未燃焼物搬送用空気流力 Sスラッジの移動方向に対して向流に なり、浮遊する未燃焼の炭化物粒子がスラッジ供給口側へ戻される形になるから、熱 処理物への未燃焼の炭化物粒子の混入がより確実に防止される。なお、気相中に浮 遊せずにスラッジに混ざって移送される炭化物粒子は出口に至るまでに燃焼'焼失 する時間的余裕が得られるから、前記向流の未燃焼物搬送用空気流によってスラッ ジ供給口側へ戻される炭化物粒子がスラッジ中に移行しても支障はない。また、熱処 理工程の後段ほどスラッジ中の有機物が減少し、それだけ燃焼に伴う煤発生も少なく なる力、ら、出口近くで浮遊する炭化物粒子がスラッジ中に移行して残留する懸念もな い。 [0039] When the heat treatment apparatus is a cylindrical type as in claim 2, particularly a single straight tubular type furnace as in claim 3, and further a rotary kiln furnace as in claim 8, the equipment configuration Will be simplified On the other hand, the space from the first half of the heat treatment process, where the proportion of organic matter in the sludge is high and the amount of soot generated due to intense combustion, increases directly from the outlet to the outlet. However, the contamination is prevented by the air flow for conveying unburned matter. In particular, by setting the supply / discharge position of the air flow for transporting unburned matter as in claims 5 and 6, the air flow force for transporting unburned matter becomes counter-current to the moving direction of sludge and floats. Since unburned carbide particles are returned to the sludge supply port side, contamination of unburned carbide particles into the heat-treated product is more reliably prevented. In addition, since the carbide particles not mixed in the gas phase but transported in the sludge can be burned and burned out before reaching the outlet, the counter-current unburned material transport air flow can be used. There is no problem even if the carbide particles returned to the sludge supply port move into the sludge. In addition, the organic matter in the sludge is reduced in the later stages of the heat treatment process, and the amount of soot generated by combustion is reduced, and there is no concern that the carbide particles floating near the outlet will move into the sludge and remain. .
[0040] 一方、請求項 9のように熱処理工程のスラッジ温度を 600〜850°Cに設定することに より、硬質の焼結物の生成を回避できる。請求項 10のようにスラッジ中の炭酸カルシ ゥムの 50%以上が分解する熱処理条件として有機物の燃焼による焼失をより確実に できる。また、請求項 11のように熱処理工程後の焼成物懸濁液化工程と炭酸化工程 を経ることにより、熱処理工程での炭酸カルシウムの分解によって生成した酸化カル シゥムを再び炭酸カルシウムに戻すことができる。 [0040] On the other hand, by setting the sludge temperature in the heat treatment step to 600 to 850 ° C as in claim 9, the generation of a hard sintered product can be avoided. As described in claim 10, as a heat treatment condition in which 50% or more of the calcium carbonate in the sludge is decomposed, burnout due to combustion of organic substances can be more reliably performed. In addition, the calcium oxide generated by the decomposition of calcium carbonate in the heat treatment step can be returned to calcium carbonate again through the baked product suspension step and the carbonation step after the heat treatment step as in claim 11. .
[0041] 従って、これら本発明の製造方法及び製造プラントで得られる請求項 13の無機粒子 は、高白色度で且つ高硬度合成物を含まず、製紙用填料及び塗工用顔料としての 高い適正を持つ。そして、このような無機粒子を含有した塗被液を塗布した請求項 1 4の塗被紙は、優れた表面平滑性、不透明度、速いインキセットを得ることができる。 また、該無機粒子を填料として用いた請求項 15の紙は、不透明度、崇高性に優れる ものとなる。 [0041] Therefore, the inorganic particles according to claim 13 obtained by the production method and production plant of the present invention have high whiteness and do not contain a high-hardness composite, and are highly suitable as a papermaking filler and a coating pigment. have. The coated paper according to claim 14 coated with a coating solution containing such inorganic particles can provide excellent surface smoothness, opacity, and a fast ink set. Further, the paper of claim 15 using the inorganic particles as a filler is excellent in opacity and sublimation.
[0042] 請求項 16に係る無機粒子の製造方法によれば、原料の製紙スラッジを筒型熱処 理炉内で移送しつつ、特定条件で一 7火燃焼工程と二次燃焼工程の少なくとも 2段階 の燃焼工程を経て燃焼処理するから、高品質の白色の無機粒子を効率よく大規模
に製造することができる。すなわち、まず一 7火燃焼工程では、過剰空気雰囲気下でス ラッジ温度 650°C以下での燃焼処理を行うから、まず製紙スラッジ中の有機成分の内 の易燃焼性有機成分、つまり分子構造内にカルボキシル基、ヒドロキシル基、エステ ル基、エーテル基などの官能基を有する有機成分が、該官能基部分を起点とした熱 分解及び発火 ·燃焼の促進により、炭化することなく効率よく燃焼して消失すると共に 、この易燃焼性有機成分の燃焼に伴って前記官能基を有さなレ、難燃焼性有機成分 の燃焼も進行する。そして、二次燃焼工程では、過剰空気雰囲気下でスラッジ温度 7 00〜850°Cでの燃焼処理を行うことから、一次燃焼工程の終了時点で残存していた 印刷インキ由来のカーボンブラックなどの難燃焼性有機成分も確実に燃焼して消失 すると共に、過度の高温燃焼による硬質の焼結物の生成を回避できる。 [0042] According to the method for producing inorganic particles according to claim 16, the raw papermaking sludge is transferred in the cylindrical heat treatment furnace, and at least two of the one-fire combustion process and the secondary combustion process are performed under specific conditions. High quality white inorganic particles are efficiently produced on a large scale because the combustion process is performed through a staged combustion process. Can be manufactured. In other words, in the first seven-fired combustion process, a combustion process is performed at a sludge temperature of 650 ° C or less in an excess air atmosphere. Organic components having functional groups such as carboxyl, hydroxyl, ester, ether, etc. are efficiently burned without carbonization by promoting thermal decomposition and ignition / combustion starting from the functional group. As the flammable organic component disappears, the flammable organic component also burns with the functional group. In the secondary combustion process, combustion treatment is performed at a sludge temperature of 700 to 850 ° C. in an excess air atmosphere, so that it is difficult to remove carbon black derived from printing ink remaining at the end of the primary combustion process. Combustible organic components are also reliably burned and eliminated, and the formation of hard sintered products due to excessive high-temperature combustion can be avoided.
[0043] 従って、得られる無機粒子は、煤や炭などの炭化物を含まないために高白色度で、 且つ硬質の焼結物も含まず、製紙用材料である製紙用填料や塗工用顔料に適した 高品質なものとなる。また、このような少なくとも 2段階の燃焼工程により、易燃焼性有 機成分が難燃焼性有機成分に転化するのを確実に防止でき、もって高い燃焼効率 が得られるから、大量の製紙スラッジを能率よく経済的に処理することが可能となる。 [0043] Accordingly, the obtained inorganic particles do not contain carbides such as soot and charcoal, so they have high whiteness and do not contain hard sintered products, and are used as papermaking materials and papermaking fillers and coating pigments. High quality suitable for In addition, such a combustion process of at least two stages can surely prevent the conversion of easily combustible organic components into difficult-to-combust organic components, resulting in high combustion efficiency. It becomes possible to process well economically.
[0044] また、請求項 17の構成では、筒型熱処理炉として回転キルン炉を用いることから、 上記一次及び二次の燃焼工程の設定が容易になる。請求項 18の構成では、燃焼処 理を間接的加熱によって行うから、上記一次及び二次の燃焼工程における温度制御 が容易になる。請求項 19の構成では、上記一次及び二次の燃焼工程を 1基の筒型 熱処理炉内で行うから、設備効率及び設備コスト面で有利である。 [0044] In the configuration of claim 17, since the rotary kiln furnace is used as the cylindrical heat treatment furnace, the setting of the primary and secondary combustion processes is facilitated. In the configuration of claim 18, since the combustion process is performed by indirect heating, the temperature control in the primary and secondary combustion processes becomes easy. In the configuration of claim 19, since the primary and secondary combustion steps are performed in one cylindrical heat treatment furnace, it is advantageous in terms of equipment efficiency and equipment cost.
[0045] 請求項 20の構成では、筒型熱処理炉の原料供給口側の排気によって焼成物排出 口側から空気を炉内へ吸入するから、炉内での空気の流れと処理物の流れが逆に なり、未燃焼の難燃性有機成分が炉の運転状況ゃスラッジの状況によって煤の如き 状態になってたまたま炉内に飛散しても、煤の如き浮遊性物質は空気の流れに乗つ て原料供給口側へ戻され、あるいは更に排気と共に筒型熱処理炉外へ排出され、も つて焼成物への未燃焼の難燃性有機成分の混入が防止されるため、得られる無機 粒子の白色度がより高くなる。請求項 21の構成では、一 7火燃焼工程から二次燃焼ェ 程への移行部での吸入空気により、両燃焼工程の過剰空気雰囲気を容易に設定で
きると共に、その吸入量によって一 7火燃焼工程の温度を制御できる。請求項 22の構 成では、一 7火燃焼工程に対する間接的加熱部と、二次燃焼工程に対する間接的加 熱部とが分離しているから、両燃焼工程の温度制御を独立して容易に行える。 [0045] In the configuration of claim 20, since air is sucked into the furnace from the fired product discharge port side by exhaust on the raw material supply port side of the cylindrical heat treatment furnace, the flow of air and the flow of the processed material in the furnace are On the contrary, even if unburned flame-retardant organic components are in the state of soot depending on the operating condition of the furnace or sludge, and if they are scattered in the furnace, the airborne material such as soot will get on the flow of air. It is then returned to the raw material supply port side, or further exhausted and discharged outside the cylindrical heat treatment furnace, and the mixture of unburned flame retardant organic components into the fired product is prevented. Whiteness is higher. In the structure of claim 21, the excess air atmosphere in both combustion processes can be easily set by the intake air at the transition from the 17-fire combustion process to the secondary combustion process. In addition, the temperature of the 17 combustion process can be controlled by the amount of intake. In the structure of claim 22, since the indirect heating section for the 17-fire combustion process and the indirect heating section for the secondary combustion process are separated, temperature control of both combustion processes can be easily performed independently. Yes.
[0046] 請求項 23の構成では、原料の製紙スラッジにアルカリ金属化合物を添加することか ら、燃焼工程において該アルカリ金属化合物が一種の触媒的に作用し、有機成分の 熱分解及び燃焼がより促進する。請求項 24の構成では、原料の製紙スラッジが造粒 または塊状に成形されてレ、るから、燃焼工程にぉレ、て製紙スラッジと空気との接触性 力 くなり、それだけ有機成分の燃焼効率が向上する。 [0046] In the configuration of claim 23, since the alkali metal compound is added to the raw paper sludge, the alkali metal compound acts as a kind of catalyst in the combustion process, and the thermal decomposition and combustion of the organic component are further improved. Facilitate. In the structure of claim 24, since the raw papermaking sludge is granulated or formed into a lump shape, the contact strength between the papermaking sludge and air is increased during the combustion process, and the combustion efficiency of organic components is increased accordingly. Will improve.
[0047] 請求項 25の構成では、燃焼処理にお!/、て、原料の製紙スラッジに含まれる炭酸力 ルシゥムの 50%以上を熱分解させるから、スラッジ中の有機成分の燃焼除去を最優 先させることができ、もって合理的且つ効率的な製紙スラッジ処理を行える。 [0047] In the configuration of claim 25, the combustion treatment! /, And pyrolytic decomposition of 50% or more of the carbonic acid rusium contained in the paper sludge of the raw material is most effective for the combustion removal of organic components in the sludge. Therefore, rational and efficient papermaking sludge treatment can be performed.
[0048] 請求項 26の構成では、燃焼処理後の焼成物を水に懸濁させて炭酸ガスを吹込ん で炭酸化する後処理を行うことから、原料の製紙スラッジが炭酸カルシウムを含む場 合に、燃焼工程で該炭酸カルシウムから転化した酸化カルシウムを水酸化カルシゥ ムを経て炭酸カルシウムに戻すことができ、もって得られる無機粒子中の酸化カルシ ゥムの存在による様々な問題を回避できる。 [0048] In the configuration of claim 26, since the post-treatment is performed by suspending the burned product after the combustion treatment in water and blowing the carbon dioxide gas for carbonation, the raw papermaking sludge contains calcium carbonate. In addition, calcium oxide converted from the calcium carbonate in the combustion process can be returned to calcium carbonate through calcium hydroxide, and various problems due to the presence of calcium oxide in the inorganic particles obtained can be avoided.
[0049] 一方、請求項 27の発明によれば、上記の無機粒子の製造に特に好ましく適用でき る製造プラントが提供される。 [0049] On the other hand, according to the invention of claim 27, a production plant that can be particularly preferably applied to the production of the inorganic particles is provided.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0050] 請求項;!〜 12に係る本発明の無機粒子の製造方法また製造プラントの一実施形 態は、図 1〜図 3に例示するとおりである。 [0050] One embodiment of the method for producing inorganic particles and the production plant according to the present invention according to claims;! To 12 is as illustrated in FIGS.
[0051] まず、本発明の製造方法の基本的なフローを図 1について説明する。 First, the basic flow of the manufacturing method of the present invention will be described with reference to FIG.
図 1は本発明のスラッジを原料とする無機粒子の製造方法の基本フローシートを示 す図である。以下本基本フローシートに従って説明する。 FIG. 1 is a diagram showing a basic flow sheet of a method for producing inorganic particles using the sludge of the present invention as a raw material. The following description will be made according to the basic flow sheet.
[0052] [スラッジ] [0052] [Sludge]
スラッジは本発明に係る無機粒子の原料となる。原料の製紙スラッジは、パルプ化 工程、紙製造工程、古紙再生工程などの製紙工場の各種工程から排出される廃水 に対してスラッジ回収処理として、凝集 ·沈殿 ·濃縮 ·脱水等の工程を適宜組合せて
行って、各廃水が含有する固形分を回収したもの (製紙スラッジ各種)を、単独、また は混合して適宜原料スラッジとして用いることができる。このうち古紙再生工程からの スラッジについては、古紙脱墨工程の加圧浮上 (フローテーシヨン、または浮選)およ び/または洗浄によって古紙パルプから分離排出される脱墨廃液に対して凝集およ び脱水処理を行い、脱墨排水中の固形分を脱墨スラッジとして回収することが推奨さ れる。また、白色度の低い古紙原料からスラッジを回収する場合には、古紙再生工程 における脱墨処理及び浮選処理を充分に行い、カーボンブラックなどを含むインク粒 子をできるだけ除去しておくのがよぐ必要に応じて複数回のスラッジの加圧浮上ェ 程および/または洗浄工程を追加することもできる。また、古紙脱墨工程から回収する 脱墨スラッジについては、上質古紙、新聞古紙、雑誌(塗工紙系)古紙などに分別し て古紙種類毎の脱墨スラッジを調製し、必要に応じてこれらの古紙種類別脱墨古紙 を単独、または混合して適宜原料スラッジとして用いることができる。 Sludge is a raw material for inorganic particles according to the present invention. Raw material paper sludge is a combination of processes such as agglomeration, precipitation, concentration, and dehydration as a sludge recovery process for wastewater discharged from various processes in the paper mill, such as pulping, paper manufacturing, and used paper recycling. The The solids (various types of paper sludge) obtained by collecting the solids contained in each wastewater can be used alone or as a mixture and appropriately used as raw material sludge. Among these, sludge from the used paper recycling process is agglomerated with the deinking waste liquid separated and discharged from the used paper pulp by pressurized flotation (floatation or flotation) and / or washing in the used paper deinking process. It is recommended to perform dehydration and collect the solid content in the deinking wastewater as deinking sludge. In addition, when recovering sludge from wastepaper raw materials with low whiteness, it is advisable to sufficiently perform deinking and flotation in the wastepaper recycling process to remove as much ink particles as possible, including carbon black. If necessary, multiple sludge pressurization and / or washing steps can be added. The deinking sludge collected from the wastepaper deinking process is separated into high-quality wastepaper, newspaper wastepaper, magazine (coated paper) wastepaper, etc., and deinking sludge is prepared for each type of wastepaper. The deinked waste paper classified by type of waste paper can be used as a raw material sludge as appropriate, either alone or in combination.
[0053] なお、製紙スラッジ中の無機成分 (灰分)は、製紙用填料や塗工紙用顔料に由来 するカオリン(クレー)および炭酸カルシウムが無機成分全体の約 80〜95重量%を 占める主成分であり、タルク、二酸化チタンなどが少量混在している。前記無機成分 の主成分であるカオリン、および炭酸カルシウムの比率は処理する古紙の種類等に よって多少のばらつきはある力 概ねカオリン/炭酸カルシウムの重量比で 20/80 〜80/20の範囲である。また、上記無機成分 (灰分)中のカルシウム(CaO換算)、 アルミニウム (Al O換算)およびケィ素(SiO換算)のそれぞれの含有比率(カルシ [0053] The inorganic component (ash) in the papermaking sludge is a main component in which kaolin (clay) and calcium carbonate derived from papermaking fillers and coated paper pigments account for about 80 to 95% by weight of the total inorganic components. It contains a small amount of talc, titanium dioxide, etc. The ratio of kaolin, which is the main component of the inorganic component, and calcium carbonate varies slightly depending on the type of waste paper to be treated, etc. The weight ratio of kaolin / calcium carbonate is generally in the range of 20/80 to 80/20. . In addition, calcium (CaO equivalent), aluminum (AlO equivalent) and silicon (SiO equivalent) in each inorganic component (ash)
2 3 2 2 3 2
ゥム/アルミニウム/ケィ素)は、 13〜73/12〜40/15〜47である。 (Um / aluminum / caenium) is 13-73 / 12-40 / 15-47.
[0054] また、製紙スラッジ中の有機成分、および無機成分の比率は、処理する古紙の種 類や脱墨工程程度によって多少は変動するが、概ね無機成分/有機成分の重量比 で 30/70〜80/20の範囲である。 [0054] The ratio of the organic component and the inorganic component in the papermaking sludge varies somewhat depending on the type of waste paper to be treated and the deinking process, but the weight ratio of the inorganic component / organic component is generally 30/70. It is in the range of ~ 80/20.
[0055] スラッジとは別に、製紙用材料として再利用が困難な低級な古紙やそれに付随する プラスチックを主とした RPF (Refused Paper & Plastic Fuel)を原料として使 用することあでさる。 [0055] Apart from sludge, RPF (Refused Paper & Plastic Fuel), mainly low-grade waste paper that is difficult to reuse as a papermaking material and its associated plastic, is used as a raw material.
[0056] 各種工程の廃水から原料スラッジを固形分として回収する方法としては、濾過、遠 心分離、加圧脱水、圧搾等の方法が挙げられ、前記各種方法を組合せて所要の含
水率の製紙スラッジを得る。好適な濾過装置としては、ロータリースクリーンと称される 濾過装置があり、また脱水装置としては、スクリュープレスと称される加圧'圧搾脱水 装置があり、これらの濾過装置、圧搾装置を単独、または適宜組合せて用いることが できる。 [0056] Examples of methods for recovering raw material sludge from wastewater from various processes as solids include methods such as filtration, centrifugal separation, pressure dehydration, and squeezing. Get water-making paper sludge. As a suitable filtration device, there is a filtration device called a rotary screen, and as a dehydration device, there is a pressurization / squeeze dehydration device called a screw press, and these filtration devices and squeezing devices are used alone or Combinations can be used as appropriate.
[0057] スラッジ中の固形分濃度は、脱水機の能力の違いで異なるため、通常 5〜60質量 %であるが、固形分濃度 60質量%を超えるものは現状の脱水機あるいは濃縮機の 能力では達成が難しい。 [0057] The solids concentration in the sludge varies depending on the capacity of the dehydrator, so it is usually 5 to 60% by mass. However, if the solid content exceeds 60% by mass, the capacity of the current dehydrator or concentrator It is difficult to achieve.
[0058] [乾燥工程] [0058] [Drying process]
本発明では、熱処理工程で用いられるに用いるスラッジの固形分濃度は特に限定 はないが、熱処理工程中のエネルギーコストを低減する観点から、また熱処理装置を 小さくする観点から、スラッジの固形分濃度はなるべく高くした方が好ましいので、 70 %以上にするのがよい。しかるに、前記の脱水工程のみでは、脱水装置機の能力に よって異なるものの、固形分濃度は概ね 5〜60質量%程度であるため、更に乾燥処 理して固形分濃度を高めることが推奨される。 In the present invention, the solid concentration of sludge used in the heat treatment step is not particularly limited, but from the viewpoint of reducing energy costs during the heat treatment step and from the viewpoint of reducing the heat treatment apparatus, the sludge solid concentration is Since it is preferable to make it as high as possible, it should be 70% or more. However, although only the above-mentioned dehydration process varies depending on the capacity of the dehydrator, the solid content concentration is approximately 5 to 60% by mass, so it is recommended that the solid content concentration be further increased by drying treatment. .
[0059] スラッジの固形分濃度を高くするために、図 1に示すように、熱処理工程前にスラッジ を乾燥する乾燥工程を設けることが好ましい。乾燥工程で用いる乾燥機としては、特 に限定はなぐ直接加熱型ロータリーキルン、間接加熱型ロータリーキルン、気流乾 燥機、流動層乾燥機、振動流動乾燥機、回転 ·通気回転乾燥機(サイクロン)などを 用いること力 Sできる。また、これら乾燥機の熱源としては、後述する焼成処理工程の排 熱を使用することにより、エネルギーコストを低減することが可能である。 [0059] In order to increase the solid content concentration of the sludge, it is preferable to provide a drying step for drying the sludge before the heat treatment step, as shown in FIG. The dryers used in the drying process are not limited to direct heating rotary kilns, indirect heating rotary kilns, air dryers, fluidized bed dryers, vibratory fluid dryers, rotary / aeration rotary dryers (cyclones), etc. The power to use is S. Further, as the heat source of these dryers, it is possible to reduce the energy cost by using the exhaust heat of the baking treatment process described later.
[0060] 乾燥処理の温度は、気流乾燥機や回転'通気回転乾燥機のような熱風を利用して 乾燥させる装置においては、スラッジの燃焼や炭化を防止するために熱風温度を 60 0°C以下とすることが好ましぐ 250°C以下とすることが特に好ましい。この熱風温度 が高過ぎては、スラッジが発火し、その際の焼成条件が適切でなければ、易燃焼性 の有機成分が炭化して難燃焼性に変化する懸念がある。また、乾燥工程においては 乾燥効率を向上させるために、スラッジを細力べ解すことが好ましぐ撹拌機や機械式 ロール等により強制的にスラッジを解し、必要に応じてスラッジを 300〜2000 m程 度に分級して乾燥させることが好ましい。
[0061] また本発明の熱処理工程に用いるスラッジは、熱処理装置内にスラッジが積層され た時に酸素と接触できる大きさ、形状であれば特に限定はない。しかし、スラッジを細 かぐかつ大きさを均一にすると、スラッジが細密充填のように積層され、積層内に酸 素が入り込まないため、有機物、特にカーボンの燃焼が不十分になり白色度が向上 しない可能性がある。また、スラッジを大きくし過ぎると、カーボンを完全に燃焼するこ とができず、スラッジ塊状の中心部に未燃カーボンが残存する可能性がある。以上の ことから、本発明で用いられるスラッジは、長さまたは直径が 2mm以上 30mm以下の 範囲の大きさのものを用いるのが好ましい。形状は、円柱状、球状、楕円、三角形、 その他の多角形や、凹凸を有するものなどを用いることができる。 [0060] The temperature of the drying process is 60 ° C in order to prevent sludge from burning and carbonization in an apparatus that uses hot air such as an airflow dryer or a rotary 'aeration rotary dryer'. It is particularly preferable that the temperature be 250 ° C or less. If the hot air temperature is too high, sludge will ignite, and if the firing conditions are not appropriate, the combustible organic components may be carbonized and become non-combustible. Also, in the drying process, to improve the drying efficiency, sludge is forcibly removed with a stirrer or mechanical roll, etc., where it is preferable to unscrew the sludge. It is preferable to classify to about m and dry. [0061] The sludge used in the heat treatment step of the present invention is not particularly limited as long as it has a size and shape that can come into contact with oxygen when the sludge is laminated in the heat treatment apparatus. However, if the sludge is made fine and the size is uniform, the sludge is layered like a close packing, and oxygen does not enter the layer, so the burning of organic matter, especially carbon, becomes insufficient and the whiteness does not improve there is a possibility. If the sludge is too large, the carbon cannot be burned completely and unburned carbon may remain in the center of the sludge lump. From the above, the sludge used in the present invention preferably has a length or diameter in the range of 2 mm to 30 mm. As the shape, a cylindrical shape, a spherical shape, an ellipse, a triangle, another polygonal shape, or an uneven shape can be used.
[0062] 前記した所望の大きさ、形状にスラッジを成形するために、造粒成形することも可能 である。スラッジを造粒する方法は、プリケットマシンやローラーコンパクタ一等の圧縮 成形機を用いる方法、ディスクペレツターのような半乾式造粒機を用いる方法、転動 造粒法や攪拌造粒法、押出成形法等がある。 [0062] In order to form the sludge into the desired size and shape as described above, it is possible to perform granulation. Sludge can be granulated by using a compression molding machine such as a rivet machine or roller compactor, a method using a semi-dry granulator such as a disk pelleter, a rolling granulation method or a stirring granulation method, There are extrusion molding methods.
[0063] また前記のように造粒成形機を用いてスラッジを造粒させなくても、含水スラッジを 乾燥機に投入あるいは乾燥スラッジを熱処理装置に投入する時のスクリューフィーダ 一などで大きさを調整することも可能である。また、スラッジ乾燥機で大きさ、形状を 調整することも可能である。 [0063] Even if the sludge is not granulated using the granulation molding machine as described above, the size can be increased with a screw feeder or the like when the hydrous sludge is charged into the dryer or the dried sludge is charged into the heat treatment apparatus. It is also possible to adjust. It is also possible to adjust the size and shape with a sludge dryer.
[0064] 処理工程] [0064] Processing step
本発明の熱処理工程は、過剰空気(酸素)雰囲気で行うことで、燃焼効率が向上す るため、熱処理装置を小規模化、省力化することができる。その熱処理温度は、スラ ッジ中のカーボンブラック等のインク顔料や繊維およびポリマー等の有機物を安定し て燃焼させる温度になるように後述の方法により制御される。 When the heat treatment step of the present invention is performed in an excess air (oxygen) atmosphere, the combustion efficiency is improved, so that the heat treatment apparatus can be reduced in size and labor can be saved. The heat treatment temperature is controlled by a method to be described later so that ink pigments such as carbon black in sludge and organic substances such as fibers and polymers can be stably burned.
[0065] このような熱処理工程に使用される熱処理装置の一例を図 2に示した。図 2は本発 明の熱処理工程に使用される、間接的加熱型ロータリンキルンを使用した熱処理装 置の構成図である。 An example of a heat treatment apparatus used for such a heat treatment step is shown in FIG. FIG. 2 is a configuration diagram of a heat treatment apparatus using an indirect heating type rotary kiln used in the heat treatment process of the present invention.
[0066] 熱処理工程の主要部となる焼成炉としては、特に限定はなぐトンネルキルン、ロー ラーハースキルン、プッシヤーキルン、シャトルキルンのような箱型炉、縦型円筒炉、 回転式横型円筒炉、スクリュー式横型円筒炉などを用いることができる。スラッジを供
給する方式としてはバッチ式、連続式があるが、多量に処理できる連続式の方が好ま しい。スラッジへの伝熱が良好で、加熱炉内のスラッジがより均一に表面に出ることが できる回転式横型円筒炉あるいは流動させることが可能なスクリュー式横型円筒炉を 用いることが好ましレ、。設備の維持の面から極力単純なもので駆動エネルギーが少 ない、回転式横型円筒炉であるロータリーキルンが好ましい。ロータリーキルンの焼 成室の形としては円筒型、六角型などを使用することができる。ロータリーキルンとし ては、高砂工業 (株)の外熱式連続ロータリーキルン、(株)栗本鉄工所の連続外熱 式ロータリーキルン IRK型、(株)ノリタケエンジニアリングの間接加熱連続式ロータリ 一キルン RKC— SG型、岩佐機械工業 (株)の外熱型ロータリーキルンなどを用いる こと力 Sできる。また、キルン炉内にリフタ一や回転駆動できる攪拌部材を設けることで 、スラッジと酸素がより多くかつ均一に接触するので、有機分の燃焼が効率的に行わ れ、スラッジ焼成物の白色度が向上し品質も均一になるのでより好ましい。さらに、多 筒型キルンやキルンの焼成室内を多分割隔壁構造にすることで、伝熱面積が増大、 かつ、スラッジへのキルン炉内のスラッジ積層 '堆積が低減され、スラッジと酸素との 接触、およびスラッジへの伝熱が良くなるので、スラッジ焼成物の白色度が向上し、 均一な品質を得ることができるので好ましい。また、焼成室内を多分割隔壁構造にす ることで、従来のキルンよりも前述のようにスラッジ積層 ·堆積を低減させることができ るため、多くのスラッジを処理することが可能で、熱処理装置を小規模化することがで きる。焼成室内の分割数については、特に限定はないが、好ましくは 6分割以上、さ らに好ましくは 10分割以上である。 [0066] The firing furnace that is the main part of the heat treatment process is not particularly limited. Box furnaces such as tunnel kilns, roller hanger kilns, pusher kilns, shuttle kilns, vertical cylindrical furnaces, rotary horizontal cylindrical furnaces, screws A horizontal horizontal cylindrical furnace or the like can be used. Provide sludge There are batch and continuous methods of feeding, but the continuous method is preferred because it can process a large amount. It is preferable to use a rotary horizontal cylindrical furnace that has good heat transfer to the sludge and allows the sludge in the heating furnace to come out to the surface more uniformly or a screw type horizontal cylindrical furnace that can flow. A rotary kiln that is a rotary horizontal cylindrical furnace that is as simple as possible from the viewpoint of maintenance of the equipment and requires less driving energy is preferable. Cylindrical and hexagonal types can be used for the rotary kiln firing chamber. As rotary kilns, external heating continuous rotary kilns from Takasago Industry Co., Ltd., continuous external heating rotary kilns IRK type from Kurimoto Steel Works, indirect heating continuous rotary kiln RKC-SG type from Noritake Engineering Co., Ltd., It is possible to use an externally heated rotary kiln manufactured by Iwasa Machinery Co., Ltd. In addition, by providing a lifter and a rotationally driven stirring member in the kiln furnace, more sludge and oxygen are in uniform contact with each other, so that the organic matter is burned efficiently and the whiteness of the sludge burned product is improved. It is more preferable because it improves and makes the quality uniform. In addition, the multi-cylinder kiln and the kiln firing chamber have a multi-partition partition structure, which increases the heat transfer area, reduces sludge stacking in the kiln furnace, and reduces sludge contact with oxygen. Since heat transfer to the sludge is improved, the whiteness of the sludge fired product is improved, and uniform quality can be obtained. In addition, since the firing chamber has a multi-partition partition structure, sludge stacking / deposition can be reduced as described above compared to conventional kilns, so that a large amount of sludge can be treated. Can be scaled down. The number of divisions in the firing chamber is not particularly limited, but is preferably 6 divisions or more, and more preferably 10 divisions or more.
[0067] そこで本発明の熱処理工程に使用される熱処理装置に好適に使用可能なこれらの 焼成炉を使用した熱処理装置を、横型または縦型の筒を使用して!/、るので筒型熱処 理装置と称する。 [0067] Therefore, the heat treatment apparatus using these firing furnaces that can be suitably used in the heat treatment apparatus used in the heat treatment process of the present invention uses a horizontal or vertical cylinder! / It is called a processing device.
[0068] 図 2に本発明の熱処理工程に好適に用いられる熱処理装置の一例の構成図を示 した。図 2に示すように、脱水、乾燥、造粒の各処理を単独または組み合わせて処理 したスラッジ Sが図示を省略した乾燥装置から送られ、筒型熱処理装置の一例である 連続式間接的加熱型ロータリーキルン 1の筒軸方向の一端部に設置されたスラッジ 供給口となる供給ホッパ 2に投入され、スクリューフィーダ一 10を介してロータリーキ
ルン 1内の焼成室 9へと供給される。スラッジ Sはロータリーキルン 1の焼成室 9内を通 過しながら、その内部の有機成分が燃焼される。燃焼した後のスラッジ Sはスラッジ供 給口に対して筒軸方向の反対側の端部に設置されたスラッジ排出口 8を通して炉外 に取り出され次の工程に送られる。 FIG. 2 shows a configuration diagram of an example of a heat treatment apparatus preferably used in the heat treatment step of the present invention. As shown in Fig. 2, sludge S, which has been subjected to dehydration, drying, and granulation treatment alone or in combination, is sent from a drying device (not shown) and is an example of a cylindrical heat treatment device. The rotary kiln 1 is introduced into a supply hopper 2 serving as a sludge supply port installed at one end in the cylinder axis direction, and is rotated through a screw feeder 10. It is supplied to the firing chamber 9 in Run 1. As the sludge S passes through the firing chamber 9 of the rotary kiln 1, the organic components therein are combusted. The sludge S after combustion is taken out of the furnace through a sludge discharge port 8 installed at the end opposite to the cylinder axis direction with respect to the sludge supply port, and sent to the next process.
[0069] 供給ホッパ 2の近傍に排気手段としての排気ファン 4が設置されており、この排気フ アンがロータリーキルン 1内の空気を強制排気することによってロータリーキルン 1内 へ、スラッジ排出口 8の近傍に設置された空気供給口 3からロータリーキルン 1内に空 気が破線矢印 Aで示すように吸入される。このように空気供給口 3から排気ファン 4方 向へ破線矢印 Aで示す空気流が常に発生することになる。この空気流が後に説明す る未燃焼物搬送用空気流 Aとなる。この空気量の制御は排気ファン 4の排気量を制 御することで行われる。この空気量は炉内が過剰(富)酸素雰囲気下になるように過 剰に吸入されるよう制御されることが好ましい。この詳細は後に説明する。 [0069] An exhaust fan 4 is installed as an exhaust means in the vicinity of the supply hopper 2, and the exhaust fan forcibly exhausts the air in the rotary kiln 1 to the rotary kiln 1 and in the vicinity of the sludge discharge port 8. Air is drawn into the rotary kiln 1 from the installed air supply port 3 as shown by the dashed arrow A. In this way, the air flow indicated by the broken-line arrow A from the air supply port 3 toward the exhaust fan 4 always occurs. This air flow becomes an air flow A for conveying unburned matter, which will be described later. This air amount control is performed by controlling the exhaust amount of the exhaust fan 4. This amount of air is preferably controlled so as to be excessively sucked so that the inside of the furnace is in an excess (rich) oxygen atmosphere. Details of this will be described later.
[0070] ロータリーキルン 1の炉内を加熱する熱は主として間接的加熱手段 5から供給され る。この熱によって焼成室 9内を間接的に加熱している。ロータリーキルン 1の焼成室 9内でスラッジ中の可燃成分が燃焼することによつても熱が発生する力 S、この熱に比 ベて間接的加熱手段 5から供給される熱の方がはるかに大きい。この間接的加熱手 段 5を制御することにより、ロータリーキルン 1内の温度を均一に維持する。この間接 的加熱手段 5としては、電気的な加熱も可能である力 灯油や重油の燃焼ガスによる 加熱、ガスバーナーによる加熱が経済的に好ましい。既存の焼却設備から排出され る燃焼排ガスを使用することもできるし、水蒸気などを使用することもできる。本図 2に 示した例では循環ブロア一 7によって燃焼排ガスが間接的加熱手段 5として供給され ている。 The heat for heating the inside of the rotary kiln 1 is mainly supplied from the indirect heating means 5. The inside of the firing chamber 9 is indirectly heated by this heat. The heat generated by burning combustible components in the sludge in the firing chamber 9 of the rotary kiln 1 S, the heat supplied from the indirect heating means 5 is much greater than this heat . By controlling this indirect heating means 5, the temperature in the rotary kiln 1 is kept uniform. As the indirect heating means 5, heating with a combustion gas of power kerosene or heavy oil, which can be electrically heated, or heating with a gas burner is economically preferable. Combustion exhaust gas discharged from existing incineration facilities can be used, and steam can also be used. In the example shown in FIG. 2, the combustion exhaust gas is supplied as indirect heating means 5 by the circulation blower 17.
[0071] スラッジ中の有機成分は基本的にはロータリーキルン 1の焼成室 9内で燃焼させる 力 S、一部の未燃焼物は空気流 Aに載せて、ロータリーキルン 1内から取り出される。排 気ファン 4を通して強制排気される空気流は熱風であるので、熱風循環ファン 6を用 いて図示を省略したスラッジ乾燥機などに送風されて熱エネルギーとして再利用する ことが好ましい。 [0071] The organic component in the sludge is basically burned in the firing chamber 9 of the rotary kiln 1 and a part of the unburned matter is taken out from the rotary kiln 1 on the air stream A. Since the air flow forcedly exhausted through the exhaust fan 4 is hot air, it is preferable to use the hot air circulation fan 6 to be blown to a sludge dryer (not shown) and reused as heat energy.
[0072] 以上説明したように本発明の熱処理工程は、過剰空気(酸素)雰囲気下で均一な
温度コントロールが可能な間接的加熱方法により行われる。間接的加熱方法とは、 焼成室 (炉内) 9を加熱するひとつの方法であり、間接的加熱型の燃成炉は、燃焼ガ スあるいは燃焼ガスにより生じた熱風とスラッジが直接接触しないように隔壁が設けて あるのでこう呼ばれる。他の加熱方法としては、火炎、あるいは燃焼ガス、熱風を筒の 一端から吹き込む直接的加熱方法がある。直接的加熱型の焼成炉は、焼成室 (炉内 )の一端から加熱する方法であるため、加熱側とその反対側では、温度が大きく異な り、焼成室(炉内)全体の温度を正確にコントロールすることができない。それに対し て、間接型加熱方法は、直接的加熱方法のように燃焼ガスあるいは熱風を筒の一端 から吹き込む方式ではなぐ焼成室 (炉内)全体を加熱する方式であるため、熱処理 装置全体の均一な温度コントロールが容易となる。均一な温度コントロールは以下の ような理由により重要である。 [0072] As described above, the heat treatment step of the present invention is uniform in an excess air (oxygen) atmosphere. It is performed by an indirect heating method capable of controlling the temperature. The indirect heating method is a method of heating the firing chamber (inside the furnace) 9, and the indirect heating type combustion furnace prevents direct contact between the hot air generated by the combustion gas or combustion gas and the sludge. It is called this because there is a partition wall. As another heating method, there is a direct heating method in which a flame, combustion gas, or hot air is blown from one end of a cylinder. Since the direct heating type firing furnace is a method of heating from one end of the firing chamber (inside the furnace), the temperature differs greatly between the heating side and the opposite side, and the temperature of the entire firing chamber (inside the furnace) is accurate. Cannot be controlled. On the other hand, the indirect heating method is a method in which the entire firing chamber (inside the furnace) is heated rather than a method in which combustion gas or hot air is blown from one end of the cylinder as in the direct heating method. Temperature control becomes easy. Uniform temperature control is important for the following reasons.
[0073] スラッジ中には、カーボンブラック等のインク成分や繊維およびポリマー等の有機物 と炭酸カルシウム、カオリン、タルクなどの無機粒子などが存在している。スラッジ焼成 物の白色度を向上させるには黒インキ成分であるカーボンブラックを除去することが 必要である。単体のカーボンブラックを完全に燃焼させるには少なくとも過剰空気雰 囲気下で 600°Cにて 60分、 850°Cにて 20分の燃焼処理時間が少なくとも必要であ ること力 、なるべく熱処理温度を高くした方がよい。しかし、あまり温度を高くし過ぎ ると、スラッジ中の無機粒子が焼結変化し、スラッジ焼成物が硬くなつてしまい、製紙 用材料としては好ましくな!/、性質を呈しゃすレ、。 [0073] The sludge contains ink components such as carbon black, organic substances such as fibers and polymers, and inorganic particles such as calcium carbonate, kaolin, and talc. In order to improve the whiteness of the sludge fired product, it is necessary to remove carbon black, which is a black ink component. In order to completely burn a single carbon black, it is necessary to have a combustion treatment time of at least 60 minutes at 600 ° C and 20 minutes at 850 ° C in an excess air atmosphere. It is better to make it higher. However, if the temperature is set too high, the inorganic particles in the sludge will change in sintering, and the fired sludge will become hard, which is preferable as a papermaking material!
[0074] 前記高温の熱処理による無機粒子が硬質化は、以下のスラッジが主として含有す る無機物の炭酸カルシウムとカオリン (クレー)の熱的変質現象に起因する。すなわち 、炭酸カルシウムは 600°Cを越えた付近から脱炭酸を始め、少なくとも一部が酸化力 ルシゥムに分解され始め、 900°Cで完全に酸化カルシウムに分解する。タルクは 900 °Cまで結晶構造は変化しない。二酸化チタンは 1000°Cでも安定であり、全く変化し ない。 カオリンは、 400°Cを超えた付近から結晶水が脱離し、 500〜850°Cまでは 非晶質のメタカオリンとして存在する。この非晶質のメタカオリンは、焼成カオリンと呼 ばれるもので、嵩高ぐ不透明度が良好で、平滑性に優れる無機粒子である。 900°C を超えると、 γアルミナ、ムライトを生成する。これらの γアルミナ、ムライトは、非常に
硬いため、ワイヤー摩耗、塗工ブレード摩耗が悪くなるため、製紙用材料としては好 ましくない。また、 850°Cをやや超えた領域で、非晶質のメタカオリンと先出の炭酸力 ルシゥムから分解された酸化カルシウムが存在すると、化学反応により、硬い、再利 用に適さなレ、グーレナイトが生成する。 [0074] Hardening of the inorganic particles by the high-temperature heat treatment is caused by a thermal alteration phenomenon of inorganic calcium carbonate and kaolin (clay), which are mainly contained in the following sludge. That is, calcium carbonate begins to be decarboxylated from above 600 ° C, and at least part of it begins to be decomposed into oxidizing power, and completely decomposes into calcium oxide at 900 ° C. Talc does not change its crystal structure up to 900 ° C. Titanium dioxide is stable at 1000 ° C and does not change at all. Kaolin is desorbed from around 400 ° C and exists as amorphous metakaolin from 500 to 850 ° C. This amorphous metakaolin, which is called calcined kaolin, is an inorganic particle that is bulky and has good opacity and excellent smoothness. When it exceeds 900 ° C, γ-alumina and mullite are produced. These γ-alumina and mullite are very Since it is hard, wire wear and coating blade wear will deteriorate, making it unfavorable as a papermaking material. Also, in the region slightly above 850 ° C, the presence of amorphous metakaolin and calcium oxide decomposed from the above-mentioned carbonic acid power, the hard, reusable oleite and gorenite can be formed by chemical reaction. Generate.
[0075] よって、本発明の熱処理工程のスラッジ温度は、硬い焼成物が生成しない 850°Cを 超えないことが好ましい。また、最高温度が 600°C未満では白色度を向上させるには 非常に長い処理時間がかかり、エネルギーコストが高くなるだけでなぐ熱処理装置 も大きくなるため、実用上あまり好ましくない。従って、好ましいスラッジ温度としては、 600°C以上 850°C以下が好ましぐ 600°C以上 800°C以下がより好ましい。 ) Therefore, it is preferable that the sludge temperature in the heat treatment step of the present invention does not exceed 850 ° C. at which a hard fired product is not formed. Also, if the maximum temperature is less than 600 ° C, it takes a very long processing time to improve the whiteness, and the heat treatment apparatus that increases not only the energy cost increases, but this is not preferable in practice. Accordingly, a preferable sludge temperature is preferably 600 ° C or higher and 850 ° C or lower, more preferably 600 ° C or higher and 800 ° C or lower. )
[0076] また、本発明の熱処理工程においては、 850°Cを超えない温度までスラッジ温度を 段階的に上げてレ、つてもよ!/、。 [0076] In the heat treatment step of the present invention, the sludge temperature may be increased stepwise to a temperature not exceeding 850 ° C!
[0077] 結局、このようにスラッジ焼成物が硬くなることを未然に防ごうとすると焼成時のスラ ッジ温度を低めに設定することになり、スラッジ S中の有機分を完全に燃焼させること は困難であり、カーボンブラックに代表される未燃焼物が若干残存するおそれがある 。なお、ここに示した温度は焼成室 9内で焼成処理される際のスラッジ温度であり、熱 処理装置内雰囲気温度とは厳密には異なる。熱処理装置内雰囲気温度は供給され る空気の温度にもよる力 通常、スラッジ温度よりも低くなる。 [0077] After all, to prevent the fired sludge from becoming hard in this way, the sludge temperature at the time of firing is set lower, and the organic content in the sludge S is completely burned. Is difficult, and there is a possibility that some unburned matter represented by carbon black remains. The temperature shown here is the sludge temperature at the time of firing in the firing chamber 9, and is strictly different from the ambient temperature in the heat treatment apparatus. The temperature in the heat treatment apparatus is a force that depends on the temperature of the supplied air. Usually, it is lower than the sludge temperature.
[0078] 本発明の熱処理工程において、熱処理装置内を過剰空気雰囲気下、つまり富酸 素雰囲気下で熱処理する理由は、スラッジが含有する有機物の燃焼を効率的に行う ためである。ここでいう過剰(富)酸素雰囲気下とは、燃焼排ガス中の残留酸素濃度 力 5%以上の状態となるように、燃焼対象の有機物に対して燃焼に必要な充分な空 気 (酸素)を供給し、有機物が完全燃焼できる状態のことである。また、排気する空気 量、吸入する空気温度によりスラッジ温度を調整することも可能である。 [0078] In the heat treatment step of the present invention, the reason why the heat treatment apparatus is heat-treated in an excess air atmosphere, that is, in an oxygen-rich atmosphere is to efficiently burn organic substances contained in the sludge. The excess (rich) oxygen atmosphere here means that sufficient air (oxygen) necessary for combustion is applied to the organic matter to be combusted so that the residual oxygen concentration in the combustion exhaust gas is 5% or more. It is the state where the organic matter can be completely burned. It is also possible to adjust the sludge temperature according to the amount of air exhausted and the temperature of the intake air.
[0079] 熱処理装置内に吸入される空気量は、有機分を燃焼させるのに必要な理論酸素 量以上にすることが好ましい。しかし、有機分を燃焼させることで発生する燃焼ガスは 理論酸素量に相当する空気量よりも多くなるため、過剰(富)酸素化にするには、少 なくとも発生した燃焼ガスを排気する必要がある。従って、吸入する空気量は、排気 ファンの排気量を調節することで制御される。この排気量は、理論空気量の 1.1倍以
上が好ましぐより好ましくは 1. 5倍以上、さらに好ましいのは 2倍以上である。しかし 、吸入空気量が多過ぎるとスラッジ温度を下げてしまい、エネルギーコスト的にもあま り好ましくないので理論空気量の 5倍以下にすることが好ましい。また、吸入する空気 中には二酸化炭素を通常よりも多く含んでいてもよい。なお、熱処理装置内の酸素 量が理論酸素量よりも少なく不足した場合、貧酸素状態になり、スラッジが炭化するこ とで、スラッジ中に未燃カーボンが残存してしまう。この未燃カーボンを取り除くため には熱処理温度をより高くすることや、長時間の処理を必要とする。結局、所望のスラ ッジ焼成物を得ることは難しい。したがって炉内を貧酸素状態にすることは絶対に避 けなければならない。 [0079] The amount of air sucked into the heat treatment apparatus is preferably greater than or equal to the theoretical oxygen amount necessary for burning organic components. However, since the combustion gas generated by burning organic components is larger than the amount of air equivalent to the theoretical oxygen amount, it is necessary to exhaust at least the generated combustion gas in order to achieve excess (rich) oxygenation. There is. Therefore, the amount of air to be sucked is controlled by adjusting the exhaust amount of the exhaust fan. This displacement is 1.1 times the theoretical air flow More preferably, it is 1.5 times or more, more preferably 2 times or more. However, if the amount of intake air is too large, the sludge temperature is lowered, which is not preferable in terms of energy cost. Further, the inhaled air may contain more carbon dioxide than usual. When the oxygen amount in the heat treatment apparatus is less than the theoretical oxygen amount, the oxygen is in an oxygen-deficient state, and the sludge is carbonized, leaving unburned carbon in the sludge. In order to remove this unburned carbon, it is necessary to increase the heat treatment temperature or to treat for a long time. In the end, it is difficult to obtain the desired sludge fired product. Therefore, it is absolutely necessary to avoid making the inside of the furnace hypoxic.
[0080] 本発明にお!/、ては、過剰(富)酸素雰囲気下でスラッジ Sをより完全に燃焼させるた めに高温処理することによりスラッジ焼成物の白色度は高くなる力 S、先に述べたように 硬い焼成物が発生し易くなる。 [0080] In the present invention, the force S that increases the whiteness of the sludge fired product by high-temperature treatment in order to burn the sludge S more completely in an excess (rich) oxygen atmosphere. As mentioned above, hard fired products are easily generated.
[0081] 本発明では、図 2に示したように空気供給口 3をスラッジ排出口 8の近傍に設置し、 未燃焼物搬送用空気流 Aを排出する排気ファン 4をスラッジ供給口 2の近傍に設置し た場合は、熱処理装置内にスラッジ Sの進行する方向 Bと対向する方向に未燃焼物 搬送用空気流 Aを発生させることができる。 In the present invention, as shown in FIG. 2, the air supply port 3 is installed in the vicinity of the sludge discharge port 8, and the exhaust fan 4 that discharges the unburned matter conveying air stream A is installed in the vicinity of the sludge supply port 2. When installed in the heat treatment apparatus, it is possible to generate an unburned substance transfer air flow A in a direction opposite to the direction B in which the sludge S travels in the heat treatment apparatus.
[0082] このようにスラッジ Sの進行方向 Bと逆方向に未燃焼物搬送用空気流 Aを生じさせる 方式を本発明では向流方式と呼ぶ。この向流方式は、未燃焼物搬送用空気流がス ラッジ焼成物のスラッジ排出口 8側に送られるのと逆方向に流れていくので、スラッジ 焼成物から未燃焼物を効率よく除去でき、スラッジ焼成物の白色度を向上させること ができょり好まし!/、。特に熱処理工程の最初の段階の燃焼の際に生じるような未燃焼 物は後々まで完全燃焼されにくいので、この向流の未燃焼物搬送用空気流によって 効果的に取り除くことができる。 [0082] In this invention, the method of generating the unburned matter conveying air flow A in the direction opposite to the traveling direction B of the sludge S is called a countercurrent method. This counter-current method allows the unburned product to be removed efficiently from the sludge fired product because the air flow for conveying the unburned product flows in the opposite direction to that sent to the sludge discharge port 8 side of the sludge fired product. It is preferable to improve the whiteness of the sludge burned product! In particular, unburned matter that is generated during combustion in the first stage of the heat treatment process is difficult to be completely burned until later, and can therefore be effectively removed by this counter-flow of unburned matter carrying air flow.
[0083] したがって、白色度をより高くするためにスラッジの未燃焼物の 100%の完全燃焼 の保障を図り、スラッジ温度をより高めに設定したりするより、 100%の燃焼の保障は 断念して微量の未燃焼物の発生を看過し、寧ろその未燃焼物をスラッジ焼成物から 取り除くことによって高白色度でかつ高硬度合成物を含有しない無機粒子を得ようと することに本発明の特徴がある。前記した未燃焼物とは、未燃有機物のことで大半は
未燃カーボン粒子、換言すれば炭化物粒子である。つまりカーボンブラック状物質で あり、カーボンブラックの性状は大きさが 10〜500nmで、比重 1. 8〜; 1. 9の微粉末 状である。この微粉末状の未燃焼物を取り除くために、炉内の空気を排気ファン 4に より排出することにより、未燃焼物搬送用空気流 Aを熱処理装置内に発生させ、搬送 用空気流 Aに載せて未燃焼物を取り出しているのである。このように排気ファンなどを 用いて未燃焼物搬送用空気流を強制排気させることが非常に好ましい。このような強 制排気に加えて空気を強制導入させると更に好ましい。 [0083] Therefore, in order to achieve higher whiteness, 100% complete combustion of unburned sludge is guaranteed, and 100% combustion is abandoned rather than setting the sludge temperature higher. The feature of the present invention is to obtain inorganic particles that have high whiteness and do not contain a high-hardness composite by overlooking the generation of a small amount of unburned matter and, rather, removing the unburned matter from the sludge burned product. There is. The above-mentioned unburned substances are unburned organic substances, most of which are Unburned carbon particles, in other words, carbide particles. In other words, it is a carbon black-like substance, and the carbon black has a size of 10 to 500 nm and a fine powder with a specific gravity of 1.8 to 1.9. In order to remove the unburned matter in the form of fine powder, the air in the furnace is exhausted by the exhaust fan 4 to generate an unburned matter transfer air flow A in the heat treatment apparatus, and the transfer air flow A is generated. The unburned material is taken out by placing it. In this way, it is very preferable to forcibly exhaust the unburned-substance-conveying air flow using an exhaust fan or the like. More preferably, air is forcibly introduced in addition to such forced exhaust.
[0084] 強制排気等による未燃焼物空気流の流速は、微粉末状の未燃焼物を取り除くこと ができる流速であれば特に限定はないが、流速が遅い場合は、空気流が供給ホッパ 2側に流れず、未燃焼物を上手く取り除くことができずにスラッジ焼成物中に混入して しまい、白色度が低下してしまう懸念がある。上記のような性状のカーボンブラックを 含む未燃焼物を搬送する未燃焼物搬送用空気流の流速は 0. 4m/分以上が好まし く、より好ましくは 0. 8〜; 1. 5m/分以上、特に好ましくは 1. 5m/分以上である。し かし、空気流の流速があまり速すぎるとスラッジ焼成物もいっしょに排気ファン 4側に 混入する恐れが大きくなり熱効率も低下する。尚、この空気流の流速は排気ファンの 排気量、空気温度等を測定し、それらの値と熱処理装置内の温度等から理論的に求 めた。 [0084] The flow rate of the unburned product air flow by forced exhaust or the like is not particularly limited as long as it can remove the fine powdery unburned product, but if the flow rate is low, the air flow is supplied to the supply hopper 2. There is a concern that the unburned product cannot be removed well and mixed into the sludge fired product, resulting in a decrease in whiteness. The flow rate of the unburned matter conveying air stream carrying unburned matter containing carbon black having the above properties is preferably 0.4 m / min or more, more preferably 0.8 to 1.5 m / min. Above, particularly preferably 1.5 m / min or more. However, if the air flow velocity is too high, there is a greater risk of the sludge fired material entering the exhaust fan 4 side and thermal efficiency is also reduced. The flow rate of this air flow was theoretically determined from the measured values of the exhaust fan exhaust air temperature, air temperature, etc., and the temperature in the heat treatment equipment.
[0085] 一方、他の方式前記向流方式とは逆の空気流入方式の例を図 3に示した。図 3は 本発明の熱処理工程に使用される、間接的加熱型ロータリンキルンを使用した熱処 理装置の他の一例の構成図である。図 3中、図 2と同一の符号を付した部材は図 2に おいて説明したものと同様であるので説明を省略する。図 3の熱処理装置において は排気ファン 4がスラッジ排出口 8の近傍に設置されて!/、るしたがって、未燃焼物搬 送用空気流 A'とスラッジの進行方向 B'が同一方向となる。このような方式を本発明 では並流方式と呼ぶ。この並流方式はスラッジ焼成物と未燃焼物を分別して取り出 す排出口が同方向であるため、多少、未燃焼物がスラッジ焼成物に混入しやすい懸 念がある。また、並流方式では前記に記載したように未燃焼物搬送用空気流の流速 を調整してもスラッジ焼成物に未燃焼物が混入しやすいので向流方式の方がより好 ましい。
[0086] また本発明においては、本熱処理装置におけるスラッジ燃焼温度が高くなつた場合 に対して、一定以上の空気流入量を増大させることにより、空気流によって過剰なス ラッジ燃焼熱を熱処理装置外に排出する、すなわちロータリンキルン 1の焼成室 9内 の高温の燃焼排ガスをスラッジ供給側の排気ファン 4によってロータリーキルン 1外部 に排出することにより、焼成室 9内のスラッジ Sの燃焼温度を下げることができる。そこ で、本熱処理装置では上記とは逆に温度が高!/、場合であっても一定量以上の空気 流入量を増大させることによりスラッジ燃焼熱を熱処理装置外に排出する、すなわち ロータリンキルンの本体筒部からスラッジ供給側の外部に熱を空気流と共に排出する ことにより温度を下げること力 Sできる。すなわち設定した熱処理温度以上に上昇する ことを避けるという制御をおこなうこと力 Sできる。従って、先ほど述べた未燃焼物搬送 用空気流 Aは、スラッジ燃焼熱排出用空気流の役割もある。この点においても、向流 方式は、空気流を排出する排気口がスラッジ供給口近傍にあるため、並流方式に比 ベてスラッジ燃焼熱が熱処理装置内を通過することなぐスラッジ燃焼熱を熱処理装 置外に排出することができ、スラッジ温度の制御を容易にすることができるのでより好 ましい。 [0085] On the other hand, FIG. 3 shows an example of an air inflow method opposite to the other method of the counter flow method. FIG. 3 is a configuration diagram of another example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention. In FIG. 3, members denoted by the same reference numerals as those in FIG. 2 are the same as those described in FIG. In the heat treatment apparatus of FIG. 3, the exhaust fan 4 is installed in the vicinity of the sludge discharge port 8! Therefore, the unburnt material carrying air flow A ′ and the sludge traveling direction B ′ are in the same direction. Such a method is called a parallel flow method in the present invention. In this parallel flow method, there is a concern that the unburned product is likely to be mixed into the sludge burned product because the outlet for separating and removing the sludge burned product and the unburned product is in the same direction. Further, in the parallel flow method, the counter-flow method is more preferable because the unburned product is easily mixed into the sludge fired product even if the flow rate of the unburned product transport air flow is adjusted as described above. [0086] Also, in the present invention, when the sludge combustion temperature in the heat treatment apparatus becomes high, the air inflow amount is increased beyond a certain level so that excess sludge combustion heat is removed from the heat treatment apparatus by the air flow. The combustion temperature of the sludge S in the firing chamber 9 is reduced by discharging the high-temperature combustion exhaust gas in the firing chamber 9 of the rotary kiln 1 to the outside of the rotary kiln 1 by the exhaust fan 4 on the sludge supply side. Can do. Therefore, in this heat treatment apparatus, contrary to the above, even if the temperature is high! /, Even if it is, the sludge combustion heat is discharged outside the heat treatment apparatus by increasing the air inflow amount above a certain amount, that is, the rotary kiln. The temperature S can be reduced by discharging heat from the main body cylinder part to the outside of the sludge supply side together with the air flow. In other words, it is possible to control to avoid a rise above the set heat treatment temperature. Therefore, the air flow A for transporting unburned matter mentioned above also serves as an air flow for exhausting sludge combustion heat. In this respect as well, the counterflow method has an exhaust port near the sludge supply port that discharges the airflow, so the sludge combustion heat that does not pass through the heat treatment device is heat-treated as compared to the parallel-flow method. It is more preferable because it can be discharged outside the device and the sludge temperature can be easily controlled.
[0087] 前記以外にもスラッジ燃焼温度を制御する方法がある力 S、燃焼用の原料スラッジが充 分に存在するなかでスラッジ燃焼温度が低い場合は、空気を多く流入させ燃焼を行 うことで温度を高くすることができる力 S、多大な燃焼熱が発生して温度制御をすること が難しくなるため好ましくない。他方、スラッジ燃焼温度が高い場合は、空気流入量 を絞ることで燃焼を抑制(炭化)し、温度制御することができる力 本発明においては 、スラッジの白色度を高く焼成するという目的のため熱処理装置内を富酸素状態にさ せ、スラッジの燃焼を十分行わせることが必要であるため、空気流入量を必要以上に 絞ることは好ましくない。 [0087] In addition to the above, there is a method for controlling the sludge combustion temperature. If the sludge combustion temperature is low while there is a sufficient amount of raw material sludge for combustion, a large amount of air is introduced to perform combustion. This is not preferable because the force S that can raise the temperature with S and a large amount of combustion heat are generated, making it difficult to control the temperature. On the other hand, when the sludge combustion temperature is high, the ability to suppress (carbonize) combustion by restricting the air inflow and control the temperature In the present invention, heat treatment is performed for the purpose of firing the sludge with high whiteness. Since it is necessary to bring the inside of the device to an oxygen-rich state and to sufficiently burn sludge, it is not preferable to restrict the air inflow more than necessary.
[0088] このようなまた、前記向流方式、並流方式の各空気流入方式の特徴の差異は回転 式横型円筒炉ゃスクリュー式横型円筒炉において顕著に出やすい。これに対して縦 型円筒炉では空気とスラッジの接触を良くするためには空気を流動させる必要がある ため差異は出にくいが、並流方式の方が若干向流方式よりも若干効果的である。 [0088] In addition, the difference in the characteristics of the counter-flow type and the parallel-flow type air inflow methods is prominent in a rotary horizontal cylindrical furnace and a screw-type horizontal cylindrical furnace. On the other hand, in a vertical cylindrical furnace, it is difficult to make a difference because air needs to flow to improve the contact between air and sludge, but the parallel flow method is slightly more effective than the countercurrent method. is there.
[0089] 未燃焼物搬送用空気流 Aに載せて分別して取り出された未燃焼物は熱風循環ファ
ン 6に後続して設けられるバグフィルターで取り除くかおよび/または排ガスとともに燃 焼装置(共に図示省略)により、捕集除去または燃焼させることがより好ましい。 [0089] The unburned matter taken out by separation on the unburned matter carrying air stream A is separated from the hot air circulation fan. More preferably, it is removed by a bag filter provided subsequent to the tank 6 and / or collected and removed by combustion with exhaust gas (both not shown).
[0090] 熱処理装置力 排出された熱風は熱循環ファン 6により、熱処理装置または乾燥機 などの熱源として再利用することで、エネルギーコストを低減できることができ好ましレ、[0090] Heat treatment equipment power The discharged hot air can be reused as a heat source for heat treatment equipment or a dryer by the heat circulation fan 6 to reduce energy costs.
〇 Yes
[0091] スラッジが一定温度に加熱される時間(熱処理時間)は特に限定はされないが、空 気流未燃焼物搬送用空気流 Aにより吹き飛ばされないで焼成室 9内に残留する有機 物が完全に燃焼する時間を有保持する必要があることから、 1時間以上が好ましい。 しかし、必要以上に長い熱処理時間はエネルギーコストが高くなるだけでなぐ熱処 理装置も大きくなるため、実用上あまり好ましくない。従って、本発明の熱処理工程中 の熱処理時間は 1〜5時間とするのがより好ましい。この熱処理時間、スラッジ温度、 空気流量、流速等の条件を適宜制御することにより炭酸カルシウムの分解率を好まし くは 50%以上とし、より好ましくは 60%以上とし、更に好ましくは 70%にさせている。 [0091] The time during which the sludge is heated to a constant temperature (heat treatment time) is not particularly limited, but the organic matter remaining in the firing chamber 9 is completely burned without being blown away by the air flow A for conveying the unburned air current. 1 hour or more is preferable because it is necessary to keep the time to perform. However, an unnecessarily long heat treatment time is not preferable in practice because it increases not only the energy cost but also the heat treatment apparatus. Therefore, the heat treatment time in the heat treatment step of the present invention is more preferably 1 to 5 hours. By appropriately controlling the conditions such as heat treatment time, sludge temperature, air flow rate, flow rate, etc., the decomposition rate of calcium carbonate is preferably 50% or more, more preferably 60% or more, and even more preferably 70%. ing.
[0092] [焼成物懸濁液化工程] [0092] [Baking product suspension process]
本発明においては、図 1に例示するように、熱処理工程後の焼成物は、焼成物を水 と混合、攪拌し、焼成物懸濁液とする懸濁液化工程を熱処理工程後に備えてもよい 。懸濁液化工程の目的はスラッジ焼成物が含有する酸化カルシウム(CaO)を水酸化 カルシウム〔Ca (OH) 〕に転化することであり、焼成物懸濁液化温度は特に制限はな In the present invention, as illustrated in FIG. 1, the fired product after the heat treatment step may be provided with a suspension step after the heat treatment step, in which the fired product is mixed with water and stirred to form a suspension of the fired product. . The purpose of the suspension process is to convert calcium oxide (CaO) contained in the sludge calcined product into calcium hydroxide [Ca (OH)], and the suspension temperature of the calcined product is not particularly limited.
2 2
い。処理温度が低いと長い保持時間が必要であり、処理温度が高いと温度を維持す る必要があるため経済的に好ましくないので、通常は 20〜80°C、より好ましくは 40〜 60°Cで行われるのがよい。例えば、処理温度が 60°Cであれば保持時間は 60分程 度で十分である。 Yes. Low processing temperature requires a long holding time, and high processing temperature is not economically preferable because it is necessary to maintain the temperature, so usually 20 to 80 ° C, more preferably 40 to 60 ° C. It is good to be done. For example, if the processing temperature is 60 ° C, a holding time of about 60 minutes is sufficient.
[0093] 焼成物懸濁液の固形分濃度は 5〜20質量%の範囲に調整することが後続の炭酸 化処理を効率的に行!/ \また懸濁液の粘度を低く維持して流動攪拌性および送液 性を良好に維持するために好ましい。焼成物懸濁液の固形分濃度が 5%質量未満 である場合は、生産性が劣るため好ましくなぐまた、 20%質量より高い場合は、該焼 成物懸濁液の粘度が高くなるため、攪拌動力の増加となるとともに、操業性に劣るこ とから好ましくない。
[0094] また焼成物懸濁液に対しては、本発明のスラッジ焼成物の他に、必要に応じて別途 、酸化カルシウム(CaO:生石灰)または水酸化カルシウム〔Ca (OH) :消石灰〕を添 [0093] The solid content concentration of the baked product suspension can be adjusted to a range of 5 to 20% by mass, so that the subsequent carbonation treatment can be performed efficiently! It is preferable in order to maintain good stirring properties and liquid feeding properties. When the solid content concentration of the baked product suspension is less than 5% by mass, the productivity is inferior because it is inferior, and when it is higher than 20% by mass, the viscosity of the baked product suspension becomes high. This is not preferable because the stirring power increases and the operability is poor. [0094] In addition to the sludge calcined product of the present invention, calcium oxide (CaO: quick lime) or calcium hydroxide [Ca (OH): slaked lime] is separately added to the calcined product suspension as necessary. Attendant
2 2
カロしてスラッジ焼成物と水酸化カルシウムの所定固形分濃度の混合懸濁液とすること もでき、この場合、酸化カルシウムおよび水酸化カルシウムは、消和後の形態である 水酸化カルシウム〔Ca (OH) :消石灰〕として、スラッジ焼成物 100重量部に対して It can also be made into a mixed suspension of a sludge calcined product and calcium hydroxide at a predetermined solid content concentration. In this case, calcium oxide and calcium hydroxide are calcium hydroxide [Ca (Ca ( OH): slaked lime], for 100 parts by weight of the sludge burned product
2 2
最大 100重量部(スラッジ:水酸化カルシウム = 50: 50)まで添加すること力 Sできる。 1 00重量部を超えて水酸化カルシウムを添加することもできる力 消和懸濁液中のスラ ッジ焼成物の配合率が少なくなり、スラッジ利用が進まなくなるため好ましくない。 It is possible to add up to 100 parts by weight (sludge: calcium hydroxide = 50: 50). The ability to add calcium hydroxide in excess of 100 parts by weight This is not preferable because the ratio of the sludge burned product in the slaked suspension is reduced and sludge use does not proceed.
[0095] [炭酸化工程] [0095] [Carbonation step]
炭酸カルシウムを含んだスラッジは 600°C以上の熱処理工程にお!/、て、炭酸カル シゥム(CaCO )が酸化カルシウム(CaO)に分解される。酸化カルシウムが存在した Sludge containing calcium carbonate is subjected to a heat treatment process of 600 ° C or higher, and calcium carbonate (CaCO) is decomposed into calcium oxide (CaO). Calcium oxide was present
3 Three
焼成灰を水性懸濁液にすると、高アルカリになり、スラリー粘度の上昇、分散不良な どといった問題があるため、そのまま、製紙用填料、塗工用顔料として利用するのは 難しい。本発明の熱処理工程のようにスラッジの燃焼効率を向上させると、炭酸カル シゥムの分解は促進される。つまり、本発明の熱処理工程後の焼成灰の白色度と炭 酸カルシウムの分解率は比例関係にあり、所望の白色の焼成灰を得るには、スラッジ 中の炭酸カルシウムを 50%を超え分解させている。高白色の焼成灰を得るには 60 %以上、さらに高白色度の焼成灰を得るには 70%以上を分解させている。そのため 、熱処理したスラッジ焼成灰を炭酸化処理、硫酸アルミニウム混合処理などの何らか の方法で前記アル力リ成分を中和処理するのが好ましい。 If the calcined ash is made into an aqueous suspension, it becomes highly alkaline, and there are problems such as an increase in slurry viscosity and poor dispersion. Therefore, it is difficult to use it as it is as a paper filler or coating pigment. When the sludge combustion efficiency is improved as in the heat treatment step of the present invention, decomposition of calcium carbonate is promoted. In other words, the whiteness of the calcined ash after the heat treatment step of the present invention and the decomposition rate of calcium carbonate are in a proportional relationship, and in order to obtain the desired white calcined ash, the calcium carbonate in the sludge is decomposed by more than 50%. ing. In order to obtain high white calcined ash, 60% or more is decomposed, and in order to obtain high whiteness calcined ash, 70% or more is decomposed. Therefore, it is preferable to neutralize the aluminum component by some method such as carbonation treatment or aluminum sulfate mixing treatment on the heat-treated sludge calcination ash.
[0096] 本発明においては、焼成物懸濁液化工程後に炭酸化工程を行うことにより、焼成 物懸濁液化中の水酸化カルシウム〔Ca (OH) 〕が炭酸カルシウム(CaCO )に再生 [0096] In the present invention, by performing the carbonation step after the suspension of the calcined product, calcium hydroxide [Ca (OH)] in the suspension of the calcined product is regenerated to calcium carbonate (CaCO).
2 3 転化され、再生無機粒子スラリーの pHを下げることができる。なお、再生無機粒子ス ラリーの pHを 11以下、好ましくは 10以下にすることで、スラリー粘度の上昇を抑制し 、顔料の分散不良を生じることを抑制することができる。 2 3 Can be converted to lower the pH of the regenerated inorganic particle slurry. By setting the pH of the regenerated inorganic particle slurry to 11 or less, preferably 10 or less, it is possible to suppress an increase in slurry viscosity and to prevent poor pigment dispersion.
[0097] なお、スラッジ中に炭酸カルシウムを含有しない場合は、炭酸カルシウムが分解さ れ酸化カルシウムにならないため、焼成灰を高濃度で分散することができ、熱処理ェ 程後の焼成物懸濁液化工程および炭酸化工程を用いなくても製紙用材料としてそ
のまま再利用することができる。 [0097] When the calcium carbonate is not contained in the sludge, the calcium carbonate is not decomposed to become calcium oxide, so that the calcined ash can be dispersed at a high concentration, and a calcined product suspension after the heat treatment step is obtained. Process and carbonation process without using it as a papermaking material. It can be reused as it is.
[0098] 炭酸化工程は通常の軽質炭酸カルシウム製造工程と同様の方法で行うことができ る。すなわち、焼成物懸濁液に、二酸化炭素ガスあるいは二酸化炭素含有ガスを吹 き込む。炭酸化に用いるガスは、工業的には二酸化炭素含有ガスが好ましぐこの場 合の二酸化炭素濃度は特に限定されるものではないが、好ましくは 5〜40容量%、 より好ましくは 10〜35容量%の二酸化炭素含有ガスを用いる。また二酸化炭素含有 ガスとしては、例えば、スラッジ焼成排ガス、石灰石焼成排ガス、石灰焼成排ガス、ゴ ミ焼却排ガス、発電ボイラー排ガス、或いはパルプ製造工程で用いられる苛性化炭 酸カルシウム焼成キルンなどから排出される排ガスなどを適当な手段で除塵後、用い てもよい。 [0098] The carbonation step can be carried out in the same manner as the ordinary light calcium carbonate production step. That is, carbon dioxide gas or carbon dioxide-containing gas is blown into the fired product suspension. The gas used for carbonation is preferably a carbon dioxide-containing gas industrially. The carbon dioxide concentration in this case is not particularly limited, but is preferably 5 to 40% by volume, more preferably 10 to 35%. A volume% carbon dioxide containing gas is used. The carbon dioxide-containing gas is, for example, discharged from sludge calcined exhaust gas, limestone calcined exhaust gas, lime calcined exhaust gas, waste incineration exhaust gas, power generation boiler exhaust gas, or a caustic calcium carbonate calcined kiln used in pulp manufacturing processes. The exhaust gas may be used after dust removal by appropriate means.
[0099] 二酸化炭素ガスあるいは二酸化炭素含有ガスを吹き込む割合は、二酸化炭素ガス として水酸化カルシウム lkg当たり、 0. 5〜; 15L/分の割合となるように焼成物懸濁 液中に吹き込む。二酸化炭素導入量が 0. 5L/分未満では生産性が劣るし、 15L/ 分を超えるような量を採用することはできる力、そのように使用量を増加させるために 必要な動力負荷に見合った効果は期待できない。炭酸化の反応開始温度は好まし くは 30〜80°C、より好ましいのは 40〜70°Cである。再生無機粒子に含まれる再生 炭酸カルシウム成分の形状としては、米粒状、紡錘状、膠質状、針状、立方状、板状 などにすることができ、特に形状に限定はなぐまた、炭酸化工程中において所望の 形状の結晶を得るために種晶を添加してもょレ、。 [0099] The carbon dioxide gas or carbon dioxide-containing gas is blown into the calcined suspension so that the carbon dioxide gas has a rate of 0.5 to 15 L / min per kg of calcium hydroxide as carbon dioxide gas. If the amount of carbon dioxide introduced is less than 0.5 L / min, the productivity will be inferior, and it will be possible to adopt an amount exceeding 15 L / min, and the power load necessary to increase the usage will be commensurate with this. The effect cannot be expected. The reaction start temperature for carbonation is preferably 30 to 80 ° C, more preferably 40 to 70 ° C. The shape of the regenerated calcium carbonate component contained in the regenerated inorganic particles can be in the form of rice, spindle, colloid, needle, cube, plate, etc. The shape is not particularly limited. Add seed crystals to obtain crystals of the desired shape.
[0100] なお、本発明の炭酸化処理後の無機粒子は、炭酸化処理によって生じた微細な 1 次粒子が凝集して 2次粒子 (凝集粒子)を形成し、製紙用填料に適した粒子径となる 場合がある。このような場合には、この懸濁液をそのまま製紙用填料としてパルプな どの製紙用原材料に配合して用いることもできる。 [0100] It should be noted that the inorganic particles after the carbonation treatment of the present invention are particles suitable for a paper-making filler because fine primary particles produced by the carbonation treatment aggregate to form secondary particles (aggregated particles). It may be a diameter. In such a case, this suspension can be used as it is by mixing it with papermaking raw materials such as pulp as a papermaking filler.
[0101] 本発明の再生無機粒子スラリー(炭酸化後のスラリー)を製紙用填料として利用す る場合は、振動篩などの篩でろ過してもよい。このとき、篩によるろ過する前に液体サ イクロンを用いた分級を行うことが好ましい。液体サイクロンによる分級を行うことにより 、篩の目詰まりを防止することができる。また、液体サイクロンによる分級と振動篩を組 み合わせることにより、再生無機粒子スラリー中の α —クォーツ等の珪素を含む粒子
や粗大粒子を除去することができ、抄紙用ワイヤーの摩耗を低減できることができる。 [0101] When the recycled inorganic particle slurry (slurry after carbonation) of the present invention is used as a filler for papermaking, it may be filtered through a sieve such as a vibrating sieve. At this time, it is preferable to perform classification using a liquid cyclone before filtering with a sieve. By performing classification with a hydrocyclone, clogging of the sieve can be prevented. In addition, particles containing silicon such as α-quartz in the recycled inorganic particle slurry can be obtained by combining classification with a hydrocyclone and a vibrating sieve. And coarse particles can be removed, and wear of the papermaking wire can be reduced.
[0102] [脱水、分散工程] [0102] [Dehydration and dispersion process]
本発明の再生無機粒子スラリー(炭酸化後のスラリー)を塗工用顔料として利用す る場合は、炭酸化工程後の組成物再生無機粒子スラリーを脱水して脱水組成物とす る脱水工程と、該脱水工程により得られる該脱水組成物に水分を加えてスラリー状の 分散組成物とする分散工程とを備えることが好ましい。脱水工程は、濾過、遠心分離 、加圧脱水、圧搾などの操作により行うことができる。好適な脱水装置としては、フィ ルタープレスと称される圧搾濾過装置があり、炭酸化処理物の脱水ケーキを得ること 力できる。分散工程は、脱水工程により得られる脱水組成物に水分を加えてスラリー 状の分散組成物とするものであればよい。分散工程時に水分以外に、分散剤を添加 することで、スラッジを原料とした再生無機粒子を良好に分散することができ、製紙用 材料としての品質が向上すると共に、取り扱いやすくなるので好ましい。分散剤として は、例えば、ポリアクリル酸ナトリウム等の合成高分子系の分散剤など、製紙用材料 の製造の際に用いられる一般的な分散剤を使用できる。 When the regenerated inorganic particle slurry (slurry after carbonation) of the present invention is used as a coating pigment, a dehydration step of dehydrating the composition regenerated inorganic particle slurry after the carbonation step into a dehydrated composition; And a dispersion step of adding water to the dehydrated composition obtained by the dehydration step to form a slurry-like dispersion composition. The dehydration step can be performed by operations such as filtration, centrifugation, pressure dehydration, and pressing. As a suitable dehydrating apparatus, there is a press filtration apparatus called a filter press, which can obtain a dehydrated cake of a carbonized product. The dispersion process may be any process as long as water is added to the dehydrated composition obtained by the dehydration process to form a slurry dispersion composition. It is preferable to add a dispersing agent in addition to moisture during the dispersing step, because it is possible to satisfactorily disperse the regenerated inorganic particles using sludge as a raw material, improving the quality as a papermaking material and facilitating handling. As the dispersant, for example, general dispersants used in the manufacture of papermaking materials such as synthetic polymer dispersants such as sodium polyacrylate can be used.
[0103] [粉砕工程] [0103] [Crushing process]
本発明において、粉砕処理工程を、分散工程後に備えていてもよい。粉砕処理を 行うことにより、再生された無機粒子の粒径を微細化することができ、平滑性が向上 するので好ましい。粉砕工程において用いる粉砕機としては、サンドミル、湿式ボー ルミル、振動ミル、攪拌槽型ミル、流通管型ミル、コボールミルなどの湿式粉砕機を使 用すること力 Sできる。また、二酸化炭素を吹き込みながら、粉砕を行っても良い。 In the present invention, the pulverization step may be provided after the dispersion step. By performing the pulverization treatment, it is preferable because the regenerated inorganic particles can be made finer in particle size and smoothness is improved. As a pulverizer used in the pulverization process, it is possible to use a wet pulverizer such as a sand mill, a wet ball mill, a vibration mill, a stirring tank mill, a flow tube mill, and a coball mill. Moreover, you may grind | pulverize, blowing in a carbon dioxide.
[0104] 本発明の再生無機粒子の大きさ(粒子径)は、レーザー回折粒度分布測定による平 均粒子径として、最終的に 0.;!〜 20 mとすることが好ましぐ塗工用顔料として用 いる場合には 0· 3〜5 111、内添用製紙填料として用いる場合には 3〜; 15 mとす ることが特に好ましい。 [0104] The size (particle diameter) of the regenerated inorganic particles of the present invention is preferably an average particle diameter measured by laser diffraction particle size distribution of finally 0. When used as a pigment, it is particularly preferably from 0 · 3 to 5 111, and when used as a paper filler for internal addition, 3 to 15 m.
[0105] この平均粒子径は、製紙用填料、および塗工用顔料として、抄紙の際のワイヤー歩 留りゃ紙製品に仕上げた際の不透明性、白色度、平滑性、および印刷適性に優れる 品質が得られるように、操業および品質上バランスされた粒子径を選んだものである 。したがって、再生無機粒子の平均粒子径を前記粒子径の範囲とすることにより、操
業において、従来の製紙用填料、および塗工用顔料と同様に取り扱うことができ、ま た再生無機粒子を内添した原紙、および再生無機粒子を塗工した塗被紙の品質に ついても、従来の製紙用填料、および塗工用顔料と概ね同等の品質を発現させるこ と力 Sできる。 [0105] This average particle size is excellent in opacity, whiteness, smoothness, and printability when finished as a paper product as a paper filler and coating pigment. Therefore, the particle size is selected so as to balance the operation and quality. Therefore, by setting the average particle size of the regenerated inorganic particles within the range of the particle size, the operation is performed. Can be handled in the same way as conventional paper fillers and coating pigments, and the quality of coated paper coated with recycled inorganic particles and coated paper coated with recycled inorganic particles It can exert the same quality as conventional paper fillers and coating pigments.
[0106] 因みに、再生無機粒子の平均粒子径が 0. 1 m未満のような微細な粒子になると、 不透明性、白色度および平滑性等の改善に対しては有効ではある力 反面、製紙用 填料として用いる場合にワイヤー歩留りが悪くなるために、多量の填料が必要となり、 このため操業性が不安定になる難点がある他に、塗工用顔料として用いる場合に充 分な塗工層強度を発現させるために、著しく多量の接着剤が必要となる難点がある ので好ましくない。他方、再生無機粒子の平均粒子径が 20 inを越えるような大きい 粒子になると、製紙用填料として用いた場合に填料のワイヤー歩留りは良くなるが、 反面、ワイヤー摩耗性が悪化し、ワイヤーの損傷を受けやすい難点がある他に、塗 ェ用顔料として用いた場合に塗工紙製品の平滑性や光沢が低下し、結果的に印刷 適性も低下することになり好ましくない。 [0106] Incidentally, when the average particle size of regenerated inorganic particles is less than 0.1 m, it is effective for improving opacity, whiteness and smoothness, but for papermaking. When used as a filler, the wire yield deteriorates, so a large amount of filler is required, which makes the operability unstable.In addition, sufficient coating layer strength when used as a coating pigment This is not preferable because it requires a remarkably large amount of adhesive in order to develop the above. On the other hand, when the average particle size of the recycled inorganic particles exceeds 20 in, the wire yield of the filler is improved when used as a paper filler, but on the other hand, the wire wear resistance deteriorates and the wire is damaged. In addition to the disadvantages of being easily affected, when used as a coating pigment, the smoothness and gloss of the coated paper product decrease, resulting in a decrease in printability, which is not preferable.
[0107] 本発明においては、再生無機粒子を前記した所望の粒子径とするために脱水工程 後に分散工程、および粉砕工程を設けることが好ましいが、分散処理後の再生無機 粒子の平均粒子径が前記した粒子径の範囲になる場合は、粉砕工程を行わな!/、で 、分散処理後の無機粒子の分散液をそのまま製紙用填料、および塗工用顔料として 当然ながら使用しても良い。 [0107] In the present invention, it is preferable to provide a dispersion step and a pulverization step after the dehydration step so that the regenerated inorganic particles have the desired particle size described above. However, the average particle size of the regenerated inorganic particles after the dispersion treatment is If the particle diameter is in the above range, the pulverization step is not performed. Naturally, the dispersion of the inorganic particles after the dispersion treatment may be used as it is as a paper filler and a coating pigment.
[0108] また、分散工程において、本発明の再生無機粒子の脱水組成物を炭酸カルシウムス ラリーに混合し、混合スラリーとし、湿式粉砕機を用いて粉砕することで、炭酸カルシ ゥムよりも品質が良好で、なおかつ炭酸カルシウムスラリーよりも粉砕時間を短くする ことができ、高濃度なスラリーを調整することが可能である。なお、再生無機粒子と炭 酸カルシウムの比率は、塗被紙の白紙品質などに応じて、調整することが可能であり 、特に制限はない。 [0108] Also, in the dispersion step, the dehydrated composition of regenerated inorganic particles of the present invention is mixed with calcium carbonate slurry to form a mixed slurry, which is pulverized using a wet pulverizer, so that the quality is higher than that of calcium carbonate. In addition, the pulverization time can be made shorter than that of the calcium carbonate slurry, and a highly concentrated slurry can be prepared. The ratio between the regenerated inorganic particles and calcium carbonate can be adjusted according to the quality of the white paper of the coated paper, and is not particularly limited.
[0109] 本方法における工程は、熱処理工程は必要必須であるが、乾燥工程、造粒工程、 懸濁液化工程、炭酸化工程、脱水 ·分散工程、粉砕工程は適宜選択して組み合わ せること力 Sできる。これらの工程を行う装置が組み合わされてひとつのプラントが構成
されることになる。 [0109] Although the heat treatment step is essential for the steps in this method, the drying step, granulation step, suspension step, carbonation step, dehydration / dispersion step, and pulverization step can be appropriately selected and combined. S can. A single plant is constructed by combining the devices that perform these processes. Will be.
[0110] 本方法で得られた無機粒子は、炭酸カルシウム、タルク、カオリン、焼成カオリン、 二酸化チタン、サチンホワイト、シリカ等の無機顔料を必要に応じて混合し、塗工用 顔料や製紙用填料として用いることができる。 [0110] The inorganic particles obtained by this method are mixed with inorganic pigments such as calcium carbonate, talc, kaolin, calcined kaolin, titanium dioxide, satin white, silica, etc. as necessary, and are used as coating pigments or papermaking fillers. Can be used as
[0111] [スラッジからの無機粒子を内添した紙の製造方法] [0111] [Method for producing paper internally containing inorganic particles from sludge]
本方法で得られた再生無機粒子を填料として使用した紙は、不透明度、嵩高性を 付与することができ、従来の填料と同様に本発明の再生無機粒子を内添した紙であ ればよぐ特に限定はない。また、紙の種類としては、包装用紙、紙容器、インクジェ ット用紙、 PPC用紙などの記録用紙、新聞用紙、上質紙、中質紙、各種塗工用原紙 Paper using the regenerated inorganic particles obtained by this method as a filler can impart opacity and bulkiness, and can be paper that internally contains the regenerated inorganic particles of the present invention as with conventional fillers. There is no particular limitation. Paper types include wrapping paper, paper containers, inkjet paper, recording paper such as PPC paper, newsprint paper, high-quality paper, medium-quality paper, and various types of coating paper.
、壁紙、繊維板、写真用原紙、含浸用原紙、難燃紙などが挙げられる。 Wallpaper, fiberboard, photographic base paper, impregnating base paper, flame retardant paper, and the like.
[0112] パルプとしては、例えば、一般に使用されている LBKPや NBKP等の漂白化学パ ルプ、砕木パルプ(GP)、加圧式砕木パルプ(PGW)、リファイナ砕木パルプ(RGP) 、サーモメカニカルパルプ (TMP)等の機械パルプ、脱墨古紙パルプ(DIP)、損紙 などが適宜混合使用される。また、ケナフ等の非木材繊維原料力 得られるパルプ 繊維、合成パルプ、無機繊維等の 1種又は 2種以上を原紙に配合することもできる。 機械パルプや DIPは、必要に応じて漂白して使用することもでき、漂白の程度も任意 に行うこと力 Sできる。なお、パルプの漂白には、塩素ガスのような分子状塩素や二酸 化塩素のような塩素化合物を使用しない漂白工程を採用することが、環境保全の観 点から好ましぐこのような漂白工程を経たパルプとしては、 ECF (Elemental Chlorine Free )パルプや TCF (Totally Chlorine Free )パルプを挙げることができる。 [0112] Examples of pulp include commonly used bleaching chemical pulps such as LBKP and NBKP, groundwood pulp (GP), pressurized groundwood pulp (PGW), refined groundwood pulp (RGP), and thermomechanical pulp (TMP). ) Etc., deinked waste paper pulp (DIP), waste paper, etc. are used as appropriate. In addition, one or more of pulp fiber, synthetic pulp, inorganic fiber and the like obtained from non-wood fiber raw materials such as kenaf can be blended in the base paper. Mechanical pulp and DIP can be used after being bleached if necessary, and the degree of bleaching can be performed arbitrarily. For bleaching pulp, a bleaching process that does not use molecular chlorine such as chlorine gas or chlorine compounds such as chlorine dioxide is preferable from the viewpoint of environmental conservation. Examples of the processed pulp include ECF (Elemental Chlorine Free) pulp and TCF (Totally Chlorine Free) pulp.
[0113] 本方法で得られた再生無機粒子は、一般的に使用されている填料、例えば、重質 炭酸カルシウム、軽質炭酸カルシウム、亜硫酸カルシウム、石膏、タルク、カオリン、ク レー、焼成カオリン、ホワイトカーボン、非晶質シリカ、デラミネートカオリン、ケイソゥ土 、炭酸マグネシウム、二酸化チタン、水酸化アルミニウム、水酸化カルシウム、水酸化 マグネシウム、水酸化亜鉛等の無機顔料や尿素ホルマリン樹脂微粒子、微小中空粒 子等の有機顔料等と混合して使用することもできる。填料は 2種以上の混合使用も可 能である。混合比率は紙の品質に応じて調整することが可能であり、特に限定はない 。填料の配合量 (原紙灰分)は、;!〜 30重量%の範囲となるように添加することが好ま
しぐ 5〜20%の範囲となるように添加することが特に好ましい。無機粒子の内添紙を 前記填料含有率とすることにより、紙の散乱表面積を増加させ、紙の不透明性を高 めること力 Sできる。因みに、填料の含有率が 1重量%未満の場合には、 目的とする不 透明度等の紙質が低くなるため好ましくなぐ他方、填料の含有率が 30重量%を超 える場合には、引き裂き強さ、紙の層間強度、およびブリスタ等の紙質が低下するた め好ましくない。 [0113] Regenerated inorganic particles obtained by this method are used as fillers generally used, for example, heavy calcium carbonate, light calcium carbonate, calcium sulfite, gypsum, talc, kaolin, clay, calcined kaolin, white Carbon, amorphous silica, delaminated kaolin, diatomaceous earth, magnesium carbonate, titanium dioxide, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide and other inorganic pigments, urea formalin resin fine particles, fine hollow particles, etc. It can also be used as a mixture with other organic pigments. Two or more fillers can be used in combination. The mixing ratio can be adjusted according to the paper quality and is not particularly limited. It is preferable to add so that the filler content (base paper ash) is in the range of! ~ 30% by weight. It is particularly preferable to add so as to be in the range of 5 to 20%. By making the internal content paper of inorganic particles into the filler content, it is possible to increase the scattering surface area of the paper and increase the opacity of the paper. Incidentally, when the filler content is less than 1% by weight, the paper quality such as the target opacity is lowered, which is not preferable. On the other hand, when the filler content exceeds 30% by weight, the tear strength is increased. Further, it is not preferable because the paper interlaminar strength and the paper quality of blisters and the like deteriorate.
[0114] また、本発明の再生無機粒子を各種填料と併用して製紙用填料として用いる場合に は、原価面の効果等も勘案すると、原紙に内添する填料総量 100重量%に対して少 なくとも 10重量%の添加が好ましいが、特に限定するものではない。 [0114] When the recycled inorganic particles of the present invention are used as a filler for papermaking in combination with various fillers, considering the effects of cost and the like, the amount of filler added to the base paper is less than 100% by weight. The addition of at least 10% by weight is preferred, but is not particularly limited.
[0115] また、紙中にはパルプや填料の他に、内添サイズ剤、ァニオン性、ノニオン性、カチ オン性あるいは両性の歩留り向上剤、濾水性向上剤、紙力増強剤、サイズ剤、消泡 剤、スライムコントロール剤、染料、着色顔料、蛍光染料等で例示される各種の抄紙 用内添助剤を、必要に応じて添加することができる。内添サイズ剤の具体例としては 、例えば、アルキルケテンダイマー系、アルケニル無水コハク酸系、スチレン アタリ ル系、高級脂肪酸系、石油樹脂系サイズ剤、ロジン系サイズ剤等が挙げられる。また 、歩留り向上剤、濾水性向上剤、紙力増強剤の具体例としては、例えば、アルミユウ ム等の多価金属化合物(具体的には、硫酸バンド、塩化アルミニウム、アルミン酸ソー ダ、塩基性アルミニウム化合物等)、各種澱粉類、ポリアクリルアミド、尿素樹脂、ポリ アミド'ポリアミン樹脂、ポリエチレンィミン、ポリアミン、ポリビュルアルコール、ポリェチ レンオキサイド等が例示できる。 [0115] In addition to pulp and filler, the paper contains an internal sizing agent, anionic, nonionic, cationic or amphoteric retention improver, drainage improver, paper strength enhancer, sizing agent, Various internal additives for papermaking exemplified by antifoaming agents, slime control agents, dyes, coloring pigments, fluorescent dyes and the like can be added as necessary. Specific examples of the internally added sizing agent include alkyl ketene dimer, alkenyl succinic anhydride, styrene acrylate, higher fatty acid, petroleum resin sizing agent, rosin sizing agent and the like. Specific examples of yield improvers, drainage improvers, and paper strength enhancers include, for example, polyvalent metal compounds such as aluminum (specifically, sulfate bands, aluminum chloride, sodium aluminate, basic Aluminum compounds, etc.), various starches, polyacrylamides, urea resins, polyamide amide polyamine resins, polyethyleneimine, polyamines, polybutyl alcohol, polyethylene oxide and the like.
[0116] なお、炭酸化処理していない再生無機粒子は、遊離 Caイオンの影響により、内添剤 サイズ剤の効果を妨げたり、抄紙工程内での硫酸バンドとの反応により硫酸カルシゥ ムを生じ、スケールトラブルを引き起こしたり、填料歩留まりの低下を招き、操業性や 生産性に影響を及ぼす可能性がある。したがって、これらの問題を回避するためにも 、炭酸化した再生無機粒子を用いるのが好ましい。 [0116] Regenerated inorganic particles that have not been carbonated may interfere with the effect of the internal additive sizing agent due to the influence of free Ca ions, or may generate calcium sulfate due to reaction with the sulfuric acid band in the papermaking process. This may cause scale problems and decrease the filler yield, which may affect operability and productivity. Therefore, in order to avoid these problems, it is preferable to use carbonated regenerated inorganic particles.
[0117] 本発明における再生無機粒子を含む製紙用填料をパルプ原料に添加する際には、 パルプ原料を充分に攪拌しながら製紙用填料を添加することが好ましぐその際の撹 拌速度としては 100〜5000rpm程度とすることが好ましい。また、パルプ原料に対し
て再生無機粒子を含む製紙用填料を添加する際の製紙用填料の濃度としては、パ ルプ原料混合してから抄紙されるため、抄紙機のインレット濃度の範囲内となるような 濃度で添加されれば問題ない。また、パルプ原料に対して再生無機粒子を含む製紙 用填料を添加する工程上の好適なポイント(添加場所)としては、カチオン性高分子 等の歩留り向上剤の添加によって凝集形成させた再生無機粒子を含む製紙用填料 のフロックが剪断力等により破壊されることを抑制し、製紙用填料が凝集状態を維持 したままで紙に内添させるために、出来る限り抄紙機の直前が望ましい。 [0117] When adding the papermaking filler containing the regenerated inorganic particles in the present invention to the pulp raw material, it is preferable to add the papermaking filler while sufficiently stirring the pulp raw material. Is preferably about 100 to 5000 rpm. Also, for pulp raw materials When adding the paper filler containing recycled inorganic particles, the paper filler is added after mixing the pulp raw materials, so it is added at a concentration that falls within the inlet concentration range of the paper machine. If there is no problem. In addition, as a suitable point (addition location) in the process of adding a paper filler containing recycled inorganic particles to a pulp raw material, recycled inorganic particles formed by aggregation by adding a yield improver such as a cationic polymer In order to prevent the flocs of the paper-made filler containing the material from being broken by shearing force, etc., and to add the paper-made filler to the paper while maintaining the agglomerated state, it is desirable to be as close as possible to the paper machine.
[0118] 紙の抄造条件は特に限定はなぐ抄紙機としては、例えば、長網式抄紙機、ギャップ フォーマー型抄紙機、円網式抄紙機、短網式抄紙機等の商業規模の抄紙機が、 目 的に応じて適宜選択して使用できる。抄紙方式としては、酸性抄紙、中性抄紙、弱ァ ルカリ性抄紙等の!/、ずれの方式も使用することができる。紙上に各種サイズプレス機 およびロールコーターなどで澱粉等の天然接着剤やポリビュルアルコール等の合成 接着剤を用いてサイズ処理を行なうことも可能である。 [0118] Papermaking conditions are not particularly limited. Examples of papermaking machines include commercial-scale paper machines such as long net paper machines, gap former paper machines, circular net paper machines, and short net paper machines. It can be used by appropriately selecting according to the purpose. As the papermaking method, acidic papermaking, neutral papermaking, weak alkaline papermaking, etc. can be used. It is also possible to perform size treatment on paper using various size presses and roll coaters with natural adhesives such as starch, and synthetic adhesives such as polybulal alcohol.
[0119] また、本発明における再生無機粒子を含む製紙用填料内添紙の表面には、紙力、 塗工適性、および印刷適性等を改善 ·向上させるために一般的に用いられる各種デ ンプン類、ポリビュルアルコール類、ポリアクリルアミド類、および各種表面サイズ剤等 を主体とする塗被液を塗布することも可能である。前記表面塗被液に対しては、塗工 用に一般的に使用される各種顔料として、重質炭酸カルシウム、軽質炭酸カルシゥ ム、タルク、クレー、カオリン、二酸化チタン、合成シリカ、水酸化アルミニウム等の無 機顔料、およびポリスチレン樹脂、尿素ホルムアルデヒド樹脂等の合成高分子微粒 子等を必要に応じて 1種、または 2種以上を適宜併用して配合して、再生無機粒子を 含む製紙用内添紙の表面に塗布することもできる。 [0119] Further, the surface of the papermaking filler-added paper containing the regenerated inorganic particles in the present invention has various types of dampening generally used for improving and improving paper strength, coating suitability, printing suitability, and the like. It is also possible to apply a coating liquid mainly composed of sucrose, polybulal alcohols, polyacrylamides, and various surface sizing agents. For the surface coating solution, various pigments commonly used for coating include heavy calcium carbonate, light calcium carbonate, talc, clay, kaolin, titanium dioxide, synthetic silica, aluminum hydroxide, etc. Of organic pigments and synthetic polymer fine particles such as polystyrene resin and urea formaldehyde resin, etc. as needed It can also be applied to the surface of paper.
[0120] [スラッジからの無機粒子を顔料として使用した塗被紙の製造] [0120] [Production of coated paper using inorganic particles from sludge as pigment]
原紙の少なくとも片面に、本方法で得られた再生無機粒子を含有する顔料と接着 剤を主成分とする塗被層を 1層以上形成させることで製造することができる。本方法 で得られた再生無機粒子は、顔料として用いた場合、平滑性、被覆性、不透明度、ィ ンキセット性に優れた性質をもっており、これら効果を発現させるために、塗被層中の 全顔料の 5質量%以上含有するのが好ましい。 5質量%未満では、平滑性、被覆性
、不透明度、インキセット性の向上効果を付与することが難しい。特に、本方法で得ら れた再生無機粒子を含有した塗被層を原紙と接しさせることで、平滑性、被覆性、不 透明度、インキセット性の向上効果をより発現させることができるので好ましい。また、 再生無機粒子のレーザー回折散乱法による平均粒子径としては、 0. 3〜5 111とす ること力 S好ましく、 2. 5 m以下にするのが平滑性の点から特に好ましい。 It can be produced by forming one or more coating layers mainly composed of a pigment containing regenerated inorganic particles obtained by this method and an adhesive on at least one side of a base paper. When used as a pigment, the regenerated inorganic particles obtained by this method have excellent properties such as smoothness, covering properties, opacity, and ink setting properties. In order to exhibit these effects, all the regenerated inorganic particles in the coating layer are used. It is preferable to contain 5% by mass or more of the pigment. If it is less than 5% by mass, smoothness and coverage It is difficult to impart an effect of improving opacity and ink setting. In particular, by bringing the coated layer containing the regenerated inorganic particles obtained by this method into contact with the base paper, it is possible to improve the smoothness, coverage, opacity, and ink setting properties, which is preferable. . Further, the average particle size of the regenerated inorganic particles by laser diffraction scattering method is preferably from 0.3 to 5 111, and more preferably 2.5 m or less from the viewpoint of smoothness.
[0121] 本発明において、塗被層中に含有する本方法で得られた再生無機粒子以外の顔 料としては、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、硫酸カルシウム、硫 酸バリウム、水酸化アルミニウム、二酸化チタン、酸化亜鉛、アルミナ、炭酸マグネシ ゥム、酸化マグネシウム、シリカ、アルミナ珪酸マグネシウム、珪酸カルシウム、ベント ナイト、ゼォライト、セリサイト、スクメタイト等の無機顔料や、密実型、中空型、貫通孔 型のプラスチックピグメント、バインダービグメント等の有機顔料等、通常の塗被紙分 野に使用される顔料を使用することが可能であり、これらの中から 1種あるいは 2種以 上を適宜選択して組み合わせて使用できる。 [0121] In the present invention, other than the regenerated inorganic particles obtained by the present method contained in the coating layer, heavy calcium carbonate, light calcium carbonate, talc, calcium sulfate, barium sulfate, hydroxide Aluminum, titanium dioxide, zinc oxide, alumina, magnesium carbonate, magnesium oxide, silica, alumina magnesium silicate, calcium silicate, bentonite, zeolite, sericite, sukumite and other inorganic pigments, solid, hollow, and penetrating It is possible to use pigments used in the ordinary coated paper field, such as organic pigments such as porous plastic pigments and binder pigments, and one or more of these can be selected as appropriate. Can be used in combination.
[0122] 以上のような顔料を含む塗被層の接着剤成分には、通常は分散型接着剤を使用 する。分散型接着剤としては、スチレン—ブタジエン共重合体、メチルメタタリレート— ブタジエン共重合体などの共役ジェン系重合体ラテックス、アクリル系重合体ラテック ス、エチレン 酢酸ビュル共重合体などのビュル系重合体ラテックスなどを例示する こと力 Sでさる。 [0122] A dispersion-type adhesive is usually used for the adhesive component of the coating layer containing the pigment as described above. Examples of the dispersion-type adhesive include conjugated-gen polymer latex such as styrene-butadiene copolymer and methyl methacrylate-butadiene copolymer, acrylic polymer latex, and ethylene-based butyl copolymer. Illustrate coalesced latex etc. Use force S.
[0123] 上記した分散型接着剤と共に少量の水溶性接着剤を併用することができる。水溶 性接着剤としては、酸化澱粉、エステル化澱粉、冷水可溶性澱粉などの各種澱粉類 、カゼイン、大豆蛋白、合成蛋白などの蛋白質類、カルボキシメチルセルロース、メチ ルセルロースなどのセルロース誘導体、ポリビュルアルコールやその変性品などが例 示できる。 [0123] A small amount of a water-soluble adhesive can be used in combination with the above dispersion-type adhesive. Examples of water-soluble adhesives include various starches such as oxidized starch, esterified starch, and cold-water soluble starch, proteins such as casein, soy protein, and synthetic protein, cellulose derivatives such as carboxymethylcellulose and methylcellulose, polybuty alcohol, Examples of such modified products can be given.
[0124] 再生無機粒子を含む塗工用顔料に対しては、接着剤の総量が顔料 100質量部あた り 5〜50質量部となるように含有することが好ましぐ 8〜30質量部となるように含有 することが特に好ましい。接着剤の配合量が顔料 100質量部あたり 5質量部未満で あると、顔料塗工層の強度が低下して、ストリーク、スクラッチ、およびピッキング等の 問題を引き起こすので好ましくなぐ他方、接着剤の配合量が顔料 100質量部あたり
50質量部を超える場合には、顔料塗工層の強度は充分に発現するものの、平滑性 の低下やインキ乾燥性の悪化等の問題が生じるため好ましくない。 [0124] For coating pigments containing regenerated inorganic particles, it is preferable that the total amount of adhesive is 5 to 50 parts by mass per 100 parts by mass of pigment. 8 to 30 parts by mass It is particularly preferable to contain so that If the amount of the adhesive is less than 5 parts by weight per 100 parts by weight of the pigment, the strength of the pigment coating layer decreases, causing problems such as streaks, scratches, and picking. The amount is 100 parts by mass of pigment. When the amount exceeds 50 parts by mass, the strength of the pigment coating layer is sufficiently exhibited, but problems such as a decrease in smoothness and a deterioration in ink drying property are not preferable.
[0125] 本発明の塗被紙の塗被層には、必要に応じて、青系統あるいは紫系統の染料や 有色顔料、蛍光増白染料、増粘剤、保水剤、酸化防止剤、老化防止剤、導電誘導 剤、消泡剤、紫外線吸収剤、分散剤、 pH調整剤、離型剤、耐水化剤、撥水剤等の 各種助剤を適宜配合することができる。なお、炭酸化処理していない再生無機粒子 は、遊離 Caイオンの影響により、塗被液の粘度上昇や分散不良などの問題が生じ、 高濃度の塗被液を調製することができず、乾燥不良を招き、操業性や生産性に影響 を及ぼす可能性がある。また、紙面 pHが高い塗被紙は、カレンダ工程や保管時にァ ルカリ焼けを起こし、塗被紙外観を損なう可能性がある。したがって、これらの問題を 回避するためにも、炭酸化した再生無機粒子を用いるのが好ましい。 [0125] In the coated layer of the coated paper of the present invention, a blue or purple dye or colored pigment, a fluorescent whitening dye, a thickening agent, a water retention agent, an antioxidant, an anti-aging agent may be used as necessary. Various auxiliary agents such as an agent, a conductive inducer, an antifoaming agent, an ultraviolet absorber, a dispersant, a pH adjuster, a mold release agent, a water-resistant agent, and a water-repellent agent can be appropriately blended. Regenerated inorganic particles that have not been carbonized have problems such as an increase in viscosity of the coating solution and poor dispersion due to the influence of free Ca ions, making it impossible to prepare a high concentration coating solution and drying. It can cause defects and affect operability and productivity. In addition, coated paper with a high pH on the paper may cause alkali burnt during the calendering process and storage, which may impair the appearance of the coated paper. Therefore, in order to avoid these problems, it is preferable to use carbonated regenerated inorganic particles.
[0126] 原紙上に設ける塗被層は、一層とするか、或いは 2層以上の多層にするかは特に 限定はなぐ多層の場合、全てが同一である必要はなぐ要求される品質レベルに応 じて適宜調整することが可能である。また、塗被層の塗被量も、特に限定されるもの ではなぐ塗被紙の白紙品質、印刷品質などに応じて調整することが可能であるが、 一般には、片面あたり 5〜40g/m2程度である。 [0126] Whether the coating layer provided on the base paper is a single layer or a multilayer of two or more layers is not particularly limited, it is not necessary for all to be the same. It is possible to adjust accordingly. In addition, the coating amount of the coating layer can be adjusted according to the blank paper quality, printing quality, etc. of the coated paper, which is not particularly limited, but in general, 5 to 40 g / m per side It is about 2 .
[0127] 本発明における塗被層を設ける際の塗工方式については、通常の塗被紙製造分 野で使用されている各種の塗工装置、例えばエアーナイフコーター、各種のブレード コーター. ケー卜ローノレコーター、ローノレコーター. タイコーター、カーテンコーター等 が適宜使用することができる。 [0127] Regarding the coating method in providing the coating layer in the present invention, various coating apparatuses used in the ordinary coated paper production field, such as an air knife coater and various blade coaters. Ronore coater, Ronore coater. Thai coater, curtain coater, etc. can be used as appropriate.
[0128] 本発明における原紙については、特に限定されるものではなぐ原紙の坪量は、一 般的には、 30〜500g/m2程度の範囲に適宜調整されたものを用いることができる。 [0128] For the base paper in the present invention, particularly the basis weight of Nag in the limited base paper, one general, it is possible to use those appropriately adjusted in the range of about 30 to 500 g / m 2.
[0129] このようにして得られた塗被紙は、各種公知公用の仕上げ装置、例えばスーパー力 レンダ、ダロスカレンダ、ソフトカレンダ、マットカレンダ等に通紙して製品仕上げを施 してもよい。 [0129] The coated paper obtained in this manner may be subjected to product finishing by passing it through various known and publicly used finishing devices such as a super strength renderer, a dalos calender, a soft calender, a mat calender and the like.
[0130] また、スラッジを原料とする再生無機粒子を填料として使用した原紙と、スラッジを 原料とする再生無機粒子を含有する塗被層とを組み合わせて、塗被紙としてもよレ、。 [0130] Further, a base paper using recycled inorganic particles made from sludge as a raw material and a coating layer containing recycled inorganic particles made from sludge as a raw material may be combined to form a coated paper.
[0131] [実施例、比較例]
以下に、実施例、比較例を挙げて本発明を具体的に説明するが、勿論、本発明は それらに限定されるものではない。なお、特に断らない限り、例中の部おょび%はそ れぞれ質量部、および質量%を示す。また、実施例や比較例中の pHおよび X線回 折測定は以下の方法で測定した。 [0131] [Examples and comparative examples] EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereto. Unless otherwise specified, parts and percentages in the examples refer to parts by mass and mass%, respectively. Further, pH and X-ray diffraction measurements in Examples and Comparative Examples were measured by the following methods.
[0132] [X線回折の測定] [0132] [Measurement of X-ray diffraction]
試料を乳鉢で粗レ、粒子がなくなるまですりつぶし、 X線回折装置 (株式会社マック サイエンス社製 M03XHF)を用いて、測定条件 40KV、 20mA,測定範囲: 5〜50 度で測定した。その詳細は以下のごとくであった。 The sample was coarsely crushed with a mortar until the particles disappeared, and measured using an X-ray diffractometer (M03XHF, manufactured by Mac Science Co., Ltd.) at measurement conditions of 40 KV, 20 mA, and measurement range: 5 to 50 degrees. The details were as follows.
[燃焼処理後の炭酸カルシウム分解率] [Calcium carbonate decomposition rate after combustion treatment]
次に、表 1に挙げた項目以外の評価として、各実施例について、熱処理後の炭酸 カルシウム分解率を、以下 i)〜vi)の手順にて熱処理処理前のペーパースラッジ中の 炭酸カルシウムとスラッジ焼成物中の残存炭酸カルシウムの量等を求めて評価した。 Next, as an evaluation other than the items listed in Table 1, for each example, the decomposition rate of calcium carbonate after heat treatment was determined in the following steps i) to vi). The amount of residual calcium carbonate in the fired product was determined and evaluated.
[0133] i)カルサイト炭酸カルシウムの検量線の作成 [0133] i) Preparation of calcite calcium carbonate calibration curve
結晶構造がカルサイトの炭酸カルシウム(奥多摩工業社製 タマパール 222H)に 対して、内部標準物質として酸化亜鉛 (キシダ化学社製 試薬特級)を、重量比 1 : 5 、 1 : 1、 5 : 1となるようにそれぞれ混合した。次いで、各混合物について、乳鉢を用い て充分に磨り潰したのちに、 X線回折装置(マックスサイエンス社製 M03XHF 既 述)を用いて、 40KV、 20mA,回折角測定範囲 5〜 50度の条件で測定し、カルサイ ト炭酸カルシウムと酸化亜鉛のそれぞれの X線回折 100%ピーク面積を基にして、力 ルサイト炭酸カルシウムの検量線を作成した。 Calcium carbonate with a crystal structure of calcite (Tamapearl 222H manufactured by Okutama Kogyo Co., Ltd.), zinc oxide (special grade reagent manufactured by Kishida Chemical Co., Ltd.) as an internal standard substance, weight ratio of 1: 5, 1: 1, 5: 1 Each was mixed. Next, after each mixture is sufficiently ground using a mortar, it is used with an X-ray diffractometer (M03XHF described by Max Science Co., Ltd.) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. A calibration curve of force-calcite calcium carbonate was prepared based on the X-ray diffraction 100% peak areas of calcite calcium carbonate and zinc oxide.
[0134] ii)ァラゴナイト炭酸カルシウムの検量線の作成 [0134] ii) Preparation of calibration curve for aragonite calcium carbonate
結晶構造がァラゴナイトの炭酸カルシウム(奥多摩工業社製タマパール 123)を用 いた以外は、前記カルサイト炭酸カルシウムの検量線作成と同様にして、ァラゴナイト 炭酸カルシウムの検量線を作成した。 A calibration curve for aragonite calcium carbonate was prepared in the same manner as the calibration curve for calcite calcium carbonate, except that calcium carbonate with a crystal structure of aragonite (Tama Pearl 123 manufactured by Okutama Kogyo Co., Ltd.) was used.
[0135] iii)燃焼処理前のペーパースラッジ中の炭酸カルシウムの定量 [0135] iii) Determination of calcium carbonate in paper sludge before combustion treatment
秤量した絶乾のペーパースラッジに対して、秤量した酸化亜鉛 (試薬特級 既述) を添加混合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのち に、 X線回折装置(M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲 5
〜50度の条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びァラゴナ イト炭酸カルシウムの X線回折 100%ピーク面積を求め、前記した各炭酸カルシウム の検量線を基にして、製紙スラッジ lg中に含まれる炭酸カルシウム量 (g)を算出したA weighed zinc oxide (special grade reagent described above) was added and mixed to the weighed absolute dry paper sludge. Next, the mixture was sufficiently ground using a mortar and then X-ray diffractometer (M03XHF described above) was used to measure 40KV, 20mA, diffraction angle measurement range 5 Determine the X-ray diffraction 100% peak area of calcium calcite carbonate and aragonite calcium carbonate with respect to zinc oxide based on the condition of ~ 50 degrees, and based on the calibration curve of each calcium carbonate described above, in the papermaking sludge lg Calculated the amount of calcium carbonate (g)
〇 Yes
[0136] iv)ペーパースラッジの灰分の測定 [0136] iv) Measurement of ash content in paper sludge
秤量した絶乾のペーパースラッジを、マツフル炉にて 350°C、 30分で燃焼処理し、 得られたスラッジ焼成物の重量を秤量し、下式によってスラッジの灰分含有量(%)を 測定した。 The weighed absolute dry paper sludge was burned in a pine furnace at 350 ° C for 30 minutes, the weight of the resulting sludge fired product was weighed, and the ash content (%) of the sludge was measured by the following formula .
灰分含有量(%) = (スラッジ焼成物重量/絶乾の製紙スラッジ重量) X 100 Ash content (%) = (Weight of sludge baked product / Weight of paper drying sludge) X 100
[0137] V)スラッジ焼成物中の炭酸カルシウムの定量 [0137] V) Quantification of calcium carbonate in the sludge
秤量したスラッジ焼成物に対して、秤量した酸化亜鉛 (試薬特級 既述)を添加混 合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのちに、 X線回 折装置(M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲 5〜50度の 条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びァラゴナイト炭酸力 ルシゥムの X線回折 100%ピーク面積を求め、前記した各炭酸カルシウムの検量線 を基にして、スラッジ焼成物 lg中に含まれる炭酸カルシウム量 (g)を算出した。 The weighed sludge burned product was added and mixed with a weighed zinc oxide (special grade reagent mentioned above). Next, the mixture was sufficiently ground using a mortar, and then measured using an X-ray diffraction apparatus (M03XHF described above) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. Calcium calcite and aragonite carbonate power against zinc oxide X-ray diffraction 100% peak area of Lucium was calculated, and based on the calibration curve of each calcium carbonate described above, the amount of calcium carbonate contained in lg of sludge calcined product (g) Was calculated.
[0138] vi)燃焼処理後の炭酸カルシウムの分解率 [0138] vi) Decomposition rate of calcium carbonate after combustion treatment
スラッジ焼成物 lg中の炭酸カルシウム量 (g)を A、製紙スラッジ lg中の炭酸カルシ ゥム量 (g)を B、灰分含有量(%)を Cとし、下式によって燃焼処理後の炭酸カルシゥ ムの分解率を算出した。 The amount of calcium carbonate (g) in the sludge fired product lg is A, the amount of calcium carbonate (g) in the paper sludge lg is B, and the ash content (%) is C. The rate of decomposition was calculated.
炭酸カルシウム分解率(%) = 100— [AX (C/100) ] ÷B X 100 Calcium carbonate decomposition rate (%) = 100— [AX (C / 100)] ÷ B X 100
[0139] [炭酸カルシウム未再生化物の有無] [0139] [Presence / absence of unregenerated calcium carbonate]
得られた無機粒子につ!/、て、乳鉢で粗!/、粒子がなくなるまで磨り潰した無機粒子試 料を、 X線回折装置 (M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範 囲 5〜 50度の条件で測定し、炭酸カルシウム未再生化物である酸化カルシウム及び 水酸化カルシウムの有無を調べた。 Using the X-ray diffractometer (M03XHF already described), the inorganic particle sample obtained by grinding the inorganic particles! /, Coarse in a mortar! /, And ground until no particles are present, is 40KV, 20mA, diffraction angle. The measurement range was 5 to 50 degrees, and the presence or absence of calcium oxide and calcium hydroxide as unregenerated calcium carbonate was examined.
[0140] [平均粒子径の測定] [0140] [Measurement of average particle size]
日機装株式会社製マイクロトラック粒度測定分布装置 HRAX— 100を用いて測定
した。 Measured using Nikkiso Co., Ltd. Microtrac particle size distribution analyzer HRAX-100 did.
[0141] 実施例 1 [0141] Example 1
[スラッジ] [Sludge]
古紙処理設備を有する製紙工場における雑誌古紙主体の古紙脱墨工程において、 浮遊選別法 (フローテーシヨン法)によって古紙パルプから浮上分離除去された泡沫 状の脱墨浮選廃液に、凝集剤を添加して廃液中の固形分を凝集させた後に、ロータ リースクリーンおよびスクリュープレスに順次通液して、固形分約 50%の製紙スラッジ (脱墨スラッジ)を回収した。このペーパースラッジ中の灰分は 60%で、その組成は炭 酸カルシウム 55%、カオリン 45%、タルク 5%であった。 Flocculant is added to the foamy deinking flotation waste liquid that has been floated and separated from the wastepaper pulp by the floating sorting method (floatation method) in the wastepaper deinking process, which is mainly used for magazine wastepaper at a paper mill with wastepaper processing equipment. After the solid content in the waste liquid was agglomerated, it was sequentially passed through a rotary screen and a screw press to recover papermaking sludge (deinking sludge) having a solid content of about 50%. The ash content in this paper sludge was 60%, and its composition was calcium carbonate 55%, kaolin 45%, and talc 5%.
[0142] 処理工程] [0142] Processing steps]
本熱処理工程は図 3に示した構成の熱処理装置(並流方式)によって行った。具体 的には連続外熱式ロータリーキルン 1 (栗本鉄工所製 IRK— 02、加熱部分: Φ 25ラ X I 80cm)を熱処理装置として使用した。ペーパースラッジ Sは 3. 5kg/hの速度で スラッジ供給口である供給ホッパ 2から供給した。スラッジはスクリューフィーダ一 10に よって直径約 35mmの大きさになるようにしつつロータリーキルン 1内に搬送される。 ロータリーキルン 1内を通過しながらスラッジ Sは熱処理、すなわち燃焼される。間接 的加熱手段 5としては別途図示を省略した燃焼ボイラーからの燃焼ガスを循環ブロワ 一 7から供給して使用した。この際に、排気ファン 4からキルン内ガスを未燃焼物搬送 用空気流 A'として 100L/分(20°C換算)で排出しつつ、その空気流量と間接加熱 の制御によりスラッジ温度が 850°Cになるように加熱し、加熱部分に 50分(キルン傾 斜: 2%、回転数: 1. 2rpm)滞留させ、焼成物を調製した。 This heat treatment step was performed by a heat treatment apparatus (cocurrent flow method) having the configuration shown in FIG. Specifically, a continuous externally heated rotary kiln 1 (IRK-02, manufactured by Kurimoto Iron Works, heated part: Φ 25 La X I 80 cm) was used as a heat treatment apparatus. Paper sludge S was supplied at a rate of 3.5 kg / h from supply hopper 2, which is a sludge supply port. The sludge is conveyed into the rotary kiln 1 by a screw feeder 10 with a diameter of about 35 mm. While passing through the rotary kiln 1, the sludge S is heat-treated, that is, burned. As the indirect heating means 5, a combustion gas from a combustion boiler (not shown) is supplied from a circulation blower 7 and used. At this time, the gas in the kiln is discharged from the exhaust fan 4 as an unburned matter transport air flow A 'at 100 L / min (20 ° C conversion), and the sludge temperature is 850 ° by controlling the air flow rate and indirect heating. The mixture was heated to C and allowed to stay in the heated part for 50 minutes (kiln tilt: 2%, rotation speed: 1.2 rpm) to prepare a fired product.
[0143] 得られたスラッジ焼成物を X線回折で測定し、炭酸カルシウムの分解率を求めた。 [0143] The obtained calcined sludge was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate.
その結果、炭酸カルシウムは 100%が酸化カルシウムに分解されていた。また、カオ リンは 100%焼成カオリンに変成し、タルクは全く分解されていなかった。得られたス ラッジ焼成物には一部の未燃焼物の混入が認められた。 As a result, 100% of calcium carbonate was decomposed into calcium oxide. Kaolin was converted to 100% calcined kaolin, and talc was not decomposed at all. Part of unburned material was found in the burned sludge.
[0144] [焼成物懸濁液化工程] [0144] [Baking suspension process]
得られたスラッジ焼成物を、懸濁液化槽(消和槽)で 60°C温水と混合し、懸濁液化 槽を 60°Cに保持しながら 60分間攪拌し、 12%焼成物懸濁液を調製した。
[0145] [炭酸化工程] The obtained sludge calcined product was mixed with 60 ° C warm water in a suspension tank (dissolving tank), stirred for 60 minutes while maintaining the suspension tank at 60 ° C, and 12% calcined product suspension Was prepared. [0145] [Carbonation process]
炭酸化反応槽に、温度 60°Cの 12%焼成物懸濁液を 10kg入れ、反応槽を 60°Cに 保持しながら 25容量%の二酸化炭素含有ガスを 20L/分吹き込み、 60分間攪拌を 行い、再生無機粒子を得た。得られた再生無機粒子を X線回折で測定したところ、焼 成処理によって分解された炭酸カルシウムは全量炭酸カルシウムに再生されていた 。炭酸化工程によって得られた再生無機粒子については、製紙用填料としては、そ のまま使用した。また塗工用顔料としては、以下の次工程を行なった後に使用した。 Put 10kg of 12% calcined suspension at 60 ° C into the carbonation reactor, blow in with 20L / min of gas containing 25% carbon dioxide while maintaining the reactor at 60 ° C, and stir for 60 minutes. And regenerated inorganic particles were obtained. When the obtained regenerated inorganic particles were measured by X-ray diffraction, the calcium carbonate decomposed by the calcination treatment was regenerated into calcium carbonate. The regenerated inorganic particles obtained by the carbonation process were used as they were as paper fillers. The coating pigment was used after performing the following steps.
[0146] [脱水 ·分散工程] [0146] [Dehydration and dispersion process]
炭酸化工程終了組成物をフィルタープレスで脱水することにより固形分が約 50% の脱水組成物とし、続いて固形分 48%となるようにコーレスミキサーで該脱水組成物 を水に分散させた。その分散の際、水にポリアクリル酸系分散剤(商品名:ァロン T— 50、東亜合成株式会社製)を組成物(該脱水組成物)の固形分対比で 1. 0部の量を 添加し、スラリーを調製した。 The composition after completion of the carbonation step was dehydrated with a filter press to obtain a dehydrated composition having a solid content of about 50%, and then the dehydrated composition was dispersed in water with a Coreless mixer so that the solid content was 48%. At the time of dispersion, a polyacrylic acid type dispersant (trade name: ALON T-50, manufactured by Toa Gosei Co., Ltd.) is added to water in an amount of 1.0 part relative to the solid content of the composition (the dehydrated composition). And a slurry was prepared.
[0147] [粉砕工程] [0147] [Crushing process]
分散工程後のスラリー組成物を湿式粉砕機であるサンドグラインダーを用いて平均 粒子径が 1 · 3 mになるまで粉砕した。 The slurry composition after the dispersion step was pulverized using a sand grinder that is a wet pulverizer until the average particle size became 1.3 m.
[0148] 実施例 2 [0148] Example 2
熱処理工程前に以下の乾燥工程を付加した以外は実施例 1と同様にして行った。 It carried out like Example 1 except having added the following drying processes before the heat treatment process.
[0149] [乾燥工程] [0149] [Drying process]
ペーパースラッジを、回転乾燥機を用いて、固形分 75%になるように乾燥を行い、 熱処理工程用原料とした。 Paper sludge was dried using a rotary dryer to a solid content of 75%, and used as a raw material for the heat treatment process.
[0150] 得られた焼成物の炭酸カルシウムの分解率を求めた結果、炭酸カルシウムは 100[0150] As a result of obtaining the decomposition rate of calcium carbonate in the obtained fired product, calcium carbonate was found to be 100
%が酸化カルシウムに分解されていた。また、カオリンは 100%焼成カオリンに変成 し、タルクは全く分解されていな力 た。得られたスラッジ焼成物には一部の未燃焼 物の混入が認められた。 % Was broken down into calcium oxide. Kaolin was transformed into 100% calcined kaolin, and talc was not decomposed at all. Part of the unburned material was found mixed in the resulting sludge burned product.
[0151] 実施例 3 [0151] Example 3
熱処理工程前に以下の乾燥工程を付加し、熱処理工程を変更した以外は実施例 1 と同様にして fiつた。
[0152] [乾燥工程] The following drying step was added before the heat treatment step, and the same heat treatment step was applied as in Example 1 except that the heat treatment step was changed. [0152] [Drying process]
ペーパースラッジを、回転乾燥機を用いて、固形分 75%になるように乾燥を行い、 熱処理工程用原料とした。 Paper sludge was dried using a rotary dryer to a solid content of 75%, and used as a raw material for the heat treatment process.
[0153] 処理工程] [0153] Treatment process]
本熱処理工程は図 2に示した構成の熱処理装置によって行った。具体的には連続 外熱式ロータリーキルン 1 (栗本鉄工所製 IRK 02、加熱部分: φ 25ラ This heat treatment step was performed by a heat treatment apparatus having the configuration shown in FIG. Specifically, continuous external heating rotary kiln 1 ( IRK 02 manufactured by Kurimoto Iron Works, heated part: φ25
X I 80cm)を熱処理装置として使用した。ペーパースラッジ Sは 3. 5kg/hの速度で スラッジ供給口である供給ホッパ 2から供給した。スラッジ Sはスクリューフィーダ一 10 によってロータリーキルン 1内に搬送される。ロータリーキルン 1内を通過しながらスラ ッジ Sは熱処理、すなわち燃焼される。間接的加熱手段 5としては別途図示を省略し た燃焼ボイラーからの燃焼ガスを循環ブロワ一 7から供給して使用した。この際に、排 気ファン 4からキルン内ガスを未燃焼物搬送用空気流 Aとして 250L/分(20°C換算 )で排出しつつ、その空気流量と間接加熱の制御によりスラッジ温度が 850°Cになる ように加熱し、加熱部分に 50分滞留(キルン傾斜: 2%、回転数: 1. 2rpm)させ、焼 成物を調製した。 X I 80 cm) was used as the heat treatment apparatus. Paper sludge S was supplied at a rate of 3.5 kg / h from supply hopper 2, which is a sludge supply port. Sludge S is conveyed into the rotary kiln 1 by a screw feeder 10. While passing through the rotary kiln 1, the sludge S is heat-treated, that is, burned. As the indirect heating means 5, combustion gas from a combustion boiler (not shown) was supplied from a circulation blower 7 and used. At this time, the gas in the kiln is discharged from the exhaust fan 4 at 250 L / min (converted to 20 ° C) as the air flow A for unburned material transfer, and the sludge temperature is 850 ° by controlling the air flow rate and indirect heating. The mixture was heated to C and stayed in the heated part for 50 minutes (kiln inclination: 2%, rotation speed: 1.2 rpm) to prepare a sintered product.
[0154] 得られたスラッジ焼成物を X線回折で測定し、炭酸カルシウムの分解率を求めた。 [0154] The obtained sludge fired product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate.
その結果、炭酸カルシウムは 100%が酸化カルシウムに分解されていた。また、カオ リンは 100%焼成カオリンに変成し、タルクは全く分解されていなかった。得られたス ラッジ焼成物には未燃焼物の混入が見られなかった。この未燃焼物の混入が見られ な力、つたことは以下の実施例 4から 11まで同様であった。 As a result, 100% of calcium carbonate was decomposed into calcium oxide. Kaolin was converted to 100% calcined kaolin, and talc was not decomposed at all. The burned sludge obtained did not contain any unburned material. The force with which no unburned matter was mixed was the same as in Examples 4 to 11 below.
[0155] 実施例 4 [0155] Example 4
熱処理工程の温度を 700°Cに変更した以外は実施例 3と同様にして行った。得ら れた焼却物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果、炭 酸カルシウムは 35%が酸化カルシウムに分解されていた。また、カオリンは 100%が 焼成カオリンに変成し、タルクは全く分解されていなかった。 The same procedure as in Example 3 was performed except that the temperature of the heat treatment step was changed to 700 ° C. The obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 35% of calcium carbonate was decomposed into calcium oxide. Also, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0156] 実施例 5 [0156] Example 5
熱処理工程の加熱時間を 90分に変更した以外は実施例 4と同様にして行った。得 られた焼却物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果、炭
酸カルシウムは 70%が酸化カルシウムに分解されていた。また、カオリンは 100%が 焼成カオリンに変成し、タルクは全く分解されていなかった。 The same procedure as in Example 4 was performed except that the heating time in the heat treatment step was changed to 90 minutes. The obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, charcoal 70% of the calcium acid was broken down into calcium oxide. Also, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0157] 実施例 6 [0157] Example 6
スラッジの大きさを直径 lmmに変更した以外は実施例 5と同様にして行った。得ら れた焼却物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果、炭 酸カルシウムは 70%が酸化カルシウムに分解されていた。また、カオリンは 100%が 焼成カオリンに変成し、タルクは全く分解されていなかった。 This was carried out in the same manner as in Example 5 except that the sludge size was changed to lmm in diameter. The obtained incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 70% of calcium carbonate was decomposed into calcium oxide. Also, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0158] 実施例 7 [0158] Example 7
スラッジの大きさを直径 20mmに変更し、未燃焼物搬送用空気流 Aを 500L/分と した以外は実施例 6と同様にして行った。得られた焼却物を X線回折で測定し、炭酸 カルシウムの分解率を求めた。その結果、炭酸カルシウムは 100%が酸化カルシウム に分解されていた。また、カオリンは 100%が焼成カオリンに変成し、タルクは全く分 解されていなかった。 This was performed in the same manner as in Example 6 except that the sludge size was changed to 20 mm in diameter and the air flow A for conveying unburned matter was 500 L / min. The resulting incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 100% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was transformed into calcined kaolin, and talc was not decomposed at all.
[0159] 実施例 8 [0159] Example 8
乾燥工程前に以下の造粒工程を付加し、熱処理工程を変更した以外は実施例 7と 同様にして fiつた。 The following granulation step was added before the drying step, and fi was conducted in the same manner as in Example 7 except that the heat treatment step was changed.
[0160] [造粒工程] [0160] [Granulation process]
スラッジを、ブリケットマシンを用いて、 Φ 20πιιη Sludge, using a briquette machine, Φ 20πιιη
X 5mmになるように成形し、乾燥工程および熱処理工程用の原料とした。 X was formed to 5 mm and used as a raw material for the drying process and heat treatment process.
[0161] 処理工程] [0161] Processing steps]
造粒したペーパースラッジの供給速度を 3. 5kg/hとし、未燃焼物搬送用空気流 A の流量を 300L/分とし、スラッジ温度が 600°Cになるように加熱し、加熱部分に 240 分 (キルン傾斜: 0. 5%、回転数: 1. 3rpm)滞留させたほかは実施例 7と同様にして 焼成物を調製した。 The granulated paper sludge supply rate is 3.5 kg / h, the unburned material transport air flow A is 300 L / min, and the sludge temperature is heated to 600 ° C. (Kiln inclination: 0.5%, rotation speed: 1.3 rpm) A calcined product was prepared in the same manner as in Example 7 except that it was retained.
[0162] 得られた焼成物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果 、炭酸カルシウムは 30%が酸化カルシウムに分解されていた。また、カオリンは 100 %が焼成カオリンに変成し、タルクは全く分解されていな力 た。 [0162] The obtained fired product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 30% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0163] 実施例 9
熱処理工程の温度を 750°C、加熱時間を 120分に変更した以外は実施例 7と同様 にして行った。その結果、炭酸カルシウムは 100%が酸化カルシウムに分解され、力 オリンは 100%焼成カオリンに変成し、タルクは全く分解されていなかった。 [0163] Example 9 The same procedure as in Example 7 was performed except that the temperature of the heat treatment step was changed to 750 ° C. and the heating time was changed to 120 minutes. As a result, 100% of calcium carbonate was decomposed into calcium oxide, power oline was converted to 100% calcined kaolin, and talc was not decomposed at all.
[0164] 実施例 10 [0164] Example 10
造粒工程、熱処理工程を変更した以外は実施例 7と同様にして行った。 It carried out like Example 7 except having changed the granulation process and the heat processing process.
[0165] [造粒工程] [0165] [Granulation process]
スラッジを、ディスク 'ペレツター(株式会社ダルトン製、既述)を用いて、 Φ 5πιιηラ X長さ 15mmになるように成形し、乾燥工程および熱処理工程用の原料とした。 The sludge was molded to a diameter of 15 mm using a disk pelleter (manufactured by Dalton Co., Ltd.) and used as a raw material for the drying process and heat treatment process.
[0166] 処理工程] [0166] Treatment process]
造粒したペーパースラッジの供給速度を 3. 5kg/hとし、未燃焼物搬送用空気流 A の流量を 250L/分、スラッジ温度を 600°C、加熱部分に 30分(キルン傾斜: 2%、回 転数: 2. lrpm)滞留させ、一次処理焼成物を調製した。次いで調製した一次処理 焼成物を、再度、ロータリーキルン 1に供給し、未燃焼物搬送用空気流 Aの流量を 20 0L/分、二次焼成物温度を 800°C、加熱部分に 70分 (キルン傾斜: 1 %、回転数: 1 . Orpm)滞留させ、焼成物を調製した。 The supply rate of the granulated paper sludge is 3.5 kg / h, the flow rate of unburnt material transport air stream A is 250 L / min, the sludge temperature is 600 ° C, and the heated part is 30 minutes (kiln slope: 2%, The number of rotations: 2. lrpm) was retained to prepare a primary-treated fired product. Next, the prepared primary treatment calcined product is supplied again to the rotary kiln 1, the flow rate of the air flow A for conveying unburned material is 200 L / min, the temperature of the secondary calcined product is 800 ° C, and the heating part is 70 minutes (kiln) (Tilt: 1%, rotation speed: 1. Orpm) was retained to prepare a fired product.
[0167] 得られた焼却物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果 、炭酸カルシウムは 100%が酸化カルシウムに分解されていた。また、カオリンは 100 %が焼成カオリンに変成し、タルクは全く分解されていなかった。 [0167] The resulting incinerated product was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 100% of calcium carbonate was decomposed into calcium oxide. Further, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0168] 実施例 11 [0168] Example 11
炭酸化工程を行わずに、熱処理焼成物をそのまま製紙用填料および塗工用顔料用 途の無機粒子として使用した以外は、実施例 4と同様にして行った。得られたスラッジ 焼成物(無機粒子)を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結 果、炭酸カルシウムは 35%が酸化カルシウムに分解されていた。また、カオリンは 10 0%焼成カオリンに変成し、タルクは全く分解されていなかった。得られたスラッジ焼 成物には未燃焼物の混入が見られなかった。得られた無機粒子については、製紙用 填料として使用する場合には、そのまま使用し、塗工用顔料として使用する場合には 、以下の分散工程および粉砕工程を追加して行い、塗工用顔料とした。 This was carried out in the same manner as in Example 4 except that the calcined heat-treated product was used as it was as inorganic particles for papermaking fillers and coating pigments without performing the carbonation step. The obtained sludge fired product (inorganic particles) was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. As a result, 35% of calcium carbonate was decomposed into calcium oxide. Kaolin was transformed into 100% calcined kaolin, and talc was not decomposed at all. The obtained sludge product was not mixed with unburned material. The obtained inorganic particles are used as they are when used as a filler for papermaking, and when used as a coating pigment, the following dispersion process and pulverization process are additionally performed, and the coating pigment is used. It was.
[0169] [分散工程]
熱処理焼成物を固形分が約 35%となるようにコーレスミキサーを用いて水に分散さ せた。その分散の際、水にポリアクリル酸系分散剤(商品名:ァロン T— 50、東亜合成 株式会社製、既述)を焼成物の固形分対比で 2. 0部の量を添加し、スラリーを調製し た。 [0169] [Dispersion process] The heat-treated fired product was dispersed in water using a coreless mixer so that the solid content was about 35%. At the time of dispersion, a polyacrylic acid-based dispersant (trade name: AALON T-50, manufactured by Toa Gosei Co., Ltd., described above) is added in an amount of 2.0 parts by weight relative to the solid content of the fired product. Was prepared.
[0170] [粉砕工程] [0170] [Crushing process]
分散工程後のスラリー組成物を湿式粉砕機であるサンドグラインダーを用いて平均 粒子径が 1. 3 mになるまで粉砕した。 The slurry composition after the dispersion step was pulverized using a sand grinder that is a wet pulverizer until the average particle size became 1.3 m.
[0171] 実施例 12 [0171] Example 12
造粒工程、熱処理工程を変更した以外は実施例 7と同様にして行った。 It carried out like Example 7 except having changed the granulation process and the heat processing process.
[0172] [造粒工程] [0172] [Granulation process]
スラッジを、ディスク 'ペレツター(株式会社ダルトン製)を用いて、 Φ 5mm X長さ 15 mmになるように成形し、熱処理工程用の原料とした。 Sludge was formed into a Φ5mm X length of 15 mm using a disk pelleter (Dalton Co., Ltd.) and used as a raw material for the heat treatment process.
[0173] 処理工程] [0173] Treatment process]
ペーパースラッジの供給速度を 3. 5kg/hとし、未燃焼物搬送用空気流の流量を 50 0L/分、スラッジ温度を 750°C、加熱時間を 120分(キルン傾斜: 1 %、回転数: 0. 9 5rpm)滞留させたほかは実施例 7と同様にして焼成物を調製した。その結果、炭酸 カルシウムは 100%が酸化カルシウムに分解され、カオリンは 100が%焼成カオリン に変成し、タルクは全く分解されてレ、なかった。 Paper sludge supply rate is 3.5 kg / h, unburned material transport air flow rate is 500 L / min, sludge temperature is 750 ° C, heating time is 120 minutes (kiln slope: 1%, rotation speed: 0.95 rpm) A fired product was prepared in the same manner as in Example 7 except that it was retained. As a result, 100% of calcium carbonate was decomposed into calcium oxide, 100% of kaolin was transformed into 100% calcined kaolin, and talc was not decomposed at all.
[0174] 比較例 1 熱処理工程を以下のように変更した以外は実施例 9と同様にして行つ た。 Comparative Example 1 The procedure was the same as Example 9 except that the heat treatment step was changed as follows.
[0175] 処理工程] [0175] Treatment process]
ペーパースラッジ 3. 5kg/hを、連続式直接的加熱型ロータリーキルン (加熱部分: Φ 25ラ X 180cm)の一端から供給し、他端から排出した。最高温度を 750°Cとし、キ ルン内部に 60分滞留させ、焼成物を調製した。直接的加熱型であるのでスラッジ供 給側からいわゆる燃焼用灯油バーナーで炉内を直接加熱し、その燃焼量により温度 調整をおこなった。この際、直接的加熱型キルン内の温度を均一に調整することは 困難であった。 Paper sludge of 3.5 kg / h was supplied from one end of a continuous direct heating rotary kiln (heating part: Φ 25 la x 180 cm) and discharged from the other end. The maximum temperature was set to 750 ° C and the product was allowed to stay inside the kiln for 60 minutes to prepare a fired product. Because it is a direct heating type, the furnace was directly heated from the sludge supply side with a so-called combustion kerosene burner, and the temperature was adjusted according to the amount of combustion. At this time, it was difficult to uniformly adjust the temperature in the direct heating kiln.
[0176] 得られた焼却物を X線回折で測定し、炭酸カルシウムの分解率を求めた。その結果
、炭酸カルシウムは 25%が酸化カルシウムに分解されていた。また、カオリンは 100 %が焼成カオリンに変成し、タルクは全く分解されていな力 た。 [0176] The incinerated product obtained was measured by X-ray diffraction to determine the decomposition rate of calcium carbonate. as a result In addition, 25% of calcium carbonate was decomposed into calcium oxide. In addition, 100% of kaolin was converted to calcined kaolin, and talc was not decomposed at all.
[0177] [品質評価] [0177] [Quality evaluation]
ペーパースラッジを熱処理した焼成品、およびペーパースラッジ力、ら製造した再生 無機粒子を、以下の方法により評価を行った。 The fired product obtained by heat treating the paper sludge and the regenerated inorganic particles produced by the paper sludge force were evaluated by the following methods.
[0178] [スラッジ焼成物、および再生無機粒子の白色度の測定] [0178] [Measurement of whiteness of burnt sludge and recycled inorganic particles]
サンプル(乾燥物)を約 10g、乳鉢で粗い粒子がなくなるまですりつぶしたのち、粉体 試料成形機 (理学電機工業株式会社製、 Cat9302/30)を用いて、圧力 lOOkNに て 30秒加圧して粉体試料成形した。成形したサンプルの白色度を分光白色度測色 計 (スガ試験機社製 SC— 10WT型)を使用し、 JIS P8148 (2001年)に準拠し、測 定した。 About 10 g of the sample (dried product) is ground until coarse particles disappear in a mortar, and then pressurized with a powder sample molding machine (Rika Denki Kogyo Co., Ltd., Cat9302 / 30) at a pressure of lOOkN for 30 seconds. A powder sample was molded. The whiteness of the molded sample was measured according to JIS P8148 (2001) using a spectral whiteness colorimeter (SC-10WT model, manufactured by Suga Test Instruments Co., Ltd.).
[0179] [磨耗性試験] [0179] [Abrasion test]
王子ェ営 (株)製ワイヤー摩耗試験機を使用し、固形分濃度: 5%の填料分散液を ポンプ循環させながら、試験条件 (加重 = 650g,ワイヤー =プラスチックワイヤー/ SS— 60、 日本フィルコン社製を使用、試験時間 = 3時間)で摩耗度試験を行い、減 量したワイヤーの重量 (mg)をもって、ワイヤー摩耗性を評価した。また軽質炭酸カル シゥム(自製品)、重質炭酸カルシウム(自製品)およびタルク(商品名: SK— 2、東洋 化成社製)の各 5質量%濃度のスラリーを調製し、磨耗試験の比較用試料として用い た。 Using a wire wear tester manufactured by Oji-Ei Co., Ltd. and pumping a filler dispersion with a solid content of 5%, the test conditions (weight = 650 g, wire = plastic wire / SS-60, Nippon Filcon Abrasion degree test was performed using a product manufactured by using a product, and the wire wear resistance was evaluated based on the weight (mg) of the reduced wire. Also prepared 5 wt% slurry of light calcium carbonate (own product), heavy calcium carbonate (own product) and talc (trade name: SK-2, manufactured by Toyo Kasei Co., Ltd.) for comparison of wear test. Used as a sample.
〇 :ワイヤー摩耗性は良好である。 ○: Wire wear resistance is good.
〇':ワイヤー摩耗性は若干悪いが、使用できる範囲である。 ○ ': The wire wearability is slightly poor, but is within the usable range.
X :ワイヤー摩耗性が悪ぐ使用できない。 X: Wire wear resistance is poor and cannot be used.
[0180] 以上、実施例;!〜 12、および比較例 1の熱処理条件、原料形状、炭酸化工程の有 無、燃焼品および無機粒子の各品質を表に纏めれば、主に [表 1]のとおりになる。 [0180] As described above, the heat treatment conditions, raw material shapes, presence / absence of carbonation process, quality of combusted products and inorganic particles in Examples;! It becomes as follows.
[0181] [無機粒子分散液の pH測定] [0181] [Measurement of pH of inorganic particle dispersion]
得られた無機粒子の分散液は、ラコムテスター pH計(pHScanWPBN型/ァズワン 製)を使用し、各種顔料分散液中に直接 pH電極を浸漬させて顔料分散液の pHを測 定した。なお、 pH測定に使用した pH計については、 NIST基準校正液(pH6. 86、
および pH9. 18の 2種類)を用いて pH校正を行なった後に pH測定を行なった。実 施例;!〜 10、 12比較例 1では pH9. 6— 10. 5、実施例 11では pHl l . 5であった。 The resulting dispersion of inorganic particles was measured using a Lacom Tester pH meter (pHScanWPBN type / manufactured by Azwan), and the pH of the pigment dispersion was measured by immersing the pH electrode directly in the various pigment dispersions. For the pH meter used for pH measurement, the NIST standard calibration solution (pH 6.86, PH calibration was performed using 2 types of pH 9.18 and pH 9.18. Examples:! ~ 10, 12 In Comparative Example 1, the pH was 9.6 to 10.5, and in Example 11, the pH was 10.5.
[表 1]
[table 1]
*1 理 置 * 1 Theory
*2キルン全体の温度を均一にするのは困難
* 2 Difficult to make uniform temperature throughout kiln
[0183] [2層両面塗被紙の製造] [0183] [Manufacture of double-layer coated paper]
実施例 13 Example 13
[下塗り塗被液の調製] [Preparation of undercoat coating solution]
実施例 129で得た再生無機粒子顔料 10質量%、平均粒子径 2 m重質炭酸カル シゥム(商品名:ハイド口カーブ K— 6、備北粉化社製) 90質量%からなる顔料スラリ 一に、顔料 100部に対して、酸化澱粉(商品名:エース B、王子コーンスターチ社製) 4部、スチレン—ブタジエン共重合体ラテックス(商品名: T2628G、 JSR社製) 6部( いずれも固形分換算)、さらに、助剤として消泡剤及び染料を添加し、最終的に固形 分濃度 62 %の塗被液を調製した。 Recycled inorganic particle pigment obtained in Example 129 10% by mass, average particle size 2 m heavy calcium carbonate (trade name: Hyde Mouth Curve K-6, manufactured by Bihoku Powder Chemical Co., Ltd.) 90% by mass pigment slurry , 100 parts of pigment, oxidized starch (trade name: Ace B, manufactured by Oji Cornstarch) 4 parts, styrene-butadiene copolymer latex (trade name: T2628G, manufactured by JSR) 6 parts (all in terms of solid content) In addition, an antifoaming agent and a dye were added as auxiliary agents, and a coating solution having a solid content of 62% was finally prepared.
[0184] [上塗り塗被液の調製] [0184] [Preparation of top coat liquid]
微粒カオリン(商品名:ミラグロ エンゲルノヽード社製) 60質量%、平均粒子径 1 · 3 ΐη重質炭酸カルシウム(商品名:ハイド口カーブ Κ— 9、備北粉化工業社製) 40質 量%からなる顔料スラリーに、顔料 100部に対して、酸化澱粉(商品名:エース Β、既 述) 2部、スチレン ブタジエン共重合体ラテックス(商品名: T2628G、既述) 10部( いずれも固形分換算)、さらに、助剤として消泡剤及び染料を添加し、最終的に固形 分濃度 65 %の塗被液を調製した。 Fine kaolin (trade name: manufactured by Miragro Engelnode) 60% by mass, average particle size 1 · 3 ΐη heavy calcium carbonate (trade name: Hyde Mouth Curve Κ-9, manufactured by Bihoku Flour & Chemical Co., Ltd.) 40 mass% To 100 parts of pigment, 2 parts of oxidized starch (trade name: Ace Β, as described above), 10 parts of styrene butadiene copolymer latex (trade name: T2628G, as described above) per 100 parts of pigment (both solid content) In addition, an antifoaming agent and a dye were added as auxiliary agents, and finally a coating solution having a solid concentration of 65% was prepared.
[0185] [2層両面塗被紙の調製] [0185] [Preparation of double-layer coated paper]
緊度が 0. 75g/cm3である上質原紙 (米坪 70. Og/m2)に、下塗り塗被層用塗被 液を片面当たりの乾燥重量が 7g/m2となるようにブレードコーターを使用して両面 塗被、乾燥を行い、下塗り塗被層を設けた。次いで、上塗り塗被層用塗被液を片面 当たりの乾燥重量が 9g/m2となるようにブレードコーターを使用して両面塗被、乾燥 を行い、上塗り塗被層を設けた。このようにして得られた塗被紙を、温度 70°C、線圧 2 OOKN/mでスーパーカレンダに通紙して、塗被紙を得た。 Blade coater so that the dry weight per side is 7g / m 2 on the high-quality base paper (70.Og / m 2 ) with an intensity of 0.75g / cm 3 Was used for both-side coating and drying to provide an undercoat coating layer. Next, the coating solution for the top coating layer was coated on both sides using a blade coater and dried so that the dry weight per side was 9 g / m 2 , thereby providing a top coating layer. The coated paper thus obtained was passed through a super calendar at a temperature of 70 ° C. and a linear pressure of 2 OOKN / m to obtain a coated paper.
[0186] 実施例 14 [0186] Example 14
下塗り塗被層を以下のように変更した以外は実施例 13と同様にして塗被紙を得た A coated paper was obtained in the same manner as in Example 13 except that the undercoat coating layer was changed as follows.
[下塗り塗被液の調製] [Preparation of undercoat coating solution]
実施例 129で得た再生無機粒子顔料 30質量%、平均粒子径 2 mの重質炭酸力
ルシゥム(商品名:ハイド口カーブ K— 6、既述) 70質量%からなる顔料スラリーに、顔 料 100部に対して、酸化澱粉(商品名:エース B、既述) 4部、スチレン—ブタジエン 共重合体ラテックス(商品名: T2628G、既述) 6部(いずれも固形分換算)、さらに、 助剤として消泡剤及び染料を添加し、最終的に固形分濃度 59%の塗被液を調製し た。 Heavy carbonate power of 30% by mass of regenerated inorganic pigment obtained in Example 129 and an average particle size of 2 m Lucium (trade name: Hyde Mouth Curve K-6, described above) 70 parts by mass of pigment slurry, 100 parts of pigment, oxidized starch (trade name: Ace B, previously described) 4 parts, styrene-butadiene Copolymer latex (trade name: T2628G, as stated above) 6 parts (both solid content conversion), defoamer and dye are added as auxiliary agents, and finally a coating solution with a solid content concentration of 59% is added. Prepared.
[0187] 比較例 2 [0187] Comparative Example 2
下塗り塗被層の顔料を比較例 1で得た再生無機粒子顔料に変更し、最終的に固形 分濃度 60%の塗被液を調製した以外は実施例 14と同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Example 14 except that the pigment of the undercoat coating layer was changed to the regenerated inorganic particle pigment obtained in Comparative Example 1 and a coating solution having a solid content concentration of 60% was finally prepared. It was.
[0188] 参考例 1 [0188] Reference Example 1
下塗り塗被層の顔料を実施例 11で得た再生無機粒子顔料に変更し、最終的に固 形分濃度 50%の塗被液を調製した以外は実施例 14と同様にして塗被紙を得た。 The coated paper was prepared in the same manner as in Example 14 except that the pigment of the undercoat coating layer was changed to the regenerated inorganic particle pigment obtained in Example 11 and finally a coating solution having a solid concentration of 50% was prepared. Obtained.
[0189] 参考例 2 [0189] Reference Example 2
下塗り塗被層を以下のように変更した以外は実施例 13と同様にして塗被紙を得た A coated paper was obtained in the same manner as in Example 13 except that the undercoat coating layer was changed as follows.
[下塗り塗被液の調製] [Preparation of undercoat coating solution]
平均粒子径 1. 3 m重質炭酸カルシウム(商品名:ノ、イド口カーブ K 9、既述) 10 0質量%からなる顔料スラリーに、顔料 100部に対して、酸化澱粉(商品名:エース B 、既述) 4部、スチレン ブタジエン共重合体ラテックス(商品名: T2628G、既述) 6 部(いずれも固形分換算)、さらに、助剤として消泡剤及び染料を添加し、最終的に 固形分濃度 65 %の塗被液を調製した。 Average particle size 1.3 m Heavy calcium carbonate (Product name: No, Idoguchi curve K 9, previously described) 100% by weight of pigment slurry, 100 parts of pigment, oxidized starch (Product name: Ace B, as described above) 4 parts, styrene butadiene copolymer latex (trade name: T2628G, as described above) 6 parts (all in terms of solid content), defoamer and dye added as auxiliary, finally A coating solution having a solid concentration of 65% was prepared.
[0190] 参考例 3 [0190] Reference Example 3
下塗り塗被層の顔料を平均粒子径 2. 0 μ m重質炭酸カルシウム(商品名:ハイド口 カーブ K 6、既述)に変更した以外は参考例 2と同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Reference Example 2 except that the pigment of the undercoat coating layer was changed to an average particle size of 2.0 μm heavy calcium carbonate (trade name: Hyde Mouth Curve K 6, previously described). .
[0191] 参考例 4 [0191] Reference Example 4
下塗り塗被層の顔料を微粒カオリン (商品名:ミラグロ 既述)に変更した以外は 参考例 2と同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Reference Example 2 except that the pigment of the undercoat coating layer was changed to fine kaolin (trade name: Miragro described above).
[0192] [品質評価] [0192] [Quality evaluation]
以上の実施例、参考例、比較例についての品質評価を纏めれば、主に [表 2]のとお
りになる。なお品質評価については特に記載ない限り、 23°C、 50RH%の環境にお いて、以下の方法により評価を行った。 Summarizing the quality evaluation of the above examples, reference examples, and comparative examples, it is mainly as shown in [Table 2]. It becomes. Unless otherwise specified, the quality evaluation was performed by the following method in an environment of 23 ° C and 50RH%.
[0193] [白色度の測定] [0193] [Measurement of whiteness]
スガ試験機社製、分光白色度測色計を使用し、 JIS P8148に準拠し、測定した。 Using a spectral whiteness colorimeter manufactured by Suga Test Instruments Co., Ltd., measurement was performed in accordance with JIS P8148.
[0194] [不透明度の測定] [0194] [Measure opacity]
スガ試験機社製、分光白色度測色計を使用し、 JIS P8149に準拠し、測定した。 Using a spectral whiteness colorimeter manufactured by Suga Test Instruments Co., Ltd., measurement was performed in accordance with JIS P8149.
[0195] [白紙光沢度の測定] [0195] [Measurement of glossiness of blank paper]
村上色彩技術研究所製、 75° 光沢度計を使用し、 JIS Z8741に準拠し、測定し た。 Measurement was performed in accordance with JIS Z8741 using a 75 ° gloss meter manufactured by Murakami Color Research Laboratory.
[0196] [PPS平滑度の測定] [0196] [Measurement of PPS smoothness]
パーカープリントサーフ(PPS)表面平滑度試験機(機種名: MODEL M— 569型 、 MESSMER BUCHEL社製、英国)を用い、バッキングディスク:ソフトラバー、ク ランプ圧力: 0. 98MPaで 5回平滑度測定を行ない、その平均を求めた。 Using a Parker Print Surf (PPS) surface smoothness tester (model name: MODEL M-569, manufactured by MESSMER BUCHEL, UK), backing disk: soft rubber, clamp pressure: 0.9. And the average was obtained.
[0197] [印刷適性評価] [0197] [Printability evaluation]
RI印刷機にて、印刷インキ(商品名: FUSION— G 墨、 Sタイプ、大日本インキ化 学工業社製)を 0. lcc使用して印刷を行い、転写したインキ濃度 (インキ着肉性)お よびインキの転写均一性(印刷平滑性)を総合的に目視で観察して評価した。 On the RI printing machine, printing ink (trade name: FUSION— G ink, S type, manufactured by Dainippon Ink Chemical Co., Ltd.) was printed using 0.1 lcc, and the transferred ink density (ink fillability) In addition, the transfer uniformity (printing smoothness) of the ink was comprehensively observed and evaluated.
◎:印刷適性が特に優れる。 A: Printability is particularly excellent.
〇:印刷適性が優れる。 ◯: Excellent printability.
Δ:印刷適性がやや劣るが、実用上問題ない。 Δ: Printability is slightly inferior, but there is no practical problem.
X:印刷適性が劣る。 X: Printability is inferior.
[0198] [インキセット評価] [0198] [Ink set evaluation]
RI印刷機にて、印刷インキ(商品名: FUSION— G 墨、 Sタイプ、既述)を 0· 6cc 使用して印刷を行い、 3分後に白紙と印刷面を重ねて、再度 RI印刷機にエップし、白 紙に転写したインキ濃度を目視評価した。 On the RI printing machine, print using 0 · 6cc of printing ink (trade name: FUSION— G ink, S type, as described above). After 3 minutes, the blank paper and the printing surface are overlapped, and then reprinted on the RI printing machine. The ink density transferred to the white paper was visually evaluated.
◎:インキセットが非常に早ぐ特に優れる。 A: The ink set is particularly excellent very quickly.
〇:インキセットが早ぐ優れる。 ◯: The ink set is excellent quickly.
△:インキセットはやや遅いが、実用上問題ない。
:インキセットが遅ぐ実用上問題がある c ]
Δ: Ink setting is a little slow, but there is no practical problem : Ink set is slow and there is a practical problem c ]
[0200] [1層両面塗被紙の製造] [0200] [Manufacture of single-layer, double-sided coated paper]
実施例 15 Example 15
[塗被液の調製] [Preparation of coating solution]
実施例 12で得た再生無機粒子顔料 15質量%、平均粒子径 1. 重質炭酸力 ルシゥム(商品名:ハイド口カーブ K 9、既述) 35質量%、微粒カオリン(ミラダロス】、 既述) 50質量%からなる顔料スラリーに、顔料 100部に対して、酸化澱粉 (商品名: エース B、既述) 4部、スチレン一ブタジエン共重合体ラテックス(商品名: T2628G、 既述) 7部 Recycled inorganic particle pigment obtained in Example 12 15% by mass, average particle size 1. Heavy carbonate power Lucium (trade name: Hyde Mouth Curve K 9, already described) 35% by mass, fine kaolin (Miradaros), already described 50 parts by weight of pigment slurry, 100 parts of pigment, oxidized starch (trade name: Ace B, described above) 4 parts, styrene monobutadiene copolymer latex (trade name: T2628G, previously described) 7 parts
(いずれも固形分換算)、さらに、助剤として消泡剤及び染料を添加し、最終的に固 形分濃度 62 %の塗被液を調製した。 (Both in terms of solid content) Further, an antifoaming agent and a dye were added as auxiliary agents, and finally a coating solution having a solid content concentration of 62% was prepared.
[0201] [1層両面塗被紙の調製] [0201] [Preparation of single-layer, double-sided coated paper]
緊度が 0. 75g/cm3である上質原紙 (米坪 70. Og/m2)に、塗被層用塗被液を片 面当たりの乾燥重量が 8g/m2となるようにブレードコーターを使用して両面塗被、 乾燥を行い、塗被層を設けた。このようにして得られた塗被紙を、温度 70°C、線圧 20Apply a blade coater to high-quality base paper (US basis weight 70.Og / m 2 ) with a tension of 0.75 g / cm 3 so that the dry weight per side is 8 g / m 2. Used to coat both sides and dry to provide a coating layer. The coated paper thus obtained was subjected to a temperature of 70 ° C and a linear pressure of 20
OKN/mでスーパーカレンダに通紙して、塗被紙を得た。 A coated paper was obtained by passing through a super calendar at OKN / m.
[0202] 比較例 3 [0202] Comparative Example 3
塗被層の顔料を比較例 1で得た再生無機粒子顔料に変更した以外は実施例 15と 同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Example 15 except that the pigment of the coating layer was changed to the regenerated inorganic particle pigment obtained in Comparative Example 1.
[0203] 参考例 5 [0203] Reference Example 5
塗被層の顔料を実施例 11で得た再生顔料に変更し、最終的に固形分濃度 55% の塗被液を調製した以外は実施例 14と同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Example 14 except that the pigment in the coating layer was changed to the regenerated pigment obtained in Example 11 and a coating solution having a solid content concentration of 55% was finally prepared.
[0204] 参考例 6 [0204] Reference Example 6
塗被層の顔料を微粒カオリン (商品名:ミラグロ 既述)に変更し、最終的に固形 分濃度 65%の塗被液を調製した以外は実施例 14と同様にして塗被紙を得た。 A coated paper was obtained in the same manner as in Example 14 except that the pigment of the coating layer was changed to fine kaolin (trade name: Miragro described above) and a coating solution having a solid content concentration of 65% was finally prepared. .
[0205] [品質評価] [0205] [Quality evaluation]
以上の実施例、参考例、比較例についてのデーターを纏めれば、主に [表 3]のとお りになる。なお、品質評価方法については前記表 2と同様に行った。 The data on the above examples, reference examples, and comparative examples are summarized in [Table 3]. The quality evaluation method was the same as in Table 2 above.
[0206] [表 3]
実施例 1 5 比較例 3 参考例 5 参考例 6 実施例 1 2 比較例 1 実施例 1 1 - 配合 微粒カオリン 微粒カオリン 微粒カオリン 微粒カオリン [0206] [Table 3] Example 1 5 Comparative Example 3 Reference Example 5 Reference Example 6 Example 1 2 Comparative Example 1 Example 1 1-Formulation Fine Kaolin Fine Kaolin Fine Kaolin Fine Kaolin
1 重灰 1 U重灰 1 重炭 1 ¾灰 1 heavy ash 1 U heavy ash 1 heavy coal 1 ¾ ash
15 15 15 一 部数 50 50 50 50 15 15 15 Number of copies 50 50 50 50
35 35 35 50 塗料濃度 ;% 62 62 55 65 哲 35 35 35 50 Paint concentration;% 62 62 55 65
叩貝 : Clams :
白色度 % 81 .1 73.6 80.5 81.6 不透明度 ; % 86.3 86.5 86.1 85.5 白紙光沢 : ° 53 53 45 55 Whiteness% 81.1 73.6 80.5 81.6 Opacity;% 86.3 86.5 86.1 85.5 White paper gloss: ° 53 53 45 55
PPS平滑 ! U m 1 .42 1.95 1.65 1.55 印刷光沢 〇 〇 〇 〇 インキセット i Δ 〇 〇 PPS smooth! U m 1.42 1.95 1.65 1.55 Print gloss ○ ○ ○ ○ Ink set i Δ ○ ○
[0207] [填料内添紙の製造] [0207] [Manufacture of filler-added paper]
実施例 16 Example 16
[紙料の調製] [Preparation of paper stock]
広葉樹パルプ(LBKP濾水度 450ml)のスラリー(濃度 2. 5%)に、実施例 12で得た 再生無機粒子填料 30質量%、軽質炭酸カルシウム(商品名: TP— 121、奥多摩ェ 業社製) 70質量。 /0の混合填料スラリーをパルプ絶乾重量当たり 15部、カチオン化澱 粉(商品名:エース K100、王子コーンスターチ社製) 0. 8部、硫酸バンド 0. 5部、ァ ルキルケテンダイマー(商品名: Κ 287、荒川化学工業社製) 0. 1部をそれぞれ添 加し、固形分濃度 0. 5%の紙料を調製した。 Hardwood pulp (LBKP freeness 450ml) slurry (concentration 2.5%), reclaimed inorganic particle filler 30% by mass obtained in Example 12, light calcium carbonate (trade name: TP-121, manufactured by Okutama Industries) 70 mass. 15 parts mixed filler slurry pulp absolute dry weight per / 0, cationic kaolinite powder (trade name: Ace K100, Oji Cornstarch Co., Ltd.) 0.8 parts of a band 0.5 parts of sulfuric acid, § Le Circe Ten dimer (trade name : Κ 287, manufactured by Arakawa Chemical Industries Co., Ltd.) 0.1 part was added to prepare a paper material having a solid content concentration of 0.5%.
[0208] [上質紙の作成] [0208] [Create high quality paper]
調製した紙料をオントップのツインワイヤー抄紙機で抄紙、乾燥し、続いて、ゲー トロールコーターで酸化澱粉の塗布量が乾燥重量で両面合計 L 5gZm2となるよう に塗布、乾燥後、 3エップのマシンカレンダに通紙して、米坪 70g/m2の填料内添上 質紙を得た。 The prepared stock is made with an on-top twin-wire paper machine, dried, and then coated with a gate roll coater so that the coated amount of oxidized starch is 5 gZm 2 on both sides by dry weight. The machine calender was used to obtain a filler-added high-quality paper with a weight of 70 g / m 2 .
[0209] 比較例 4 [0209] Comparative Example 4
上質紙中の填料を比較例 1で得た再生無機粒子填料に変更した以外は実施例 15 と同様にして填料内添上質紙を得た。
[0210] 参考例 7 A filler-added fine paper was obtained in the same manner as in Example 15 except that the filler in the fine paper was changed to the recycled inorganic particle filler obtained in Comparative Example 1. [0210] Reference Example 7
上質紙中の填料を軽質炭酸カルシウム(商品名: TP— 121、既述) 100質量%に 変更した以外は実施例 15と同様にして填料内添上質紙を得た。 A filler-added fine paper was obtained in the same manner as in Example 15 except that the filler in the fine paper was changed to 100% by mass of light calcium carbonate (trade name: TP-121, already described).
[0211] [品質評価] [0211] [Quality evaluation]
以上の実施例、参考例、比較例についてのデーターを纏めれば、主に [表 4]のとお りになる。なお品質評価は、前記表 2と同様の方法および以下の方法により、特に記 載ない限り、 23°C、 50RH%の環境下で行った。 The data for the above examples, reference examples and comparative examples can be summarized as shown in [Table 4]. The quality evaluation was performed by the same method as in Table 2 and the following method in an environment of 23 ° C. and 50 RH% unless otherwise specified.
[0212] [クラーク剛度の測定] [0212] [Measurement of Clark stiffness]
熊谷理機工業社製、クラーク剛度試験機を使用し、 JIS P8143に準拠し、測定し た。 Using a Clark stiffness tester manufactured by Kumagai Riki Kogyo Co., Ltd., measurement was performed in accordance with JIS P8143.
[0213] [引張強度の測定] [0213] [Measurement of tensile strength]
島津製作所社製、引っ張り試験機を使用し、 JIS P8113に準拠し、測定した。 Using a tensile tester manufactured by Shimadzu Corporation, measurement was performed in accordance with JIS P8113.
[0214] [内部結合強さの測定] [0214] [Measurement of internal bond strength]
インターナルボンドテスタを使用し、 JAPAN TAPPI 18— 2に準拠し、測定した Measured according to JAPAN TAPPI 18-2 using an internal bond tester
[0215] [表 4] [0215] [Table 4]
請求項:!〜 15に係る本発明の一実施形態は、上記のように、図 1〜図 3に例示さ れるとおりである力 次に、冒頭で述べた従来技術の課題を解決するための解決手 段として、さらに請求項 16〜27に係る発明を採用するものである。請求項 16〜27に
係る発明の実施形態は、図 4〜図 12に例示するとおりである。 Claim: One embodiment of the present invention according to! To 15 is as described above. The force is as illustrated in FIGS. 1 to 3. Next, to solve the problems of the prior art described at the beginning The invention according to claims 16 to 27 is further adopted as a solution means. Claims 16-27 The embodiment of the invention is as illustrated in FIGS.
[0217] 図 4に、本発明に係る無機粒子の製造方法の好適なフローチャートを示す。図示の 如ぐ原材料の製紙スラッジは、洗浄→アルカリ金属化合物添加→脱水→乾燥→造 粒の各工程からなる前処理を経た上で、一 7火燃焼工程と二次燃焼工程とからなる少 なくとも 2段階の燃焼処理に供される。そして、この燃焼処理後の焼成物は、懸濁液 化→炭酸化→脱水→分散→粉砕の各工程からなる後処理を経て白色の無機粒子と して回収される。 FIG. 4 shows a preferred flowchart of the method for producing inorganic particles according to the present invention. The raw material paper sludge as shown in the figure has a pretreatment consisting of washing → alkali metal compound addition → dehydration → drying → granulation, and consists of 17 fire combustion processes and secondary combustion processes. Both are used for two-stage combustion treatment. Then, the fired product after the combustion treatment is recovered as white inorganic particles through a post-treatment comprising the steps of suspension, carbonation, dehydration, dispersion, and pulverization.
[0218] 原材料の製紙スラッジは、既述のように、パルプ化工程、紙製造工程、古紙再生ェ 程などの製紙工場の各種工程力 排出される廃水に対してスラッジ回収処理として、 凝集 ·沈殿 ·濃縮 ·脱水等の工程を適宜組合せて行って、各廃水が含有する固形分 を回収したもの(製紙スラッジ各種)を、単独、または混合して適宜原料スラッジとして 用いること力 Sできる。また、この製紙スラッジの一部には、再利用困難な低級古紙や それに付随するプラスチックを主とした RPF (Reibsed Paper & Plastic Fuel)を含んで いてもよい。 [0218] As described above, raw material papermaking sludge is agglomerated and precipitated as a sludge recovery process for the wastewater discharged from various processes in the paper mill, such as the pulping process, paper manufacturing process, and used paper recycling process. · Concentration · Dehydration etc. can be used in combination as appropriate to recover the solids contained in each wastewater (various types of paper sludge) alone or mixed and used as raw material sludge. In addition, some of this paper sludge may contain low-grade waste paper that is difficult to reuse and RPF (Reibsed Paper & Plastic Fuel) mainly made of plastics.
[0219] そして、該製紙スラッジ中の有機成分は、パルプや接着剤、前記 RPFなどに由来し て分子中にカルボキシル基、ヒドロキシル基、エステル基、エーテル基などの官能基 を有する易燃焼性のものと、古紙再生における印刷インキ由来のカーボンブラックの 如き官能基を殆ど有しない難燃焼性のものとが混在している。一方、該製紙スラッジ 中の無機成分 (灰分)は、製紙用填料や塗工紙用顔料に由来するカオリン (クレー) および炭酸カルシウムが無機成分全体の約 90〜95重量%を占める主成分であるが 、タルクや二酸化チタンなどが少量混在して!/、る。 [0219] The organic component in the papermaking sludge is derived from pulp, adhesive, RPF, etc. and has a flammability having functional groups such as carboxyl group, hydroxyl group, ester group, ether group in the molecule. And those that are hardly flammable, such as carbon black derived from printing inks in recycled used paper. On the other hand, the inorganic component (ash content) in the paper sludge is a main component in which kaolin (clay) and calcium carbonate derived from paper filler and coated paper pigment account for about 90 to 95% by weight of the total inorganic component. However, a small amount of talc or titanium dioxide is mixed!
[0220] 前記無機成分の主成分であるカオリン(クレー)と炭酸カルシウムの比率は、処理す る古紙の種類などによって多少のばらつきはある力 概ねカオリン/炭酸カルシウム の重量比で 20/80〜80/20の範囲である。また、上記無機成分(灰分)中のカル シゥム(CaO換算)、アルミニウム (Al O換算)およびケィ素(SiO換算)のそれぞれ [0220] The ratio of kaolin (clay), which is the main component of the inorganic component, and calcium carbonate varies slightly depending on the type of waste paper to be treated, etc. The weight ratio of kaolin / calcium carbonate is generally 20 / 80-80 The range is / 20. In addition, calcium (CaO equivalent), aluminum (AlO equivalent) and silicon (SiO equivalent) in the above inorganic components (ash)
2 3 2 2 3 2
の含有比率(カルシウム/アルミニウム/ケィ素)は、 13—73/12—40/15—47 である。また、製紙スラッジ中の有機成分と無機成分の比率は、処理する古紙の種類 や脱墨工程の程度によって多少は変動するが、概ね無機成分/有機成分の重量比
で 30/70〜80/20の範囲である。 The content ratio of calcium (aluminum / aluminum) is 13-73 / 12-40 / 15-47. In addition, the ratio of organic components to inorganic components in paper sludge varies somewhat depending on the type of waste paper to be processed and the degree of deinking process. The range is 30 / 70-80 / 20.
[0221] 本発明では、前記の少なくとも 2段階の燃焼処理により、製紙スラッジに含まれる全 ての有機成分を確実に燃焼除去する。すなわち、本発明における燃焼処理は、原料 の製紙スラッジを筒型熱処理炉内で移送しつつ行うが、その一次燃焼工程を過剰空 気雰囲気下でスラッジ温度 650°C以下の燃焼条件に、二次燃焼工程を過剰空気雰 囲気下でスラッジ温度 700〜850°Cの燃焼条件に、それぞれ設定するものである。 なお、過剰空気雰囲気とは、有機成分の燃焼に対して充分な酸素量を与えて不完 全燃焼を生じさせな!/、空気雰囲気を意味する。 In the present invention, all the organic components contained in the papermaking sludge are surely burned and removed by the above-described at least two-stage combustion treatment. That is, the combustion treatment in the present invention is performed while transporting the raw papermaking sludge in the cylindrical heat treatment furnace, and the primary combustion process is performed under a combustion condition with a sludge temperature of 650 ° C. or less in an excess air atmosphere. The combustion process is set to combustion conditions with a sludge temperature of 700 to 850 ° C under an excess air atmosphere. An excess air atmosphere means an air atmosphere that does not cause incomplete combustion by giving a sufficient amount of oxygen to the combustion of organic components!
[0222] まず、一 7火燃焼工程では、過剰空気雰囲気下で比較的低温の燃焼条件になるか ら、製紙スラッジ中の易燃焼性有機成分が、分子中の官能基を起点として容易に熱 分解'発火し、炭化することなく燃焼して消失する。次の二次燃焼工程では、過剰空 気雰囲気下で高温の燃焼条件になるから、一次燃焼工程で燃焼しきらずに残ってい た難燃焼性有機成分も確実に燃焼して消失する。このような 2段階の燃焼処理では、 易燃焼性有機成分を燃焼しにくい炭化物に変化させずに燃焼除去できて合理的で あり、製紙スラッジ中の有機成分全体の燃焼除去も短時間で効率よく行える。そして 、得られる焼成物は、煤や炭などの未燃焼の有機成分を含まないために白色度が高 ぐ製紙用填料や塗工用顔料の如き製紙用材料に好適に利用できるものとなる。 [0222] First, in the 17-fire combustion process, combustion conditions are relatively low in an excess air atmosphere, and therefore, easily combustible organic components in paper sludge are easily heated starting from functional groups in molecules. It decomposes and ignites and burns and disappears without charring. In the next secondary combustion process, high-temperature combustion conditions are obtained in an excess air atmosphere, so that the non-combustible organic components remaining without being combusted in the primary combustion process are also reliably burned and lost. In such a two-stage combustion process, it is reasonable to burn and remove easily combustible organic components without changing them into hard-to-burn carbides, and the entire organic components in paper sludge can be burned and removed efficiently in a short time. Yes. The obtained fired product does not contain unburned organic components such as soot and charcoal, and therefore can be suitably used for papermaking materials such as papermaking fillers and coating pigments having high whiteness.
[0223] なお、一 7火燃焼工程のスラッジ温度が 650°Cを越えると、前述したように、易燃焼性 有機成分が炭化して難燃焼性有機成分に変化し、燃焼効率が悪化することになる。 また、この一 7火燃焼工程の燃焼温度があまりに低過ぎては易燃焼性有機成分でも熱 分解 ·発火しに《なって燃焼効率が悪化するため、スラッジ温度の下限を 250°Cと すること力 S望ましい。更に、一 7火燃焼工程の最も好適な焼成条件は、スラッジ温度 35 0〜630°Cとなる範囲である。 [0223] Note that if the sludge temperature in the seven-fire combustion process exceeds 650 ° C, as described above, the readily combustible organic component is carbonized and changed to a hardly combustible organic component, and the combustion efficiency deteriorates. become. Also, if the combustion temperature in this 17-fire combustion process is too low, even the flammable organic components will be pyrolyzed and ignited and the combustion efficiency will deteriorate, so the lower limit of the sludge temperature should be 250 ° C. Force S desirable. Furthermore, the most suitable firing conditions for the 17 fire combustion process are the ranges where the sludge temperature is 350 to 630 ° C.
[0224] 一方、二次燃焼工程のスラッジ温度が 700°C未満になると、難燃焼性有機成分の 燃焼に時間がかかり、燃焼効率が悪化することになる。逆に該スラッジ温度が 850°C を超える高温燃焼になった場合は、一般的にグーレナイトと呼ばれる硬質の焼結物 の生成によって製紙用材料としての適性が損なわれる。すなわち、このような硬質の 焼結物が混入した焼成物から調製した製紙用填料や塗工用顔料に用いた場合、抄
紙用ワイヤーや塗工用のブレードなどの製造設備を傷つけて製造操業性を悪化させ 、製品品質にも悪影響を与えることになる。しかして、二次燃焼工程の最も好適な焼 成条件は、スラッジ温度 750〜800°Cとなる範囲である。 [0224] On the other hand, when the sludge temperature in the secondary combustion process is less than 700 ° C, it takes time to burn the non-combustible organic components, and the combustion efficiency deteriorates. On the other hand, when the sludge temperature becomes high temperature combustion exceeding 850 ° C., the suitability as a papermaking material is impaired by the formation of a hard sintered material generally called goulenite. In other words, when used in paper fillers and coating pigments prepared from fired products mixed with such hard sintered products, Damage to manufacturing equipment such as paper wires and coating blades will deteriorate manufacturing operability and adversely affect product quality. Therefore, the most suitable firing conditions in the secondary combustion process are the ranges where the sludge temperature is 750 to 800 ° C.
[0225] また、燃焼処理は、上記の一次及び二次燃焼工程からなる 2段階で行う以外に、こ れらー 7火燃焼工程から二次燃焼工程への移行区間としての燃焼工程を挟んだり、一 次及び二次燃焼工程の一方又は両方を更に燃焼温度 (スラッジ温度)の異なる複数 の燃焼工程に分けたりして、 3段階以上とすることも可能である。 [0225] In addition to performing the combustion process in the two stages consisting of the primary and secondary combustion processes described above, the combustion process as a transition section from these 7 fire combustion processes to the secondary combustion process is sandwiched. It is also possible to divide one or both of the primary and secondary combustion processes into a plurality of combustion processes having different combustion temperatures (sludge temperatures) so that there are three or more stages.
[0226] 一 7火燃焼工程の燃焼処理時間は、少なくとも 10分以上で 5時間以内とすることが好 ましぐ 15分以上で 2時間以内とすることが特に好ましぐ短過ぎては製紙スラッジ中 の易燃焼性有機成分の燃焼除去が不充分になる恐れがあり、長過ぎては熱ェネル ギ一の無駄になる。とも力べ全ての易燃焼性有機成分が燃焼除去されるのに充分な 時間をかけることが重要である。また、二次燃焼工程の燃焼処理時間は、少なくとも 1 0分以上で 5時間以内とすることが好ましぐ 20分以上で 2時間以内とすることが特に 好ましぐ短過ぎては製紙スラッジ中の難燃焼性有機成分の燃焼除去が不充分にな る恐れがあり、長過ぎては熱エネルギーの無駄になる。そして、一 7火燃焼工程と二次 燃焼工程の燃焼処理時間の比率は、一 7火燃焼工程/二次燃焼工程で 1/10〜; 10 /1の範囲とすることが好ましい。 [0226] Combustion treatment time in the 7-fire combustion process is preferably at least 10 minutes and not more than 5 hours, more preferably not less than 15 minutes and not more than 2 hours. There is a risk that combustion and removal of easily combustible organic components in the inside may be insufficient, and if it is too long, it will be a waste of heat energy. It is important to allow sufficient time for all flammable organic components to burn off. In addition, it is preferable that the combustion treatment time of the secondary combustion process be at least 10 minutes and not more than 5 hours. It is particularly preferable that the combustion treatment time is not less than 20 minutes and not more than 2 hours. There is a risk that the incombustible removal of the incombustible organic components may be insufficient, and if it is too long, heat energy is wasted. The ratio of the combustion treatment time of the 17 fire combustion process and the secondary combustion process is preferably in the range of 1/10 to 10/1 in the 17 fire combustion process / secondary combustion process.
[0227] 燃焼処理に用いる筒型熱処理炉は、被処理物の移送方式により、ロータリーキルン と称される回転式キルン炉と、スクリュー式キルン炉とがある力 燃焼効率面から回転 式キルン炉が好適である。また、前記の少なくとも 2段階の燃焼処理は、 1基の筒型 熱処理炉内で行う他、段階ごとに異なる複数基の筒型熱処理炉を用いて行うことも可 能であるが、当然に 1基で行う方が設備効率及び設備コスト面で有利である。 [0227] The cylindrical heat treatment furnace used for the combustion treatment has a rotary kiln furnace called a rotary kiln and a screw kiln furnace depending on the transfer method of the workpiece. A rotary kiln furnace is preferable from the viewpoint of combustion efficiency. It is. The at least two stages of combustion treatment can be performed in a single cylindrical heat treatment furnace, or can be performed by using a plurality of cylindrical heat treatment furnaces different for each stage. It is more advantageous in terms of equipment efficiency and equipment cost to be performed based on the base.
[0228] なお、燃焼処理を前記 1基の筒形熱処理炉を用いて行う場合の一 7火燃焼工程と二 次燃焼工程との間に生じる昇温領域、具体的には燃焼温度が 650°Cから 700°Cへ 上昇する領域については、できるだけ短くすること力好ましく、 10分以内とすることが 特に好ましい。このように一 7火燃焼工程と二次燃焼工程との間の昇温領域を短くする ことは、筒型熱処理炉の全長短縮によるコンパクト化に繋がり、設備効率及び設備コ スト面で有利である。
[0229] 筒型熱処理炉の加熱方式としては、直接的加熱方式(内熱式)よりも間接的加熱方 式 (外熱式)の方が好ましい。すなわち、直接的加熱方式では、処理炉内で熱源ガス を燃焼させるのに大量の空気(酸素)を消費するため、製紙スラッジに含まれる有機 成分の燃焼が空気不足で不完全になる懸念がある上、熱源ガスの燃焼によって炉内 温度 (スラッジ温度)の制御が非常に困難になる。これに対し、間接的加熱方式では 、熱源のために炉内空気を消費することがないから、炉内を過剰空気雰囲気に確実 に設定できることに加え、外部からの加熱度合を自在に変化できるので、炉内温度の 制御が極めて容易になる。 [0228] It should be noted that when the combustion treatment is performed using the one cylindrical heat treatment furnace, the temperature rising region generated between the seven-fire combustion step and the secondary combustion step, specifically, the combustion temperature is 650 ° In the region where the temperature rises from C to 700 ° C, it is preferable to make it as short as possible, and it is particularly preferable that it be within 10 minutes. In this way, shortening the temperature rising region between the 17 fire combustion process and the secondary combustion process leads to compactness by shortening the overall length of the cylindrical heat treatment furnace, which is advantageous in terms of equipment efficiency and equipment cost. . [0229] As the heating method of the cylindrical heat treatment furnace, the indirect heating method (external heating method) is preferable to the direct heating method (internal heating method). In other words, in the direct heating method, a large amount of air (oxygen) is consumed to burn the heat source gas in the processing furnace, so there is a concern that the combustion of the organic components contained in the papermaking sludge becomes incomplete due to air shortage. In addition, the combustion of the heat source gas makes it very difficult to control the furnace temperature (sludge temperature). On the other hand, the indirect heating method does not consume furnace air for the heat source, so that the inside of the furnace can be reliably set to an excess air atmosphere and the degree of heating from the outside can be freely changed. This makes it extremely easy to control the furnace temperature.
[0230] 上記の間接的加熱方式における加熱手段としては、電気的ヒータや誘導電流によ る加熱も可能ではある力 エネルギーコスト面より、筒型の炉本体を包囲する加熱ジ ャケット内に、灯油や重油などの燃焼ガス、既存の焼却設備から排出される燃焼排ガ ス、高温空気、過熱水蒸気などを導入したり、該処理炉の周壁にガスバーナーから の燃焼ガスを吹き付けて加熱する方法が推奨される。また、炉本体内での燃焼処理 を経た高温の排気や前処理の乾燥工程からの燃焼排ガスも、当該加熱手段の熱媒 や熱源の一部として利用できる。 [0230] As a heating means in the above indirect heating method, an electric heater or heating that can be induced by an induced current is possible. From the viewpoint of energy cost, kerosene is enclosed in a heating jacket surrounding the cylindrical furnace body. Introducing combustion gas such as oil and heavy oil, combustion exhaust gas discharged from existing incinerators, high-temperature air, superheated steam, etc., or heating by blowing combustion gas from the gas burner to the peripheral wall of the processing furnace Recommended. In addition, high-temperature exhaust gas that has undergone combustion treatment in the furnace body and combustion exhaust gas from the pretreatment drying step can also be used as part of the heating medium and heat source of the heating means.
[0231] 筒型熱処理炉の炉本体内への燃焼用空気の供給は、高品質の焼成物を製出する 上で、焼成物排出口側から行うことが推奨される。すなわち、焼成物排出口側からの 空気供給により、炉本体内での空気の流れ方向が被処理物 (製紙スラッジとその焼 成物)の移送方向に対して逆向きになり、燃焼に伴って未燃焼の難燃焼性有機成分 が煤の如き状態となってたまたま炉内に飛散しても、煤の如き浮遊性物質は空気の 流れに乗って原料供給口側へ戻されて燃焼するか、あるいは更に排気に付随して筒 型熱処理炉外へ排出されるため、焼成物に黒色の未燃焼の難燃焼性有機成分が混 入するのを防止でき、もって白色度の高い焼成物が得られる。しかして、排気に付随 して筒型熱処理炉外へ排出される未燃焼の難燃焼性有機成分は、バグフィルターな どで捕集して除去する力、、排気と共に適当な加熱手段によって燃焼処理して消失さ せるのがよい。 [0231] It is recommended that the combustion air be supplied into the main body of the cylindrical heat treatment furnace from the fired product outlet side in order to produce a high-quality fired product. That is, air supply from the fired product outlet side causes the air flow direction in the furnace body to be opposite to the transfer direction of the workpiece (paper sludge and its fired product). Even if the unburned, non-combustible organic components are scattered in the furnace in the state of soot, the floating material such as soot is carried back to the raw material supply port side by the air flow and burned. Or, since it is discharged to the outside of the cylindrical heat treatment furnace along with the exhaust, it is possible to prevent the mixture of black unburned, non-combustible organic components into the fired product, thereby obtaining a fired product with high whiteness. . Therefore, the unburned, non-combustible organic components discharged to the outside of the cylindrical heat treatment furnace accompanying the exhaust are collected and removed by a bag filter, etc., and are combusted by an appropriate heating means together with the exhaust. It is better to make it disappear.
[0232] 上述のように炉本体内への燃焼用空気を焼成物排出口側から供給するには、該焼 成物排出口側から空気を吹き込んでもよいが、原料供給口側の排気によって空気を
吸入する方法が好適である。すなわち、原料供給口側から強制的に排気することに よって炉内が負圧になるから、焼成物排出口の近傍に給気口を設けておけば、該負 圧によって空気が給気口から自動的に炉内へ吸入される。しかして、このような原料 供給口側の排気による空気供給では、排気量によって空気供給量を容易に制御で きると共に、安定した空気流によって長い炉本体の全長にわたって空気を確実に行 さ渡らせること力 Sでさる。 [0232] In order to supply the combustion air into the furnace main body from the fired product discharge port side as described above, air may be blown from the fired product discharge port side. The An inhalation method is preferred. In other words, forcibly exhausting from the raw material supply port side results in a negative pressure in the furnace, so if an air supply port is provided near the fired product discharge port, air is discharged from the air supply port by the negative pressure. It is automatically inhaled into the furnace. Thus, in such air supply by exhaust on the raw material supply port side, the air supply amount can be easily controlled by the exhaust amount, and air can be surely distributed over the entire length of the long furnace body by a stable air flow. That's the power S.
[0233] 上記の空気供給量は、炉本体内を過剰空気雰囲気とする上で、製紙スラッジに含 まれる有機成分の完全燃焼に要する理論酸素量に対し、 1. ;!〜 5倍の酸素量を与え る量に設定すること力 S好ましく、 1. 5〜5倍の酸素量を与える量がより好ましぐ特に 2 〜5倍の酸素量を与える量が望ましい。この空気供給量が少な過ぎては、炉本体内 を過剰空気雰囲気にすることが困難になり、有機成分の不完全燃焼で残留した炭化 物によって焼成物の白色度が低下する恐れがある。また、逆に空気供給量が多過ぎ ては、供給空気によって炉内が過度に冷やされるため、燃焼温度を維持する上で加 熱手段による加熱度合を強める必要があり、それだけエネルギーコストが嵩むことに なる。しかして、この燃焼用の空気は、有機成分を充分に燃焼させる酸素を含んでお ればよ!/、から、通常の外気よりも二酸化炭素の含有量が多レ、ものでも支障はなレ、。 [0233] The above air supply amount is 1.;! To 5 times the oxygen amount of theoretical oxygen required for complete combustion of organic components contained in paper sludge when the furnace body is in an excess air atmosphere. The power to set the amount to give the amount S is preferable. 1. The amount that gives 5 to 5 times the amount of oxygen is more preferable, and the amount that gives 2 to 5 times the amount of oxygen is desirable. If this amount of air supply is too small, it will be difficult to make the furnace body into an excess air atmosphere, and the whiteness of the fired product may be reduced by the carbides remaining due to incomplete combustion of organic components. On the other hand, if the amount of air supply is too large, the inside of the furnace will be excessively cooled by the supply air, so it is necessary to increase the degree of heating by the heating means to maintain the combustion temperature, and the energy cost increases accordingly. become. Therefore, the combustion air only needs to contain oxygen that sufficiently burns organic components! /, So the amount of carbon dioxide is higher than normal outside air. ,.
[0234] 本発明方法による製紙スラッジの好適な燃焼処理状態が現出すれば、一 7火燃焼ェ 程では、スラッジ中の有機成分の大部分を占める多量の易燃焼性有機成分が充分 な酸素の存在下で炎を上げて燃焼し、この燃焼が当該一 7火燃焼工程の 1/2〜2/ 3まで連続する状態となる。同じく二次燃焼工程では、残留した難燃性有機成分が燃 焼するが、その含有量が少ないために炎を上げることはなくとも、 700〜850°Cの高 温であるためにスラッジが灼熱しながら持続的に燃焼する状態となる。 [0234] If a suitable combustion treatment state of the papermaking sludge by the method of the present invention appears, in the 17-fire combustion process, a large amount of easily combustible organic components occupying most of the organic components in the sludge are sufficient oxygen. In the presence of, the flame is raised and burned, and this combustion continues to 1/2 to 2/3 of the 17 fire combustion process. Similarly, in the secondary combustion process, the remaining flame-retardant organic components burn, but even if they do not raise the flame due to their low content, the sludge is heated due to the high temperature of 700-850 ° C. However, it will be in a state of burning continuously.
[0235] 図 5は本発明に用いる筒型熱処理炉の第一構成例である間接的加熱方式の回転 式キルン炉 K1を模式的に示す縦断側面図である。図示のように、この回転式キルン 炉 K1は、炉本体である横円筒型の回転胴 9の外周が加熱ジャケット 20で包囲されて おり、該回転胴 9の一端の原料供給口 9a側に、排気口 30とやや離間して原料投入 口 2とが設けられると共に、この原料投入口 2と回転胴 9の原料供給口 9aとの間に、ス クリューフィーダ一の如き原料供給手段 10が配設され、また回転胴 9の他端の焼成
物排出口 9bに臨んで、給気口 3と焼成物取出口 8と力待設けられて!/、る。 FIG. 5 is a longitudinal side view schematically showing a rotary kiln furnace K1 of an indirect heating system which is a first structural example of a cylindrical heat treatment furnace used in the present invention. As shown in the figure, in the rotary kiln furnace K1, the outer periphery of a horizontal cylindrical rotary drum 9 that is a furnace body is surrounded by a heating jacket 20, and at one end of the rotary drum 9 on the raw material supply port 9a side, A raw material input port 2 is provided at a distance from the exhaust port 30, and a raw material supply means 10 such as a screw feeder is disposed between the raw material input port 2 and the raw material supply port 9a of the rotary drum 9. And also firing the other end of the rotating drum 9 Facing the product discharge port 9b, there is a power supply port 3 and a fired product discharge port 8!
[0236] そして、加熱ジャケット 20内には、一 7火燃焼用及び二次燃焼用の 2系統の間接的 加熱手段 5A, 5Bにより、それぞれの熱風ブロア一 71を介して送出される熱風が各 々複数本のバルブ付き放出口 72· · ·から、原料供給口 9a側の前部加熱空間 20aと焼 成物排出口 9b側の後部加熱空間 20bとに分けて導入される。また、排気口 30には 排気ファンの如き排気手段 4が介装されており、その稼働によって破線矢印 Aで示す ように回転胴 9内の空気が排気されると共に、この排気に伴う減圧作用で給気口 3よ り外部の空気が回転胴 9内へ吸入される。 6は排気口 30の下流側に設けた排気循環 ブロア一である。 [0236] In the heating jacket 20, hot air sent out through the hot air blowers 71 by the two systems of indirect heating means 5A and 5B for 17 fire combustion and secondary combustion respectively. From the plurality of discharge outlets 72 with valves, it is introduced separately into a front heating space 20a on the raw material supply port 9a side and a rear heating space 20b on the product discharge port 9b side. In addition, an exhaust means 4 such as an exhaust fan is interposed in the exhaust port 30, and the air in the rotary drum 9 is exhausted by the operation as shown by the broken arrow A, and due to the pressure reducing action accompanying this exhaust. External air is sucked into the rotary drum 9 from the air supply port 3. 6 is an exhaust circulation blower provided downstream of the exhaust port 30.
[0237] なお、回転胴 9は、厳密な図示を省略しているが、原料供給口 9a側から焼成物排 出口 9b側に向かって非常に緩やかな下り勾配に傾斜しており、この回転胴 9の傾斜 と回転により、内部の被処理物が重力作用で原料供給口 9a側から焼成物排出口 9b 側へ徐々に移動するようになっている。 [0237] Although the rotary cylinder 9 is not shown in the strict illustration, the rotary cylinder 9 is inclined at a very gentle downward slope from the raw material supply port 9a side to the fired product discharge port 9b side. By the inclination and rotation of 9, the workpiece to be processed moves gradually from the raw material supply port 9a side to the fired product discharge port 9b side by gravity.
[0238] 上記構成の回転式キルン炉 K1によって製紙スラッジ Sの焼成処理を行うには、実 線矢印 Bで示すように、原料投入口 2に投入された原料の製紙スラッジ Sを、原料供 給手段 10によって回転月同 9の原料供給口 9aへ送り込み、該回転月同 9の回転によって 焼成物排出口 9b側へ移送する過程で、加熱ジャケット 20内へ導入される熱風による 間接加熱により、当該スラッジ S中の有機成分を既述焼成条件の一 7火燃焼工程と二 次燃焼工程の 2段階で燃焼させる。 [0238] In order to perform the baking treatment of the papermaking sludge S by the rotary kiln furnace K1 having the above-described configuration, as shown by the solid arrow B, the papermaking sludge S of the raw material charged into the raw material inlet 2 is supplied to the raw material In the process of feeding to the raw material supply port 9a of the rotation month 9 by means 10 and transferring to the calcined product discharge port 9b by the rotation of the rotation month 9, the indirect heating by hot air introduced into the heating jacket 20 The organic components in the sludge S are combusted in two stages: the seven-fired combustion process and the secondary combustion process described above.
[0239] すなわち、この 2段階の燃焼処理は、排気手段 4の稼働による排気口 30からの排 気に伴う給気口 3からの空気の吸入により、回転胴 9内全体を過剰空気雰囲気に維 持しつつ、 2系統の間接的加熱手段 5A, 5B力も加熱ジャケット 20内の前部加熱空 間 20aと後部加熱空間 20bに各々導入される熱風の温度と導入速度によって加熱度 合を調整し、図中の仮想線 cで分かつように、その前部加熱空間 20aに対応した回転 月同 9内の前側領域を一 7火燃焼区間 Z1としてスラッジ温度 650°C以下 (好適には 650 °C以下で 250°C以上、最適には 350〜630°C)に制御すると共に、後部加熱空間 20 bに対応した回転胴 9内の後側領域を二次燃焼区間 Z2としてスラッジ温度 700〜85 0°C (好適には 750〜800°C)に制御する。
[0240] これにより、製紙スラッジ Sは、一 7火燃焼区間 Z1を通過する過程で含有する易燃焼 性有機成分が炭化することなく燃焼除去され、次いで二次燃焼区間 Z2を通過する 過程で含有する難燃焼性有機成分が燃焼除去され、もって未燃焼の有機成分なら びに硬質の焼結物を含まない高白色度の焼成物として、回転胴 9の焼成物排出口 9 bから排出され、焼成物取出口 8を通して炉外に取り出される。 That is, in this two-stage combustion treatment, the entire interior of the rotary drum 9 is maintained in an excess air atmosphere by the intake of air from the air supply port 3 accompanying the exhaust from the exhaust port 30 due to the operation of the exhaust means 4. While holding the two heating systems 5A and 5B, the heating degree is adjusted by the temperature and the introduction speed of the hot air introduced into the front heating space 20a and the rear heating space 20b in the heating jacket 20, respectively. As shown by the phantom line c in the figure, the sludge temperature 650 ° C or less (preferably 650 ° C or less At 250 ° C or more, optimally 350 to 630 ° C), and the sludge temperature 700 to 85 0 ° with the rear region in the rotary drum 9 corresponding to the rear heating space 20 b as the secondary combustion zone Z2 C (preferably 750 to 800 ° C). [0240] As a result, the papermaking sludge S is combusted and removed without carbonizing the combustible organic components contained in the process of passing through the seven-fired combustion zone Z1, and then contained in the process of passing through the secondary combustion zone Z2. The burned-off organic components are burned and removed, and are discharged from the burned product outlet 9b of the rotary drum 9 as a high-whiteness burned product that does not contain unburned organic components and hard sintered products. It is taken out of the furnace through the material outlet 8.
[0241] なお、両燃焼区間 Zl , Z2における処理時間(通過時間)は、回転胴 9の回転速度 と傾斜度合によって設定すればよい。また、回転胴 9内における両燃焼区間 Zl , Z2 の長さ比率は、前述の如く一次燃焼工程/二次燃焼工程で 1/10〜; 10/1の範囲 とすることが好ましい力 2系統の間接的加熱手段 5A, 5Bから加熱ジャケット 20内へ それぞれ熱風を導入する領域の大きさの相対比率によって任意に調整できる。しか して、両燃焼区間 Zl , Z2の燃焼温度 (スラッジ温度)を制御するための温度計測に は、熱電対や赤外線温度センサーを始めとする様々な計測手段を利用できるが、作 動の信頼性とコスト面より熱電対が好適である。 [0241] The processing time (passing time) in both combustion zones Zl and Z2 may be set according to the rotational speed and the degree of inclination of the rotating drum 9. Further, the length ratio of both combustion sections Zl and Z2 in the rotary drum 9 is preferably in the range of 1/10 to 10/1 in the primary combustion process / secondary combustion process as described above. The indirect heating means 5A, 5B can be arbitrarily adjusted according to the relative ratio of the size of the region where hot air is introduced into the heating jacket 20 respectively. However, various measurement means such as thermocouples and infrared temperature sensors can be used for temperature measurement to control the combustion temperature (sludge temperature) in both combustion zones Zl and Z2. Thermocouples are preferred from the standpoint of performance and cost.
[0242] 一方、排気口 30からの排気は、燃焼による高温状態であるから、排気循環ブロア 一 6によって熱風循環系へ送られ、図 4のフローチャートで示す前処理の乾燥工程に おける熱源としたり、間接的加熱手段 5A, 5Bの熱風又は熱源の一部として循環利 用される。なお、間接的加熱手段 5A, 5Bの熱風やその熱源には、前処理の乾燥ェ 程などからの燃焼排ガスも利用可能である。 [0242] On the other hand, since the exhaust from the exhaust port 30 is in a high temperature state due to combustion, it is sent to the hot air circulation system by the exhaust circulation blower 6 and used as a heat source in the pretreatment drying step shown in the flowchart of FIG. Indirect heating means 5A, 5B is used as a hot air or part of the heat source. It is to be noted that combustion exhaust gas from a pretreatment drying process or the like can be used as the hot air of the indirect heating means 5A and 5B and its heat source.
[0243] 図 6は、本発明に用いる筒型熱処理炉の第二構成例である間接的加熱方式の回 転式キルン炉 K2を模式的に示す縦断側面図であり、既述の図 5で示す第一構成例 の回転式キルン炉 K1と共通する構成要素には同一符号を附している。この回転式 キルン炉 K2は、第一構成例の回転式キルン炉 K1とほぼ同様の構成である力 S、加熱 ジャケット 20内の前部加熱空間 20aと後部加熱空間 20bとが仕切り部材 11によって 遮断されている。なお、この仕切り部材 11としては、金属、陶磁器、煉瓦などの燃焼 処理の高温に耐え得る材料を所要形状に整形加工したものが用いられる。 [0243] Fig. 6 is a longitudinal side view schematically showing a rotary kiln furnace K2 of the indirect heating method, which is a second structural example of the cylindrical heat treatment furnace used in the present invention. Constituent elements common to the rotary kiln furnace K1 in the first structural example shown are denoted by the same reference numerals. This rotary kiln furnace K2 has a force S that is almost the same as the rotary kiln furnace K1 in the first configuration example, and the front heating space 20a and the rear heating space 20b in the heating jacket 20 are blocked by the partition member 11. Has been. The partition member 11 is formed by shaping a material that can withstand the high temperature of the combustion process, such as metal, ceramics, and bricks, into a required shape.
[0244] この第二構成例の回転式キルン炉 K2では、間接的加熱手段 5Aによって加熱ジャ ケット 20内の前部加熱空間 20aへ導入される比較的温度の低い熱風と、間接的加 熱手段 5Bによって加熱ジャケット 20内の後部加熱空間 20bへ導入される高温の熱
風とが混じり合わないため、回転胴 9内の一 7火燃焼区間 Z1と二次燃焼区間 Z2の熱 処理温度の制御がより容易になり、両区間 Zl , Z2の温度差を安定に維持できて高 品質の焼成物が得られると共に、両区間 Zl , Z2の間で温度が変化する移行領域の 長さを短くできるから、回転胴 9内に占める一次及び二次燃焼工程の領域の比率が 高くなり、それだけ回転胴 9をコンパクトに構成できて設備コストの低減に繋がるという 利点がある。 [0244] In the rotary kiln furnace K2 of this second configuration example, the relatively low temperature hot air introduced into the front heating space 20a in the heating jacket 20 by the indirect heating means 5A and the indirect heating means High temperature heat introduced into the rear heating space 20b in the heating jacket 20 by 5B Because it does not mix with the wind, it becomes easier to control the heat treatment temperature in the seven-fire combustion zone Z1 and the secondary combustion zone Z2 in the rotary drum 9, and the temperature difference between both zones Zl and Z2 can be maintained stably. As a result, a high-quality fired product can be obtained, and the length of the transition region where the temperature changes between both sections Zl and Z2 can be shortened. There is an advantage that the rotary cylinder 9 can be made compact and the equipment cost can be reduced.
[0245] 図 7は、本発明に用いる筒型熱処理炉の第三構成例である間接的加熱方式の回 転式キルン炉 K3を模式的に示す縦断側面図であり、既述の図 5及び図 6で示す第 一及び第二構成例の回転式キルン炉 Kl , K2と共通する構成要素には同一符号を 附している。この第三構成例の回転式キルン炉 K3は、回転胴 9の外周が原料供給 口 9a側と焼成物排出口 9b側とに分離した加熱ジャケット 20A, 20Bで包囲され、両 加熱ジャケット 20A, 20Bの境界部分に中間の給気口 3Bが設けられている。 [0245] Fig. 7 is a longitudinal side view schematically showing a rotary kiln furnace K3 of the indirect heating method, which is a third structural example of the cylindrical heat treatment furnace used in the present invention. Constituent elements common to the rotary kiln furnaces Kl and K2 of the first and second configuration examples shown in FIG. 6 are denoted by the same reference numerals. In the rotary kiln furnace K3 of this third configuration example, the outer periphery of the rotary drum 9 is surrounded by heating jackets 20A and 20B separated into a raw material supply port 9a side and a fired product discharge port 9b side, and both heating jackets 20A and 20B are enclosed. An intermediate air inlet 3B is provided at the boundary.
[0246] この回転式キルン炉 K3では、前記第一及び第二構成例の回転式キルン炉 Kl , K 2と同様に、 2系統の間接的加熱手段 5A, 5Bによる熱風を両加熱ジャケット 20A, 2 0B内の各加熱空間 20Aa, 20Bbに別々に導入することにより、その前部加熱空間 2 OAaに対応した回転胴 9内の前側領域がスラッジ温度 650°C以下(好適には 650°C 以下で 250°C以上、最適には 350〜630°C)の一次燃焼区間 Z1に、同じく後部加熱 空間 20Bbに対応した回転胴 9内の後側領域がスラッジ温度 700〜850°C (好適に は 750〜800°C)の二次燃焼区間 Z2に、それぞれ設定される。 [0246] In this rotary kiln furnace K3, as with the rotary kiln furnaces Kl and K2 of the first and second configuration examples, hot air from two systems of indirect heating means 5A and 5B is used for both heating jackets 20A, 20 By introducing each heating space in 20B separately into 20Aa and 20Bb, the front region in the rotary drum 9 corresponding to the front heating space 2OAa has a sludge temperature of 650 ° C or less (preferably 650 ° C or less In the primary combustion zone Z1 of 250 ° C or higher, optimally 350 to 630 ° C, the rear region in the rotary drum 9 corresponding to the rear heating space 20Bb is sludge temperature 700 to 850 ° C (preferably 750 ~ 800 ° C) is set in the secondary combustion zone Z2.
[0247] しかるに、この回転式キルン炉 K3においては、排気手段 4によって回転胴 9内の空 気を原料供給口 9a近傍の排気口 30から強制的に排気し、これに伴って回転胴 9内 に生じた負圧により外部から空気を吸入する力 焼成物排出口 9b側と中間の 2ケ所 に給気口 3A, 3Bをそれぞれ設けている。このため、両給気口 3A, 3Bからの吸入に より、回転胴 9内では給気口 3Aからの空気流 A1に中間位置で給気口 3Bからの空 気流 A2が加わり、両空気流 Al , A2を合流した空気流 A3が回転胴 9内の一次燃焼 区間を通って排気口 30から排出される。 [0247] However, in this rotary kiln furnace K3, the air in the rotary drum 9 is forcibly exhausted from the exhaust port 30 near the raw material supply port 9a by the exhaust means 4, and accordingly, Force to suck air from the outside due to negative pressure generated at the fired product discharge port 9b side and air supply ports 3A and 3B are provided at two places in the middle. For this reason, due to the suction from the air supply ports 3A and 3B, the airflow A2 from the air supply port 3B is added to the airflow A1 from the air supply port 3A in the intermediate position to the airflow A1 from the air supply port 3B in the rotary drum 9, and both airflows Al The air flow A3 that merges A2 passes through the primary combustion section in the rotary drum 9 and is discharged from the exhaust port 30.
[0248] このように、回転胴 9内への燃焼用空気の供給を焼成物排出口 9b側の給気口 3A と中間の給気口 3Bの 2ケ所力 行う構成とすれば、一次燃焼工程が行われる回転月同
9内の一 7火燃焼区間 Zlへ充分に酸素を含んだ新鮮な空気(外気)が供給されるから 、一 7火燃焼区間 Z1での過剰空気雰囲気が安定に維持され、もって製紙スラッジ Sに 含まれる易燃焼性有機成分を炭化させることなく確実に燃焼除去できる。また、一次 燃焼区間 Z1には燃焼処理温度が高い二次燃焼区間 Z2の空気流が移動してくるが 、中間の給気口 3Bを通じて温度の低い空気(外気)を供給することにより、一 7火燃焼 区間 Z1を設定した比較的低い燃焼温度に安定して維持し易くなる。なお、このような 給気口を手動や遠隔操作にて開口度を調整可能にすることが燃焼温度を安定に制 御する上で好ましい。 [0248] As described above, if the combustion air is supplied into the rotary drum 9 with two powers, the air supply port 3A on the fired product discharge port 9b side and the intermediate air supply port 3B, the primary combustion process is performed. Rotating month Since fresh air (outside air) that contains enough oxygen is supplied to 1 7 fire combustion zone Zl in 9, the excess air atmosphere in 1 7 fire combustion zone Z1 is stably maintained, so paper sludge S Combustible organic components can be reliably removed without being carbonized. In addition, the air flow in the secondary combustion zone Z2, which has a high combustion processing temperature, moves to the primary combustion zone Z1, but by supplying low temperature air (outside air) through the intermediate air inlet 3B, the air flow is reduced. It becomes easier to stably maintain a relatively low combustion temperature in the fire combustion zone Z1. Note that it is preferable that the opening degree of such an air supply port can be adjusted manually or remotely to control the combustion temperature stably.
[0249] 図 8は、上記第三構成例の回転式キルン炉 K3における回転胴 9部分の構造例を 示す。この回転胴 9は、径が異なる円筒体 9A, 9Bを、径小の円筒体 9Aが原料供給 口 9a側になる形で、一部重なるように同心に配置した構造を有しており、その重なり 部分に構成される環状間隙を中間の空気供給口 3Bとしている。この場合、原料供給 口 9aに供給された製紙スラッジ Sは、回転胴 9全体の回転によって矢印 Bで示すよう に径小の円筒体 9A内及び径大の円筒体 9B内を順次移動する過程で有機成分を 燃焼除去され、焼成物排出口 9bから排出される。また、回転胴 9内には、排気手段 4 (図 7参照)による強制的な排気により、焼成物排出口 9b側の給気口 3Aからの空気 流 A1に加えて、中間の給気口 3Bからの空気流 A2としても新鮮な空気が吸入される FIG. 8 shows an example of the structure of the rotary drum 9 portion in the rotary kiln furnace K3 of the third configuration example. The rotating drum 9 has a structure in which cylindrical bodies 9A and 9B having different diameters are concentrically arranged so that they are partially overlapped so that the small diameter cylindrical body 9A is on the raw material supply port 9a side. An annular gap formed in the overlapping part is used as the intermediate air supply port 3B. In this case, the papermaking sludge S supplied to the raw material supply port 9a is sequentially moved in the small-diameter cylindrical body 9A and the large-diameter cylindrical body 9B as indicated by an arrow B by the rotation of the rotary cylinder 9 as a whole. The organic components are removed by combustion and discharged from the fired product outlet 9b. In addition, in the rotating drum 9, by means of forced exhaust by the exhaust means 4 (see Fig. 7), in addition to the air flow A1 from the air supply port 3A on the fired product discharge port 9b side, the intermediate air supply port 3B Fresh air is also inhaled as the air flow A2
〇 Yes
[0250] なお、第三構成例の回転式キルン炉 K3のような回転胴 9の中間位置からの空気供 給には、図 8に例示した以外の種々の構造を採用できる。 [0250] Various structures other than those illustrated in Fig. 8 can be adopted for air supply from the intermediate position of the rotary drum 9 such as the rotary kiln furnace K3 of the third configuration example.
[0251] 本発明に用いる筒型熱処理炉の炉本体としては、既述の第一〜第三構成例の回 転式キルン炉 K1〜K3における回転胴 9のような横円筒型に限らず、内部に仕切り や隔壁を設けることにより、内部を複数の区分室に区画した多分割構造や多胴(管 部束体)多室構造とした回転胴も採用可能である。これら多分割構造や多胴(管部束 体)多室構造とした回転胴の例を図 9〜図 11に示す。なお、これら図 9〜図 11はい ずれも、横長の回転胴の長手方向に対して直交する方向の断面図(径方向断面図) であり、図の上下方向が実際の上下方向に一致している。 [0251] The furnace body of the cylindrical heat treatment furnace used in the present invention is not limited to the horizontal cylindrical type such as the rotary drum 9 in the rotary kiln furnaces K1 to K3 of the first to third configuration examples described above. By providing partitions and partitions inside, it is possible to adopt a rotating cylinder with a multi-divided structure in which the interior is divided into a plurality of compartments and a multi-cylinder (tube bundle) multi-chamber structure. Figures 9 to 11 show examples of these multi-divided structures and a multi-chamber structure with multiple bodies (tube bundles). 9 to 11 are cross-sectional views (radial cross-sectional views) in a direction orthogonal to the longitudinal direction of the horizontally long rotating drum, and the vertical direction of the figure matches the actual vertical direction. Yes.
[0252] 図 9 (a)に示す回転胴 9は、略 6角形外殻 12aを有する 6分割隔壁構造であり、その
内部が断面六方放射状をなす隔壁 12bによって断面正三角形の 6個の区分室 13· · · に分割されている。図 9 (b)は、製紙スラッジ Sの造粒物を供給した同回転胴 9が矢印 C方向に回転している場合の、各区分室 13における該製紙スラッジ Sの積層- 堆積状態を示している。 [0252] The rotating drum 9 shown in Fig. 9 (a) has a six-partitioned partition structure having a substantially hexagonal outer shell 12a. The inside is divided into six compartments 13... Having an equilateral triangular section by a partition wall 12 b having a hexagonal section. FIG. 9 (b) shows the stacking-deposition state of the papermaking sludge S in each compartment 13 when the rotating cylinder 9 supplied with the granulated material of the papermaking sludge S is rotated in the direction of arrow C. Yes.
[0253] 図 10 (a)に示す回転胴 9は、 6本の管部 14· · ·をドーナツ板状の管部固定部材 15 によって略円環状に束ねた 6胴型多胴(管部束体)構造であり、 6本の管部 14· · ·に囲 まれた中央の空洞部 16が管部固定部材 15の中心孔 15aを通して軸心方向に連通 している。図 10 (b)は、製紙スラッジ Sの造粒物を供給した同回転胴 9が矢印 C方向 に回転している場合の、各管部 14における該製紙スラッジ Sの積層- 堆積状態を示している。 [0253] A rotating drum 9 shown in Fig. 10 (a) has a six-cylinder multi-cylinder (tube bundles) in which six pipe parts 14 ··· are bundled in a substantially annular shape by a donut plate-like pipe part fixing member 15. The central cavity portion 16 surrounded by the six pipe portions 14... Is communicated in the axial direction through the center hole 15a of the pipe portion fixing member 15. FIG. 10 (b) shows the lamination-deposition state of the papermaking sludge S in each pipe section 14 when the rotating cylinder 9 supplied with the granulated material of the papermaking sludge S is rotated in the direction of arrow C. Yes.
[0254] 図 11 (a)に示す回転胴 9は、 12分割隔壁構造であり、二重管をなす内筒部 17aと 外筒部 17bとの間の環状空間を 12枚の隔壁 17c…で放射状に仕切ることにより、 12 個の区分室 18· · ·を形成しており、内筒部 17aの内側は空洞部 16をなしている。図 1 1 (b)は、製紙スラッジ Sの造粒物を供給した同回転胴 9が矢印 C方向に回転している 場合の、各区分室 18における該製紙スラッジ Sの積層 · [0254] The rotating drum 9 shown in Fig. 11 (a) has a 12-partitioned partition structure, and an annular space between the inner cylinder part 17a and the outer cylinder part 17b forming a double pipe is formed by 12 partition walls 17c ... Twelve compartments 18 are formed by dividing radially, and a hollow portion 16 is formed inside the inner cylindrical portion 17a. Figure 11 (b) shows the stack of papermaking sludge S in each compartment 18 when the rotating cylinder 9 supplied with the granulated material of papermaking sludge S rotates in the direction of arrow C.
堆積状態を示している。 Deposition state is shown.
[0255] これら図 9〜図 11に例示したように、横長の回転胴 9を多分割構造や多胴(管部束 体)多室構造とすれば、供給される製紙スラッジ Sが複数の区分室や胴部に少量ず つ分配されることになるから、全体が単一の炉内空間をなす単なる横円筒型の回転 胴に比較して、当該回転胴 9内の移送過程における被処理物 (製紙スラッジ S,焼成 物)の堆積厚さが格段に小さくなると共に、回転胴 9の回転に伴う被処理物の攪拌作 用が強くなり、有機成分を燃焼させるための空気(酸素)と被処理物との接触効率が 著しく向上し、もって有機成分の燃焼効率が飛躍的に高まり、高品質の焼成物ひい ては無機粒子が得られる。 [0255] As illustrated in Figs. 9 to 11, if the horizontally long rotating cylinder 9 is formed into a multi-partition structure or a multi-cylinder (tube bundle) multi-chamber structure, the supplied papermaking sludge S is divided into a plurality of sections. Since it is distributed in small quantities to the chamber and torso, the object to be processed in the transfer process in the rotating cylinder 9 is compared with a simple horizontal cylindrical rotating cylinder that forms a single furnace space as a whole. As the accumulated thickness of (paper sludge S, fired product) becomes much smaller, the stir action of the object to be processed accompanying the rotation of the rotary drum 9 becomes stronger, and the air (oxygen) and the object to burn organic components are burned. The contact efficiency with the treated product is remarkably improved, so that the combustion efficiency of the organic component is remarkably increased, and a high-quality fired product and thus inorganic particles can be obtained.
[0256] なお、このような多分割構造や管部束体(多胴)多室構造における移送経路の分割 数は、上記の作用効果を充分に発揮させる上で、少なくとも 6以上とすることが推奨さ れる。また、回転胴の分割構造は、図 9〜図 11に例示した構造に限らず、例えば後 述する 18分割型、 24分割型、 36分割型などの多分割隔壁構造や、多胴型構造の
各管状部材に対して隔壁あるいは仕切りを設けて、総分割数として 6〜 126分割した 多胴 ·多分割構造とした回転胴構造など、種々の構造が可能である。更に、これらの ような回転胴、および管状部材の内部を隔壁で複数の区分室に区画する構造の他 に、後述する隔壁に類似した形状の従動型攪拌翼を回転胴内、および管状部材内 に非固定状態に揷入することにより、回転胴内を複数の区分室に分割し、該回転月同 内に供給される製紙スラッジ Sを複数の区分室に分配させるようにしてもよ!/、。 [0256] Note that the number of divisions of the transfer path in such a multi-divided structure or tube bundle (multi-cylinder) multi-chamber structure is at least 6 or more in order to sufficiently exert the above-described effects. Recommended. Further, the divided structure of the rotary cylinder is not limited to the structure illustrated in FIGS. 9 to 11, but may be, for example, a multi-partition partition structure such as an 18-part type, a 24-part type, or a 36-part type described later, Various structures are possible, such as a rotating cylinder structure having a multi-cylinder / multi-divided structure in which a partition or partition is provided for each tubular member and the total number of divisions is 6 to 126. Furthermore, in addition to the structure of the rotary drum and the tubular member, the inside of the tubular member is partitioned into a plurality of compartments by a partition wall, and a driven stirring blade having a shape similar to the partition wall described later is provided in the rotary drum and the tubular member. It is also possible to divide the inside of the rotary cylinder into a plurality of compartments and distribute the papermaking sludge S supplied to the compartments to the compartments! ,.
[0257] また、図 10及び図 11に示すように、軸心方向に沿う空洞部 16を設けた多分割構 造や多胴 (管部束体)構造の回転胴 9を採用する場合、外側からの間接的加熱に加 えて、空洞部 16を利用して内側(中心側)からも間接的加熱を行うようにすれば、より 精度よく燃焼温度を制御できる上、より高い熱処理効率を達成できる。この内側から の間接的加熱手段としては、既述した外側からの間接的加熱手段と同様の種々の熱 媒及び熱源を採用できる。 [0257] Also, as shown in Figs. 10 and 11, when a rotary cylinder 9 having a multi-divided structure or a multi-cylinder (tubular bundle) structure having a hollow portion 16 along the axial direction is employed, If indirect heating is performed from the inside (center side) using the cavity 16 in addition to indirect heating from the combustion chamber, the combustion temperature can be controlled more accurately and higher heat treatment efficiency can be achieved. . As the indirect heating means from the inside, various heat media and heat sources similar to the indirect heating means from the outside described above can be adopted.
[0258] 図 12は本発明に用いる筒型熱処理炉の第四構成例である間接的加熱方式の回 転式キルン炉 K4を模式的に示す縦断側面図であり、既述の図 5〜図 7で示す第一 〜第三構成例の回転式キルン炉 K1〜K3と共通する構成要素には同一符号を附し ている。 [0258] Fig. 12 is a longitudinal side view schematically showing a rotary kiln furnace K4 of the indirect heating method, which is a fourth structural example of the cylindrical heat treatment furnace used in the present invention, and is described in Figs. Constituent elements common to the rotary kiln furnaces K1 to K3 of the first to third configuration examples shown in FIG.
[0259] この回転式キルン炉 Κ4では、回転胴 9が既述の図 10,図 11に示すような軸心方 向に沿う空洞部 16を有するものからなり、回転胴 9の外側から加熱する間接的加熱 手段 5Α、 5Βに加えて、空洞部 16にも回転胴 9を内側から加熱する間接的加熱手段 5C、 5Dを備えている。これら内側用の間接的加熱手段 5C, 5Dは、それぞれの熱風 ブロア一 71を介して送出される熱風を、外部から給気口 3Aを通して空洞部 16内へ 揷通された配管の各々複数の放出口 72から、空洞部 16内における原料供給口 9a 側の前部加熱空間 16aと、焼成物排出口 9b側の後部加熱空間 16bとに分けて導入 するようになつている。し力もて、図 12の仮想線 cで前後に分かつように、空洞部 16 内の前部加熱空間 16aは、加熱ジャケット 20内の間接的加熱手段 5Aによる熱風が 導入される前部加熱空間 20aに対応し、同じく後部加熱空間 16bは加熱ジャケット 2 0内の間接的加熱手段 5Bによる熱風が導入される後部加熱空間 20bに対応してい
[0260] 従って、この回転式キルン炉 K4による製紙スラッジ Sの燃焼処理では、内外の前部 加熱空間 16a, 20aに挟まれた回転胴 9内の前側領域を一次燃焼区間 Z1として、間 接的加熱手段 5A、 5Cによる内外からの間接的加熱により、スラッジ温度 650°C以下 (好適には 650°C以下で 250°C以上、最適には 350〜630°C)に設定する。また、同 じく内外の後部加熱空間 16b, 20bに挟まれた回転胴 9内の後側領域は、間接的加 熱手段 5B、 5Dによる内外からの間接的加熱により、二次燃焼区間 Z2としてスラッジ 度 700〜850oG (好適 ίこ ίま 750〜800oG)〖こ設定する。 [0259] In this rotary kiln furnace 4, the rotary drum 9 has a hollow portion 16 along the axial direction as shown in Figs. 10 and 11, and is heated from the outside of the rotary drum 9. In addition to the indirect heating means 5Α and 5Β, the cavity 16 is also provided with indirect heating means 5C and 5D for heating the rotary drum 9 from the inside. These indirect heating means 5C and 5D for the inside release the hot air sent through the respective hot air blowers 71 from the outside through a plurality of air supply ports 3A and into the hollow portion 16 respectively. The outlet 72 is divided into a front heating space 16a on the raw material supply port 9a side in the cavity 16 and a rear heating space 16b on the fired product discharge port 9b side. As shown in FIG. 12, the front heating space 16a in the cavity 16 is divided into the front heating space 20a into which the hot air by the indirect heating means 5A in the heating jacket 20 is introduced. Similarly, the rear heating space 16b corresponds to the rear heating space 20b into which hot air from the indirect heating means 5B in the heating jacket 20 is introduced. [0260] Therefore, in the combustion treatment of the papermaking sludge S by this rotary kiln furnace K4, the front region in the rotary drum 9 sandwiched between the inner and outer front heating spaces 16a and 20a is used as an indirect combustion zone Z1. The sludge temperature is set to 650 ° C or less (preferably 650 ° C or less, 250 ° C or more, optimally 350 to 630 ° C) by indirect heating from inside and outside by heating means 5A and 5C. Similarly, the rear region in the rotary drum 9 sandwiched between the inner and outer rear heating spaces 16b and 20b is formed as a secondary combustion zone Z2 by indirect heating from the inside and outside by indirect heating means 5B and 5D. Set the sludge degree to 700 to 850 o G (preferably 0.75 to 800 o G).
[0261] なお、この第四構成例の回転式キルン炉 K4のように、回転胴 9の軸心方向に沿う 空洞部 16を利用して内側からも間接加熱する場合に、外側の間接加熱と同様に一 次燃焼用と二次燃焼用の 2系統の間接加熱手段 5C, 5Dを採用すれば、その内側 力、らの間接加熱による熱処理効率の向上に加え、一 7火燃焼工程 (一 7火燃焼区間 Z1) と二次燃焼工程 (一次燃焼区間 Z2)の燃焼処理温度の制御がより容易になるという 利点がある。 [0261] As in the rotary kiln furnace K4 of the fourth configuration example, when indirectly heating from the inside using the hollow portion 16 along the axial center direction of the rotary drum 9, the indirect heating outside and Similarly, if two types of indirect heating means 5C and 5D are used for primary combustion and secondary combustion, in addition to improving the heat treatment efficiency by indirect heating of the inner power, etc., the 7 fire combustion process (1 7 There is an advantage that it is easier to control the combustion treatment temperature in the fire combustion zone Z1) and the secondary combustion process (primary combustion zone Z2).
[0262] 前記の如き燃焼処理におレ、ては、原料の製紙スラッジに含まれて!/、た炭酸カルシ ゥムが熱分解 (脱炭酸)して酸化カルシウムに変化する力 その分解率は燃焼処理前 の炭酸カルシウム全量の 50%以上とするのがよぐ特に該分解率を 90%以上、更に 好ましくは実質的に 100%とすることが好ましい。これは、本発明では、上記熱分解 で生成した酸化カルシウムを後述する後処理の炭酸化工程で全て元の炭酸カルシ ゥムに戻せるため、燃焼処理での酸化カルシウムの生成を抑える必要がなぐもって 焼成処理を炭酸カルシウムの熱分解温度 525°Cよりも高い温度として有機成分の燃 焼除去を優先的に行えることによる。燃焼処理における炭酸カルシウムの分解率が 5 0%未満であると、前にも述べたように、二次燃焼工程において燃焼温度 700°C以上 でスラッジ中の有機成分を燃焼除去させながら、その燃焼温度よりも低い温度 525°C 程度から生じる炭酸カルシウムの熱分解を抑制するという相反する作用を期待するこ とになるので、非効率的にならざるを得ず、所望とする高品位なスラッジ焼却灰を高 率で得るには不向きとなる。 [0262] In the combustion treatment as described above, it is contained in the raw paper sludge! /, The power that calcium carbonate is thermally decomposed (decarboxylated) and converted into calcium oxide. It is preferable to set it to 50% or more of the total amount of calcium carbonate before the combustion treatment. In particular, the decomposition rate is preferably 90% or more, more preferably substantially 100%. In the present invention, since the calcium oxide produced by the above pyrolysis can be returned to the original calcium carbonate in the post-treatment carbonation step described later, it is not necessary to suppress the production of calcium oxide in the combustion treatment. This is because the firing treatment is performed at a temperature higher than the thermal decomposition temperature of calcium carbonate, 525 ° C, so that the organic components can be removed preferentially. If the decomposition rate of calcium carbonate in the combustion process is less than 50%, as described above, the organic components in the sludge are burned and removed at the combustion temperature of 700 ° C or higher in the secondary combustion process. It is expected to have the opposite effect of suppressing the thermal decomposition of calcium carbonate that occurs at a temperature lower than about 525 ° C, so it must be inefficient and the desired high-grade sludge incineration It is not suitable for obtaining ash at a high rate.
[0263] 次に、原料の製紙スラッジ Sに対し、上述した焼成処理に供する前に施す各種の前 処理について、既述の図 4のフローチャートで示す工程順に説明する。なお、最初の
洗浄工程は原料とする製紙スラッジに水洗を施すものである。 [0263] Next, various pretreatments performed on the raw papermaking sludge S before being subjected to the above-described firing treatment will be described in the order of steps shown in the flowchart of FIG. The first In the washing process, the papermaking sludge used as a raw material is washed with water.
[0264] 〔原料スラッジ〕 [0264] [Raw material sludge]
まず、原材料の製紙スラッジは、既述のように、パルプ化工程、紙製造工程、古紙 再生工程などの製紙工場の各種工程から排出される廃水に対してスラッジ回収処理 として、凝集 ·沈殿 ·濃縮 ·脱水等の工程を適宜組合せて行って、各廃水が含有する 固形分を回収したもの (製紙スラッジ各種)を、単独、または混合して適宜原料スラッ ジとして用いること力 Sでさる。 First, as described above, raw paper sludge is agglomerated, settled and concentrated as a sludge recovery process for wastewater discharged from various processes in the paper mill, such as the pulping process, paper manufacturing process, and used paper recycling process. · Use a combination of steps such as dehydration as appropriate to recover the solids contained in each wastewater (various types of papermaking sludge), either alone or mixed and used as a raw material sludge.
[0265] このうち古紙再生工程からのスラッジについては、古紙脱墨工程の加圧浮上(フロー テーシヨン、または浮選)および/または洗浄によって古紙パルプから分離排出される 脱墨廃液に対して凝集および脱水処理を行い、脱墨排水中の固形分を脱墨スラッジ として回収すること力 S推奨される。また、白色度の低い古紙原料力、らスラッジを回収す る場合には、古紙再生工程における脱墨処理及び浮選処理を充分に行い、カーボ ンブラックなどを含むインク粒子をできるだけ除去しておくのがよぐ必要に応じて複 数回のスラッジの加圧浮上工程および/または洗浄工程を追加することもできる。また 、古紙脱墨工程から回収する脱墨スラッジについては、上質古紙、新聞古紙、雑誌( 塗工紙系)古紙などに分別して古紙種類毎の脱墨スラッジを調製し、必要に応じてこ れらの古紙種類別脱墨古紙を単独、または混合して適宜原料スラッジとして用いるこ と力 Sできる。 [0265] Among these, sludge from the used paper recycling process is agglomerated and separated from the deinked waste liquid separated and discharged from the used paper pulp by pressurized flotation (flow-tessellation or flotation) and / or washing in the used paper deinking process. It is recommended to perform dehydration and collect the solid content in the deinking wastewater as deinking sludge. Also, when recovering waste paper raw materials with low whiteness and sludge, sufficiently perform deinking and flotation in the used paper recycling process to remove ink particles including carbon black as much as possible. Multiple sludge pressurization and / or washing steps can be added as needed. In addition, the deinking sludge collected from the used paper deinking process is classified into high-quality used paper, newspaper used paper, magazine (coating paper) used paper, etc., and deinked sludge for each type of used paper is prepared. It is possible to use deinked wastepaper by type of wastepaper alone or in combination as raw material sludge as appropriate.
[0266] 〔アルカリ金属化合物添加工程〕 [Alkali metal compound addition step]
これは、本発明者らが見出した前処理技術であり、原料とする製紙スラッジに対して アルカリ金属化合物を添加することにより、後の燃焼処理においてアルカリ金属が有 機成分の熱分解及び燃焼に対して一種の触媒的に作用し、もって燃焼効率が向上 する。そして、このような作用効果は、易燃焼性有機成分に対しては無論のこと、熱 分解 ·発火の起点となる官能基に乏しい難燃焼性有機成分に対しても有効に働くこと が判明している。 This is a pretreatment technique found by the present inventors. By adding an alkali metal compound to paper sludge as a raw material, the alkali metal is used for thermal decomposition and combustion of organic components in the subsequent combustion treatment. On the other hand, it acts as a kind of catalyst, and combustion efficiency is improved. And it has been found that such effects are effective not only for flammable organic components, but also for non-flammable organic components that are poor in functional groups that are the starting point of thermal decomposition and ignition. ing.
[0267] 添加するアルカリ金属化合物としては、特に制約はないが、水に対する溶解性ゃァ ルカリ金属の安全性 (劇毒物性)などの面から、ナトリウム又はカリウムの水酸化物及 び炭酸塩が好ましい。これに対し、塩化ナトリウムや塩化カリウムなどのハロゲン化物
、更には硝酸ナトリウムや硝酸カリウムの如き硝酸塩、硫酸ナトリウムや硫酸カリウムの 如き硫酸塩などのアルカリ金属強酸塩類は、アルカリ金属化合物としての燃焼効率 の向上効果はあるものの、燃焼処理過程でハロゲン化水素 (塩化水素)や硝酸、硫 酸などの強酸類が発生し、筒型熱処理炉を構成する金属材質を腐蝕する恐れがあ るために望ましくない。また、これらアルカリ金属化合物は、粒状や粉末状の固形形 態と水溶液形態のレ、ずれでもよぐ脱水処理前のスラッジを含む排水中や脱水処理 後のスラッジに添加すればよいが、添加の均一性と添加量調整の容易さより、水溶液 形態で脱水処理前に原料スラッジに添加する方法や乾燥処理前のスラッジに噴霧 する方法などが好適である。 [0267] The alkali metal compound to be added is not particularly limited, but sodium or potassium hydroxides and carbonates are preferable from the viewpoint of the safety (harmful physical properties) of the alkali metal soluble in water. . In contrast, halides such as sodium chloride and potassium chloride In addition, alkali metal strong acid salts such as nitrates such as sodium nitrate and potassium nitrate and sulfates such as sodium sulfate and potassium sulfate have an effect of improving the combustion efficiency as an alkali metal compound, but hydrogen halide ( Hydrogen chloride), nitric acid, sulfuric acid, and other strong acids are generated, which may cause corrosion of the metal material constituting the cylindrical heat treatment furnace. In addition, these alkali metal compounds may be added to sludge before and after dehydration treatment, including sludge before dehydration treatment, which may be in the form of granular or powdered solid and aqueous solutions, or misalignment. From the viewpoint of uniformity and ease of adjusting the addition amount, a method of adding to the raw material sludge before dehydration in the form of an aqueous solution or a method of spraying to the sludge before drying is preferable.
[0268] 製紙スラッジに対するアルカリ金属化合物の添加量は、アルカリ金属水酸化物の場 合、スラッジ絶乾重量 100重量部に対して、絶乾重量で 0. 001-5. 0重量部の範 囲が好ましく,特に同 0. ;!〜 1. 0重量部の範囲が最適である。しかして、この添加量 が少な過ぎては充分な作用効果が得られない。逆に該添加量が多過ぎては、無駄 になる上、アルカリ金属化合物が水酸化物である場合に、過剰のアルカリによってス ラッジの pHが強いアルカリ性となり、スラッジの取り扱いにも注意が必要となるために 好ましくない。 [0268] The amount of alkali metal compound added to the papermaking sludge is within the range of 0.001 to 5.0 parts by weight in the absolute dry weight of 100 parts by weight of the sludge in the case of alkali metal hydroxide. In particular, the range of 0.;! To 1.0 parts by weight is optimal. Therefore, if this addition amount is too small, a sufficient effect cannot be obtained. On the other hand, if the amount added is too large, it is wasted and, when the alkali metal compound is a hydroxide, the pH of the sludge is strongly alkaline due to excess alkali, and care must be taken when handling the sludge. This is not preferable.
[0269] 〔脱水工程〕 [0269] [Dehydration process]
製紙スラッジ含有排水から、原料スラッジを固形分として回収する方法としては、既 述のように、濾過、遠心分離、加圧脱水、圧搾等の方法が挙げられ、前記各種方法 を組合せて所要の含水率の製紙スラッジを得る。好適な濾過装置としては、ロータリ 一スクリーンと称される濾過装置があり、また脱水装置としては、スクリュープレスと称 される加圧 ·圧搾脱水装置があり、これらの濾過装置、圧搾装置を単独、または適宜 組合せて用いることができる。 Examples of methods for recovering raw material sludge as solids from papermaking sludge-containing wastewater include methods such as filtration, centrifugation, pressure dehydration, and pressing, as described above. Get rate papermaking sludge. As a suitable filtration device, there is a filtration device called a rotary screen, and as a dehydration device, there is a pressurization / squeeze dehydration device called a screw press. Or they can be used in appropriate combinations.
[0270] スラッジ中の固形分濃度は、脱水機の能力の違いで異なるため、通常 5〜60質量 %であるが、固形分濃度 60質量%を超えるものは現状の脱水機あるいは濃縮機の 能力では達成が難しい。 [0270] The solids concentration in the sludge varies depending on the capacity of the dehydrator, so it is usually 5 to 60% by mass. However, if the solid content exceeds 60% by mass, the capacity of the current dehydrator or concentrator It is difficult to achieve.
[0271] [乾燥工程] [0271] [Drying process]
本発明では、熱処理工程で用いられるに用いるスラッジの固形分濃度は特に限定
はないが、既述のように、熱処理工程中のエネルギーコストを低減する観点から、ま た熱処理装置を小さくする観点から、スラッジの固形分濃度はなるべく高くした方が 好ましいので、 70%以上にするのがよい。しかるに、前記の脱水工程のみでは、脱 水装置機の能力によって異なるものの、固形分濃度は概ね 5〜60質量%程度である ため、更に乾燥処理して固形分濃度を高めることが推奨される In the present invention, the solid content concentration of sludge used in the heat treatment step is particularly limited. However, as described above, from the viewpoint of reducing the energy cost during the heat treatment process and from the viewpoint of reducing the heat treatment apparatus, it is preferable to increase the solid content of the sludge as much as possible. It is good to do. However, although the dehydration process alone varies depending on the capacity of the dewatering device, the solid content concentration is approximately 5 to 60% by mass, so it is recommended to further increase the solid content concentration by drying treatment.
[0272] スラッジの固形分濃度を高くするために、図 4に示すように、熱処理工程前にスラッジ を乾燥する乾燥工程を設けることが好ましい。乾燥工程で用いる乾燥機としては、特 に限定はなぐ既述のように、直接加熱型ロータリーキルン、間接加熱型ロータリーキ ルン、気流乾燥機、流動層乾燥機、振動流動乾燥機、回転 ·通気回転乾燥機(サイ クロン)などを用いること力 Sできる。また、これら乾燥機の熱源としては、後述する焼成 処理工程の排熱を使用することにより、エネルギーコストを低減することが可能である[0272] In order to increase the solid content concentration of the sludge, it is preferable to provide a drying step for drying the sludge before the heat treatment step, as shown in FIG. As described above, the dryer used in the drying process is not limited to a direct heating type rotary kiln, an indirect heating type rotary kiln, an air flow dryer, a fluidized bed dryer, an oscillating fluid dryer, a rotary / aeration rotation. It is possible to use a dryer (cyclone). In addition, as a heat source for these dryers, it is possible to reduce the energy cost by using the exhaust heat of the baking treatment process described later.
〇 Yes
[0273] 乾燥処理の温度は、既述のように、気流乾燥機や回転 ·通気回転乾燥機のような 熱風を利用して乾燥させる装置においては、スラッジの燃焼や炭化を防止するため に熱風温度を 600°C以下とすることが好ましぐ 250°C以下とすることが特に好ましい 。この熱風温度が高過ぎては、スラッジが発火し、その際の焼成条件が適切でなけれ ば、易燃焼性の有機成分が炭化して難燃焼性に変化する懸念がある。また、乾燥ェ 程においては乾燥効率を向上させるために、スラッジを細力べ解すことが好ましぐ撹 拌機ゃ機械式ロール等により強制的にスラッジを解し、必要に応じてスラッジを 300 〜2000 m程度に分級して乾燥させることが好ましい。 [0273] As described above, the temperature of the drying process is not limited to hot air to prevent sludge from burning or carbonization in an apparatus that uses hot air such as an air dryer or a rotary / aeration rotary dryer. The temperature is preferably 600 ° C or lower, and particularly preferably 250 ° C or lower. If this hot air temperature is too high, sludge will ignite, and if the firing conditions at that time are not appropriate, there is a concern that easily combustible organic components will carbonize and become non-combustible. In addition, in the drying process, it is preferable that the sludge be squeezed in order to improve drying efficiency. Forcibly, the sludge is forcibly released by a mechanical roll or the like. It is preferable to classify to about 2000 m and dry.
[0274] 〔造粒工程〕 [Granulation process]
前記乾燥後の製紙スラッジを適当な手段で適度な粒子サイズに成形するものであ る。すなわち、本発明で原料とする製紙スラッジは、筒型熱処理炉内を移送しつつ空 気(酸素)と接触して有機成分を燃焼できる形態及び粒子サイズであればょレ、が、細 か過ぎると堆積層が高密度化し、その層内に空気が入り込みにくくなり、逆に塊状の ような粗大になっても塊状物内部まで空気が行き渡りに《なり、共に有機成分の燃 焼性が悪化して未燃焼炭化物による焼成物の白色度の低下を招くため、ある程度の 大きさに造粒することが好ましい。
[0275] 造粒手段としては、プリケットマシンやローラーコンパクタ一の如き圧縮成形機、ディ スクペレツターの如き押出成形機、及び転動造粒法や攪拌造粒法等によってペレツ ト造粒する一般的な造粒方法の他、脱水処理後の含水した製紙スラッジを乾燥装置 や筒型熱処理炉置へ投入する際に、スクリューフィーダの如き剪断作用のある搬送 装置を用いて搬送を兼ねて造粒したり、乾燥工程中での製紙スラッジの搬送運動を 利用して造粒することも可能である。 The dried papermaking sludge is formed into an appropriate particle size by an appropriate means. In other words, the papermaking sludge used as a raw material in the present invention is too fine if it has a form and particle size that can burn organic components in contact with air (oxygen) while being transported in a cylindrical heat treatment furnace. However, even if the deposited layer becomes dense and air does not easily enter the layer, the air spreads to the inside of the lump even if it becomes coarse like a lump, and the combustibility of organic components deteriorates. In order to reduce the whiteness of the fired product due to unburned carbide, it is preferable to granulate to a certain size. [0275] As granulation means, pellet granulation is generally performed by a compression molding machine such as a pricket machine or a roller compactor, an extrusion molding machine such as a disk pelleter, and a rolling granulation method or a stirring granulation method. In addition to a simple granulation method, when water-containing paper sludge after dehydration is put into a drying device or a cylindrical heat treatment furnace, it is granulated using a conveying device having a shearing action such as a screw feeder. It is also possible to carry out granulation using the paper sludge transport movement during the drying process.
[0276] なお、造粒の粒子サイズとしては、長さ又は直径で 2〜30mm程度の範囲が好適で あり、 3〜20mmの範囲が更に好適である。この範囲を外れて例えば lmm程度の粒 子サイズにした場合は、燃焼の際に周囲の空気と充分に接触できず、未燃焼になり 易くなる。また、 30mmを越えると中心部まで完全に燃焼させることが困難になってく る。造粒の粒子形状としては、円柱状、球状、楕円、三角形、その他の多角形や、凹 凸を有するもの等、特に制約はない。 [0276] The granulated particle size is preferably in the range of about 2 to 30 mm in length or diameter, and more preferably in the range of 3 to 20 mm. If the particle size is out of this range, for example, about lmm, it will not be able to come into sufficient contact with the surrounding air during combustion, and it will easily become unburned. In addition, if it exceeds 30 mm, it becomes difficult to burn completely to the center. The particle shape of the granulation is not particularly limited, such as a columnar shape, a spherical shape, an ellipse, a triangle, other polygonal shapes, or those having concave and convex shapes.
[0277] 次に、前記の焼成処理にて得られた焼成物に対する各種の後処理について、既述 の図 4のフローチャートで示す工程順に説明する。 [0277] Next, various post-treatments for the fired product obtained by the firing treatment will be described in the order of steps shown in the flowchart of Fig. 4 described above.
[0278] 〔懸濁液化工程 '炭酸化工程〕 [Suspension process' Carbonation process]
燃焼処理にて得られた焼成物を水に混合'攪拌して懸濁液とし、この懸濁液中に炭 酸ガスを吹き込んで焼成物を炭酸化処理する。これは、原料の製紙スラッジに炭酸力 ルシゥムを含む場合、燃焼処理において炭酸カルシウム(CaCO )から二酸化炭素( The fired product obtained by the combustion treatment is mixed with water and stirred to form a suspension, and a carbon dioxide gas is blown into the suspension to carbonize the fired product. This is because when the raw paper sludge contains carbonic acid lucium, the carbon dioxide (CaCO 3) to carbon dioxide (CaCO 3) in the combustion process.
3 Three
CO )が脱離して酸化カルシウム(CaO)を生成する力 S、この酸化カルシウムを含む無 CO) is released to generate calcium oxide (CaO) S
2 2
機粒子を製紙用填料や塗工用顔料等の製紙用材料に用いた際、アルカリ性が非常 に強くなつたり、粘度の上昇や顔料の分散不良等の問題が生じたりするため、懸濁 液化で酸化カルシウムを水酸化カルシウム〔Ca (OH) 〕に変換し、更に炭酸化処理 When machine particles are used in papermaking materials such as paper fillers and coating pigments, alkalinity becomes extremely strong, and problems such as increased viscosity and poor pigment dispersion occur. Calcium oxide is converted to calcium hydroxide (Ca (OH)) and then carbonized.
2 2
して炭酸カルシウムに戻すものである。 To return to calcium carbonate.
[0279] 懸濁液化工程は、上述のように酸化カルシウムを炭酸カルシウムに戻す前に一旦 水酸化カルシウムに変換することが目的であるから、特に条件的な制約はないが、低 V、処理温度では懸濁液化に長時間を要する一方、高!/、処理温度では温度維持のた めの加熱コストが嵩んで不経済であるため、処理温度を 20〜80°Cとすることが好まし ぐ 40〜60°Cとすることが特に好ましい。因みに、処理温度が 60°C程度であれば、
懸濁液化を 60分程度で完了できる。また、懸濁液の固形分濃度は、後続する炭酸 化工程における炭酸化処理を効率的に行い、また懸濁液の粘度を低く維持して流動 攪拌性や送液性を良好に維持する上で、 5〜20質量%とすることが好ましい。 [0279] Since the purpose of the suspension process is to convert calcium oxide to calcium hydroxide before returning it to calcium carbonate as described above, there are no particular restrictions, but low V, treatment temperature However, it takes a long time to make a suspension, while high! /, And the processing temperature is expensive and expensive to maintain, so it is preferable to set the processing temperature to 20 to 80 ° C. A temperature of 40 to 60 ° C is particularly preferable. By the way, if the processing temperature is about 60 ° C, Suspension can be completed in about 60 minutes. In addition, the solid content concentration of the suspension is effective in performing the carbonation treatment in the subsequent carbonation step, and maintaining the viscosity of the suspension low to maintain good fluidity and fluidity. And it is preferable to set it as 5-20 mass%.
[0280] また焼成物懸濁液に対しては、本発明のスラッジ焼成物の他に、必要に応じて別途 、酸化カルシウム(CaO:生石灰)または水酸化カルシウム〔Ca (OH) :消石灰〕を添 [0280] In addition to the sludge calcined product of the present invention, calcium oxide (CaO: quick lime) or calcium hydroxide [Ca (OH): slaked lime] is separately added to the calcined product suspension as necessary. Attendant
2 2
カロしてスラッジ焼成物と水酸化カルシウムの所定固形分濃度の混合懸濁液とすること もでき、この場合、酸化カルシウムおよび水酸化カルシウムは、消和後の形態である 水酸化カルシウム〔Ca (OH) :消石灰〕として、スラッジ焼成物 100重量部に対して It can also be made into a mixed suspension of a sludge calcined product and calcium hydroxide at a predetermined solid content concentration. In this case, calcium oxide and calcium hydroxide are calcium hydroxide [Ca (Ca ( OH): slaked lime], for 100 parts by weight of the sludge burned product
2 2
最大 100重量部(スラッジ:水酸化カルシウム = 50: 50)まで添加すること力 Sできる。 1 00重量部を超えて水酸化カルシウムを添加することもできる力 消和懸濁液中のスラ ッジ焼成物の配合率が少なくなり、スラッジ利用が進まなくなるため好ましくない。 It is possible to add up to 100 parts by weight (sludge: calcium hydroxide = 50: 50). The ability to add calcium hydroxide in excess of 100 parts by weight This is not preferable because the ratio of the sludge burned product in the slaked suspension is reduced and sludge use does not proceed.
[0281] 炭酸化工程では、焼成物の懸濁液に対して炭酸ガスを吹き込むが、高純度の二酸 化炭素ガスは不経済であるため、工業的には二酸化炭素濃度としては 5〜40容量 %程度、特に好適には 10〜35容量%程度の二酸化炭素含有ガスを用いるのがよい 。このような二酸化炭素含有ガスとしては、例えば、スラッジ燃焼排ガス、石灰石焼成 排ガス、石灰焼成排ガス、ゴミ焼却排ガス、発電ボイラー排ガス、或いはパルプ製造 工程で用いられる苛性化炭酸カルシウム焼成キルンからの排出ガス等、種々の燃焼 排ガスを適当な手段で除塵して用いることができる。なお、吹き込みガスの二酸化炭 素濃度が低過ぎては、炭酸化に長時間を要し、それだけ無機粒子の生産性が低下 する一方、高い二酸化炭素濃度に設定するには調製コストが高く付く。 [0281] In the carbonation step, carbon dioxide gas is blown into the suspension of the calcined product. However, since high purity carbon dioxide gas is uneconomical, the carbon dioxide concentration is industrially 5-40. It is preferable to use a carbon dioxide-containing gas of about volume%, particularly preferably about 10 to 35 volume%. Examples of such carbon dioxide-containing gas include sludge combustion exhaust gas, limestone calcined exhaust gas, lime calcined exhaust gas, waste incineration exhaust gas, power generation boiler exhaust gas, exhaust gas from causticized calcium carbonate calcined kiln used in pulp manufacturing process, etc. Various combustion exhaust gases can be used after dust removal by an appropriate means. If the carbon dioxide concentration of the blown gas is too low, the carbonation takes a long time, and the productivity of the inorganic particles decreases accordingly. On the other hand, a high preparation cost is required to set a high carbon dioxide concentration.
[0282] 炭酸化工程での炭酸ガスの吹き込み量は、焼成物懸濁液中の水酸化カルシウム 固形分 lkgに対し、二酸化炭素ガスとして 0. 5〜15リットル/分の割合が好適であり 、少な過ぎては炭酸化に時間を要して無機粒子の生産性を低下させ、逆に多過ぎて は吹き込み用の動力負荷が大きくなつて不経済である。また、炭酸化の際の焼成物 懸濁液の温度(炭酸化反応温度)は、 30〜80°C程度、特に 40〜70°Cの範囲がよく 、低過ぎては炭酸化反応の効率が低下し、逆に高過ぎても二酸化炭素ガスが懸濁 液中に充分に溶解しなくなって炭酸化反応の効率低下を招く。 [0282] The amount of carbon dioxide blown in the carbonation step is preferably 0.5 to 15 liters / minute as carbon dioxide gas with respect to 1 kg of calcium hydroxide solid content in the fired suspension. If the amount is too small, it takes time for carbonation to reduce the productivity of inorganic particles. On the other hand, if the amount is too large, the power load for blowing becomes large, which is uneconomical. In addition, the temperature of the calcined suspension during carbonation (carbonation reaction temperature) is preferably about 30 to 80 ° C, particularly 40 to 70 ° C, and if it is too low, the efficiency of the carbonation reaction is increased. Conversely, even if it is too high, the carbon dioxide gas is not sufficiently dissolved in the suspension, leading to a reduction in the efficiency of the carbonation reaction.
[0283] なお、炭酸化工程では、製出させる炭酸カルシウムを所望の結晶形状とするために
、焼成物懸濁液中に当該結晶形状を持つ炭酸カルシウムの種結晶を添加してもよい [0283] In the carbonation step, the calcium carbonate to be produced is made into a desired crystal shape. In addition, a seed crystal of calcium carbonate having the crystal shape may be added to the fired product suspension.
[0284] 前記のように焼成物を炭酸化して得られた炭酸化処理物は、製紙用填料に適した 粒子径の大きい白色の無機粒子となっているから、炭酸化処理物の懸濁液をそのま ま製紙用填料としてパルプなどの製紙用原材料に配合して用いることもできる。 [0284] Since the carbonized product obtained by carbonating the fired product as described above is white inorganic particles having a large particle size suitable for a papermaking filler, a suspension of the carbonized product is obtained. As it is, it can be used as a filler for papermaking by blending it with raw materials for papermaking such as pulp.
[0285] 〔脱水工程'分散工程'粉砕工程〕 [Dehydration process 'Dispersion process' Grinding process]
前記の炭酸化工程から得られた炭酸化処理物を脱水処理したのち、分散及び粉 砕処理することにより、塗工紙用顔料として適した微細な白色の無機粒子の高濃度 スラリーを得る。その脱水工程では、既述の前処理における脱水工程と同様に、炭酸 化処理物の懸濁液から、濾過、遠心分離、加圧脱水、圧搾等により、所要の含水率 の炭酸化処理物とする。好適な脱水装置としては、フィルタープレスと称される圧搾 濾過装置があり、炭酸化処理物の脱水ケーキを得ることができる。そして、次の分散 工程では、脱水されたケーキ状の炭酸化処理物に水分を加えて高濃度スラリーとす る力 その分散操作には通常の分散処理で行われている攪拌、解砕、分散などの各 種手法を採用できる。また、この分散操作に際して分散剤を添加することにより、無機 粒子が良好な分散状態になり、製紙用材料としての品質及び取り扱い性が向上する 。このような分散剤としては、製紙用材料の製造の際に用いられる一般的な分散剤を 使用でき、その具体例としてポリアクリル酸ナトリウム等の合成高分子系の分散剤が 挙げられる。 The carbonation product obtained from the carbonation step is dehydrated and then dispersed and pulverized to obtain a high-concentration slurry of fine white inorganic particles suitable as a pigment for coated paper. In the dehydration process, as in the dehydration process in the pretreatment described above, a carbonized product having a required water content is obtained from a suspension of the carbonated product by filtration, centrifugation, pressure dehydration, squeezing, etc. To do. As a suitable dehydrating apparatus, there is a press filtration apparatus called a filter press, and a dehydrated cake of a carbonized product can be obtained. Then, in the next dispersion step, the force of adding water to the dehydrated cake-like carbonated product to form a high-concentration slurry. The dispersion operation involves stirring, crushing, and dispersion performed in the usual dispersion treatment. Various methods can be adopted. Further, by adding a dispersing agent during the dispersing operation, the inorganic particles are in a favorable dispersed state, and the quality and handling properties as a papermaking material are improved. As such a dispersant, a general dispersant used in the production of papermaking materials can be used, and specific examples thereof include synthetic polymer-based dispersants such as sodium polyacrylate.
[0286] なお、炭酸化工程を経た炭酸化処理物の懸濁液は、脱水処理する前に振動篩等 の篩でろ過処理するのがよぐ更に該ろ過処理の前に液体サイクロンを用いた分級 処理を行うことが好ましい。すなわち、前記のろ過処理により、炭酸化処理物中に混 入する α —クォーツなどの珪素を含む粒子や粗大粒子が除去されるから、抄紙用ヮ ィヤーの摩耗を低減できる。また、該ろ過処理前に液体サイクロンによる分級処理を 行えば、後続するろ過処理の篩の目詰まりを防止できるという利点がある。 [0286] It should be noted that the suspension of the carbonation-treated product that has undergone the carbonation step is preferably filtered through a sieve such as a vibrating sieve before dehydration, and a liquid cyclone is used before the filtration. A classification treatment is preferably performed. That is, the above filtration treatment removes silicon-containing particles such as α-quartz and coarse particles mixed into the carbonized product, and thus wear of the papermaking tire can be reduced. Further, if the classification process using a liquid cyclone is performed before the filtration process, there is an advantage that clogging of the sieve of the subsequent filtration process can be prevented.
[0287] 粉砕工程では、前記の分散処理後の無機粒子を粉砕して微粒子化することにより、 該無機粒子を塗工用顔料として好適な高品質の白色無機粒子とする。この粉砕工程 の粉砕装置としては、製紙用材料の製造において一般的に用いられるサンドミル、湿
式ボールミル、振動ミル、攪拌槽型ミル、流通管型ミル、コボールミルなどを使用でき [0287] In the pulverization step, the inorganic particles after the dispersion treatment are pulverized into fine particles, whereby the inorganic particles are made into high-quality white inorganic particles suitable as a coating pigment. As a pulverizing apparatus for this pulverization step, a sand mill, a wet type generally used in the manufacture of papermaking materials are used. Can use ball mills, vibration mills, stirring tank mills, flow tube mills, coball mills, etc.
[0288] 本発明によって製紙スラッジを原料として得られる無機粒子は、白色度が高ぐ且 つ硬質の焼結物を含まないため、上述のようにそのまま製紙用填料や塗工用顔料な どの製紙用材料として使用できると共に、炭酸カルシウム、タルク、カオリン、焼成力 ォリン、二酸化チタン、サチンホワイト、シリカ等の製紙用材料として用いられる各種 無機顔料に混合して使用できる。 [0288] The inorganic particles obtained from the papermaking sludge as a raw material according to the present invention have a high whiteness and do not contain a hard sintered product. Therefore, as described above, a papermaking material such as a papermaking filler or a coating pigment is used as it is. It can be used as a material for paper, and can also be used by mixing with various inorganic pigments used as paper materials such as calcium carbonate, talc, kaolin, firing power, titanium dioxide, satin white, and silica.
[0289] 〔実施例'比較例〕 [Examples] Comparative Examples
以下に、実施例、比較例を挙げて本発明を具体的に説明するが、勿論、本発明は それらに限定されるものではない。なお、特に断らない限り、例中の部及び%はそれ ぞれ質量部及び質量%を示す。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereto. Unless otherwise specified, “parts” and “%” in the examples represent “parts by mass” and “% by mass”, respectively.
[0290] 実施例 17 [0290] Example 17
古紙処理設備を有する製紙工場における雑誌古紙主体の古紙脱墨工程において 、浮遊選別法 (フローテーシヨン法)によって古紙パルプから浮上分離除去された泡 沫状の脱墨浮選廃液に、凝集剤を添加して廃液中の固形分を凝集させた後に、ロー タリースクリーンおよびスクリュープレスに順次通液して、固形分約 50%の製紙スラッ ジ (脱墨スラッジ)を回収した。次!/、で乾燥機を用いて固形分約 75%になるように乾 燥し、次いでディスクペレツターを用いて直径約 5mm、長さ約 15mmのペレットに造 粒成形し、前処理を終えた。そして、この前処理後の製紙スラッジ造粒物を、既述の 図 6で示す第二構成例の回転キルン炉 K2 (高砂工業製の外熱式ロータリーキルン、 回転月同の径 300mm,長さ 2400mm)を用いて燃焼処理した。 In the waste paper deinking process, which is mainly used for magazine waste paper at a paper mill with a waste paper processing facility, a flocculant is added to the foamy deinking flotation waste liquid that has been floated and separated from waste paper pulp by the floatation method (floatation method). After adding and aggregating the solid content in the waste liquid, the liquid was passed through a rotary screen and a screw press in order to recover papermaking sludge (deinking sludge) having a solid content of about 50%. Next, use a dryer to dry to a solid content of about 75%, and then granulate and form pellets with a diameter of about 5 mm and a length of about 15 mm using a disk pelleter, and finish the pretreatment. It was. Then, the paper sludge granulated material after this pre-treatment is used in the rotary kiln furnace K2 (Takasago Kogyo Co., Ltd., externally heated rotary kiln manufactured by Takasago Industries, Ltd. ) Was used for combustion treatment.
[0291] この燃焼処理では、原料の製紙スラッジ造粒物 Sをホッパを用いて 3. 5Kg/ hの 供給速度で原料投入口 2から供給し、原料供給手段 10であるスクリューフィーダ一に よって回転胴 9の原料供給口 9aに送り込み、該回転胴 9内を移送しつつ、一 7火燃焼 区間 Z1及び二次燃焼区間 Z2での 2段階の燃焼処理を行った。そして、両燃焼区間 Zl , Z2では、図示を省略した燃焼ボイラーからの燃焼ガスを熱源として、間接的加 熱手段 5A, 5Bによる加熱ジャケット 20の前部及び後部加熱空間 20a, 20bへの該 燃焼ガスの導入量で熱処理温度を制御し、一 7火燃焼区間 Z1をスラッジ温度 600°C
で処理時間(スラッジ滞留時間)を約 40分、二次燃焼区間 Z2をスラッジ温度 800°C で処理時間を約 90分に設定した。一方、排気手段 4の排気ファンによって回転胴 9 内から燃焼排ガスを 100L/分 (空気温度 20°C換算)で排出し、これに伴う減圧作用 で排気口 30から排出される排ガスと同量の外気を給気口 3から吸入し、もって回転月同 9内全体を常に過剰空気雰囲気に維持した。 [0291] In this combustion treatment, raw paper sludge granulated material S is supplied from the raw material input port 2 at a supply speed of 3.5 kg / h using a hopper, and is rotated by a screw feeder which is a raw material supply means 10. A two-stage combustion process was performed in the seven-fire combustion zone Z1 and the secondary combustion zone Z2 while being fed into the raw material supply port 9a of the barrel 9 and being transferred through the rotary drum 9. In both combustion sections Zl and Z2, the combustion gas from the combustion boiler (not shown) is used as a heat source, and the combustion to the front and rear heating spaces 20a and 20b of the heating jacket 20 by the indirect heating means 5A and 5B is performed. The heat treatment temperature is controlled by the amount of gas introduced, and the seven-fire combustion zone Z1 is sludge temperature 600 ° C. The treatment time (sludge retention time) was set to about 40 minutes, and the secondary combustion zone Z2 was set to a sludge temperature of 800 ° C and the treatment time was set to about 90 minutes. On the other hand, combustion exhaust gas is exhausted from the rotary drum 9 by the exhaust fan of the exhaust means 4 at 100 L / min (air temperature converted to 20 ° C), and the same amount of exhaust gas exhausted from the exhaust port 30 due to the decompression action associated therewith. Outside air was sucked from the air supply port 3, and the entire inside of the rotating month 9 was always maintained in an excess air atmosphere.
[0292] この燃焼処理で得られた焼成物の組成を X線回折によって調べた結果、硬質の高 温焼結物(グーレナイト)は含まれておらず、燃焼処理前の製紙スラッジに含有され ていた炭酸カルシウムは全て酸化カルシウムに変化していた。また、炭酸カルシウム 以外の成分では、カオリンが全て焼成カオリンに変化していた力 タルクは全く変化し ていなかった。 [0292] The composition of the fired product obtained by this combustion treatment was examined by X-ray diffraction. As a result, it did not contain a hard high-temperature sintered product (goulenite) and contained in paper sludge before the combustion treatment. All calcium carbonate was changed to calcium oxide. In addition to the components other than calcium carbonate, the force talc, in which all kaolin was changed to calcined kaolin, did not change at all.
[0293] 次!/、で、前記燃焼処理によって得られた焼成物を懸濁液化槽(消和槽)を用いて 6 0°Cの温水と混合し、この懸濁液化槽の温度を 60°Cに保持しながら 60分間攪拌して 、固形分濃度が約 12%の焼成物懸濁液を調製した。そして、この焼成物懸濁液 10k gを炭酸化反応槽に仕込み、この炭酸化反応槽の温度を 60°Cに保持しつつ、懸濁 液中に 25容量%の二酸化炭素含有ガスを 20リットル/分で吹き込みながら 60分間 攪拌を行って炭酸化処理した。この炭酸化処理後の無機粒子の組成を X線回折で 調べた結果、燃焼処理によって生成して!/、た酸化カルシウムの全量が炭酸カルシゥ ムまで転化していた。 [0293] Next! /, The fired product obtained by the above-mentioned combustion treatment is mixed with 60 ° C hot water using a suspension tank (dissolving tank), and the temperature of the suspension tank is adjusted to 60 ° C. While maintaining the temperature at 60 ° C., the mixture was stirred for 60 minutes to prepare a calcined product suspension having a solid content concentration of about 12%. Then, 10 kg of this calcined product suspension was charged into a carbonation reaction tank, and while maintaining the temperature of this carbonation reaction tank at 60 ° C, 20 liters of 25% by volume carbon dioxide-containing gas was added to the suspension. Carbonation was carried out by stirring for 60 minutes while blowing at / min. As a result of examining the composition of the inorganic particles after the carbonation treatment by X-ray diffraction, the total amount of calcium oxide produced / combusted by the combustion treatment was converted to calcium carbonate.
[0294] 次に、前記炭酸化処理にて得られた炭酸化処理物の懸濁液をフィルタープレスで 脱水処理し、得られた固形分濃度が約 48%のケーキ状の炭酸化処理物をコーレスミ キサ一にて水に分散させることにより、固形分濃度が約 46%の白色の無機粒子スラ リーを調製した。なお、この分散させる水には、分散剤としてポリアクリル酸系分散剤( 商品名:ァロン T 50、東亜合成株式会社製)を炭酸化処理物の固形分 100重量部 に対して 1. 0重量部添加した。そして、最後にサンドグラインダーを用いて上記の無 機粒子スラリーを湿式粉砕し、塗工用顔料に適した微粒子状の白色無機粒子を得た [0294] Next, the suspension of the carbonated product obtained by the carbonation treatment was dehydrated with a filter press, and the cake-like carbonated product having a solid content concentration of about 48% was obtained. A white inorganic particle slurry having a solid content of about 46% was prepared by dispersing in water using a core mixer. In addition, in this water to be dispersed, a polyacrylic acid-based dispersant (trade name: ALON T 50, manufactured by Toa Gosei Co., Ltd.) as a dispersant is 1.0 wt. Per 100 parts by weight of the solid content of the carbonized product. Part was added. Finally, the above-mentioned inorganic particle slurry was wet-ground using a sand grinder to obtain fine white inorganic particles suitable for a coating pigment.
[0295] 実施例 18 [0295] Example 18
燃焼処理における一 7火燃焼区間 Z1のスラッジ温度を 450°Cとした以外は、前記実
施例 1と同様にして白色無機粒子を得た。 Except that the sludge temperature in the one-fire combustion zone Z1 in the combustion process was set to 450 ° C, White inorganic particles were obtained in the same manner as in Example 1.
[0296] 実施例 19 [0296] Example 19
原料の製紙スラッジを直径約 15mm、長さ約 15mmのペレットに造粒成形した以外 は、前記実施例 1と同様にして白色無機粒子を得た。 White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 15 mm and a length of about 15 mm.
[0297] 実施例 20 [0297] Example 20
乾燥処理前の製紙スラッジに対して水酸化ナトリウムを添加することにより、スラッジ 固形分 100部に対して約 0. 01部の水酸化ナトリウムを含有させた以外は、前記実施 例 1と同様にして白色無機粒子を得た。 Except for adding about 0.01 part of sodium hydroxide to 100 parts of sludge solids by adding sodium hydroxide to the papermaking sludge before drying treatment, the same as in Example 1 above. White inorganic particles were obtained.
[0298] 実施例 21 [0298] Example 21
乾燥処理前の製紙スラッジに対して水酸化ナトリウムを添加することにより、スラッジ 固形分 100部に対して約 1部の水酸化ナトリウムを含有させると共に、燃焼処理にお ける一次燃焼区間 Z1及び二次燃焼区間 Z2の各処理時間をそれぞれ 30分及び 70 分に短縮した以外は、前記実施例 1と同様にして白色無機粒子を得た。 By adding sodium hydroxide to the paper sludge before drying, about 1 part of sodium hydroxide is added to 100 parts of sludge solids, and the primary combustion zone Z1 and secondary in the combustion process are added. White inorganic particles were obtained in the same manner as in Example 1 except that each treatment time in the combustion zone Z2 was shortened to 30 minutes and 70 minutes, respectively.
[0299] 比較例 5 [0299] Comparative Example 5
燃焼処理における一 7火燃焼区間 Z1と二次燃焼区間 Z2のスラッジ温度を共に 600 °Cとし、もって燃焼処理全体を 1段階 (燃焼処理時間として 130分)にした以外は、前 記実施例 1と同様にして白色無機粒子を得た。 Example 1 of the previous example except that the sludge temperature in the seven-fired combustion zone Z1 and the secondary combustion zone Z2 in the combustion treatment was both set to 600 ° C and the whole combustion treatment was made one stage (130 minutes as the combustion treatment time). In the same manner, white inorganic particles were obtained.
[0300] 比較例 6 [0300] Comparative Example 6
燃焼処理における一 7火燃焼区間 Z1と二次燃焼区間 Z2のスラッジ温度を共に 700 °Cとし、もって燃焼処理全体を 1段階 (燃焼処理時間として 130分)にした以外は、前 記実施例 1と同様にして白色無機粒子を得た。 Example 1 above except that the sludge temperature in the seven-fired combustion zone Z1 and the secondary combustion zone Z2 in the combustion process is 700 ° C, and the entire combustion process is in one stage (130 minutes as the combustion process time). In the same manner, white inorganic particles were obtained.
[0301] 比較例 7 [0301] Comparative Example 7
燃焼処理における一 7火燃焼区間 Z1と二次燃焼区間 Z2のスラッジ温度を共に 800 °Cとし、もって燃焼処理全体を 1段階 (燃焼処理時間として 130分)にした以外は、前 記実施例 1と同様にして白色無機粒子を得た。 Example 1 of the previous example except that the sludge temperature in the seven-fired combustion zone Z1 and the secondary combustion zone Z2 in the combustion treatment was both set to 800 ° C and the whole combustion treatment was made one stage (130 minutes as the combustion treatment time). In the same manner, white inorganic particles were obtained.
[0302] 比較例 8 [0302] Comparative Example 8
燃焼処理における一 7火燃焼区間 Z1と二次燃焼区間 Z2のスラッジ温度を共に 900 °Cとし、もって燃焼処理全体を 1段階 (燃焼処理時間として 130分)にした以外は、前
記実施例 1と同様にして白色無機粒子を得た。 Except for the fact that the sludge temperature in the seven-fired combustion zone Z1 and the secondary combustion zone Z2 in the combustion process was both set to 900 ° C, and the entire combustion process was made one stage (combustion treatment time 130 minutes), White inorganic particles were obtained in the same manner as in Example 1.
[0303] 比較例 9 [0303] Comparative Example 9
燃焼処理における一 7火燃焼区間 Z1のスラッジ温度を 200°Cとした以外は、前記実 施例 1と同様にして白色無機粒子を得た。 White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the seven-fire combustion zone Z1 in the combustion treatment was 200 ° C.
[0304] 比較例 10 [0304] Comparative Example 10
燃焼処理における一 7火燃焼区間 Z1のスラッジ温度を 660°Cとした以外は、前記実 施例 1と同様にして白色無機粒子を得た。 White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the one-fire combustion zone Z1 in the combustion treatment was 660 ° C.
[0305] 比較例 11 [0305] Comparative Example 11
燃焼処理における一 7火燃焼工程と二次燃焼工程を 2基の回転キルン炉を用いて個 別に行うと共に、一 7火燃焼工程では回転キルン炉の回転胴内への空気供給を停止 して貧酸素雰囲気下で燃焼処理 (炭化処理)した以外は、前記実施例 1と同様にして 白色無機粒子を得た。 In the combustion process, the seven-fire combustion process and the secondary combustion process are performed separately using two rotary kiln furnaces, and in the seven-fire combustion process, air supply to the rotary drum of the rotary kiln furnace is stopped and poor. White inorganic particles were obtained in the same manner as in Example 1 except that the combustion treatment (carbonization treatment) was performed in an oxygen atmosphere.
[0306] 参考例 8 [0306] Reference Example 8
原料の製紙スラッジを直径約 lmm、長さ約 5mmのペレットに造粒成形した以外は 、前記実施例 1と同様にして白色無機粒子を得た。 White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 1 mm and a length of about 5 mm.
[0307] 参考例 9 [0307] Reference Example 9
原料の製紙スラッジを直径約 30mm、長さ約 30mmのペレットに造粒成形した以外 は、前記実施例 1と同様にして白色無機粒子を得た。 White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 30 mm and a length of about 30 mm.
[0308] 以上の実施例と比較例および参考例について、燃焼処理の一 7火燃焼工程得られ る焼成物の白色度、二次燃焼工程で得られる焼成物の白色度と未燃焼炭化物の有 無、最終的に得られる無機粒子の白色度と硬質焼結物の有無及び総合評価、につ いてそれぞれ調べた結果を、各処理条件と共に後記表 5に記載する。なお、各項目 の測定及び評価は次の通りである。 [0308] For the above examples, comparative examples and reference examples, the whiteness of the fired product obtained in the 17th combustion process of the combustion treatment, the whiteness of the fired product obtained in the secondary combustion process, and the presence of unburned carbides. The results obtained by examining the whiteness of the inorganic particles finally obtained, the presence or absence of the hard sintered material, and the overall evaluation are shown in Table 5 below together with the respective treatment conditions. The measurement and evaluation of each item are as follows.
[0309] [白色度] [0309] [Whiteness]
燃焼処理による焼成物の約 10gを、乳鉢で粗い粒子がなくなるまで磨り潰した後、 粉体錠剤成形機 (理化学電気工業社製 Cat9302/30型)を用いて圧力 lOOkN にて 30秒加圧して成形した。次いで、この成形試料の白色度を、分光白色度測色計 (スガ試験機社製 SC— 10WT型)を用いて JIS P8148 (2001年)に準拠して測定
した。 After grinding about 10g of the fired product from the combustion process until there are no coarse particles in the mortar, press for 30 seconds at a pressure of lOOkN using a powder tableting machine (type Cat9302 / 30 manufactured by RIKEN ELECTRIC CO., LTD.). Molded. Next, the whiteness of this molded sample was measured in accordance with JIS P8148 (2001) using a spectral whiteness colorimeter (SC-10WT model manufactured by Suga Test Instruments Co., Ltd.). did.
[0310] 〔未燃焼炭化物の有無〕 [0310] [Presence of unburned carbide]
上記白色度の測定では焼成物を粉砕している力 その焼成物の粉砕前における未 燃焼炭化物の残存状態を目視観察し、次の 3段階で評価した。 In the measurement of the whiteness, the power for crushing the fired product, the remaining state of the unburned carbide before grinding of the fired product was visually observed and evaluated in the following three stages.
〇· · ·焼成物粒子の内奥部及び外部共に、未燃焼炭化物がない ○ · · · There is no unburned carbide on the inside and outside of the fired particles
△ · · ·焼成物粒子の内奥部に未燃焼炭化物が残留している △ · · · Unburned carbides remain inside the burnt particles
X · · ·焼成物粒子の内奥部及び外部共に、未燃焼炭化物が残留している [0311] [硬質焼結物の有無] X · · · Unburned carbides remain in the inner and outer parts of the fired particles [0311] [Presence of hard sinter]
乳鉢で粗!/、粒子がなくなるまで磨り潰した無機粒子試料につ!/、て、 X線回折装置( M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲:〜 50度の条件で 測定し、硬質焼結物(グーレナイト)の有無を調べた。この硬質焼結物の「なし」は品 質が優れ、「有り」は品質が劣ることになる。 Coarse in a mortar! / Inorganic particle sample ground until no particles exist! /, Using an X-ray diffractometer (M03XHF already described), 40KV, 20mA, diffraction angle measurement range: up to 50 degrees To determine the presence or absence of a hard sintered product (goulenite). “None” of this hard sintered product is excellent in quality, and “Yes” is inferior in quality.
[0312] [総合評価] [0312] [Comprehensive evaluation]
試料の無機粒子について、前記白色度や硬質焼結物の有無のデータから製紙用 材料としての品質を総合的に次の 3段階で評価した。なお、白色度は最終的に得ら れる無機粒子の段階で 78%未満を品質未達とする。 Regarding the inorganic particles of the sample, the quality as a papermaking material was comprehensively evaluated in the following three stages from the data on the whiteness and presence / absence of a hard sintered product. The whiteness is less than 78% at the stage of inorganic particles finally obtained.
〇· · ·白色度が充分に高ぐ硬質焼結物も含んでいない 〇 ··· Does not include hard sintered products with sufficiently high whiteness
△ · · ·白色度はやや低いが、硬質焼結物を含んでいない △ · · · Whiteness is slightly low, but does not contain hard sintered material
X · · ·白色度が不足か、硬質焼結物を含むか、の一方及び両方 X · · · One or both of insufficient whiteness or hard sintered material
[0313] [表 5]
[0313] [Table 5]
o o o o o ^t4 _ ooooo ^ t 4 _
^ <] <] 考参例 ^ <] <] Reference examples
X X 助加剤添〇 NHa X X o ) (造粒径ラジスmmッ o X X Additive additive 〇 NHa X X o) (Grain size radius mm mm o
? s ? s
度温ジラスッ o o ℃ temperature o o
o 階処段燃焼理〕 ίの 账 ト ト o Floor process combustion)
X X
条件び及評価は里 Condition and evaluation is village
載燃焼欄記空気供給量にの < X o <X o
<z> <z>
1 ? § <] 度温ラジスッ 1 1? § <] Degree temperature radis
o o
X X
」 ^门 空気供給量 to ^ 门 Air supply to
X X X X
燃有無未焼物の Burned or unburned
?1! 〇 〇 ? 1! 〇 〇
■ ■
< o <o
¾ 〇 〇 ¾ 〇 〇
o o
t - 硬質焼結物有無の' t-with or without hard sinter
? § ^ 〇 〇 ? § ^ 〇 〇
o o
o o
¾ ¾ 〇 〇 ¾ ¾ 〇 〇
> >
oo oo
〇 〇 a ○ ○ a
■HQ 。u § X ■ HQ. u § X
¾ ¾
1 お i I お s 5の結果から、製紙スラッジを原料として本発明の製造方法によって得られる無
機粒子は、特定条件での 2段階の焼成処理を経ることから、高白色度で硬質焼結物 を含まず、塗工用顔料や製紙用填料などの製紙用材料として充分に再利用できる高 い品質を備えることが明らかである。これに対し、各種温度での 1段階の焼成処理を 経て得られる無機粒子(比較例 5〜8)、 2段階でも一次焼成工程の熱処理温度が低 過ぎたり高過ぎる焼成処理を経て得られる無機粒子(比較例 9, 10)、 2段階における 一次焼成工程を貧酸素雰囲気とした焼成処理を経て得られる無機粒子(比較例 11) では、白色度が低かったり、硬質焼結物を含むことにより、製紙用材料として使用困 難であること力 S判る。また、原料とする製紙スラッジの造粒物があまりにも小さ過ぎたり (参考例 8) ,逆にあまりにも大き過ぎたり(参考例 9)する場合は、得られる無機粒子 の品質が劣る結果になることも示唆される。 From the results of 1 i i s 5, the paper production sludge used as a raw material Since the machine particles undergo a two-step firing process under specific conditions, they have high whiteness and do not contain hard sintered products, and can be reused sufficiently as papermaking materials such as coating pigments and papermaking fillers. It is clear that it has good quality. On the other hand, inorganic particles obtained through a one-step firing process at various temperatures (Comparative Examples 5 to 8), inorganic particles obtained through a firing process in which the heat treatment temperature of the primary firing process is too low or too high in two stages (Comparative Examples 9 and 10) In inorganic particles obtained through the firing process in which the primary firing process in two stages is performed in an oxygen-poor atmosphere (Comparative Example 11), the whiteness is low, or the hard particles are included, It is difficult to use as a papermaking material. In addition, if the granulated material of the papermaking sludge as the raw material is too small (Reference Example 8) or conversely too large (Reference Example 9), the quality of the resulting inorganic particles is poor. It is also suggested.
[0315] 〔燃焼処理後の炭酸カルシウム分解率〕 [0315] [Calcium carbonate decomposition rate after combustion treatment]
次に、表 5に挙げた項目以外の評価として、各実施例について、燃焼処理後の炭 酸カルシウム分解率を、以下 i)〜vi)の手順にて燃焼処理前の製紙スラッジ中の炭 酸カルシウムとスラッジ焼成物中の残存炭酸カルシウムの量等を求めて評価した。そ の結果、全ての実施例の X線回折測定において炭酸カルシウムのピークが認められ ず、燃焼処理工程においてスラッジ焼成物中の炭酸カルシウムは全て分解していた 。このため、下記手順を基に求めた全実施例におけるスラッジ焼成物中の炭酸カル シゥム量 (A)は、スラッジ焼成物 lg当たり 0. (^ (0質量%)であり、したがって下記算 出式を基に求めた全実施例における燃焼処理後の炭酸カルシウムの分解率は全て 100%であった。 Next, as an evaluation other than the items listed in Table 5, for each example, the decomposition rate of calcium carbonate after the combustion treatment was determined in the following steps i) to vi). The amount of calcium and residual calcium carbonate in the calcined sludge was determined and evaluated. As a result, no calcium carbonate peak was observed in the X-ray diffraction measurements of all the examples, and all the calcium carbonate in the sludge fired product was decomposed in the combustion treatment process. For this reason, the amount of calcium carbonate (A) in the sludge calcined product in all examples obtained based on the following procedure is 0. (^ (0% by mass) per lg of sludge calcined product. In all the examples obtained from the above, the decomposition rate of calcium carbonate after the combustion treatment was 100%.
[0316] i)カルサイト炭酸カルシウムの検量線の作成 [0316] i) Preparation of calcite calcium carbonate calibration curve
結晶構造がカルサイトの炭酸カルシウム(奥多摩工業社製 タマパール 222H)に 対して、内部標準物質として酸化亜鉛 (キシダ化学社製 試薬特級)を、重量比 1 : 5 、 1 : 1、 5 : 1となるようにそれぞれ混合した。次いで、各混合物について、乳鉢を用い て充分に磨り潰したのちに、 X線回折装置(マックスサイエンス社製 M03XHF)を 用いて、 40KV、 20mA,回折角測定範囲 5〜 50度の条件で測定し、カルサイト炭酸 カルシウムと酸化亜鉛のそれぞれの X線回折 100%ピーク面積を基にして、カルサイ ト炭酸カルシウムの検量線を作成した。
[0317] ii)ァラゴナイト炭酸カルシウムの検量線の作成 Calcium carbonate with a crystal structure of calcite (Tamapearl 222H manufactured by Okutama Kogyo Co., Ltd.), zinc oxide (special grade reagent manufactured by Kishida Chemical Co., Ltd.) as an internal standard substance, weight ratio of 1: 5, 1: 1, 5: 1 Each was mixed. Next, after each mixture was thoroughly ground using a mortar, it was measured using an X-ray diffractometer (M03XHF manufactured by Max Science) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. Based on the X-ray diffraction 100% peak areas of calcium calcite and zinc oxide, a calibration curve for calcite calcium carbonate was prepared. [0317] ii) Preparation of calibration curve for aragonite calcium carbonate
結晶構造がァラゴナイトの炭酸カルシウム(奥多摩工業社製タマパール 123)を用 いた以外は、前記カルサイト炭酸カルシウムの検量線作成と同様にして、ァラゴナイト 炭酸カルシウムの検量線を作成した。 A calibration curve for aragonite calcium carbonate was prepared in the same manner as the calibration curve for calcite calcium carbonate, except that calcium carbonate with a crystal structure of aragonite (Tama Pearl 123 manufactured by Okutama Kogyo Co., Ltd.) was used.
[0318] iii)燃焼処理前の製紙スラッジ中の炭酸カルシウムの定量 [0318] iii) Determination of calcium carbonate in paper sludge before combustion treatment
秤量した絶乾の製紙スラッジに対して、秤量した酸化亜鉛 (試薬特級 既述)を添 加混合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのちに、 X 線回折装置(M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲 5〜50 度の条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びァラゴナイト炭 酸カルシウムの X線回折 100%ピーク面積を求め、前記した各炭酸カルシウムの検 量線を基にして、製紙スラッジ lg中に含まれる炭酸カルシウム量 (g)を算出した。 Weighed zinc oxide (reagent special grade described above) was added to the weighed absolute dry papermaking sludge and mixed. Next, the mixture was sufficiently ground using a mortar, and then measured using an X-ray diffractometer (M03XHF described above) under conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. Calcium X-ray diffraction 100% peak area of calcium calcite and aragonite calcium with respect to zinc was calculated, and the amount of calcium carbonate (g) contained in the papermaking sludge lg was calculated based on the calibration curve of each calcium carbonate described above. Calculated.
[0319] iv)製紙スラッジの灰分の測定 [0319] iv) Measurement of ash content in paper sludge
秤量した絶乾の製紙スラッジを、マツフル炉を用いて実施例における回転キルン炉 の各燃焼処理条件と同条件となるように燃焼処理し、得られたスラッジ焼成物の重量 を秤量し、下式によってスラッジの灰分含有量 (%)を測定した。 The weighed absolute dry papermaking sludge was burned using a pine furnace to the same conditions as the rotary kiln furnace in the examples, and the weight of the resulting sludge fired product was weighed. Was used to measure the ash content (%) of the sludge.
灰分含有量(%) = (スラッジ焼成物重量/絶乾の製紙スラッジ重量) X 100 Ash content (%) = (Weight of sludge baked product / Weight of paper drying sludge) X 100
[0320] V)スラッジ焼成物中の炭酸カルシウムの定量 [0320] V) Quantification of calcium carbonate in calcined sludge
秤量したスラッジ焼成物に対して、秤量した酸化亜鉛 (試薬特級 既述)を添加混 合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのちに、 X線回 折装置(M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲 5〜50度の 条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びァラゴナイト炭酸力 ルシゥムの X線回折 100%ピーク面積を求め、前記した各炭酸カルシウムの検量線 を基にして、スラッジ焼成物 lg中に含まれる炭酸カルシウム量 (g)を算出した。 The weighed sludge burned product was added and mixed with a weighed zinc oxide (special grade reagent mentioned above). Next, the mixture was sufficiently ground using a mortar, and then measured using an X-ray diffraction apparatus (M03XHF described above) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. Calcium calcite and aragonite carbonate power against zinc oxide X-ray diffraction 100% peak area of Lucium was calculated, and based on the calibration curve of each calcium carbonate described above, the amount of calcium carbonate contained in lg of sludge calcined product (g) Was calculated.
[0321] vi)燃焼処理後の炭酸カルシウムの分解率 [0321] vi) Decomposition rate of calcium carbonate after combustion treatment
スラッジ焼成物 lg中の炭酸カルシウム量 (g)を A、製紙スラッジ lg中の炭酸カルシ ゥム量 (g)を B、灰分含有量(%)を Cとし、下式によって燃焼処理後の炭酸カルシゥ ムの分解率を算出した。 The amount of calcium carbonate (g) in the sludge fired product lg is A, the amount of calcium carbonate (g) in the paper sludge lg is B, and the ash content (%) is C. The rate of decomposition was calculated.
炭酸カルシウム分解率(%) = 100— [A X (C/100) ] ÷ B X 100
[0322] 〔炭酸カルシウム未再生化物の有無〕 Calcium carbonate decomposition rate (%) = 100— [AX (C / 100)] ÷ BX 100 [Presence / absence of unregenerated calcium carbonate]
更に、表 1に挙げた項目以外の評価として、各実施例で最終的に得られた無機粒 子について、乳鉢で粗い粒子がなくなるまで磨り潰した無機粒子試料を、 X線回折装 置(M03XHF 既述)を用いて、 40KV、 20mA,回折角測定範囲 5〜50度の条件 で測定し、炭酸カルシウム未再生化物である酸化カルシウム及び水酸化カルシウム の有無を調べた。その結果、全実施例の無機粒子は、炭酸カルシウム未再生化物を 含まず、いずれも品質的に優れていることが判った。 Furthermore, as an evaluation other than the items listed in Table 1, for the inorganic particles finally obtained in each example, an inorganic particle sample ground in a mortar until no coarse particles disappeared was used as an X-ray diffraction apparatus (M03XHF). Was used under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees, and the presence or absence of calcium oxide and calcium hydroxide as unregenerated calcium carbonate was examined. As a result, it was found that the inorganic particles of all the examples did not contain calcium carbonate unregenerated, and all were excellent in quality.
[0323] また、本発明の他の実施形態として、請求項 28〜44に係る発明において、本発明 に係る無機粒子の製造方法および製造プラントに採用される回転キルン炉を提案す るものである。この実施形態は、図 13〜図 33に例示されるところである。 [0323] Further, as another embodiment of the present invention, the invention according to claims 28 to 44 proposes a method for producing inorganic particles according to the present invention and a rotary kiln furnace employed in a production plant. . This embodiment is illustrated in FIGS.
[0324] 本発明の他の実施態様に係る請求項 28〜44の発明は、内部に回転胴を備え、回 転胴に投入した原材料を加熱'焼成処理する連続式、またはバッチ式の回転キルン 炉およびそのキルン炉を備えた熱処理装置に関する。原材料としては、特にスラッジ 、中でも塗工紙用顔料や製紙用填料としての適性を有する製紙スラッジが好適に用 いられる。 [0324] The invention of claims 28 to 44 according to another embodiment of the present invention is a continuous type or batch type rotary kiln that includes a rotary drum inside and heats / fires the raw material charged in the rotary drum. The present invention relates to a furnace and a heat treatment apparatus including the kiln furnace. As raw materials, sludge, particularly papermaking sludge having suitability as a pigment for coated paper or a filler for papermaking, is preferably used.
[0325] 回転キルン炉(ロータリーキルンとも呼ばれる)は、回転胴(炉心管、または焼成室と も呼ばれる)の内に原材料を供給し、原材料の加熱、乾燥、焼成を行う装置である。 この回転キルン炉の回転月同は一般的に筒型形状を有している力 S、加熱 ·焼成処理の ために回転胴内に投入された原材料が、回転胴内の下底部に積層,堆積して混ざり 難くなるために、原材料を均一に加熱 ·焼成処理できない問題や、充分に加熱 '焼成 処理できなレ、などの問題を有してレヽた。 [0325] A rotary kiln furnace (also referred to as a rotary kiln) is a device that supplies raw materials into a rotary drum (also referred to as a furnace core tube or firing chamber), and heats, dries, and fires the raw materials. This rotary kiln furnace has a generally cylindrical shape of force S, and the raw materials charged in the rotary drum for heating and firing are stacked and deposited on the lower bottom of the rotary drum. Since it is difficult to mix, the raw materials have problems such as a problem that the raw material cannot be uniformly heated and fired, and a problem that the heat cannot be sufficiently fired.
[0326] 前記のような回転キルン炉における原材料の加熱 ·焼成処理の不均一、および不 充分の問題に対して、原材料を攪拌する各種方法として、キルンの回転胴内に搔き 揚げ板 (リフタ一とも呼ばれる)を設けて回転胴内の原材料を攪拌する方法が特許文 献 21、 22、および 23に紹介されている。また、キルンの回転胴内に可動式の攪拌羽 根を導入して回転胴内の原材料を攪拌する方法が特許文献 24に紹介されている。 また、キルンの回転胴の全体断面形状を楕円形、三角形などの円形とは異なる形状 にする方法が特許文献 25に紹介されている。
また、キルンの回転胴内に投入された原材料の積層'堆積を軽減する各種方法とし て、回転胴の断面形状が 3分割、 4分割、 6分割などに分割されるように隔壁状直板 によって回転胴内を仕切る方法が特許文献 26、 27、 28に紹介されている。また、キ ルンの回転胴内に複数の小型円筒管を導入して、回転胴内を多胴型にする方法が 特許文献 29および 30に紹介されている。 [0326] In response to uneven heating and firing treatment of raw materials in the rotary kiln furnace as described above and insufficient problems, various methods for stirring the raw materials can be used in the kiln rotary drum. Patent Documents 21, 22, and 23 introduce a method of stirring the raw material in the rotating drum by providing a so-called “one”. Further, Patent Document 24 introduces a method of stirring a raw material in a rotary drum by introducing a movable stirring blade into the rotary drum of the kiln. Also, Patent Document 25 introduces a method for making the entire cross-sectional shape of the kiln's rotating drum different from a circular shape such as an ellipse or a triangle. In addition, as a variety of methods to reduce the stacking of raw materials put into the kiln's rotating drum, it is rotated by a partition-like straight plate so that the sectional shape of the rotating drum is divided into three, four, six, etc. Patent Documents 26, 27 and 28 introduce a method of partitioning the inside of the trunk. Patent Documents 29 and 30 introduce a method of introducing a plurality of small cylindrical tubes into the rotary cylinder of the kiln to make the rotary cylinder into a multi-cylinder type.
特許文献 21 : :実開昭 53 - -077944号公報 Patent Literature 21:: Japanese Utility Model Publication No. 53--077944
特許文献 22 : :実開昭 56 - Ό03398号公報 Patent Document 22:: Japanese Utility Model Publication 56--03398
特許文献 23 : :特開昭 59 - 193123号公報 Patent Document 23:: Japanese Patent Laid-Open No. 59-193123
特許文献 24 : :特開 2005- - 281069号公報 Patent Document 24:: JP-A-2005-281069
特許文献 25 : :特開 2003- - 120910号公報 Patent Document 25:: Japanese Patent Laid-Open No. 2003-120910
特許文献 26 : :実公昭 49 - 021223号公報 Patent Document 26:: Japanese Utility Model Publication No. 49-021223
特許文献 27 : :特開 2001 - - 311583号公報 Patent Document 27:: Japanese Patent Laid-Open No. 2001-311583
特許文献 28 : :特許 89181号公報 Patent Document 28:: Japanese Patent No. 89181
特許文献 29 : :実開昭 52 - Ό80046号公報 Patent Document 29:: Japanese Utility Model Publication No. 52-Ό80046
特許文献 30 : :特開平 03 - Ό95389号公報 Patent document 30:: JP-A-03-95389
[0328] 先に説明したように、回転キルン炉の加熱 ·焼成状態の改善に対して、原材料を均 一に加熱するための各種の攪拌方法が提案されている力 これらの方法では、回転 胴内部の攪拌などによって原材料を均一に加熱することはできるものの、原材料はキ ルンの回転胴内の下底部に積層 ·堆積する。このような状態を図 25に示した。図 25 は従来使用されている回転キルン炉の一例の回転胴の断面図である。原材料粒子 S a、 Sa' "が底部の左隅に多く堆積していることがわかる。このように原材料粒子が偏 在する理由は、回転胴 24内への原材料粒子 Sa、 Sa' ' 'の導入される量が多いため に原材料粒子 Sa、 Sa—が積層 ·堆積することに加えて、回転胴 24が矢印 C方向に 回転しているためである。このような積層 ·堆積状態のために、有機成分を含有する 原材料を加熱 ·焼成処理する場合には、積層 ·堆積した層底部の原材料まで、有機 成分が燃焼するための空気(酸素)が行き渡らずに不完全燃焼が生じ、未燃カーボ ン (煤)が多ぐ白色度の低い加熱 ·焼成処理物しか得られない問題があった。 [0328] As described above, various stirring methods for uniformly heating the raw materials have been proposed to improve the heating and firing conditions of the rotary kiln furnace. Although the raw materials can be heated uniformly by internal stirring, the raw materials are stacked and deposited on the lower bottom of the rotary drum of the kiln. Such a state is shown in FIG. FIG. 25 is a cross-sectional view of a rotary drum as an example of a conventionally used rotary kiln furnace. It can be seen that the raw material particles Sa, Sa '"are accumulated in the bottom left corner. The reason why the raw material particles are unevenly distributed is that the raw material particles Sa, Sa' '' are introduced into the rotary cylinder 24. This is because the raw material particles Sa and Sa— are stacked and deposited due to the large amount of the generated material, and in addition, the rotating cylinder 24 rotates in the direction of arrow C. When raw materials containing organic components are heated and fired, air (oxygen) for burning the organic components does not reach the raw materials at the bottom of the laminated / deposited layers, causing incomplete combustion and unburned carbon. There was a problem that only heated and fired products with low whiteness were obtained.
[0329] また前記のように、有機成分を含有する原材料の加熱'焼成処理においては、原材
料の積層による不完全燃焼が生じることから、白色度の高い高品質な加熱'焼成処 理物を得るためには、キルンの回転胴内への原材料の投入量を大幅に少なくして原 材料の積層を抑えることや、他方、大量の原材料の処理が必要な場合には、極めて 大きな規模のキルン設備が必要となるなどの問題があった。 [0329] In addition, as described above, in the heating and baking process of the raw material containing the organic component, the raw material Since incomplete combustion occurs due to the lamination of the materials, in order to obtain a high-quality white-heated and fired processed material, the amount of raw materials input into the rotary kiln of the kiln is greatly reduced. However, when a large amount of raw material is required to be processed, an extremely large kiln facility is required.
[0330] 本発明は、回転キルン炉によって原材料を加熱 ·焼成処理する際に、原材料の積 層過多による不完全燃焼を防止して、充分かつ均一な加熱 ·焼成処理ができ、さらに 効率的に多くの原材料を加熱 ·焼成処理することができることをも目的とする。 [0330] In the present invention, when a raw material is heated and fired by a rotary kiln furnace, incomplete combustion due to excessive layering of the raw material is prevented, and sufficient and uniform heating and firing treatment can be performed. The objective is to be able to heat and bake many raw materials.
[0331] 本発明の請求項 28にかかる回転キルン炉は、内部に回転胴を備えた、片側から投 入した原材料を焼成する回転キルン炉であって、該回転胴が、その内部に複数の区 分室であって、該回転胴の径方向に最外層領域の区分室群と中心領域の区分室群 の少なくとも 2層以上の区分室群力 構成されている区分室を設けた多分割隔壁構 造部を少なくとも 1つ有している回転キルン炉である。 [0331] A rotary kiln furnace according to claim 28 of the present invention is a rotary kiln furnace provided with a rotary drum inside and firing raw materials introduced from one side, wherein the rotary drum has a plurality of rotary kilns therein. A multi-partitioned partition structure provided with compartments each having at least two or more compartments in the radial direction of the rotating drum, the compartments of the outermost layer region and the compartments of the central region in the radial direction of the rotary drum It is a rotary kiln furnace with at least one structure.
[0332] さらに、請求項 29にかかる前記多分割隔壁構造部が、前記中心領域の区分室群( CS)を構成する少なくとも一つの区分室 (例 150cl )と、前記最外層領域の区分室群 (OS)を構成する少なくとも 2以上の区分室 (例 150olと 150o2 )によって構成される 一定形状の区分室集合 (150Α,150Β · ·)を複数設けられるよう構成された多分割隔壁 構造部であることが各区分室に対して効率的に均等に原材料を導入する上で好まし い(図 16 (a) , (b)参照)。 [0332] Furthermore, the multi-partition partition structure according to claim 29 includes at least one compartment (eg, 150cl) constituting the central compartment (CS), and the outermost compartment compartment. This is a multi-partition partition structure that is configured to have a set of compartments (150Α, 150Β ···) with a certain shape, consisting of at least two or more compartments (eg 150ol and 150o2) that make up (OS) This is preferable for the efficient introduction of raw materials to each compartment (see Fig. 16 (a) and (b)).
[0333] また、請求項 30にかかる多分割隔壁構造部の断面が、略正 6角形の外郭を有して おり、該略正 6角形の外郭の内部を分割する断面形状として、略正 6角形の中心と 6 個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(6 分割-正 3角形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の 略正 3角形の略重心位置と 3つの辺の略中点をそれぞれ略垂直に結ぶ 3本の直線 によって、該 6分割-正 3角形型区分室の略正 3角形を 3つの略合同 4角形の区分室 に分割することにより、総分割数として 18個の区分室に分割された多分割断面であり 、この隔壁構造部(18分割型多分割隔壁構造部と呼ぶ)は各区分室に対して効率的 に均等に原材料を導入する上で好ましい。 [0333] In addition, the cross section of the multi-partition partition wall structure portion according to claim 30 has a substantially regular hexagonal outline, and the substantially regular hexagonal outline is defined as a sectional shape that divides the inside of the substantially regular hexagonal outline. Divide the inside of the approximately regular hexagon into six approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by the straight line connecting the center of the square and each of the six vertices. The six divisions-regular triangular compartment has three straight lines that connect the approximate center of gravity of the substantially regular triangle and the approximate midpoints of the three sides, respectively. By dividing the substantially regular triangle into three substantially congruent quadrangular compartments, the partition structure is divided into 18 compartments as a total number of partitions. (Referred to as the structural part) is preferable for introducing the raw materials efficiently and evenly into each compartment.
[0334] また、請求項 31にかかる多分割隔壁構造部の断面が、略正 6角形の外郭を有して
おり、該略正 6角形の外郭の内部を分割する断面形状として、略正 6角形の中心と 6 個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(6 分割-正 3角形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の 略正 3角形の各辺の略中点をそれぞれ結ぶ 3本の直線によって、該 6分割型-正 3 角形型区分室の略正 3角形を 4個の略合同 3角形の区分室に分割することにより、総 分割数として 24個の区分室に分割された多分割断面であり、この隔壁構造部(24分 割 A型多分割隔壁構造部と呼ぶ)も各区分室に対して効率的に均等に原材料を導 入する上で好ましい。 [0334] Further, the cross section of the multi-partition partition wall structure portion according to claim 31 has a substantially regular hexagonal outline. As a cross-sectional shape that divides the inside of the outline of the substantially regular hexagon, the inside of the substantially regular hexagon is divided into six substantially regular triangles by a straight line connecting the center of the substantially regular hexagon and each of the six vertices. Divided into compartments (six divisions-regular triangle type compartments), and three straight lines connecting the approximate midpoints of each side of the regular triangles of the six divisions-regular triangle type compartments By dividing the roughly regular triangle of the 6-split type-triangular type compartment into four roughly congruent triangle compartments, the total number of divisions is divided into 24 compartments. It is a cross section, and this partition wall structure part (referred to as a 24 divided A-type multi-partition partition wall structure part) is also preferable in efficiently introducing the raw material into each compartment.
[0335] また、請求項 32にかかる多分割隔壁構造部の断面が、略正 6角形の外郭を有して おり、該略正 6角形の外郭の内部を分割する断面形状として、略正 6角形の中心と 6 個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(6 分割-正 3角形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の 略正 3角形を、 3個の略合同正 3角形と 1個の 6角形によって併せて 4個の区分室に なるように分割し、さらに該 3個の略合同正 3角形が該 6分割-正 3角形型区分室の 略正 3角形の各角をそれぞれ占めるように、区分室に分割することにより、総分割数 として 24個の区分室に分割された多分割断面であり、この隔壁構造部(24分割 B型 多分割隔壁構造部と呼ぶ)も各区分室に対して効率的に均等に原材料を導入する 上で好ましい。 [0335] In addition, the cross section of the multi-partition partition wall structure portion according to Claim 32 has a substantially regular hexagonal outer shape, and the cross sectional shape that divides the inside of the substantially regular hexagonal outer shape is substantially regular 6 Divide the inside of the approximately regular hexagon into six approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by the straight line connecting the center of the square and each of the six vertices. The six-divided-regular triangular compartment is divided into three substantially regular triangles and three hexagons, and one hexagon, which is divided into four compartments. Is divided into compartments so that each corner of the regular triangular shape of the 6-divided-regular triangular compartment occupies each corner of the regular triangular shape, so that the total number of divisions is divided into 24 compartments. This partition structure (referred to as the 24 partition B type multi-partition partition structure) is also used to efficiently and uniformly introduce raw materials into each compartment. preferable.
[0336] また、請求項 33にかかる多分割隔壁構造部の断面が、略正 6角形の外郭を有して おり、該略正 6角形の外郭の内部を分割する断面形状として、略正 6角形の中心と 6 個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(6 分割-正 3角形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の 略正 3角形を、 3個の略合同正 3角形と 3個の略合同菱形によって併せて 6個の区分 室になるように分割し、さらに該 3個の略合同菱形が該 6分割-正 3角形型区分室の 略正 3角形の各角をそれぞれ占めるように、区分室に分割することにより、総分割数 として 36個の区分室に分割された多分割断面であり、この隔壁構造部(36分割型多 分割隔壁構造部と呼ぶ)も各区分室に対して効率的に均等に原材料を導入する上 で好ましい。
[0337] また、請求項 34にかかる前記回転胴が、前記多分割隔壁構造部の原材料の投入 方向側に単層の区分室群を有する少分割隔壁構造部をさらに有した回転胴である、 すなわち少分割隔壁構造部を、多分割隔壁構造部の前に連結して設けることが各 多分割隔壁構造部の区分室に対して効率的に均等に原材料を導入する上で好まし い。 [0336] In addition, the cross section of the multi-partition partition wall structure portion according to Claim 33 has a substantially regular hexagonal outline, and the substantially regular hexagonal outline is defined as a sectional shape dividing the inside of the substantially regular hexagonal outline. Divide the inside of the approximately regular hexagon into 6 approximately regular triangular compartments (six divisions-abbreviated as the regular triangular compartment) by a straight line connecting the center of the square and each of the six vertices. The six-divided-regular triangular section chamber is divided into three substantially congruent triangles and three generally congruent rhombuses so as to be divided into six compartments. Dividing into compartments so that each of the roughly congruent rhombuses occupies each corner of the six-divided-regular triangular compartment, each of which is divided into 36 compartments in total. This partition structure part (referred to as 36-partition multi-partition partition structure part) is also used to efficiently and uniformly introduce raw materials into each compartment. preferable. [0337] Further, the rotating drum according to claim 34 is a rotating drum further including a small-divided partition wall structure portion having a single-layered compartment group on the side of the raw material in the multi-divided partition wall structure portion. That is, it is preferable to connect the small-divided partition wall structure portion in front of the multi-divided partition wall structure portion in order to introduce the raw materials efficiently and evenly into the compartments of each multi-divided partition wall structure portion.
[0338] また、請求項 35にかかる前記少分割隔壁構造部の一つの区分室断面が、前記一 定形状の区分室集合の外郭と略同一断面形状を構成することが多分割隔壁構造部 の各区分室に対して効率的に均等に原材料を導入する上で好ましい。 [0338] In addition, the section of one compartment of the subdivided partition wall structure according to Claim 35 is configured to have substantially the same cross-sectional shape as the outline of the set of compartments of the uniform shape. This is preferable for efficiently and evenly introducing raw materials to each compartment.
[0339] また、請求項 36にかかる前記少分割隔壁構造部が、前記多分割隔壁構造部と略 同一の略正 6角形の外郭を有しており、該略正 6角形の外郭の内部を分割する断面 形状として、該略正 6角形の中心と 6つの各頂点を結ぶ直線によって、該略正 6角形 の内部を 6個の略正 3角形の区分室(6分割-正 3角形型区分室と略する)に分割し たものであることが前記多分割隔壁構造部の各区分室に対して効率的に均等に原 材料を導入する上で好ましレ、。 [0339] The subdivided partition wall structure portion according to claim 36 has a substantially regular hexagonal outline substantially the same as the multi-partition partition wall structure portion, and the inside of the substantially regular hexagonal outline is inside. As a cross-sectional shape to be divided, a straight line connecting the center of the substantially regular hexagon and each of the six vertices, the interior of the substantially regular hexagon is divided into six generally regular triangular compartments (six-segmented-triangular section) It is preferable that the raw material is efficiently and evenly introduced into each of the compartments of the multi-partition partition structure.
[0340] また、請求項 37にかかる前記回転胴が、前記多分割隔壁構造部の原材料の投入 方向とは反対側に、第 2の少分割隔壁構造部及び第 2の多分割隔壁構造部を組み 合わせて 1組以上さらに有した回転胴であることが前記多分割隔壁構造部の各区分 室に対して効率的に均等に原材料を導入する上で好ましい。 [0340] In addition, the rotating drum according to claim 37 is provided with a second subdivided partition wall structure portion and a second multi-partition partition wall structure portion on a side opposite to the raw material charging direction of the multi-partition partition wall structure portion. In order to introduce raw materials efficiently and evenly into the respective compartments of the multi-partition partition wall structure, it is preferable that the rotary drum further includes one or more pairs in combination.
[0341] また、請求項 38にかかる前記分割隔壁構造部を構成する板材が、穴明き金属板で あることが好ましい。 [0341] Further, it is preferable that the plate material constituting the divided partition wall structure portion according to claim 38 is a perforated metal plate.
[0342] また、請求項 39にかかる前記多分割隔壁構造部を設けた回転キルン炉の回転月同 の中心領域の区分室群に囲まれた、回転胴を内側から加熱するための加熱手段を 収容するための回転月同内空洞部を回転月同の回転略中心部付近に設けることが、前 記多分割隔壁構造部の各区分室に導入された原材料を均一に加熱し、かつ加熱- 焼成効率を向上させる上で好ましい。また、その回転胴内空洞部を設けるために、少 なくとも該回転胴を貫通するように管状部材を配置し、その管壁を多分割隔壁構造 部の隔壁の一部とすることが、熱伝達上も好まし!/、。 [0342] Further, there is provided heating means for heating the rotary drum from the inside, surrounded by a group of compartments in a central region of the rotary kiln furnace provided with the multi-partition partition wall structure according to claim 39. It is possible to uniformly heat the raw materials introduced into the respective compartments of the multi-partition partition wall structure, and to provide a heating- It is preferable for improving the firing efficiency. Further, in order to provide the cavity inside the rotating drum, it is necessary to arrange a tubular member so as to penetrate at least the rotating drum and to make the tube wall a part of the partition wall of the multi-partition partition wall structure. Also good for communication!
[0343] 本発明の請求項 40にかかる熱処理装置は、前記回転キルン炉に回転キルン炉へ
の空気導入手段として、該回転キルン炉の原材料供給口側の一端周辺に排気手段 をさらに備えてなる熱処理装置である。さらに、請求項 41にかかる供給される原材料 を間接的に加熱 ·焼成処理する加熱手段を備えることが好ましい。さらに、請求項 42 にかかる前記加熱手段を 2つ備えてなり、第 1の加熱手段が回転キルン炉の回転月同 を構成する前記回転胴の外側から加熱する加熱手段であり、第 2の加熱手段が前記 回転胴内側の前記回転胴内空洞部から加熱する加熱手段であることが、前記多分 割隔壁構造部の各区分室に分割して導入された原材料を均一に加熱し、かつ加熱' 焼成効率を向上させる上で好ましい。さらに請求項 43にかかる回転キルン炉に、供 給される原材料を該原材料の直径または長さが 2〜30mmに造粒成形する手段をさ らに備えることが好ましい。請求項 44にかかる前記回転キルン炉に供給される原材 料力 製紙スラッジであることが好ましい。 [0343] The heat treatment apparatus according to claim 40 of the present invention is configured to transfer the rotary kiln furnace to the rotary kiln furnace. As an air introduction means, a heat treatment apparatus further comprising an exhaust means around one end of the rotary kiln furnace on the raw material supply port side. Furthermore, it is preferable that a heating means for indirectly heating and baking the supplied raw material according to claim 41 is provided. Furthermore, the heating means according to claim 42 is provided, and the first heating means is a heating means for heating from the outside of the rotary drum constituting the rotary month of the rotary kiln furnace, and the second heating means. That the means is a heating means for heating from the cavity inside the rotary drum inside the rotary drum, the raw material introduced divided into each compartment of the divided partition wall structure portion is uniformly heated and heated. It is preferable for improving the firing efficiency. Furthermore, it is preferable that the rotary kiln furnace according to claim 43 further comprises means for granulating the supplied raw material so that the diameter or length of the raw material is 2 to 30 mm. It is preferable that the raw material feed paper sludge supplied to the rotary kiln furnace according to claim 44.
[0344] 以上のような構成により、伝熱面積を増やすことに加えて、回転胴断面の中心領域 や最外層領域に至る全域の区分室に亘つて原材料を揚搬 ·分布させて回転胴内断 面を有効利用することにより、回転胴内における原材料の積層高さを大幅に軽減さ せて、原材料内に空気(酸素)が行き渡りやすくすることにより、原材料の不完全燃焼 を防止して、未燃カーボンの残留が少なぐ白色度の高い高品質な加熱'焼成処理 物を得ること、および多くの原材料を回転キルン炉設備で処理することができるように するものである。 [0344] With the configuration as described above, in addition to increasing the heat transfer area, the raw materials are unloaded and distributed over the entire compartment to the central region and the outermost layer region of the rotating drum cross section. By effectively using the cross-section, the stacking height of the raw material in the rotating drum is greatly reduced, and air (oxygen) is easily distributed in the raw material, thereby preventing incomplete combustion of the raw material. It is intended to obtain a high-quality, heat-treated product with high whiteness with little residual unburned carbon, and to be able to process many raw materials in a rotary kiln furnace.
[0345] また、多分割隔壁構造部をキルンの回転胴に設けることに加えて、回転胴を外熱 方式により間接的に加熱'焼成する方法、回転胴内の原材料進行方向とは反対の方 向に空気を導入する方法、および回転胴内に投入する原材料を造粒成形する方法 を併せて用いることにより、有機成分を含有した原材料であっても、効率良く加熱 '焼 成して、白色度の高い高品質な加熱 ·焼成処理物を得ることができるようにするもの である。 [0345] In addition to providing the multi-partition partition structure on the rotary drum of the kiln, the method of indirectly heating and firing the rotary drum by the external heating method, the direction opposite to the raw material traveling direction in the rotary drum In combination, the method of introducing air in the direction and the method of granulating and forming the raw material to be put into the rotating drum can be used to efficiently heat and sinter even raw materials containing organic components. It is intended to make it possible to obtain high-quality, high-quality heat-fired products.
[0346] 本発明の実施態様によれば、回転キルン炉によって原材料を加熱'焼成処理する 際に、原材料の積層過多による不完全燃焼を防止して、充分かつ均一な加熱 '焼成 処理ができ、さらに効率的に多くの原材料を加熱 ·焼成処理することができた。 [0346] According to the embodiment of the present invention, when the raw material is heated and baked by a rotary kiln furnace, incomplete combustion due to excessive stacking of the raw materials can be prevented, and sufficient and uniform heating and baking can be performed. In addition, many raw materials could be heated and fired efficiently.
[0347] 本発明者等は、既述のような特許文献に記載された、キルンの回転胴内に投入さ
れた原材料の積層 ·堆積を軽減するための回転胴内を多胴 ·多室分割する各種の方 法について、試行、検討を重ねた。これらの方法では、回転胴内の多室分割化によ つて原材料の積層を多少は軽減することができるものの、分割隔壁構造部による伝 熱面積の増補および原材料の積層の軽減が不充分であり、特に、回転胴断面の中 央部、および上部に至る部分には容易に原材料を揚搬することができないことが分 かった。この状態を図 26、 27に示した。図 26は回転胴に単に 6分割型の分割隔壁 構造部 140を使用した一例における原材料の積層状態を示す概念図である。図 26 においては、原材料粒子 Sa、 Sa—がそれぞれの区分室 130ο 1、 130ο2、 · ' · 130ο6 に存在している力 S、各区分室内である程度堆積していることがわかる。また各区分室 において原材料粒子 Sa、 Sa ' "がある程度偏在している。このように原材料粒子 Sa 、 Sa ' "が偏在する理由は、前にも述べたように、キルンの回転胴内への原材料粒 子 Sa、 Sa' "の導入される量が多いために原材料粒子 Sa、 Sa ' · ·が積層.堆積する ことに加えて、隔壁構造部 140が矢印 C方向に回転しているためである。原材料粒子 Sa、 Sa' "の積層がある程度多くなると、不完全燃焼が生じ、未燃カーボン (煤)が多 く、白色度の低い加熱 ·焼成処理物しか得られないということが判明した。 [0347] The inventors of the present invention have been introduced into the rotary drum of the kiln described in the patent literature as described above. Various methods of dividing the inside of the rotating cylinder into multiple cylinders and multiple chambers to reduce the stacking / deposition of the raw materials were tried and studied. Although these methods can reduce the stacking of raw materials somewhat by dividing the chamber into multiple chambers in the rotating drum, it is not sufficient to increase the heat transfer area and reduce the stacking of raw materials by the divided partition wall structure. In particular, it was found that the raw material could not be easily lifted to the center and upper part of the rotating drum section. This state is shown in Figs. FIG. 26 is a conceptual diagram showing a stacked state of raw materials in an example in which a six-partitioned partition wall structure part 140 is simply used for the rotating drum. In Fig. 26, it can be seen that the raw material particles Sa, Sa- are deposited to some extent in each compartment, the force S existing in each compartment 130ο 1, 130ο2, · '· 130ο6. In addition, the raw material particles Sa and Sa '"are unevenly distributed to some extent in each compartment. The reason why the raw material particles Sa and Sa'" are unevenly distributed as described above is that, as mentioned above, Since the raw material particles Sa, Sa '"are introduced in large quantities, the raw material particles Sa, Sa' ... are stacked. In addition to the deposition, the partition wall structure 140 rotates in the direction of arrow C. Yes, it was found that if the stacking of raw material particles Sa and Sa '"increases to some extent, incomplete combustion occurs, there are many unburned carbon (soot), and only a heated and calcined product with low whiteness can be obtained. .
この図 26に示したような原材料粒子 Sa、 Sa ' · ·のある程度の堆積状態を改善する ための方策について試行した。そのため一つの区分室をさらに多くの区分室に仕切 る多区分室を有する多分割隔壁構造部を案出した。その例を図 27に示した。図 27 は回転胴に単に 18分割型多分割隔壁構造部 160を使用した一例における原材料 の積層状態を示す概念図である。このように区分室を径方向に、最外層領域の区分 室群(OS)と中心領域の区分室群(CS)のように 2層に存在させることにより、同一の 径の回転胴であっても原材料粒子 Sa、 Sa ' · ·の堆積状態が改善させることが可能に なると考えた。しかし、このような径方向に 2重に区分室を有する多分割隔壁構造部 を使用した場合にも、図 27に示したように原材料粒子 Sa、 が径方向に最外層 領域の区分室群(OS)を構成する区分室 (例示した図 27に対応する区分室としては 、図 16(a) An attempt was made to improve the raw material particles Sa and Sa '··· as shown in Fig. 26 to some extent. For this reason, we have devised a multi-partition partition structure with multiple compartments that divides one compartment into more compartments. An example is shown in FIG. FIG. 27 is a conceptual diagram showing a raw material lamination state in an example in which an 18-divided multi-divided partition wall structure portion 160 is simply used for the rotating drum. In this way, by making the compartments exist in two layers in the radial direction, such as the compartment group (OS) in the outermost layer region and the compartment chamber group (CS) in the central region, a rotary cylinder having the same diameter can be obtained. We thought that the deposition state of raw material particles Sa, Sa '... could be improved. However, even when such a multi-partition partition structure having double compartments in the radial direction is used, the raw material particles Sa, as shown in FIG. OS) (see Figure 16 (a) for the compartment corresponding to the example in Figure 27)
における最外層領域の区分室 150ol 150ol of the outermost compartment in the city
、 150ο2、 · ' · 150ο12)にのみ偏在することがわかった。
[0349] このような原材料粒子 Sa、 Sa ' · ·が偏在する状態を改良するために、さらに回転月同 の各区分室に原材料を概ね均等に導入する次の二つの方策を考えた。 , 150ο2, · '· 150ο12), it was found to be unevenly distributed. [0349] In order to improve the uneven distribution of such raw material particles Sa, Sa '· ·, we considered the following two measures to introduce the raw materials almost uniformly into each compartment of the same month.
(1)多分割隔壁構造部の区分室への原材料導入手段を工夫する方法 (1) Method to devise raw material introduction means to the compartment of the multi-partition partition structure
(2)少分割隔壁構造部を、上述のような多分割隔壁構造部と組み合わせて使用する 方法 (2) Method of using the small partition wall structure part in combination with the multiple partition wall structure part as described above
[0350] 以下に、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の回転キルン炉を備えた熱処理装置の一例の構成図を示した。図 13は、 本発明の回転キルン炉 1を備えた熱処理装置の構成図である。本熱処理装置は連 続処理式 ·間接的加熱型(外熱式)ロータリーキルンとも呼ばれる。図 13では、有機 成分を含有する原材料 S (例えば、製紙スラッジ)は、図示を省略した乾燥装置によつ て脱水または乾燥された後に、回転キルン炉 1の回転胴 9の一端部に設置された原 材料供給口 2 (例:供給ホツバ)に投入され、回転胴 9内への原材料導入手段 10 (例: スクリューフィーダ一)を介して回転キルン炉 1の回転胴 9内へと供給される。次いで、 回転胴 9内に供給された原材料 Sは、回転胴 9内を通過しながら含有している有機成 分が燃焼され、有機成分が燃焼除去された後の加熱'焼成処理物は、回転胴 9の原 材料供給口 2に対して反対側の端部に設置された加熱 ·焼成処理物排出口 8を通し て回転キルン炉 1外に取り出され、さらに必要であれば、加熱 ·焼成処理物に対して 粉砕等の加工のために、次工程に送られる。 The block diagram of an example of the heat processing apparatus provided with the rotary kiln furnace of this invention was shown. FIG. 13 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 of the present invention. This heat treatment equipment is also called a continuous treatment type / indirect heating type (external heating type) rotary kiln. In FIG. 13, the raw material S containing organic components (for example, papermaking sludge) is dehydrated or dried by a drying device (not shown) and then installed at one end of the rotary drum 9 of the rotary kiln furnace 1. The raw material is fed into the raw material supply port 2 (for example, supply hot bar) and supplied into the rotary drum 9 of the rotary kiln furnace 1 via the raw material introduction means 10 (for example, screw feeder) into the rotary drum 9. . Next, the raw material S supplied into the rotary drum 9 is heated and baked after the organic components contained are burned while passing through the rotary drum 9 and the organic components are removed by combustion. It is taken out of the rotary kiln furnace 1 through the heating / fired material discharge port 8 installed at the end opposite to the raw material supply port 2 of the barrel 9 and, if necessary, heated / fired. It is sent to the next process for processing such as grinding.
[0351] 本発明において、有機成分を含有する原材料 Sを加熱 ·焼成処理して、白色度の 高い高品質な加熱 ·焼成処理物を得るためには、回転キルン炉 1の回転胴 9内へ空 気を導入して原材料 Sに含有される有機成分を燃焼させることが不可欠である。その ため原材料供給口 2の近傍に排気手段 4 (例:排気ファン)が設置されており、この排 気手段 4が回転キルン炉 1内の空気を強制排気することによって加熱 ·焼成処理物 排出口 8の近傍に設置された空気供給口 3から回転キルン炉 1内に空気が矢印 Aで 示すように吸入される。このように空気供給口 3から排気手段 4方向へ破線矢印 Aで 示す空気流が常に発生することになる。この空気流が後に説明する未燃焼物搬送用 空気流 Aとなる。この空気量の制御は排気ファンの排気量を制御することで行われる 。この空気量は回転キルン炉 1の回転胴 9内が富酸素雰囲気下になるように過剰に
吸入されるよう制御されること力好ましい。この空気の導入方向としては、回転キルン 炉 1の回転胴 9内に原材料が連続的に供給されて進行する矢印 Bで示す方向とは反 対の破線矢印 Aで示す方向(向流方向と略す)から空気を導入する構成となっている 。これは、有機成分を含有する原材料 Sを燃焼させる場合に、煤などに代表される未 燃焼物が発生するが、その際、原材料 Sの進行する矢印 Bで示す方向と同じ方向(並 流方向と略す)で空気を導入すると、導入した空気に載って原材料の燃焼によって 生じた煤が加熱 ·焼成処理物排出口 8の方向に移動し、焼成が完了して白くなつた 加熱 ·焼成処理物に煤が付着して白色度を低下させるため好ましくないが、これに対 して、原材料 Sの移動する矢印 Bで示す方向とは反対の破線矢印 Aで示す方向(空 気の流れる矢印 Aで示す方向 =向流方向)で空気を導入すると、原材料の燃焼によ つて生じた煤は導入した空気に載って回転胴 9内の原材料投入口 2の方向に移動し て、回転胴 9に新たに投入された原材料 Sと共に再度燃焼する力、、あるいは排気手 段 4によって回転キルン炉 1の外に排出されてしまい、加熱 ·焼成処理物排出口 8より 排出される加熱 ·焼成処理物に煤が付着することなく白色度を効率良く向上させるこ とができ、好ましいためである。 In the present invention, the raw material S containing an organic component is heated and baked to obtain a high-quality white and high-temperature heated and baked product, and then into the rotary drum 9 of the rotary kiln furnace 1. It is indispensable to introduce air and burn organic components contained in the raw material S. Therefore, exhaust means 4 (eg exhaust fan) is installed in the vicinity of the raw material supply port 2, and this exhaust means 4 forcibly exhausts the air in the rotary kiln furnace 1, thereby heating and firing processed material discharge port. Air is sucked into the rotary kiln furnace 1 from the air supply port 3 installed in the vicinity of 8 as indicated by an arrow A. In this way, the air flow indicated by the dashed arrow A always occurs from the air supply port 3 toward the exhaust means 4. This air flow becomes an air flow A for conveying unburned matter, which will be described later. This air amount is controlled by controlling the exhaust amount of the exhaust fan. This amount of air is excessive so that the inside of the rotary drum 9 of the rotary kiln furnace 1 is in an oxygen-rich atmosphere. The power is preferably controlled to be inhaled. The direction of air introduction is the direction indicated by the broken arrow A (opposite to the countercurrent direction), which is opposite to the direction indicated by the arrow B where the raw material is continuously supplied into the rotary drum 9 of the rotary kiln furnace 1 and proceeds. ) Is configured to introduce air from. This is because, when the raw material S containing organic components is burned, unburned material such as soot is generated, but at this time, the same direction as the direction of arrow B in which the raw material S travels (cocurrent direction). When the air is introduced, the soot generated by the combustion of the raw materials on the introduced air moves in the direction of the heating / fired product discharge port 8, and the firing is completed and whitened. This is not desirable because it reduces the whiteness by attaching soot to the surface, but in contrast to this, the direction indicated by the broken arrow A (the arrow A through which the air flows) is opposite to the direction indicated by the arrow B in which the raw material S moves. When air is introduced in the direction shown (counterflow direction), soot generated by the combustion of the raw material moves on the introduced air and moves in the direction of the raw material inlet 2 in the rotary drum 9, and is newly added to the rotary drum 9. The power to burn again with the raw material S input to Stage 4 is discharged out of the rotary kiln furnace 1 and the whiteness can be efficiently improved without fouling being attached to the heated / baked product outlet 8 that is discharged from the heated / baked product discharge port 8. This is because it is preferable.
[0352] 前記した破線矢印 Aで示す空気の流れを回転キルン炉 1の回転胴 9内に導入する 方法としては、加圧した空気を加熱 ·焼成処理物排出口 8の近傍に設置された空気 供給口 3より吹き込むこともできる。し力、し先に説明した図 13に示したように、原材料 供給口 2の近傍に設置された排気手段 4によって回転胴 9内の空気を強制排気する ことによって、加熱 ·焼成処理物排出口 8の近傍に設置された空気供給口 3から回転 月同 9内に空気が吸気される方法が好ましい。これは、空気は密度が低く圧縮されやす いため、原材料 Sによって内部が充填された回転胴 9内に空気供給口 3より空気をカロ 圧して導入したのみでは、回転キルン炉 1の長い回転胴 9内全体に空気が行き渡り にくいが、空気供給口 3の反対側に設けた排気手段 4により回転胴 9内の空気を強制 的に排気して、回転胴 9内を負圧にすることにより、空気供給口 3から排気手段 4方向 への矢印 Aで示す空気の流れが常に安定して発生することになり、回転胴 9内の原 材料 Sに対して、空気を行き渡らせやすくすることができるものである。 [0352] As a method of introducing the air flow indicated by the broken line arrow A into the rotary drum 9 of the rotary kiln furnace 1, the pressurized air is heated and the air installed in the vicinity of the calcined product discharge port 8 is used. Can be blown from supply port 3. As shown in FIG. 13 described above, the heating / calcined product discharge port is obtained by forcibly exhausting the air in the rotary drum 9 by the exhaust means 4 installed in the vicinity of the raw material supply port 2. A method is preferred in which air is sucked into the rotary moon 9 from the air supply port 3 installed in the vicinity of 8. This is because air has a low density and is easy to be compressed. Therefore, if the air is introduced into the rotary cylinder 9 filled with the raw material S by air pressure from the air supply port 3, the rotary cylinder 9 of the rotary kiln furnace 1 is long. Although it is difficult for air to reach the entire interior, the air inside the rotary drum 9 is forcibly exhausted by the exhaust means 4 provided on the opposite side of the air supply port 3 to make the pressure inside the rotary drum 9 negative. The air flow indicated by the arrow A from the supply port 3 to the exhaust means 4 direction is always generated in a stable manner, so that the air can be easily distributed to the raw material S in the rotary drum 9. It is.
[0353] 本発明において、前記した排気手段 4による強制排気等によって回転キルン炉 1の
回転胴 9内へ供給される空気量としては、原材料 Sが含有する有機成分を完全に燃 焼消失するために必要とされる酸素量 (理論酸素量)に対して、過剰な量の酸素を供 給する空気量 (過剰酸素雰囲気)とすることが好ましぐ回転胴 9内に供給される空気 量としては、酸素量 (理論空気量)の 1. ;!〜 5倍とすることが好ましぐ 1. 5〜5倍とす ること力 り好ましく、 2〜5倍とすることが特に好ましい。回転胴 9内へ供給される空 気量が酸素量 (理論空気量)の 1. 1倍未満である場合には、原材料 Sが含有する有 機成分の燃焼が不完全となり、加熱 ·焼成処理物の白色度が低下する恐れがあるた め好ましくなく、他方、該理論空気量の 5倍を越える場合には、供給された空気によ つて回転胴 9内の温度が過剰に冷やされてしまう恐れがあり、これに対して回転胴 9 内の温度を維持するために加熱手段 5による加熱を増やす必要があり、エネルギー コスト的に好ましくない。 [0353] In the present invention, the rotary kiln furnace 1 is controlled by forced exhaustion by the exhaust means 4 described above. The amount of air supplied into the rotary drum 9 is an excess amount of oxygen relative to the amount of oxygen (theoretical oxygen amount) required to completely burn off the organic components contained in the raw material S. The amount of air supplied to the rotary drum 9 that is preferably set to the amount of air supplied (excess oxygen atmosphere) is 1. 1.! Magashi 1. A power of 5 to 5 times is more preferable, and 2 to 5 times is particularly preferable. If the amount of air supplied into the rotary drum 9 is less than 1.1 times the amount of oxygen (theoretical air amount), the combustion of the organic components contained in the raw material S will be incomplete, and the heating / firing process This is not preferable because the whiteness of the object may be lowered. On the other hand, if the amount of air exceeds 5 times the theoretical air volume, the temperature in the rotary drum 9 will be excessively cooled by the supplied air. On the other hand, it is necessary to increase the heating by the heating means 5 in order to maintain the temperature in the rotary drum 9, which is not preferable in terms of energy cost.
本発明においては、回転キルン炉 1の加熱'焼成の方式としては、内熱式の加熱- 焼成方式を用いても良いが、図 13に示したように、回転キルン炉 1の回転胴 9を加熱 する熱は主として間接的加熱手段 5から供給され、原材料 Sを間接的に加熱 '焼成す る外熱式の加熱'焼成方法とすることが好ましい。これは、有機成分を含有する原材 料を燃焼させるには多くの空気の導入が不可欠である力 内熱式では、加熱用バー ナ一の燃焼のため回転にキルン炉 1内部の空気(酸素)を消費するのに対して、外熱 式では間接的加熱手段 5によって回転胴 9の外側から原材料 Sを加熱し、さらに別途 に酸素を多く含んだ空気を空気供給口 3より回転胴 9内に導入できることから、原材 料 Sを安定して燃焼させやすくするために好ましいものである。また、原材料 Sの加熱 •焼成を行う温度を制御する必要がある場合、内熱式では、加熱用バーナー付近の 温度がどうしても高くなり、回転胴 9内の温度に勾配ムラが生じてしまい、加熱'焼成 温度を一定の所望する温度に制御することも難しいため、回転胴 9全体の温度も不 均一になりやすいが、外熱式では、回転胴 9の外側の各所に設けられた間接的加熱 手段 5の複数のバーナーを用いて回転胴 9内全体の温度を安定して制御することが できるため好ましいものである。この間接的加熱手段としては、電気的な加熱も可能 であるが、灯油や重油の燃焼ガスによる加熱、ガスバーナーによる加熱が経済的に 好ましい。また前記した間接的加熱手段には、既存の焼却設備から排出される燃焼
排ガスを使用することもできるし、水蒸気などを使用することもできる。また、本図 13に 示した例では熱風循環手段 7の一例である循環ブロア一によつて、図 24に示したよう な、本発明の回転キルン炉 1を備えた熱処理装置の前工程(乾燥工程、 1次焼成ェ 程など)からの燃焼排ガスを間接的加熱手段として供給することもできる。 In the present invention, an internal heating type heating-firing method may be used as a heating and firing method for the rotary kiln furnace 1, but as shown in FIG. The heat to be heated is mainly supplied from the indirect heating means 5 and is preferably an external heating type heating method in which the raw material S is indirectly heated (fired). This is because the introduction of a large amount of air is indispensable for burning raw materials containing organic components.In the internal heat type, the air inside the kiln furnace 1 (oxygen) is rotated to burn the heating burner. In the case of the external heating type, the raw material S is heated from the outside of the rotating drum 9 by the indirect heating means 5 and air containing a large amount of oxygen is separately supplied from the air supply port 3 to the inside of the rotating drum 9. Therefore, it is preferable to make the raw material S stable and easy to burn. In addition, when it is necessary to control the temperature at which the raw material S is heated and fired, in the internal heating type, the temperature in the vicinity of the heating burner inevitably becomes high, and the temperature in the rotary drum 9 becomes uneven in temperature, causing heating. 'Because it is difficult to control the firing temperature to a certain desired temperature, the temperature of the entire rotary cylinder 9 tends to be non-uniform, but in the case of external heating, indirect heating provided at various locations outside the rotary cylinder 9 This is preferable because the temperature inside the rotary drum 9 can be stably controlled using a plurality of burners of the means 5. As this indirect heating means, electrical heating is possible, but heating with a combustion gas of kerosene or heavy oil or heating with a gas burner is economically preferable. In addition, the indirect heating means described above includes combustion exhausted from existing incineration equipment. Exhaust gas can be used, and water vapor or the like can also be used. Further, in the example shown in FIG. 13, a circulation blower which is an example of the hot air circulation means 7 is used to perform a pre-process (drying) of the heat treatment apparatus provided with the rotary kiln furnace 1 of the present invention as shown in FIG. The combustion exhaust gas from the process, the primary firing step, etc.) can also be supplied as an indirect heating means.
[0355] 以下に上述の回転キルン炉 1の回転胴 9内に対して、前記した(2)少分割隔壁構 造部を上述のような多分割隔壁構造部と組み合わせて使用する方法を適用した例に つ!/、て図 14以下を用いて説明する。 [0355] A method of using the above-described (2) small-partition partition structure part in combination with the above-described multi-partition partition structure part was applied to the inside of the rotary drum 9 of the rotary kiln furnace 1 described above. An example will be explained using Fig. 14 and below.
[0356] 図 14は、図 13に示した熱処理装置のうちの回転キルン炉 1の構造を説明する構成 図である。図中、図 13と同じ符号の構成要素については説明を省略している。図 14 に示したように、回転キルン炉 1内の回転胴 9aは多分割隔壁構造部 120とその前側 、すなわち多分割隔壁構造部 120の原材料の投入方向側、いいかえれば回転胴 9a の原材料供給口 2の側に少分割隔壁構造部 110を連結させて主に構成されて!/、る。 図中、多分割隔壁構造部 120以降は多分割隔壁構造部 120ゃ少分割隔壁構造部 110と同じ形状の外郭の筒部 8aで構成されている。 FIG. 14 is a configuration diagram for explaining the structure of the rotary kiln furnace 1 in the heat treatment apparatus shown in FIG. In the figure, description of components having the same reference numerals as those in FIG. 13 is omitted. As shown in FIG. 14, the rotary drum 9a in the rotary kiln furnace 1 has a multi-partitioned partition structure 120 and its front side, that is, the raw material supply direction side of the multi-partition partition structure 120, in other words, the raw material supply of the rotary drum 9a. Mainly constructed by connecting the small partition structure 110 to the side of the mouth 2! /. In the figure, the multi-divided partition wall structure portion 120 and the subsequent parts are constituted by an outer cylindrical portion 8a having the same shape as the multi-divided partition wall structure portion 120.
[0357] 以下、本発明の多分割隔壁構造部 120について説明する。多分割隔壁構造部 12 0としては、要するにその内部が複数の区分室に区画されており、各区分室は多分 割隔壁構造部 120の原材料入り口側から出口側まで連通している。かつ回転胴 9a の断面を効率よく使用するために、回転胴 9aの径方向(ラジアル方向)について多層 になるように区分室を有する。特に好ましくは 2層、すなわち最外層領域と中心領域 の二つの領域の区分室群から構成される。すなわち多分割隔壁構造部 120とは回 転月同 9aの径方向(ラジアル方向)について多層つまり 2層以上の区分室群から構成さ れる区分室を有する。このような多層構造の区分室を設けた場合、 15以上の区分室 に分割することが、均等に原材料を熱処理する上で好ましい。このような多分割隔壁 構造部 120の典型的な例として、 18分割型、 24分割 A型、 24分害 IJB型、および 36 分割型の 4種類の例を以下に説明する。 [0357] Hereinafter, the multi-partition partition wall structure 120 of the present invention will be described. The multi-partition partition structure part 120 is basically divided into a plurality of compartments, and each compartment communicates from the raw material entrance side to the exit side of the multi-partition partition structure part 120. In order to efficiently use the cross section of the rotary drum 9a, a compartment is provided so as to be multilayered in the radial direction (radial direction) of the rotary drum 9a. Particularly preferably, it is composed of two compartments, that is, a group of compartments of two regions, an outermost layer region and a central region. In other words, the multi-partition partition wall structure 120 has a compartment composed of multiple compartments, that is, two or more compartments in the radial direction (radial direction) of the rotation month 9a. When such a multi-layered compartment is provided, it is preferable to divide into 15 or more compartments in order to uniformly heat the raw materials. As a typical example of such a multi-partition partition structure 120, four examples of 18-partition type, 24-partition A-type, 24-part harm IJB type, and 36-partition type will be described below.
[0358] [18分割型 多分割隔壁構造部についての説明] [0358] [Explanation of 18-partition multi-partition partition structure]
図 14に示した回転胴 9a内に多分割隔壁構造部 120として 18分割型多分割隔壁 構造部を使用した場合の、図 14中における /3— /3 '断面を図 16に示した。図 16は、
図 14に示した回転胴 9a内に設けられた 18区分室を設けた多分割隔壁構造部の一 例(18分割型多分割隔壁構造部)を使用した場合の β - 断面図であり、 (a)は各 区分室を表示した断面図、 (b)は各区分室集合を表示した断面図である。図 16(a) に示したように、最外層領域の区分室群(OS)を構成する各々の区分室 150ol、 150 ο2、 . · ' 150ο12と、中心領域の区分室群(CS)を構成する各々の区分室 150cl、 150 c2 - - - 15006力 構成されている。これらの区分室間の隔壁や外壁を構成する部分 力 S18分割型多分割隔壁構造部 160である。この 18分割型多分割隔壁構造部 160と しては、図 16( b) FIG. 16 shows a / 3— / 3 ′ cross section in FIG. 14 when an 18-divided multi-partition partition structure part is used as the multi-partition partition structure part 120 in the rotary drum 9a shown in FIG. Figure 16 FIG. 15 is a β-cross-sectional view when an example of a multi-partition partition structure part (18-partition type multi-partition partition structure part) provided with 18 compartments provided in the rotary drum 9a shown in FIG. a) is a sectional view showing each compartment, and (b) is a sectional view showing each compartment set. As shown in Fig. 16 (a), each of the compartments 150ol, 150 ο2,. Each compartment to be made up of 150cl, 150c2---15006 power. This is the partial force S18 split type multi-partition partition structure 160 that constitutes the partition walls and outer walls between these compartments. This 18-partitioned multi-partition partition structure 160 is shown in Fig. 16 (b).
に示すように、 18分割型多分割隔壁構造部 160の断面が、略正 6角形の外郭を有し ており、略正 6角形の外郭の内部を分割する形状として、略正 6角形の中心点と 6個 の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分室集合 150Α、 150Β、 * · · 150Ρ (6分割-正 3角形型区分室と略する)に分割している。さらに図 16(b) As shown in the figure, the cross section of the 18-divided multi-divided partition wall structure 160 has a substantially regular hexagonal outline, and the center of the substantially regular hexagon as a shape that divides the inside of the substantially regular hexagonal outline. By a straight line connecting the point and each of the six vertices, the inside of the approximately regular hexagon is divided into six approximately regular triangular compartments 150Α, 150Β, * · · 150Ρ (six-segmented-triangle-shaped compartment) To be divided). Fig. 16 (b)
に示したように、区分室集合 150Aを例に挙げれば、その区分室集合 150Aの略正 3角 形の略重心位置と 3つの辺の略中点をそれぞれ略垂直に結ぶ 3本の直線によって、 区分室集合 150Aを 3個の略合同 4角形の区分室 150clおよび 150ol、 150o2に分割 している。このように中心領域の区分室群(CS)を構成する少なくとも一つの区分室、 この例では 150clと、最外層領域の区分室群(OS)を構成する少なくとも 2以上の区 分室、この例では 150olと 150o2によって構成される一定形状、この例では略正 3角 形状の区分室集合 150Α· · ·が複数集まって、総分割数として 18個の区分室を設け た 18分割型多分割隔壁構造部 160を構成することが好ましい。この理由は後で説明 する。本図に示した例は、 18分割型多分割隔壁構造部としては最も好ましい構造部 の例である。すなわち各区分室の断面積が略同一であり、また多分割隔壁構造部を 構成する隔壁が直線的にかつ対称的に構成されているので本多分割隔壁構造部を 、金属板等を組み合わせて作製するときに容易である。 As shown in Fig. 3, for example, the compartment set 150A is taken as an example by three straight lines that connect the approximate center of gravity of the roughly regular triangle of the compartment set 150A and the approximate midpoints of the three sides. The compartment set 150A is divided into three substantially congruent quadrangular compartments 150cl, 150ol, and 150o2. In this way, at least one compartment that constitutes the central compartment (CS), in this example 150cl, and at least two compartments that constitute the outermost compartment (OS), in this example An 18-partition multi-partition partition structure in which a fixed shape composed of 150ol and 150o2, in this example, an approximately regular triangular shape of a set of compartments 150Α ···, is provided with a total of 18 compartments It is preferable to constitute the part 160. The reason for this will be explained later. The example shown in this figure is an example of the most preferable structure portion as the 18-divided multi-divided partition wall structure portion. That is, the sectional areas of the compartments are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically, so this multi-partition partition structure is combined with a metal plate or the like. Easy to make.
ここで多分割隔壁構造部や各区分室の形状について略と称しているのは、厳密な 正 3角形、正 6角形から若干のずれがあってもいいという趣旨である。例えば後述の ように管状部材が中央部に配置されるような場合は中心領域の区分室群の各区分室
は三角形ではなくなるがこのような場合をも含むという趣旨である。なお各区分室の 断面積が略同一であるということは積層 ·堆積状態に偏りが少なぐ均一な加熱、焼 成が可能であるということを示すものである。また、単純に最外層領域の区分室群(oHere, the shape of the multi-partition partition structure and each compartment is abbreviated to mean that there may be a slight deviation from a strict regular triangle or regular hexagon. For example, when the tubular member is arranged in the center as described later, each compartment of the compartment group in the central region Is not a triangle, but includes such a case. Note that the fact that the sectional areas of the compartments are substantially the same indicates that uniform heating and firing can be performed with little bias in the stacked and deposited state. In addition, the compartments in the outermost layer area (o
S)と中心領域の区分室群(CS)の二つの領域の区分室群から構成するように多分 割隔壁構造部を形成するということであれば、本図 16(a)で示した各区分室の断面を 変形させて多角形、曲線形、円形等やそれらの組み合わせ形に変形することも可能 ではある。し力もながら、先に述べたような均一な加熱や、装置製作の容易性におい ては本図 16(a)に示した形状の方が好ましい。尚、以下 24分割型、 36分割型の説明 をする力 このような各区分室の形状についての考え方は同様であるので説明は省 略した。 If the partition wall structure is formed so that it is composed of two compartments, S) and the central compartment (CS), the sections shown in Fig. 16 (a) It is also possible to deform the cross section of the chamber into a polygon, a curve, a circle, or a combination thereof. However, the shape shown in FIG. 16 (a) is preferable for the uniform heating as described above and the ease of manufacturing the device. In the following, the power to explain the 24-split type and 36-split type is the same as the concept of the shape of each compartment, and the explanation is omitted.
[24分割 A型 多分割隔壁構造部についての説明] [Explanation of 24-part A type multi-partition partition structure]
図 14に示した回転胴 9a内に、多分割隔壁構造部 120として 24分割 A型多分割隔 壁構造部を使用した場合の、図 14中における /3— /3 '断面を図 17に示した。図 17 は、図 14に示した回転胴 9a内に設けられた 24区分室を設けた多分割隔壁構造部 の一例(24分割 A型多分割隔壁構造部)を使用した場合の 13 - 断面図であり、 (a )は各区分室を表示した断面図、 (b)は各区分室集合を表示した断面図である。図 1 7(a)に示したように、最外層領域の区分室群(OS)を構成する各々の区分室 170ol、 170ο2 . · ' 170ο18と、中心領域の区分室群(CS)を構成する各々の区分室 170cl、 1 70c2 - - - 17006から構成されている。これらの区分室間の隔壁や外壁を構成する部 分が 24分割 A型多分割隔壁構造部 180である。この 24分割 A型多分割隔壁構造部 180としては、図 17(b)に示すように、 24分割 A型多分割隔壁構造部 180の断面が 、略正 6角形の外郭を有しており、略正 6角形の外郭の内部を分割する形状として、 略正 6角形の中心と 6個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略 正 3角形の区分室集合 170Α、 170Β、 · · · 170F(6分割-正 3角形型区分室と略する) に分割している。さらに図 17(b)に示したように、区分室集合 170Aを例に挙げれば、 その区分室集合 170Aの略正 3角形の各辺の略中点をそれぞれ結ぶ 3本の直線によ つて、区分室集合 170Aを 4個の略合同 3角形の区分室 170clおよび 170ol、 170o2 、 170o3に分割している。このように中心領域の区分室群(CS)を構成する少なくとも
一つの区分室、この例では 170clと、最外層領域の区分室群(OS)を構成する少な くとも 2以上の区分室、この例では 170ol、 170o2,および 170o3によって構成される一 定形状、この例では略正 3角形状の区分室集合 170Α· · ·が複数集まって、総分割数 として 24個の区分室を設けた 24分割 A型多分割隔壁構造部 180を構成することが 好ましい。この理由は後で説明する。本図に示した例は、 24分割型多分割隔壁構造 部としては最も好ましい構造部の一例である。すなわち各区分室の断面積が略同一 であり、また多分割隔壁構造部を構成する隔壁が直線的にかつ対称的に構成されて いるので本多分割隔壁構造部を、金属板等を組み合わせて作製するときに容易であ [24分割 B型 多分割隔壁構造部についての説明] Fig. 17 shows the / 3— / 3 'cross section in Fig. 14 when a 24-divided A-type multi-divided wall structure is used as the multi-divided partition wall structure 120 in the rotary drum 9a shown in Fig. 14. It was. Fig. 17 is a 13-cross-sectional view when using an example of a multi-partition partition structure (24-part A-type multi-partition partition structure) with 24 compartments provided in the rotary drum 9a shown in Figure 14 (A) is a cross-sectional view showing each compartment, (b) is a cross-sectional view showing each compartment set. As shown in Fig. 17 (a), each of the compartments 170ol, 170ο2. · '170ο18 that make up the compartment (OS) in the outermost layer and the compartment (CS) in the central region Each compartment is composed of 170cl, 1 70c2---17006. The partition between these compartments and the part that constitutes the outer wall is a 24-part A-type multi-partition structure 180. As shown in FIG. 17 (b), the 24-divided A-type multi-divided partition wall structure 180 has a substantially regular hexagonal cross section as shown in FIG. As a shape that divides the inside of the outline of the approximately regular hexagon, the interior of the approximately regular hexagon is divided into six approximately regular triangles by a straight line connecting the center of the approximately regular hexagon and the six vertices. , 170mm, ······················ 170F (6 divisions-abbreviated as a regular triangular compartment). Furthermore, as shown in Fig. 17 (b), taking the compartment set 170A as an example, three straight lines connecting the approximate midpoints of the sides of the substantially regular triangle of the compartment set 170A, The compartment chamber set 170A is divided into four substantially congruent triangular compartments 170cl, 170ol, 170o2 and 170o3. In this way, at least the compartment (CS) of the central area One compartment, in this example 170cl, and a fixed shape consisting of at least two compartments that make up the outermost compartment (OS), in this example 170ol, 170o2, and 170o3, In this example, it is preferable to configure a 24-divided A-type multi-divided partition wall structure portion 180 in which a plurality of substantially regular triangular partition chamber assemblies 170 Α ··· are gathered to provide a total of 24 partition chambers. The reason for this will be explained later. The example shown in this figure is an example of the most preferable structure part as a 24 division type multi-partition partition structure part. That is, the sectional areas of the compartments are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically. Therefore, the multi-partition partition structure is combined with a metal plate or the like. Easy to manufacture [Explanation of 24-part B-type multi-partition partition structure]
図 14に示した回転胴 9a内に、多分割隔壁構造部 120として 24分割 B型多分割隔 壁構造部を使用した場合の、図 14中における /3— /3 '断面を図 18に示した。図 18 は、図 14に示した回転胴 9a内に設けられた 24区分室を設けた多分割隔壁構造部 の一例(24分割 B型多分割隔壁構造部)を使用した場合の /3— /3 '断面図であり、 (a )は各区分室を表示した断面図、 (b)は各区分室集合を表示した断面図である。図 1 8(a)に示したように、最外層領域の区分室群(OS)を構成する各々の区分室として、 略正 3角形型の区分室 190ο1、 190ο2 · ' · 190ο12、および 6角形型の区分室 190ο13 、 190ο14 · · · 190ο18と、中心領域の区分室群(CS)を構成する各々の区分室 190cl、 190c2 - - - 19006から構成されている。これらの区分室間の隔壁や外壁を構成する部 分が 24分割 B型多分割隔壁構造部 200である。この 24分割 B型多分割隔壁構造部 20としては、図 18(b)に示すように、 24分割 B型多分割隔壁構造部 200の断面が、略 正 6角形の外郭を有しており、略正 6角形の外郭の内部を分割する形状として、略正 6角形の中心と 6個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3 角形の区分室集合 190Α、 190Β · · ' 190F (6分割-正 3角形型区分室と略する)に分割 している。さらに図 18(b)に示したように、区分室集合 190Aを例に挙げれば、その区 分室集合 190Aの略正 3角形を 3個の略合同正 3角形 190clおよび 190ol、 190o2と 1 個の 6角形 190ol3によって併せて 4個の区分室になるように分割し、さらに該 3個の 略合同正 3角形 190clおよび 190ol、 190o2が区分室集合 190Aの略正 3角形の各
角をそれぞれ占めるように分割して!/、る。このように中心領域の区分室群(CS)を構 成する少なくとも一つの区分室、この例では 190clと、最外層領域の区分室群(OS) を構成する少なくとも 2以上の区分室、この例では略正 3角形型区分室 190ol 、 190ο 2および 6角形型区分室 190ο13によって構成される一定形状、この例では略正 3角 形状の区分室集合 190Α· · ·が複数集まって、総分割数として 24個の区分室を設け た 24分割 Β型多分割隔壁構造部 200を構成することが好ましい。この理由は後で説 明する。本図に示した例は、 24分割型多分割隔壁構造部としては最も好ましい構造 部の一例である。すなわち各区分室集合における略正三角形および 6角形型区分 室の断面積がそれぞれ略同一であり、また多分割隔壁構造部を構成する隔壁が直 線的にかつ対称的に構成されて!/、るので本多分割隔壁構造部を、金属板等を組み 合わせて作製するときに容易である。 Fig. 18 shows the / 3— / 3 'cross section in Fig. 14 when a 24-divided B-type multi-divided wall structure is used as the multi-divided partition wall structure 120 in the rotary drum 9a shown in Fig. 14. It was. Fig. 18 shows / 3— / when using an example of a multi-partition partition structure part (24-part B-type multi-partition partition structure part) provided with 24 compartments provided in the rotary drum 9a shown in FIG. 3 'is a cross-sectional view, (a) is a cross-sectional view showing each compartment, (b) is a cross-sectional view showing each compartment set. As shown in Fig. 18 (a), each of the compartments that make up the compartment (OS) in the outermost layer area is divided into roughly regular triangular compartments 190ο1, 190ο2 · '· 190ο12, and hexagons. It consists of type compartments 190ο13, 190ο14 ···· 190ο18, and respective compartments 190cl, 190c2---19006 that constitute the central compartment (CS). The part that constitutes the partition walls and outer walls between these compartments is the 24-part B-type multi-partition structure 200. As shown in FIG. 18 (b), the 24-divided B-type multi-divided partition wall structure portion 20 has a substantially hexagonal outer cross section as shown in FIG. As a shape that divides the inside of the outer shape of the approximately regular hexagon, the interior of the approximately regular hexagon is divided into six substantially regular triangular compartments by a straight line connecting the center of the approximately regular hexagon and each of the six vertices. , 190Β ··· '190F (6 divisions-abbreviated as a regular triangular compartment). Furthermore, as shown in FIG. 18 (b), for example, in the case of the compartment set 190A, the substantially regular triangle of the compartment set 190A is divided into three substantially congruent triangles 190cl, 190ol, and 190o2. Divided into 4 compartments by hexagon 190ol3, and the three roughly congruent regular triangles 190cl and 190ol, 190o2 are divided into each of the roughly regular triangles of compartment chamber set 190A. Divide it to occupy each corner! In this way, at least one compartment constituting the central compartment (CS), 190cl in this example, and at least two compartments constituting the outermost compartment (OS), in this example In this example, a regular shape composed of 190ol, 190ο 2 and hexagonal compartments 190ο13, and in this example, a set of compartments 190 略It is preferable to constitute a 24-divided vertical multi-divided partition wall structure 200 provided with 24 compartments. The reason for this will be explained later. The example shown in this figure is an example of the most preferable structure part as a 24 division type multi-partition partition structure part. That is, the cross sections of the equilateral triangles and hexagonal compartments in each compartment set are substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically! /, Therefore, it is easy when the multi-partition partition structure is manufactured by combining metal plates or the like.
[36分割型 多分割隔壁構造部についての説明] [Explanation of 36-partition multi-partition partition structure]
図 14に示した回転胴 9a内に、多分割隔壁構造部 120として 36分割型多分割隔壁 構造部を使用した場合の、図 14中における /3— /3 '断面を図 19に示した。図 19は、 図 14に示した回転胴 9a内に設けられた 36区分室を設けた多分割隔壁構造部の一 例(36分割型多分割隔壁構造部)を使用した場合の 13 - 断面図であり、 (a)は各 区分室を表示した断面図、 (b)は各区分室集合を表示した断面図である。図 19(a) に示したように、最外層領域の区分室群(OS)を構成する各々の区分室として、略正 3角形型の区分室 210ol、 210ο2、 · ' · 210ο6、および菱形型の区分室 210ο7、 210ο8 、 · ' · 210ο18と、中間層領域の区分室群 (MS)を構成する各々の区分室として、略 正 3角形型の区分室 210ml、 210m2、 " ' 2100!12と、中心領域の区分室群(CS)を 構成する各々の区分室として菱形型の区分室 210cl、 210c2、 · ' · 21(^6から構成さ れている。すなわち本例は 3層の区分室群から構成される例である。これらの区分室 間の隔壁や外壁を構成する部分が 36分割型多分割隔壁構造部 22である。この 36 分割型多分割隔壁構造部 220としては、図 19(b)に示すように、 36分割型多分割隔 壁構造部 22の断面が、略正 6角形の外郭を有しており、略正 6角形の外郭の内部を 分割する形状として、略正 6角形の中心と 6つの各頂点を結ぶ直線によって、略正 6 角形の内部を 6個の略正 3角形の区分室集合 210Α、 210Β、 · ' · 210Ρ (6分割-正 3角
形型区分室と略する)に分割している。さらに図 19bに示したように、区分室集合 210 Aを例に挙げれば、その区分室集合 210Aの略正 3角形を 3個の略合同正 3角形 210m 1 、 210m2、および 210olと 3個の略合同菱形 210cl、および 210o7、 210o8によって 併せて 6個の区分室になるように分割し、さらに 3つの略合同菱形 210cl、および 210 o7、 210o8が区分室集合 210Aの略正 3角形の各角をそれぞれ占めるように分割して いる。このように中心領域の区分室群(CS)を構成する少なくとも一つの区分室、この 例では菱形型区分室 210cl、中間層領域の区分室群 (MS)を構成する区分室、こ の例では略正 3角形型区分室 210ml、 210m2、および最外層領域の区分室群(OS )を構成する少なくとも 2以上の区分室、この例では略正 3角形型区分室 210olおよ び菱形型区分室 210o7、 210o8によって構成される一定形状、この例では略正 3角形 状の区分室集合 210Α· · ·が複数集まって、総分割数として 36個の区分室を設けた 3 6分割型多分割隔壁構造部 220を構成することが好ましい。この理由は後で説明す る。本図に示した例は、 36分割型多分割隔壁構造部としては最も好ましい構造部の 例である。すなわち各区分室集合における略正 3角形および菱形の各区分室の断 面積がそれぞれ略同一であり、また多分割隔壁構造部を構成する隔壁が直線的に かつ対称的に構成されているので本多分割隔壁構造部を、金属板等を組み合わせ て作製するときに容易である。 FIG. 19 shows a / 3— / 3 ′ cross section in FIG. 14 in the case where a 36-divided multi-partition partition structure part is used as the multi-partition partition structure part 120 in the rotary drum 9a shown in FIG. Fig. 19 shows a cross-sectional view of a 13-section using an example of a multi-partition partition structure with 36 compartments (36-part multi-partition structure) provided in the rotary drum 9a shown in Fig. 14 (A) is a sectional view showing each compartment, (b) is a sectional view showing each compartment set. As shown in Fig. 19 (a), each of the compartments that make up the compartment (OS) in the outermost layer area is divided into roughly regular triangular compartments 210ol, 210ο2, ··· 210ο6, and rhombus Section rooms 210ο7, 210ο8, · '· 210ο18, and each compartment that constitutes the section room group (MS) in the middle layer area is a substantially triangular type compartment 210ml, 210m2, "' 2100! 12 Each of the compartments that make up the compartment (CS) in the central area is composed of diamond-shaped compartments 210cl, 210c2, ··· 21 (^ 6. The part constituting the partition walls and outer walls between these compartments is the 36-partitioned multi-partition partition structure part 22. This 36-partition type multi-partition partition structure part 220 is shown in FIG. As shown in (b), the cross section of the 36-divided multi-divided partition wall structure 22 has a substantially regular hexagonal outline, and a shape that divides the interior of the substantially regular hexagonal outline. As a result, a straight line connecting the center of the approximately regular hexagon and the six vertices, the interior of the approximately regular hexagon is divided into six substantially regular triangular compartments 210Α, 210Β, Corner (It is abbreviated as a shape compartment). Further, as shown in FIG. 19b, taking the compartment set 210A as an example, the substantially regular triangle of the compartment set 210A is divided into three substantially congruent triangles 210m1, 210m2, and 210ol. Divided into approximately six concentric rhombuses 210cl, 210o7, 210o8 and divided into 6 compartments. Are divided so as to occupy each. In this way, at least one compartment constituting the compartment (CS) in the central region, in this example, the diamond-shaped compartment 210cl, the compartment constituting the compartment (MS) in the middle region, in this example A substantially regular triangular compartment 210ml, 210m2, and at least two compartments that make up the outermost compartment (OS), in this example, a substantially triangular compartment 210ol and a diamond compartment A constant shape composed of 210o7 and 210o8, in this example, a substantially regular triangular partition room set 210Α ... It is preferable to constitute the structure part 220. The reason for this will be explained later. The example shown in the figure is an example of the most preferable structure as the 36-partition multi-partition partition structure. That is, the sectional area of each of the regular triangular and rhombus compartments in each compartment set is substantially the same, and the partition walls constituting the multi-partition partition structure are configured linearly and symmetrically. This is easy when the multi-partition partition structure is manufactured by combining metal plates or the like.
[0363] 前記した 36分割型多分割隔壁構造部 220において、最外層領域 (OS)および中 心領域 (CS)の各領域を構成する略合同菱形型区分室を、さらに 2個の略合同正 3 角形型区分室に分割することにより、全ての区分室が略合同正 3角形型の区分室で あり、総分割数として 54個の区分室を設けた 54分割型多分割隔壁構造部(図示せ ず)とすることも可能であり、また前記した 18分割型、 24分割型、 36分割型の考え方 を応用すれば、総分割数として 54個以上の区分室を設けた多分割隔壁構造部とす ることも可倉である。 [0363] In the above-described 36-divided multi-divided partition wall structure 220, the substantially congruent rhomboid compartments constituting the outermost layer region (OS) and the center region (CS) are further divided into two substantially congruent positives. By dividing into three square-type compartments, all compartments are roughly congruent and regular triangle-type compartments, and a 54-partition multi-partition partition structure with a total of 54 compartments (Fig. Multi-partitioned partition wall structure with 54 or more compartments as the total number of partitions by applying the concept of the 18-, 24-, and 36-partitions described above. It is also possible to do this.
[0364] 前記した各種の多分割隔壁構造部のうち、原材料の加熱'焼成処理に対する伝熱 効果が向上し、分割した各区分室への原材料の均等的な導入も比較的容易であり、 回転胴内の原材料の積層 '堆積状態も大幅に軽減できる多分割隔壁構造部として は、前記した 18分割型(160)、 24分割 A型(180)、 24分割 B型(200)、および 36
分割型(220)の典型的な 4種類の多分割隔壁構造部が好ましぐこれら 4種類の多 分割隔壁構造部の中でも最も区分室の分割数が多ぐ回転胴内の原材料の積層- 堆積が軽減可能な 36分割型多分割隔壁構造部(220)が特に好ましい。前記した 5 4分割型多分割隔壁構造部のように、総分割数として 36個を超える区分室を設けた 多分割隔壁構造部の場合には、理論上は原材料の加熱'焼成処理に対する伝熱効 果が向上し、原材料の積層 ·堆積状態も大幅に軽減できるため有効であるが、反面、 実用上は多分割隔壁構造部の構造が複雑化して、本多分割隔壁構造部を作製する ことが困難となり、また、分割した区分室数が多くなり過ぎ、分割した全ての区分室に 対して充分均等に原材料を導入することが極めて困難となり、結果的に原材料の積 層-堆積状態を充分に軽減することができない恐れがある。 [0364] Of the various multi-partition partition structures described above, the heat transfer effect on the heating and firing process of the raw material is improved, and the uniform introduction of the raw material into each of the divided compartments is relatively easy. Stacking of raw materials in the cylinder 'Multi-divided partition wall structure that can greatly reduce the deposition state is the 18-segment type (160), 24-division A-type (180), 24-division B-type (200), and 36 4 types of multi-partition partition structure typical of the split type (220) are preferred. Among these 4 types of multi-partition partition structure, stacking of raw materials in a rotating cylinder with the largest number of divisions in the compartment The 36-divided multi-divided partition wall structure (220) is particularly preferable. In the case of a multi-divided partition wall structure section having a total number of division chambers exceeding 36 as in the case of the above-mentioned 54-divided multi-divided partition wall structure section, theoretically, the heat transfer of the raw materials to the firing process is carried out. This is effective because the effect is improved and the stacking / deposition state of the raw materials can be greatly reduced. On the other hand, the structure of the multi-partition partition structure is complicated in practical use, and this multi-partition partition structure is manufactured. In addition, the number of divided compartments becomes too large, and it becomes extremely difficult to introduce the raw materials to all the divided compartments sufficiently evenly. As a result, the stacking-deposition state of the raw materials is sufficient. There is a risk that it cannot be alleviated.
[0365] 前記した多分割隔壁構造部 120において、キルンの回転胴 9a内(断面 /3— /3 ' )を 分割する区分室数を 15以上とすることにより、回転胴 9a内に投入された原材料 Sを 回転胴 9a断面内に広く分布させることができ、これによつて原材料 Sの積層を充分に 軽減して、加熱 ·焼成処理物が不完全焼成となることを防止することができるため、特 に好ましい。 [0365] In the multi-partition partition wall structure 120 described above, the number of compartments dividing the inside of the kiln's rotary drum 9a (cross section / 3− / 3 ′) is set to 15 or more, so that it was introduced into the rotary drum 9a. Since the raw material S can be widely distributed in the cross section of the rotary drum 9a, it is possible to sufficiently reduce the stacking of the raw material S and prevent the heated and fired product from being incompletely fired. Particularly preferred.
[0366] 以上に説明した多分割隔壁構造部のみによって回転胴を構成した場合は、先に図 27によって説明したように原材料粒子 Sa、 Sa ' "の偏在が起こる。これを防ぐために 、前記したように、(1)多分割隔壁構造部の区分室への原材料導入手段を工夫する 方法、すなわち、従来力 使用さているスクリューフィーダ一等の原材料導入手段を 、別の原材料導入手段にしたり、それらと組み合わせたりする方法、および(2)少分 割隔壁構造部を、上述のような多分割隔壁構造部と組み合わせて使用する方法が 考えられる。 [0366] In the case where the rotating drum is constituted only by the multi-partition partition structure described above, the uneven distribution of the raw material particles Sa and Sa '"occurs as described above with reference to Fig. 27. In order to prevent this, as described above, (1) A method of devising the raw material introduction means into the compartment of the multi-partition partition structure, that is, the raw material introduction means such as a screw feeder that has been used conventionally is replaced with another raw material introduction means, And (2) a method in which the small partition wall structure is used in combination with the multi-partition wall structure as described above.
[0367] このうち、(1)多分割隔壁構造部の区分室への原材料導入手段を工夫する方法を 以下に説明する。図 30に示したように、スクリューフィーダ一などの回転胴内への原 材料導入手段によって回転胴内に導入された原材料粒子 Sa、 Sa ' ' 'を、さらに多分 割隔壁構造部 120の中心領域の区分室への原材料導入手段 25、例として図中には 導入管を使用して供給する。図 30は回転胴内の多分割隔壁構造部 120へ原材料 導入手段 25の一例として導入管を使用した一例の概念図である。導入管の他には、
スライダーなども同様に使用可能である。最外層領域の区分室への原材料導入手段 26も同様に導入管を用いて、多分割隔壁構造部 120の各区分室に導入する。この 中心領域の原材料導入手段 25、最外層領域の原材料導入手段 26に対しては、独 立したスクリューフィーダ一などの原材料導入手段(図 30図示省略)をそれぞれ接続 して原材料粒子 Sa、 Sa - · ·の導入量を制御したり、また各原材料導入手段 25および 26の直径を変えて原材料粒子 Sa、 Sa ' ' 'の導入量を制御して、中心領域と最外層 領域の各区分室に原材料粒子 Sa、 Sa - · ·を導入することができる。 [0367] Among these, (1) a method for devising the means for introducing the raw material into the compartment of the multi-partition partition structure will be described below. As shown in FIG. 30, the raw material particles Sa and Sa '''introduced into the rotating drum by the raw material introducing means such as a screw feeder are further divided into the central region of the dividing partition wall structure 120. Introducing the raw material into the compartment 25, for example, using the introduction pipe in the figure. FIG. 30 is a conceptual diagram of an example in which an introduction pipe is used as an example of the raw material introduction means 25 to the multi-partition partition structure 120 in the rotating drum. Besides the introduction pipe, A slider can be used as well. Similarly, the raw material introduction means 26 into the compartments in the outermost layer region is also introduced into each compartment of the multi-partition partition structure 120 using an introduction pipe. The raw material introduction means 25 (not shown in FIG. 30) such as an independent screw feeder are connected to the raw material introduction means 25 in the central region and the raw material introduction means 26 in the outermost layer region, respectively. Control the introduction amount of raw material particles Sa and Sa '''by changing the diameter of each raw material introduction means 25 and 26, and control the introduction amount of each raw material in the central region and the outermost layer region. Raw material particles Sa, Sa-... can be introduced.
[0368] また、(2)少分割隔壁構造部を、上述のような多分割隔壁構造部と組み合わせて 使用する方法としては、図 14に示したように、多分割隔壁構造部 120の原材料投入 方向側に少分割隔壁構造部 110を連結して設け、この少分割隔壁構造部 110を含 む回転胴 9aの自転によって、多分割隔壁構造部 120の各区分室に原材料 Sを均一 、 自然、かつ自動的に投入することが可能となる方法である。この少分割隔壁構造部 110を多分割隔壁構造部 120と組み合せることにより、多分割隔壁構造部 120の各 区分室に原材料 Sが均一かつ、自動的に導入される原理については以下に詳細に 説明するが、回転胴 9a内の多分割隔壁構造部 120の各区分室に原材料を導入する 方法としては、前記した(1)多分割隔壁構造部の区分室への原材料導入手段をェ 夫する方法に較べて、この(2)少分割隔壁構造部 110を多分割隔壁構造部 120と組 み合わせて使用する方法の方が、原材料導入のための特別な機械装置を導入する 必要がなぐ構造原理も極めて簡便であるためより好ましい。 [0368] (2) As a method of using the small-partition partition structure part in combination with the above-described multi-partition partition structure part, as shown in FIG. A small-divided partition wall structure 110 is connected to the direction side, and by rotating the rotating drum 9a including the small-divided partition wall structure 110, the raw material S is uniformly distributed, natural, In addition, this is a method that can be automatically entered. By combining this small-divided partition wall structure section 110 with the multi-divided partition wall structure section 120, the principle that the raw material S is uniformly and automatically introduced into each compartment of the multi-divided partition wall structure section 120 will be described in detail below. As described above, as a method of introducing the raw material into each compartment of the multi-partition partition structure 120 in the rotary drum 9a, the above-described (1) means for introducing the raw material into the compartment of the multi-partition partition structure is used. Compared with the method, this (2) method of using the small partition wall structure part 110 in combination with the multi-partition wall structure part 120 does not require the introduction of special machinery for the introduction of raw materials. The principle is more preferable because it is very simple.
[0369] この少分割隔壁構造部 110は、先に説明した、「回転胴 9aの径方向(ラジアル方向 )について、多層つまり 2層以上の区分室群から構成される区分室を有する多分割隔 壁構造部 120」とは異なり、「回転胴 9aの径方向(ラジアル方向)について単層つまり 1層のみの区分室群から構成される区分室を有する少分割隔壁構造部 110」である 。図 14に示した回転胴 9a内に多分割隔壁構造部 120として先に説明した 18分割型 多分割隔壁構造部 160を使用し、少分割隔壁構造部 110として図 15に示したように 6分割型の少多分割隔壁構造部 140を使用した場合の、図 14中における α— 断面を図 15に示した。図 15は 6分割型の少分割隔壁構造部の一例の径方向の断 面図である。
[0370] 図 15からわかるように、区分室は最外層領域と呼べばそのように呼べる領域の区分 室群(OS)を構成する単層の各々の区分室 130ο1、 130ο2 * · · 130ο6から構成され ている。図 15に示すように、少分割隔壁構造部 110の α — 断面は略正 6角形の 外郭を有しており、略正 6角形の外郭の内部を分割する形状として、略正 6角形の中 心と 6個の各頂点を結ぶ直線によって、略正 6角形の内部を 6個の略正 3角形の区分 室 130οί 、 130ο2 · ' · 130ο6 (6分割-正 3角形型区分室と略する)に分割している。 [0369] This small-divided partition wall structure 110 is, as described above, "multi-divided partition having a compartment composed of multiple compartments, that is, two or more compartments in the radial direction (radial direction) of the rotating drum 9a. Unlike the “wall structure 120”, the “small partition wall structure 110 having a compartment composed of a single layer, that is, only one layer, in the radial direction (radial direction) of the rotating drum 9a”. The rotary cylinder 9a shown in FIG. 14 uses the 18-partitioned multi-partition structure 160 described above as the multi-partition structure 120 as the multi-partition structure 120, and the six-partition structure 110 as shown in FIG. 15 as the sub-partition structure 110. FIG. 15 shows an α-section in FIG. 14 when the mold with the multi-divided partition structure 140 is used. FIG. 15 is a cross-sectional view in the radial direction of an example of a six-partition small partition structure. [0370] As can be seen from Fig. 15, if the compartment is called the outermost layer region, it is composed of the single-layer compartments 130ο1, 130ο2 * · 130ο6 that constitute the compartment (OS) of the area that can be called. It has been. As shown in FIG. 15, the α — cross section of the subdivided partition wall structure 110 has a substantially regular hexagonal outline, and as a shape that divides the inside of the substantially regular hexagonal outline, The inside of the approximately regular hexagon is divided into six approximately regular triangular compartments 130οί, 130ο2 · '· 130ο6 (abbreviated as 6 divisions-regular triangular compartment) by a straight line connecting the heart and each of the six apexes. It is divided into.
[0371] 前記した多分割隔壁構造部 120をキルンの回転胴 9a内に設け、さらに多分割隔壁 構造部 120の原材料投入方向側に、前記した少分割隔壁構造部 110を連結して設 けることにより、多分割隔壁構造部 120の各区分室に原材料 Sが均一、自然、かつ自 動的に投入される理由としては、以下のような機構に依るものである。 [0371] The multi-partition partition structure 120 described above is provided in the rotary drum 9a of the kiln, and the multi-partition partition structure unit 110 is connected to the raw material input direction side of the multi-partition partition structure 120. Therefore, the reason why the raw material S is uniformly, naturally and automatically charged into each compartment of the multi-partition partition structure 120 is due to the following mechanism.
[0372] 通常、図 25に示したように、キルンの回転胴 9aに隔壁構造部がない場合、または 図 26に示したように、少分割隔壁構造部 110を単独でキルンの回転胴 9a内設けた 場合 (例として、 6分割型少分割隔壁構造部 140)には、投入された原材料粒子 Sa, Sa ' * 'は、回転胴 24または少分割隔壁構造部 140の各区分室 130ol、 130o2 - - - 13 0o6の下底部に積層するだけであり、回転胴 24内、または少分割隔壁構造部 140の 各区分室 130ο1 、 130ο2 · ' · 130ο6内に多くの空きスペースが生じ、充分に回転胴 9 a断面のスペースを充分に有効利用することはできない。 [0372] Usually, as shown in FIG. 25, when the rotary cylinder 9a of the kiln has no partition wall structure, or as shown in FIG. 26, the subdivided partition wall structure 110 is singly inside the rotary cylinder 9a of the kiln. When provided (for example, the 6-partitioned small partition wall structure 140), the charged raw material particles Sa, Sa '*' are separated from the rotary cylinder 24 or the small partition wall structure 140, each compartment 130ol, 130o2. ---13 0o6 is simply laminated on the bottom of the bottom, and there is a lot of free space in the rotary cylinder 24 or in each compartment 130ο1, 130ο2 · '· 130ο6 of the small partition wall structure 140, and it rotates sufficiently. The space in the cross section of the trunk 9a cannot be used effectively.
[0373] また、図 27に示したように、多分割隔壁構造部 120を単独でキルンの回転胴 9a内 に設けた場合 (例として、 18分割型 多分割隔壁構造部 160)においても、投入され た原材料粒子 Sa, Sa ' · ·は 18分割型多分割隔壁構造部 160の各区分室のうちの最 外層領域の区分室群(OS)を構成する区分室(図 16(a)における、 150ol、 150o2、 1 50o3 . . . 150ol8)にのみ導入され、 18分割型多分割隔壁構造部 160の中心領域の 区分室群(CS)を構成する各々の区分室(図 16(a)における、 150cl、 150c2 - - - 1500 6)には原材料粒子 Sa, Sa ' "が導入されないため、回転胴 9a断面のスペースを充 分に有効利用することができなレ、。 In addition, as shown in FIG. 27, when the multi-partition partition structure 120 is provided alone in the kiln rotary cylinder 9a (for example, the 18-part multi-partition partition structure 160), The raw material particles Sa, Sa '· · · are the compartments constituting the compartment (OS) of the outermost layer of the compartments of the 18-partition multi-partition partition structure 160 (in Fig. 16 (a), 150ol, 150o2, 1 50o3 ... 150ol8), each of the compartments constituting the compartment (CS) in the central region of the 18-partition multi-partition partition structure 160 (in FIG. 16 (a), 150cl, 150c2---1500 6) Since the raw material particles Sa, Sa '"are not introduced, the space in the cross section of the rotary cylinder 9a cannot be fully utilized.
[0374] これに対して、発明者らは鋭意研究した結果、図 14に示したように、多分割隔壁構 造部 120をキルンの回転胴 9a内に設け、さらに多分割隔壁構造部 120の原材料投 入方向側に、少分割隔壁構造部 110を連結して設けることにより原材料 Sを各区分
室に均等に導入することができた。その状態を図 28、 29に示した。図 28は 6分割型 少分割隔壁構造部 140と 18分割型多分割隔壁構造部 160を連結させた場合の、 1 8分割型多分割隔壁構造部 160の各区分室内の原材料粒子 Sa、 Sa ' · ·の積層状態 を示す概念図である。図 29は 6分割型少分割隔壁構造部 140と 36分割型多分割隔 壁構造部 220を連結させた場合の、 36分割型多分割隔壁構造部 220の各区分室 内の原材料粒子 Sa、 Sa ' ' 'の積層状態を示す概念図である。図 28、 29にそれぞれ 示したように、断面構造として 18分割型多分割構造部 160、および 36分割型多分割 構造部 220のような断面構造を有する多分割隔壁構造部 120の各区分室に原材料 粒子 Sa、 Sa - · ·を均等に導入しながら、これまで導入が困難であった多分割隔壁構 造部の中心領域の区分室群 (CS)を構成する区分室 (例として、 18分割型多分割隔 壁構造部 160では、図 16aにおける区分室 150cl、 150c2 · ' · 150。6、および 36分 割型多分割隔壁構造部 220では、図 19 (&)にぉける区分室210(:1、 210c2 · ' · 210ο 6 )の各区分室、および中間層領域の区分室群 (MS)を構成する区分室 (例として、 36分割型隔壁構造部 220では、図 19(a)における区分室 210ml、 210m2 · · - 210ml 2)まで原材料粒子 Sa、 Sa ' · ·を揚搬 ·分布させることができ、原材料の積層状態の 軽減に対して、回転胴 9a断面のスペースを極めて有効に利用できることを見出した。 前記した断面構造として 18分割型多分割構造部 160、および 36分割型多分割構 造部 220のような断面構造を有する多分割隔壁構造部 120の各区分室に対して、投 入された原材料粒子 Sa、 Sa ' ' 'が均一に導入される機構としては、一例として、少分 割隔壁構造部 110において、図 15に示したように、略正 6角形外郭の内部を 6分割 した略正 3角形の区分室(6分割-正 3角形型区分室と略する)、一例として 130olは 、キルンの回転月同 9aが回転することにより回転月同 9a内を 1回転するように動き、また 6 分割型-正 3角形区分室、一例として 130olに導入された原材料粒子 Sa、 Sa ' * 'は 、図 26に示したように、回転胴 9aの回転に合わせて区分室 130olの底辺部、あるい は下底角部を順に移動し、キルンの回転胴 9aが 1回転する際に、区分室 130olの略 正 3角形の全ての辺と角を巡りながら、回転胴 9aの加熱'焼成処理物排出口 7方向 に少しずつ移動していくが、その際、 6分割型少分割隔壁構造部 140の後に連続し て前記した 18分割型(160)、 24分割 A型(180)、 24分割 B型(200)、および 36分
割型(220)のいずれかの多分割隔壁構造部を組み合せることにより、 6分割型少分 割隔壁構造部 14の区分室 130ο1、 130ο2、 · ' · 130ο6内を移動する原材料粒子 Sa、 Sa ' "がキルンの回転に伴って回転胴 9a内を 1回転する間に、図 28、 29に示したよ うに、 18分割型(160)、 24分割 A型(180)、 24分割 B型(200)、および 36分割型( 220)の多分割隔壁構造部の最外層領域、中間層領域および中心領域の各区分室 内に均一、かつ自然に導入され、これによつて多分割隔壁構造部 120内の最外層領 域、中間層領域および中心領域を含む全区分室まで原材料粒子 Sa、 Sa ','が揚搬 され、均一に分布されるものである。 [0374] On the other hand, as a result of intensive research, the inventors provided a multi-partition partition structure 120 in the rotary drum 9a of the kiln as shown in FIG. The raw material S is divided into sections by connecting the small partition wall structure 110 on the raw material input direction side. Could be introduced evenly into the room. The state is shown in Figs. Fig. 28 shows the raw material particles Sa, Sa 'in each compartment of the 1 / 8-divided multi-divided partition structure 160 when the 6-divided sub-divided partition structure 140 and 18-divided multi-divided partition structure 160 are connected. It is a conceptual diagram showing a stacked state of. Fig. 29 shows the raw material particles Sa and Sa in the compartments of the 36-partitioned multi-partition structure 220 when the 6-partition subpartition structure 140 and the 36-partition multipartition structure 220 are connected. It is a conceptual diagram which shows the lamination | stacking state of "". As shown in FIGS. 28 and 29, each of the compartments of the multi-partition partition structure 120 having a cross-sectional structure such as an 18-part multi-part structure 160 and a 36-part multi-part structure 220 as the cross-section structure The raw material particles Sa, Sa-... are introduced evenly, but the compartments that make up the compartment (CS) in the central region of the multi-partition partition structure that had previously been difficult to introduce (for example, 18 compartments) In the multi-divided partition wall structure 160, the compartments 150cl, 150c2 · '· 150.6, and 36 in the split-type multi-partition wall structure 220 in FIG. : 210c2 · '· 210ο 6) and the compartments that make up the compartments (MS) in the middle layer area (for example, in the 36-partitioned partition structure 220, in Fig. 19 (a) Division chamber 210ml, 210m2 · ·-210ml 2) Raw material particles Sa, Sa '· can be transported and distributed, reducing the stacking state of raw materials On the other hand, it was found that the space of the cross section of the rotary drum 9a can be used very effectively. As an example of a mechanism for uniformly introducing the raw material particles Sa and Sa ′ ′ ′ into each compartment of the multi-partition partition structure 120, the sub-partition structure 110 shown in FIG. As shown in Fig. 6, the interior of the substantially regular hexagonal shell is divided into 6 sections, which are divided into approximately regular triangles (abbreviated as 6-divided-regular triangle sections). As shown in Fig. 26, the raw material particles Sa, Sa '*' introduced into the 6-split-regular triangular compartment, 130ol as an example, are rotated by one rotation in the rotation month 9a. As shown, the bottom of the compartment 130ol or the bottom base angle When the kiln's rotary drum 9a makes one rotation, the rotary drum 9a is heated in the direction of 7 ' It moves little by little, but at that time, the 18-segment type (160), 24-segment A type (180), 24-segment B type (200), And 36 minutes By combining one of the split-type (220) multi-partition partition structures, the raw material particles Sa, Sa move in the compartments 130ο1, 130ο2, · 130ο6 of the six-partition sub-partition structure 14 As shown in Figs. 28 and 29, while "" rotates once in the rotary drum 9a as the kiln rotates, the 18-split type (160), 24-split A type (180), 24-split B type (200 ), And the 36-partition (220) multi-partition partition structure section are uniformly and naturally introduced into the outermost layer region, the intermediate layer region, and the center region of the multi-partition partition structure portion. The raw material particles Sa, Sa ',' are transported to all compartments including the outermost layer region, the middle layer region, and the central region, and are evenly distributed.
[0376] 以上のように少分割隔壁構造部 110の各区分室から多分割隔壁構造部 120の各 区分室に原材料 Sが揚搬され、均一に分布されるためには、少分割隔壁構造部 110 の一つの区分室断面が多分割隔壁構造部 120の中心領域の区分室群(CS)を構成 する少なくとも一つの区分室と最外層領域の区分室群 (OS)を構成する少なくとも 2 以上の区分室によって構成される一定形状の区分室集合と同一断面を構成すること が最も好ましい。 [0376] As described above, the raw material S is transported from each compartment of the small partition structure 110 to each compartment of the multi-partition structure 120 and distributed uniformly. At least one of the 110 compartments that constitute the compartment (CS) in the central region of the multi-partition partition structure 120 and at least two compartments (OS) that constitute the outermost compartment (OS) Most preferably, it has the same cross section as a set of compartments of a certain shape constituted by compartments.
[0377] 前記した少分割隔壁構造部 110と多分割隔壁構造部 120を組み合わせた構造の 例を図 20および図 21に示した。図 20は図 13に示した回転キルン炉 1内の回転胴 9 の構造の一例を示す一部断面図で、多分割隔壁構造部 120を回転胴 9b内に複数 設けた例を示す。図 20に示したように、キルンの回転胴 9b内に、必要に応じて多分 割隔壁構造部 120を複数個設置することもできる。図 20は、回転胴内の前、中、後 の 3箇所に多分割隔壁構造部 120を設けた一例)また図 21は図 13に示した回転キ ルン炉 1内の回転胴 9の構造の一例を示す一部断面図で、多分割隔壁構造部 120 を回転月同 9c内の大部分の領域に設けた例を示す。本図 21に示したように、回転月同 9 cの原材料供給口 2の付近に少分割隔壁構造部 110を設けた後に、回転胴 9cの加 熱 ·焼成処理物排出口 8付近まで連続して多分割隔壁構造部 120を組み合せて設 けることにより、回転月同 9cのほぼ全領域を多分割隔壁構造部とすることができる。 [0377] FIGS. 20 and 21 show examples of structures in which the above-described small-divided partition wall structure portion 110 and multi-partition partition wall structure portion 120 are combined. FIG. 20 is a partial sectional view showing an example of the structure of the rotary drum 9 in the rotary kiln furnace 1 shown in FIG. 13, and shows an example in which a plurality of multi-partition partition wall structure portions 120 are provided in the rotary drum 9b. As shown in FIG. 20, a plurality of divided partition wall structures 120 can be installed in the kiln's rotary drum 9b as required. Fig. 20 shows an example in which multi-partitioned partition wall structure 120 is provided at three locations in the front, middle and rear of the rotary drum.) Fig. 21 shows the structure of rotary drum 9 in rotary kiln furnace 1 shown in Fig. 13. It is a partial sectional view showing an example, and shows an example in which the multi-partitioned partition wall structure portion 120 is provided in the most area in the rotating month 9c. As shown in Fig. 21, after the small partition wall structure 110 is provided in the vicinity of the raw material supply port 2 of the rotary month 9c, it continues until the heating / fired product discharge port 8 of the rotary barrel 9c. Thus, by providing the multi-partition partition structure 120 in combination, almost the entire region of the rotation month 9c can be made into the multi-partition partition structure.
[0378] また、図 20に示したようにキルンの回転胴 9b内に、少分割隔壁構造部 110と多分 割隔壁構造部 120を組み合せた構造を複数個所設ける場合においては、少分割隔 壁構造部 110と連結させる多分割隔壁構造 120は、複数種類の多分割隔壁構造部
110の構造の中から 1種類の多分割隔壁構造部(例として、 18分割型(160)、 24分 割 A型(180)、 24分割 B型(200)、および 36分割型(220)のいずれ力、 1種類)を選 定して用いても良いが、前記した複数種類の多分割隔壁構造部の構造の中から 2種 類以上の多分割隔壁構造部(例えば、 18分割型(160)、 24分割 A型(180)、 24分 割 B型(200)、および 36分割型(220)の中の 2種類以上)を任意に選択して少分割 隔壁構造部 110と組み合せて用いても良!/、。 [0378] In addition, as shown in FIG. 20, when a plurality of structures in which the small partition wall structure portion 110 and the multiple partition wall structure portion 120 are combined are provided in the rotary drum 9b of the kiln, the small partition wall structure is used. The multi-partition partition structure 120 connected to the section 110 is a plurality of types of multi-partition partition structures. One type of multi-partition partition structure from 110 structures (for example, 18-part type (160), 24-part type A (180), 24-part type B (200), and 36-part type (220) Any one kind of force may be selected and used. However, two or more types of multi-partition partition structures (for example, 18-partition type (160 ), 24 split A type (180), 24 split B type (200), 36 split type (220) or more) Also good!
[0379] また、図 20および図 21に示したように、本発明における少分割隔壁構造部 110 の回転胴軸長方向の長さ L1は、少分割隔壁構造部 110が原材料 Sを安定して保持 しながら回転し、かつ少分割隔壁構造部 110に後続して連結される多分割隔壁構造 部 120に対して原材料 Sを安定、かつ均一に導入する必要があるため、 0. ;!〜 5. 0 mであることが好ましく、 0. 3〜3. Omであることが特に好ましい。少分割隔壁構造部 110の回転胴軸長方向の長さ L1が 0. lm未満である場合には、少分割隔壁構造部 110が投入された原材料 Sを充分に安定、かつ均一に保持して攪拌することが困難 であるため好ましくない。また少分割隔壁構造部 110の回転胴軸長方向の長さ L1が 5. Omを越える場合には、投入された原材料は少分割隔壁構造部 110に設けられた 各区分室内で充分に安定、かつ均一に保持されており、無駄となるため好ましくないFurther, as shown in FIG. 20 and FIG. 21, the length L1 of the small-divided partition wall structure portion 110 in the rotational barrel axis length direction of the present invention is such that the small-divided partition wall structure portion 110 stabilizes the raw material S. Since the raw material S needs to be stably and uniformly introduced into the multi-partition partition structure 120 that rotates while being held and is connected to the sub-partition structure 110 that follows the small-partition partition structure 110, 0.; 0 m is preferable, and 0.3 to 3. Om is particularly preferable. When the length L1 of the small partition wall structure part 110 in the longitudinal axis direction of the rotary cylinder is less than 0.1 lm, the raw material S into which the small partition wall structure part 110 is charged is held sufficiently stably and uniformly. It is not preferable because it is difficult to stir. If the length L1 of the small partition wall structure 110 in the longitudinal direction of the rotary cylinder exceeds 5. Om, the input raw materials are sufficiently stable in each compartment provided in the small partition wall structure 110. It is not preferable because it is held uniformly and wasted.
〇 Yes
[0380] また、図 20および図 21に示したように、本発明における多分割隔壁構造部 120の 回転胴軸長方向の長さ L2は、原材料 Sを加熱'焼成処理するために必要な時間の 間、多分割隔壁構造部 120内に原材料 Sを保持する必要があるため、 0. 3〜50mで あることが好ましぐ 0. 5〜30mであることが特に好ましい。多分割隔壁構造部 120 の回転月同軸長方向の長さ L2が、 0. 3m未満である場合、多分割隔壁構造部 120に おける原材料 Sの加熱 ·焼成時間を確保することが困難なため好ましくない。また、多 分割隔壁構造部 120の回転胴軸長方向の長さ L2が、 50mを超える場合はあまり考 えられない。これは、その長さがあれば、投入された原材料 Sを多分割隔壁構造部 1 20の区間内で充分に加熱 ·焼成処理することができるので、それ以上の長さにするこ とは無駄となるためであるからである。 Further, as shown in FIG. 20 and FIG. 21, the length L2 of the multi-partition partition wall structure portion 120 of the present invention in the rotational barrel axis length direction is the time required for heating and firing the raw material S In the meantime, since it is necessary to hold the raw material S in the multi-partition partition wall structure 120, the thickness is preferably 0.3 to 50 m, and particularly preferably 0.5 to 30 m. When the length L2 of the multi-partition partition wall structure portion 120 in the rotational moon coaxial length direction is less than 0.3 m, it is preferable because it is difficult to secure the heating and firing time of the raw material S in the multi-partition partition wall structure portion 120. Absent. In addition, it is unlikely that the length L2 of the multi-partition partition wall structure portion 120 in the length direction of the rotary cylinder exceeds 50 m. If this length is sufficient, the input raw material S can be sufficiently heated and fired in the section of the multi-partition partition structure 120, so it is useless to make it longer. It is because it becomes.
[0381] また、図 16(a)、 17(a),図 18(a)、図 19(a)に例示したように、本発明における多分割
隔壁構造部 120に設けられた区分室を構成する 1辺の大きさ L3は、キルンの回転月同 9a、 9b、 9cの大きさ(直径)を基準にして定められる略合同正 3角形、略合同 4角形、 略合同 6角形および略合同菱形などによって略均等に分割された形状を有している ため、基本的に各区分室を構成する 1辺の大きさ L3は回転胴 9a、 9b、 9cの大きさ( 直径)に略依存して決定されるが、その際に、多分割隔壁構造部 120の各区分室を 構成する 1辺の大きさ L3は 15mm以上とすることが好ましぐ 50mm以上とすることが 特に好ましい。多分割隔壁構造部 120の各区分室を構成する 1辺の大きさ L3が 15 mm未満では、原材料 Sが造粒成形されたものである場合に、多分割隔壁構造部 12 0の各区分室内に原材料 Sが導入され難くなること、また分割された区分室の大きさ が過小であり、多分割隔壁構造部 120を加工 ·製造することが困難となるために好ま しくない。 [0381] Further, as illustrated in FIGS. 16 (a), 17 (a), 18 (a), and 19 (a), the multi-division in the present invention is performed. The size L3 of one side that constitutes the compartment provided in the bulkhead structure 120 is a substantially congruent triangular shape, which is determined based on the size (diameter) of the rotation month 9a, 9b, 9c of the kiln. Since it has a shape that is divided approximately evenly by a congruent quadrangle, a substantially congruent hexagon, a substantially congruent rhombus, etc., the size L3 of each side that basically constitutes each compartment is determined by the rotating cylinders 9a, 9b, Although it is determined depending on the size (diameter) of 9c, it is preferable that the size L3 of each side constituting each compartment of the multi-partition partition structure 120 is 15 mm or more. It is particularly preferable to set it to 50 mm or more. When the size L3 of each side constituting each compartment of the multi-partition partition structure 120 is less than 15 mm, when the raw material S is granulated, each compartment of the multi-partition partition structure 120 It is not preferable because the raw material S is difficult to be introduced into the wall and the size of the divided compartments is too small, making it difficult to process and manufacture the multi-partition partition wall structure 120.
[0382] また、本発明における多分割隔壁構造部 120に設けられた区分室を構成する 1辺 の大きさ L3は 2. Om以下とすることが好ましぐ 1. 5m以下とすることが特に好ましい 。多分割隔壁構造部 120の各区分室を構成する 1辺の大きさ L3が 2. Omを超える場 合には、各区分室によって構成される多分割隔壁構造部 120を含むキルンの回転 胴 9a、 9b、 9cの大きさ(直径)が 8. Omを超える過大な装置となり、回転胴 9a、 9b、 9 c内に投入された原材料の積層 '堆積状態を 2. Om以下 (L3)で充分に軽減すること ができ、それ以上にすることは無駄となるためであるからである。 [0382] In addition, it is preferable that the size L3 of one side constituting the compartment provided in the multi-partition partition wall structure 120 in the present invention is 2. Om or less, particularly 1.5m or less. Preferred. When the size L3 of each side constituting each compartment of the multi-partition partition structure 120 exceeds 2. Om, the kiln's rotating drum including the multi-partition partition structure 120 composed of each compartment 9a , 9b, 9c oversized by 8 mm, and the stacking of raw materials put into the rotary cylinders 9a, 9b, 9 c is sufficient. 2. Om or less (L3) is sufficient This is because it can be alleviated, and more than that is useless.
[0383] 本発明における多分割隔壁構造部 120の構造としては、キルンの回転胴が、その 内部に 15以上の区分室であって、回転胴の径方向に最外層領域の区分室群(OS) と中心領域の区分室群( CS)の少なくとも 2層以上の区分室群から構成されている区 分室を設けた多分割隔壁構造部 120であることが好ましぐ図 16a、図 17a、図 18a、 図 19aに例示したように、前記した 18分割型(160)、 24分割 A型(180)、 24分割 B 型(200)、および 36分割型(220)のような特長的な構造を有して!/、れば特に好まし いが、多分割隔壁構造部 120を形成する方法については、特に限定はなぐ各種方 法を用いることができる力 一例としては、本発明における 18分割型(160)、 24分割 A型(180)、 24分割 B型(200)、および 36分割型(220)のような多分割隔壁構造部 120を形成する方法の一例を図 22に示した。図 22は多分割隔壁構造部 120を構成
する区分室をそれぞれ個別に作製した後、各区分室を接合して多分割隔壁構造部 1 20を形成する一例であり、図 22(a)は分解断面図、図 22(b)は接合後の断面図をそ れぞれ示す。本例では 18分割型多分割隔壁構造部 160について、多分割隔壁構 造を構成する各区分室(例として、最外層領域の区分室 150ο1、 150ο2 · ' · 150ο12、 および中心領域の区分室 150cl 、 150c2 - - - 15006 )をそれぞれ個別に形成した後 に、各区分室を接合させて所望の多分割隔壁構造部 120 (本例では、 18分割型隔 壁構造部 160)を形成することができることを示した。また、図 23には区分室集合の 内側に仕切を入れて各区分室に分割するようにして多分割隔壁構造部を形成する 方法の一例を示した。図 23は区分室集合の内側に仕切を入れて各区分室に分割す るようにして多分割隔壁構造部 120を形成する一例であり、図 23 (a)は組み立て途 中断面図、図 23 (b)は組み立て後の断面図をそれぞれ示す。図 23に示したように、 6分割型少分割隔壁構造部 14を基本構造として、 6分割型少分割隔壁構造部 14の 各区分室 130ο 1 、 130ο2、 · ' · 130ο6に対して、多分割用仕切(一例として、 18分割用 仕切 23)を導入することによって、所望の多分割隔壁構造部 120 (—例として、 18分 割型多分割隔壁構造部 160)を形成することができる。 [0383] In the structure of the multi-partition partition wall structure 120 according to the present invention, the rotary cylinder of the kiln has 15 or more compartments inside thereof, and the compartments (OS) in the outermost layer region in the radial direction of the rotary drum. Figure 16a, Figure 17a, Figure 16a, Figure 17a, Figure As illustrated in Fig. 18a and Fig. 19a, characteristic structures such as the above-mentioned 18-divided type (160), 24-divided A-type (180), 24-divided B-type (200), and 36-divided type (220) Although it is particularly preferable if it has! /, As a method for forming the multi-partition partition wall structure 120, there is no particular limitation on the force that can use various methods. (160), 24-split A-type (180), 24-split B-type (200), and multi-split partition structure 120 such as 36-split type (220) Shows an example in Figure 22. 22 shows the multi-partition partition structure 120. FIG. 22 (a) is an exploded sectional view, and FIG. 22 (b) is after joining. Each cross-sectional view is shown. In this example, for the 18-divided multi-partition partition structure 160, each compartment that constitutes the multi-partition partition structure (for example, the outermost compartment compartments 150ο1, 150ο2 · '· 150ο12, and the central compartment compartment 150cl) , 150c2---15006), and then forming the desired multi-partition partition structure 120 (in this example, the 18-partition partition structure 160) by joining the compartments. I showed that I can do it. FIG. 23 shows an example of a method for forming the multi-partition partition structure by dividing the compartments by putting partitions inside the compartments. Fig. 23 shows an example of forming the multi-partitioned partition wall structure 120 by partitioning inside the compartment assembly and dividing it into compartments. Fig. 23 (a) is a cross-sectional view during assembly, and Fig. 23 (b) shows a sectional view after assembly. As shown in Fig. 23, the basic structure is the 6-divided subdivided partition wall structure 14, and the multi-partition for each of the compartments 130ο 1, 130ο2, · 130ο6 of the 6-divided subdivided partition structure 14 By introducing a partition (for example, 18-divided partition 23), a desired multi-divided partition wall structure 120 (as an example, 18-divided multi-partition partition structure 160) can be formed.
また、図 14、図 20、図 21に示した、回転胴内の全体ではなぐ一部分に少分割隔 壁構造部 110と多分割隔壁構造部 120を設ける場合の回転胴 9a、 9b、 9cの断面形 状としては、少分割隔壁構造部 110および多分割隔壁構造部 120の外郭の断面形 状と同じくすること力 S好しく、例として、図 15に示したように、少分割隔壁構造部 110 の外郭の断面形状が略正 6角形型の 6分割型少分割隔壁構造部 140であり、さらに 多分割隔壁構造部 120の外郭の断面形状も、図 16a、図 17a、図 18a、図 19aにそ れぞれ例示したように、外郭の断面形状が略正 6角形型の 18分割型(160)、 24分 割 A型(180)、 24分割 B型(200)、および 36分割型(220)の多分割隔壁構造部 12 0である場合には、回転胴 9a、 9b、 9cの外郭の断面形状も少分割隔壁構造部 110、 および多分割隔壁構造部 120の外郭の断面形状と同じく略正 6角形型とすることが 特に好ましい。これは少分割隔壁構造部 110および多分割隔壁構造部 120の外郭 の断面形状がそれぞれ略正 6角形型を有している力 回転胴 9a、 9b、 9cの断面形 状も少分割隔壁構造部 110や多分割隔壁構造部 120の外郭の断面形状と同じ略正
6角形とすることにより、回転胴 9、 9a、 9bと少分割隔壁構造部 110、および多分割隔 壁構造部 120を連結する際に、回転胴 9a、 9b、 9cと少分割隔壁構造部 110、およ び多分割隔壁構造部 120の間に隙間を生じることなく連結でき、これによつて、回転 胴 9a、 9b、 9c内に投入した全ての原材料 Sを、少分割隔壁構造部 110を通じて多分 割隔壁構造 120の各区分室に導入することができるためである。 14, 20, and 21, the cross sections of the rotary drums 9 a, 9 b, and 9 c when the small partition wall structure part 110 and the multi-partition partition wall structure part 120 are provided in a portion that is not entirely within the rotary drum. The shape is the same as the cross-sectional shape of the outline of the small partition structure 110 and the multi-partition structure 120. For example, as shown in FIG. The cross-sectional shape of the outer shell is a substantially regular hexagonal six-partitioned subdivided partition wall structure 140, and the cross-sectional shape of the outer shell of the multi-partition partition wall structure 120 is also shown in FIGS. As shown in the examples, the cross-sectional shape of the outer shell is an approximately regular hexagonal 18-segment type (160), 24-divided A-type (180), 24-divided B-type (200), and 36-divided type (220 ) Of the multi-partition partition structure part 120, the cross-sectional shape of the outer shell of the rotary cylinders 9a, 9b, 9c is also the small-partition partition structure part 110, and the multi-partition partition structure part 120. It is particularly preferred to Guo sectional shape as well as substantially regular hexagonal shape. This is a force in which the outer cross-sectional shape of the small partition wall structure part 110 and the multi-partition wall structure part 120 has a substantially regular hexagonal shape. The cross-sectional shapes of the rotary cylinders 9a, 9b and 9c are also the small partition wall structure part. 110 and multi-partition partition structure 120 By using hexagons, the rotating cylinders 9a, 9b, 9c and the subdivided partition wall structure part 110 are connected to the rotating cylinders 9, 9a, 9b and the subdivided partition wall structure part 110, and the multi-partition partition wall structure part 120. , And the multi-partitioned partition wall structure 120 without any gaps, so that all the raw materials S introduced into the rotary drums 9a, 9b, 9c can be connected through the small-partitioned partition structure 110. This is because the partition wall structure 120 can be introduced into each compartment.
[0385] 図 31は、前記した図 13と基本的には同じ構成の、本発明の回転キルン炉 1を備え た熱処理装置の別の一例の構成図であり、主に加熱手段に関する構成要素を説明 する構成図である。図 32に同回転キルン炉の回転胴の断面を示した。本例は、 18 分割型多分割隔壁構造部(160)を示している。この例では既述の図 13の構成を一 部変更して回転胴 9の中心領域の区分室群の回転中心部の付近の隔壁の構造を変 化させて、中心部の隔壁の一部が管状部材 27の管壁によって構成されるようになつ ている。管状部材 27は図 31中では理解しやすいように実線にて表記している。結局 この管状部材 27の内部が回転胴内空洞 Vを構成することになる。この空洞に後述の 第 2の加熱手段 5bを収容することにより、回転キルン炉 1に第 1の加熱手段 5a、およ び第 2の加熱手段 5bの 2種類の加熱手段を備えた熱処理装置を構成できることにな る。またこのように、その回転胴内空洞部を設けるために、少なくとも回転胴を貫通す るように管状部材 27を配置し、その管壁を多分割隔壁構造部の隔壁の一部とするこ とは、第 2の加熱手段から中心領域の区分室群への加熱の熱伝達上も好ましい。 [0385] Fig. 31 is a configuration diagram of another example of a heat treatment apparatus including the rotary kiln furnace 1 of the present invention basically having the same configuration as Fig. 13 described above, and mainly includes components relating to the heating means. It is a block diagram to explain. Fig. 32 shows a cross section of the rotary drum of the same rotary kiln furnace. This example shows an 18-partitioned multi-partition partition structure (160). In this example, the configuration of FIG. 13 described above is partly changed to change the structure of the partition wall in the central region of the rotary drum 9 near the center of rotation of the divided chamber group, and a part of the partition wall in the center portion is changed. The tubular member 27 is constituted by the tube wall. The tubular member 27 is indicated by a solid line in FIG. 31 for easy understanding. Eventually, the inside of the tubular member 27 constitutes a rotary cylinder cavity V. By accommodating the second heating means 5b, which will be described later, in this cavity, a heat treatment apparatus provided with two types of heating means, the first heating means 5a and the second heating means 5b, in the rotary kiln furnace 1 is provided. It can be configured. Further, in this way, in order to provide the cavity inside the rotating drum, the tubular member 27 is disposed so as to penetrate at least the rotating drum, and the tube wall is made a part of the partition wall of the multi-partition partition wall structure. Is also preferable in terms of heat transfer from the second heating means to the compartments in the central region.
[0386] このように第 2の加熱手段 5bを図 31に例示したように有すると、最外層領域の区分 室群(OS)と中心領域の区分室群(CS)を有する多分割隔壁構造部 120を回転キル ン炉 1内の回転胴 9 (図 33では、回転胴 9b)として設けた場合に、多分割隔壁構造部 120の中心領域の区分室群(CS)対して充分、かつ均等な熱を加えて加熱 ·焼成効 率を向上させること力 Sできる。さらに多分割隔壁構造部 120の各区分室に導入された 原材料に対して加熱 ·焼成の温度を精密に制御することが要求される場合に、回転 胴 9の外側と内側の両側にそれぞれ設けられた加熱手段 5aおよび 5bによって、加熱 •焼成温度を均等に、かつ精度良く制御することができ、より好ましい態様となる。 When the second heating means 5b is provided as illustrated in FIG. 31 as described above, the multi-partition partition wall structure portion having the outermost layer region compartment (OS) and the central region compartment (CS) is provided. When 120 is provided as the rotary drum 9 in the rotary kiln furnace 1 (rotary drum 9b in FIG. 33), it is sufficient and equal to the division chamber group (CS) in the central region of the multi-partition partition structure 120. It is possible to improve the heating and firing efficiency by applying heat. Furthermore, when it is required to precisely control the heating and firing temperature for the raw material introduced into each compartment of the multi-partition partition structure 120, it is provided on both the outer and inner sides of the rotary drum 9 respectively. The heating means 5a and 5b can control the heating and firing temperature uniformly and accurately, which is a more preferable embodiment.
[0387] 結局、回転胴 9を加熱する方法として、回転胴 9の外側から間接的に加熱する、先 に説明した第 1の加熱手段としての間接的(外側)加熱手段 5aと、回転胴 9の内側か
ら加熱する上記した第 2の加熱手段としての間接的(内側)加熱手段 5bを併用して、 回転胴 9の外側と内側の両方力も加熱することが非常に好ましい。 [0387] After all, as a method of heating the rotating drum 9, the indirect (outside) heating means 5a as the first heating means described above, which is indirectly heated from the outside of the rotating drum 9, and the rotating drum 9 Inside It is very preferable to use both the indirect (inner side) heating means 5b as the second heating means to heat both the outer and inner forces of the rotary drum 9 together.
[0388] また図 33は、前記した加熱手段を収容するための管状部材 27を回転胴 9内に設 けた別の一例の構成図を示す。この例では、既述の図 20に例示したように、複数組 の少分割隔壁構造部 110と多分割隔壁構造部 120を組み合わせた構造を使用した 構成において、第 2の加熱手段 5bを収容するために管状部材 27を適用した一例を 示す構成図である。図 31、および図 33共に、図中、既述の図 13と同じ符号の構成 要素については説明を省略している。本例においても管状部材 27の管内に加熱手 段を設けることができるので、上述の図 31に示した例と同様の効果が期待できること はもちろんのことである。 [0388] Fig. 33 shows a configuration diagram of another example in which the tubular member 27 for housing the heating means described above is provided in the rotary drum 9. In this example, as illustrated in FIG. 20 described above, the second heating means 5b is accommodated in a configuration using a combination of a plurality of sets of the small partition wall structure portion 110 and the multiple partition wall structure portion 120. FIG. 6 is a configuration diagram showing an example in which a tubular member 27 is applied for this purpose. In both FIG. 31 and FIG. 33, description of components having the same reference numerals as those in FIG. 13 is omitted. Also in this example, since the heating means can be provided in the tube of the tubular member 27, it is needless to say that the same effect as the example shown in FIG. 31 described above can be expected.
[0389] 前記した管状部材 27内に備えられる間接的(内側)加熱手段 5bとしては、前記した 間接的(外側)加熱手段 5aと同様に、電気的な加熱、灯油や重油の燃焼ガスによる 加熱、ガスバーナーによる加熱の他に、既存の焼却設備から排出される燃焼ガスに よる加熱や水蒸気による加熱など、各種加熱手段を用いることができる。また、図 31 に例示したように、熱風循環手段 7の一例である循環ブロア一によつて、図 24に示し たような本発明の回転キルン炉 1を備えた熱処理装置の前工程(乾燥工程、 1次焼成 工程など)からの燃焼排ガスも加熱手段として供給することもできる。 [0389] As the indirect (inner) heating means 5b provided in the tubular member 27, as in the indirect (outer) heating means 5a, electric heating, heating with a combustion gas of kerosene or heavy oil is performed. In addition to heating with a gas burner, various heating means such as heating with combustion gas discharged from existing incineration facilities and heating with water vapor can be used. In addition, as illustrated in FIG. 31, by using a circulating blower that is an example of the hot air circulating means 7, the pre-process (drying process) of the heat treatment apparatus provided with the rotary kiln furnace 1 of the present invention as shown in FIG. Combustion exhaust gas from the primary firing step etc.) can also be supplied as a heating means.
[0390] 回転胴 9を内側から加熱するための加熱手段 5bを収容する管状部材 27の回転月同 内空洞 Vについては、加熱手段 5bを収容できれば回転胴 9内の空洞部の前後の口 間で閉口して閉じた空間とすることが次に説明するような理由のため好ましい。 [0390] As for the inner cavity V of the rotating member 27 of the tubular member 27 that accommodates the heating means 5b for heating the rotating drum 9 from the inside, if the heating means 5b can be accommodated, the front and back of the cavity in the rotating drum 9 It is preferable for the reason described below that the closed space is closed.
[0391] すなわち、前記したように、多分割隔壁構造部 120の各区分室 (例えば、図 32の最 外層領域の区分室 150ο1、 150ο2 · ' · 150ο12、および中心領域の区分室(150cl、 1 50c2 · · · 150c6 )に対して導入された原材料の燃焼効率を向上させるために各区分 室に対して多くの空気を導入することが必要であるため、回転胴 9の前後部には空気 導入、通過の障害になる装置、配管等ができるだけ配置されないようにすることが好 ましい。 [0391] That is, as described above, each compartment of the multi-partition partition wall structure 120 (for example, the compartments 150ο1, 150ο2 · 150ο12 in the outermost region of FIG. 32, and the compartments (150cl, 1 In order to improve the combustion efficiency of the raw materials introduced to 50c2 (150c6), it is necessary to introduce a large amount of air into each compartment, so air is introduced into the front and rear parts of the rotary drum 9. It is preferable that equipment, piping, etc. that obstruct the passage be placed as little as possible.
[0392] 特に回転胴 9の排気側、すなわち排気手段 4が備わる側、レ、レ、かえれば原材料供 給口 2側の回転胴 9付近はもともとスクリューフィーダ一等の原材料投入手段が不可
避的に設けられており。そのような障害物を更に配置することをできるだけ避けること が好ましいのである。この点で先に説明した電気的な加熱手段をとつた場合、電気の 供給経路は比較的小さくそのような障害物にならないので好ましい。 [0392] In particular, the exhaust side of the rotary drum 9, that is, the side provided with the exhaust means 4, les, les, and in other words, the raw material supply port 2 side of the rotary drum 9 and the vicinity of the rotary drum 9 originally cannot be a raw material input means such as a screw feeder. It is provided for avoidance. It is preferable to avoid further placement of such obstacles as much as possible. In this regard, when the electric heating means described above is used, the electricity supply path is relatively small and is not such an obstacle, which is preferable.
[0393] しかし、加熱手段としての経済効率を考えると燃焼排ガス等の加熱媒体を使用する 加熱手段を採用することがより好ましい。そのような場合は加熱媒体が管状部材 27 の回転月同内空洞 Vに入り口から入り、回転月同内空洞 Vを通過して中心領域の区分室 に熱を伝達排出し、出口から出ていくという構成をとる必要がある。このような構造を 単純に考えれば回転胴内空洞 Vと連通した加熱媒体供給用配管及び加熱媒体排 出用配管を有する構成となる。すなわち管状部材 27として吸気側から管状部材 27 排気側に貫通する加熱媒体用配管が回転キルン炉の中心軸方向を貫通して設けら れることになる。 [0393] However, in view of economic efficiency as a heating means, it is more preferable to employ a heating means that uses a heating medium such as combustion exhaust gas. In such a case, the heating medium enters the rotary month inner cavity V of the tubular member 27 from the entrance, passes through the rotation month inner cavity V, transfers heat to the compartment in the central region, and exits from the outlet. It is necessary to take the configuration. If such a structure is simply considered, a structure having a heating medium supply pipe and a heating medium discharge pipe communicating with the cavity V in the rotating drum is obtained. That is, as the tubular member 27, a heating medium pipe penetrating from the intake side to the tubular member 27 exhaust side is provided so as to penetrate the central axis direction of the rotary kiln furnace.
[0394] し力、しこのような貫通する配管が特に回転胴 9排気側に存在することは先に説明し たように空気導入、通過の障害物となるのであまり好ましくない。一つの方策としては 回転胴内空洞部を出たあとの加熱媒体用配管を細くするようなことでそのような障害 の程度をさげることは可能ではある。 [0394] The presence of such a through-pipe pipe, particularly on the exhaust side of the rotary drum 9 is not preferable because it becomes an obstacle for air introduction and passage as described above. As one measure, it is possible to reduce the degree of such obstacles by narrowing the heating medium pipe after exiting the cavity inside the rotating drum.
[0395] また、そのような空気導入、通過の障害物となることをできるだけ避ける点で加熱媒 体用配管を管状部材 27の吸気側にのみ設けることも可能である。この場合加熱媒体 用配管は 2重構造をとることになる。すなわち同心円的な 2重管構造や単純な並列し た 2本管構造をとつて回転胴内空洞 Vに接続されて、加熱媒体供給用配管は空洞 V 内で特に回転胴 9の近傍で開口し、加熱媒体を放出し、空洞部内の中心部で開口し た加熱媒体排出用配管へ放熱後媒体が吸引される構造が挙げられる。他にもいわ ゆる効率的な間接加熱のための公知の迷路的配管構造や熱伝導を良好にするフィ ン構造等を適宜組み合わせて回転胴内空洞部に配置することができる。 [0395] It is also possible to provide a heating medium pipe only on the intake side of the tubular member 27 in order to avoid such an air introduction and passage obstacle as much as possible. In this case, the heating medium pipe has a double structure. That is, a concentric double pipe structure or a simple parallel double pipe structure is connected to the cavity V in the rotating cylinder, and the heating medium supply pipe opens in the cavity V, particularly near the rotating cylinder 9. Further, there is a structure in which the heating medium is discharged and the heat-radiated medium is sucked into the heating medium discharge pipe opened at the center in the cavity. In addition, a so-called maze-like piping structure for efficient indirect heating, a fin structure for improving heat conduction, and the like can be appropriately combined and arranged in the hollow portion of the rotating drum.
[0396] また、以上の図示した例では管状部材 27として円柱状および六角柱状のものを例 として説明してきたが、本発明における管状部材 27の断面形状としては、特に限定 はなぐ略円形状、略楕円形状、略三角形以上の略多角形状、略星型などのいずれ 力、の断面形状の管状部材を任意に選択して用いることができる。 [0396] In the above illustrated example, the tubular member 27 has been described as an example of a cylindrical shape and a hexagonal column shape. However, the cross-sectional shape of the tubular member 27 in the present invention is not particularly limited, A tubular member having a cross-sectional shape of any shape such as a substantially elliptical shape, a substantially polygonal shape that is substantially triangular or more, or a substantially star shape can be selected and used.
[0397] 前記した管状部材 27の大きさ(直径)としては、 0. 03m以上、かつ回転キルン炉 1
の回転胴 9の直径の 0. 34倍以下とすることが好ましぐ 0. lm以上、かつ回転胴の 直径の 0. 1倍未満とすることが特に好ましい。 [0397] The tubular member 27 has a size (diameter) of 0.03 m or more, and a rotary kiln furnace 1 The diameter of the rotating cylinder 9 is preferably 0.34 times or less, and more preferably 0.1 lm or more and less than 0.1 times the diameter of the rotating cylinder.
[0398] これは、前記した管状部材 27の内部に間接的(内側)加熱手段 5bを備える場合に 、管状部材 27の直径が 0. 03m未満であると、管状部材 27の内部に加熱手段 5bを 導入することが困難になるため好ましくなぐ他方、管状部材 27の直径が回転胴 9の 直径の 0. 34倍を超えると、回転胴 9の断面において概ね均等になるように分割され た多分割隔壁構造部 120の各区分室のうち、中心領域の区分室(一例として、図 32 に示した 150cl 、 150c2 - - - 15006の区分室)の断面の一部が管状部材 27に占めら れ、中心領域の区分室の断面積が著しく減少して多分割隔壁構造部 120の各区分 室の均等性が著しく崩れるために、最外層領域の区分室と中心領域の区分室にお いて、原材料 Sの加熱 ·焼成の状態が不均一になる恐れがあり、また多分割隔壁構 造部 120の中心領域の区分室(一例として、図 32に示した 150cl 、 150c2 ' · · 15(^6 の区分室)の断面積が減少することによって、中心領域の区分室に導入された原材 料 Sの積層を充分に軽減することができずに、原材料の未燃カーボン (煤)の燃焼除 去が不充分となる恐れがあるためである。 [0398] In the case where the indirect (inner side) heating means 5b is provided inside the tubular member 27, if the diameter of the tubular member 27 is less than 0.03 m, the heating means 5b is provided inside the tubular member 27. On the other hand, when the diameter of the tubular member 27 exceeds 0.34 times the diameter of the rotary drum 9, it is divided into multiple sections so that the cross section of the rotary drum 9 is almost uniform. Among the compartments of the partition wall structure part 120, a part of the cross section of the compartment in the central region (for example, the compartments 150cl and 150c2---15006 shown in FIG. 32) is occupied by the tubular member 27, Since the cross-sectional area of the compartment in the central region is significantly reduced and the uniformity of the compartments of the multi-partition partition structure 120 is significantly disrupted, the raw material S in the compartment in the outermost region and the compartment in the central region Heating and firing may be uneven, and the center of the multi-partition partition structure 120 As a result of the reduction of the cross-sectional area of the area compartment (150cl, 150c2 '· 15 (^ 6 compartment shown in Fig. 32), the raw material S introduced into the central compartment This is because the stacking cannot be sufficiently reduced, and there is a possibility that the unburned carbon (soot) as a raw material may not be sufficiently removed by combustion.
[0399] また、本発明における回転キルン炉 1に備えられる回転胴 9すなわち、少分割隔壁 構造部 110、多分割隔壁構造部 120や管状部材 27等の他の部分を構成する材料 の材質としては、加熱 ·焼成処理に耐える材質で構成されることが必要であり、加熱- 焼成時の温度として 1000°C程度の温度に耐え得る材質であることが特に好ましい。 また、有機成分を含有する原材料を加熱'焼成処理する際に、酸性やアルカリ性の 成分が発生することがあるため、酸性やアルカリ性に耐え得る材質で構成されること が極めて好ましぐステンレスやチタン等の耐熱、耐腐食性を有する鋼材が好ましい [0399] Further, as the material of the rotary drum 9 provided in the rotary kiln furnace 1 in the present invention, that is, the material constituting the other parts such as the small partition wall structure part 110, the multiple partition wall structure part 120, the tubular member 27, etc. It is necessary to be made of a material that can withstand the heating and baking treatment, and a material that can withstand a temperature of about 1000 ° C. as the temperature during heating and baking is particularly preferable. In addition, when raw materials containing organic components are heated and baked, acidic and alkaline components may be generated. Therefore, it is highly preferred to be made of a material that can withstand acidic and alkaline properties. Steel materials with heat resistance and corrosion resistance such as
〇 Yes
[0400] また、本発明における少分割隔壁構造部 110、および多分割隔壁構造部 120を構 成する鋼板材としては、前記したステンレスなどの金属板により構成しても良いが、さ らにパンチングメタルのような穴明きの金属板で構成することが好ましい。これは穴の 明いて!/、な!/、金属板よりも穴明き金属板の方が、少分割隔壁構造部 110や多分割 隔壁構造部 120の各区分室内に導入された原材料 Sに対して空気(酸素)を行き渡
らせやすくなるためである。この穴明き金属板の穴には、各種の形状や大きさがある[0400] Further, the steel plate material constituting the small partition wall structure portion 110 and the multi-partition wall structure portion 120 in the present invention may be formed of the above-described metal plate such as stainless steel, but is further punched. It is preferable to comprise a perforated metal plate such as metal. This is because the perforated metal plate is used for the raw material S introduced into the compartments of the small partition wall structure part 110 and the multi-partition wall structure part 120 rather than the metal plate. Air (oxygen) is delivered to This is because it becomes easy to make it. There are various shapes and sizes of holes in this perforated metal plate
1S 本発明に用いられる穴明き金属板の穴の形状や大きさには特に限定はなぐ造 粒成形された原材料 Sがキルンの回転胴 9内に投入される場合に、その原材料 Sの 粒子が穴明き金属板に設けられた穴からこぼれて落ちないような大きさであればよく 、丸形、三角形、四角形、スリット形などの各種穴形状の穴明き金属板を使用すること ができる。 1S No particular limitation is imposed on the shape and size of the hole in the perforated metal plate used in the present invention. When the granulated raw material S is put into the rotary cylinder 9 of the kiln, the particles of the raw material S However, it is only necessary to use a perforated metal plate of various hole shapes such as round, triangle, quadrangle, slit shape, etc. it can.
[0401] 本発明において回転キルン炉 1の回転胴 9内に投入される原材料 Sは、回転胴 9内 における原材料 Sの積層を軽減して、空気(酸素)との接触する効率を向上させるた めに、造粒処理した後に回転胴 9内に投入することが好ましい(図 24参照)。前記し た原材料 Sを造粒する方法としては、一定の粒子形状に造粒成形する方法として、ブ リケットマシンやローラーコンパクタ一、ディスクペレツター等の造粒成形機等の圧縮 成形機を用いる圧縮造粒法、転動造粒法、攪拌造粒法、および押出成形法等が挙 げられ、また、ある大きさの範囲の粒子形状に造粒成形する方法として、スクリューフ ィーダ一などで大きさを調整する方法が挙げられ、原材料 Sを所望の形状'大きさに 造粒成形するために、前記した造粒成形方法を適宜選択して用いることができる。ま た、キルンの回転胴 9内に投入する原材料 Sを造粒する形状については特に限定は なぐ後記した大きさ(直径または長さ)の範囲にあれば、円柱状、球状、楕円、三角 形、その他の多角形や、力、まぼこ状、凹凸状等各種の粒子形状に造粒成形すること ができる。 [0401] In the present invention, the raw material S introduced into the rotary drum 9 of the rotary kiln furnace 1 reduces the stacking of the raw material S in the rotary drum 9 and improves the efficiency of contact with air (oxygen). For this reason, it is preferable to put into the rotary cylinder 9 after the granulation treatment (see FIG. 24). As a method of granulating the raw material S, a compression molding machine such as a briquetting machine, a roller compactor, a granulating machine such as a disk pelleter, or the like is used as a granulating and molding method. There are granulation method, rolling granulation method, stirring granulation method, extrusion molding method, etc., and as a method of granulating and forming into a particle size within a certain size range, it is large with screw feeder etc. In order to granulate and form the raw material S into a desired shape and size, the above-described granulation and molding method can be appropriately selected and used. In addition, the shape of the raw material S to be put into the kiln's rotary drum 9 is not particularly limited, and can be cylindrical, spherical, elliptical or triangular as long as it is within the size (diameter or length) range described below. It can be granulated and formed into other polygonal shapes, various particle shapes such as force, bowl shape, and uneven shape.
[0402] 本発明において、前記したように造粒した際の原材料粒子 Saの大きさとして、直径 または長さ力 2〜30mmとすること力 S好ましく、 5〜; 15mmとすることが特に好ましい 。造粒した際の原材料粒子 Saの大きさとして、直径または長さが、 2mm未満である 場合には、キルンの回転胴 9や多分割隔壁構造部 120の区分室内などにおける原 材料粒子 Sa、 Sa - · ·の積層が過密になり、積層した原材料粒子 Sa、 Sa - · ·内に空気 (酸素)が行渡らなくなるために、原材料粒子 Saに含有される有機成分の燃焼が不 完全となり、加熱 ·焼成処理物の白色度が低下する恐れがあるために好ましくなぐ 他方、直径または長さが 30mmを越える場合には、原材料粒子 Saの大きさが大き過 ぎて、原材料粒子 Saの中心部に空気(酸素)が届き難くなつて、原材料粒子 Saの中
心部に燃焼が不完全な部分が残留して加熱 ·焼成処理物の品質を低下させる恐れ 力 り、また原材料粒子 Saが回転胴 9内や多分割隔壁構造部 120の区分室などを 進行する際に、原材料粒子 Saが大き過ぎるために、互いに進行を邪魔して、原材料 粒子 Saが回転胴 9や多分割隔壁構造部 120の区分室内をスムーズに進行できなく なる恐れがあるため好ましくない。 [0402] In the present invention, the size of the raw material particles Sa when granulated as described above is preferably a diameter or a length force of 2 to 30 mm, a force S, particularly preferably 5 to 15 mm. If the diameter or length of the raw material particles Sa when granulated is less than 2 mm, the raw material particles Sa, Sa in the rotary chamber 9 of the kiln or the compartment of the multi-partition partition structure 120 are used. -Stacking of raw material particles Sa, Sa-· · · Air (oxygen) does not spread in the layers, and the combustion of organic components contained in the raw material particles Sa becomes incomplete, heating. On the other hand, if the diameter or length exceeds 30 mm, the size of the raw material particles Sa is too large and is placed in the center of the raw material particles Sa. In the raw material particle Sa when air (oxygen) is difficult to reach Incomplete combustion may remain in the core, which may reduce the quality of the heated and baked product, and the raw material particles Sa travel through the rotary drum 9 and the compartment of the multi-partition partition structure 120. At this time, since the raw material particles Sa are too large, they may interfere with each other, and the raw material particles Sa may not be able to smoothly move through the compartments of the rotary drum 9 and the multi-partition partition structure 120, which is not preferable.
[0403] 本発明における回転キルン炉 1は、有機成分、無機成分などの含有成分を問わず 、各種原材料の加熱 ·焼成処理に用いることができる力 特に有機成分と無機成分が 混含する原材料について、有機成分を燃焼させて除去し、残った白色の無機成分を 回収する工程に用いることが特に好ましぐこのような原材料として、製紙工場より排 出される製紙スラッジなどを処理することが特に好ましい。 [0403] The rotary kiln furnace 1 according to the present invention is a power that can be used for heating and baking treatment of various raw materials regardless of the components such as organic components and inorganic components. It is particularly preferable to treat paper sludge discharged from a paper mill as such a raw material, which is particularly preferred to be used in the process of removing the organic component by burning and recovering the remaining white inorganic component. .
[0404] 本発明における回転キルン炉 1を備えた熱処理装置は、加熱'焼成処理装置として 単独で使用して加熱 ·焼成処理物を得ても良いが、図 24に示したように、原材料を乾 燥、造粒した後に、 1次および 2次のような複数段の加熱'焼成処理を行って加熱'焼 成処理物を得ても良い。図 24は本発明の熱処理装置の前段、後段に各種処理工程 を加えたフローシートの一例である。図中本発明の熱処理装置においては 2次焼成 処理工程がなされるように示している。加熱 ·焼成処理物を得た後に、さらに懸濁液 化、炭酸化、脱水、分散、粉砕の各処理を適宜追加して行い、再生化無機粒子とし ても良い。このような各種処理工程は原材料および得ようとする目的物によって適宜 追加されたり、省略されたりして使用される。 [0404] The heat treatment apparatus provided with the rotary kiln furnace 1 according to the present invention may be used alone as a heating and firing process apparatus to obtain a heated and fired processed product. However, as shown in FIG. After drying and granulation, a heat and calcined product may be obtained by performing a plurality of stages of heating and firing such as primary and secondary. FIG. 24 is an example of a flow sheet in which various treatment steps are added to the front and rear stages of the heat treatment apparatus of the present invention. In the figure, in the heat treatment apparatus of the present invention, the secondary firing process is shown. After obtaining the heated and fired product, further treatments for suspending, carbonating, dehydrating, dispersing, and pulverizing may be added as appropriate to obtain regenerated inorganic particles. These various processing steps are used by appropriately adding or omitting them depending on the raw materials and the object to be obtained.
[0405] [評価] [0405] [Evaluation]
以上述べたように、本発明によれば、回転キルン炉 1の回転胴 9内に、回転胴の径 方向に最外層領域の区分室群 (OC)と中心領域の区分室群 (CS)の少なくとも 2層 以上の区分室群から構成されている複数の区分室を設けた多分割隔壁構造部 120 を少なくとも 1つ設けることにより、回転胴 9内における原材料 Sの積層を大幅に軽減 させること力 Sでき、これによつて、伝熱効率、および有機成分燃焼のための原材料と 空気との接触効率を大きく向上させることが可能となるため、未燃カーボンの残留が なく白色度の高い優れた品質の加熱 ·焼成処理物を得ることができるほか、同じ外径 の回転キルン炉装置であっても、より多くの原材料を効率良く加熱 ·焼成処理すること
ができる。 As described above, according to the present invention, in the rotary drum 9 of the rotary kiln furnace 1, the outermost layer compartment chamber (OC) and the central compartment chamber (CS) in the radial direction of the rotor barrel. The ability to significantly reduce the stacking of the raw material S in the rotary drum 9 by providing at least one multi-partition partition structure 120 having a plurality of compartments composed of at least two compartments. This makes it possible to greatly improve the heat transfer efficiency and the contact efficiency between the raw materials for burning organic components and air, so that there is no residual unburned carbon and excellent whiteness. In addition to being able to obtain a fired and fired product, more raw materials can be efficiently heated and fired even in a rotary kiln furnace with the same outer diameter. Can do.
[0406] また、本発明の一部の形態によれば、回転キルン炉 1の回転胴 9内に、回転胴の径 方向に最外層領域の区分室群 (OS)と中心領域の区分室群( CS)の少なくとも 2層 以上の区分室群から構成されている複数の区分室を設けた多分割隔壁構造部 120 を少なくとも 1つ設け、さらに多分割隔壁構造部 120の原材料供給口 2側に、回転月同 9内に 15未満の区分室を設けた単層の区分室群を有する少分割隔壁構造部 110を 連結して設けることにより、多分割隔壁構造部 120の各区分室に原材料 Sを導入す るため特別な装置等を導入しなくても、回転胴 9の回転によって少分割隔壁構造部 1 10内を回転しながら移動する原材料粒子 Sa、 Sa ' · ·の動きを利用して、少分割隔壁 構造部 110に後続する多分割隔壁構造部 120の各区分室に均一、自然、かつ自動 的に原材料粒子 Sa、 Sa ' · ·を導入することによって、原材料粒子 Sa、 Sa ' · ·を多分 割隔壁構造部 120の各区分室に対して広く揚搬 ·分布させることができる。 [0406] Further, according to some aspects of the present invention, the outermost layer compartment (OS) and the central compartment chamber in the rotary drum 9 of the rotary kiln furnace 1 in the radial direction of the rotary drum. (CS) At least one multi-partition partition structure part 120 provided with a plurality of compartments composed of a group of compartments of at least two layers is provided, and further on the raw material supply port 2 side of the multi-partition partition structure part 120 By connecting the small partition wall structure part 110 having a single-layered partition room group with less than 15 compartments in the rotation month 9, a raw material S is provided in each compartment of the multi-partition wall structure part 120. Therefore, it is possible to use the movement of the raw material particles Sa, Sa '· that move while rotating in the small partition wall structure 1 10 by the rotation of the rotating drum 9 without introducing special equipment. The raw material is uniformly, naturally and automatically in each compartment of the multi-partition partition structure 120 following the sub-partition structure 110 By introducing the raw material particles Sa, Sa ′..., The raw material particles Sa, Sa ′.
[0407] また、回転胴 9内の中心部に加熱手段を収容するための管状部材 27を設け、この管 状部材 27の回転胴内空洞 V内に第 2の加熱手段である間接的(内側)加熱手段 5b を設けることにより、伝熱効率を向上させて原材料の加熱 ·焼成効率を向上させること ができる。 [0407] Further, a tubular member 27 for housing the heating means is provided in the center of the rotary drum 9, and the second heating means is indirectly (inner side) inside the rotary cylinder cavity V of the tubular member 27. ) By providing the heating means 5b, the heat transfer efficiency can be improved and the heating and firing efficiency of the raw materials can be improved.
[0408] 次に、本発明のさらにまた他の実施形態として、請求項 45〜61に係る発明を挙げ ることができ、本発明に係る無機粒子の製造方法および製造プラントに採用される別 の回転キルン炉を提案するものである。この実施形態は、図 34〜図 58に例示される [0408] Next, as still another embodiment of the present invention, the invention according to claims 45 to 61 can be cited, and another method employed in the method for producing inorganic particles and the production plant according to the present invention. A rotary kiln furnace is proposed. This embodiment is illustrated in FIGS. 34-58.
〇 Yes
[0409] 本発明の他の実施態様に係る請求項 45〜61に係る発明は、既述の回転キルン炉 と同じように、内部に回転月同を備え、回転胴に投入した原材料を加熱 ·焼成処理する 連続式、またはバッチ式の回転キルン炉およびそのキルン炉を備えた熱処理装置に 関する。原材料としては特にスラッジ、中でも塗工紙用顔料や製紙用填料としての適 性を有する製紙スラッジが好適に用いられる。 [0409] The inventions according to claims 45 to 61 according to other embodiments of the present invention, like the rotary kiln furnace described above, include a rotary moon inside and heat the raw material charged into the rotary drum. The present invention relates to a continuous or batch rotary kiln furnace to be fired and a heat treatment apparatus equipped with the kiln furnace. As the raw material, sludge, in particular, papermaking sludge having suitability as a pigment for coated paper or a filler for papermaking is preferably used.
[0410] 既述の回転キルン炉において、その従来技術として、既述の特許文献 2;!〜 30を 挙げたところである。 [0410] In the above-described rotary kiln furnace, as the prior art, Patent Document 2 described above;
[0411] 既述の回転キルン炉のところで説明したように、回転キルン炉の加熱'焼成状態の
改善に対して、原材料を均等に加熱するための各種の攪拌方法が提案されているが 、これらの方法では、回転胴内部の攪拌などによって原材料を均等に加熱することは できるものの、原材料はキルンの回転胴内の下底部に積層 ·堆積する。このような状 態を図 34、および図 35に例示した。このうち、図 34は、従来使用されている回転キ ルン炉の回転胴の一例として、単一の略円柱状の管部で構成される回転胴 9の断面 図であり、回転胴 9内に粒子状の原材料 S、 S'''が投入され、回転胴 9の下底部に 積層 ·堆積した状態を示す概念図である。また、図 35(a)は、従来使用されている回 転キルン炉の一例として、複数の略円柱状の管部 40、 40· ··が管部固定部材 30aに よって束ねられて構成される管部束体の断面図であり、図 35(b)は、管部束体の管 部 40、 40···内に粒子状の原材料 S、 S'''が投入され、管部 40、 40···の下底部 に積層 ·堆積した状態を示す概念図である。 [0411] As explained in the above-mentioned rotary kiln furnace, the heating kiln in the rotary kiln furnace For the improvement, various stirring methods for heating the raw material evenly have been proposed. In these methods, although the raw material can be heated evenly by stirring inside the rotary drum, the raw material is kiln. Laminate and deposit on the bottom of the rotating drum. Such a state is illustrated in FIG. 34 and FIG. Among these, FIG. 34 is a cross-sectional view of a rotary drum 9 composed of a single substantially cylindrical tube portion as an example of a rotary drum of a rotary kiln conventionally used. FIG. 3 is a conceptual diagram showing a state in which particulate raw materials S and S ″ ′ are charged and stacked and deposited on the lower bottom portion of the rotary drum 9. FIG. 35 (a) shows an example of a conventionally used rotary kiln furnace in which a plurality of substantially cylindrical pipe portions 40, 40... Are bundled by a pipe portion fixing member 30a. FIG. 35 (b) is a cross-sectional view of the tube bundle, and FIG. 35 (b) shows the case where the particulate raw materials S and S ′ '' are introduced into the tubes 40, 40 of the tube bundle. 40 is a conceptual diagram showing a state of being stacked and deposited on the lower bottom portion of 40.
[0412] 図 34、および図 35(b)に例示したように、従来の回転キルン炉においては、回転胴 [0412] As illustrated in Fig. 34 and Fig. 35 (b), in a conventional rotary kiln furnace,
9内、および管部束体の管部 40、 40···内に投入された原材料 S、 S'''が回転胴 9 、および管部 40、 40· ··のそれぞれの下底部の左隅に多く堆積していることがわかる 。このように原材料 S、 S'"が偏在する理由は、回転胴 9または管部 40、 40···に対 して投入される原材料 S、 S*''の量が多いために原材料 S、 3*''が積層*堆積するこ とに加えて、回転胴 9、および管部 40、 40···から構成される管部束体が矢印 C方向 に回転しているためである。このような原材料 S、 S'"の積層 ·堆積状態のために、有 機成分を含有する原材料を加熱 ·焼成処理する場合には、積層 ·堆積した層底部の 原材料まで、有機成分が燃焼するための空気(酸素)が行き渡らずに不完全燃焼が 生じ、未燃カーボン (煤)が多ぐ白色度の低い加熱 ·焼成処理物しか得られない問 題があった。 9 and the raw materials S and S '' 'charged into the pipe portions 40, 40 of the bundle of bundles are rotated to the left corner of the bottom bottom of each of the rotary drum 9 and the pipe portions 40, 40,. It can be seen that a lot is deposited. The reason why the raw materials S and S '"are unevenly distributed is that the raw materials S and S *' 'are injected into the rotary drum 9 or the pipe sections 40 and 40, ... This is because, in addition to the stacking / deposition of 3 * '', the tube bundle composed of the rotating drum 9 and the tube portions 40, 40... Is rotated in the direction of arrow C. When the raw materials containing organic components are heated and baked due to the lamination and deposition state of the raw materials S and S '", the organic components are burned up to the raw materials at the bottom of the laminated and deposited layers. There was a problem that incomplete combustion occurred without the air (oxygen) flowing through, and only a heated and calcined product with a low whiteness with a lot of unburned carbon (soot) was obtained.
[0413] また前記のように、有機成分を含有する原材料の加熱'焼成処理においては、原材 料の積層による不完全燃焼が生じることから、白色度の高い高品質な加熱'焼成処 理物を得るためには、キルンの回転胴内への原材料の投入量を大幅に少なくして原 材料の積層を抑えることや、他方、大量の原材料の処理が必要な場合には、極めて 大きな規模のキルン設備が必要となるなどの問題があった。このような有機成分を含 有する原材料として好適に使用される材料として製紙スラッジがあげられる。
[0414] 製紙スラッジは、記述のように、製紙工場の各種工程力も排出される廃水として、 (1) パルプ化工程での洗浄過程で発生した廃水、(2)古紙処理工程の混入異物除去、 脱墨浮選処理、および洗浄処理過程で発生した廃水、(3)紙製造時に原料損失分 として抄紙用ワイヤー等を通過して流出した廃水、および (4)生物廃水処理工程の 廃水などの各種廃水が挙げられる力 これら廃水に対してスラッジ回収処理として、 凝集 ·沈殿 ·濃縮 ·脱水等の工程を適宜組合せて行って、各廃水が含有する固形分 をスラッジとして回収したものである。前記した各種廃水は個別にスラッジ回収処理を 行って、脱墨スラッジ、塗工紙製造系スラッジ、生物処理余剰汚泥などの各種スラッ ジを個別回収する場合もある力 一般的には前記した製紙工場から排出される各種 工程スラッジを総称してペーパースラッジ (製紙スラッジ)と呼ぶ。このペーパースラッ ジには、製紙工場廃水由来の各種成分が含まれており、例えば、パルプ化工程で洗 い出されたリグニンや微細繊維、原料損失分由来のパルプなどの繊維分、澱粉や合 成接着剤を主とする有機物、塗工紙用顔料や内添填料を主とする無機物、および古 紙由来の印刷インキ等が含まれている。 [0413] Further, as described above, in the heating and baking process of the raw material containing the organic component, incomplete combustion occurs due to the lamination of the raw materials. To achieve this, the input of raw materials into the kiln's rotating drum is greatly reduced to suppress the stacking of raw materials. On the other hand, if a large amount of raw materials need to be processed, There were problems such as the need for kiln equipment. Papermaking sludge is an example of a material that is suitably used as a raw material containing such an organic component. [0414] Paper sludge is, as described, waste water that is also discharged from various processes of the paper mill. (1) Waste water generated during the washing process in the pulping process, (2) Removal of contaminants from the waste paper processing process, Wastewater generated in the deinking flotation process and washing process, (3) Wastewater that flowed out through papermaking wires as raw material loss during paper manufacture, and (4) Wastewater from biological wastewater treatment process The power that can be used for wastewater The sludge recovery process for these wastewaters is a combination of processes such as agglomeration, precipitation, concentration and dehydration, and the solids contained in each wastewater are recovered as sludge. The above-mentioned various wastewaters are individually sludge-recovered, and there is a case where various sludges such as deinking sludge, coated paper manufacturing sludge, and biological treatment surplus sludge may be recovered individually. The various process sludge discharged from the plant is generically called paper sludge. This paper sludge contains various components derived from paper mill wastewater.For example, lignin and fine fibers washed out in the pulping process, fiber such as pulp derived from raw material loss, starch and synthetic components. This includes organic substances mainly composed of synthetic adhesives, inorganic substances mainly composed of pigments and internal additives for coated paper, and printing inks derived from waste paper.
[0415] 本発明は、回転キルン炉によって原材料を加熱'焼成処理する際に、原材料の積 層過多による不完全燃焼を防止して、充分かつ均一な加熱 ·焼成処理ができ、さらに 効率的に多くの原材料を加熱 ·焼成処理することができることも目的とする。 [0415] In the present invention, when a raw material is heated and fired by a rotary kiln furnace, incomplete combustion due to excessive stacking of the raw material is prevented, and sufficient and uniform heating and firing treatment can be performed. The objective is to be able to heat and bake many raw materials.
[0416] 本発明の請求項 45にかかる回転キルン炉は、内部に回転胴を備えた、片側から投 入した原材料を焼成する回転キルン炉であって、該回転胴が、原材料がその内部を 通過する複数の管部から構成され、該複数の管部は、該回転胴の外周部をなす管 部束体を形成し、同時に回転胴を内側から加熱するための加熱手段を収容するため の回転胴内空洞部を形成する回転キルン炉である。この際に管部は互いに直接的ま たは間接的に接触して!/、ることが処理効率上好まし!/、。 [0416] The rotary kiln furnace according to claim 45 of the present invention is a rotary kiln furnace provided with a rotary drum inside and firing raw material charged from one side, wherein the rotary drum has the raw material inside thereof. The plurality of tube portions are formed of a plurality of tube portions that pass therethrough, and the plurality of tube portions form a tube bundle that forms the outer peripheral portion of the rotating drum, and at the same time contain heating means for heating the rotating drum from the inside. It is a rotary kiln furnace which forms a hollow part in a rotary drum. In this case, it is preferable in terms of processing efficiency that the pipe parts come into direct or indirect contact with each other! /.
[0417] また、請求項 46にかかる内部に回転胴を備えた、片側から投入した原材料を焼成 する回転キルン炉であって、該回転胴が、原材料がその内部を通過する複数の管部 力、ら構成され、該管部はその内部を隔壁によってさらに複数の区分室に分割するた めの多分割用隔壁構造部を少なくとも 1個以上有し、さらに該複数の管部は、該回転 胴の外周部をなす管部束体を形成する回転キルン炉である。
[0418] また、請求項 47にかかる前記した回転胴が、原材料がその内部を通過する複数の 管部から構成され、該複数の管部は、互いに直接的または間接的に接触して該回転 胴の外周部をなす管部束体を形成し、同時に回転胴を内側から加熱するための加 熱手段を収容するための回転胴内空洞部を形成する回転キルン炉における前記管 部力、その内部を隔壁によってさらに複数の区分室に分割するための多分割用隔壁 構造部を、少なくとも 1個以上有することが、導入された原材料の積層 '堆積を大きく 軽減し、かつ原材料の加熱 ·焼成効率を向上させる上で好ましい。 [0417] In addition, the rotary kiln furnace includes a rotating drum inside and fires the raw material charged from one side according to claim 46, wherein the rotating drum has a plurality of pipe member forces through which the raw material passes. The tube portion has at least one partition wall structure portion for multi-division for dividing the inside thereof into a plurality of compartments by a partition wall, and the plurality of tube portions further include the rotating cylinder. It is the rotary kiln furnace which forms the tube part bundle | flux which makes the outer peripheral part. [0418] In addition, the rotating cylinder according to Claim 47 is configured by a plurality of pipe parts through which raw materials pass, and the plurality of pipe parts are in direct or indirect contact with each other to perform the rotation. The tube section force in a rotary kiln furnace that forms a tube bundle that forms the outer periphery of the cylinder and at the same time forms a cavity in the rotary cylinder to accommodate heating means for heating the rotary cylinder from the inside, Having at least one multi-partition partition structure that divides the interior into multiple compartments by partition walls greatly reduces the stacking of the introduced raw materials and reduces the heating and firing efficiency of the raw materials. It is preferable for improving the ratio.
[0419] また、請求項 48にかかる前記多分割用隔壁構造部が、該管部の断面略中心から 外郭方向に放射状に設けた複数の隔壁を有しており、該隔壁と管部の管壁によって 複数の区分室に該管部内が分割され、かつ該区分室の断面形状が略合同であるこ とが、前記区分室に対して均等に原材料を分割導入する上で好ましい。 [0419] In addition, the multi-partition partition structure according to claim 48 has a plurality of partition walls radially provided from the substantially center of the cross section of the tube portion in a contour direction. It is preferable that the inside of the pipe part is divided into a plurality of compartments by walls and that the sectional shapes of the compartments are substantially the same in order to equally introduce the raw materials into the compartments.
[0420] また、請求項 49にかかる前記管部の内壁および/または前記多分割用隔壁構造 部の隔壁に、搔揚げ板 (リフタ一)を備えることが、前記管部に導入された原材料の攪 拌効率を向上させる上で好ましい。 [0420] Further, it is provided that the inner wall of the pipe portion according to claim 49 and / or the partition wall of the multi-partition partition wall structure portion is provided with a lifting plate (lifter 1) of the raw material introduced into the pipe portion. It is preferable for improving the stirring efficiency.
[0421] また、請求項 50にかかる前記管部の断面形状が、略円状、略楕円状または略多角 形状のいずれかであることが、前記管部、および管部束体を安定して構成する上で 好ましい。 [0421] Further, the cross-sectional shape of the tube portion according to claim 50 is any one of a substantially circular shape, a substantially oval shape, or a substantially polygonal shape, so that the tube portion and the tube portion bundle are stably provided. It is preferable in constructing.
[0422] また、請求項 51にかかる前記管部の外径が、前記管部束体の断面外径の 1/ 8〜 1/ 2であることが、原材料の積層 '堆積の軽減と原材料の加熱'焼成処理量を両立さ せる上で好ましい。 [0422] Further, the outer diameter of the pipe portion according to claim 51 is 1/8 to 1/2 of the cross-sectional outer diameter of the pipe portion bundle. This is preferable in order to achieve both heat and firing treatment amounts.
[0423] また、請求項 52にかかる前記管部が、多分割用隔壁構造部の原材料の投入方向 側に多分割用隔壁構造部無部分すなわち多分割隔壁構造部を形成するための多 分割用仕切などが挿入されていない部分があるように多分割用隔壁構造部を有する ことが、前記多分割隔壁構造部に設けられた各区分室に対して均等に原材料を導 入する上で好ましい。 [0423] In addition, the pipe portion according to claim 52 is for multi-division for forming a multi-division partition wall structure non-portion, that is, a multi-division partition wall structure portion on the input direction side of the raw material of the multi-division partition wall structure portion. It is preferable to have the multi-partition partition structure part so that there is a portion where no partition or the like is inserted, in order to uniformly introduce the raw material into each compartment provided in the multi-partition partition structure part.
[0424] また、請求項 53にかかる前記管部が、前記多分割用隔壁構造部の原材料の投入 方向とは反対側に、第 2の多分割用隔壁構造部無部分及び第 2の多分割用隔壁構 造部を組み合わせて 1組以上さらに有した管部であることが、前記多分割隔壁構造
部の各区分室に対して効率的に原材料を導入し、かつ原材料の加熱'焼成効率を 向上させる上で好ましい。 [0424] In addition, the pipe portion according to claim 53 has a second multi-divided partition wall structure portion non-part and a second multi-divided portion on the side opposite to the input direction of the raw material of the multi-divided partition wall structure portion. The multi-partition partition structure is a pipe part further including one or more sets of partition wall structure parts for use. This is preferable for efficiently introducing the raw material into each compartment of the section and improving the heating and firing efficiency of the raw material.
[0425] また、請求項 54にかかる前記多分割用隔壁構造部が、管部内に従動回転式多分割 用仕切部材を揷入することにより形成されることが好ましい。 [0425] In addition, it is preferable that the multi-partition partition structure according to claim 54 is formed by inserting a driven rotary multi-partition partition member into the pipe part.
[0426] また、請求項 55にかかる前記従動回転式多分割用仕切部材が、仕切板部の先端部 近傍に堰き止め部材を備えた構造であることが好ましい。 [0426] Further, it is preferable that the driven rotary multi-dividing partition member according to claim 55 has a structure including a damming member in the vicinity of the front end portion of the partition plate portion.
[0427] また、請求項 56にかかる前記多分割隔壁構造部を構成する板材が、穴明き金属 板であることが好ましい。 [0427] Furthermore, it is preferable that the plate material constituting the multi-partition partition wall structure portion according to claim 56 is a perforated metal plate.
[0428] また、本発明の請求項 57にかかる熱処理装置は、前記回転キルン炉に回転キルン 炉への空気導入手段として、該回転キルン炉の原材料供給口側の一端周辺に排気 手段をさらに備えてなる熱処理装置であることが好ましい。 [0428] Further, the heat treatment apparatus according to Claim 57 of the present invention further includes an exhaust means in the vicinity of one end of the rotary kiln furnace on the raw material supply port side as air introduction means to the rotary kiln furnace. It is preferable that it is a heat treatment apparatus.
[0429] また、本発明の請求項 58にかかる熱処理装置は、前記回転胴に供給される原材 料を間接的に加熱 ·焼成処理する加熱手段を備えることが好ましい。 [0429] Further, the heat treatment apparatus according to Claim 58 of the present invention preferably includes a heating means for indirectly heating and baking the raw material supplied to the rotating drum.
[0430] また、請求項 59にかかる前記加熱手段を 2つ備えてなり、第 1の加熱手段が回転キ ルン炉の回転胴を構成する前記管部束体の外側から加熱する加熱手段であり、第 2 の加熱手段が前記管部束体内側の前記回転胴内空洞部から加熱する加熱手段で あることが、前記多分割隔壁構造部の各区分室に分割して導入された原材料を均一 に加熱し、かつ加熱 ·焼成効率を向上させる上で好ましい。 [0430] Further, the heating means according to claim 59 is provided, and the first heating means is a heating means for heating from the outside of the bundle of tube parts constituting the rotary drum of the rotary kiln furnace. The second heating means is a heating means for heating from the cavity inside the rotating drum inside the bundle of tube parts, and the raw material divided and introduced into each compartment of the multi-partition partition structure is uniformly distributed. It is preferable to improve the heating and firing efficiency.
[0431] また、請求項 60にかかる前記回転キルン炉に供給される原材料を、該原材料の直 径または長さが 2〜30mmに造粒成形する手段をさらに備えることが好ましい。 [0431] Preferably, the raw material supplied to the rotary kiln furnace according to claim 60 is further provided with means for granulating and forming the raw material with a diameter or length of 2 to 30 mm.
[0432] また、請求項 61にかかる前記回転キルン炉に供給される原材料力 S、製紙スラッジで あることが好ましい。 [0432] Further, the raw material force S supplied to the rotary kiln furnace according to claim 61 and papermaking sludge are preferable.
[0433] 以上のような構成により、回転胴を前記した管部束体とすることによって伝熱面積を 増やすことに加えて、該管部束体の外側と内側の両方力 加熱することにより加熱- 焼成効率を向上させることができるようにするものである。 [0433] With the configuration as described above, in addition to increasing the heat transfer area by using the rotating drum as the above-described tube bundle, heating is performed by heating both the outside and the inside of the tube bundle. -It is intended to improve the firing efficiency.
[0434] さらに、前記した管部束体を構成する管部に複数の区分室で構成された多分割隔 壁構造部を設けて、複数の管部に分割して導入された原材料をさらに複数の区分室 に分割することにより、回転胴内に導入された原材料の積層高さを大幅に軽減させ
て、原材料内に空気(酸素)が行き渡りやすくすることにより、原材料の不完全燃焼を 防止して、未燃カーボンの残留が少なぐ白色度の高い高品質な加熱'焼成処理物 を得ること、および多くの原材料を、回転キルン炉を備えた熱処理装置で処理するこ とができるようにするものである。 [0434] Further, the pipe part constituting the above-described pipe part bundle is provided with a multi-divided partition wall structure part constituted by a plurality of compartments, and a plurality of raw materials introduced by dividing into a plurality of pipe parts are further provided. By dividing it into separate compartments, the stacking height of the raw materials introduced into the rotating drum is greatly reduced. By making air (oxygen) easy to spread in the raw material, incomplete combustion of the raw material is prevented, and a high-quality, high-heated and fired fired product with little residual unburned carbon is obtained. And many raw materials can be processed by a heat treatment apparatus equipped with a rotary kiln furnace.
[0435] また、前記した構成に加えて、回転胴内の原材料進行方向とは反対の方向に空気 を導入する方法、および回転胴内に投入する原材料を造粒成形する方法を併せて 用いることにより、有機成分を含有した原材料であっても、効率良く加熱 '焼成して、 白色度の高い高品質な加熱 ·焼成処理物を得ることができるようにするものである。 [0435] Further, in addition to the above-described configuration, a method of introducing air in a direction opposite to the raw material traveling direction in the rotating drum and a method of granulating and forming the raw material charged into the rotating drum are used. Thus, even a raw material containing an organic component can be efficiently heated and baked to obtain a high-quality heated and baked product with high whiteness.
[0436] 本発明の実施形態によれば、回転キルン炉によって原材料を加熱'焼成処理する 際に、原材料の不完全燃焼を防止して、充分かつ均一な加熱 ·焼成処理ができ、さ らに効率的に多くの原材料を加熱 ·焼成処理することができた。 [0436] According to the embodiment of the present invention, when the raw material is heated and fired in the rotary kiln furnace, incomplete combustion of the raw material is prevented, and sufficient and uniform heating and firing can be performed. Many raw materials could be heated and fired efficiently.
[0437] 本発明者等は、既述のような特許文献に記載された、キルンの回転胴内に投入さ れた原材料の加熱'焼成効率を向上させる方法、および原材料の積層 '堆積を軽減 するための回転胴内を多室分割する各種の方法について、試行、検討を重ねた。 [0437] The inventors of the present invention described in the patent documents as described above, a method of heating the raw material put in the rotary drum of the kiln 'improving the firing efficiency, and reducing the stacking of raw materials' deposition. We tried and examined various methods to divide the inside of the rotating drum into multiple chambers.
[0438] このうち、原材料の加熱'焼成効率を向上させる方法については、回転胴内に複数 の円柱状の管部を設けて管部束体とする従来の方法では、伝熱面積が増加し、原 材料の積層も多少は軽減することができるものの、管部束体の外側から加熱するの みでは均一に加熱することが難しぐ特に管部束体を構成する管部数を増やした場 合に、各管部を均一に加熱することが困難であることが分かった。また、原材料の積 層-堆積を軽減させる方法については、前記した回転胴内に複数の管部を設けて管 部束体とする従来の方法では、伝熱面積が増加し、原材料の積層も多少は軽減する こと力 Sできるものの、原材料の積層'堆積を大きく軽減することができず、加熱'焼成 効率の向上が困難であることが分かった。また、加熱'焼成処理物を高品質化するた めに、管部束体として回転胴の外周部に設ける管部数を増やしていくと、管部数増 加に従って各管部の大きさ(筒直径)を小さくする必要が生じ、必然的に回転胴内の 管部容積の総量 (所謂、回転キルン炉の処理容積)が減少するために、原材料の処 理量を維持しながら原材料の積層 ·堆積を充分に軽減させることが困難であることが 分かった。
[0439] この状態を図 36に例示した。図 36 (a)は、既述の図 35に例示した 6個の管部で構 成された管部束体に比べて管部束体の大きさ(外径)は同じであるが、図 35よりも管 部を小径化し、さらに図 35よりも多い 21個の管部を管部固定部材 30bで束ねて構成 した管部束体の断面図であり、図 35(b)は、管部束体の管部 40、 40···内に粒子状 の原材料 S、 S' · ·が投入され、管部 40、 40· ··の下底部に積層 ·堆積した状態を示 す概念図である。図 36 (b)においては、各管部 40、 40···に原材料 S、 S · · ·が投入 されているが、各管部 40、 40· · ·内で原材料 S、 S. ··がある程度堆積していることが わかる。また各管部 40、 40···内で原材料 S、 S'''がある程度偏在もしている。この ように原材料 S、 S' Hが偏在する理由は、前にも述べたように、キルンの回転胴内に 対して投入される原材料 S、 S*''の量が多いために原材料 S、 S'''が積層 '堆積す ることに加えて、管部 40、 40· ··で構成される回転胴としての管部束体が 矢印 C方 向に回転しているためである。 [0438] Of these methods, the method of improving the heating and firing efficiency of raw materials increases the heat transfer area in the conventional method in which a plurality of cylindrical tube portions are provided in a rotating drum to form a tube portion bundle. Although it is possible to reduce the stacking of raw materials to some extent, it is difficult to heat uniformly only by heating from the outside of the tube bundle, especially when the number of tubes constituting the tube bundle is increased. Further, it has been found that it is difficult to uniformly heat each tube portion. In addition, regarding the method of reducing the stacking-deposition of raw materials, the conventional method in which a plurality of pipe portions are provided in the rotating drum to form a bundle of pipe portions increases the heat transfer area and stacks the raw materials. Although it can be somewhat reduced, it was found that the stacking and deposition of raw materials could not be greatly reduced, and it was difficult to improve the heating and firing efficiency. In addition, in order to improve the quality of the heat-fired product, if the number of pipes provided on the outer periphery of the rotating drum as a bundle of pipe parts is increased, the size of each pipe part (cylinder diameter) increases as the number of pipe parts increases ) Must be reduced, and the total volume of the pipe section in the rotating drum (so-called rotary kiln furnace processing volume) is reduced, so that it is possible to stack and deposit raw materials while maintaining the raw material throughput. It was found that it was difficult to sufficiently reduce [0439] This state is illustrated in FIG. Fig. 36 (a) shows the same size (outer diameter) of the tube bundle as compared to the tube bundle composed of the six tubes illustrated in Fig. 35. FIG. 35 (b) is a cross-sectional view of a tube section bundle in which the diameter of the tube section is smaller than that of FIG. 35 and 21 pipe sections more than FIG. 35 are bundled by the pipe section fixing member 30b. This is a conceptual diagram showing a state in which particulate raw materials S and S 'are put into the tube sections 40 and 40 of the bundle, and are stacked and deposited on the bottom bottom of the tube sections 40 and 40. is there. In Fig. 36 (b), the raw materials S, S ... are put into each pipe 40, 40 ..., but the raw materials S, S ... in each pipe 40, 40 ... It can be seen that there is some accumulation. In addition, the raw materials S and S '''are unevenly distributed to some extent within each pipe section 40 and 40. The reason for the uneven distribution of the raw materials S and S 'H is that, as mentioned above, the raw materials S and S *''are injected into the kiln's rotary drum because of the large amount of raw materials S and S *''. This is because the tube bundle as a rotating cylinder composed of the tube portions 40, 40,... Is rotated in the direction of the arrow C in addition to the stacking of S '''.
[0440] このように、回転胴の外径規模が同一の回転キルン炉において、管部を小型化して 管部束体を構成する管部数を増やしても、伝熱面積は増加するものの、管部全体の 容積 (すなわち、回転胴の容積)が減少するために、原材料 S、 S'''の積層がある程 度多くなり、不完全燃焼が生じて未燃カーボン (煤)が多ぐ白色度の低い加熱 '焼成 処理物しか得られな!/、と!/、うことが判明した。 [0440] In this way, in a rotary kiln furnace with the same outer diameter of the rotary cylinder, the heat transfer area increases even if the number of pipe parts constituting the pipe bundle is increased by downsizing the pipe parts. Since the volume of the entire part (that is, the volume of the rotating drum) decreases, the amount of lamination of raw materials S and S '' 'increases, resulting in incomplete combustion and white with a lot of unburned carbon (soot) It was found that only low-temperature heating 'fired products were obtained! /, And! /.
[0441] 先の図 34〜36に例示した原材料 Sの不完全燃焼を改善する方法について試行を 重ねた結果、次に説明するような構成の管部束体に至った。この管部束体は、複数 の略円柱状の管部によって全体的に筒状の管部束体として構成されている。これら 複数の管部は互いに直接的または間接的に接触して回転胴の外周部を成す管部束 体を形成し、同時に回転胴を内部から加熱する加熱手段を収容するための回転月同 内空洞を形成する管部束体構造となっている。その例を、図 37、図 38、および図 39 に併せて示した。図 37 (a)に例示した管部 40と図 37 (b)に例示した管部固定部材 3 Ocをそれぞれ組み合せて、図 37(c)に例示した 6個の管部から構成される多管部束 体 300が形成される。図 38に管部束体の略中心部分に回転胴内空洞 Vが形成され ることを示した。図に示したように管部は互いに直接的接触して管部束部を構成した ほうが空間を効率的に利用したり、熱伝導等の上で有利である。そのような効率を問
題にしない場合は管部は間接的に接触する構造や管部固定部材のみで接触する構 造をとることは可能である。図 38 (a)は、図 37(c)に例示した管部束体 300において 、管部固定部材 30cl、 30c2、 ···を含まない管部束体部分の α 1 — a 1'における 切断面の断面図であり、図 38(b)は、前記 α ΐ — α ΐ'切断面 1における管部 40、 40 ···内に原材料 S、 ε···が投入され、積層 ·堆積した状態を示す概念図である。図 39 (a)は、図 37(c)に例示した管部束体 300において、管部固定部材 30c 1、 30c2、 · ··を含んだ管部束体部分の α 2 — α 2'における切断面 2の断面図であり、図 39(b) は、前記 α2 — α 2'切断面における管部 40、 40···内に原材料 S、 S."が投入され 、積層 '堆積した状態を示す概念図である。 [0441] As a result of repeated trials on the method for improving the incomplete combustion of the raw material S exemplified in Figs. 34 to 36, a tube bundle having the structure described below was obtained. This tube bundle is configured as a tubular tube bundle as a whole by a plurality of substantially cylindrical tubes. The plurality of pipe parts are in direct or indirect contact with each other to form a bundle of pipe parts forming the outer periphery of the rotating drum, and at the same time, within the rotating month for accommodating heating means for heating the rotating drum from the inside. It has a tube bundle structure that forms a cavity. Examples are shown in FIGS. 37, 38, and 39. The pipe part 40 illustrated in FIG. 37 (a) and the pipe part fixing member 3Oc illustrated in FIG. 37 (b) are combined to form a multi-tube composed of six pipe parts illustrated in FIG. 37 (c). A bundle 300 is formed. Fig. 38 shows that the cavity V in the rotating cylinder is formed at the approximate center of the tube bundle. As shown in the figure, it is advantageous in terms of efficient use of space, heat conduction, etc. that the pipe parts are in direct contact with each other to form a pipe part bundle part. Ask such efficiency If it is not the subject, it is possible to adopt a structure in which the pipe part is in indirect contact with the pipe part or a structure in which only the pipe part fixing member is in contact. FIG. 38 (a) shows a cut at α 1 — a 1 ′ of the tube portion bundle portion that does not include the tube portion fixing members 30cl, 30c2,... In the tube portion bundle 300 illustrated in FIG. 38 (b) is a cross-sectional view of the surface, and the raw materials S and ε ··· are put into the pipe portions 40, 40 ··· in the α ΐ — α ΐ 'cut surface 1 and stacked and deposited. It is a conceptual diagram which shows a state. FIG. 39 (a) is a diagram of the tube bundle 300 including the tube fixing members 30c1, 30c2,... In the tube bundle 300 illustrated in FIG. FIG. 39 (b) is a cross-sectional view of the cut surface 2, and FIG. 39 (b) shows a state in which the raw materials S and S. ”are put into the pipe portions 40, 40... FIG.
[0442] 図 37に例示したように、図 37(b)のような中央に穴の明いた管部固定部材 30cを 用いて、管部 40、 40···と共に図 37(c)に例示した管部束体 300を形成することによ り、図 38および図 39にそれぞれ例示したように、管部束体 300の略中心部分に管部 束体を貫通するように回転月同内空洞部 Vを形成することができ、この回転月同内空洞 V に管部束体の内側から管部 40、 40· ··を加熱する第 2の加熱手段を設け、後述する 管部束体の外側から加熱する第 1の加熱手段と併せて管部束体を加熱することによ り、管部 40、 40···内に投入された原材料 S、 S'''の加熱 ·焼成効率を向上させるこ と力 Sできる。 [0442] As shown in Fig. 37, using the pipe fixing member 30c with a hole in the center as shown in Fig. 37 (b), it is shown in Fig. 37 (c) together with the pipes 40, 40 ... As shown in FIG. 38 and FIG. 39, the tube part bundle 300 is formed, so that the inner part of the rotary month is formed so as to penetrate the tube part bundle substantially at the central portion of the pipe part bundle 300. The second heating means for heating the tube portions 40, 40,... From the inside of the tube portion bundle body is provided in the rotation month inner cavity V. By heating the tube bundle in combination with the first heating means that heats from the outside, the heating and firing efficiencies of the raw materials S and S '' 'put into the tubes 40, 40 ... I can improve it.
[0443] また前記の図 34〜図 36に例示したような原材料の積層'堆積を改善して加熱'焼 成効率を向上させる方法についても試行を重ねた結果、次に説明するような構成の 管部束体に至った。この管部束体は、複数の略円柱状の管部によって全体的に筒 状の管部束体として構成されている。それぞれの略円柱状の管部はその内部を隔壁 によってさらに複数の区分室に分割するための多分割用隔壁構造部を少なくとも 1個 以上有し、さらにこれら複数の略円柱状の管部は、互いに直接的または間接的に接 触して回転胴の外周部をなす管部束体を形成する構成となっている。その例を、図 4 0、図 41、および図 42に併せて示した。図 40は、図 40 (a)に例示した隔壁 50によつ て内部を分割された管部 40と図 40 (b)に例示した管部固定部材 30cをそれぞれ組 み合せて、図 40(c)に例示した 6個の管部から構成され多管部束体 300を形成し、 かつ管部束体の略中心部分に回転胴内空洞 Vを形成させた一例である。図 41 (a)
は、図 40(c)に例示した管部束体 300において、管部固定部材 30cl、 30c2、…を 含まない管部束体部分の α 3— α 3'における切断面 3の断面図の断面図であり、図 41(b)は、前記 α3— α 3'切断面における管部 40、 40···内に原材料 S、 S'"が投 入され、積層 ·堆積した状態を示す概念図である。図 42(a)は、図 40(c)に例示した 管部束体 300において、管部固定部材 30cl、 30c2、 ···を含んだ管部束体部分の 断面 α4— α 4'における切断面の断面図であり、図 42(b)は、前記 α4— α4'切断 面 4における管部 40、 40···内に原材料 S、 S'''が投入され、積層 ·堆積した状態を 示す概念図である。 [0443] Further, as a result of repeated trials on a method of improving the stacking and deposition efficiency of the raw materials as shown in Figs. It reached the tube bundle. This tube bundle is configured as a tubular tube bundle as a whole by a plurality of substantially columnar tubes. Each substantially cylindrical tube portion has at least one multi-divided partition wall structure for dividing the inside thereof into a plurality of compartments by partition walls, and the plurality of substantially cylindrical tube portions are It is configured to form a tube bundle that forms an outer peripheral portion of the rotating drum by directly or indirectly contacting each other. Examples thereof are shown in FIG. 40, FIG. 41, and FIG. FIG. 40 shows a combination of the pipe part 40 whose interior is divided by the partition wall 50 shown in FIG. 40 (a) and the pipe part fixing member 30c shown in FIG. 40 (b). This is an example in which the multi-tube bundle 300 is formed by the six pipes illustrated in c), and the inner cavity V is formed in the substantially central portion of the pipe bundle. Figure 41 (a) FIG. 40C is a cross-sectional view of the cross-sectional view of the cut surface 3 at α 3 -α 3 ′ of the tube bundle member that does not include the tube fixing members 30cl, 30c2,. FIG. 41 (b) is a conceptual diagram showing a state in which raw materials S and S ′ ″ are injected into the tube portions 40, 40... On the α3-α3 ′ cut surface, and are stacked and deposited. 42 (a) is a cross-sectional view of the tube bundle bundle portion including the tube fixing members 30cl, 30c2,... In the tube bundle 300 illustrated in FIG. 42 (b) is a cross-sectional view of the cut surface in FIG. 42, and FIG. 42 (b) shows that the raw materials S and S '''are placed in the tube portions 40, 40. It is a conceptual diagram showing the state.
[0444] 図 40、図 41、および図 42に例示したように、回転キルン炉の回転胴としての管部 束体 300を構成する複数の管部 40、 40· ··の内部を隔壁 50によって複数の区分室 60、 60···に分割した多分割用隔壁構造部とすることにより、各管部 40、 40···に投 入された原材料 S、 S—が各区分室 60、 60···に分散され、前記の図 38、および図 39に例示した、内部が隔壁によって分割されていない管部 40、 40···から構成され る管部束体 300と比較して、区分室 60、 60···内における原材料 S、 3—の積層' 堆積を大幅に軽減させ加熱 ·焼成効率を向上させることができる。 As illustrated in FIG. 40, FIG. 41, and FIG. 42, the inside of the plurality of tube portions 40, 40... Constituting the tube bundle 300 as the rotating drum of the rotary kiln furnace is defined by the partition wall 50. By using a multi-partition partition structure divided into a plurality of compartments 60, 60 ..., the raw materials S, S- injected into each pipe 40, 40 ... Compared with the pipe bundle 300, which is composed of the pipe parts 40, 40, which are dispersed in the above and illustrated in FIG. 38 and FIG. Stacking of raw material S, 3— in chambers 60, 60 ... can significantly reduce deposition and improve heating and firing efficiency.
[0445] しかしながら、前記した回転キルン炉の回転胴としての管部束体 300を構成する管 部 40、 40· ··の内部を隔壁 50によって複数の区分室 60、 60· ··に分割した多分割 用隔壁構造部とすることにより、管部 40、 40· · ·に投入した原材料 S、 S' · ·の積層- 堆積は大幅に軽減できるが、他方、管部束体を構成する複数の管部 40、 40· · ·に設 けた複数の各区分室 60、 60…に対して、原材料 S、 S…を均等に導入するために は、従来の単純なスライダーのような原材料投入方法とは異なる複雑な構成の原材 料投入機構が必要となることがわかった。 [0445] However, the inside of the pipe sections 40, 40 ··· constituting the pipe bundle 300 as a rotary drum of the rotary kiln furnace described above is divided into a plurality of compartments 60, 60 ··· by the partition wall 50. By using a multi-partition partition structure, the stacking-deposition of raw materials S, S '..., put into the pipes 40, 40 ... can be greatly reduced, but on the other hand In order to introduce the raw materials S, S ... evenly into each of the plurality of compartments 60, 60 ... installed in the pipe sections 40, 40 ... It was found that a raw material input mechanism with a complicated structure different from the above is required.
[0446] そのような複雑な原材料投入機構を使用せずに、前記した多分割用隔壁構造部と して管部 40、 40···の内部に設けられた複数の区分室 60、 60·· 'に対して、原材料 S、 S' · ·を均等、かつ簡便に分散投入させる方法について試行した。その結果、管 部束体 300の構成として、管部 40、 40···内に設けた多分割用隔壁構造部の原材 料投入方向側に多分割用隔壁構造部無部分を設けることにより、多分割用隔壁構 造部の各区分室 60、 60···に対して原材料 S、 Sを均等、かつ簡便に分散投入する
方法を案出した。その例を既述の図 38および図 41を併用して説明する。 図 38は、 前記したように、隔壁によって管部 40、 40···内を分割されていない管部(すなわち 、多分割用隔壁構造部無部分)から構成される管部束体 300の断面図である。これ に対して、図 41は、前記したように、隔壁 50によって管部 40、 40···内を複数の区 分室 60、 60…に分割された管部 (すなわち、多分割用隔壁構造部)から構成される 管部束体 300の断面図である。 [0446] Without using such a complicated raw material charging mechanism, a plurality of compartments 60, 60... Provided inside the pipe sections 40, 40. · An attempt was made to distribute raw materials S and S 'evenly and simply. As a result, the structure of the pipe bundle 300 is obtained by providing a multi-partition partition wall structure non-part on the raw material input direction side of the multi-partition partition structure part provided in the pipe parts 40, 40. The raw materials S and S are distributed evenly and easily into each compartment 60, 60 in the multi-partition partition wall structure. Devised a method. An example of this will be described with reference to FIGS. 38 and 41 described above. FIG. 38 is a cross-sectional view of the tube bundle 300 composed of the tube portions that are not divided into the tube portions 40, 40... FIG. On the other hand, in FIG. 41, as described above, the pipe part 40, 40... Is divided into a plurality of compartments 60, 60. 2 is a cross-sectional view of a tube bundle 300 composed of
[0447] 図 41に例示した管部 40、 40· ··の多分割用隔壁構造部に対して、その原材料投 入方向側に、図 38に例示した多分割用隔壁構造部無部分を設けることにより、多分 割用隔壁構造部の各区分室 60、 60···に対して原材料 Sを投入するための煩雑な 原材料投入機構を用いなくても、管部束体 300の自転によって、多分割用隔壁構造 部の各区分室 60、 60· ··に対して原材料 Sを均等、かつ極めて簡便に分散投入す ること力 Sでさることを見出した。 [0447] The multi-partition partition wall structure portion illustrated in FIG. 38 is provided on the raw material input direction side of the multi-partition partition wall structure portion of the pipe portions 40, 40. Thus, the pipe bundle 300 can be rotated by the rotation of the pipe bundle 300 without using a complicated raw material charging mechanism for charging the raw material S into the respective compartments 60, 60. It has been found that the raw material S can be distributed evenly and very simply into the compartments 60, 60.
[0448] 以下に、本発明の実施の形態を図面に基づいて説明する。 [0448] Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の回転キルン炉を備えた熱処理装置の一例の構成図を示した。図 43は、 本発明の回転キルン炉 1を備えた熱処理装置の構成図であり、主に回転キルン炉 1 内における原材料 S、 S'''と空気(酸素)の流れに関する構成要素を図示した。本熱 処理装置は連続処理式 ·間接的加熱型 (外熱式)ロータリーキルンとも呼ばれる。回 転キルン炉 1内の回転胴は、既述の図 37、図 38、および図 39に併せて例示した複 数の管部 40、 40·· 'から構成される。この複数の管部が回転胴の外周部を成すよう に管部束体 300aを形成して回転胴となるわけである。管部束体 300aの内部は空洞 になっており、内側から加熱するための加熱手段を収容するための回転胴内空洞 V を形成する。図 43では、有機成分を含有する原材料 S、 S--- (例えば、製紙スラッジ )は、図示を省略した乾燥装置によって脱水または乾燥された後に、回転キルン炉 1 の管部束体 300aの一端部に設置された原材料供給口 2 (例:供給ホツバ)に投入さ れ、原材料投入手段 10 (例:スクリューフィーダ一)を介して回転キルン炉 1の管部束 体 300aに設けられた各管部(例として、図 38の管部 40、 40· · ·)に供給される。次い で、管部束体 300aの各管部 40、 40· · ·に供給された原材料 S、 S' · ·は、管部 40、 4 0· ··内を通過しながら含有している有機成分が燃焼され、有機成分が燃焼除去され
た後の加熱 ·焼成処理物は、管部束体 300aの原材料供給口 2に対して反対側の端 部に設置された加熱 ·焼成処理物排出口 8を通して回転キルン炉 1外に取り出され、 さらに必要であれば、加熱 ·焼成処理物に対して粉砕等の加工のために、次工程に 送られる。 The block diagram of an example of the heat processing apparatus provided with the rotary kiln furnace of this invention was shown. FIG. 43 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 according to the present invention, and mainly illustrates components related to the flow of raw materials S, S ′ ″ and air (oxygen) in the rotary kiln furnace 1. . This heat treatment equipment is also called a continuous treatment type · indirectly heated (external heat type) rotary kiln. The rotating drum in the rotary kiln furnace 1 is composed of a plurality of pipe portions 40, 40... ′ Exemplified in conjunction with FIGS. The tube bundle 300a is formed so that the plurality of tube portions form the outer peripheral portion of the rotating drum, thereby forming a rotating drum. The inside of the tube bundle 300a is a cavity, and forms a rotary cylinder cavity V for accommodating a heating means for heating from the inside. In FIG. 43, raw materials S, S --- (for example, papermaking sludge) containing organic components are dehydrated or dried by a drying device (not shown), and then one end of the tube bundle 300a of the rotary kiln furnace 1 is used. Each pipe provided in the tube bundle 300a of the rotary kiln furnace 1 is inserted into the raw material supply port 2 (for example, supply hot bar) installed in the section and through the raw material input means 10 (for example, screw feeder 1). (For example, the pipe sections 40, 40,... In FIG. 38). Next, the raw materials S and S 'supplied to the pipe portions 40 and 40 of the pipe bundle 300a are contained while passing through the pipe portions 40 and 40. Organic components are burned, organic components are burned off The heated and fired product is taken out of the rotary kiln furnace 1 through the heating and fired product discharge port 8 installed at the end opposite to the raw material supply port 2 of the tube bundle 300a. If necessary, the heated / baked product is sent to the next step for processing such as grinding.
[0449] なお、管部束体 300aは、厳密な図示を省略しているが、原料供給口 2側から加熱' 焼成処理物排出口 8側に向かって非常に緩やかな下り勾配に傾斜しており、この管 部束体 140aの傾斜と回転により、内部の被処理物が重力作用で原料供給口 2側か ら加熱 ·焼成処理物排出口 8側へ徐々に移動するようになっている。 [0449] The tube bundle 300a is not shown in the drawings, but is inclined to a very gentle downward slope from the raw material supply port 2 side toward the heated and fired product discharge port 8 side. As a result of the inclination and rotation of this tube bundle 140a, the internal workpiece is gradually moved from the raw material supply port 2 side to the heated / baked product discharge port 8 side by gravity.
[0450] 本発明において、有機成分を含有する原材料 S、 S ' · ·を加熱 ·焼成処理して、白 色度の高い高品質な加熱 ·焼成処理物を得るためには、回転キルン炉 1の管部束体 300aを構成する各管部(例として、図 38の管部 40、 40 · · · )へ空気を導入して原材 料 S、 S ' ' 'に含有される有機成分を燃焼させることが不可欠である。そのため原材料 供給口 8の近傍に排気手段 4 (例:排気ファン)が設置されており、この排気手段 4が 回転キルン炉 1内の空気を強制排気することによって加熱 ·焼成処理物排出口 8の 近傍に設置された空気供給口 3から回転キルン炉 1内に空気が破線矢印 A (図も変 更)で示すように吸入される。このように空気供給口 3から排気手段 4方向へ破線矢 印 A (図も変更)で示す空気流が常に発生することになる。この空気流が後に説明す る未燃焼物搬送用空気流 A (図も変更)となる。 [0450] In the present invention, in order to obtain a high-whiteness, high-quality, heated and fired product by heating and firing the raw materials S and S 'containing organic components, a rotary kiln furnace 1 Introduce air into each of the pipes that make up the pipe bundle 300a (for example, the pipes 40, 40,... In FIG. 38) to remove the organic components contained in the raw materials S and S '' '. Burning is essential. Therefore, exhaust means 4 (eg, exhaust fan) is installed in the vicinity of the raw material supply port 8, and this exhaust means 4 forcibly exhausts the air in the rotary kiln furnace 1, thereby Air is sucked into the rotary kiln furnace 1 from the air supply port 3 installed in the vicinity as shown by the dashed arrow A (the figure is also changed). In this way, the air flow indicated by the broken line arrow A (the figure is also changed) from the air supply port 3 toward the exhaust means 4 is always generated. This air flow becomes the air flow A (not shown) for conveying unburned material, which will be described later.
[0451] この空気量の制御は排気手段 4 (排気ファン)の排気量を制御することで行われる。 [0451] The air amount is controlled by controlling the exhaust amount of the exhaust means 4 (exhaust fan).
この空気量は回転キルン炉 1の管部束体 300a内に設けられた各管部 40、 40 · · '内 が過剰(富)酸素雰囲気下になるように過剰に吸入されるよう制御されることが好まし い。この空気の導入方向としては、回転キルン炉 1の管部束体 300aの各管部 40、 4 0 · · ·に原材料 S、 S ' · ·が連続的に供給されて進行する矢印 Bで示す方向とは反対 の破線矢印 Aで示す方向(向流方向と略す)から空気を導入する構成となっている。 This amount of air is controlled so as to be sucked in excessively so that the inside of each pipe section 40, 40 ·· 'provided in the pipe bundle 300a of the rotary kiln furnace 1 is in an excess (rich) oxygen atmosphere. I prefer that. The direction of this air introduction is indicated by the arrow B which advances by continuously supplying the raw materials S, S ′... To the respective pipe portions 40, 40,... Of the tube bundle 300a of the rotary kiln furnace 1. Air is introduced from a direction (abbreviated as a counterflow direction) indicated by a broken-line arrow A opposite to the direction.
[0452] これは、有機成分を含有する原材料 S、 S…を燃焼させる場合に、煤などに代表さ れる未燃焼物が発生するが、その際、原材料 S、 S ' · ·の移動する矢印 Bで示す方向 とは反対の破線矢印 Aで示す方向(空気の流れる矢印 Aで示す方向 =向流方向)で 空気を導入すると、原材料 S、 S ' · ·の燃焼によって生じた煤は導入した空気に載つ
て管部束体 300aの各管部 40、 40· ··の原材料供給口 8方向に移動して、管部束体 300aの各管部 40、 40· ··に新たに投入された原材料 S、 S · · ·と共に再度燃焼する 、、あるいは排気手段 4によって回転キルン炉 1の外に排出されてしまい、加熱'焼成 処理物排出口 8より排出される加熱 ·焼成処理物に煤が付着することなく白色度を効 率良く向上させることができるので好ましレ、ためである。 [0452] This is because when raw materials S, S ... containing organic components are burned, unburned materials such as soot are generated. At that time, the arrows of movement of raw materials S, S ' When air is introduced in the direction indicated by the broken arrow A opposite to the direction indicated by B (direction indicated by the arrow A through which the air flows = counter-current direction), soot generated by the combustion of the raw materials S and S 'is introduced. Rest in the air ··· Raw material supply port of each pipe section 40, 40 ··· of pipe bundle 300a Raw material S newly moved into each pipe section 40, 40 ··· of pipe bundle 300a in eight directions , S · · · · Recombusted together, or exhausted by the exhaust means 4 and discharged from the rotary kiln furnace 1, and soot adheres to the heated and fired processed product outlet 8. This is because the whiteness can be improved efficiently without any problem.
[0453] これに対して、原材料 S、 S'''の進行する矢印 B (図も変更)で示す方向と同じ方向 [0453] On the other hand, the same direction as the direction indicated by the arrow B (the figure is also changed) of the raw materials S and S '' '
(並流方向と略す)で空気を導入すると、導入した空気に載って原材料 S、 S'''の燃 焼によって生じた煤が加熱 ·焼成処理物排出口 8の方向に移動し、焼成が完了して 白くなった加熱 ·焼成処理物に煤が付着して白色度を低下させるため好ましくな!/、。 When air is introduced in the direction of the co-current flow, the soot generated by the burning of raw materials S and S '' 'on the introduced air moves in the direction of the heating / fired product outlet 8 and firing is performed. Heating that has been completed and whitening · Preferably because wrinkles adhere to the baked product and lower the whiteness!
[0454] 前記した破線矢印 Aで示す空気の流れを回転キルン炉 1の管部束体 300a内に設 けられた各管部(例えば、図 38の管部 40、 40· ··)に導入する方法としては、加圧し た空気を加熱 ·焼成処理物排出口 8の近傍に設置された空気供給口 3より吹き込む こともできる。し力、し先に説明した図 43に例示したように、原材料供給口 2の近傍に設 置された排気手段 4によって管部束体 300aの各管部 40、 40· ··の空気を強制排気 することによって、加熱 ·焼成処理物排出口 8の近傍に設置された空気供給口 3から 管部束体 300aの各管部 40、 40···に空気が吸気される方法が好ましい。 [0454] The air flow indicated by the broken-line arrow A described above is introduced into each pipe section (for example, the pipe sections 40, 40,... In FIG. 38) provided in the pipe bundle 300a of the rotary kiln furnace 1. As a method for this, pressurized air can be blown from the air supply port 3 installed in the vicinity of the heated and baked product discharge port 8. As shown in FIG. 43 described above, the air of each pipe part 40, 40,... Of the pipe part bundle 300a is forced by the exhaust means 4 installed in the vicinity of the raw material supply port 2. A method is preferred in which air is sucked into the pipe portions 40, 40,... Of the pipe bundle 300a from the air supply port 3 installed in the vicinity of the heating / fired product discharge port 8 by exhausting.
[0455] これは、空気供給口 3の反対側に設けた排気手段 4により管部束体 300aの各管部 40、 40···内部の空気を強制的に排気して、各管部 40、 40···内を負圧にすること により、空気供給口 3から排気手段 4方向への破線矢印 Aで示す空気の流れが常に 安定して発生することになり、管部束体 300aの各管部 40、 40···内に導入された原 材料 S、 S'''に対して、空気を行き渡らせやすくすることができる好適なものである。 [0455] This is because the exhaust means 4 provided on the opposite side of the air supply port 3 forcibly exhausts the air inside each pipe section 40, 40 ··· of the pipe section bundle 300a, and each pipe section 40 40 ... By making the inside of the negative pressure, the air flow indicated by the broken-line arrow A from the air supply port 3 to the exhaust means 4 direction always occurs stably, and the tube bundle 300a This is suitable for making it easy to distribute air to the raw materials S and S ′ ″ introduced into the pipe portions 40 and 40.
[0456] 本発明において、前記した排気手段 4による強制排気等によって回転キルン炉 1の 管部束体 300a内に設けられた各管部(例えば、図 38の管部 40、 40···)へ供給さ れる空気量としては、各管部 40、 40·· '内に投入された原材料 S、 S' · ·が含有する 有機成分を完全に燃焼消失するために必要とされる酸素量 (理論酸素量)に対して、 過剰な量の酸素を供給する空気量 (過剰(富)酸素雰囲気)とすること力 S好ましく、管 部束体 300aの各管部 40、 40···内に供給される空気量としては、酸素量 (理論空 気量)の 1·;!〜 5倍とすることが好ましぐ 1.5〜5倍とすることがより好ましぐ 2〜5倍
とすることが特に好ましい。 [0456] In the present invention, each of the pipe portions (for example, the pipe portions 40, 40 in Fig. 38) provided in the tube bundle 300a of the rotary kiln furnace 1 by forced exhaustion by the exhaust means 4 described above, etc. The amount of air supplied to the pipes 40, 40 ... 'is the amount of oxygen required to completely burn off the organic components contained in the raw materials S, S' ... The amount of air (excess (rich) oxygen atmosphere) that supplies an excessive amount of oxygen to the theoretical oxygen amount) is preferable. S, preferably within each tube section 40, 40 ... of the tube bundle 300a The amount of air supplied is 1 to the amount of oxygen (theoretical air);! To 5 times, preferably 1.5 to 5 times, more preferably 2 to 5 times It is particularly preferable that
[0457] これに対して、管部束体 300aの各管 40、 40 · · ·部内へ供給される空気量が前記し た理論空気量の 1. 1倍未満である場合には、各管部 40、 40 · · ·内に投入された原 材料 S、 S ' · ·が含有する有機成分の燃焼が不完全となり、加熱'焼成処理物の白色 度が低下する恐れがあるため好ましくない。また、管部束体 300aの各管部 40、 40 · · •内へ供給される空気量が、前記した理論空気量の 5倍を越える場合には、供給され た空気によって管部束体 300aの各管部 40、 40 · · ·内の温度が過剰に冷やされてし まう恐れがあり、これに対して管部束体 300の各管部 40、 40 · · ·内の温度を維持す るために加熱手段 5a、および後述する加熱手段 5bによる加熱を増やす必要があり、 エネルギーコスト的に好ましくない。 [0457] On the other hand, if the amount of air supplied into each tube 40, 40 ··· of the tube bundle 300a is less than 1.1 times the theoretical air amount, each tube This is not preferable because the organic components contained in the raw materials S, S ′,... Contained in the parts 40, 40,. In addition, when the amount of air supplied into each of the pipe portions 40, 40,... Of the pipe portion bundle 300a exceeds five times the above-described theoretical air amount, the pipe portion bundle 300a is caused by the supplied air. The temperature inside each pipe section 40, 40 ··· may be excessively cooled, while the temperature inside each pipe section 40, 40 ··· of the pipe bundle 300 is maintained. Therefore, it is necessary to increase heating by the heating means 5a and the heating means 5b described later, which is not preferable in terms of energy cost.
[0458] また図 44は、前記した図 43と同じ構成の、本発明の回転胴として管部束体 300aを 有する回転キルン炉 1を備えた熱処理装置の構成図であり、主に回転キルン炉 1内 における加熱手段 5a、および 5bに関する構成要素を説明する構成図である。図中、 既述の図 43と同じ符号の構成要素については説明を省略している。本発明におけ る回転キルン炉 1の加熱 ·焼成の方式としては、内熱式の加熱 ·焼成方式を用レ、ても 良いが、図 44に例示したように、回転キルン炉 1の管部束体 300a内に設けられた各 管部(例えば、図 38の管部 40、 40 · · · )を加熱する熱は間接的加熱手段から供給さ れることが好ましい。この間接的加熱手段は主として管部束体 300aの外側から間接 的に加熱する間接的(外側)加熱手段 5aと、図 38および図 39に示したように、管部 束体 300aの内部に形成された回転胴内空洞 Vに収容された管部束体 300aの内側 力 間接的に加熱する間接的(内側)加熱手段 5bの 2系統の加熱手段である。これら の加熱手段によって、各管部 40、 40…に投入された原材料 S、 S…を間接的に加 熱 ·焼成することができる。厳密な図示は省略している力 いわゆる加熱ジャケットが 回転キルン炉の外周部に設けられ、そこに間接的加熱手段 5aが接続されている。 FIG. 44 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 having the tube bundle 300a as the rotary drum of the present invention having the same configuration as that of FIG. 43 described above, and is mainly a rotary kiln furnace. FIG. 2 is a configuration diagram illustrating components related to heating means 5a and 5b in 1. In the figure, description of components having the same reference numerals as those in FIG. 43 is omitted. As a heating / firing method of the rotary kiln furnace 1 in the present invention, an internal heating type heating / firing method may be used. However, as illustrated in FIG. 44, the tube portion of the rotary kiln furnace 1 is used. It is preferable that the heat for heating each pipe section (for example, the pipe sections 40, 40... In FIG. 38) provided in the bundle 300a is supplied from an indirect heating means. This indirect heating means is formed mainly in the indirect (outside) heating means 5a for heating indirectly from the outside of the tube bundle 300a and inside the tube bundle 300a as shown in FIGS. 38 and 39. The inner force of the tube bundle 300a accommodated in the inner cavity V of the rotating cylinder is an indirect (inner) heating means 5b for heating indirectly. By these heating means, the raw materials S, S... Put into the pipe portions 40, 40... Can be indirectly heated and fired. Forces not shown in the figure are omitted A so-called heating jacket is provided on the outer periphery of the rotary kiln furnace, to which an indirect heating means 5a is connected.
[0459] これは、有機成分を含有する原材料 S、 S ' · ·を燃焼させるには多くの空気の導入 が不可欠であるが、外熱式加熱方式では間接的加熱手段 5a、 5bによって管部束体 300aの各管部 40、 40 · · ·を間接的に加熱し、さらに各管部 40、 40 · · ·内に対して、 酸素を多く含んだ空気を空気供給口 3より管部束体 140の各管部 40、 40 · · ·内に別
途に導入できることから、各管部 40、 40 · · ·内に投入された原材料 S、 S ' · ·を安定し て燃焼させやすくなり、好ましいためである。また、原材料 S、 S ' · ·の加熱'焼成を行 う温度を制御する必要がある場合、外熱式加熱方式では、管部束体 300aの外側と 内側の両方に設けられた間接的加熱手段 5a、および 5bを用いて、管部束体 300a の各管部 40、 40 · · ·の回転軸長方向全体の温度を安定して制御することができ、好 ましいためである。 これに対して、内熱式加熱方式では、回転にキルン炉 7内部の 空気(酸素)を加熱用バーナーの燃焼のために大量に消費するため、原材料 S、 •の燃焼が不完全になる恐れがあるため好ましくない。また、内熱式加熱方式では、 加熱用バーナー付近の温度が高くなることが避けられず、管部束体 300a内の回転 軸長方向の温度に勾配ムラが生じてしまい、管部束体 300a全体を所望する一定の 加熱'焼成温度に制御することが難しぐ管部束体 300a全体の温度が不均一になり やすいため、好ましくない。 [0459] This is because it is indispensable to introduce a lot of air in order to burn the raw materials S, S '· · containing organic components, but in the external heating type heating system, the indirect heating means 5a, 5b are used for the pipe part. Each tube 40, 40 ... of the bundle 300a is indirectly heated, and air containing a large amount of oxygen is supplied to the inside of each tube 40, 40 ... from the air supply port 3. Each pipe part of body 140, 40 This is because the raw materials S, S ′,... Put into the pipe portions 40, 40,. In addition, when it is necessary to control the temperature at which the raw materials S and S 'are heated, the indirect heating provided on both the outside and inside of the tube bundle 300a is used in the external heating method. The means 5a and 5b can be used to stably control the temperature of the entire tube portion 40, 40... Of the tube bundle 300a in the longitudinal direction of the rotation axis, which is preferable. In contrast, in the internal heating type heating system, the air (oxygen) inside the kiln furnace 7 is consumed in large quantities for the combustion of the heating burner. This is not preferable. In addition, in the internal heating type heating system, it is inevitable that the temperature in the vicinity of the heating burner becomes high, and the gradient in the temperature in the direction of the rotation axis in the tube bundle 300a becomes uneven, resulting in the tube bundle 300a. Since it is difficult to control the whole to the desired constant heating and firing temperature, the entire temperature of the tube bundle 300a tends to be non-uniform.
[0460] また、管部束体 300aを加熱する方法として、前記した管部束体 300aの外側から間 接的に加熱する間接的(外側)加熱手段 5aと、前記した管部束体 300aの内側から 加熱する間接的加熱手段 5bを併用して、管部束体 300aの外側と内側の両方から加 熱することが好ましい。 [0460] In addition, as a method of heating the tube bundle 300a, an indirect (outside) heating means 5a that indirectly heats from the outside of the tube bundle 300a described above, and the tube bundle 300a described above Indirect heating means 5b for heating from the inside is preferably used in combination with heating from both the outside and inside of the tube bundle 300a.
[0461] これは、管部束体 300aを構成する管部(例えば、図 38の管部 40、 40 · · · )の数を 増やした場合に、各管部 40、 40 · · ·に対して充分、かつ均等な熱を加えて加熱-焼 成効率を向上させることができ、また管部束体 300aの各管部 40、 40 · · ·に投入され た原材料 S、 S ' ' 'に対して加熱 ·焼成の温度を制御する必要がある場合に、管部束 体 300aの外側と内側の両側にそれぞれ設けられた加熱手段 5a、および 5bによって 、加熱'焼成温度を均等に、かつ精度良く制御することができ、好ましいためである。 [0461] This is because when the number of pipe parts (for example, the pipe parts 40, 40,... In FIG. 38) is increased, the pipe parts 40, 40,. It is possible to improve the heating-firing efficiency by applying sufficient and even heat, and to the raw materials S, S '' 'put into each pipe part 40, 40 ... of the pipe bundle 300a. On the other hand, when it is necessary to control the heating / firing temperature, the heating means 5a and 5b provided on both the outer and inner sides of the tube bundle 300a are used to make the heating and firing temperature uniform and accurate. This is because it can be controlled well and is preferable.
[0462] これに対して、管部束体 300aを外側から加熱する間接的加熱手段 5aのみでは、 原材料 Sの積層 ·堆積を軽減させるために管部束体 300aを構成する管部 40、 40 · · の数を増やした場合に、各管部 40、 40 · ·を充分、かつ均等に加熱することができな V、恐れがあるため好ましくな!/、。また管部束体 300aを外側から加熱する間接的加熱 手段 5aのみでは、原材料 S、 を加熱'焼成する温度を制御する必要がある場合 に、充分な精度で加熱 ·焼成温度を制御することができない恐れがあるため好ましく
ない。 [0462] On the other hand, only the indirect heating means 5a for heating the tube bundle 300a from the outside, the tube portions 40, 40 constituting the tube bundle 300a in order to reduce the stacking / deposition of the raw material S. · When the number of is increased, each tube 40, 40 · · · V, which can not be heated sufficiently and evenly, is preferable because there is a fear! In addition, only the indirect heating means 5a for heating the tube bundle 300a from the outside can control the heating and firing temperature with sufficient accuracy when it is necessary to control the temperature at which the raw material S is heated and fired. Because there is a fear that can not Absent.
[0463] また本発明において、管部束体 300aの内側から加熱するための加熱手段 5bを収 容するための回転胴内空洞 Vを形成する方法としては、前記した図 37、図 38、およ び図 39のように、複数の管部 40、 40 · · ·を円筒状に束ねることにより必然的に生じる 中央部の空洞を回転月同内空洞 Vとすることもできる力 図 45に示したように、管部束 体 300aの中心部に回転月同内空洞用の管部 40cを設けて回転月同内空洞 Vを形成す ることもできる。この場合、管部束体 300aの α 5— α 5'における切断面の断面図、お よび α 6— α 6'における切断面の断面図は、管部束体 300aの略中心部を管部 40c が貫通しているため、共に既述の図 39の同形状の断面図となる。 [0463] In the present invention, the method for forming the inner cavity V for accommodating the heating means 5b for heating from the inside of the tube bundle 300a includes the above-described Fig. 37, Fig. 38, and Fig. 38. As shown in Fig. 39, the force that can be formed as a hollow inner space V as the central cavity is inevitably generated by bundling a plurality of pipes 40, 40 ... in a cylindrical shape. As described above, the rotating month inner cavity V can be formed by providing the tube part 40c for the rotating month inner cavity at the center of the tube bundle 300a. In this case, the cross-sectional view of the cut surface of the tube bundle 300a at α5-α5 'and the cross-sectional view of the cut surface at α6-α6' are shown in FIG. Since 40c penetrates, both are cross-sectional views of the same shape shown in FIG.
[0464] 本発明の間接的加熱手段 5a、および 5bに用いる加熱方法としては、電気的ヒータ や誘導電流による加熱も可能ではある力 エネルギーコスト面より、筒型の炉本体を 包囲する加熱ジャケット内に、灯油や重油などの燃焼ガス、既存の焼却設備から排 出される燃焼排ガス、高温空気、過熱水蒸気などを導入したり、該処理炉の周壁に ガスバーナーからの燃焼ガスを吹き付けて加熱する方法が推奨される。また、炉本体 内での燃焼処理を経た高温の排気や前処理の乾燥工程からの燃焼排ガスも、当該 加熱手段の熱媒ゃ熱源の一部として利用できる。また、本図 43に示した例では熱風 循環手段 7の一例である循環ブロア一によつて、後述する図 46に例示したような、本 発明の回転キルン炉 1を備えた熱処理装置の前工程(乾燥工程、 1次焼成工程など) 力、らの燃焼排ガスを間接的加熱手段として供給することもできる。 [0464] The heating method used for the indirect heating means 5a and 5b of the present invention is an electric heater or a force that can be heated by induction current. From the viewpoint of energy cost, the inside of the heating jacket that surrounds the cylindrical furnace body Introducing combustion gas such as kerosene and heavy oil, combustion exhaust gas discharged from existing incineration equipment, high-temperature air, superheated steam, etc., or heating by blowing combustion gas from the gas burner to the peripheral wall of the processing furnace Is recommended. In addition, high-temperature exhaust gas that has undergone combustion treatment in the furnace body and combustion exhaust gas from the pretreatment drying step can also be used as part of the heat source of the heating means. In addition, in the example shown in FIG. 43, the pre-process of the heat treatment apparatus provided with the rotary kiln furnace 1 of the present invention as illustrated in FIG. 46 described later by the circulation blower which is an example of the hot air circulation means 7. (Drying process, primary firing process, etc.) Power and other combustion exhaust gas can be supplied as an indirect heating means.
[0465] 管部束体 300aを内側から加熱するための加熱手段 5bを収容するための回転胴内 空洞 Vについては、加熱手段 5bを収容できれば管部束体 300a内の空洞部の前後 の口間で閉口して閉じた空間とすることが次に説明するような理由のため好ましレ、。 すなわち、前記したように、管部束体 300aの各管部(例えば、図 38の管部 40、 40 · · · )に対して投入された原材料 S、 S ' · ·の燃焼効率を向上させるために管部 40、 40 · • ·に対して多くの空気を導入することが必要であるため、管部束体 300aの前後部に は空気導入、通過の障害になる装置、配管等ができるだけ配置されないようにするこ とが好ましい。特に管部束体排気側、すなわち排気手段 4が備わる側、いいかえれば 原材料供給口 2側の管部束体付近はもともとスクリューフィーダ一等の原材料投入手
段 10が不可避的に設けられており。そのような障害物を更に配置することをできるだ け避けることが好ましいのである。この点で先に説明した電気的な加熱手段をとつた 場合、電気の供給経路は比較的小さくそのような障害物にならないので好ましい。 [0465] For the cavity V in the rotating drum for accommodating the heating means 5b for heating the tube bundle 300a from the inside, if the heating means 5b can be accommodated, the front and rear ports of the cavity in the tube bundle 300a It is preferable to make a closed space between them for the reason explained below. That is, as described above, the combustion efficiency of the raw materials S, S ′,... Introduced into each pipe part of the pipe bundle 300a (for example, the pipe parts 40, 40,... In FIG. 38) is improved. Therefore, it is necessary to introduce a large amount of air into the pipe sections 40, 40 ... It is preferable not to arrange them. In particular, the pipe bundle bundle exhaust side, that is, the side equipped with the exhaust means 4, in other words, the raw material supply port 2 side and the vicinity of the pipe bundle bundle is originally a material feeder such as a screw feeder. Step 10 is inevitable. It is preferable to avoid as many such obstacles as possible. In this regard, when the electric heating means described above is used, the electricity supply path is relatively small and is not such an obstacle, which is preferable.
[0466] しかし、加熱手段としての経済効率を考えると燃焼排ガス等の加熱媒体を使用する 加熱手段を採用することがより好ましい。そのような場合は加熱媒体が回転胴内空洞 V内に入り口から入り、回転胴内空洞 Vを通過して熱を管部に排出し、出口から出て いくという構成をとる必要がある。このような構造を単純に考えれば回転月同内空洞 Vと 連通した加熱媒体供給用配管及び加熱媒体排出用配管を有する構成となる。すな わち管部束体吸気側から管部束体排気側に貫通する加熱媒体用配管が回転キル ン炉の中心軸方向を貫通して設けられることになる。し力、しこのような貫通する配管が 特に管部束体排気側に存在することは先に説明したように空気導入、通過の障害物 となるのであまり好ましくない。一つの方策としては回転胴内空洞部を出たあとの加 熱媒体用配管を細くするようなことでそのような障害の程度をさげることは可能ではあ る。またこのような加熱媒体による回転胴内空洞部 Vの加熱を行う場合は先に図 45 において説明したような空洞部を形成するための管部 40cを使用しない方が直接的 に他の管部の外壁を加熱できる点で好ましい。 However, in view of economic efficiency as a heating means, it is more preferable to employ a heating means that uses a heating medium such as combustion exhaust gas. In such a case, it is necessary to adopt a configuration in which the heating medium enters the rotary cylinder cavity V from the entrance, passes through the rotary cylinder cavity V, exhausts the heat to the pipe portion, and exits from the exit. If such a structure is simply considered, a structure having a heating medium supply pipe and a heating medium discharge pipe communicating with the inner cavity V of the rotating month is obtained. In other words, a heating medium pipe penetrating from the pipe bundle bundle intake side to the pipe bundle bundle exhaust side is provided to penetrate the central axis direction of the rotary kiln furnace. However, the existence of such a through pipe, particularly on the exhaust side of the tube bundle, is not preferable because it becomes an obstacle for air introduction and passage as described above. As one measure, it is possible to reduce the degree of such obstacles by narrowing the heating medium piping after exiting the cavity in the rotating drum. In addition, when heating the cavity V in the rotating drum with such a heating medium, it is better not to use the tube 40c for forming the cavity as described in FIG. It is preferable in that the outer wall can be heated.
[0467] そのような空気導入、通過の障害物となることをできるだけ避ける点で加熱媒体用 配管を管部束体吸気側にのみ設けることも可能である。この場合加熱媒体用配管は 2重構造をとることになる。すなわち同心円的な 2重管構造や単純な並列した 2本管 構造をとつて回転胴内空洞部 Vに接続されて、加熱媒体供給用配管は空洞部 V内 で特に管部 40cの近傍で開口し、加熱媒体を放出し、空洞部 V内の中心部で開口し た加熱媒体排出用配管へ放熱後媒体が吸引される構造が挙げられる。他にもいわ ゆる効率的な間接加熱のための公知の迷路的配管構造を回転胴内空洞部 Vに配置 すること力 Sでさる。 [0467] In order to avoid such an air introduction and passage obstacle as much as possible, it is also possible to provide a heating medium pipe only on the pipe section bundle intake side. In this case, the heating medium pipe has a double structure. That is, a concentric double pipe structure or a simple parallel double pipe structure is connected to the cavity V in the rotating drum, and the heating medium supply pipe is opened in the cavity V, particularly near the pipe 40c. In this structure, the heating medium is discharged, and the medium after heat release is sucked into the heating medium discharge pipe opened at the center of the cavity V. In other words, a known maze piping structure for efficient indirect heating is placed in the cavity V in the rotating drum with the force S.
[0468] 以下に上述の回転キルン炉 1の管部束体 300aの各管部(例えば、図 38の管部 40 、 40 · · · )に対して、図 40、図 41、および図 42に例示したように、管部 40、 40…内 を隔壁 50によって複数の区分室 60、 60 · · ·に分割する多分割用隔壁構造部を設け る方法、および多分割用隔壁構造部無部分と前記多分割用隔壁構造部を組み合わ
せて使用する方法を適用した例について図 47以下を用いて説明する。 [0468] FIG. 40, FIG. 41, and FIG. 42 show the respective pipe parts (for example, the pipe parts 40, 40... In FIG. 38) of the pipe bundle 300a of the rotary kiln furnace 1 described above. As illustrated, a method of providing a multi-divided partition wall structure section that divides the inside of the pipe sections 40, 40... Into a plurality of compartments 60, 60. Combined with the multi-partition partition structure An example to which the method used is applied will be described with reference to FIG.
[0469] 図 47は、既述の図 43、および図 44にそれぞれ例示した回転キルン炉 1を備えた熱 処理装置の構成図であり、主に回転キルン炉 1内における管部束体 300bに関する 構成要素を説明する構成図である。図中、既述の図 43、および図 44と同じ符号の構 成要素については説明を省略している。図 47における管部束体 300bの基本的な構 成としては、図 37に例示したように複数の管部 40、 40 · · 'から構成されており、各管 部 40、 40 · · ·が管部固定部材 30cによって束ねられて管部束体 300bを形成してい る力 さらに図 47においては、管部束体 300bの各管部 40、 40 · · ·内の回転軸長方 向の一部分が多分割用隔壁構造部 320を有する構成となっていることが特徴である 。この図 47の管部束体 300bにおける多分割用隔壁構造部 320の構造としては、 α 8 — α 8'における切断面の構造図として、図 41に例示した隔壁 50によって管部 40、 40 · ·の内部が複数の区分室 60、 60 · · ·に分割された構造を有している。 [0469] FIG. 47 is a configuration diagram of a heat treatment apparatus including the rotary kiln furnace 1 illustrated in FIG. 43 and FIG. 44 described above, and mainly relates to the tube bundle 300b in the rotary kiln furnace 1. It is a block diagram explaining a component. In the figure, description of components having the same reference numerals as those in FIGS. 43 and 44 is omitted. As shown in FIG. 37, the basic configuration of the pipe bundle 300b in FIG. 47 is composed of a plurality of pipe parts 40, 40, and each pipe part 40, 40,. Force that is bundled by the tube portion fixing member 30c to form the tube portion bundle 300b. Further, in FIG. 47, a part of the tube portions 40, 40,... Is characterized in that it has a multi-partition partition wall structure 320. 47. As the structure of the multi-partition partition structure 320 in the tube bundle 300b of FIG. 47, the structure of the cut surface at α 8 —α 8 ′ is shown by the partition 50 illustrated in FIG. · The inside has a structure divided into a plurality of compartments 60, 60 · · ·.
[0470] そして図 47では、回転キルン炉 1内の管部束体 300bは、前記した多分割用隔壁 構造部 320の前側、すなわち多分割用隔壁構造部 320の原材料の投入方向側、い V、かえれば管部束体 300bの原材料供給口 2の側に多分割用隔壁構造部無 (収容) 部分 310を設けるように構成されている。この多分割用隔壁構造部無収容部 310の 構造としては、 α 7 — α 7'における切断面の構造図として、図 38に例示した管部 40 、 40 · · ·内部が隔壁を有しておらず、区分室に分割されていない構造を有している。 また、図 47中の多分割用隔壁構造部 320以降、すなわち多分割用隔壁構造部 320 の加熱 ·焼成処理物の排出方向側、 V、レ、かえれば管部束体 300bの加熱 ·焼成処理 物排出口 8の側にも、管部束体 300bの終了する部分まで、前記した多分割用隔壁 構造部無(収容)部分 310と同じ構造部分を設けるように構成されている。 [0470] In Fig. 47, the tube bundle 300b in the rotary kiln furnace 1 is the front side of the multi-partition partition structure 320, that is, the raw material input direction side of the multi-partition partition structure 320, V In other words, the multi-partition partition wall structure portion (accommodating) portion 310 is provided on the raw material supply port 2 side of the tube bundle 300b. As the structure of the multi-partition partition wall structure non-contained portion 310, the pipe 40, 40,... Illustrated in FIG. It has a structure that is not divided into compartments. In addition, in FIG. 47, the multi-partition partition structure 320 and the subsequent parts, that is, the heating and firing process side of the multi-partition partition structure 320, the discharge direction side of the fired product, V, and, in other words, the tube bundle 300b is heated and fired. The same structure portion as the multi-partition partition wall structure portion non-contained (accommodating) portion 310 is also provided on the object discharge port 8 side up to the end portion of the tube portion bundle 300b.
[0471] 以下、本発明の管部束体 300bにおける多分割用隔壁構造部 320について説明 する。多分割用隔壁構造部 320としては、図 40、図 41、および図 42に例示したよう に、要するに管部束体 300bを構成する複数の管部 40、 40 · · ·の内部が隔壁 50によ つて複数の区分室 60、 60 · · ·に分割されており、各区分室 60、 60 · · ·は多分割用隔 壁構造部 320の原材料入り口側から出口側まで連通している。 [0471] Hereinafter, the multi-partition partition structure 320 in the tube bundle 300b of the present invention will be described. As shown in FIG. 40, FIG. 41, and FIG. 42, the partition wall structure portion 320 for multi-division is basically the inside of the plurality of tube portions 40, 40,. Therefore, it is divided into a plurality of compartments 60, 60..., And each compartment 60, 60... Communicates from the raw material entrance side to the exit side of the multi-partition partition wall structure 320.
[0472] 多分割用隔壁構造部 320において、隔壁 50によって管部 40、 40 · · ·内部を複数
の区分室 60、 60···に分割する方法としては、図 41、および図 42に例示したように、 管部 4、 4· ··の断面略中心から管部の外郭方向に放射状に設けた隔壁 50を設ける ことにより、管部 40、 40···の内部を複数の区分室 60、 60···に分割し、併せて隔壁 50よって分割された各区分室 60、 60···の断面形状が略合同になるように、区分室 60、 60· ··を形成することが好ましい。これは、管部 40、 40· ··の内部を断面形状が 概ね合同形の区分室 60、 60· ··のに分割することにより、各管部 40、 40···に投入 された原材料 S、 S—が各区分室 60、 60···に対して概ね均等に分散投入すること ができ、各管部 40、 40···に投入された原材料 S、 S'''を均等に加熱'焼成すること ができ、好ましいためである。 [0472] In the partition wall structure section 320 for multi-division, a plurality of pipe sections 40, 40, ... by the partition wall 50 As shown in Fig. 41 and Fig. 42, the section chambers 60, 60 are divided radially from the center of the cross section of the pipe section 4, 4, ... in the outer direction of the pipe section. The partition wall 50 is provided to divide the inside of the pipe sections 40, 40... Into a plurality of partition chambers 60, 60..., And the partition chambers 60, 60. The compartments 60, 60,... Are preferably formed so that their cross-sectional shapes are substantially congruent. This is because the internal parts of the pipe sections 40, 40 ... are divided into section chambers 60, 60 S, S— can be distributed almost uniformly into the respective compartments 60, 60 ..., and the raw materials S, S '''supplied to the pipes 40, 40 ... This is because heating and firing can be performed.
[0473] 本発明において、管部 40、 40···内部を隔壁 50によって分割することにより管部 4 0、 40···内に設ける区分室 60、 60···の数としては、 3室以上 12室以下とすること が好ましぐ 6〜8室とすることが特に好ましい。これは、前記した放射状の隔壁 50に よって分割された区分室 60、 60"'の数が6〜8室でぁると、管部 40、 40···に設け られた区分室 60、 60·· ·数が適切に増えるため、各管部 40、 40···に投入された原 材料 S、 S' · ·を充分に分散投入して原材料 S、 S' ··の積層 '堆積を充分に軽減する ことができ、また各区分室 60、 60···の断面形状も比較的に広い断面積を有するた めに、区分室 60、 60···に投入された原材料 S、 Sが充分に攪拌され、原材料 S、 S- ··の加熱 ·焼成効率を向上させることができるので、好ましいためである。また、各管 部 40、 40···内を分割する区分室 60、 60...の数として、 12室を超えるようにするこ とも当然ながら可能である力 12室を超える場合には、各区分室 60、 60···の断面 形状が非常に細くかつ狭くなり、断面積も非常に狭くなるために、区分室 60、 60··· に投入された原材料 S、 S…が充分に攪拌されず、原材料 S、 S…の加熱 ·焼成効 率が低下する恐れがあるため、好ましくない。 In the present invention, the number of the compartments 60, 60,... Provided in the pipe parts 40, 40,. It is preferable to set the number of rooms to 12 or more and particularly preferably 6 to 8 rooms. This is because if the number of compartments 60, 60 "'divided by the radial partition wall 50 is 6-8, the compartments 60, 60 provided in the pipe sections 40, 40 ... Because the number increases appropriately, the raw materials S, S '..., which are put into each pipe section 40, 40 ... The raw materials S and S introduced into the compartments 60 and 60 can be sufficiently reduced and the sectional shapes of the compartments 60 and 60 have a relatively wide sectional area. This is because it can be sufficiently stirred and the heating and firing efficiency of the raw materials S, S -... can be improved, and each of the pipe sections 40, 40 ... is divided into compartments 60, The number of 60 ... as a matter of course, it is possible to exceed 12 chambers. When exceeding 12 chambers, the sectional shape of each compartment 60, 60 ... becomes very thin and narrow. ,cross section However, since the raw materials S, S ... charged into the compartments 60, 60 ... are not sufficiently stirred, the heating / firing efficiency of the raw materials S, S ... may be reduced. It is not preferable.
[0474] また、前記した本発明における多分割用隔壁構造部無部分 310を前記した多分割 用隔壁構造部 320と組み合わせて使用する方法は、図 47に例示したように、管部束 体 300bの各管部 40、 40···内の多分割用隔壁構造部 320の原材料投入方向側に 多分割用隔壁構造部無部分 310を連続して設け、この多分割用隔壁構造部無部分 310を含む管部 40、 40···の自転によって、多分割用隔壁構造部 320の各区分室 6
0, 60···に対して原材料 S、 S' · ·を均等、かつ自動的に投入することが可能となる 方法である。 [0474] Further, as illustrated in FIG. 47, the method of using the multi-partition partition wall structure non-part 310 in the present invention in combination with the multi-partition partition structure 320 described above is a tube bundle 300b. The multi-partition partition wall structure part 310 is continuously provided on the raw material input direction side of the multi-partition partition structure part 320 in each of the pipe sections 40, 40. Each of the compartments 6 of the partition wall structure part 320 for multi-division by the rotation of the pipe parts 40, 40. It is a method that enables raw materials S and S 'to be evenly and automatically added to 0, 60.
[0475] 通常、図 38、および図 39に例示したように、キルンの管部束体 300内の管部 40、 4 0· ··内に隔壁 50によって分割された区分室 60、 60· ··が設けられていない場合に は、各管部 40、 40· ··内に投入された原材料 S、 S…は、各管部 40、 40· · ·の下底 部に積層'堆積するだけであり、各管部 40、 40· ··内に多くの空間が生じ、管部束体 300b内に設けた各管部 40、 40· ··内のスペースを充分に有効利用することはでき ない。 [0475] Usually, as illustrated in FIG. 38 and FIG. 39, the compartments 60, 60,... Divided by the partition 50 in the pipes 40, 40 in the pipe bundle 300 of the kiln. Is not provided, the raw materials S, S… put into each pipe 40, 40 ... are only stacked and deposited on the bottom bottom of each pipe 40, 40 ... Many spaces are created in each pipe section 40, 40 ..., and the space in each pipe section 40, 40 ... provided in the pipe bundle 300b cannot be used sufficiently effectively. Absent.
[0476] また、図 41、および図 42に例示したように、多分割用隔壁構造部 320を管部束体 [0476] Further, as illustrated in FIG. 41 and FIG. 42, the multi-partition partition wall structure 320 is formed of a tube bundle.
300b内の管部 40、 40···内の全領域に設けた場合においては、各管部 40、 40··· 内に設けた各区分室 60、 60···に対する原材料 S、 S—の均等な投入が非常に困 難であり、区分室 60、 60···に対して原材料粒子 S、 ε···を投入するためには、極 めて複雑な原材料投入機構が必要となる実用上の大きな問題点を有していた。 When the pipes 40, 40 in the 300b are provided in the entire area, the raw materials S, S— for the compartments 60, 60, etc. provided in the pipes 40, 40,. It is very difficult to uniformly feed the materials, and in order to throw the raw material particles S and ε into the compartments 60 and 60, an extremely complicated raw material feeding mechanism is required. It had a large practical problem.
[0477] これらの問題点に対して、発明者らは鋭意研究した結果、前記した図 47に例示し たように、管部束体 300bの各管部 40、 40· ··内に対して多分割用隔壁構造部 320 を設け、さらにこの多分割用隔壁構造部 320の原材料投入方向側に、多分割用隔 壁構造部無部分 310を連続して設けることにより、図 41、および図 42に例示したよう に、各管部 40、 40···内に設けられた各区分室 60、 60···に対して原材料 S、 S--- を均等に投入することができ、原材料 S、 S' ··の積層 ·堆積の軽減に対して、各管部 40、 40···内のスペースを有効に利用できることを見出した。 [0477] As a result of diligent research on these problems, the inventors, as illustrated in Fig. 47 described above, for each of the tube portions 40, 40 ··· in the tube bundle 300b. 41 and 42 are provided by providing the multi-partition partition wall structure 320 and further providing the multi-partition partition wall structure non-part 310 on the raw material input direction side of the multi-partition partition structure 320. As shown in Fig. 4, the raw materials S and S --- can be evenly charged into the respective compartments 60 and 60 provided in the pipe sections 40 and 40. It was found that the space in each pipe section 40, 40 ··· can be effectively used for the reduction of stacking and accumulation of S '··.
[0478] 前記した各管部 40、 40···内に設けられた各区分室 60、 60· ··に対して投入され た原材料 S、 S'''が均等に投入される原理機構について、以下に説明する。図 47に おいて、先ず原材料 S、 S' · ·は各管部 40、 40· ··の原材料供給口 2側に設けられた 多分割用隔壁構造部無部分 310に対して原材料投入手段 10によって導入され、図 38に例示したように、原材料 S、 S' · ·は各管部 4、 40· ··の下底部に積層 ·堆積する 力 回転月同としての管部束体 300bの自転によって、各管部 40、 40···内を 1回転す るように動きながら、管部 40、 40···内を加熱 ·焼成処理物排出口 12側に、いいかえ れば多分割用隔壁構造部 320が設けられている管部 40、 40· ··の内奥方向に移動
する。 [0478] The principle mechanism in which the raw materials S and S '''charged into the respective compartments 60, 60... Provided in the pipe sections 40, 40. This will be described below. In FIG. 47, first, raw materials S, S ′... Are supplied to the raw material supply port 2 of the pipe sections 40, 40. As shown in Fig. 38, the raw materials S and S 'are stacked and deposited on the bottom bottom of each pipe part 4, 40 .... The rotation of the pipe bundle 300b as the same rotation month By moving the inside of each pipe part 40, 40 ... by one rotation, the inside of the pipe part 40, 40 ... is heated. Moves inward direction of the pipe part 40, 40 ... in which the structural part 320 is provided To do.
[0479] 次いで、前記した自転する各管部 40、 40· ··の多分割用隔壁構造部無部分 310 内を下底部に積層 ·堆積しながら移動した原材料 S、 S' · ·は、管部 40、 40· · ·内奥 に設けられた多分割隔壁構造部 320に到達する。その際にも管部束体 300bの自転 によって各管部 40、 40···も自転しているため、図 41に例示したように、多分割用隔 壁構造部 320の各区分室 60、 60·· 'も自転によって各管部 40、 40· ··の下底部に 巡回することになり、この管部 40、 40· ··の下底部に巡回してきた多分割隔壁構造 部 320の各区分室 60、 60···に対して多分割用隔壁構造部無部分 310から順次原 材料 S、 S' · ·が移動するため、各管部 40、 40· ··が 1回転する間に多分割用隔壁構 造部 320の各区分室 60、 60· ··に対して均等かつ自動的に原材料 S、 S' · ·が投入 されるものである。 [0479] Next, the raw material S, S '· · · moved while being stacked and deposited in the lower bottom portion of the multi-partition partition wall structure non-portion 310 of each of the pipe portions 40 and 40 · · Portions 40, 40... Reach the multi-divided partition wall structure portion 320 provided in the inner part. At this time, since the pipe portions 40, 40... Are also rotated due to the rotation of the pipe bundle 300b, as illustrated in FIG. 41, each compartment 60, 60 ... 'will also circulate to the lower bottom of each pipe 40, 40 ... by rotation, and each of the multi-partitioned partition wall structure 320 that has circulated to the lower bottom of this pipe 40, 40 ... Since the raw material S, S '... moves sequentially from the partition wall structure part 310 for multi-division to the compartments 60, 60 ..., each pipe 40, 40 ... The raw materials S and S 'are automatically and evenly supplied to the compartments 60 and 60 in the multi-partition partition structure 320.
[0480] 以上のように、多分割用隔壁構造部無部分 310を多分割用隔壁構造部 320の原 材料供給口 2側に設けて、多分割用隔壁構造部 320と連続的に組み合せることによ り、多分割隔壁構造部 320の各区分室 60、 60···に対して原材料 S、 S'Hを均等か つ、 自動的に導入する方法は、各区分室 60、 60···に対する原材料投入のための 特別、かつ複雑な原材料投入機械装置を導入する必要がなぐ構造原理も極めて簡 便であるため極めて好まし!/、。 [0480] As described above, the multi-partition partition structure part no part 310 is provided on the raw material supply port 2 side of the multi-partition partition structure part 320 and is continuously combined with the multi-partition partition structure part 320. Therefore, the method of automatically introducing the raw materials S and S'H to the respective compartments 60 and 60 of the multi-partition partition structure 320 is as follows. · The structural principle that does not require the introduction of special and complex raw material input machinery for raw materials is also very preferred because it is very simple!
[0481] 前記した多分割用隔壁構造部無部分 310と多分割用隔壁構造部 320を組み合わ せて管部束体 300c, 300dの各管部 40、 40···内に設けた構造の例を、図 48およ び図 49に例示した。図 48は、既述の図 43、図 44、および図 47に例示した回転キル ン炉 1内の管部束体 300aまたは 300bの構造の一例を示す一部断面図で、多分割 用隔壁構造部 320を管部束体 300cの各管部 40、 40···内に複数設けた例を示す 。本図 48は、管部束体 300cの各管部 40、 40···内の前、中、後の 3箇所に多分割 用隔壁構造部 320を設けた一例である力 本図 48に例示したように、キルンの管部 束体 300cの各管部 40、 40· · ·内に、必要に応じて多分割用隔壁構造部 320を複数 個設置することもできる。 [0481] Example of the structure provided in each of the pipe sections 40, 40 ... of the pipe bundle 300c, 300d by combining the multi-partition partition structure part 310 and the multi-partition partition structure 320 described above This is illustrated in Figs. 48 and 49. Fig. 48 is a partial cross-sectional view showing an example of the structure of the tube bundle 300a or 300b in the rotary kiln furnace 1 illustrated in Fig. 43, Fig. 44, and Fig. 47 described above. An example in which a plurality of parts 320 are provided in each pipe part 40, 40,... Of the pipe part bundle 300c is shown. Fig. 48 shows the force as an example of the partition wall structure 320 for multi-division provided at the three front, middle, and rear positions in each tube 40, 40 ... of the tube bundle 300c. As described above, a plurality of partition wall structures 320 for multi-division can be installed in the pipe parts 40, 40,... Of the pipe part bundle 300c of the kiln as necessary.
[0482] また図 49は既述の図 43、図 44、および図 47に例示した回転キルン炉 1内の管部 束体 300aまたは 300bの構造の一例を示す一部断面図で、多分割用隔壁構造部 3
20を管部束体 300dの各管部 40、 40 · · ·内のほぼ全領域に設けた例を示す。本図 4 9に例示したように、管部束体 300dの各管部 40、 40 · · ·内の原材料供給口 2の付近 に多分割用隔壁構造部無部分 310を設けた後、これ以降の各管部 40、 40 · · ·内を 加熱 ·焼成処理物排出口 8付近に至るまでのほぼ全領域に連続して多分割用隔壁 構造部 320を設けることにより、管部束体 300dの各管部 40、 40 · · ·内のほぼ全領域 を多分割用隔壁構造部 320とすることもできる。 FIG. 49 is a partial cross-sectional view showing an example of the structure of the tube bundle 300a or 300b in the rotary kiln furnace 1 illustrated in FIGS. 43, 44, and 47 described above. Bulkhead structure 3 An example is shown in which 20 is provided in almost the entire region within each of the tube portions 40, 40... Of the tube bundle 300d. As illustrated in FIG. 49, after the multi-partition partition wall structure non-part 310 is provided in the vicinity of the raw material supply port 2 in each pipe part 40, 40 ... of the pipe part bundle 300d, By heating the inside of each pipe part 40, 40 · · · Inside of the fired product discharge port 8 and by providing the multi-partition partition structure part 320 continuously in almost all areas, the pipe part bundle 300d Almost the entire area within each pipe section 40, 40... Can be made into a multi-partition partition wall structure section 320.
[0483] また、前記した図 48に例示したように、キルンの管部束体 300cの各管部 40、 40 · · [0483] Further, as illustrated in FIG. 48 described above, each pipe portion 40, 40 · · · of the pipe bundle 300c of the kiln
,に対して、多分割用隔壁構造部 320を複数個所設ける場合においては、多分割隔 壁構造部 320としては、例えば、 6分割型のみの多分割用隔壁構造部 320を複数箇 所に設ける · · ·等のように、 3室以上の区分室に分割した多分割用隔壁構造部 320 の構造の中から 1種類の同じ構造の多分割隔壁構造を選定して用いても良いが、例 えば、前記した 3〜8分割型の多分割用隔壁構造部として、 3分割型、 6分割型、 8分 割型などを併せて設ける · · ·等のように、区分室の分割数が異なり、断面形状の異な る複数種類の多分割用隔壁構造部 320の中から異なる 2種類以上の多分割隔壁構 造部 320を任意に選択して用いても良!/、。 In contrast, in the case where a plurality of multi-divided partition wall structure parts 320 are provided, for example, as the multi-divided partition wall structure part 320, for example, a multi-partition partition wall structure part 320 having only a six-partition type is provided at a plurality of parts. As in the case of the multi-partition partition structure 320 divided into three or more compartments, one type of multi-partition partition structure may be selected and used. For example, as the 3 to 8 division type multi-partition partition structure, a 3 division type, a 6 division type, an 8 division type, etc. are provided together. Alternatively, two or more different types of multi-divided partition wall structures 320 having different cross-sectional shapes may be selected and used from among multiple types of multi-divided partition wall structures 320! /.
[0484] また、既述の図 47、図 48および図 49に例示したように、管部束体 300b, 300c, 3 00dの各管部 40、 40 · · ·内の多分割用隔壁構造部 320に対して、多分割用隔壁構 造部 320の原材料供給口 2側に設けられる多分割用隔壁構造部無部分 310の回転 胴軸長方向の長さ L1は、 0. ;!〜 5. 0mであることが好ましぐ 0. 3〜3. Omであるこ とが特に好ましい。 [0484] Further, as illustrated in Figs. 47, 48 and 49, the multi-partition partition wall structure in each of the pipe portions 40, 40 · · · of the pipe portion bundles 300b, 300c, 300d. With respect to 320, the length L1 of the rotating barrel shaft length direction of the multi-partition partition wall structure non-part 310 provided on the raw material supply port 2 side of the multi-partition partition structure part 320 is 0. 0m is preferred 0.3-3. Om is particularly preferred.
[0485] これは、多分割用隔壁構造部無部分 310が原材料 S、 S ' · ·を安定して保持しなが ら回転し、かつ多分割用隔壁構造部無部分 310に後続して設けられる多分割用隔 壁構造部 320の各区分室 60、 60 · · ·に対して原材料 S、 S ' ' 'を安定、かつ均等に 投入する必要があるために、多分割用隔壁構造部無部分 310としてある程度の領域 (長さ)を管部束体 300の回転胴軸長方向に対して設けることが必要なためである。 [0485] This is because the multi-partition partition wall structure non-portion 310 rotates while holding the raw materials S, S '···, and is provided following the multi-partition partition wall structure non-portion 310. Multi-divided partition wall structure section 320 Because there is a need to feed raw materials S and S '' 'stably and evenly into each compartment 60, 60 ... This is because it is necessary to provide a certain area (length) as the portion 310 in the longitudinal direction of the rotating drum axis of the tube bundle 300.
[0486] これに対して、多分割用隔壁構造部無部分 310の回転胴軸長方向の長さ L1が 0. lm未満である場合には、多分割用隔壁構造部無部分 310が投入された原材料 S、 S ' · ·を充分に安定、かつ均一に保持して攪拌することが困難であるため好ましくな
い。また多分割用隔壁構造部無部分 310の回転月同軸長方向の長さ LIが 5. Omを越 える場合には、投入された原材料 s、 ε· · ·は多分割用隔壁構造部無部分 310にお いて長さ L1が 5. Om以下で充分に安定、かつ均等に保持することができるので、そ れ以上の長さにすることは無駄となるからである。 [0486] On the other hand, when the length L1 of the multi-partition partition wall structure non-portion 310 in the longitudinal axis direction of the rotary cylinder is less than 0.1 lm, the multi-partition partition wall structure non-portion 310 is inserted. It is preferable because it is difficult to keep the raw materials S, S '... Yes. In addition, if the length LI of the multi-partition bulkhead structure 310 in the rotation moon coaxial length direction exceeds 5. Om, the input raw materials s, ε In 310, the length L1 is 5. Om or less, and the length L1 can be held sufficiently stably and evenly.
[0487] また、既述の図 47、図 48および図 49に例示したように、管部束体 300の各管部 40 、 40 · · ·に対して設けられる多分割用隔壁構造部 320の回転胴軸長方向の長さ L2 は、 0. 3〜50mであることが好ましぐ 0. 5〜30mであることが特に好ましい。これは 、原材料 S、 S ' Hを加熱 ·焼成処理するために必要な時間の間、多分割用隔壁構造 部 320内に原材料 S、 S…を保持する必要があるために、多分割用隔壁構造部 320 としてある程度の領域(長さ)を管部束体 300の回転軸長方向に対して設けることが 必要なためである。 [0487] Further, as illustrated in FIGS. 47, 48, and 49 described above, the multi-partition partition wall structure 320 provided for each of the pipe portions 40, 40,. The length L2 in the longitudinal direction of the rotary drum axis is preferably 0.3 to 50 m, and particularly preferably 0.5 to 30 m. This is because it is necessary to hold the raw materials S, S... In the multi-partition partition structure 320 for the time required for heating and baking the raw materials S and S′H. This is because it is necessary to provide a certain area (length) as the structural portion 320 in the direction of the length of the rotation axis of the tube bundle 300.
[0488] これに対して、多分割用隔壁構造部 320の回転胴軸長方向の長さ L2が、 0. 3m未 満である場合、多分割用隔壁構造部 320における原材料 S、 S…の加熱 ·焼成時間 を確保することが困難なため好ましくない。また、多分割用隔壁構造部 320の回転胴 軸長方向の長さ L2が、 50mを超える場合はあまり考えられない。これは、その長さが あれば、投入された原材料 Sを多分割用隔壁構造部 320の区間内で充分に加熱 '焼 成処理することができるので、それ以上の長さにすることは無駄となるからである。 [0488] On the other hand, when the length L2 of the multi-partition partition wall structure 320 in the rotational barrel axis length direction is less than 0.3 m, the raw materials S, S. It is not preferable because it is difficult to ensure heating and firing time. In addition, it is unlikely that the length L2 of the multi-partition partition wall structure 320 in the axial direction of the rotary cylinder exceeds 50 m. If this length is sufficient, the input raw material S can be sufficiently heated and baked in the section of the multi-partition partition wall structure 320, so it is useless to make it longer. Because it becomes.
[0489] 本発明において、管部束体 300内に設ける各管部 40、 40 · · ·の外径の大きさにつ いては、管部束体 300の外径の 1/ 8以上、 1/ 2以下とすることが好ましい。これは、 管部束体 300内に設ける管部 40、 40 · · ·の外径を前記した範囲の大きさとすること により、管部束体 300内に設ける管部 40、 40 · · ·の数を増やして伝熱面積を増やし 、かつ原材料 S、 S ' · ·の積層 ·堆積を軽減することと、充分な量の原材料 S、 S ' · ·を 加熱'焼成処理するための管部 40、 40 · · ·の容積の確保を両立させることができ、好 ましいためである。本発明においては、管部 40、 40 · · ·の外径を前記のように管部束 体 300の外径の 1/8以上と規定することにより、図 50に例示したように、最大 21個の 管部を管部束体 14内に設けることができる。ここで管部の外径は断面が円以外の形 状の場合は同一断面積の円の外径とする。 これに対して、管部束体 300内に設け る管部 40、 40 · · ·の外径が、管部束体 300の外径の 1/ 2を超える場合には、複数の
管部 40、 40· ··を管部束体 300内に設けることができず、原材料 S、 S. · ·の積層-堆 積を軽減することや伝熱効率を向上させることができないため好ましくない。また、管 部束体 300内に設ける管部 40、 40···の外径が、管部束体 300の外径の 1/ 8未満 である場合には、前記した 21個以上の充分な数の管部を管部束体 300内に設ける ことはできる力 他方、管部 40、 40· ··の外径が過小となり、キルン炉の処理容積とし ての各管部 4、 40…の総容積が著しく少なくなるために、原材料 S、 S…を加熱'焼 成処理するために必要なキルン炉容積を確保することができず、原材料 S、 S' · ·の 処理量を充分に増やすことができな!/、ために好ましくなレ、。 [0489] In the present invention, the outer diameter of each of the pipe portions 40, 40, ... provided in the pipe bundle 300 is 1/8 or more of the outer diameter of the pipe bundle 300, 1 / 2 or less is preferable. This is because the outer diameter of the pipe sections 40, 40,... Provided in the pipe section bundle 300 is set to a size in the above-described range, so that the pipe sections 40, 40,. Increase the heat transfer area by increasing the number, and reduce the stacking / deposition of raw materials S and S '... and a tube part to heat and bake a sufficient amount of raw materials S, S' ... This is because it is possible to achieve both a volume of 40 and so on, which is preferable. In the present invention, by defining the outer diameter of the pipe sections 40, 40... As 1/8 or more of the outer diameter of the pipe section bundle 300 as described above, as illustrated in FIG. A single tube can be provided in the tube bundle 14. Here, the outer diameter of the pipe is the outer diameter of a circle with the same cross-sectional area when the cross section has a shape other than a circle. On the other hand, when the outer diameter of the pipe portions 40, 40... Provided in the pipe bundle 300 is more than 1/2 of the outer diameter of the pipe bundle 300, a plurality of pipes 40, 40. It is not preferable because the pipe portions 40, 40... Cannot be provided in the pipe bundle 300, and the stacking-stacking of the raw materials S, S. .. cannot be reduced and the heat transfer efficiency cannot be improved. . Further, when the outer diameter of the pipe portions 40, 40... Provided in the pipe bundle 300 is less than 1/8 of the outer diameter of the pipe bundle 300, the above-mentioned 21 or more sufficient · · · · · · · · · · · ······································ Since the total volume is significantly reduced, it is not possible to secure the kiln furnace volume necessary to heat and sinter raw materials S, S…, and increase the throughput of raw materials S, S '· · · sufficiently I can't! /, Which is preferable for.
[0490] 本発明における管部束体 300の外径としては、 0.2〜8. Omとすることが好ましぐ 0.3〜5. Omとすることが特に好ましい。回転胴としての管部束体 300の外径が 0.2 m未満である場合には、所望する量の原材料 S、 S' ··を処理することが困難であるた め好ましくなく、他方、管部束体 300の外径が 8. Omを超える場合には、熱処理装置 が設備な過大となり、現実的でなくなる。 [0490] The outer diameter of the tube bundle 300 in the present invention is preferably 0.2 to 8. Om, and more preferably 0.3 to 5. Om. When the outer diameter of the tube bundle 300 as a rotating drum is less than 0.2 m, it is not preferable because it is difficult to process a desired amount of raw materials S, S '. When the outer diameter of the bundle 300 exceeds 8. Om, the heat treatment apparatus becomes excessively large and becomes impractical.
[0491] また本発明における管部束体 300内に設ける管部 40、 40· ··の外径は、前記した ように回転胴としての管部束体 300の外径に依存して決定されることから、管部 40、 40···の外径としては、 0.025—4. Omとすることカ好ましく、 0.0375〜2.5mとす ることが特に好ましい。 [0491] In addition, the outer diameter of the pipe portions 40, 40 ... provided in the pipe bundle 300 according to the present invention is determined depending on the outer diameter of the pipe bundle 300 as a rotating drum as described above. Therefore, the outer diameter of the pipe portions 40, 40... Is preferably 0.025-4.Om, and particularly preferably 0.0375 to 2.5 m.
[0492] 本発明における多分割用隔壁構造部 320を形成する方法については、特に限定 はなぐ各種方法を用いることができる。この一例として、図 51に多分割用隔壁構造 部 320を形成する方法を例示した。図 51では、各管部 40、 40· ··の内側に隔壁 50 となる多分割用仕切 50cを入れて、管部 40、 40···内部を複数の区分室 60、 60··· に分割することにより、所望の多分割用隔壁構造部 320を形成する方法の一例を示 した。図 51に例示したように、多分割用仕切 50cを管部内に揷入することによって、 各管部 40、 40· ··内部を多分割用隔壁構造部 320とすることができる。また、前記の ような多分割用仕切 50cを揷入しない管部の区間が多分割用隔壁構造部無部分 31 0となるわけである。 [0492] As the method of forming the multi-partition partition wall structure 320 in the present invention, various methods without particular limitation can be used. As an example of this, FIG. 51 illustrates a method of forming the multi-partition partition wall structure 320. In FIG. 51, a multi-partitioning partition 50c to be a partition wall 50 is placed inside each pipe section 40, 40 ..., and the inside of the pipe section 40, 40 ... is divided into a plurality of compartments 60, 60 ... An example of a method of forming a desired multi-partition partition wall structure 320 by dividing is shown. As illustrated in FIG. 51, by inserting the multi-partitioning partition 50c into the pipe part, the inside of each pipe part 40, 40... Can be made into the multi-partition partition structure part 320. In addition, the section of the pipe portion where the multi-dividing partition 50c is not inserted becomes the multi-dividing partition wall structure portion 310.
[0493] 前記した多分割用仕切 50cを各管部 40、 40·· ·内に揷入する場合には、溶接等に より多分割用仕切 50cの一部を管部 40の内壁に接合して固定することができる。
[0494] また、前記多分割用仕切 50cについては、管部 40内に挿入するが固定しないで、 管部内部で回転可能な状態 (従動回転式多分割用仕切 50s、後述の図 53参照)とし ても良い。つまり管部束体 300の回転運動に伴い管部 40内で従動回転するようにな り、このことを従動回転式と呼ぶ。多分割用仕切 50cを従動回転式多分割用仕切 50 sとすることにより、管部 40、 40·· 'からの従動回転式多分割用仕切 50sの出入が容 易になるために、回転キルン炉の保守 ·維持作業が容易になる利点がある。 [0493] When the multi-dividing partition 50c is inserted into each of the pipe portions 40, 40 ···, a part of the multi-dividing partition 50c is joined to the inner wall of the pipe portion 40 by welding or the like. Can be fixed. [0494] Further, the multi-partitioning partition 50c is inserted into the pipe part 40 but is not fixed, but can be rotated inside the pipe part (the driven rotary multi-partitioning partition 50s, see Fig. 53 described later). It may be. That is, as the tube bundle 300 is rotated, it is driven to rotate in the tube 40, which is called a driven rotation type. By making the multi-split partition 50c a driven rotary multi-split partition 50 s, it is easy to access the driven rotary multi-split partition 50s from the pipe section 40, 40 Furnace maintenance · There is an advantage that maintenance work becomes easy.
[0495] 前記従動回転式多分割用仕切 50sの構造の一例を図 53に示す。図 53は、管部 4 0, 40···内部を 6個の区分室に分割するための 6分割型の従動回転式多分割用仕 切 50sの一例であり、図 53 (a)が多分割用仕切 50sの斜視図、および図 53(b)が多 分割用仕切 50sの回転軸に直交する横方向の断面図である。図 53に例示したような 従動回転式多分割用仕切 50sを図 51に例示したように管部束体の各管部 40、 40·· •内に挿入することにより、管部 40、 40···内を複数の区分室(図 51では、 1個の管 部内を 6個の区分室)に分割することができる。この例では多分割用仕切 50sの仕切 壁部は 6枚あり 6個の区分室ができる例であった力 S、仕切壁部の数は適宜調整可能 であり先に説明した隔壁による区分室の数の範囲と同様となり、 3〜; 12個程度の区分 室ができる範囲が好ましい。 An example of the structure of the driven rotary multi-partitioning partition 50s is shown in FIG. Fig. 53 is an example of a 6-splitting driven rotary multi-division system 50s for dividing the pipe section 40, 40 ... into 6 compartments. FIG. 53 is a perspective view of the dividing partition 50s, and FIG. 53 (b) is a cross-sectional view in the horizontal direction orthogonal to the rotation axis of the multi-dividing partition 50s. As shown in FIG. 53, the driven rotary multi-partitioning partition 50s as illustrated in FIG. 53 is inserted into each of the tube sections 40, 40. · The interior can be divided into multiple compartments (in Fig. 51, one compartment is divided into 6 compartments). In this example, there are six partition walls for the multi-partition partition 50s, and the force S was an example that can create six compartments. The number of partition walls can be adjusted as appropriate. It is the same as the range of the number, 3 to; a range where about 12 compartments can be formed is preferable.
[0496] 前記した従動回転式多分割用仕切 50sを管部内に固定しないで揷入する場合に は、従動回転式多分割用仕切 50sの外径の大きさを管部の内径より小さめにすること が好ましぐ具体的には、従動回転式多分割用仕切 50sの外径の大きさを管部 40、 40···の内径の大きさの 0· 5〜0· 99倍とすることが好ましぐ 0· 8〜0· 97倍とする ことが特に好ましい。管部 40、 40· ··内に揷入する従動回転式多分割用仕切 50sの 外径の大きさ力 S、管部 40、 40· ··の内径の大きさの 0. 5倍未満である場合には、従 動回転式多分割用仕切 50sの大きさが過少であり、管部 40、 40· ··内に投入された 原材料 S、 S' ··を充分に分割保持することができなくなる恐れがあるため好ましくな い。また、管部 40、 40· ··に揷入する従動回転式多分割用仕切 50sの外径の大きさ 1S 管部 40、 40· ··の内径の大きさの 0. 99倍を超える場合には、従動回転式多分 割用仕切 50sの大きさが管部 40、 40···の内径の大きさに対して余裕が少なぐ従 動回転式多分割用仕切 50sが管部内で円滑に従動回転しなくなる恐れや、装置の
保守点検等において、従動回転式多分割用仕切 50sを管部 40、 40 · · ·に揷入したり 、管部 40、 40 · · ·から抜き出し取り出したりすることが困難になる恐れがあるため、好 ましくない。 [0496] When the driven rotary multi-partitioning partition 50s is inserted without being fixed in the pipe part, the outer diameter of the driven rotary multi-partitioning partition 50s is made smaller than the inner diameter of the pipe part. Specifically, the outer diameter of the driven rotary multi-partitioning partition 50s should be 0.5-5 to 99 times larger than the inner diameter of the pipe sections 40, 40 ... It is particularly preferable that the ratio is 0 · 8 to 0 · 97 times. Pipe section 40, 40 ········ Following rotary multi-partitioning partition 50s inserted into inner diameter force S, less than 0.5 times the inner diameter of pipe section 40, 40 ···· In some cases, the size of the driven rotary multi-division partition 50s is too small, and the raw materials S and S 'placed in the pipe sections 40 and 40 can be sufficiently divided and held. This is not preferable because there is a risk of being unable to do so. Also, the size of the outer diameter of the driven rotary multi-partitioning partition 50s inserted into the pipe 40, 40 ... is more than 0.99 times the size of the inner diameter of the 1S pipe 40, 40 ... The driven rotary multi-partitioning partition 50s has a small margin with respect to the inner diameter of the pipe section 40, 40 ... There is a risk that the driven rotation will stop, In maintenance and inspection, it may be difficult to insert or remove the driven rotary multi-partitioning partition 50s into or from the pipes 40, 40, etc. I don't like it.
[0497] 前記した従動回転式多分割用仕切 50sは揷入される管部の長さより短いことは言う までもないが、 2個、 3個と複数個に分割してもよい。このような場合のほうが一つの重 量が小さくなりより従動回転しやすくなる。 [0497] Needless to say, the driven rotary multi-partitioning partition 50s is shorter than the length of the inserted pipe part, but it may be divided into two or three. In such a case, the weight of one becomes smaller and the driven rotation becomes easier.
[0498] しかしながら、多分割用仕切 50sを前記したような従動回転式多分割用仕切 50sと する場合には、小径化した多分割用仕切と管部内壁との間に隙間が生じ、この隙間 に原材料 S、 S, · ·が挟まって潰されて、原材料が粉々になる恐れがある。従動回転 式多分割用仕切 50sを挿入した管部 40に原材料 S、 S…を投入した際の管部 40内 における原材料 S、 S ' · ·の堆積状態を示す概念図を図 54に例示する。 [0498] However, when the multi-splitting partition 50s is the driven rotary multi-splitting partition 50s as described above, a gap is formed between the multi-splitting partition having a reduced diameter and the inner wall of the pipe portion. There is a risk that the raw materials S, S,. 54 shows a conceptual diagram showing the accumulation state of the raw materials S, S ′... In the pipe 40 when the raw materials S, S... Are put into the pipe 40 into which the driven rotary multi-partition partition 50s is inserted. .
[0499] 図 54では、管部 40内に投入された原材料 S、 S…は従動回転式多分割用仕切 5 Osによって 6分割されて堆積している。この堆積した原材料 S、 S ' "は管部 40の回 転 Cによって流動する力 その際に図 54の破線部 B枠内に例示したように、多分割 用仕切 50sと管部内壁との間に生じた隙間に原材料 S、 S " 'が挟まってしまい、多分 割用仕切 50sの重さによって挟まった原材料 S、 S ' · ·は潰されて粉々になる。この原 材料 S、 S ' · ·が粉々になることは、原材料 S、 S ' · ·の造粒加工による原材料の加熱 の均一化や空気との接触性向上による燃焼効率向上の効果を妨害するものであり、 好ましくない。 In FIG. 54, the raw materials S, S... Put into the pipe part 40 are divided into six by the driven rotary multi-partitioning partition 5 Os and accumulated. This accumulated raw material S, S '"is a force that flows due to the rotation C of the pipe section 40. At that time, as shown in the broken line B frame in Fig. 54, the space between the multi-partition partition 50s and the inner wall of the pipe section The raw materials S, S '' are caught in the gaps generated in the material, and the raw materials S, S '··· are probably crushed and shattered due to the weight of the dividing partition 50s. The shattering of the raw materials S, S '... disturbs the effect of improving the combustion efficiency due to the uniform heating of the raw materials by the granulation of the raw materials S, S' ... and the improved contact with air. This is not preferable.
[0500] 前記のような従動回転式多分割用仕切 50sによって原材料 S、 S ' · ·が粉砕される 問題点を改善するために、前記従動回転式多分割用仕切 50sの仕切板に対して、 堰き止め部材を設けることが好ましい。この従動回転式多分割用仕切 50sの仕切板 に堰き止め部材を設けた構造の一例を図 55、および図 56に例示する。図 55は、既 述図 53に例示した従動回転式多分割用仕切 50sの構成の仕切板の外周先端近傍 部分に堰き止め部材 390aを追加した多分割用仕切 50slの構成図であり、このうち 図 55 (a)が多分割用仕切 50slの斜視図であり、図 55 (b)が多分割用仕切 50slの 回転軸方向に直交する横方向の断面図である。また、図 56は、既述図 53に例示し た従動回転式多分割用仕切 50sの構成の仕切板の外周先端部分に堰き止め部材 3
90bを追加した多分割用仕切 50s2の構成図であり、このうち図 56 (a)が多分割用仕 切 50s2の斜視図であり、図 56 (b)が多分割用仕切 50s2の回転軸方向に直交する 横方向の断面図である。 [0500] In order to improve the problem, the raw materials S, S '· · · are crushed by the driven rotary multi-dividing partition 50s as described above. It is preferable to provide a damming member. An example of a structure in which a blocking member is provided on the partition plate of the driven rotary multi-dividing partition 50s is illustrated in FIG. 55 and FIG. FIG. 55 is a configuration diagram of a multi-splitting partition 50sl in which a blocking member 390a is added to the vicinity of the outer peripheral tip of the partition plate having the configuration of the driven rotary multi-splitting partition 50s illustrated in FIG. 53. FIG. 55 (a) is a perspective view of the multi-dividing partition 50sl, and FIG. 55 (b) is a cross-sectional view in the lateral direction orthogonal to the rotation axis direction of the multi-dividing partition 50sl. Further, FIG. 56 shows a damming member 3 attached to the outer peripheral tip portion of the partition plate having the configuration of the driven rotary multi-division partition 50s illustrated in FIG. Fig. 56 is a configuration diagram of multi-splitting partition 50s2 with 90b added, of which Fig. 56 (a) is a perspective view of multi-splitting cutting 50s2, and Fig. 56 (b) is the direction of the rotation axis of multi-splitting partition 50s2. It is sectional drawing of the horizontal direction orthogonal to.
[0501] 前記図 56に例示した堰き止め部材 390aを設けた多分割用仕切 50slを揷入した 管部 40に原材料 S、 S…を投入した際の管部 40内における原材料 S、 S…の堆積 状態を示す概念図を図 57に例示する。 [0501] Of the raw materials S, S ... in the pipe 40 when the raw materials S, S ... are introduced into the pipe 40 into which the multi-dividing partition 50sl provided with the blocking member 390a illustrated in Fig. 56 is inserted. A conceptual diagram showing the deposition state is illustrated in Fig. 57.
[0502] 図 57では、既述図 54と同様に管部 40内に投入された原材料 S、 S ' "は従動回転 式多分割用仕切 50s 1によって 6分割されて堆積している。この堆積した原材料 S、 S • · 'も既述図 54と同様に管部 40の回転 Cによって流動する力 その際に図 56では 管部 40の回転 Cによって流動する原材料 S、 S . · ·は堰き止め部材 390aによって堰 き止められる。その結果、従動回転式多分割用仕切 50slと管部内壁との間に生じた 隙間には、原材料 S、 S ' · ·が挟まれなくなり、原材料 S、 Sの粉砕を防止することがで きる。 [0502] In Fig. 57, as in Fig. 54, the raw materials S and S '"thrown into the pipe 40 are divided into six by the driven rotary multi-division partition 50s 1 and accumulated. In the same way as in Fig. 54, the raw material S, S • · 'is also flowed by the rotation C of the tube 40. In this case, in Fig. 56, the raw material S, S. As a result, the raw material S, S '· · · is not sandwiched in the gap formed between the driven rotary multi-partitioning partition 50sl and the inner wall of the pipe, and the raw material S, S Can be prevented.
[0503] 多分割用仕切 50sl、および 50s2に対する堰き止め部材 390a、および 390bの設 置条件について、仕切板に対して堰き止め部材 390a、 390bを設ける位置としては、 仕切板の外周先端から 50cm以内が好ましぐ 10cm以内とすることが特に好ましい。 仕切板に対して堰き止め部材 390a、 390bを設ける位置力 仕切板の外周先端から 50cm以上離れる(回転軸中心に近づく)場合には、堰き止め部材 390a、 390bが原 材料 S、 S ' · ·を堰き止めて仕切板上での原材料 S、 S ' · ·の拡散を抑制し、原材料 S 、 S ' · ·の積層を充分に軽減することができなくなる恐れがあるため好ましくない。 [0503] Regarding the installation conditions of the blocking members 390a and 390b for the multi-splitting partitions 50sl and 50s2, the position where the blocking members 390a and 390b are installed on the partition plate is within 50cm from the outer peripheral tip of the partition plate It is particularly preferable that the distance is within 10 cm. Positioning force to provide damming members 390a and 390b to the partition plate When the slab members 390a and 390b are separated from the tip of the outer periphery of the partition plate by 50 cm or more (approaching the center of the rotating shaft), Is prevented from spreading the raw materials S, S ′... On the partition plate, and the stacking of the raw materials S, S ′.
[0504] また、堰き止め部材 390a、 390bの高さについては、管部 40に投入した原材料 S、 S . . .の全てを堰き止め部材 390a、 390bで受け止めて、仕切と管部内壁との隙間に よって原材料 S、 S ' · ·の粉砕を防止できれば良ぐ原材料 S、 S ' · ·の投入量、および 管部内における原材料 S、 S * ' 'の積層高さ等を考慮して、堰き止め部材 390a、 390 bの高さを適宜調整して設けることができる。 [0504] Regarding the heights of the blocking members 390a and 390b, the raw materials S and S... Put into the pipe part 40 are all received by the blocking members 390a and 390b, and the partition and the inner wall of the pipe part are Considering the input amount of raw materials S, S '..., and the stacking height of raw materials S, S *' in the pipe, etc. The stop members 390a and 390b can be provided by appropriately adjusting the height.
[0505] 前記仕切板に堰き止め部材 390aを設けた従動回転式多分割用仕切 50slについ ては、図 58に例示したように、回転キルン炉の管部束体 300を構成する各管部 40、 40 · · ·に対して揷入して用いられる。
[0506] 尚、以上説明した多分割用仕切の端部は管部内壁と摩擦するわけであるからァー ルをつける仕上げをおこなったり、端部の材質をより摩擦に強い材質に変更するため 、メツキ、溶射等により等の被覆処理をおこなっても良い。 [0505] Regarding the driven rotary multi-partitioning partition 50sl provided with the blocking member 390a on the partition plate, as illustrated in FIG. 58, each pipe part 40 constituting the pipe part bundle 300 of the rotary kiln furnace is used. 40 is used for purchase. [0506] Note that the end of the multi-partitioning partition described above rubs against the inner wall of the pipe, so it is necessary to finish with an error or to change the material of the end to a material more resistant to friction. A coating process such as plating, spraying, or the like may be performed.
[0507] また、本発明においては管部束体 300の各管部 40、 40· ··内を前記した隔壁 50 によって複数の区分室 60、 60···に分割することに加えて、図 52に例示したように、 管部 40、 40···の内壁、および区分室 60、 60···に分割するための隔壁 50の表面 に対して複数の搔き揚げ板 380 (リフタ一とも呼ばれる)を設けること力 Sできる。前記し た搔き揚げ板 380の形状、および大きさについては、特に限定はなぐ管部束体 300 の自転によって管部 40、 40···内、および区分室 60、 60···内の原材料粒子 1、 1· • ·の流動を阻害しなレ、範囲で適宜選択して用いることができる。 [0507] In addition, in the present invention, in addition to dividing the inside of each pipe portion 40, 40 ··· of the pipe portion bundle 300 into a plurality of compartments 60, 60 ··· by the partition wall 50 described above, 52, as shown in FIG. 52, a plurality of lifting plates 380 (both lifters) are attached to the inner wall of the pipe sections 40, 40, and the surface of the partition wall 50, which is divided into the division chambers 60, 60. Can be called S). Regarding the shape and size of the above-described flying plate 380, there is no particular limitation within the pipe sections 40, 40... And the compartments 60, 60. The raw material particles 1, 1 ··· can be appropriately selected and used within a range that does not hinder the flow of the particles.
[0508] また、以上の図示した例では管部として円柱状のものを例として説明してきた力 本 発明における管部束体 300を構成する各管部 40、 40· ··の断面形状としては、特に 限定はなぐ略円形状、略楕円形状、略三角形以上の略多角形状などのいずれか の断面形状の管部を任意に選択して用いることができる。 [0508] Further, in the example illustrated above, the force has been described by taking the cylindrical portion as the tube portion as an example. As the cross-sectional shape of each tube portion 40, 40 ··· constituting the tube portion bundle 300 in the present invention, In particular, the tube portion having any cross-sectional shape such as a substantially circular shape, a substantially elliptical shape, or a substantially polygonal shape that is substantially triangular or more can be arbitrarily selected and used without limitation.
[0509] また、本発明における回転キルン炉 1に備えられる管部束体 300、すなわち、各管 部 40、 40···、各管部固定部材 30cl、 30α2···,および多分割用隔壁構造部 320 を構成するための隔壁 50 (多分割用仕切り 50s、 50s)や、その他の管部束体 300に 関連する部分を構成する材料の材質としては、加熱 ·焼成処理に耐える材質で構成 されることが必要であり、加熱 ·焼成時の温度として 1000°C程度の温度に耐え得る 材質であることが特に好ましい。また、有機成分を含有する原材料を加熱 ·焼成処理 する際に、酸性やアルカリ性の成分が発生することがあるため、酸性やアルカリ性に 耐え得る材質で構成されることが極めて好ましぐステンレスやチタン等の耐熱、耐腐 食性を有する鋼材が好ましレ、。 [0509] Further, the pipe bundle 300 provided in the rotary kiln furnace 1 according to the present invention, that is, the pipe parts 40, 40, each pipe part fixing member 30cl, 30α2, ..., and the partition wall for multi-division The material of the material constituting the bulkhead 50 (multi-partitioning partition 50s, 50s) for constructing the structural part 320 and other parts related to the tube bundle 300 is composed of a material that can withstand heating and firing. It is particularly preferable that the material be able to withstand a temperature of about 1000 ° C as the temperature during heating and firing. In addition, when raw materials containing organic components are heated and baked, acidic or alkaline components may be generated. Therefore, stainless steel and titanium that are highly preferred to be made of materials that can withstand acidic and alkaline properties are preferred. Steel materials with heat resistance and corrosion resistance are preferred.
[0510] また、本発明における多分割用隔壁構造部 320の隔壁 50を構成する鋼板材として は、前記したステンレスなどの金属板により構成しても良いが、さらにパンチングメタ ルのような穴明きの金属板で構成することが好ましレ、。これは穴の明いて!/、な!/、金属 板よりも穴明き金属板の方が、各区分室 60、 60…内に投入された原材料 S、 S--- に対して多分割用隔壁構造部 320に設けられた穴を通じて空気(酸素)を行き渡らせ
やすくなるためである。この穴明き金属板の穴には、各種の形状や大きさがあるが、 本発明に用いられる穴明き金属板の穴の形状や大きさには特に限定はなぐ造粒成 形された原材料 S、 S—が多分割用隔壁構造部 320の各区分室 60、 60···に投入 される場合に、その原材料 S、 S'''が隔壁 50に設けられた穴からこぼれて他の区分 室に移動しないような大きさであればよぐ丸形、三角形、四角形、スリット形などの各 種穴形状の穴明き金属板を使用することができる。 [0510] In addition, the steel plate material constituting the partition wall 50 of the multi-partition partition structure 320 in the present invention may be formed of the above-described metal plate such as stainless steel, but is further perforated like a punching metal. It is preferable to use mushroom metal plates. This is perforated! /, N! /, The perforated metal plate is more divided than the metal plate for the raw materials S and S --- that are put in each compartment 60, 60… Air (oxygen) through holes provided in partition wall structure 320 This is because it becomes easier. There are various shapes and sizes of holes in the perforated metal plate, but the shape and size of the holes in the perforated metal plate used in the present invention are not specifically limited. When the raw materials S and S— are put into the respective compartments 60 and 60 of the partition wall structure section 320 for multi-division, the raw materials S and S ′ '' are spilled from the holes provided in the partition wall 50, etc. As long as it does not move into the compartment, it is possible to use various types of perforated metal plates such as round, triangular, quadrangular, and slit shapes.
[0511] 本発明において回転キルン炉 1の管部束体 300の各管部 40、 40···に対して投入 される原材料 S、 S · · ·は、各管部 40、 40·· ·内における原材料 S、 S' · ·の積層を軽 減して、空気(酸素)との接触する効率を向上させるために、造粒処理した後に回転 月同としての管部束体 300に投入することが好ましい(図 46参照)。前記した原材料 S、 S' ··を造粒する方法としては、一定の粒子形状に造粒成形する方法として、プリケッ トマシンやローラーコンパクタ一等の圧縮成形機を用いる圧縮造粒法、転動造粒法、 攪拌造粒法、および押出成形法等が挙げられ、また、ある大きさの範囲の粒子形状 に造粒成形する方法として、スクリューフィーダ一などで大きさを調整する方法が挙 げられ、原材料 S、 S…を所望の形状 ·大きさに造粒成形するために、前記した造粒 成形方法を適宜選択して用いることができる。また、管部束体 300の各管部 40、 40· •内に投入する原材料 S、 S'''を造粒する形状については特に限定はなぐ後記し た大きさ(直径または長さ)の範囲にあれば、円柱状、球状、楕円、三角形、その他の 多角形や、力、まぼこ状、凹凸状等各種の粒子形状に造粒成形することができる。 [0511] In the present invention, the raw materials S, S, which are charged into the pipe sections 40, 40 of the pipe bundle 300 of the rotary kiln furnace 1 are the pipe sections 40, 40,. In order to reduce the stacking of raw materials S, S '··· and improve the efficiency of contact with air (oxygen), after the granulation process, put it into the tube bundle 300 as a rotating month Is preferred (see FIG. 46). As a method of granulating the raw materials S, S ′, etc., as a method of granulating and forming into a certain particle shape, a compression granulation method using a compression molding machine such as a bucket machine or a roller compactor, rolling rolling Examples include a granulation method, an agitation granulation method, and an extrusion molding method, and a method of adjusting the size with a screw feeder or the like is given as a method of granulating and molding into a particle shape within a certain size range. In order to granulate the raw materials S, S... Into a desired shape and size, the above-described granulation and molding methods can be appropriately selected and used. In addition, the shape of the raw material S, S ′ ″ to be put into each pipe part 40, 40 · of the pipe bundle 300 is not particularly limited, and has a size (diameter or length) described later. If it is within the range, it can be granulated and formed into various particle shapes such as columnar, spherical, elliptical, triangular, other polygonal shapes, force, serrated shape, and uneven shape.
[0512] 本発明における原材料 S、 S…を造粒する大きさとしては、直径または長さが、 2〜 30mmとすること力 S好ましく、 5〜; 15mmとすることが特に好ましい。造粒した際の原 材料 S、 S*''の大きさとして、直径または長さが 2mm未満である場合には、管部束 体 300の各管部 40、 40·· 'や多分割用隔壁構造部 320の各区分室 60、 60· · ·など における原材料 S、 S' ··の積層が過密になり、積層した原材料粒子 S、 S' · ·内に空 気(酸素)が行き渡らなくなるために、原材料粒子 S、 S' ··に含有される有機成分の 燃焼が不完全となり、加熱 ·焼成処理物の白色度が低下する恐れがあるために好ま しくない。また、原材料 S、 S' ··の直径または長さが 30mmを越える場合には、原材 料 S、 S' ··の大きさが過大であり、原材料 S、 S' ··の中心部に空気(酸素)が届き難く
なって、原材料 s、 ε· · ·の中心部に燃焼が不完全な部分が残留して加熱 ·焼成処理 物の品質を低下させる恐れがあり、また原材料 S、 S—が管部束体 300の各管部 40 , 40 · · ·内や多分割用隔壁構造部 320の区分室 60、 60 · · ·内を進行する際に、原 材料 S、 S * ' 'が互いに進行を邪魔して、管部束体 300内をスムーズに進行できなく なる恐れがあるため好ましくない。 [0512] The size for granulating the raw materials S, S ... in the present invention is such that the diameter or length is 2 to 30 mm, preferably S, and more preferably 5 to 15 mm. When the diameter of raw materials S and S * '' when granulated is less than 2mm, each pipe part 40, 40 ... The stacking of raw materials S, S '... in each compartment 60, 60 ..., etc. of partition wall structure 320 becomes overly dense, and air (oxygen) does not spread within the stacked raw material particles S, S' ... For this reason, the organic components contained in the raw material particles S, S ′... Are incompletely combusted, and the whiteness of the heated / baked product may be lowered. If the diameter or length of the raw materials S, S '... exceeds 30mm, the size of the raw materials S, S' ... is excessive, and the raw materials S, S '... Air (oxygen) is difficult to reach As a result, an incompletely combusted portion may remain in the center of the raw material s, ε ···, which may reduce the quality of the heated and fired product, and the raw materials S and S- The pipes 40, 40 · · · When traveling inside the partition chamber 60, 60 · · · inside the multi-partition partition structure 320, the raw materials S and S * '' interfere with each other's progress. This is not preferable because the inside of the tube bundle 300 may not be able to proceed smoothly.
[0513] 本発明における回転キルン炉 1は、有機成分、無機成分などの含有成分を問わず 、各種原材料の加熱 ·焼成処理に用いることができる力 特に有機成分と無機成分が 混含する原材料について、有機成分を燃焼させて除去し、残った白色の無機成分を 回収する工程に用いることが特に好ましぐこのような原材料として、製紙工場より排 出される製紙スラッジなどを処理することが特に好ましい。 [0513] The rotary kiln furnace 1 according to the present invention is a power that can be used for heating and baking treatment of various raw materials regardless of the components such as organic components and inorganic components. It is particularly preferable to treat paper sludge discharged from a paper mill as such a raw material, which is particularly preferred to be used in the process of removing the organic component by burning and recovering the remaining white inorganic component. .
[0514] 本発明における回転キルン炉 1を備えた熱処理装置は、加熱 ·焼成処理装置として 単独で使用して加熱 ·焼成処理物を得ても良いが、既述の図 46に例示したように、 原材料を乾燥、造粒した後に、 1次および 2次のような複数段の加熱'焼成処理を行 つて加熱'焼成処理物を得ても良い。図 46は本発明の熱処理装置の前段、後段に 各種処理工程を加えたフローシートの一例である。図中本発明の熱処理装置におい ては 2次焼成処理工程がなされるように示している。加熱'焼成処理物を得た後に、さ らに懸濁液化、炭酸化、脱水、分散、粉砕の各処理を適宜追加して行い、再生化無 機粒子としても良い。このような各種処理工程は原材料および得ようとする目的物に よって適宜追加されたり、省略されたりして使用される。 [0514] The heat treatment apparatus provided with the rotary kiln furnace 1 in the present invention may be used alone as a heating / firing treatment apparatus to obtain a heated / firing treatment product, but as illustrated in FIG. 46 described above. After drying and granulating the raw materials, a heated and fired product may be obtained by performing a multiple-step heating and firing process such as primary and secondary. FIG. 46 is an example of a flow sheet in which various treatment steps are added to the front and rear stages of the heat treatment apparatus of the present invention. In the figure, the heat treatment apparatus of the present invention is shown as performing a secondary firing process. After obtaining the heat-fired product, further processing such as suspension, carbonation, dehydration, dispersion, and pulverization may be added as appropriate to obtain regenerated inorganic particles. Such various processing steps are used by appropriately adding or omitting them depending on the raw materials and the object to be obtained.
[0515] [評価] [0515] [Evaluation]
以上述べたように、本発明によれば、回転キルン炉 1の回転胴として複数の管部 40 、 40 · · ·を束ねるように管部束体 300を構成し、さらにこの管部束体 300の中心部分 に回転月同内空洞 Vを形成して、この回転月同内空洞 V内に第 2の加熱手段である間接 的(内側)加熱手段 l ibを設けることにより、伝熱効率を向上させて原材料 S、 S ' · ·の 加熱 ·焼成効率を向上させることができる。 As described above, according to the present invention, the tube bundle 300 is configured so as to bundle the plurality of tubes 40, 40... As the rotating drum of the rotary kiln furnace 1. The indirect (inner) heating means l ib, which is the second heating means, is formed in the rotating moon inner cavity V in the central part of the rotating moon to improve the heat transfer efficiency. The heating and firing efficiency of the raw materials S and S 'can be improved.
[0516] また、本発明によれば、回転キルン炉 1の回転胴としての管部束体 300内の管部 40 、 40 · · ·内に、隔壁 50によって分割された複数の区分室 60、 60 · · '設けた多分割用 隔壁構造部 320を少なくとも 1つ設けることにより、各管部 40、 40 · · ·内における原材
料 s、 s ' · ·の積層を大幅に軽減させることができ、これによつて、伝熱効率、および 有機成分燃焼のための原材料と空気との接触効率を大きく向上させることが可能とな るため、未燃カーボンの残留がなく白色度の高い優れた品質の加熱 ·焼成処理物を 得ること力 Sできるほ力、、同じ外径の回転キルン炉装置であっても、より多くの原材料を 効率良く加熱 ·焼成処理することができる。 [0516] Further, according to the present invention, a plurality of compartments 60 divided by the partition wall 50 in the pipe portions 40, 40 ··· in the pipe bundle 300 as the rotary drum of the rotary kiln furnace 1, 60 ··· By providing at least one partition wall structure 320 for multi-division, the raw material in each pipe 40, 40 · · · It is possible to greatly reduce the stacking of the materials s, s' ..., which can greatly improve the heat transfer efficiency and the contact efficiency between the raw material and the air for organic component combustion. Therefore, there is no residual unburned carbon, and the power to obtain a high-quality heated and fired product with high whiteness is possible. Even in a rotary kiln furnace with the same outer diameter, more raw materials can be obtained. It can be efficiently heated and fired.
[0517] また、本発明の一部の形態によれば、回転キルン炉 1の管部束体 300の各管部 40 、 40 · · ·内に、隔壁 50によって分割された複数の区分室 60、 60 · · ·を設けた多分割 用隔壁構造部 320を少なくとも 1つ設け、さらに多分割用隔壁構造部 320の原材料 供給口 8側に多分割用隔壁構造部無部分 310を連続して設けることにより、多分割 用隔壁構造部 320の各区分室 60、 60 · · ·に対して原材料 S、 S ' ' 'を投入するため 特別な装置等を導入しなくても、管部束体 300の回転によって管部 40、 40 · · ·内を 回転しながら移動する原材料 S、 S…の動きを利用して、多分割用隔壁構造部無部 分 310に後続する多分割用隔壁構造部 320の各区分室 60、 60 · · ·に対して均等、 かつ自動的に原材料 S、 S ' · ·を投入することができる。 [0517] Further, according to some embodiments of the present invention, a plurality of compartments 60 divided by partition walls 50 in each of the pipe parts 40, 40 ··· of the pipe bundle 300 of the rotary kiln furnace 1 are provided. , 60 ········································································· As a result, it is possible to feed the raw materials S and S '' 'into each of the compartments 60, 60 ... in the multi-partition partition structure 320, without introducing special equipment etc. By using the movement of the raw materials S, S ... that rotate and move inside the pipe sections 40, 40 ..., the multi-partition partition structure part 320 that follows the multi-partition partition structure part 310 is obtained. The raw materials S and S 'can be automatically and evenly supplied to the respective compartments 60 and 60.
図面の簡単な説明 Brief Description of Drawings
[0518] [図 1]本発明のスラッジを原料とする無機粒子の製造方法の基本フローシートを示す 図。 [0518] [FIG. 1] A view showing a basic flow sheet of a method for producing inorganic particles using the sludge of the present invention as a raw material.
[図 2]本発明の熱処理工程に使用される間接的加熱型ロータリンキルンを使用した熱 処理装置の一例の構成図。 FIG. 2 is a configuration diagram of an example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention.
[図 3]本発明の熱処理工程に使用される間接的加熱型ロータリンキルンを使用した熱 処理装置の他の一例の構成図。 FIG. 3 is a configuration diagram of another example of a heat treatment apparatus using an indirectly heated rotary kiln used in the heat treatment process of the present invention.
[図 4]本発明の他の実施形態に係る無機粒子の製造方法の一例を示すフローチヤ一 卜。 FIG. 4 is a flowchart showing an example of a method for producing inorganic particles according to another embodiment of the present invention.
[図 5]本発明の他の実施形態に用いる回転キルン炉の第一構成例を示す模式縦断 側面図。 FIG. 5 is a schematic longitudinal sectional side view showing a first configuration example of a rotary kiln furnace used in another embodiment of the present invention.
[図 6]同回転キルン炉の第二構成例を示す模式縦断側面図。 FIG. 6 is a schematic longitudinal side view showing a second configuration example of the rotary kiln furnace.
[図 7]同回転キルン炉の第三構成例を示す模式縦断側面図。 FIG. 7 is a schematic vertical side view showing a third configuration example of the rotary kiln furnace.
[図 8]同第三構成例における回転胴の構造例を示す模式斜視図。
園 9]同回転キルン炉に用いる 6分割隔壁構造の回転胴を示す径方向断面図。 園 10]同回転キルン炉に用いる 6月同型多胴構造の回転月同を示す径方向断面図。 園 11]同回転キルン炉に用いる 12分割隔壁構造の回転胴を示す径方向断面図。 FIG. 8 is a schematic perspective view showing a structural example of a rotating drum in the third configuration example. 9] A radial cross-sectional view showing a rotary barrel having a six-partition partition structure used in the rotary kiln furnace. 10] A radial cross-sectional view showing the rotation month of the June same-type multi-body structure used in the same rotary kiln furnace. 11] A radial sectional view showing a rotary cylinder having a 12-partition partition structure used in the rotary kiln furnace.
[図 12]同回転キルン炉の第四構成例を示す模式縦断側面図。 FIG. 12 is a schematic longitudinal side view showing a fourth configuration example of the rotary kiln furnace.
園 13]本発明の他の実施形態を示す回転キルン炉を備えた熱処理装置の一例の構 成図。 13] A configuration diagram of an example of a heat treatment apparatus including a rotary kiln furnace according to another embodiment of the present invention.
園 14]図 13に示した回転キルン炉内の回転胴の構造を示す一部縦断側面図。 14] A partially longitudinal side view showing the structure of the rotary drum in the rotary kiln furnace shown in FIG.
[図 15]6分割型の少分割隔壁構造部の一例の径方向の断面図。 FIG. 15 is a radial cross-sectional view of an example of a six-partitioned, small-partition partition structure.
園 16] 18区分室を設けた多分割隔壁構造部の一例(18分割型多分割隔壁構造部) を使用した場合の図 14の /3 — β '径方向断面図、(a)は各区分室を表示した断面図 、 (b)は各区分室集合を表示した断面図。 16] / 3 — β ′ radial cross-sectional view of Fig. 14 when an example of a multi-partition partition structure with 18 compartments (18-part multi-partition structure) is used, (a) is each section A sectional view showing a room. (B) is a sectional view showing each set of compartments.
[図 17]24区分室を設けた多分割隔壁構造部の一例(24分割 C型多分割隔壁構造 部)を使用した場合の図 14の /3 — 13 '径方向断面図、 (a)は各区分室を表示した断 面図、 (b)は各区分室集合を表示した断面図。 [Fig.17] / 3 — 13 'radial cross-sectional view of Fig. 14 when using an example of a multi-partition partition structure with 24 compartments (24-part C-type multi-partition partition structure) Sectional view showing each compartment, (b) Cross section showing each compartment set.
[図 18]24区分室を設けた多分割隔壁構造部の一例(24分割 B型多分割隔壁構造 部)を使用した場合の図 14の /3 — β '径方向断面図、 (a)は各区分室を表示した断 面図、 (b)は各区分室集合を表示した断面図。 [Fig.18] / 3 — β 'radial cross-section of Fig. 14 when using an example of a multi-partition partition structure with 24 compartments (24-part B-type multi-partition structure) Sectional view showing each compartment, (b) Cross section showing each compartment set.
[図 19]36区分室を設けた多分割隔壁構造部の一例(36分割型多分割隔壁構造部) を使用した場合の図 14の /3 — β '径方向断面図、(a)は各区分室を表示した断面図 、 (b)は各区分室集合を表示した断面図。 [Fig.19] / 3 — β ′ radial cross-sectional view of Fig. 14 when using an example of a multi-partition partition structure with 36 compartments (36-partition multi-partition structure), (a) Sectional view showing compartments, (b) Cross-sectional view showing each compartment set.
[図 20]図 13に示した回転キルン炉内の回転胴の構造の別の一例を示す一部縦断側 面図。 FIG. 20 is a partially longitudinal side view showing another example of the structure of the rotary drum in the rotary kiln furnace shown in FIG.
[図 21]図 1に示した回転キルン炉内の回転胴の構造のさらに別の一例を示す一部縦 断側面図。 FIG. 21 is a partially longitudinal side view showing still another example of the structure of the rotary drum in the rotary kiln furnace shown in FIG.
[図 22]区分室構造部を組み合せて多分割隔壁構造部を形成する一例、(a)は分解 径方向断面図と、(b)は結合後の径方向断面図。 [FIG. 22] An example of forming a multi-partition partition wall structure by combining compartment chamber structures, (a) is an exploded radial cross-sectional view, and (b) is a radial cross-sectional view after joining.
園 23]区分室集合の内に仕切を入れて各区分室に分割するようにして多分割隔壁 構造部を形成する一例、(a)は組み立て途中径方向断面図、(b)は組み立て後の径
方向断面図。 23] An example of forming a multi-partitioned partition wall structure by dividing the compartment into a compartment and dividing it into compartments, (a) is a radial sectional view during assembly, (b) is after assembly Diameter Cross-sectional view.
[図 24]本発明の熱処理装置の前段、後段に各種処理工程を加えたフローシートの一 例。 FIG. 24 is an example of a flow sheet in which various treatment steps are added to the former stage and the latter stage of the heat treatment apparatus of the present invention.
園 25]分割隔壁構造のない回転月同内に原材料を投入した場合の回転月同内の原材料 の積層状態を示す概念図。 25] A conceptual diagram showing the stacking of the raw materials in the rotating month when the raw materials are put into the rotating month without a divided partition structure.
園 26]回転胴に単に 6分割型の分割隔壁構造部を使用した一例における原材料の 積層状態を示す概念図。 Gon 26] A conceptual diagram showing the state of raw material lamination in an example in which a six-partition partition wall structure is used for the rotating drum.
園 27]回転胴に単に 18分割型多分割隔壁構造部を使用した一例における原材料の 積層状態を示す概念図。 27] A conceptual diagram showing the state of raw material lamination in an example in which an 18-divided multi-divided partition wall structure is simply used for the rotating drum.
[図 28]6分割型少分割隔壁構造部と 18分割型多分割隔壁構造部を連結した場合の 18分割型多分割隔壁構造部の各区分室内の原材料の積層状態を示す概念図。 FIG. 28 is a conceptual diagram showing a stacked state of raw materials in each compartment of the 18-divided multi-partition partition structure when the 6-divided sub-partition structure and 18-part multi-partition structure are connected.
[図 29]6分割型少分割隔壁構造部と 36分割型多分割隔壁構造部を連結した場合の 36分割型多分割隔壁構造部の各区分室内の原材料の積層状態を示す概念図。 FIG. 29 is a conceptual diagram showing the lamination state of the raw materials in each compartment of the 36-divided multi-partition partition structure when the 6-divided sub-partition partition structure and the 36-divided multi-partition partition structure are connected.
[図 30]回転胴内の多分割隔壁構造部へ原材料導入手段の一例として導入管を使用 した一例を示す概念図。 FIG. 30 is a conceptual diagram showing an example in which an introduction pipe is used as an example of a raw material introduction means to the multi-partition partition structure in the rotating drum.
園 31]図 13に示した例において回転胴の中心部に、管状部材および間接的(内側) 加熱手段を設けた一例の構成図。 31] A configuration diagram of an example in which a tubular member and indirect (inner side) heating means are provided at the center of the rotating drum in the example shown in FIG.
[図 32]図 31に示した回転キルン炉の回転胴の径方向断面図(例として、多分割隔壁 構造部 120が 18分割型 多分割隔壁構造部の場合)。 FIG. 32 is a radial cross-sectional view of the rotary drum of the rotary kiln furnace shown in FIG. 31 (for example, when the multi-partition partition structure 120 is an 18-part multi-partition structure).
[図 33]図 20に示した例の回転胴の中心部に、管状部材を設けた例の回転キルン炉 内の回転胴の構造の一例を示す一部縦断側面図。 FIG. 33 is a partially longitudinal side view showing an example of the structure of the rotary drum in the rotary kiln furnace of the example in which a tubular member is provided at the center of the rotary drum of the example shown in FIG.
[図 34]本発明の他の実施形態を説明するための図であり、単一の円筒状管部で構 成された回転月同内に原材料を投入した場合の回転月同内の原材料の積層状態を示す 概念図。 FIG. 34 is a diagram for explaining another embodiment of the present invention, in which raw materials are fed into the rotating moon composed of a single cylindrical tube portion. The conceptual diagram which shows a lamination | stacking state.
[図 35]複数の管部で構成された回転胴(管部束体)における(a) 6管型の管部束体の 断面構造図、(b)原材料を投入した際の管部内の原材料の積層状態の概念図。 [FIG. 35] (a) Cross-sectional view of a 6-tube type tube bundle in a rotating drum (tube bundle) composed of a plurality of pipes, (b) Raw materials in the pipes when the raw materials are charged FIG.
[図 36]複数の管部で構成された回転胴(管部束体)における(a) 21管型の管部束体 の断面構造図、(b)原材料を投入した際の管部内の原材料の積層状態の概念図。
[図 37]管部束体の構成図 (a)管部、(b)管部固定部材、(c)各部材により構成した 管部束体。 [Fig. 36] (a) Cross-sectional view of a 21-tube type tube bundle in a rotating drum (tube bundle) composed of a plurality of pipes, (b) Raw materials in the pipes when the raw materials are charged FIG. FIG. 37 is a configuration diagram of a tube bundle (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
[図 38]図 37に例示した管部束体の α 1 — α 1 '切断面における(a)管部束体の径方 向断面構造図、(b)原材料を投入した際の管部内の原材料の積層状態の概念図。 [FIG. 38] (a) Radial cross-sectional structure diagram of the tube bundle at the α 1 — α 1 ′ cut surface of the tube bundle illustrated in FIG. 37, (b) The conceptual diagram of the lamination | stacking state of a raw material.
[図 39]図 37に例示した管部束体の α 2 - α 2 '切断面における(a)管部束体の径方 向断面構造図、(b)原材料を投入した際の管部内の原材料の積層状態の概念図。 FIG. 39 is a (a) radial cross-sectional view of the tube bundle bundle at the α 2 -α 2 ′ cut surface of the tube bundle illustrated in FIG. 37, and (b) the inside of the tube portion when the raw materials are charged. The conceptual diagram of the lamination | stacking state of a raw material.
[図 40]多分割用隔壁構造部を有する管部束体の構成図 (a)管部、(b)管部固定部 材、(c)各部材により構成した管部束体。 FIG. 40 is a configuration diagram of a tube bundle having a multi-partition partition structure (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
園 41]図 40に例示した多分割用隔壁構造部を有する管部束体の《3 - « 3 '切断 面 3における(a)管部束体の径方向断面構造図、(b)原材料を投入した際の管部内 の原材料の積層状態の概念図。 41] (a) Radial cross-sectional structure diagram of the pipe bundle in the << 3-«3 'cutting plane 3 of the pipe bundle having the multi-partition partition structure illustrated in FIG. 40, (b) Schematic diagram of the stacked state of raw materials in the pipe when it is charged.
園 42]図 40に例示した多分割用隔壁構造部を有する管部束体の《4 —《4 '切断 面における(a)管部束体の径方向断面構造図、(b)原材料を投入した際の管部内の 原材料の積層状態の概念図。 42] << 4 — << 4 'cut surface (a) radial cross-sectional structure diagram of the tube bundle, (b) input raw materials, with the multi-partition partition structure illustrated in Fig. 40 The conceptual diagram of the lamination | stacking state of the raw material in a pipe part at the time of doing.
園 43]本発明の回転キルン炉を備えた熱処理装置の一例の縦断側面構成図。 Sono 43] A longitudinal side view of an example of a heat treatment apparatus provided with the rotary kiln furnace of the present invention.
[図 44]図 43に示した回転キルン炉内の加熱手段の構造を示す一部縦断側面図。 FIG. 44 is a partially longitudinal side view showing the structure of the heating means in the rotary kiln furnace shown in FIG.
[図 45]中心部に空洞用の管部を有する管部束体の構成図 (a)管部、(b)管部固定 部材、(c)各部材により構成した管部束体。 FIG. 45 is a configuration diagram of a tube bundle having a hollow tube at the center (a) a tube, (b) a tube fixing member, and (c) a tube bundle composed of each member.
[図 46]本発明の燃焼装置の前段、後段に各種処理工程を加えたフローシートの一例 園 47]図 43に示した回転キルン炉内の管部束体の一例の構造を示す一部縦断側 面図。 [FIG. 46] An example of a flow sheet in which various treatment steps are added to the front and rear stages of the combustion apparatus of the present invention. 47] Partial longitudinal section showing an example of the structure of a bundle of pipe parts in the rotary kiln furnace shown in FIG. Side view.
[図 48]図 43に示した回転キルン炉内の管部束体の他の一例の構造を示す一部縦断 側面図。 FIG. 48 is a partially longitudinal side view showing the structure of another example of a bundle of pipe parts in the rotary kiln furnace shown in FIG. 43.
[図 49]図 43に示した回転キルン炉内の管部束体のさらに他の一例の構造を示す一 部縦断側面図。 FIG. 49 is a partial longitudinal side view showing the structure of still another example of the tube bundle in the rotary kiln furnace shown in FIG. 43.
園 50]複数の管部で構成され、中心部に回転胴空洞を有した回転胴(管部束体)に おける(a) 21管型の管部束体の断面構造図、(b)管部内の原材料の積層状態の概
念図。 50] (a) Cross-sectional view of a 21-tube-type tube bundle in a rotating drum (tube bundle) consisting of a plurality of tubes and having a rotating drum cavity in the center, (b) Tube Overview of the lamination state of raw materials Intent.
園 51]管部束体の管部内に隔壁(多分割用仕切)を入れて複数の区分室を有する多 分割用隔壁構造部を形成する一例 (a)組み立て途中径方向断面図、( 組み立て 後の径方向断面図。 51] An example of forming a multi-partition partition structure having a plurality of compartments by putting a partition wall (multi-partition partition) in the pipe part of the pipe bundle (a) Assembling radial cross-sectional view, (after assembly FIG.
[図 52]管部束体の管部内壁、および隔壁表面に搔揚げ板を設けた一例の断面構造 図 (a)多分割用隔壁構造部無収容部に搔揚げ板を備えた一例の径方向断面構造 図、(b)多分割用隔壁構造部に搔揚げ板を備えた一例の径方向断面構造図。 園 53]従動回転式多分割仕切(堰き止め構造なし)の一例 (a)斜視図、(b)径方向 の断面図。 FIG. 52 is a cross-sectional structure of an example in which a lifting plate is provided on the inner wall of the tube bundle and the surface of the partition wall. FIG. 52 (a) Diameter of an example in which a lifting plate is provided in the non-contained part of the partition wall structure portion for multi-division Cross-sectional structure diagram of direction, (b) radial cross-sectional structure diagram of an example provided with a lifting plate in the multi-partition partition structure. [53] An example of a driven rotary multi-partition partition (without dam structure) (a) perspective view, (b) radial cross-sectional view.
園 54]図 53に例示した従動回転式多分割用仕切 50sを備えた管部 4、 4…内に、原 材料 S、 ε · · ·を投入した場合の管部 4、 4 · · ·内の原材料の積層状態の概念図。 園 55]従動回転式多分割仕切(堰止付き改良構造)の一例 (a)斜視図、(b)径方向 の断面図。 54] Inside the pipes 4, 4 ... when the raw materials S, ε ... are put into the pipes 4, 4 ... with the driven rotary multi-partitioning partition 50s illustrated in Fig. 53 The conceptual diagram of the lamination | stacking state of the raw material. [55] An example of a driven rotary multi-partition partition (an improved structure with a weir) (a) perspective view, (b) radial cross-sectional view.
園 56]従動回転式多分割仕切(堰止付き改良構造)の他の一例 (a)斜視図、(b)径 方向の断面図。 37] Another example of a driven rotary multi-partition partition (an improved structure with a weir) (a) perspective view, (b) radial cross-sectional view.
園 57]図 55に例示した従動回転式多分割用仕切 50s lを備えた管部 40、 40…内 に、原材料 S、 S…を投入した場合の管部 40、 40…内の原材料の積層状態の概 念図。 57] Stacking of raw materials in the pipes 40, 40 ... when the raw materials S, S ... are put into the pipes 40, 40 ... having the driven rotary multi-division partition 50sl illustrated in Fig. 55 Conceptual diagram of the state.
[図 58]管部束体の管部内に従動回転式多分割仕切を入れて複数の区分室を有する 多分割用隔壁構造部を形成する一例 (a)組み立て途中径方向断面図、(b)組み 立て後の径方向断面図。
[FIG. 58] An example of forming a multi-partition partition structure having a plurality of compartments by inserting a driven rotary multi-partition partition in the pipe part of the bundle of pipe parts (a) Radial cross-sectional view during assembly, (b) Radial sectional view after assembly.
Claims
[1] スラッジを原料とし、熱処理装置の一方の端部に設置されるスラッジ供給口から供 給し、該スラッジ供給口に対してスラッジ移動方向にあたる反対側の端部に設置され るスラッジ排出口から取り出す間に過剰空気雰囲気下で間接的加熱方法により熱処 理する熱処理工程を備える無機粒子の製造方法であって、その熱処理工程の際に 未燃焼物搬送用空気流を該熱処理装置から排出することにより未燃焼物を該未燃 焼物搬送用空気流に載せて取り出し、スラッジ力 除去することを特徴とする無機粒 子の製造方法。 [1] Sludge as a raw material, supplied from a sludge supply port installed at one end of the heat treatment apparatus, and a sludge discharge port installed at the opposite end in the sludge movement direction with respect to the sludge supply port A method for producing inorganic particles comprising a heat treatment step in which heat treatment is performed by an indirect heating method in an excess air atmosphere during removal from the air, and the air flow for transporting unburned matter is discharged from the heat treatment device during the heat treatment step. A method for producing inorganic particles, characterized in that unburned matter is taken out on the air flow for conveying unburned matter and removed to remove sludge force.
[2] 該熱処理装置が筒型であることを特徴とする請求項 1記載の無機粒子の製造方法 2. The method for producing inorganic particles according to claim 1, wherein the heat treatment apparatus is cylindrical.
〇 Yes
[3] 前記熱処理装置が単一の直管状筒型炉からなることを特徴とする請求項 1記載の 無機粒子の製造方法。 [3] The method for producing inorganic particles according to [1], wherein the heat treatment apparatus comprises a single straight tubular cylindrical furnace.
[4] 未燃焼物が炭化物粒子であることを特徴とする請求項 1から 3の!/、ずれか一項記載 の無機粒子の製造方法。 [4] The method for producing inorganic particles according to [1] or [3] above, wherein the unburned matter is carbide particles.
[5] 前記熱処理工程にお!/、て、前記スラッジ供給口の近傍から未燃焼物搬送用空気 流を強制的に排出することを特徴とする請求項 1から 5のいずれか一項に記載の無 機粒子の製造方法。 [5] In the heat treatment step, forcibly exhausting the unburned matter conveying air stream from the vicinity of the sludge supply port, according to any one of claims 1 to 5. A method for producing organic particles.
[6] 前記未燃焼物搬送用空気流を発生させるための空気を前記熱処理装置のスラッジ 排出口の近傍に設けた空気供給口から吸入することを特徴とする請求項 1から 5の!/、 ずれか一項記載の無機粒子の製造方法。 [6] The air according to any one of claims 1 to 5, wherein air for generating the air flow for conveying the unburned matter is sucked from an air supply port provided in the vicinity of a sludge discharge port of the heat treatment device. The method for producing inorganic particles according to any one of the preceding claims.
[7] 該熱処理装置が筒型であり、筒型内部が分割されていることを特徴とする請求項 1 から 6の!/、ずれか一項記載の無機粒子の製造方法。 7. The method for producing inorganic particles according to any one of claims 1 to 6, wherein the heat treatment apparatus is a cylinder and the inside of the cylinder is divided.
[8] 前記筒型熱処理装置が回転キルン炉である請求項 2から 7の!/、ずれか一項記載の 無機粒子の製造方法。 8. The method for producing inorganic particles according to claim 2 or 7, wherein the cylindrical heat treatment apparatus is a rotary kiln furnace.
[9] 前記熱処理工程が、スラッジ温度 600〜850°Cで処理することを特徴とする請求項 [9] The heat treatment step is performed at a sludge temperature of 600 to 850 ° C.
1から 8のいずれか一項に記載の無機粒子の製造方法。 The method for producing inorganic particles according to any one of 1 to 8.
[10] 前記熱処理工程で、スラッジ中の炭酸カルシウムが 50%を超えて分解することを特 徴とする請求項 1から 9のいずれか一項に記載の無機粒子の製造方法。
[10] The method for producing inorganic particles according to any one of [1] to [9], wherein in the heat treatment step, calcium carbonate in the sludge is decomposed to exceed 50%.
[11] 前記熱処理工程の後に、該熱処理工程で得られた焼成物を水と混合、攪拌し、焼 成物懸濁液とする焼成物懸濁液化工程と、焼成物懸濁液に二酸化炭素を接触させ る炭酸化工程と、を更に備えたことを特徴とする請求項 1から 10のいずれか一項に記 載の無機粒子の製造方法。 [11] After the heat treatment step, the calcined product obtained in the heat treatment step is mixed with water and stirred to form a calcined product suspension, and carbon dioxide is added to the calcined product suspension. The method for producing inorganic particles according to any one of claims 1 to 10, further comprising a carbonation step of bringing the carbon dioxide into contact with each other.
[12] スラッジを筒型熱処理装置の筒軸方向の端部のスラッジ供給口から供給し、該スラ ッジ供給口に対して筒軸方向について反対側の端部に設置されるスラッジ排出口か ら取り出す間に過剰空気雰囲気下で間接的加熱方法により熱処理する筒型熱処理 装置であって、未燃焼物搬送空気流を発生するための排気手段を該スラッジ供給口 近傍に有し、未燃焼物を熱処理後の焼成物スラッジから載せて取り出すように未燃 焼物搬送空気流を排出するように構成した熱処理装置を備えることを特徴とする無 機粒子の製造プラント。 [12] Sludge is supplied from the sludge supply port at the end of the cylindrical heat treatment apparatus in the cylinder axis direction, and the sludge discharge port installed at the end opposite to the sludge supply port in the cylinder axis direction. A cylindrical heat treatment apparatus that performs heat treatment by an indirect heating method in an excess air atmosphere during removal, and has an exhaust means near the sludge supply port for generating an unburned material carrying air flow. An incinerator particle production plant comprising a heat treatment device configured to discharge an unburned material conveyance air flow so as to be taken out from the fired material sludge after heat treatment.
[13] 請求項 1から 11のいずれか一項に記載の製造方法によって製造された無機粒子。 [13] Inorganic particles produced by the production method according to any one of claims 1 to 11.
[14] 請求項 13記載の無機粒子を填料として使用した紙。 [14] A paper using the inorganic particles according to claim 13 as a filler.
[15] 請求項 13記載の無機粒子を顔料として使用した塗被紙。 [15] A coated paper using the inorganic particles according to claim 13 as a pigment.
[16] 製紙スラッジを原料とし、筒型熱処理炉内を移送しつつ燃焼処理を施して無機粒 子を製造する方法であって、 [16] A method for producing inorganic particles by using papermaking sludge as a raw material and carrying out a combustion treatment while being transferred in a cylindrical heat treatment furnace,
前記燃焼処理が、過剰空気雰囲気下、スラッジ温度 650°C以下でスラッジ中の易 燃焼性有機成分を燃焼除去する一次燃焼工程と、過剰空気雰囲気下、スラッジ温度 700〜850°Cでスラッジ中の難燃焼性有機成分を燃焼除去する二次燃焼工程との、 少なくとも 2段階の燃焼工程を経ることを特徴とする無機粒子の製造方法。 The combustion treatment includes a primary combustion process in which flammable organic components in the sludge are burned and removed under an excess air atmosphere at a sludge temperature of 650 ° C. or lower, and a sludge temperature at 700 to 850 ° C. in an excess air atmosphere. A method for producing inorganic particles, wherein the method comprises at least two stages of combustion steps including a secondary combustion step of burning and removing non-combustible organic components.
[17] 筒型熱処理炉が回転キルン炉である請求項 16記載の無機粒子の製造方法。 17. The method for producing inorganic particles according to claim 16, wherein the cylindrical heat treatment furnace is a rotary kiln furnace.
[18] 燃焼処理を間接的加熱によって行う請求項 16又は 17記載の無機粒子の製造方 法。 18. The method for producing inorganic particles according to claim 16 or 17, wherein the combustion treatment is performed by indirect heating.
[19] 前記の少なくとも 2段階の燃焼工程を 1基の筒型熱処理炉の移送行程中に設定す る請求項 16から 18のいずれか一項に記載の無機粒子の製造方法。 [19] The method for producing inorganic particles according to any one of [16] to [18], wherein the at least two stages of combustion steps are set during a transfer process of one cylindrical heat treatment furnace.
[20] 筒型熱処理炉の一端の原料供給口側から炉内空気を強制的に排出することにより 、同他端の焼成物排出口側から空気を炉内へ吸入する請求項 16から 19のいずれ か一項に記載の無機粒子の製造方法。
[20] The method according to claim 16, wherein air in the furnace is forcibly discharged from the raw material supply port side at one end of the cylindrical heat treatment furnace, and air is sucked into the furnace from the fired product discharge port side at the other end. The manufacturing method of the inorganic particle as described in any one.
[21] 焼成物排出口側からの空気吸入に加えて、前記一 7火燃焼工程から二次燃焼工程 への移行部でも空気を炉内へ吸入する請求項 20記載の無機粒子の製造方法。 21. The method for producing inorganic particles according to claim 20, wherein air is sucked into the furnace at the transition from the 17 fire combustion process to the secondary combustion process in addition to air suction from the fired product discharge port side.
[22] 一 7火燃焼工程に対する間接的加熱部と、二次燃焼工程に対する間接的加熱部と が分離されてなる請求項 18から 21のいずれか一項に記載の無機粒子の製造方法。 [22] The method for producing inorganic particles according to any one of [18] to [21], wherein the indirect heating section for the seven-fire combustion process and the indirect heating section for the secondary combustion process are separated.
[23] 原料の製紙スラッジにアルカリ金属化合物を添加する請求項 16から 22のいずれか 一項に記載の無機粒子の製造方法。 23. The method for producing inorganic particles according to any one of claims 16 to 22, wherein an alkali metal compound is added to the raw papermaking sludge.
[24] 原料の製紙スラッジが造粒または塊状に成形されてなる請求項 16から 23のいずれ か一項に記載の無機粒子の製造方法。 24. The method for producing inorganic particles according to any one of claims 16 to 23, wherein the raw paper sludge is granulated or formed into a lump shape.
[25] 前記燃焼処理により、原料の製紙スラッジに含有される炭酸カルシウムの 50%以 上を分解する請求項 16から 24のいずれか一項に記載の無機粒子の製造方法。 25. The method for producing inorganic particles according to any one of claims 16 to 24, wherein 50% or more of calcium carbonate contained in the raw papermaking sludge is decomposed by the combustion treatment.
[26] 前記燃焼処理後の焼成物を水に混合、攪拌して懸濁液とする懸濁液化工程と、こ の懸濁液に二酸化炭素を接触させて炭酸化処理物を得る炭酸化処理工程と、該炭 酸化処理物を粉砕する粉砕工程とを含んでなる請求項 16から 25のいずれか一項に 記載の無機粒子の製造方法。 [26] A suspension process in which the fired product after the combustion treatment is mixed with water and stirred to form a suspension, and carbonation treatment is performed by bringing carbon dioxide into contact with the suspension to obtain a carbonated product. The method for producing inorganic particles according to any one of claims 16 to 25, comprising a step and a pulverizing step of pulverizing the carbonized product.
[27] 一端側を原料供給口、他端側を焼成物排出口とする筒型熱処理炉と、その原料供 給口へ製紙スラッジを供給する原料供給手段と、供給されたスラッジを焼成物排出口 側へ移送する移送手段と、該筒型熱処理炉内を燃焼状態とする間接的加熱手段と、 該筒型熱処理炉内を過剰空気雰囲気とする空気供給手段とを備え、 [27] A cylindrical heat treatment furnace having one end side as a raw material supply port and the other end side as a fired product discharge port, a raw material supply means for supplying papermaking sludge to the raw material supply port, and the supplied sludge as a fired product discharge A transfer means for transferring to the outlet side, an indirect heating means for bringing the inside of the cylindrical heat treatment furnace into a combustion state, and an air supply means for making the inside of the cylindrical heat treatment furnace an excess air atmosphere,
前記筒型熱処理炉内に、スラッジ温度 650°C以下の一 7火燃焼区間と、スラッジ温度 700〜850°Cの二次燃焼区間とが構成され、 In the cylindrical heat treatment furnace, a seven-fire combustion section with a sludge temperature of 650 ° C or less and a secondary combustion section with a sludge temperature of 700 to 850 ° C are configured,
前記空気供給手段が、筒型熱処理炉の原料供給口近傍に設けた排気口から炉内 空気を強制排気することより、同筒型熱処理炉の焼成物排出口近傍に設けた給気口 力、ら空気を炉内へ吸入するものである無機粒子の製造プラント。 The air supply means forcibly exhausts the air in the furnace from an exhaust port provided in the vicinity of the raw material supply port of the cylindrical heat treatment furnace, thereby providing an air supply port force provided in the vicinity of the fired product discharge port of the cylindrical heat treatment furnace, Inorganic particle production plant that draws air into the furnace.
[28] 請求項 8又は 17に記載の回転キルン炉において、内部に回転胴を備えた、片側か ら投入した原材料を焼成する回転キルン炉であって、該回転胴が、その内部に複数 の区分室であって、該回転胴の径方向に最外層領域の区分室群と中心領域の区分 室群の少なくとも 2層以上の区分室群力 構成されている区分室を設けた多分割隔 壁構造部を少なくとも 1つ有している回転キルン炉。
[28] The rotary kiln furnace according to claim 8 or 17, wherein the rotary kiln furnace is provided with a rotary drum inside, and the raw material charged from one side is fired. A multi-partition wall provided with a divided chamber composed of at least two layers of a divided chamber group of the outermost layer region and a divided chamber group of the central region in the radial direction of the rotary drum A rotary kiln furnace with at least one structure.
[29] 前記多分割隔壁構造部が、前記中心領域の区分室群を構成する少なくとも一つの 区分室と、前記最外層領域の区分室群を構成する少なくとも 2以上の区分室によつ て構成される一定形状の区分室集合を複数設けられるよう構成された多分割隔壁構 造部である請求項 28記載の回転キルン炉。 [29] The multi-partition partition structure is configured by at least one compartment that constitutes the compartment group of the central region and at least two or more compartments that constitute the compartment chamber group of the outermost layer region. 29. The rotary kiln furnace according to claim 28, wherein the rotary kiln furnace is a multi-partition partition wall structure configured to be provided with a plurality of compartments having a certain shape.
[30] 前記多分割隔壁構造部の断面が、略正 6角形の外郭を有しており、該略正 6角形 の外郭の内部を分割する断面形状として、略正 6角形の中心と 6個の各頂点を結ぶ 直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(以下 6分割-正 3角 形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の略正 3角形の 略重心位置と 3つの辺の略中点をそれぞれ略垂直に結ぶ 3本の直線によって、該 6 分割-正 3角形型区分室の略正 3角形を 3つの略合同 4角形の区分室に分割するこ とにより、総分割数として 18個の区分室に分割された多分割隔壁構造部断面である 請求項 28または 29記載の回転キルン炉。 [30] A cross section of the multi-partition partition wall structure portion has a substantially regular hexagonal outline, and the cross section of the outline of the substantially regular hexagonal outline is divided into a center of a substantially regular hexagon and six The interior of the approximately regular hexagon is divided into six approximately regular triangular compartments (hereinafter referred to as 6 divisions-abbreviated as the regular triangle type compartments) by the straight line connecting the vertices of An approximately regular triangular shape of the 6-divided-triangular shaped compartment by the three straight lines that connect the approximate center of gravity of the approximately triangular shape of the regular triangular compartment and the approximately midpoint of the three sides substantially perpendicular to each other. 30. The rotary kiln furnace according to claim 28 or 29, which is a cross-section of a multi-partition partition wall structure divided into 18 compartments as a total number of divisions by dividing the chamber into three substantially concentric square compartments.
[31] 前記多分割隔壁構造部の断面が、略正 6角形の外郭を有しており、該略正 6角形 の外郭の内部を分割する断面形状として、略正 6角形の中心と 6個の各頂点を結ぶ 直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(以下 6分割-正 3角 形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の略正 3角形の 各辺の略中点をそれぞれ結ぶ 3本の直線によって、該 6分割型-正 3角形型区分室 の略正 3角形を 4個の略合同 3角形の区分室に分割することにより、総分割数として 2 4個の区分室に分割された多分割隔壁構造部断面である請求項 28または 29記載の 回転キルン炉。 [31] The cross section of the multi-partition partition wall structure portion has a substantially regular hexagonal outline, and the cross section of the outline of the substantially regular hexagonal outline is divided into a center of a substantially regular hexagon and six The interior of the approximately regular hexagon is divided into six approximately regular triangular compartments (hereinafter referred to as 6 divisions-abbreviated as the regular triangle type compartments) by the straight line connecting the vertices of Three straight lines connecting the approximate midpoints of each side of the regular triangle of the regular triangular compartment, and the four regular joints of the six-segment type-triangular compartment are roughly congruent. 30. The rotary kiln furnace according to claim 28 or 29, wherein the rotary kiln furnace is a cross section of a multi-partition partition wall structure divided into 24 compartments as a total number of divisions by dividing into square compartments.
[32] 前記多分割隔壁構造部の断面が、略正 6角形の外郭を有しており、該略正 6角形 の外郭の内部を分割する断面形状として、略正 6角形の中心と 6個の各頂点を結ぶ 直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(以下 6分割-正 3角 形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の略正 3角形を 、 3個の略合同正 3角形と 1個の 6角形によって併せて 4個の区分室になるように分割 し、さらに該 3個の略合同正 3角形が該 6分割-正 3角形型区分室の略正 3角形の各 角をそれぞれ占めるように、区分室に分割することにより、総分割数として 24個の区 分室に分割された隔壁構造部断面である請求項 28または 29記載の回転キルン炉。
[32] A cross section of the multi-partition partition wall structure portion has a substantially regular hexagonal outline, and a cross section shape that divides the inside of the substantially regular hexagonal outline and the center of the substantially regular hexagonal shape The interior of the approximately regular hexagon is divided into six approximately regular triangular compartments (hereinafter referred to as 6 divisions-abbreviated as the regular triangle type compartments) by the straight line connecting the vertices of The regular triangle of the regular triangular compartment is divided into three compartments by three substantially congruent regular triangles and one hexagon to form four compartments. Partition structure divided into 24 compartments as the total number of divisions by dividing the triangle into compartments so that the triangle occupies each corner of the 6-divided-regular triangle compartment 30. The rotary kiln furnace according to claim 28 or 29, which is a partial cross section.
[33] 前記多分割隔壁構造部の断面が、略正 6角形の外郭を有しており、該略正 6角形 の外郭の内部を分割する断面形状として、略正 6角形の中心と 6個の各頂点を結ぶ 直線によって、略正 6角形の内部を 6個の略正 3角形の区分室(以下 6分割-正 3角 形型区分室と略する)に分割し、さらに該 6分割-正 3角形型区分室の略正 3角形を 、 3個の略合同正 3角形と 3個の略合同菱形によって併せて 6個の区分室になるよう に分割し、さらに該 3個の略合同菱形が該 6分割-正 3角形型区分室の略正 3角形の 各角をそれぞれ占めるように、区分室に分割することにより、総分割数として 36個の 区分室に分割された隔壁構造部断面である請求項 28または 29記載の回転キルン 炉。 [33] The cross section of the multi-partition partition wall structure portion has a substantially regular hexagonal outline, and the cross section shape that divides the inside of the outline of the substantially regular hexagon is the center of the substantially regular hexagon and 6 The interior of the approximately regular hexagon is divided into six approximately regular triangular compartments (hereinafter referred to as 6 divisions-abbreviated as the regular triangle type compartments) by the straight line connecting the vertices of The regular triangle of the regular triangular compartment is divided into three compartments by three roughly congruent regular triangles and three roughly congruent diamonds, and the three roughly congruent The partition structure is divided into 36 compartments as the total number of divisions by dividing the diamond so that each diamond occupies each corner of the 6-divided-regular triangular compartment. 30. The rotary kiln furnace according to claim 28 or 29 having a cross section.
[34] 前記回転胴が、前記多分割隔壁構造部の原材料の投入方向側に単層の区分室 群を有する少分割隔壁構造部をさらに有した回転胴である請求項 28から 33のいず れか一項記載の回転キルン炉。 34. The rotary drum according to any one of claims 28 to 33, wherein the rotary drum is a rotary drum further having a small-divided partition wall structure portion having a single-layered compartment group on the side of the raw material in the multi-partition partition wall structure. A rotary kiln furnace according to any one of the preceding claims.
[35] 前記少分割隔壁構造部の一つの区分室断面が、前記一定形状の区分室集合の 外郭と略同一断面形状を構成する請求項 34記載の回転キルン炉。 35. The rotary kiln furnace according to claim 34, wherein a section of one compartment of the subdivided partition wall structure portion has substantially the same cross-sectional shape as an outer shell of the set of compartments having a fixed shape.
[36] 前記少分割隔壁構造部が、前記多分割隔壁構造部と略同一の略正 6角形の外郭 を有しており、該略正 6角形の外郭の内部を分割する断面形状として、該略正 6角形 の中心と 6つの各頂点を結ぶ直線によって、該略正 6角形の内部を 6個の略正 3角形 の区分室(6分割-正 3角形型区分室と略する)に分割したものである請求項 34また は 35記載の回転キルン炉。 [36] The subdivided partition wall structure portion has a substantially regular hexagonal outline substantially the same as the multi-partition partition structure portion, and the cross-sectional shape dividing the inside of the substantially regular hexagonal outline is The inside of the substantially regular hexagon is divided into six generally regular triangular compartments (six divisions-abbreviated as regular triangular compartments) by a straight line connecting the center of the substantially regular hexagon and each of the six vertices. 36. The rotary kiln furnace according to claim 34 or 35.
[37] 前記回転胴が、前記多分割隔壁構造部の原材料の投入方向とは反対側に、第 2 の少分割隔壁構造部及び第 2の多分割隔壁構造部を組み合わせて 1組以上さらに 有した回転胴である請求項 34から 36のいずれか一項記載の回転キルン炉。 [37] The rotary drum further includes one or more sets of a combination of a second subdivided partition structure portion and a second multipartition partition structure portion on the side opposite to the raw material charging direction of the multipartition partition structure portion. 37. The rotary kiln furnace according to any one of claims 34 to 36, wherein the rotary kiln is a rotating cylinder.
[38] 前記分割隔壁構造部を構成する板材が、穴明き金属板である請求項 28から 37の V、ずれか一項記載の回転キルン炉。 38. The rotary kiln furnace according to claim 28, wherein the plate material constituting the divided partition wall structure portion is a perforated metal plate.
[39] 前記多分割隔壁構造部を設けた回転キルン炉の回転胴の前記中心領域の区分室 群に囲まれた、回転胴を内側から加熱するための加熱手段を収容するための回転胴 内空洞部を回転胴の回転略中心部付近に有する請求項 28から 38のいずれか一項 記載の回転キルン炉。
[39] A rotary drum for housing a heating means for heating the rotary drum from the inside, surrounded by a group of compartments in the central region of the rotary drum of the rotary kiln provided with the multi-partition partition structure 39. The rotary kiln furnace according to any one of claims 28 to 38, wherein the rotary kiln has a hollow portion in the vicinity of a rotation center of the rotary drum.
[40] 請求項 28から 39のいずれか一項に記載の回転キルン炉に、該回転キルン炉への 空気導入手段として、該回転キルン炉の原材料供給口側の一端周辺に排気手段を さらに備えてなる、回転キルン炉を備えた熱処理装置。 [40] The rotary kiln furnace according to any one of claims 28 to 39, further comprising an exhaust means around one end on the raw material supply port side of the rotary kiln furnace as air introduction means to the rotary kiln furnace. A heat treatment apparatus equipped with a rotary kiln furnace.
[41] 請求項 28から 39のいずれか一項に記載の回転キルン炉に、供給される原材料を 間接的に加熱 ·焼成処理する加熱手段をさらに備えてなる回転キルン炉を備えた熱 処理装置。 [41] A heat treatment apparatus having a rotary kiln furnace, further comprising a heating means for indirectly heating and baking the supplied raw material to the rotary kiln furnace according to any one of claims 28 to 39. .
[42] 前記加熱手段を 2つ備えてなり、第 1の加熱手段が回転キルン炉の前記回転胴の 外側から加熱する加熱手段であり、第 2の加熱手段が前記回転胴内側の前記回転 胴内空洞部から加熱する加熱手段である請求項 41記載の回転キルン炉を備えた熱 処理装置。 [42] The two heating means are provided, the first heating means is a heating means for heating from the outside of the rotary drum of the rotary kiln furnace, and the second heating means is the rotary drum inside the rotary drum. 42. A heat treatment apparatus provided with a rotary kiln furnace according to claim 41, which is a heating means for heating from the inner cavity.
[43] 請求項 28から 39のいずれか一項に記載の回転キルン炉に、供給される原材料を 該原材料の直径または長さが 2〜30mmに造粒成形する手段をさらに備えてなる回 転キルン炉を備えた熱処理装置。 [43] The rotary kiln furnace according to any one of claims 28 to 39, further comprising means for granulating the supplied raw material so that the raw material has a diameter or length of 2 to 30 mm. Heat treatment equipment with kiln furnace.
[44] 前記回転キルン炉に供給される原材料が、製紙スラッジである請求項 40から 43の いずれか一項記載の回転キルン炉を備えた熱処理装置。 44. The heat treatment apparatus provided with the rotary kiln furnace according to any one of claims 40 to 43, wherein the raw material supplied to the rotary kiln furnace is paper sludge.
[45] 請求項 8又は 17に記載の回転キルン炉において、内部に回転胴を備えた、片側か ら投入した原材料を焼成する回転キルン炉であって、該回転胴が、原材料がその内 部を通過する複数の管部から構成され、該複数の管部は該回転胴の外周部をなす 管部束体を形成し、同時に回転胴を内側から加熱するための加熱手段を収容する ための回転胴内空洞部を形成する回転キルン炉。 [45] The rotary kiln furnace according to claim 8 or 17, wherein the rotary kiln furnace is provided with a rotary drum inside, and the raw material charged from one side is fired, and the rotary drum includes the raw material therein. A plurality of tube portions that pass through the tube, and the plurality of tube portions form a tube bundle that forms the outer periphery of the rotating drum, and at the same time, contain heating means for heating the rotating drum from the inside. A rotary kiln furnace that forms a cavity inside the rotary drum.
[46] 請求項 8又は 17に記載の回転キルン炉において、内部に回転胴を備えた、片側か ら投入した原材料を焼成する回転キルン炉であって、該回転胴が、原材料がその内 部を通過する複数の管部から構成され、該管部はその内部を隔壁によってさらに複 数の区分室に分割するための多分割用隔壁構造部を少なくとも 1個以上有し、さらに 該複数の管部は、該回転胴の外周部をなす管部束体を形成する回転キルン炉。 [46] The rotary kiln furnace according to claim 8 or 17, wherein the rotary kiln furnace is provided with a rotary drum inside, and the raw material charged from one side is fired. The pipe part has at least one multi-partition partition structure part for dividing the inside thereof into a plurality of compartments by partition walls, and further comprising the plurality of pipes The section is a rotary kiln furnace that forms a tube bundle that forms the outer periphery of the rotating drum.
[47] 前記管部がその内部を隔壁によってさらに複数の区分室に分割するための多分割 用隔壁構造部を、少なくとも 1個以上有する請求項 45記載の回転キルン炉。 47. The rotary kiln furnace according to claim 45, wherein the pipe part has at least one multi-partition partition structure part for dividing the inside thereof into a plurality of compartments by partition walls.
[48] 前記多分割用隔壁構造部が、該管部の断面略中心から外郭方向に放射状に設け
た複数の隔壁を有しており、該隔壁と管部の管壁によって複数の区分室に該管部内 が分割され、かつ該区分室の断面形状が略合同である請求項 46または 47記載の回 転キルン炉。 [48] The partition wall structure section for multi-division is provided radially from the approximate center of the cross section of the pipe section in the outline direction. 48. The method according to claim 46 or 47, further comprising a plurality of partition walls, wherein the inside of the pipe part is divided into a plurality of partition chambers by the partition walls and the tube wall of the pipe part, and the sectional shapes of the partition chambers are substantially congruent. Rotating kiln furnace.
[49] 前記管部の内壁および/または前記多分割用隔壁構造部の隔壁に、搔揚げ板を 備えた請求項 45から 48のいずれか一項に記載の回転キルン炉。 [49] The rotary kiln furnace according to any one of claims 45 to 48, wherein a lifting plate is provided on an inner wall of the pipe part and / or a partition wall of the multi-partition partition structure.
[50] 前記管部の断面形状が、略円状、略楕円状または略多角形状である請求項 45か ら 49の!/、ずれか一項に記載の回転キルン炉。 50. The rotary kiln furnace according to any one of claims 45 to 49, wherein the cross-sectional shape of the tube portion is substantially circular, substantially elliptical, or substantially polygonal.
[51] 前記管部の外径が、前記管部束体の断面外径の 1/ 8〜1/ 2である請求項 45から[51] The outer diameter of the pipe section is 1/8 to 1/2 of the outer diameter of the cross section of the bundle of pipe sections.
50の!/、ずれか一項に記載の回転キルン炉。 50! /, The rotary kiln furnace according to any one of the above.
[52] 前記管部が、多分割用隔壁構造部の原材料の投入方向側に多分割用隔壁構造 部無部分があるように多分割用隔壁構造部を有する請求項 47から 51のいずれか一 項に記載の回転キルン炉。 [52] The multi-partition partition structure part according to any one of claims 47 to 51, wherein the pipe part has a multi-partition partition structure part so that there is no multi-partition partition structure part on the side of the raw material input direction of the multi-partition partition structure part. The rotary kiln furnace as described in the paragraph.
[53] 前記管部が、前記多分割用隔壁構造部の原材料の投入方向とは反対側に、第 2 の多分割用隔壁構造部無部分及び第 2の多分割用隔壁構造部を組み合わせた少 なくとも 1組をさらに有した管部である請求項 52記載の回転キルン炉。 [53] The pipe portion is a combination of the second multi-divided partition wall structure portion and the second multi-divided partition wall structure portion on the side opposite to the raw material charging direction of the multi-divided partition wall structure portion. 53. The rotary kiln furnace according to claim 52, wherein the rotary kiln is a tube portion further having at least one set.
[54] 前記多分割用隔壁構造部が、管部内に従動回転式多分割用仕切部材を揷入する ことにより形成される請求項 48から 53のいずれか—項記載の回転キルン炉。 54. The rotary kiln furnace according to any one of claims 48 to 53, wherein the multi-partition partition structure part is formed by inserting a driven rotary multi-partition partition member into a pipe part.
[55] 前記従動回転式多分割用仕切部材が、仕切板部の先端部近傍に堰き止め部材を 備えた構造である請求項 46から 54のいずれか一項記載の回転キルン炉。 55. The rotary kiln furnace according to any one of claims 46 to 54, wherein the driven rotary multi-partition partition member has a structure including a damming member in the vicinity of a tip end portion of the partition plate portion.
[56] 前記管部の多分割用隔壁構造部を構成する隔壁板材が、穴明き金属板である請 求項 46から 55のいずれか一項記載の回転キルン炉。 [56] The rotary kiln furnace according to any one of claims 46 to 55, wherein the partition wall plate material constituting the multi-partition partition wall structure portion of the pipe portion is a perforated metal plate.
[57] 請求項 45から 56のいずれか一項に記載の回転キルン炉に、該回転キルン炉への 空気導入手段として、該回転キルン炉の原材料供給口側の一端周辺に排気手段を さらに備えてなる、回転キルン炉を備えた熱処理装置。 [57] The rotary kiln furnace according to any one of claims 45 to 56, further comprising an exhaust means around one end of the rotary kiln furnace on the raw material supply port side as air introduction means to the rotary kiln furnace. A heat treatment apparatus equipped with a rotary kiln furnace.
[58] 請求項 45から 57のいずれか一項に記載の回転キルン炉に、供給される原材料を 間接的に加熱 ·焼成処理する加熱手段をさらに備えてなる回転キルン炉を備えた熱 処理装置。 [58] A heat treatment apparatus having a rotary kiln furnace, further comprising heating means for indirectly heating and baking the supplied raw material to the rotary kiln furnace according to any one of claims 45 to 57. .
[59] 前記加熱手段を 2つ備えてなり、第 1の加熱手段が回転キルン炉の回転胴を構成
する前記管部束体の外側から加熱する加熱手段であり、第 2の加熱手段が前記管部 束体内側の前記回転胴内空洞部から加熱する加熱手段である請求項 58記載の回 転キルン炉を備えた熱処理装置。 [59] comprising two heating means, wherein the first heating means constitutes the rotary drum of the rotary kiln furnace 59. The rotating kiln according to claim 58, wherein the rotating kiln is a heating means for heating from the outside of the tube bundle bundle, and the second heating means is a heating means for heating from the hollow portion in the rotating body inside the tube bundle bundle. Heat treatment equipment with a furnace.
[60] 回転キルン炉に供給される原材料を、該原材料の直径または長さが 2〜30mmに 造粒成形する手段をさらに備えてなる請求項 45から 59のいずれか一項に記載の回 転キルン炉を備えた熱処理装置。 [60] The rotation according to any one of claims 45 to 59, further comprising means for granulating the raw material supplied to the rotary kiln furnace so that the diameter or length of the raw material is 2 to 30 mm. Heat treatment equipment with kiln furnace.
[61] 前記回転キルン炉に供給される原材料が、製紙スラッジである請求項 45から 60の いずれか一項記載の回転キルン炉を備えた熱処理装置。
61. The heat treatment apparatus provided with the rotary kiln furnace according to any one of claims 45 to 60, wherein the raw material supplied to the rotary kiln furnace is paper sludge.
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006144011 | 2006-05-24 | ||
JP2006-144011 | 2006-05-24 | ||
JP2006252751 | 2006-09-19 | ||
JP2006-252751 | 2006-09-19 | ||
JP2006-279813 | 2006-10-13 | ||
JP2006279813 | 2006-10-13 | ||
JP2006-302689 | 2006-11-08 | ||
JP2006302689A JP2008101888A (en) | 2006-09-19 | 2006-11-08 | Rotary kiln furnace and heat treatment apparatus equipped with rotary kiln furnace |
JP2007-018332 | 2007-01-29 | ||
JP2007018332 | 2007-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007136113A1 true WO2007136113A1 (en) | 2007-11-29 |
Family
ID=38723423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/060624 WO2007136113A1 (en) | 2006-05-24 | 2007-05-24 | Inorganic particle and production method thereof and production plant thereof and paper using it |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007136113A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184240A (en) * | 2010-03-09 | 2011-09-22 | Nippon Paper Industries Co Ltd | Method for producing calcium oxide using lime cake |
CN105088900A (en) * | 2015-08-13 | 2015-11-25 | 合肥龙发包装有限公司 | Production method for packaging paper |
CN108300502A (en) * | 2018-04-02 | 2018-07-20 | 大庆高新区百世环保科技开发有限公司 | A kind of ultra-clean processing thermal desorption device of oily sludge object |
CN109775952A (en) * | 2019-04-03 | 2019-05-21 | 广州绿邦环境技术有限公司 | A kind of Processes and apparatus that recycling sludge utilizes |
CN112573880A (en) * | 2020-12-29 | 2021-03-30 | 广东省科学院稀有金属研究所 | Colored fluorescent diatom ooze and preparation method thereof |
CN113526828A (en) * | 2021-07-29 | 2021-10-22 | 宁夏嘉农环保科技有限公司 | Deep sludge dewatering system |
CN113526830A (en) * | 2021-07-29 | 2021-10-22 | 宁夏嘉农环保科技有限公司 | Municipal sludge innocent treatment system |
IT202000024718A1 (en) * | 2020-10-21 | 2022-04-21 | Fagioli Maria Teresa | USE OF INERT SINTERED GRANULES FROM TANNING MUD AS ACTIVE FILLER IN COATINGS, PAINTS AND ANTIFOULING TREATMENTS FOR IMMERSED WORKS AND ARTIFACTS |
FI20236141A1 (en) * | 2023-10-12 | 2025-04-13 | Neste Oyj | Rotary kiln reactor and method of operating a rotary kiln reactor |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5447869A (en) * | 1977-09-26 | 1979-04-14 | Ono Kagaku Kikai Kk | Intermediate air takeein mechanism for rotary kiln or the like |
JPS6463781A (en) * | 1987-09-03 | 1989-03-09 | Showa Denko Kk | External heating type rotary furnace |
JPH06307620A (en) * | 1993-03-26 | 1994-11-01 | Air Prod And Chem Inc | Combustion method for dehydrated waste sludge in solid waste incinerator |
JPH07234073A (en) * | 1994-02-24 | 1995-09-05 | Murata Mfg Co Ltd | Heat treating furnace |
JPH07509688A (en) * | 1992-07-14 | 1995-10-26 | アッシュ グローブ セメント カンパニー | Improved method for producing cement in long kilns |
JPH1029818A (en) * | 1996-03-29 | 1998-02-03 | Ecc Internatl Ltd | Treatment of solid-containing material derived form discharge matter |
JP2001091161A (en) * | 1999-09-24 | 2001-04-06 | Ishikawajima Harima Heavy Ind Co Ltd | Pyrolysis residue discharge device for rotary kiln |
JP2001091160A (en) * | 1999-09-24 | 2001-04-06 | Ishikawajima Harima Heavy Ind Co Ltd | Multi-cylinder rotary kiln |
JP2001091159A (en) * | 1999-07-16 | 2001-04-06 | Sanzo Kankyo Engineering Kk | Multi-tube external heat kiln |
JP2001311583A (en) * | 2000-02-24 | 2001-11-09 | Ishikawajima Harima Heavy Ind Co Ltd | Rotary kiln |
JP2002275785A (en) * | 2001-03-19 | 2002-09-25 | Daio Paper Corp | Method for producing paper |
JP2004008887A (en) * | 2002-06-05 | 2004-01-15 | Tsukishima Kikai Co Ltd | Method and equipment for treating papermaking sludge |
JP2004176209A (en) * | 2002-11-27 | 2004-06-24 | Nippon Paper Industries Co Ltd | Method for producing pigment from waste water-treated sludge in coated paper-producing process, and coated paper using the same |
JP2006138044A (en) * | 2004-11-15 | 2006-06-01 | Daio Paper Corp | Method for producing coating base paper |
-
2007
- 2007-05-24 WO PCT/JP2007/060624 patent/WO2007136113A1/en active Search and Examination
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5447869A (en) * | 1977-09-26 | 1979-04-14 | Ono Kagaku Kikai Kk | Intermediate air takeein mechanism for rotary kiln or the like |
JPS6463781A (en) * | 1987-09-03 | 1989-03-09 | Showa Denko Kk | External heating type rotary furnace |
JPH07509688A (en) * | 1992-07-14 | 1995-10-26 | アッシュ グローブ セメント カンパニー | Improved method for producing cement in long kilns |
JPH06307620A (en) * | 1993-03-26 | 1994-11-01 | Air Prod And Chem Inc | Combustion method for dehydrated waste sludge in solid waste incinerator |
JPH07234073A (en) * | 1994-02-24 | 1995-09-05 | Murata Mfg Co Ltd | Heat treating furnace |
JPH1029818A (en) * | 1996-03-29 | 1998-02-03 | Ecc Internatl Ltd | Treatment of solid-containing material derived form discharge matter |
JP2001091159A (en) * | 1999-07-16 | 2001-04-06 | Sanzo Kankyo Engineering Kk | Multi-tube external heat kiln |
JP2001091161A (en) * | 1999-09-24 | 2001-04-06 | Ishikawajima Harima Heavy Ind Co Ltd | Pyrolysis residue discharge device for rotary kiln |
JP2001091160A (en) * | 1999-09-24 | 2001-04-06 | Ishikawajima Harima Heavy Ind Co Ltd | Multi-cylinder rotary kiln |
JP2001311583A (en) * | 2000-02-24 | 2001-11-09 | Ishikawajima Harima Heavy Ind Co Ltd | Rotary kiln |
JP2002275785A (en) * | 2001-03-19 | 2002-09-25 | Daio Paper Corp | Method for producing paper |
JP2004008887A (en) * | 2002-06-05 | 2004-01-15 | Tsukishima Kikai Co Ltd | Method and equipment for treating papermaking sludge |
JP2004176209A (en) * | 2002-11-27 | 2004-06-24 | Nippon Paper Industries Co Ltd | Method for producing pigment from waste water-treated sludge in coated paper-producing process, and coated paper using the same |
JP2006138044A (en) * | 2004-11-15 | 2006-06-01 | Daio Paper Corp | Method for producing coating base paper |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184240A (en) * | 2010-03-09 | 2011-09-22 | Nippon Paper Industries Co Ltd | Method for producing calcium oxide using lime cake |
CN105088900A (en) * | 2015-08-13 | 2015-11-25 | 合肥龙发包装有限公司 | Production method for packaging paper |
CN108300502A (en) * | 2018-04-02 | 2018-07-20 | 大庆高新区百世环保科技开发有限公司 | A kind of ultra-clean processing thermal desorption device of oily sludge object |
CN109775952A (en) * | 2019-04-03 | 2019-05-21 | 广州绿邦环境技术有限公司 | A kind of Processes and apparatus that recycling sludge utilizes |
CN109775952B (en) * | 2019-04-03 | 2021-11-26 | 广州绿邦环境技术有限公司 | Process and equipment for resource utilization of sludge |
IT202000024718A1 (en) * | 2020-10-21 | 2022-04-21 | Fagioli Maria Teresa | USE OF INERT SINTERED GRANULES FROM TANNING MUD AS ACTIVE FILLER IN COATINGS, PAINTS AND ANTIFOULING TREATMENTS FOR IMMERSED WORKS AND ARTIFACTS |
CN112573880A (en) * | 2020-12-29 | 2021-03-30 | 广东省科学院稀有金属研究所 | Colored fluorescent diatom ooze and preparation method thereof |
CN113526828A (en) * | 2021-07-29 | 2021-10-22 | 宁夏嘉农环保科技有限公司 | Deep sludge dewatering system |
CN113526830A (en) * | 2021-07-29 | 2021-10-22 | 宁夏嘉农环保科技有限公司 | Municipal sludge innocent treatment system |
FI20236141A1 (en) * | 2023-10-12 | 2025-04-13 | Neste Oyj | Rotary kiln reactor and method of operating a rotary kiln reactor |
FI131480B1 (en) * | 2023-10-12 | 2025-05-12 | Neste Oyj | Rotary kiln reactor and method of operating a rotary kiln reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007136113A1 (en) | Inorganic particle and production method thereof and production plant thereof and paper using it | |
JP5056378B2 (en) | Coated white paperboard | |
JP4288532B2 (en) | Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles | |
JPH1029818A (en) | Treatment of solid-containing material derived form discharge matter | |
JP5297696B2 (en) | Newspaper and newspaper production method | |
JP4239034B2 (en) | Manufacturing method of inorganic particles and manufacturing plant thereof | |
JP5446284B2 (en) | Method for producing inorganic particles | |
JP2009286857A (en) | Method for producing white inorganic particles | |
JP4952540B2 (en) | Coated paper for gravure printing | |
JP2010077555A (en) | Coated liner and corrugated sheet using the same | |
JPH10505055A (en) | Treatment of effluent-derived solids | |
JP4257550B2 (en) | Method for producing white inorganic particles | |
JP2005508750A (en) | High surface area fired product | |
JP2002233851A (en) | Light calcium carbonate coated particles using calcined ash, method for producing the same, and paper using the same | |
JP4329870B1 (en) | Method for producing inorganic particles | |
JP5468285B2 (en) | Manufacturing method of coated paper | |
JP4329865B1 (en) | Method for producing inorganic particles | |
JP5525211B2 (en) | Method for producing silica composite regenerated particles | |
JP6173663B2 (en) | Method for producing inorganic particles | |
JP5468281B2 (en) | Method for producing regenerated particles | |
JP4952539B2 (en) | Coating liner and cardboard using the same | |
JP4831163B2 (en) | Method for producing coated paper | |
JP5525212B2 (en) | Method for producing silica composite regenerated particles | |
JP2010065357A (en) | Coated liner and corrugated sheet using the same | |
JP2010236112A (en) | Newsprint paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744058 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07744058 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |