WO2007088809A1 - Optical head device and optical information device - Google Patents
Optical head device and optical information device Download PDFInfo
- Publication number
- WO2007088809A1 WO2007088809A1 PCT/JP2007/051388 JP2007051388W WO2007088809A1 WO 2007088809 A1 WO2007088809 A1 WO 2007088809A1 JP 2007051388 W JP2007051388 W JP 2007051388W WO 2007088809 A1 WO2007088809 A1 WO 2007088809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical
- objective lens
- head device
- light source
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 424
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 230000000630 rising effect Effects 0.000 claims description 38
- 230000004075 alteration Effects 0.000 claims description 15
- 238000007493 shaping process Methods 0.000 claims description 11
- 238000002834 transmittance Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 29
- 230000000694 effects Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 201000009310 astigmatism Diseases 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000002355 dual-layer Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B7/1374—Objective lenses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/127—Lasers; Multiple laser arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/127—Lasers; Multiple laser arrays
- G11B7/1275—Two or more lasers having different wavelengths
Definitions
- the present invention relates to an optical information apparatus for recording or reproducing information on an optical information recording medium represented by an optical disc, and an optical head apparatus used therefor.
- DVDs Digital versatile discs
- CDs compact discs
- a DVD uses a light source having a wavelength of 660 nm and an objective lens having a numerical aperture (NA) of O.6.
- NA numerical aperture
- a blue laser with a wavelength of 405 nm and an objective lens of NAO.85 a recording density five times that of the current DVD can be achieved.
- an optical head device using a BD objective lens of NAO. 85 and a DVD objective lens of NAO. 6 is known (for example, Patent Document 1, FIG. 1, (See Figure 2 etc.)
- BD which performs high-density recording / reproduction
- NA the depth of focus becomes shallower, so higher accuracy is required for focus control.
- the optical system on the detection side is required to have a high magnification in order to extract the focus error signal as a large change.
- the magnification of the optical system on the detection side is determined by the focal length of the objective lens and the focal length of the optical system on the detector side that receives and processes the reflected light of the BD force. If it becomes larger, it is necessary to increase the focal length also in the optical system on the detector side, which increases the size of the entire optical system, which leads to an increase in the size of the optical head device! /
- An object of the present invention is to solve the above-described conventional problems, and to provide an optical head device that can be miniaturized by miniaturizing an optical system.
- the first aspect of the present invention includes a plurality of light sources that emit light having different wavelengths
- An optical base on which the plurality of light sources, the plurality of objective lenses, and the detection unit are disposed;
- the diameter of the light from the plurality of light sources on the passing surface of the objective lens to which each light corresponds corresponds to an optical head device in which a short wavelength is smaller than a long wavelength.
- the second aspect of the present invention is that the plurality of light sources are a first light source that emits a wavelength of ⁇ 1 and a second light source that emits light of a wavelength ⁇ 2 longer than the wavelength ⁇ 1.
- Two light sources, wherein the plurality of objective lenses are a first objective lens that condenses the light from the first light source and a second objective lens that condenses the light from the second light source.
- the first objective lens has a higher numerical aperture than the second objective lens, and the diameter of the light of the first light source power on the passage surface of the first objective lens Is an optical head device according to the first aspect of the present invention, which is smaller than the diameter of the light of the second light source power on the passage surface of the second objective lens.
- the third aspect of the present invention is the optical head device according to the second aspect of the present invention, wherein a lens diameter of the first objective lens is smaller than a lens diameter of the second objective lens.
- the fourth aspect of the present invention is a distance WD1 by which the first objective lens can move with respect to a surface of the optical information recording medium on which recording or reproduction is performed by light of the first light source;
- WDKWD2 is a relationship of WDKWD2 with the distance WD2 that the second objective lens can move with respect to the surface of the optical information recording medium on which recording or reproduction is performed by the light of the second light source.
- the fifth aspect of the present invention includes a bearing for holding at least a pair of shafts for moving the optical base between an inner peripheral side and an outer peripheral side of the optical information recording medium, At least one of the bearings is disposed at each end of the optical base, and at least one of the reference line passing through the center of the second objective lens and parallel to the pair of shafts and the pair of shafts. L1 and the distance between the reference line and the other of the pair of shafts L2, there is a relationship of L1> L2,
- the first light source is provided on the one side of the one shaft
- the second light source is the optical head device according to the second aspect of the present invention, which is provided on the other side of the one shaft.
- the sixth aspect of the present invention is the optical head device according to the fifth aspect of the present invention, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
- the seventh aspect of the present invention is the optical head device according to the sixth aspect of the present invention, wherein the reference line also passes through the center of the first objective lens.
- the eighth aspect of the present invention also sees a plane force including the pair of shafts,
- the first optical system including the first light source and the first objective lens is formed to be within the width of the distance L1
- the second optical system including the second light source is the first optical system.
- the optical head device according to the sixth aspect of the present invention is formed so as to be within a width of the distance L2 except for the second objective lens and a rising mirror for guiding light to the second objective lens.
- the optical base has an arc-shaped notch
- the arc of the notch is the optical head device according to the fifth aspect of the present invention, the center of which is provided so as to pass through the reference line.
- the first objective lens has the first objective lens more than the second objective lens.
- FIG. 5 is an optical head device according to a fifth aspect of the present invention, which is arranged on the side closer to the light source of FIG.
- the eleventh aspect of the present invention further includes a third light source that emits light having a wavelength longer than that of wavelength 2 and that is provided near the other side of the one shaft.
- optical head device according to a fifth aspect of the present invention, wherein a third optical system including the second objective lens and the third light source is formed.
- the twelfth aspect of the present invention is the optical head apparatus according to the eleventh aspect of the present invention, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
- the thirteenth aspect of the present invention is the optical head device according to the fifth aspect of the present invention, wherein the wavelength ⁇ 1 is 450 nm or less.
- the fourteenth aspect of the present invention is a beam shaping unit provided between the first light source and the first objective lens, which corrects an intensity distribution of light also having the first light source power.
- a fifth optical head device according to the present invention.
- the fifteenth aspect of the present invention is provided between the first light source and the first objective lens.
- the optical head device includes a spherical aberration correction unit that corrects a spherical aberration generated when the optical information recording medium emitted from the first objective lens is condensed.
- the sixteenth aspect of the present invention includes a dimming unit that is provided between the first light source and the first objective lens and controls the transmittance of light emitted from the first light source. And an optical head device according to a fifth aspect of the present invention.
- the seventeenth aspect of the present invention is a beam shaping unit that receives light from the first light source and corrects an intensity distribution
- a light control unit for controlling the light transmittance
- a collimator lens that shapes incident light into substantially parallel light
- the light emitted from the first light source is disposed so as to form an optical system that passes in the order of the beam shaping unit, the light control unit, the collimator lens, and the first objective lens.
- This is an optical head device of the present invention.
- the eighteenth aspect of the present invention includes a branching unit that separates light traveling from the first light source toward the optical information recording medium and light traveling from the optical information recording medium toward the detection unit.
- An optical head device according to a seventeenth aspect of the present invention.
- the nineteenth aspect of the present invention is the first reflection surface that reflects light from the first light source and guides the light to the first objective lens, and the first reflection surface is orthogonal to the first reflection surface.
- a rising mirror having a second reflecting surface that reflects light from a second light source and guides the light to the second objective lens, and the rising mirror includes the first reflecting surface and the second reflecting surface.
- a cross-sectional shape that is asymmetric with respect to a bisector of an angle formed by the first reflecting surface and the second reflecting surface when viewed from a plane orthogonal to the reflecting surface of the second aspect of the present invention. This is an optical head device.
- the rising mirror has a substantially triangular prism shape
- the twenty-first aspect of the present invention is that the first reflecting surface and the second reflecting surface are not two sides other than the side formed by the first reflecting surface and the second reflecting surface.
- the optical head device according to the twentieth aspect of the present invention wherein both sides are all chamfered, and the first reflecting surface side is chamfered more than the second reflecting surface side.
- the twenty-second aspect of the present invention is an optical head device according to the first aspect of the present invention.
- An optical information device comprising an electric circuit for controlling the operation of the motor and the light source based on a signal obtained from the optical head device.
- an optical head device that can be reduced in size by reducing the size of the optical system, an optical information device using the same, and the like.
- FIG. 1 (a) is a schematic plan view of a part of an optical information device and an optical head device according to Embodiments 1 to 4 of the present invention.
- FIG. 2 is a configuration diagram of an optical system of an optical head device according to Embodiments 1 to 4 of the present invention.
- FIG. 3 is a schematic configuration diagram of an optical system in the vicinity of each objective lens of the optical head device according to the first embodiment of the present invention.
- FIG. 4 (a) is a configuration diagram showing an overview of an LDPD module 206 for CD in Embodiments 1 to 4 of the present invention. (b) It is a figure for demonstrating the light state of the LDPD module 206 for CD radiate
- FIG. 5 (a) is an operation explanatory diagram of the filter switching element 302 according to Embodiment 2 of the present invention. (B) It is operation
- FIG. 6 (a) is a perspective view of a raising mirror 306 according to Embodiment 4 of the present invention.
- (B) It is a side view of the raising mirror 306 in Embodiment 4 of this invention.
- (C) is a positional relationship diagram between a rising mirror 306 and a collimator driving element 304 in Embodiment 1 of the present invention.
- FIG. 7 is a diagram showing another configuration example of the rising mirror 306.
- FIG. 8 is a diagram showing another configuration example of the optical head device according to the first to fourth embodiments of the present invention.
- FIG. 9 is a perspective view of a rising mirror 401.
- FIG. 10 (a) is a diagram for explaining the operation when the raising mirror 401 is used in the first optical system. (B) It is a figure for demonstrating operation
- FIG. 11 is a schematic configuration diagram of an optical information device in a fifth embodiment of the present invention.
- FIG. 12 is an external view of a personal computer (computer) using the optical information apparatus of the present invention.
- FIG. 13 is an external view of an optical disk recorder (video recording apparatus) using the optical information apparatus of the present invention.
- FIG. 14 is an external view of an optical disc player (video playback device) using the optical information device of the present invention.
- FIG. 15 is an external view of a server using the optical information device of the present invention.
- FIG. 16 is an external view of a car navigation system using the optical information device of the present invention. Explanation of symbols
- FIGS. 1A and 1B are schematic views of a part of an optical information device and an optical head device according to Embodiment 1 of the present invention.
- the optical head device 100 is supported in a movable state by a guide shaft composed of a pair of shafts 110 and 111 fixed to a chassis (not shown).
- the motor 112 is fixed to the chassis and serves as an optical information recording medium. All optical disks (not shown here) are chucked by the turntable of the motor 112 and rotate around the rotation center O of the motor 112.
- Bearings 121 and 122 (first bearing) and bearing 123 (second bearing) are provided at both ends of the optical base 120 of the optical head device 100, respectively. 110 and a bearing 123 (second bearing) are fitted into the shaft 111, respectively.
- the feed screw 124 is installed in parallel with the shaft 110 and is rotated by the feed motor 125.
- the screw coupling portion 126 is fixed to the optical base 120, and meshes with the groove of the feed screw 124 so that the rotation of the feed screw 124 is caused to rotate in the direction parallel to the extending direction of the guide shaft. Convert to move.
- the bearings 121 and 122 and the bearing 123 are provided at both ends of the optical base 120 in order to prevent interference with other optical elements and optical paths constituting the optical system.
- the optical base 120 has a cut-out portion 100a having an arc-shaped cross section in view of the paper surface force in the drawing, and the optical head device 100 and the motor 112 approach each other to access the inner track of the optical disk. Even at this time, the optical head device 100 is prevented from colliding with the motor 112 by avoiding the motor 112 by the notch 100a.
- An actuator 200 is fixed to the optical base 120 of the optical head device 100, and an objective lens 201 (first objective lens) for a high-density optical disk and a conventional one are mounted on a movable part of the actuator 200.
- An optical lens objective lens 202 (second objective lens) is mounted.
- the light emitted from the blue semiconductor laser 203 passes through a first optical system, which will be described later, and is collected by the objective lens 201 and is collected on the information surface of the high-density optical disk.
- the light reflected and diffracted by the high-density optical disk passes through the objective lens 201 again, enters the photodetector 204, and is converted from light to an electrical signal.
- the light emitted from the LDPD module 205 for DVD passes through the second optical system described later, and is condensed by the objective lens 202 and is a conventional disk. It is focused on the information surface of the DVD.
- the light reflected and diffracted by the DVD again passes through the objective lens 202, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
- the LDPD module 206 for CDs in which an infrared semiconductor laser and a photodetector are integrated.
- the emitted light passes through a third optical system, which will be described later, and is collected by the objective lens 202 and is collected on the information surface of a CD that is a conventional disc.
- the light reflected and diffracted by the CD passes through the objective lens 202 again, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
- the objective lens 202 for DVDZCD is arranged so as to move on a reference line A parallel to the shaft 110 through the rotation center O of the disk rotation motor 112.
- the distance from the reference line A passing through the rotation center O to the center of the shaft 110 is Ll
- the distance from the reference line A to the shaft 111 is L2.
- the distance L1 is defined as the distance from the objective lens 202 to the first bearing 121
- the distance L2 is defined as the distance from the objective lens 202 to the second bearing 123.
- FIG. 1 (b) is a schematic front view of the optical head device 100 and a part of the optical drive as viewed from the side. Specifically, in FIG. 1 (a), it is a view seen from the direction toward the rotation center O of the motor 112 along the reference line A.
- FIG. 2 shows a configuration diagram of an optical system part of the optical head device 100.
- the first to third optical systems described above will be described.
- the first optical system includes a light incident side from the blue semiconductor laser 203 to the objective lens 201 and a light detection side from the objective lens 201 that receives the light reflected by the optical disc force to the photodetector 204. It is a blue optical system formed by each optical element.
- the blue semiconductor laser 203 emits light having a first wavelength ⁇ 1 and a wavelength of about 405 nm. Note that this wavelength varies depending on the individual laser, and a force of about 395 nm or about 450 nm may be used.
- the light emitted from the blue semiconductor laser 203 is corrected by the beam shaper 301 as a beam shaping unit for the difference in the light intensity distribution direction.
- the light transmitted through the beam sino 301 is incident on an ND filter attached to a filter switching element 302 as a dimming unit, and the amount of transmitted light is adjusted.
- the light transmitted through the filter switching element 302 is reflected by the polarization beam splitter 303 as a branching unit.
- the light reflected by the polarization beam splitter 303 is incident on a collimator lens 305 attached to a collimator lens driving element 304 that is a spherical aberration correction unit, and is shaped into substantially parallel light.
- Collimator lens drive element 304 can change the position of collimator lens 305 Then, the degree of convergence of the light after passing through the collimator lens 305 is changed, the spherical aberration generated in combination with the objective lens is changed, and the spherical convergence generated due to the thickness error of the disk substrate thickness is corrected.
- the light transmitted through the collimator lens 305 is bent at a right angle by the rising mirror 306, passes through a quarter-wave plate (not shown), and then enters the objective lens 201.
- the light collected by the objective lens 201 is irradiated onto an optical disk (not shown) as an optical information recording medium.
- the optical disk here is an optical disk such as a Blu-ray Disc (BD) that is supposed to be recorded and reproduced with blue light.
- BD Blu-ray Disc
- the light reflected and diffracted by the optical disk is transmitted again through the objective lens 201 and the 1Z4 wavelength plate.
- the polarization direction of light rotates 90 degrees.
- the light that has passed through the 1Z4 wavelength plate passes through the collimator lens 305 and passes through the polarization beam splitter 303.
- the light that has passed through the polarization beam splitter 303 is given astigmatism by the detection lens 307 and enters the light detector 204.
- the light incident on the photodetector 204 is converted into an electrical signal.
- the second optical system is a red optical system formed by each optical element from the LDPD module 205 to the objective lens 202 in which a red semiconductor laser and a photodetector are integrated.
- the LDPD module 205 emits light having a wavelength of about 660 nm, which is the second wavelength ⁇ 2. This wavelength varies depending on the individual laser and type, and may be about 620 nm to 690 ⁇ m.
- the light emitted from the LDPD module 205 is reflected by the surface of the wedge-shaped prism 320 and converted into parallel light by the collimator lens 321.
- the light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202.
- the light condensed by the objective lens 202 is irradiated on an optical disk (not shown) as an optical information recording medium.
- the optical disk here is an optical disk that is assumed to be recorded / reproduced with red light such as a DVD.
- the light reflected and diffracted by the optical disk passes through the objective lens 202 and the collimator lens 321 again, is reflected by the wedge prism 320, and enters the LDPD module 205 for DVD.
- the photodetector in the LDPD module 205 for DVD outputs an electrical signal corresponding to the amount of light received.
- the third optical system is an infrared optical system formed by the optical elements from the LDPD module 206 to the objective lens 202 in which an infrared semiconductor laser and a photodetector are integrated. .
- the CD LDPD module 206 emits light having a wavelength of about 790 nm, which is the third wavelength ⁇ 3. This wavelength varies depending on the individual laser and the type, and may be about 770 nm and about 820 nm.
- the light emitted from the LDPD module 206 passes through the wedge-shaped prism 320 and is made into substantially parallel light by the collimator lens 321.
- the light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202.
- the light condensed by the objective lens 202 is irradiated onto an optical disk as an optical information recording medium.
- the optical disk here is an optical disk that is assumed to be recorded and reproduced with infrared light, such as a compact disk (CD).
- CD compact disk
- the light reflected and diffracted by the optical disk again passes through the objective lens 202 and the collimator lens 321, passes through the wedge-shaped prism 320, and enters the LDPD module 206 for CD.
- the photodetector in the CD LDPD module 206 outputs an electrical signal corresponding to the amount of light received.
- the wedge-shaped prism 320 is provided with a wavelength-selective film that reflects light having a red wavelength and transmits light having an infrared wavelength.
- the objective lens 202 is designed so that the aberration is reduced when the base material thickness of the disk is 0.6 mm because red light is optimal for DV D, and infrared light is optimal for CD. It is designed so that the aberration is reduced when the disk substrate thickness is 1.2 mm.
- the blue semiconductor laser 203 corresponds to the first light source of the present invention
- the LDPD module 205 for DVD corresponds to the second light source of the present invention
- the LDPD module 206 for use corresponds to the third light source of the present invention.
- the objective lens 201 corresponds to the first objective lens of the present invention
- the objective lens 202 corresponds to the second object lens of the present invention.
- the photodetector 204, the LDPD module 205 for DVD, and the LDPD module 206 for CD each correspond to the detection unit of the present invention
- the optical base 120 corresponds to the optical base of the present invention.
- the optical head device configured to transmit a light beam incident on the objective lens 201 between the first optical system and the second and third optical systems.
- Diameter, objective lens The diameter is smaller than the diameter of the light beam incident on the lens 202.
- FIG. 3 is a schematic configuration diagram of an optical system in the vicinity of each objective lens of the optical head device.
- the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the first optical system that is a blue optical system has an objective that uses a shorter wavelength of light than the second and third optical systems that are red optical systems.
- NA numerical aperture
- the focal length on the detection side of the first optical system needs to be longer than the focal length on the detection side of the second optical system, which leads to an increase in the size of the entire optical system.
- magnification of the optical system on the detection side is determined by the focal length of the optical system and the focal length of the objective lens.
- the focal length of the objective lens 201 of the first optical system that is a blue optical system shorter than the focal length of the objective lens 202 of the second and third optical systems that are red optical systems.
- the optical head device can be miniaturized.
- the diameter of the light beam passing through the objective lens is determined by (focal length of the objective lens) X (numerical aperture (NA) of the objective lens).
- the diameter of the light beam at the passage surface of the objective lens 201 of the first optical system is smaller than the diameter of the light beam at the passage surface of the objective lens 202 of the second and third optical systems.
- the focal length of the objective lens can be shortened, and the focal length on the detection side can be shortened.
- Specific methods for narrowing down the diameter of the light beam include shaping by the beam shaper 301, or inserting a relay lens in the optical path immediately after the blue semiconductor laser 203, and the like.
- NA numerical aperture
- the numerical aperture (NA) of the objective lens 201 of the first optical system is 0.85 and the focal length is 1.3 mm
- the numerical aperture (NA) of the objective lens 202 of the second and third optical system is 0.64.
- the focal length of the collimator lens 305 of the first optical system is set to 18 mm, and a magnification of 13.8 times can be secured.
- the distance from the objective lens 201 to the light source and the photodetector is the same as that of the collimator lens 305. It is about 36mm, which is about twice the focal length.
- the focal length of the objective lens 201 is set to 2.3 mm, which is the same as that of the second and third optical systems, and the magnification of the optical system on the detection side is set to 13.8 times as in the above case, the collimator lens 305
- the focal distance of the lens is 31.7 mm, and the distance from the objective lens 201 to the blue semiconductor laser 203 and the photodetector 204 exceeds 60 mm! /, And the optical head device becomes large.
- the focal length of the objective lens 201 of the first optical system is 1.73 mm, and the above-mentioned optical system on the detection side is As in the case 13.
- the focal length of the collimator lens 305 is 23.9 mm, and the distance from the objective lens 201 to the blue semiconductor laser 203 and the photodetector 204 is about 48 mm. It is nearly twice as large and difficult to fit in standard size.
- the diameter of the light beam on the passage surface of the objective lens of the first optical system that is the blue optical system is set to the second and second values that are the red Z infrared optical system.
- the lens diameter (outer diameter or effective diameter) of the objective lens 201 is preferably smaller than the lens diameter (outer diameter or effective diameter) of the objective lens 202! This is because the diameter of the light beam can be reduced and the objective lens 201 itself can be further downsized.
- the present invention is not limited by the lens diameter of the objective lens, and the lens diameter may be greater than or equal to those for DVD.
- the focal length of the objective lens 202 of the second and third optical systems is longer than the focal length of the objective lens 201 of the first optical system.
- the working distance (WD2) of the objective lens 202 can be made larger than the working distance (WD1) of the objective lens 201. This has the effect of preventing collision between the disc and the objective lens 202 when recording or reproducing a disc such as a DVD.
- the objective lens 201 used in the first optical system and the objective lens 202 used in the second optical system and the third optical system are used.
- the present invention is not limited to this configuration.
- an optical head device including a plurality of light sources that emit light having different wavelengths and a plurality of objective lenses that collect the light from these light sources onto an optical information recording medium
- the number of light sources and the objective lens It is not limited by the number. As in this embodiment, the number of light sources and the number of objective lenses need not be the same.
- the optical head device according to the second embodiment of the present invention relates to the layout of each optical system in the optical base, and the configuration is the same as in the first embodiment. Therefore, it will be explained with reference to Fig. 1.
- the optical head device 100 is disposed between the pair of shafts 110 and 111 which are guide shafts by holding the bearings 121 to 123 in the optical information device. .
- the shafts 110 and 111 correspond to a pair of shafts of the present invention
- the bearings 121, 122 and 123 correspond to the bearings of the present invention.
- the objective lens 20 of the second and third optical systems As shown in FIG. 1, in the optical head device 100, the objective lens 20 of the second and third optical systems.
- the first optical system is arranged on the shaft 110 side, and the second optical system and the third optical system are arranged on the shaft 111 side.
- the second optical system and the third optical system have a relatively low information density. Since the information is recorded and reproduced on an optical disk such as a DVD or CD, the optical system can be relatively simplified.
- the first optical system records and reproduces information on a BD or the like having a relatively high information density. Therefore, the beam shaper 301 is not necessary in the second and third optical systems. It is necessary to provide a filter switching element 302, a collimator lens driving element 304, etc., and the optical system is complicated.
- the distance L1 from the reference line A passing through the center of the objective lens 202 of the optical base 120 to the shaft 110 on which the shaft bearings 121, 121 with the blue semiconductor laser 203 are placed is L1.
- the reference line A is longer than the distance L2 of the shaft 111 on which the shaft bearing 123 with the LDPD module 205 for DVD and the LDPD module 206 for CD is placed.
- the area of the optical base 120 is asymmetrically divided with respect to the reference line A, and the first optical system having a complicated configuration is formed on the wide area side of the width L1.
- the second and third optical systems having a simpler configuration are formed on the narrow area side of the width L2.
- the bearing is provided with two bearings 121 and 122 at the end of the first optical system of the optical base 120, and at the ends of the second and third optical systems.
- the structure of the bearing according to the present invention is not limited to this, as long as it is provided at least one at each end of the optical base and can hold the shaft. It is not limited by the number or specific configuration.
- the center of the objective lens 202 of the second and third optical systems forms the rotation center O of the motor 112 and the reference line A, so that the moving axial force of the objective lens 202 is It matches the radius of the optical disk. This is because the third optical system force 3 beam tracking method for CD recording and playback is adopted.
- a three-beam diffraction grating 501 is attached to the CD LDPD module 206! /.
- the light beam emitted from the LDPD module 206 for CD passes through the diffraction grating 501 and splits into one main beam and two sub beams. Is done.
- the three light beams are condensed by the objective lens 202 to form one main spot 502 and two sub spots 503 and 504 on the optical disc.
- Fig. 4 (c) shows the relationship between the three spots on the optical disc and the track.
- the main spot 502 is located at the center of the track 510 on which information is recorded or reproduced
- the sub-spots 503 and 504 are located between the track 510 and the track 511 or 512 adjacent to the track 510, respectively.
- a tracking signal is generated by multiplying the push-pull signal of the main spot 502 by the coefficient and subtracting the sum of the push-pull signals of the subsbots 503 and 504 (differential bushbull method).
- the objective lens 202 that emits the three light beams by the optical head device is parallel to the shaft and the motor 112 Ideally, it should be on a straight line through the center. If the objective lens is not on this straight line, the projected image of the optical disk track will be relative to the position of the three light beams when the optical head device is near the inner periphery and the outer periphery of the optical disc. This is because if the projected image of the rotating track is relatively rotated, the relative positional relationship of the main beam and the sub beam with respect to the track changes, the amplitude changes, and the quality of the tracking signal decreases.
- the optical base 120 is provided with an arc-shaped cutout portion 100a in order to prevent the optical base 120 from colliding with the motor 112.
- the center of the circular arc of the notch 100a is provided on the reference line A for matching. Thereby, the moving range of the objective lens 202 in the radial direction can be maximized.
- the objective lens 201 does not need to be disposed on the reference line A in the first optical system. The same applies to the objective lens 202 in the second optical system.
- the beam shaper 301 corresponds to the beam shaping unit of the present invention, and has a substantially cylindrical surface in which the symmetric axes are parallel on both the incident surface and the output surface, and is one of the two axes perpendicular to the optical axis of the incident light. Enlarge the ray only in one axial direction.
- the light emitted from the blue semiconductor laser 203 corrects the difference in the intensity distribution due to the direction by the action of the force beam shaper 301 having a difference in the intensity distribution of the light depending on the direction of the active layer of the laser, and approaches the uniform.
- the filter switching element 302 corresponds to the dimming unit of the present invention, and two types of ND filters 311 and 312 having different transmittances are provided in directions in which light passing surfaces are perpendicular to each other.
- the The transmittance of the ND filter 311 is 50%, and the transmittance of the ND filter 312 is 100%.
- the filter switching element 302 is rotated 90 degrees by passing an electric current.
- FIG. 5 (a) the A surface in the figure faces upward, and incident light passes through the ND filter 311.
- FIG. 5 (b) shows a state rotated 90 degrees toward the front.
- FIG. 5B the A surface faces forward, and incident light passes through the ND filter 312.
- the filter switching element 302 is used to switch the type of ND filter through which light passes according to the type of optical disk to be reproduced.
- light from the blue semiconductor laser 203 is effective by passing it through the ND filter 311. The rate is reduced, and the light output from the objective lens 201 is reduced while the output from the blue semiconductor laser 203 remains constant.
- the light passes through the ND filter 312 and guides light with high efficiency and light quantity to the objective lens 201.
- FIG. 5B shows the configuration of the collimator lens driving element 304.
- the collimator lens 305 is held by a holder 305a, and this holder 305a is supported by shafts 305b and 305c, and can be moved along the shafts 305b and 305c by a transmission system such as a motor and a feed screw (not shown).
- a transmission system such as a motor and a feed screw (not shown).
- a transmission system such as a motor and a feed screw (not shown).
- the collimator lens driving element 304, the collimator lens 305, and the holder 305a constitute the spherical aberration correcting means of the present invention.
- the collimator lens 305 alone constitutes the collimator lens of the present invention.
- the optical head device according to the third embodiment of the present invention relates to the layout of each optical element constituting the first optical system.
- the configuration is the same as in the first embodiment. Therefore, description will be made with reference to FIGS.
- each optical element in the first optical system has the beam shaper 301 next to the blue semiconductor laser 203 as the light source, and then the filter switching element on the light emission side. 302, then the polarizing beam splitter 303, then the collimator lens 305, and finally the objective lens 201.
- the deflecting beam splitter 303 corresponds to a branching portion of the present invention.
- the beam shaper 301 defines the cross-sectional shape of the light beam in the first optical system, and since it is necessary to determine the shape within the area of the cross-sectional shape is small, the blue semiconductor laser 203, which is the light source, is used. It is desirable for the distance to be short. Therefore, it is arranged immediately after the blue semiconductor laser 203.
- the filter switching element 302 is for adjusting the light amount of the light beam incident on the optical disc. It is not necessary to put in the optical system on the detection side. So light It is arranged in front of the deflecting beam splitter 303 for branching the reflected light from the disk to the photodetector 204.
- the deflecting beam splitter 303 and the collimator lens 305 are arranged in this order for the following reason.
- the collimator lens 305 is shared by both optical systems on the light emission side and the reflection side.
- the number of optical elements in the first optical system is reduced, and the conjugate relationship between the photodetector 204 and the blue semiconductor laser 203 does not change even if the position of the collimator lens 305 is driven to correct spherical aberration.
- the first optical system has the blue semiconductor laser 203, the beam shaper 301, the filter switching element 302, the polarization beam splitter 303, the collimator lens on the light emission side. It is desirable to arrange 305 and objective lens 201 in this order.
- an optical element other than the deflection beam splitter such as a hologram
- it may be provided on the objective lens 201 side after the collimator lens 305.
- the arrangement order of the entire optical elements in the first optical system is blue semiconductor laser 203, beam shaper 301, filter switching element 302, collimator lens 305, polarization beam splitter 303, and objective lens 201.
- the optical head device is characterized by the shape of the rising mirror 306.
- FIG. 6A is a perspective view showing a configuration in the vicinity of the rising mirror 306.
- FIG. 6B is a side view of the raising mirror 306.
- FIG. 6C is a side view for schematically showing the state of incident light on the rising mirror 306.
- the rising mirror 306 has a first reflecting surface 306a that reflects light to the first optical system and guides the light to the objective lens 201, and a second optical system.
- a second reflecting surface 306b that reflects light and guides it to the objective lens 202 is provided.
- the first reflecting surface 310a is provided with a reflecting film that maximizes the reflectivity when blue light is incident at an incident angle of approximately 45 degrees.
- the second reflecting surface 306b is provided with a reflecting film that maximizes the reflectance when red light or infrared light is incident at an incident angle of about 45 degrees.
- the first reflecting surface 30 has a substantially right isosceles triangle having a first reflecting surface 306a, a second reflecting surface 310b, and a bottom surface 306e. 6a and the second reflecting surface 306b are joined to the bottom surface 306e by a joint portion that does not form a side parallel to the first reflecting surface 306 and the second reflecting surface 306b. Each is chamfered. Therefore, the side shape is strictly a pentagon.
- the side surfaces of the rising mirror 306 are formed by the first reflecting surface 306a and the second reflecting surface 306b. It forms an asymmetric pentagonal shape with respect to the perpendicular bisector B.
- the operator can determine which of the two reflecting surfaces of the rising mirror 306 is the first reflecting surface 306a or the second reflecting surface 306b by assembling. It can be easily discriminated visually or by touch.
- a triangular prism-like mirror such as the rising mirror 306 has a symmetrical shape with respect to the bisector of the angle formed by the reflecting surface thereof. If the reflecting surface is installed in the wrong direction in the optical head device, the desired reflectance cannot be obtained.
- the first and second reflective surfaces are not easy to discern due to differences in the type of reflective film, if the surfaces are thin and appear greenish or reddish.
- each reflecting surface can be easily discriminated by making the shape of the side surface asymmetrical.
- the force that makes the chamfering amount C1 on the first reflecting surface 306a side larger than the chamfering amount C2 on the second reflecting surface 306b side has the following effects. That is, as shown in FIG. 6 (c), in the first optical system, the collimator lens 305 is a force collimator lens drive element 304 fixed on the collimator lens drive element 304, and the rising mirror 306. Are arranged on the same plane, the chamfering amount C1 of the first reflecting surface 306a can be included in the movable range of the collimator lens driving element 304 as it is.
- the diameter of the light beam in the first optical system is smaller than the diameter of the second light beam. Therefore, even if the first reflecting surface 306a has a smaller area than the second reflecting surface 306b, the rising mirror 306 can guide the incident light of each optical system to the corresponding objective lens. It should be noted that the rising mirror 306 is a force corresponding to the rising mirror of the present invention, and its configuration is not limited to the above description.
- the chamfering amount C2 may be larger than the chamfering amount C1. Also, either the first reflecting surface 306a or the second reflecting surface 306b is chamfered and the other is not chamfered.
- the chamfering is performed on the whole of the joint portion with the bottom surface 306e for each of the first reflecting surface 306a and the second reflecting surface 306b. However, it may be performed only for a part. That is, the asymmetric side surface shape of the rising mirror 306 is formed in a part of the rising mirror 306.
- FIG. 7 shows a configuration in which only the central portion of the second reflecting surface 306b is chamfered to provide a surface 306d, and both ends are not chamfered.
- first reflecting surface 306a and the second reflecting surface 306b are asymmetrical shapes that can be directly discerned by visual or tactile sense, they are limited by the size, position, and range of the respective chamfering amounts. It will never be done.
- the method of changing the position of the collimator lens is described as an example of the spherical aberration correction unit of the present invention.
- the liquid crystal is used for light equivalent to spherical aberration. You can correct it by giving a wavefront, or you can combine convex and concave lenses like a beam expander and change the distance to change the degree of light divergence to correct spherical aberration. Even in these cases, the effect of the invention of the present embodiment is not disturbed! /.
- the beam shaper as the beam shaping unit of the present invention is different in two directions, such as a force toric surface in which the incident surface and the output surface are substantially cylindrical surfaces. Beam shaping may be performed by a surface having the following power. Even in that case, the effect of the invention of the present embodiment is not disturbed.
- the force ND filter showing a configuration in which the ND filter is replaced by rotation as the dimming unit of the present invention may be configured to translate and replace the ND filter.
- a liquid crystal and a polarizing plate may be used.
- the force shown in the example in which the objective lens 201 and the objective lens 202 are separated and arranged in the tangential direction of the optical disc is not limited to this, as shown in FIG.
- the objective lens 201 and the objective lens 202 may be configured so that the objective lenses are aligned in the radial direction.
- the objective lens 201 and the objective lens 202 may be used as one objective lens, that is, the objective lens may be shared by the first to third optical systems.
- the actuator 200 has a single objective lens, and instead of the rising mirror 306, the light beam from each light source is the same lens in the same direction and the same optical axis. Use a start-up prism.
- FIG. 9 is a perspective view of such a rising prism 401.
- the rising prism 401 is a means for reflecting light having different wavelengths incident from two directions as light having the same direction and the same optical axis.
- the reflection surface 402 has a color selective reflection film that transmits red (near 660nm) 'infrared (near 780 ⁇ m) and reflects blue (near 405nm) light. It is formed.
- a color selective reflection film which transmits blue (near 405 nm) light and reflects red (near 660 nm) ′ infrared (near 780 nm).
- red near 660 nm
- infrared near 780 nm
- FIGS. 10 (a) and 10 (b) schematically show the operation of the optical head device 100 when the rising prism 401 is incorporated.
- FIG. 10 (a) shows a case where the light beam from the blue semiconductor laser 203 is irradiated when used as the first optical system.
- the blue light beam is collimated by the collimator lens 350 and enters the rising prism 401.
- the incident blue light beam is reflected by the reflecting surface 402 that reflects blue light, and enters the common objective lens 410.
- the common objective lens 410 receives a blue light beam, it generates convergent light suitable for BD recording and playback. Irradiate BD411.
- the light reflected and diffracted by the BD 411 passes through the common objective lens 410 again, is reflected by the reflecting surface 402 of the rising prism 401, passes through the collimator lens 305, and travels to the detection-side optical system.
- FIG. 10 (b) shows a case where the light beam from the LDPD module 205 for DVD is irradiated when used as the second optical system.
- the red light beam is collimated by the collimator lens 32 1 and enters the rising prism 401.
- the incident red light beam is reflected by the reflecting surface 403 that reflects the red light and enters the common objective lens 410.
- the common objective lens 410 When the common objective lens 410 receives a red light beam, the common objective lens 410 generates converged light suitable for DVD recording / playback, and irradiates the DVD 412 with this light. The light reflected and diffracted by the DVD 412 passes through the common objective lens 410 again, is reflected by the reflecting surface 403 of the rising prism 401, passes through the collimator lens 321, and returns to the DVD LDPD module 205. When it is used as the third optical system, it collects light on the CD in the same manner as shown in Fig. 10 (b).
- Embodiment 5 of the present invention is an optical information device that mounts the optical head device of Embodiments 1 to 4 and that only records and reproduces or reproduces signals with respect to an optical disc.
- FIG. 11 schematically shows the configuration of the optical information device 600 according to the fifth embodiment.
- 601 is an electric circuit
- 602 is a clamper
- 603 is a turntable.
- the optical disc 604 is placed on the turntable 603 and rotated by the motor 112.
- the optical head device 100 coarsely moves on the shaft 110 to a track where desired information of the optical recording medium 209 exists.
- the optical head device 100 also sends a focus error signal and a tracking error signal to the electric circuit 601 corresponding to the positional relationship with the optical disc 604.
- the electric circuit 601 sends a signal for finely moving the objective lens 202 or 201 corresponding to the optical disk 604 to the optical head device 100.
- the optical head device 100 causes the optical disc 60 to 4 performs focus control and tracking control, and reads / writes (records) or erases information on the optical disk 604.
- the optical information device 600 corresponds to the optical information device of the present invention
- the electric circuit 601 corresponds to the electric circuit of the present invention.
- the present embodiment uses the optical head device of Embodiments 1 to 4 as the optical head device, so that the internal volume is also reduced with the miniaturization of the optical head device. When it is downsized as a whole, it has a habit effect.
- FIG. 12 shows an embodiment of a computer provided with the optical information device described in the fifth embodiment.
- a personal computer (computer) 1000 includes the optical information device 600 according to the fifth embodiment, a keyboard 1003 for inputting information, and a monitor 1002 for displaying information.
- a computer having the optical information device 600 of Embodiment 5 described above as an external storage device has the effect that information can be stably recorded or reproduced on different types of optical disks, and can be used in a wide range of applications.
- Optical disks make use of their large capacity to back up hard disks in computers, media (optical disks) are inexpensive and easy to carry, and information can be read by other optical information devices. You can make use of the compatibility to exchange programs and data with people or carry them around for yourself. It can also support playback and recording of existing media such as BD, DVD and CD.
- the size can be further reduced.
- FIG. 13 shows an embodiment of an optical disk recorder (video recording apparatus) provided with the optical information apparatus described in the fifth embodiment.
- an optical disk recorder (video recording apparatus) 1010 includes the optical information apparatus 600 of Embodiment 5 (not shown), and a monitor 1011 for displaying the recorded video. Used in connection with.
- the optical disc recorder provided with the optical information device 600 of the above-described fifth embodiment has an effect that video can be stably recorded or reproduced on different types of optical discs and can be used in a wide range of applications.
- An optical disk recorder can record video on media (optical disk) and play it back whenever you like. On an optical disk, after recording or recording a program that requires rewinding after recording, such as tape, follow-up playback that plays back the beginning of the program, or program that was previously recorded while recording a program.
- the recorded video can be exchanged with people or carried for yourself. can do. It also supports playback and recording of existing media such as BD, DVD, and CD.
- the size can be further reduced.
- optical information device 600 Although only the optical information device 600 is described here, a hard disk may be incorporated or a video tape recording / playback function may be incorporated. In that case, the video can be temporarily saved and knocked up easily.
- FIG. 14 shows an embodiment of an optical disc player (video playback device) provided with the optical information device 600 described in the fifth embodiment.
- an optical disc player (video playback device) equipped with a liquid crystal monitor 1020.
- 1021 incorporates the optical information device 600 of the fifth embodiment (not shown), and can display the video recorded on the optical disk on the liquid crystal monitor 1020.
- the optical disc player including the optical information device 600 of the above-described fifth embodiment has an effect that video can be stably reproduced on different types of optical discs and can be used for a wide range of purposes.
- the optical disc player can play the video recorded on the medium (optical disc) at any time.
- An optical disc does not require a rewinding operation after reproduction like a tape, and can access and reproduce an arbitrary place of a video. It also supports playback of existing media such as BD, DVD and CD.
- the optical information device 600 of the fifth embodiment that is smaller than the conventional one, the size can be further reduced.
- FIG. 15 shows an embodiment of a server provided with the optical information device 600 described in the fifth embodiment.
- a server 1030 includes the optical information device 600 according to the fifth embodiment, a monitor 1033 for displaying information, and a keyboard 1034 for inputting information, and is connected to a network 1035. ing.
- the server having the optical information device 600 of Embodiment 5 described above as a plurality of external storage devices has the effect that information can be stably recorded or reproduced on different types of optical disks, and can be used for a wide range of applications. It will be a thing.
- the optical disk drive takes advantage of its large capacity to send information (images, audio, video, HTML documents, text documents, etc.) recorded on the optical disk in response to a request from the network 1035. It also records the information sent to the network at the requested location.
- information recorded on existing media such as BD, DVD disc and CD disc can be reproduced, it is also possible to send such information.
- the size can be further reduced.
- FIG. 16 shows an embodiment of a car navigation system provided with the optical information device described in the fifth embodiment.
- a car navigation system 1040 incorporates the optical information device 600 of Embodiment 5 (not shown) and is connected to a liquid crystal monitor 1041 for displaying topography and destination information. used.
- the car navigation system including the optical information device 600 according to the fifth embodiment described above can stably record or play back images on different types of optical disks, and has the effect of being usable in a wide range of applications. It will be a thing.
- the car navigation system 1040 uses map information recorded on the media (optical disk), ground positioning system (GPS), gyroscope, Based on information from speedometer, odometer, etc., the current position is determined and displayed on the LCD monitor. When the destination is entered, the optimum route to the destination is determined based on the map information and road information and displayed on the LCD monitor.
- a single disc can cover a wide area and provide detailed road information.
- information about restaurants, convenience stores, gas stations, etc. associated with the vicinity of the road can also be stored on an optical disc and provided.
- the road information is getting old and the power that doesn't match the reality.
- Optical discs are compatible and inexpensive, so you can get the latest information by exchanging with a disc containing new road information. Can do. It can also play and record existing media such as BD, DVD discs and CD discs, so you can watch movies and listen to music in the car.
- the size can be further reduced, and this is particularly effective in the vehicle.
- the optical head device and the optical information device according to the present invention have an effect that can be reduced by downsizing the optical system.
- the optical head device, the optical head device, the optical information device, and their applications As a product, it can be used as a computer, disc player, server, car navigation system, optical disc recorder, etc., and is useful as a recording / playback device for video, music and other information.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
Abstract
An optical head device having a light source for emitting light with different wavelengths, where the device is reduced in size by reducing the size of an optical system. The optical head device has a blue semiconductor laser (203) and an LDPD module (205) for DVD that function as light sources for emitting light having different wavelengths; objective lenses (201, 202) for collecting light from the light sources on an optical information recording medium; a light detector (204) and an LDPD module (205) for DVD that function as a detection section for detecting reflection light from the optical recording medium; and an optical base (120) where the light sources, the objective lenses, and the detection section are placed. The diameter of that ray of the light from the light sources which has a short wavelength is smaller than the diameter of that ray of the light from the light sources which has a long wavelength, where the diameter is a diameter measured at a passage face of the objective lens (201 or 202) to which each ray of the light from the light sources corresponds.
Description
明 細 書 Specification
光ヘッド装置、光情報装置 Optical head device, optical information device
技術分野 Technical field
[0001] 本発明は、光ディスクに代表される光情報記録媒体に対し情報を記録又は再生す る光情報装置及びそれに用いられる光ヘッド装置に関するものである。 [0001] The present invention relates to an optical information apparatus for recording or reproducing information on an optical information recording medium represented by an optical disc, and an optical head apparatus used therefor.
背景技術 Background art
[0002] デジタルバーサタイルディスク(DVD)は、デジタル情報をコンパクトディスク(CD) の約 6倍の記録密度で記録することができることから、大容量のデータを記録可能な 光ディスクとして知られて 、る。 [0002] Digital versatile discs (DVDs) are known as optical discs capable of recording large volumes of data because they can record digital information at a recording density approximately six times that of compact discs (CDs).
[0003] 近年、光ディスクに記録される情報量の増大に伴い、さらに容量の大きい光ディスク が求められている。光ディスクを大容量にするためには、光ディスクに照射される光が 形成する光スポットを小さくすることにより、情報の記録密度を高くする必要がある。光 源のレーザ光を短波長にし、かつ、対物レンズの開口数 (NA)を大きくすることによつ て、光スポットを小さくすることができる。 In recent years, with an increase in the amount of information recorded on an optical disc, an optical disc having a larger capacity has been demanded. In order to increase the capacity of an optical disk, it is necessary to increase the information recording density by reducing the light spot formed by the light irradiated on the optical disk. The light spot can be reduced by shortening the wavelength of the laser light from the light source and increasing the numerical aperture (NA) of the objective lens.
[0004] DVDでは、波長 660nmの光源と、開口数(NA) O. 6の対物レンズとが使用されて いる。例えば、波長 405nmの青色レーザと、 NAO. 85の対物レンズとを使用すること によって、現在の DVDの記録密度の 5倍の記録密度が達成される。 [0004] A DVD uses a light source having a wavelength of 660 nm and an objective lens having a numerical aperture (NA) of O.6. For example, by using a blue laser with a wavelength of 405 nm and an objective lens of NAO.85, a recording density five times that of the current DVD can be achieved.
[0005] ところで、ブルーレイディスク(以下 BD)のような高密度光ディスクを対象に、青色レ 一ザによる短波長のレーザを用いて高密度の記録再生を実現する光情報装置にお いて、既存の光ディスクとの互 能を備えることは装置としての有用性を高め、コス トパフォーマンスを向上することが可能となる。この場合、対物レンズの開口数を 0. 8 5と高めつつ、作動距離を DVDや CD用の対物レンズのように長くすることは困難で ある。そのため、高密度の記録再生が可能な互換型光情報装置では、 CDまたは DV Dを記録再生するのに使われる少なくとも一枚の対物レンズとこれより高開口数を有 する高密度記録用の対物レンズとをそれぞれ備えることが望ましい。 [0005] By the way, in an optical information apparatus that realizes high-density recording / reproduction using a short-wavelength laser with a blue laser for a high-density optical disc such as a Blu-ray disc (hereinafter referred to as BD), Providing compatibility with optical discs increases the usefulness of the device and improves cost performance. In this case, it is difficult to increase the working distance as in the objective lens for DVD and CD while increasing the numerical aperture of the objective lens to 0.85. Therefore, in compatible optical information devices capable of high-density recording / reproducing, at least one objective lens used for recording / reproducing CD or DVD and an objective for high-density recording having a higher numerical aperture than this objective lens. It is desirable to provide each with a lens.
[0006] そのような光情報装置としては、 NAO. 85である BD用対物レンズと NAO. 6である DVD用対物レンズを用いる光ヘッド装置が知られている(例えば特許文献 1、図 1、
図 2等を参照)。 As such an optical information device, an optical head device using a BD objective lens of NAO. 85 and a DVD objective lens of NAO. 6 is known (for example, Patent Document 1, FIG. 1, (See Figure 2 etc.)
特許文献 1:特開 2005 - 327338号公報 Patent Document 1: Japanese Patent Laid-Open No. 2005-327338
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] し力しこのような従来の光ヘッド装置においては、以下のような課題があった。 特 許文献 1に示す構成にぉ ヽては、 NAが DVD用のものより大き ヽ BD用の対物レンズ に入射する光ビームのほうが、 DVD用の対物レンズに入射する光ビームよりも直径 が大きい。 However, such a conventional optical head device has the following problems. In the configuration shown in Patent Document 1, NA is larger than that for DVD. 光 The light beam incident on the objective lens for BD has a larger diameter than the light beam incident on the objective lens for DVD. .
[0008] これは以下のような不具合をもたらす。すなわち、高密度の記録再生を行う BDは N Aの高い対物レンズを用いる力 対物レンズにおいては NAを高くすると焦点深度が 浅くなるため、フォーカス制御において、より高い精度が必要となる。 [0008] This brings about the following problems. In other words, BD, which performs high-density recording / reproduction, uses a high NA objective lens. For an objective lens, if NA is increased, the depth of focus becomes shallower, so higher accuracy is required for focus control.
[0009] そこで BDの光学系においては、 BD用の対物レンズが高 NAであることに加え、フ オーカスエラー信号を大きな変化として取り出すために検出側の光学系が高倍率で あることち要求される。 [0009] Therefore, in the BD optical system, in addition to the high NA of the BD objective lens, the optical system on the detection side is required to have a high magnification in order to extract the focus error signal as a large change. The
[0010] しかしながら、 BD用の対物レンズに入射する BD側の光ビームの直径が DVD側の それより大きい場合、 BD用対物レンズの焦点距離は、 DVD対物レンズの焦点距離 の 0. 7倍(0. 7 = 0. 6/0. 85 :NAの比)より大きくなる。 [0010] However, when the diameter of the light beam on the BD side incident on the objective lens for BD is larger than that on the DVD side, the focal length of the objective lens for BD is 0.7 times the focal length of the DVD objective lens ( 0. 7 = 0.6 / 0. 85: NA ratio).
[0011] 又、検出側の光学系の倍率は対物レンズの焦点距離及び BD力 の反射光を受光 、処理する検出器側の光学系の焦点距離により定められるが、対物レンズの焦点距 離が大きくなると、検出器側の光学系においても焦点距離を大きくとる必要があり、こ れは光学系全体のサイズを大きなものとし、これは光ヘッド装置の大型化をもたらす こととなってしまって!/、た。 [0011] The magnification of the optical system on the detection side is determined by the focal length of the objective lens and the focal length of the optical system on the detector side that receives and processes the reflected light of the BD force. If it becomes larger, it is necessary to increase the focal length also in the optical system on the detector side, which increases the size of the entire optical system, which leads to an increase in the size of the optical head device! /
[0012] 本発明は、前記従来の課題を解決するもので、光学系を小型化することで小型化 が可能な光ヘッド装置を提供することを目的とする。 An object of the present invention is to solve the above-described conventional problems, and to provide an optical head device that can be miniaturized by miniaturizing an optical system.
課題を解決するための手段 Means for solving the problem
[0013] 上記の目的を達成するために、第 1の本発明は、互いに波長の異なる光を発する 複数の光源と、 In order to achieve the above object, the first aspect of the present invention includes a plurality of light sources that emit light having different wavelengths,
前記複数の光源力 の光を、それぞれ対応する光情報記録媒体へ集光するため
の複数の対物レンズと、 In order to condense light of the plurality of light source powers onto the corresponding optical information recording media, respectively. A plurality of objective lenses,
前記光情報記録媒体力 の反射光を検出する検出部と、 A detector for detecting reflected light of the optical information recording medium force;
前記複数の光源、前記複数の対物レンズ及び前記検出部が配置される光学基台 とを備え、 An optical base on which the plurality of light sources, the plurality of objective lenses, and the detection unit are disposed;
前記複数の光源からの光の、それぞれの光が対応する前記対物レンズの通過面に おける直径は、波長の短いものが波長の長いものよりも小さい、光ヘッド装置である。 The diameter of the light from the plurality of light sources on the passing surface of the objective lens to which each light corresponds corresponds to an optical head device in which a short wavelength is smaller than a long wavelength.
[0014] また、第 2の本発明は、前記複数の光源は、波長 λ 1の波長を発する第 1の光源及 び波長 λ 1より長波長の波長 λ 2の光を発する第 2の光源の 2つの光源であって、 前記複数の対物レンズは、前記第 1の光源からの光を集光する第 1の対物レンズ及 び前記第 2の光源からの光を集光する第 2の対物レンズの 2つの対物レンズであり、 前記第 1の対物レンズは前記第 2の対物レンズよりも高い開口数を有し、 前記第 1の対物レンズの通過面における前記第 1の光源力 の光の直径は、前記 第 2の対物レンズの通過面における前記第 2の光源力もの光の直径より小さい、第 1 の本発明の光ヘッド装置である。 [0014] The second aspect of the present invention is that the plurality of light sources are a first light source that emits a wavelength of λ 1 and a second light source that emits light of a wavelength λ 2 longer than the wavelength λ 1. Two light sources, wherein the plurality of objective lenses are a first objective lens that condenses the light from the first light source and a second objective lens that condenses the light from the second light source. The first objective lens has a higher numerical aperture than the second objective lens, and the diameter of the light of the first light source power on the passage surface of the first objective lens Is an optical head device according to the first aspect of the present invention, which is smaller than the diameter of the light of the second light source power on the passage surface of the second objective lens.
[0015] また、第 3の本発明は、前記第 1の対物レンズのレンズ径は、前記第 2の対物レンズ のレンズ径より小さい、第 2の本発明の光ヘッド装置である。 [0015] The third aspect of the present invention is the optical head device according to the second aspect of the present invention, wherein a lens diameter of the first objective lens is smaller than a lens diameter of the second objective lens.
[0016] また、第 4の本発明は、前記第 1の光源の光により記録又は再生が行われる前記光 情報記録媒体の表面に対して前記第 1の対物レンズが移動可能な距離 WD1と、前 記第 2の光源の光により記録又は再生が行われる前記光情報記録媒体の表面に対 する前記第 2の対物レンズが移動可能な距離 WD2との間に、 WDKWD2の関係 がある、第 2の本発明の光ヘッド装置である。 [0016] Further, the fourth aspect of the present invention is a distance WD1 by which the first objective lens can move with respect to a surface of the optical information recording medium on which recording or reproduction is performed by light of the first light source; There is a relationship of WDKWD2 with the distance WD2 that the second objective lens can move with respect to the surface of the optical information recording medium on which recording or reproduction is performed by the light of the second light source. This is an optical head device of the present invention.
[0017] また、第 5の本発明は、前記光学基台を前記光情報記録媒体の内周側と外周側と の間で移動させるための少なくとも一対のシャフトを保持する為の軸受けを備え、 前記軸受けは、前記光学基台の両端に少なくともそれぞれ 1つ配置されており、 少なくとも前記第 2の対物レンズの中心を通過する、前記一対のシャフトと平行な基 準線と前記一対のシャフトの一方との距離 L1と、前記基準線と前記一対のシャフトの 他方との距離を L2との間には、 L1 >L2の関係があり、 [0017] Further, the fifth aspect of the present invention includes a bearing for holding at least a pair of shafts for moving the optical base between an inner peripheral side and an outer peripheral side of the optical information recording medium, At least one of the bearings is disposed at each end of the optical base, and at least one of the reference line passing through the center of the second objective lens and parallel to the pair of shafts and the pair of shafts. L1 and the distance between the reference line and the other of the pair of shafts L2, there is a relationship of L1> L2,
前記第 1の光源は、前記一つのシャフトの前記一方寄りに設けられ、
前記第 2の光源は、前記一つのシャフトの前記他方寄りに設けられている、第 2の 本発明の光ヘッド装置である。 The first light source is provided on the one side of the one shaft, The second light source is the optical head device according to the second aspect of the present invention, which is provided on the other side of the one shaft.
[0018] また、第 6の本発明は、前記基準線は、前記光情報記録媒体を回転するモーター の回転中心を通る、第 5の本発明の光ヘッド装置である。 [0018] The sixth aspect of the present invention is the optical head device according to the fifth aspect of the present invention, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
[0019] また、第 7の本発明は、前記基準線は、前記第 1の対物レンズの中心も通る、第 6の 本発明の光ヘッド装置である。 The seventh aspect of the present invention is the optical head device according to the sixth aspect of the present invention, wherein the reference line also passes through the center of the first objective lens.
[0020] また、第 8の本発明は、前記一対のシャフトを含む平面力も見て、 [0020] Further, the eighth aspect of the present invention also sees a plane force including the pair of shafts,
前記第 1の光源及び前記第 1の対物レンズを含む第 1の光学系は、前記距離 L1の 幅に収まるよう形成されており、前記第 2の光源を含む第 2の光学系は、前記第 2の 対物レンズ及び前記第 2の対物レンズへ光を導くための立ち上げミラーをのぞいて前 記距離 L2の幅に収まるよう形成されている、第 6の本発明の光ヘッド装置である。 The first optical system including the first light source and the first objective lens is formed to be within the width of the distance L1, and the second optical system including the second light source is the first optical system. The optical head device according to the sixth aspect of the present invention is formed so as to be within a width of the distance L2 except for the second objective lens and a rising mirror for guiding light to the second objective lens.
[0021] また、第 9の本発明は、前記光学基台は円弧状の切り欠きがあり、 [0021] Further, according to a ninth aspect of the present invention, the optical base has an arc-shaped notch,
前記切り欠きの円弧は、その中心が前記基準線を通るように設けられている、第 5 の本発明の光ヘッド装置である。 The arc of the notch is the optical head device according to the fifth aspect of the present invention, the center of which is provided so as to pass through the reference line.
[0022] また、第 10の本発明は、前記第 1の対物レンズは前記第 2の対物レンズより前記第[0022] Further, according to a tenth aspect of the present invention, the first objective lens has the first objective lens more than the second objective lens.
1の光源に近い側に配置されている、第 5の本発明の光ヘッド装置である。 5 is an optical head device according to a fifth aspect of the present invention, which is arranged on the side closer to the light source of FIG.
[0023] また、第 11の本発明は、波長え 2より長波長の波長え 3の光を発し、前記一つのシ ャフトの前記他方寄りに設けられ第 3の光源を更に備え、 [0023] The eleventh aspect of the present invention further includes a third light source that emits light having a wavelength longer than that of wavelength 2 and that is provided near the other side of the one shaft.
前記第 2の対物レンズ及び前記第 3の光源を含む第 3の光学系が形成されている、 第 5の本発明の光ヘッド装置である。 The optical head device according to a fifth aspect of the present invention, wherein a third optical system including the second objective lens and the third light source is formed.
[0024] また、第 12の本発明は、前記基準線は、前記光情報記録媒体を回転するモーター の回転中心を通る、第 11の本発明の光ヘッド装置である。 [0024] The twelfth aspect of the present invention is the optical head apparatus according to the eleventh aspect of the present invention, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
[0025] また、第 13の本発明は、波長 λ 1は 450nm以下である、第 5の本発明の光ヘッド 装置である。 The thirteenth aspect of the present invention is the optical head device according to the fifth aspect of the present invention, wherein the wavelength λ 1 is 450 nm or less.
[0026] また、第 14の本発明は、前記第 1の光源と前記第 1の対物レンズの間に設けられた 、前記第 1の光源力も出た光の強度分布を補正するビーム整形部を有する、第 5の 本発明の光ヘッド装置である。 [0026] Further, the fourteenth aspect of the present invention is a beam shaping unit provided between the first light source and the first objective lens, which corrects an intensity distribution of light also having the first light source power. A fifth optical head device according to the present invention.
[0027] また、第 15の本発明は、前記第 1の光源と前記第 1の対物レンズの間に設けられた
、前記第 1の対物レンズから出射された前記光情報記録媒体に集光する際に生ずる 球面収差を補正する球面収差補正部を有する、第 5の本発明の光ヘッド装置である [0027] The fifteenth aspect of the present invention is provided between the first light source and the first objective lens. The optical head device according to the fifth aspect of the present invention includes a spherical aberration correction unit that corrects a spherical aberration generated when the optical information recording medium emitted from the first objective lens is condensed.
[0028] また、第 16の本発明は、前記第 1の光源と前記第 1の対物レンズの間に設けられた 、前記第 1の光源力 出た光の透過率を制御する調光部を有する、第 5の本発明の 光ヘッド装置である。 [0028] Further, the sixteenth aspect of the present invention includes a dimming unit that is provided between the first light source and the first objective lens and controls the transmittance of light emitted from the first light source. And an optical head device according to a fifth aspect of the present invention.
[0029] また、第 17の本発明は、前記第 1の光源からの光を受けて強度分布の補正を行う ビーム整形部と、 [0029] Further, the seventeenth aspect of the present invention is a beam shaping unit that receives light from the first light source and corrects an intensity distribution;
光の透過率を制御する調光部と、 A light control unit for controlling the light transmittance;
入射する光を略平行光に整形するコリメータレンズとを備え、 A collimator lens that shapes incident light into substantially parallel light;
前記第 1の光源から出た光は、前記ビーム整形部、前記調光部、前記コリメ一タレ ンズ、前記第 1の対物レンズの順に通る光学系を形成するように配置されている、第 2 の本発明の光ヘッド装置である。 The light emitted from the first light source is disposed so as to form an optical system that passes in the order of the beam shaping unit, the light control unit, the collimator lens, and the first objective lens. This is an optical head device of the present invention.
[0030] また、第 18の本発明は、前記第 1の光源から前記光情報記録媒体へ向かう光と前 記光情報記録媒体から前記検出部へ向かう光とを分離する分岐部を備えた、第 17 の本発明の光ヘッド装置である。 [0030] Further, the eighteenth aspect of the present invention includes a branching unit that separates light traveling from the first light source toward the optical information recording medium and light traveling from the optical information recording medium toward the detection unit. An optical head device according to a seventeenth aspect of the present invention.
[0031] また、第 19の本発明は、前記第 1の光源からの光を反射して前記第 1の対物レンズ へ導く第 1の反射面と、前記第 1の反射面と直交する、前記第 2の光源からの光を反 射して前記第 2の対物レンズへ導く第 2の反射面とを有する立ち上げミラーを備え、 前記立ち上げミラーは、前記第 1の反射面及び前記第 2の反射面と直交する面から 見て、前記第 1の反射面及び前記第 2の反射面がなす角の二等分線に対して非対 称な断面形状を含む、第 2の本発明の光ヘッド装置である。 [0031] The nineteenth aspect of the present invention is the first reflection surface that reflects light from the first light source and guides the light to the first objective lens, and the first reflection surface is orthogonal to the first reflection surface. A rising mirror having a second reflecting surface that reflects light from a second light source and guides the light to the second objective lens, and the rising mirror includes the first reflecting surface and the second reflecting surface. And a cross-sectional shape that is asymmetric with respect to a bisector of an angle formed by the first reflecting surface and the second reflecting surface when viewed from a plane orthogonal to the reflecting surface of the second aspect of the present invention. This is an optical head device.
[0032] また、第 20の本発明は、前記立ち上げミラーは実質上三角柱の形状を有し、 [0032] Further, in the twentieth aspect of the present invention, the rising mirror has a substantially triangular prism shape,
前記第 1の反射面と前記第 2の反射面とがなす辺以外の辺であって、前記第 1の反 射面及び前記第 2の反射面と平行な 2辺の一方又は他方の全部又は一部が面取り されること〖こより、前記断面形状が形成されている、第 19の本発明の光ヘッド装置で ある。 A side other than the side formed by the first reflective surface and the second reflective surface, and one or all of one or the other of two sides parallel to the first reflective surface and the second reflective surface, or This is the optical head device of the nineteenth aspect of the present invention, wherein the cross-sectional shape is formed by chamfering a part.
[0033] また、第 21の本発明は、前記第 1の反射面と前記第 2の反射面とがなす辺以外の 2
辺の双方の全部が面取りされており、 前記第 1の反射面側は、前記第 2の反射面側 よりも多く面取りされている、第 20の本発明の光ヘッド装置である。 [0033] Further, the twenty-first aspect of the present invention is that the first reflecting surface and the second reflecting surface are not two sides other than the side formed by the first reflecting surface and the second reflecting surface. The optical head device according to the twentieth aspect of the present invention, wherein both sides are all chamfered, and the first reflecting surface side is chamfered more than the second reflecting surface side.
[0034] また、第 22の本発明は、第 1の本発明の光ヘッド装置と、 [0034] Further, the twenty-second aspect of the present invention is an optical head device according to the first aspect of the present invention;
前記光情報記録媒体を回転するモーターと、 A motor for rotating the optical information recording medium;
前記光ヘッド装置から得られる信号に基づき、前記モーター及び前記光源の動作 を制御する電気回路とを備えた光情報装置である。 An optical information device comprising an electric circuit for controlling the operation of the motor and the light source based on a signal obtained from the optical head device.
発明の効果 The invention's effect
[0035] 本発明によれば、光学系を小型化することで小型化が可能な光ヘッド装置及びそ れを用いた光情報装置等を提供することができる。 According to the present invention, it is possible to provide an optical head device that can be reduced in size by reducing the size of the optical system, an optical information device using the same, and the like.
図面の簡単な説明 Brief Description of Drawings
[0036] [図 1] (a)本発明の実施の形態 1〜4における光情報装置の一部と光ヘッド装置の概 略平面図である。(b)本発明の実施の形態 1〜4における光情報装置の一部と光へ ッド装置の概略正面図である。 FIG. 1 (a) is a schematic plan view of a part of an optical information device and an optical head device according to Embodiments 1 to 4 of the present invention. (B) It is a schematic front view of a part of optical information apparatus and the optical head apparatus in Embodiments 1-4 of this invention.
[図 2]本発明の実施の形態 1〜4における光ヘッド装置の光学系の構成図である。 FIG. 2 is a configuration diagram of an optical system of an optical head device according to Embodiments 1 to 4 of the present invention.
[図 3]本発明の実施の形態 1における光ヘッド装置の各対物レンズ近傍における光 学系の概略構成図である。 FIG. 3 is a schematic configuration diagram of an optical system in the vicinity of each objective lens of the optical head device according to the first embodiment of the present invention.
[図 4] (a)本発明の実施の形態 1〜4における CD用 LDPDモジュール 206の概観を 示す構成図である。 (b)対物レンズ 202から出射した CD用 LDPDモジュール 206の 光の状態を説明するための図である。(c)光ディスク上の 3つのスポットとトラックの関 係を示す図である。 FIG. 4 (a) is a configuration diagram showing an overview of an LDPD module 206 for CD in Embodiments 1 to 4 of the present invention. (b) It is a figure for demonstrating the light state of the LDPD module 206 for CD radiate | emitted from the objective lens 202. FIG. (C) A diagram showing the relationship between the three spots on the optical disc and the track.
[図 5] (a)本発明の実施の形態 2におけるフィルタ切替素子 302の動作説明図である 。 (b)本発明の実施の形態 2におけるフィルタ切替素子 302の動作説明図である。 (c )本発明の実施の形態 2におけるコリメータレンズ駆動素子 304の構成図である。 FIG. 5 (a) is an operation explanatory diagram of the filter switching element 302 according to Embodiment 2 of the present invention. (B) It is operation | movement explanatory drawing of the filter switching element 302 in Embodiment 2 of this invention. (c) Configuration diagram of a collimator lens driving element 304 according to the second embodiment of the present invention.
[図 6] (a)本発明の実施の形態 4における立ち上げミラー 306の斜視図である。(b)本 発明の実施の形態 4における立ち上げミラー 306の側面図である。(c)本発明の実 施の形態 1における立ち上げミラー 306とコリメータ駆動素子 304との位置関係図で ある。 FIG. 6 (a) is a perspective view of a raising mirror 306 according to Embodiment 4 of the present invention. (B) It is a side view of the raising mirror 306 in Embodiment 4 of this invention. (C) is a positional relationship diagram between a rising mirror 306 and a collimator driving element 304 in Embodiment 1 of the present invention.
[図 7]立ち上げミラー 306の他の構成例を示す図である。
[図 8]本発明の実施の形態 1〜4の光ヘッド装置の他の構成例を示す図である。 FIG. 7 is a diagram showing another configuration example of the rising mirror 306. FIG. 8 is a diagram showing another configuration example of the optical head device according to the first to fourth embodiments of the present invention.
[図 9]立ち上げミラー 401の斜視図である。 FIG. 9 is a perspective view of a rising mirror 401.
[図 10] (a)立ち上げミラー 401が第 1の光学系において用いられるときの動作を説明 するための図である。(b)立ち上げミラー 401が第 2の光学系にお 、て用いられるとき の動作を説明するための図である。 FIG. 10 (a) is a diagram for explaining the operation when the raising mirror 401 is used in the first optical system. (B) It is a figure for demonstrating operation | movement when the raising mirror 401 is used in a 2nd optical system.
[図 11]本発明の実施の形態 5における光情報装置の概略構成図である。 FIG. 11 is a schematic configuration diagram of an optical information device in a fifth embodiment of the present invention.
[図 12]本発明の光情報装置を用いたパソコン (コンピュータ)の外観図である。 FIG. 12 is an external view of a personal computer (computer) using the optical information apparatus of the present invention.
[図 13]本発明の光情報装置を用いた光ディスクレコーダー(映像記録装置)の外観 図である。 FIG. 13 is an external view of an optical disk recorder (video recording apparatus) using the optical information apparatus of the present invention.
[図 14]本発明の光情報装置を用いた光ディスクプレーヤー(映像再生装置)の外観 図である。 FIG. 14 is an external view of an optical disc player (video playback device) using the optical information device of the present invention.
[図 15]本発明の光情報装置を用いたサーバーの外観図である。 FIG. 15 is an external view of a server using the optical information device of the present invention.
[図 16]本発明の光情報装置を用いたカーナビゲーシヨンシステムの外観図である。 符号の説明 FIG. 16 is an external view of a car navigation system using the optical information device of the present invention. Explanation of symbols
A 基準線 A Reference line
B 二等分線 B bisector
O 回転中心 O Center of rotation
100 光ヘッド装置 100 optical head device
100a 切り欠き部 100a Notch
110、 111 シャフト 110, 111 shaft
112 モーター 112 motor
120 光学基台 120 optical base
121、 122、 123 軸受け 121, 122, 123 bearings
124 送りネジ 124 Lead screw
125 送り用モーター 125 Feed motor
126 ネジ結合部 126 Screw joint
200 了クチユエータ 200 finisher
201 対物レンズ
202 対物レンズ 201 Objective lens 202 Objective lens
203 青色半導体レーザ 203 Blue semiconductor laser
204 光検出器 204 photodetector
205 DVD用 LDPDモジュール 205 LDPD module for DVD
206 CD用 LDPDモジュール 206 LDPD module for CD
301 ビームシエーパ 301 Beam shaper
302 フィルタ切替素子 302 Filter switching element
303 偏光ビームスプリッタ 303 Polarizing beam splitter
304 コリメータレンズ駆動素子 304 Collimator lens drive element
305 コリメータレンズ 305a ホノレダー 305 Collimator lens 305a Honoreda
306 立ち上げミラー 306a 第 1の反射面 306b 第 2の反射面 306 Raising mirror 306a First reflecting surface 306b Second reflecting surface
311、 312 NDフィルタ 311, 312 ND filter
320 くさび状プリズム 320 Wedge prism
321 コリメータレンズ 600 光情報装置 321 Collimator lens 600 Optical information device
1000 パソコン 1000 PC
1010 光ディスクレコーダー 1010 Optical disc recorder
1021 光ディスクプレーヤー 1021 Optical disc player
1030 サーバー 1030 servers
1035 ネットワーク 1035 network
1040 カーナビゲーシヨンシステム 1040 Car navigation system
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0039] (実施の形態 1) [0039] (Embodiment 1)
図 1 (a) (b)は、本発明の実施の形態 1における光情報装置の一部と光ヘッド装置 の概略図である。 FIGS. 1A and 1B are schematic views of a part of an optical information device and an optical head device according to Embodiment 1 of the present invention.
[0040] 図 1 (a)の概略平面図において、光ヘッド装置 100は、シャーシ(図示しない)に対 して固定された一対のシャフト 110及び 111からなるガイドシャフトにより移動可能な 状態で支持される。モーター 112はシャーシに固定されており、光情報記録媒体とし
ての光ディスク(ここでは図示せず)はモーター 112のターンテーブルにチャックされ 、モーター 112の回転中心 Oを中心に回転する。 In the schematic plan view of FIG. 1 (a), the optical head device 100 is supported in a movable state by a guide shaft composed of a pair of shafts 110 and 111 fixed to a chassis (not shown). The The motor 112 is fixed to the chassis and serves as an optical information recording medium. All optical disks (not shown here) are chucked by the turntable of the motor 112 and rotate around the rotation center O of the motor 112.
[0041] 光ヘッド装置 100の光学基台 120の両端には軸受け 121、 122 (第 1の軸受け)及 び軸受け 123 (第 2の軸受け)がそれぞれ設けられており、軸受け 121、 122にシャフ ト 110を、又軸受け 123 (第 2の軸受け)がシャフト 111にそれぞれ嵌り込んでいる。送 りネジ 124はシャフト 110と平行に設置され、送り用モーター 125により回転される。 ネジ結合部 126は、光学基台 120に固定されており、送りネジ 124の溝とかみ合うこ とで、送りネジ 124の回転を、ガイドシャフトの延伸する方向と平行な方向における光 ヘッド装置 100の移動に変換する。なお、軸受け 121及び 122と、軸受け 123とが光 学基台 120の両端に設けられているのは、光学系を構成する他の光学素子や光路と の干渉を防ぐためである。 [0041] Bearings 121 and 122 (first bearing) and bearing 123 (second bearing) are provided at both ends of the optical base 120 of the optical head device 100, respectively. 110 and a bearing 123 (second bearing) are fitted into the shaft 111, respectively. The feed screw 124 is installed in parallel with the shaft 110 and is rotated by the feed motor 125. The screw coupling portion 126 is fixed to the optical base 120, and meshes with the groove of the feed screw 124 so that the rotation of the feed screw 124 is caused to rotate in the direction parallel to the extending direction of the guide shaft. Convert to move. The bearings 121 and 122 and the bearing 123 are provided at both ends of the optical base 120 in order to prevent interference with other optical elements and optical paths constituting the optical system.
[0042] 又、光学基台 120には図中紙面力も見た断面が円弧状の切り欠き部 100aがあり、 光ディスクの内周のトラックにアクセスするために光ヘッド装置 100とモーター 112が 接近した時でもこの切り欠き部 100aによりモーター 112を避けることで光ヘッド装置 1 00がモーター 112に衝突することを防ぐ。 In addition, the optical base 120 has a cut-out portion 100a having an arc-shaped cross section in view of the paper surface force in the drawing, and the optical head device 100 and the motor 112 approach each other to access the inner track of the optical disk. Even at this time, the optical head device 100 is prevented from colliding with the motor 112 by avoiding the motor 112 by the notch 100a.
[0043] 光ヘッド装置 100の光学基台 120にはァクチユエータ 200が固定されており、ァク チユエータ 200の可動部には高密度光ディスク用の対物レンズ 201 (第 1の対物レン ズ)と従来の光ディスク用の対物レンズ 202 (第 2の対物レンズ)が載っている。青色 半導体レーザ 203から出射された光は後述する第 1の光学系を通り、対物レンズ 201 で集光されて高密度光ディスクの情報面に集光される。高密度光ディスクで反射,回 折した光は再び対物レンズ 201を通り、光検出器 204に入射し、光から電気信号に 変換される。 [0043] An actuator 200 is fixed to the optical base 120 of the optical head device 100, and an objective lens 201 (first objective lens) for a high-density optical disk and a conventional one are mounted on a movable part of the actuator 200. An optical lens objective lens 202 (second objective lens) is mounted. The light emitted from the blue semiconductor laser 203 passes through a first optical system, which will be described later, and is collected by the objective lens 201 and is collected on the information surface of the high-density optical disk. The light reflected and diffracted by the high-density optical disk passes through the objective lens 201 again, enters the photodetector 204, and is converted from light to an electrical signal.
[0044] 一方、赤色半導体レーザと光検出器を一体ィ匕した DVD用 LDPDモジュール 205 から出射された光は後述する第 2の光学系を通り、対物レンズ 202で集光され、従来 ディスクである DVDの情報面に集光される。 DVDで反射 ·回折した光は再び対物レ ンズ 202を通り、 DVD用 LDPDモジュール 205の光検出器に入射し、光から電気信 号に変換される。 On the other hand, the light emitted from the LDPD module 205 for DVD, in which the red semiconductor laser and the photodetector are integrated, passes through the second optical system described later, and is condensed by the objective lens 202 and is a conventional disk. It is focused on the information surface of the DVD. The light reflected and diffracted by the DVD again passes through the objective lens 202, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
[0045] 又、赤外半導体レーザと光検出器を一体ィ匕した CD用 LDPDモジュール 206から
出射された光は後述する第 3の光学系を通り、対物レンズ 202で集光され、従来ディ スクである CDの情報面に集光される。 CDで反射'回折した光は再び対物レンズ 20 2を通り、 DVD用 LDPDモジュール 205の光検出器に入射し、光から電気信号に変 換される。 [0045] Also, from the LDPD module 206 for CDs, in which an infrared semiconductor laser and a photodetector are integrated. The emitted light passes through a third optical system, which will be described later, and is collected by the objective lens 202 and is collected on the information surface of a CD that is a conventional disc. The light reflected and diffracted by the CD passes through the objective lens 202 again, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
[0046] DVDZCD用の対物レンズ 202は、ディスク回転用のモーター 112の回転中心 O を通り、シャフト 110に平行な基準線 A上を移動するように配置される。この回転中心 Oを通る基準線 Aとシャフト 110の中心までの距離を Ll、基準線 Aとシャフト 111まで の距離を L2とする。距離 L1を対物レンズ 202から第 1の軸受け 121までの距離と定 義し、距離 L2を対物レンズ 202から第 2の軸受け 123までの距離と定義する。 The objective lens 202 for DVDZCD is arranged so as to move on a reference line A parallel to the shaft 110 through the rotation center O of the disk rotation motor 112. The distance from the reference line A passing through the rotation center O to the center of the shaft 110 is Ll, and the distance from the reference line A to the shaft 111 is L2. The distance L1 is defined as the distance from the objective lens 202 to the first bearing 121, and the distance L2 is defined as the distance from the objective lens 202 to the second bearing 123.
[0047] 図 1 (b)は、光ヘッド装置 100及び光ドライブの一部を横から見た概略正面図であ る。具体的には、図 1 (a)において、基準線 Aに沿ってモーター 112の回転中心 Oに 向かう方向から見た図である。 FIG. 1 (b) is a schematic front view of the optical head device 100 and a part of the optical drive as viewed from the side. Specifically, in FIG. 1 (a), it is a view seen from the direction toward the rotation center O of the motor 112 along the reference line A.
[0048] 図 2は、光ヘッド装置 100の光学系部分の構成図を示す。図 2を参照して、前述し た第 1〜第 3の光学系についてそれぞれ説明する。 FIG. 2 shows a configuration diagram of an optical system part of the optical head device 100. With reference to FIG. 2, the first to third optical systems described above will be described.
[0049] 第 1の光学系は、青色半導体レーザ 203から対物レンズ 201までの光の入射側と、 光ディスク力も反射した光を受ける対物レンズ 201から光検出器 204までの光の検出 側との、各光学素子により形成される青色光学系である。 [0049] The first optical system includes a light incident side from the blue semiconductor laser 203 to the objective lens 201 and a light detection side from the objective lens 201 that receives the light reflected by the optical disc force to the photodetector 204. It is a blue optical system formed by each optical element.
[0050] 青色半導体レーザ 203からは第 1の波長 λ 1である、 405nm程度の波長の光が出 射される。なお、この波長はレーザ個体によってばらつきがあり 395nm程度力も 450 nm程度でも良い。 The blue semiconductor laser 203 emits light having a first wavelength λ 1 and a wavelength of about 405 nm. Note that this wavelength varies depending on the individual laser, and a force of about 395 nm or about 450 nm may be used.
[0051] 青色半導体レーザ 203から出射された光はビーム整形部としてのビームシヱーパ 3 01により、光強度分布の方向による差が補正される。ビームシエーノ 301を透過した 光は調光部としてのフィルタ切替素子 302に取り付けられた NDフィルターに入射し、 透過する光量が調整される。フィルタ切替素子 302を透過した光は、分岐部としての 偏光ビームスプリッタ 303で反射される。 [0051] The light emitted from the blue semiconductor laser 203 is corrected by the beam shaper 301 as a beam shaping unit for the difference in the light intensity distribution direction. The light transmitted through the beam sino 301 is incident on an ND filter attached to a filter switching element 302 as a dimming unit, and the amount of transmitted light is adjusted. The light transmitted through the filter switching element 302 is reflected by the polarization beam splitter 303 as a branching unit.
[0052] 偏光ビームスプリッタ 303で反射された光は、球面収差補正部であるコリメータレン ズ駆動素子 304に取り付けられたコリメータレンズ 305に入射し、ほぼ平行光に整形 される。コリメータレンズ駆動素子 304はコリメータレンズ 305の位置を変化させること
でコリメータレンズ 305通過後の光の収束度合 、を変化させ、対物レンズとの組み合 わせで発生する球面収差を変え、ディスクの基材厚の厚み誤差で発生する球面収 差を補正する。 The light reflected by the polarization beam splitter 303 is incident on a collimator lens 305 attached to a collimator lens driving element 304 that is a spherical aberration correction unit, and is shaped into substantially parallel light. Collimator lens drive element 304 can change the position of collimator lens 305 Then, the degree of convergence of the light after passing through the collimator lens 305 is changed, the spherical aberration generated in combination with the objective lens is changed, and the spherical convergence generated due to the thickness error of the disk substrate thickness is corrected.
[0053] コリメータレンズ 305を透過した光は立ち上げミラー 306により直角に曲げられ、 1/ 4波長板(図示せず)を通った後、対物レンズ 201に入射する。対物レンズ 201で集 光された光は光情報記録媒体としての光ディスク(図示せず)上に照射される。ここで の光ディスクとは Blu— ray Disc (BD)等、青色光で記録'再生することを想定され た光ディスクである。 The light transmitted through the collimator lens 305 is bent at a right angle by the rising mirror 306, passes through a quarter-wave plate (not shown), and then enters the objective lens 201. The light collected by the objective lens 201 is irradiated onto an optical disk (not shown) as an optical information recording medium. The optical disk here is an optical disk such as a Blu-ray Disc (BD) that is supposed to be recorded and reproduced with blue light.
[0054] 光ディスクで反射'回折した光は再び、対物レンズ 201と 1Z4波長板を透過する。 The light reflected and diffracted by the optical disk is transmitted again through the objective lens 201 and the 1Z4 wavelength plate.
1Z4波長板を往復 2回通ることで光の偏光方向は 90度回転する。 1Z4波長板を透 過した光は、コリメータレンズ 305を通り、偏光ビームスプリッタ 303を透過する。偏光 ビームスプリッタ 303を透過した光は、検出レンズ 307で非点収差を与えられ、光検 出器 204に入射する。光検出器 204に入射した光は電気信号に変換される。 By passing through the 1Z4 wave plate twice, the polarization direction of light rotates 90 degrees. The light that has passed through the 1Z4 wavelength plate passes through the collimator lens 305 and passes through the polarization beam splitter 303. The light that has passed through the polarization beam splitter 303 is given astigmatism by the detection lens 307 and enters the light detector 204. The light incident on the photodetector 204 is converted into an electrical signal.
[0055] 次に、第 2の光学系及び第 3の光学系である赤色光学系側を説明する。 [0055] Next, the red optical system side which is the second optical system and the third optical system will be described.
[0056] 第 2の光学系は、赤色半導体レーザと光検出器を一体ィ匕した LDPDモジュール 20 5から対物レンズ 202までの各光学素子により形成される赤色光学系である。 The second optical system is a red optical system formed by each optical element from the LDPD module 205 to the objective lens 202 in which a red semiconductor laser and a photodetector are integrated.
[0057] LDPDモジュール 205からは第 2の波長 λ 2である 660nm程度の波長の光が出射 される。この波長はレーザ個体や種類によってばらつきがあり 620nm程度から 690η m程度でも良い。 LDPDモジュール 205から出た光はくさび状プリズム 320の表面で 反射され、コリメータレンズ 321で平行光にされる。コリメータレンズ 321を透過した光 は立ち上げミラー 306により直角に曲げられ、対物レンズ 202に入射する。対物レン ズ 202で集光された光は光情報記録媒体としての光ディスク(図示せず)上に照射さ れる。 The LDPD module 205 emits light having a wavelength of about 660 nm, which is the second wavelength λ 2. This wavelength varies depending on the individual laser and type, and may be about 620 nm to 690 ηm. The light emitted from the LDPD module 205 is reflected by the surface of the wedge-shaped prism 320 and converted into parallel light by the collimator lens 321. The light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202. The light condensed by the objective lens 202 is irradiated on an optical disk (not shown) as an optical information recording medium.
[0058] ここでの光ディスクとは DVD等の赤色光で記録 ·再生することを想定された光ディ スクである。光ディスクで反射回折した光は再び、対物レンズ 202·コリメータレンズ 3 21を通り、くさび状プリズム 320で反射されて、 DVD用 LDPDモジュール 205に入 射する。 DVD用 LDPDモジュール 205内の光検出器は受光した光量に応じた電気 信号を出力する。
[0059] 次に、第 3の光学系は、赤外半導体レーザと光検出器を一体ィ匕した LDPDモジュ ール 206から対物レンズ 202までの各光学素子により形成される赤外光学系である。 The optical disk here is an optical disk that is assumed to be recorded / reproduced with red light such as a DVD. The light reflected and diffracted by the optical disk passes through the objective lens 202 and the collimator lens 321 again, is reflected by the wedge prism 320, and enters the LDPD module 205 for DVD. The photodetector in the LDPD module 205 for DVD outputs an electrical signal corresponding to the amount of light received. Next, the third optical system is an infrared optical system formed by the optical elements from the LDPD module 206 to the objective lens 202 in which an infrared semiconductor laser and a photodetector are integrated. .
[0060] CD用 LDPDモジュール 206からは第 3の波長 λ 3である 790nm程度の波長の光 が出射される。この波長はレーザ個体や種類によってばらつきがあり、 770nm程度 力ら 820nm程度でも良い。 LDPDモジュール 206から出た光はくさび状プリズム 32 0を透過し、コリメータレンズ 321で略平行光にされる。コリメータレンズ 321を透過し た光は立ち上げミラー 306により直角に曲げられ、対物レンズ 202に入射する。対物 レンズ 202で集光された光は光情報記録媒体としての光ディスク上に照射される。こ こでの光ディスクとはコンパクトディスク (CD)等赤外光で記録や再生することを想定 された光ディスクである。光ディスクで反射回折した光は再び、対物レンズ 202、コリメ ータレンズ 321を通り、くさび状プリズム 320を透過し、 CD用 LDPDモジュール 206 に入射する。 CD用 LDPDモジュール 206内の光検出器は受光した光量に応じた電 気信号を出力する。 The CD LDPD module 206 emits light having a wavelength of about 790 nm, which is the third wavelength λ 3. This wavelength varies depending on the individual laser and the type, and may be about 770 nm and about 820 nm. The light emitted from the LDPD module 206 passes through the wedge-shaped prism 320 and is made into substantially parallel light by the collimator lens 321. The light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202. The light condensed by the objective lens 202 is irradiated onto an optical disk as an optical information recording medium. The optical disk here is an optical disk that is assumed to be recorded and reproduced with infrared light, such as a compact disk (CD). The light reflected and diffracted by the optical disk again passes through the objective lens 202 and the collimator lens 321, passes through the wedge-shaped prism 320, and enters the LDPD module 206 for CD. The photodetector in the CD LDPD module 206 outputs an electrical signal corresponding to the amount of light received.
[0061] なお、くさび状プリズム 320には、赤色の波長の光は反射し、赤外の波長の光は透 過するような波長選択性の膜がつけられている。又、対物レンズ 202は赤色光は DV Dに最適な光となるためにディスクの基材厚が 0. 6mmのときに収差が小さくなるよう に設計され、赤外光は CDに最適な光となるようにディスクの基材厚が 1. 2mmのとき に収差が小さくなるように設計されて 、る。 Note that the wedge-shaped prism 320 is provided with a wavelength-selective film that reflects light having a red wavelength and transmits light having an infrared wavelength. The objective lens 202 is designed so that the aberration is reduced when the base material thickness of the disk is 0.6 mm because red light is optimal for DV D, and infrared light is optimal for CD. It is designed so that the aberration is reduced when the disk substrate thickness is 1.2 mm.
[0062] なお、以上の構成において、光ヘッド装置 100は青色半導体レーザ 203は本発明 の第 1の光源に相当し、 DVD用 LDPDモジュール 205は本発明の第 2の光源に相 当し、 CD用 LDPDモジュール 206は本発明の第 3の光源に相当する。又、対物レン ズ 201は本発明の第 1の対物レンズに相当し、対物レンズ 202は本発明の第 2の対 物レンズに相当する。又、光検出器 204、 DVD用 LDPDモジュール 205及び CD用 LDPDモジュール 206はそれぞれ本発明の検出部に相当し、光学基台 120は本発 明の光学基台に相当する。 In the above configuration, in the optical head device 100, the blue semiconductor laser 203 corresponds to the first light source of the present invention, and the LDPD module 205 for DVD corresponds to the second light source of the present invention. The LDPD module 206 for use corresponds to the third light source of the present invention. The objective lens 201 corresponds to the first objective lens of the present invention, and the objective lens 202 corresponds to the second object lens of the present invention. Further, the photodetector 204, the LDPD module 205 for DVD, and the LDPD module 206 for CD each correspond to the detection unit of the present invention, and the optical base 120 corresponds to the optical base of the present invention.
[0063] この対応は以下の各実施の形態において同様である。 This correspondence is the same in each of the following embodiments.
[0064] 以上のような構成を有する本実施の形態 1の光ヘッド装置は、第 1の光学系と、第 2 及び第 3の光学系との間で、対物レンズ 201に入射する光ビームの直径を、対物レン
ズ 202に入射する光ビームの直径より小さくなるよう構成したことを特徴とする。 [0064] The optical head device according to the first embodiment having the above-described configuration is configured to transmit a light beam incident on the objective lens 201 between the first optical system and the second and third optical systems. Diameter, objective lens The diameter is smaller than the diameter of the light beam incident on the lens 202.
[0065] 以下、図 3を参照して説明を行う。図 3は、光ヘッド装置の各対物レンズ近傍におけ る光学系の概略構成図であり、図 1、 2と同一または相当部には、同一符号を付し、 詳細な説明は省略する。 Hereinafter, description will be given with reference to FIG. FIG. 3 is a schematic configuration diagram of an optical system in the vicinity of each objective lens of the optical head device. The same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0066] 従来技術における課題として説明したように、青色光学系である第 1の光学系は、 赤色光学系である第 2、第 3の光学系に比べ、使用する光の波長が短ぐ対物レンズ[0066] As described as a problem in the prior art, the first optical system that is a blue optical system has an objective that uses a shorter wavelength of light than the second and third optical systems that are red optical systems. lens
201の開口数 (NA)も例えば 0. 85と高い物を用いるため、焦点深度が浅くなる。 Since the numerical aperture (NA) of 201 is as high as 0.85, for example, the depth of focus becomes shallow.
[0067] このため安定なフォーカス制御をするためには、対物レンズ 201から光検出器 204 の各光学素子が構成する検出側の光学系の倍率を大きくして、フォーカスエラー信 号の変化を大きなものとして取り出す必要がある。 For this reason, in order to perform stable focus control, the magnification of the optical system on the detection side constituted by each optical element from the objective lens 201 to the photodetector 204 is increased, so that the change of the focus error signal is increased. It is necessary to take it out as a thing.
[0068] このとき、第 1の光学系の検出側の焦点距離は、第 2の光学系の検出側の焦点距 離より長くする必要があるが、これは光学系全体の大型化をもたらす。 [0068] At this time, the focal length on the detection side of the first optical system needs to be longer than the focal length on the detection side of the second optical system, which leads to an increase in the size of the entire optical system.
[0069] 一方、検出側の光学系の倍率は、光学系の焦点距離及び対物レンズの焦点距離 によって定められる。 On the other hand, the magnification of the optical system on the detection side is determined by the focal length of the optical system and the focal length of the objective lens.
[0070] そこで、青色光学系である第 1の光学系の対物レンズ 201の焦点距離を、赤色光 学系である第 2、第 3の光学系の対物レンズ 202の焦点距離より短くすることで、検出 側の光学系において、倍率を確保しながら焦点距離の増大を防ぐことができる。これ により光ヘッド装置の小型化が可能となる。 Therefore, by making the focal length of the objective lens 201 of the first optical system that is a blue optical system shorter than the focal length of the objective lens 202 of the second and third optical systems that are red optical systems. In the optical system on the detection side, it is possible to prevent the focal length from increasing while ensuring the magnification. As a result, the optical head device can be miniaturized.
[0071] 一般に、対物レンズを通る光ビームの直径は、(対物レンズの焦点距離) X (対物レ ンズの開口数 (NA) )で決まる。 [0071] Generally, the diameter of the light beam passing through the objective lens is determined by (focal length of the objective lens) X (numerical aperture (NA) of the objective lens).
[0072] したがって、第 1の光学系の対物レンズ 201の通過面における光ビームの直径を、 第 2、第 3の光学系の対物レンズ 202の通過面における光ビームの直径に比して小さ くすることで、対物レンズの焦点距離を短くして、検出側の焦点距離を短くすることが 可能となる。光ビームの直径を絞り込む具体的な方法としては、ビームシエーパ 301 による整形、又は、青色半導体レーザ 203の直後の光路に更にリレーレンズを挿入 すること、等が挙げられる。 Therefore, the diameter of the light beam at the passage surface of the objective lens 201 of the first optical system is smaller than the diameter of the light beam at the passage surface of the objective lens 202 of the second and third optical systems. By doing so, the focal length of the objective lens can be shortened, and the focal length on the detection side can be shortened. Specific methods for narrowing down the diameter of the light beam include shaping by the beam shaper 301, or inserting a relay lens in the optical path immediately after the blue semiconductor laser 203, and the like.
[0073] 例えば、第 1の光学系の対物レンズ 201の開口数 (NA)を 0. 85、焦点距離を 1. 3 mmとすると、対物レンズ 201の通過面での光ビームは、半径 rl = l. 105mm,直径
dl = 2. 21mmとなり、第 2、第 3の光学系の対物レンズ 202の開口数(NA)を 0. 64For example, if the numerical aperture (NA) of the objective lens 201 of the first optical system is 0.85 and the focal length is 1.3 mm, the light beam on the passing surface of the objective lens 201 has a radius rl = l. 105mm, diameter dl = 2.21mm, and the numerical aperture (NA) of the objective lens 202 of the second and third optical system is 0.64.
、焦点距離を 2. 3mmとすると対物レンズ 202の通過面での光ビームは、半径 r2= lWhen the focal length is 2.3 mm, the light beam at the passing surface of the objective lens 202 has a radius r2 = l
. 472mm,直径 d2 = 2. 944mmとなり、 d2>dlの関係力 S成立する。 472mm, diameter d2 = 2. 944mm, and relational force S of d2> dl is established.
[0074] この場合、第 1の光学系のコリメータレンズ 305の焦点距離を 18mmとして 13. 8倍 の倍率を確保でき、対物レンズ 201から光源及び光検出器までの距離はコリメ一タレ ンズ 305の焦点距離の 2倍程度の 36mm程度となる。 [0074] In this case, the focal length of the collimator lens 305 of the first optical system is set to 18 mm, and a magnification of 13.8 times can be secured. The distance from the objective lens 201 to the light source and the photodetector is the same as that of the collimator lens 305. It is about 36mm, which is about twice the focal length.
[0075] これは、図 2に示すように、途中で光学系を折り曲げれば、 Ll = 24. 5mm、 L2 = 2[0075] As shown in Fig. 2, if the optical system is bent halfway, Ll = 24.5mm, L2 = 2
3mmの従来の標準的なガイドシャフトの間隔内に光ヘッド装置を十分収めることが でさる大ささである。 This is enough to fit the optical head device within the distance of the standard guide shaft of 3mm.
[0076] もし対物レンズ 201の焦点距離を第 2、第 3の光学系と同じ 2. 3mmにし、かつ検出 側の光学系の倍率を上記の場合と同様 13. 8倍にすると、コリメータレンズ 305の焦 点距離は 31. 7mmとなり、対物レンズ 201から青色半導体レーザ 203及び光検出 器 204までの距離は 60mmを超えてしま!/、、光ヘッド装置が大きくなつてしまう。 [0076] If the focal length of the objective lens 201 is set to 2.3 mm, which is the same as that of the second and third optical systems, and the magnification of the optical system on the detection side is set to 13.8 times as in the above case, the collimator lens 305 The focal distance of the lens is 31.7 mm, and the distance from the objective lens 201 to the blue semiconductor laser 203 and the photodetector 204 exceeds 60 mm! /, And the optical head device becomes large.
[0077] 又、第 2、第 3の光学系と同じ光ビームの直径にしょうとすると、第 1の光学系の対物 レンズ 201の焦点距離は 1. 73mmとなり、検出側の光学系として上記の場合と同様 13. 8倍の倍率を得るには、コリメータレンズ 305の焦点距離は 23. 9mm、対物レン ズ 201から青色半導体レーザ 203及び光検出器 204までの距離は 48mm程度となり 、やはり L1の 2倍近くなり、標準的なサイズに収めることは難しい。 [0077] Further, if the diameter of the light beam is the same as that of the second and third optical systems, the focal length of the objective lens 201 of the first optical system is 1.73 mm, and the above-mentioned optical system on the detection side is As in the case 13. To obtain a magnification of 8 times, the focal length of the collimator lens 305 is 23.9 mm, and the distance from the objective lens 201 to the blue semiconductor laser 203 and the photodetector 204 is about 48 mm. It is nearly twice as large and difficult to fit in standard size.
[0078] このように、本実施の形態によれば、青色光学系である第 1の光学系の対物レンズ の通過面における光ビームの直径を、赤色 Z赤外光学系である第 2、第 3の光学系 の対物レンズの通過面における光ビームの直径より小さくとることにより、検出側の光 学系の倍率を確保しながら、焦点距離の増大を防ぎ、光ヘッド装置を小型化すること ができる。 As described above, according to the present embodiment, the diameter of the light beam on the passage surface of the objective lens of the first optical system that is the blue optical system is set to the second and second values that are the red Z infrared optical system. By making the diameter smaller than the diameter of the light beam on the passing surface of the objective lens of the optical system 3, it is possible to prevent the increase of the focal length and to reduce the size of the optical head device while ensuring the magnification of the optical system on the detection side it can.
[0079] なお、図 3に示すように、対物レンズ 201のレンズ径(外径又は有効径)は対物レン ズ 202のレンズ径 (外径又は有効径)より小さ!/、方が望ま ヽ。光ビームの直径を小さ くとることができるので、対物レンズ 201自体をより小型化できるからである。ただし、 本発明は対物レンズのレンズ径によって限定されるものでなぐレンズ径が DVD用の 者以上であってもよい。
[0080] 又、本実施の形態によれば、第 2、第 3の光学系の対物レンズ 202の焦点距離が第 1の光学系の対物レンズ 201の焦点距離に比して長くなる。これにより、対物レンズ 2 02のワーキングディスタンス (WD2)を、対物レンズ 201のワーキングディスタンス (W D1)より大きくとることができる。これは、 DVD等のディスクを記録 '再生する際のディ スクと対物レンズ 202との衝突を防ぐ効果がある。 [0079] As shown in FIG. 3, the lens diameter (outer diameter or effective diameter) of the objective lens 201 is preferably smaller than the lens diameter (outer diameter or effective diameter) of the objective lens 202! This is because the diameter of the light beam can be reduced and the objective lens 201 itself can be further downsized. However, the present invention is not limited by the lens diameter of the objective lens, and the lens diameter may be greater than or equal to those for DVD. Furthermore, according to the present embodiment, the focal length of the objective lens 202 of the second and third optical systems is longer than the focal length of the objective lens 201 of the first optical system. Thereby, the working distance (WD2) of the objective lens 202 can be made larger than the working distance (WD1) of the objective lens 201. This has the effect of preventing collision between the disc and the objective lens 202 when recording or reproducing a disc such as a DVD.
[0081] なお、上記の構成においては、第 1の光学系にて用いられる対物レンズ 201と、第 2の光学系及び第 3の光学系にて用いられる対物レンズ 202の二つの対物レンズを 用いた力 本発明はこの構成に限定されるものではない。 [0081] In the above configuration, the objective lens 201 used in the first optical system and the objective lens 202 used in the second optical system and the third optical system are used. The present invention is not limited to this configuration.
[0082] 互いに波長の異なる光を発する複数の光源と、これら光源からの光を、光情報記録 媒体へ集光するための複数の対物レンズとを備えた光ヘッド装置において、波長の 短い光に対応する対物レンズを通過する光のビーム径カ 波長のより長い光に対応 する対物レンズを通過する光のビーム径より大きくなるような構成となっていれば、光 源の個数、及び対物レンズの個数によって限定されるものではない。本実施の形態 のように、光源の個数と対物レンズの個数とが同一である必要もな 、。 [0082] In an optical head device including a plurality of light sources that emit light having different wavelengths and a plurality of objective lenses that collect the light from these light sources onto an optical information recording medium, If the beam diameter of the light passing through the corresponding objective lens is larger than the beam diameter of the light passing through the objective lens corresponding to light having a longer wavelength, the number of light sources and the objective lens It is not limited by the number. As in this embodiment, the number of light sources and the number of objective lenses need not be the same.
[0083] (実施の形態 2) [0083] (Embodiment 2)
本発明の実施の形態 2の光ヘッド装置は、光学基台における各光学系のレイアウト に関するものであり、構成は実施の形態 1と同様である。したがって図 1を参照して説 明する。 The optical head device according to the second embodiment of the present invention relates to the layout of each optical system in the optical base, and the configuration is the same as in the first embodiment. Therefore, it will be explained with reference to Fig. 1.
[0084] 実施の形態 1にて述べたように、光ヘッド装置 100は、光情報装置において、軸受 け 121〜123の保持によりガイドシャフトである一対のシャフト 110、 111の間に配置 されている。 As described in the first embodiment, the optical head device 100 is disposed between the pair of shafts 110 and 111 which are guide shafts by holding the bearings 121 to 123 in the optical information device. .
[0085] ここでシャフト 110、 111は本発明の一対のシャフトに相当し、軸受け 121、 122及 び 123は本発明の軸受けに相当する。 Here, the shafts 110 and 111 correspond to a pair of shafts of the present invention, and the bearings 121, 122 and 123 correspond to the bearings of the present invention.
[0086] 図 1に示すように、光ヘッド装置 100において、第 2、第 3の光学系の対物レンズ 20As shown in FIG. 1, in the optical head device 100, the objective lens 20 of the second and third optical systems.
2は、その中心が、図示しない光ディスクの中心を通り、シャフト 110に平行な基準線2 is a reference line whose center passes through the center of the optical disk (not shown) and is parallel to the shaft 110.
A上に来るように配置され、シャフト 110側に第 1の光学系、シャフト 111側に第 2の 光学系及び第 3の光学系がそれぞれ配置されている。 The first optical system is arranged on the shaft 110 side, and the second optical system and the third optical system are arranged on the shaft 111 side.
[0087] 又、図 2に示すように、第 2の光学系及び第 3の光学系は、情報密度の比較的低い
DVDや CD等の光ディスクに情報を記録 ·再生するため光学系も比較的簡素化でき る。 [0087] As shown in FIG. 2, the second optical system and the third optical system have a relatively low information density. Since the information is recorded and reproduced on an optical disk such as a DVD or CD, the optical system can be relatively simplified.
[0088] これに対して、第 1の光学系は情報密度が比較的高い BD等のディスクに情報を記 録 '再生するため、第 2、第 3の光学系においては不要なビームシエーパ 301ゃフィ ルタ切替素子 302、コリメータレンズ駆動素子 304等を設ける必要となり、光学系が 複雑になっている。 [0088] On the other hand, the first optical system records and reproduces information on a BD or the like having a relatively high information density. Therefore, the beam shaper 301 is not necessary in the second and third optical systems. It is necessary to provide a filter switching element 302, a collimator lens driving element 304, etc., and the optical system is complicated.
[0089] そこで、本実施の形態においては、光学基台 120の対物レンズ 202の中心を通過 する基準線 Aから青色半導体レーザ 203のあるシャフト軸受け 121、 121が載置する シャフト 110までの間隔 L1を、基準線 Aから、 DVD用 LDPDモジュール 205及び C D用 LDPDモジュール 206のあるシャフト軸受け 123が載置するシャフト 111の距離 L2より長くした構成とした。 Therefore, in the present embodiment, the distance L1 from the reference line A passing through the center of the objective lens 202 of the optical base 120 to the shaft 110 on which the shaft bearings 121, 121 with the blue semiconductor laser 203 are placed is L1. The reference line A is longer than the distance L2 of the shaft 111 on which the shaft bearing 123 with the LDPD module 205 for DVD and the LDPD module 206 for CD is placed.
[0090] 図 1に示すように、基準線 Aを境にして光学基台 120の面積を非対称に分割して、 幅 L1の広い面積側に、複雑な構成の第 1の光学系を形成し、幅 L2の狭い面積側に 、より単純な構成の第 2及び第 3の光学系を形成している。 [0090] As shown in FIG. 1, the area of the optical base 120 is asymmetrically divided with respect to the reference line A, and the first optical system having a complicated configuration is formed on the wide area side of the width L1. The second and third optical systems having a simpler configuration are formed on the narrow area side of the width L2.
[0091] これにより、光学基台 120を安定に支えつつ、無駄なスペースを省き、光ヘッド装 置をコンパクトにすることができる。 [0091] Thereby, while stably supporting the optical base 120, a useless space can be omitted and the optical head device can be made compact.
[0092] なお、図 1に示す構成においては軸受けは、光学基台 120の第 1の光学系の端部 に 2つの軸受け 121、 122を設け、第 2、第 3の光学系の端部に 1つの軸受け 123を 設けた構成としたが、本発明の軸受けの構成は、これに限定されるものではなぐ光 学基台の両端に少なくとも 1つずつ設けられ、シャフトを保持できるものであれば、個 数や具体的な構成によって限定されるものではない。 In the configuration shown in FIG. 1, the bearing is provided with two bearings 121 and 122 at the end of the first optical system of the optical base 120, and at the ends of the second and third optical systems. However, the structure of the bearing according to the present invention is not limited to this, as long as it is provided at least one at each end of the optical base and can hold the shaft. It is not limited by the number or specific configuration.
[0093] 又、上記の構成においては、第 2、第 3の光学系の対物レンズ 202の中心がモータ 一 112の回転中心 Oと基準線 Aを形成することで、対物レンズ 202の移動軸力 光デ イスクの半径と一致するようになっている。これは、 CDの記録'再生を行う第 3の光学 系力 3ビームトラッキング方式を採用している理由による。 In the above configuration, the center of the objective lens 202 of the second and third optical systems forms the rotation center O of the motor 112 and the reference line A, so that the moving axial force of the objective lens 202 is It matches the radius of the optical disk. This is because the third optical system force 3 beam tracking method for CD recording and playback is adopted.
[0094] 以下、説明する。図 4 (a)に示すように、 CD用 LDPDモジュール 206には、 3ビーム 用回折格子 501が取り付けられて!/、る。 CD用 LDPDモジュール 206から出射される 光ビームは回折格子 501を通過して 1本のメインビームと 2本のサブビームとに分岐
される。 [0094] This will be described below. As shown in Fig. 4 (a), a three-beam diffraction grating 501 is attached to the CD LDPD module 206! /. The light beam emitted from the LDPD module 206 for CD passes through the diffraction grating 501 and splits into one main beam and two sub beams. Is done.
[0095] 3本の光ビームは図 4 (b)に示すように、対物レンズ 202で集光され、 1つのメインス ポット 502と 2つのサブスポット 503及び 504を光ディスク上に形成する。 As shown in FIG. 4B, the three light beams are condensed by the objective lens 202 to form one main spot 502 and two sub spots 503 and 504 on the optical disc.
[0096] 光ディスク上の 3つのスポットとトラックの関係を図 4 (c)に示す。メインスポット 502が 、情報の記録又は再生の対象となるトラック 510の中央に位置するとき、サブスポット 503、 504はそれぞれトラック 510と、トラック 510に隣接するトラック 511又は 512との 間に位置する。 [0096] Fig. 4 (c) shows the relationship between the three spots on the optical disc and the track. When the main spot 502 is located at the center of the track 510 on which information is recorded or reproduced, the sub-spots 503 and 504 are located between the track 510 and the track 511 or 512 adjacent to the track 510, respectively.
[0097] 光ディスクで反射'回折された光は再び CD用 LDPDモジュール 206に戻り、それ ぞれの光ビームのプッシュプル信号を検出する。メインスポット 502のプッシュプル信 号から、サブスボット 503及び 504のプッシュプル信号の和に係数を掛けて減算する ことでトラッキング信号を生成する(差動ブッシュブル法)。 The light reflected and diffracted by the optical disk returns to the LDPD module 206 for CD again, and the push-pull signal of each light beam is detected. A tracking signal is generated by multiplying the push-pull signal of the main spot 502 by the coefficient and subtracting the sum of the push-pull signals of the subsbots 503 and 504 (differential bushbull method).
[0098] このように、 3つの光ビームを用いてトラッキング信号を得る、 3ビーム系のトラツキン グ方式では、光ヘッド装置で 3つの光ビームを出射する対物レンズ 202はシャフトに 平行でモーター 112の中心を通る直線上にあることが理想的である。対物レンズがこ の直線上に無い場合、光ヘッド装置が光ディスクの内周付近にある時と外周付近に ある時で、光ディスクのトラックの投影像が 3つの光ビームの位置に対して相対的に 回転してしまうトラックの投影像が相対的に回転すると、メインビームとサブビームのト ラックに対する相対位置関係が変化し、振幅が変化する等、トラッキング信号の品質 が低下するからである。 [0098] Thus, in the tracking system of the three beam system that obtains tracking signals using three light beams, the objective lens 202 that emits the three light beams by the optical head device is parallel to the shaft and the motor 112 Ideally, it should be on a straight line through the center. If the objective lens is not on this straight line, the projected image of the optical disk track will be relative to the position of the three light beams when the optical head device is near the inner periphery and the outer periphery of the optical disc. This is because if the projected image of the rotating track is relatively rotated, the relative positional relationship of the main beam and the sub beam with respect to the track changes, the amplitude changes, and the quality of the tracking signal decreases.
[0099] 又、実施の形態 1にて説明したように、光学基台 120には、モーター 112との衝突 を防ぐため、円弧状の切り欠き部 100aを設けた力 対物レンズ 202の中心位置と合 わせるため、切り欠き部 100aの円弧の中心は基準線 A上に設けている。これにより、 対物レンズ 202のラジアル方向の移動範囲を最大にすることができる。 In addition, as described in the first embodiment, the optical base 120 is provided with an arc-shaped cutout portion 100a in order to prevent the optical base 120 from colliding with the motor 112. The center of the circular arc of the notch 100a is provided on the reference line A for matching. Thereby, the moving range of the objective lens 202 in the radial direction can be maximized.
[0100] なお、 BD及び DVDは通常 1ビームトラッキング方式を採用しているため、第 1の光 学系においては、対物レンズ 201は基準線 A上に配置する必要はない。第 2の光学 系における対物レンズ 202も同様である。 [0100] Note that since the BD and DVD usually employ the one-beam tracking method, the objective lens 201 does not need to be disposed on the reference line A in the first optical system. The same applies to the objective lens 202 in the second optical system.
[0101] 次に、幅 L1の面積内に形成される第 1の光学系を構成する各光学素子について、 詳細に説明する。
[0102] ビームシエーパ 301は、本発明のビーム成形部に相当し、入射面と出射面ともに対 称軸が平行な略円柱面をしており、入射した光の光軸に垂直な 2軸のうち一方の軸 方向のみ光線を拡大する。青色半導体レーザ 203から出射される光はレーザの活性 層の方向によって光の強度分布に差がある力 ビームシエーパ 301の作用により、方 向による強度分布の差を補正し、均一に近づける。ビームシエーパ 301はその性質 上、発光点との距離が設計値からずれると非点収差が発生する。その割合は大きぐ 設計によるが、 1ミクロンの変化で 10m λ程度の非点収差が発生する。このためビー ムシエーパ 301とは青色半導体レーザ 203はできるだけ近い位置に配置することが 望ましい。これは、温度変化により光源とビームシエ一パ間を支えている素材が膨張 や収縮しても、変化する距離の絶対値を小さくできるためである。 Next, each optical element constituting the first optical system formed in the area of the width L1 will be described in detail. [0102] The beam shaper 301 corresponds to the beam shaping unit of the present invention, and has a substantially cylindrical surface in which the symmetric axes are parallel on both the incident surface and the output surface, and is one of the two axes perpendicular to the optical axis of the incident light. Enlarge the ray only in one axial direction. The light emitted from the blue semiconductor laser 203 corrects the difference in the intensity distribution due to the direction by the action of the force beam shaper 301 having a difference in the intensity distribution of the light depending on the direction of the active layer of the laser, and approaches the uniform. Due to the nature of the beam shaper 301, astigmatism occurs when the distance from the light emitting point deviates from the design value. The ratio depends on the design, but astigmatism of about 10m λ occurs with a change of 1 micron. For this reason, it is desirable to arrange the blue semiconductor laser 203 as close as possible to the beam shaper 301. This is because the absolute value of the changing distance can be reduced even if the material supporting the light source and the beam shaper expands or contracts due to temperature changes.
[0103] 次にフィルタ切替素子 302について図 5 (a) (b)を用いて説明する。 Next, the filter switching element 302 will be described with reference to FIGS. 5 (a) and 5 (b).
[0104] フィルタ切替素子 302は、本発明の調光部に相当し、透過率の異なる 2種類の ND フィルタ 311と 312が光の通過面が互!ヽに直角となる向きで設けられて 、る。 NDフィ ルタ 311の透過率は 50%、 NDフィルタ 312の透過率は 100%である。 フィルタ 切替素子 302は、電流を流すことにより 90度回転するようになっており、図 5 (a)では 図中 A面が上を向き、入射する光は NDフィルタ 311を透過する。一方図 5 (b)では 9 0度手前に回転した状態を示しており、図中 A面は手前を向いており、入射する光は NDフィルタ 312を透過する。 [0104] The filter switching element 302 corresponds to the dimming unit of the present invention, and two types of ND filters 311 and 312 having different transmittances are provided in directions in which light passing surfaces are perpendicular to each other. The The transmittance of the ND filter 311 is 50%, and the transmittance of the ND filter 312 is 100%. The filter switching element 302 is rotated 90 degrees by passing an electric current. In FIG. 5 (a), the A surface in the figure faces upward, and incident light passes through the ND filter 311. On the other hand, FIG. 5 (b) shows a state rotated 90 degrees toward the front. In FIG. 5B, the A surface faces forward, and incident light passes through the ND filter 312.
[0105] このように NDフィルタを切り替えることでここを透過する光の透過率を変化させる。 [0105] In this way, by changing the ND filter, the transmittance of the light passing therethrough is changed.
これは 2層ディスクへの記録と単層ディスク再生時の信号ノイズ比(SN比)の確保を 両立させるためである。 2層ディスク等の場合は光の利用効率を上げて記録時に十 分な光量がディスク上に集光させる必要がある力 この透過率のままでは単層デイス クの再生時にディスク上の光が強くなりすぎ再生中に情報を消去してしまう可能性が ある。ところがこれを避けるために青色半導体レーザ 203から出力される光量を下げ ると、青色半導体レーザ 203のノイズが増加してしまい、情報再生に必要な再生信号 の SN比が得られない。そこで、フィルタ切替素子 302を用いて、再生する光ディスク の種類に応じて、光が通過する NDフィルタの種類を切り替えるようにしている。単層 再生時は、青色半導体レーザ 203からの光は NDフィルタ 311を通過させることで効
率を落とし、青色半導体レーザ 203からの出力は一定のままで対物レンズ 201から 出力される光量を低下させる。一方、 2層ディスク等の再生時は、 NDフィルタ 312を 通過させて、効率及び光量の高い光を対物レンズ 201へ導く。 This is to achieve both recording on a dual-layer disc and ensuring a signal-to-noise ratio (SN ratio) during single-layer disc playback. In the case of a dual-layer disc, etc., it is necessary to increase the light utilization efficiency and to collect a sufficient amount of light on the disc during recording. With this transmittance, the light on the disc is strong when reproducing a single-layer disc. There is a possibility that information will be erased during playback. However, if the amount of light output from the blue semiconductor laser 203 is reduced to avoid this, the noise of the blue semiconductor laser 203 increases, and the SN ratio of the reproduction signal necessary for information reproduction cannot be obtained. Therefore, the filter switching element 302 is used to switch the type of ND filter through which light passes according to the type of optical disk to be reproduced. During single-layer reproduction, light from the blue semiconductor laser 203 is effective by passing it through the ND filter 311. The rate is reduced, and the light output from the objective lens 201 is reduced while the output from the blue semiconductor laser 203 remains constant. On the other hand, when reproducing a double-layer disc or the like, the light passes through the ND filter 312 and guides light with high efficiency and light quantity to the objective lens 201.
[0106] 次に、図 5 (b)にコリメータレンズ駆動素子 304の構成を示す。コリメータレンズ 305 はホルダー 305aで保持され、このホルダー 305aはシャフト 305b、 305cにより支持 され、図示はしないモーターと送りネジ等の伝達系によりシャフト 305b、 305cに沿つ て移動可能となって 、る。これによりコリメータレンズ 305と青色半導体レーザ 203と の距離を変化させて、コリメータレンズ通過後の光の収束度合いを変化させて、当該 光に光ディスク上に生ずる球面収差をキャンセルする向きの球面収差を与えることが できる。コリメータレンズ駆動素子 304、コリメータレンズ 305及びホルダー 305aは本 発明の球面収差補正手段を構成する。又、コリメータレンズ 305は単独で本発明のコ リメータレンズを構成する。 Next, FIG. 5B shows the configuration of the collimator lens driving element 304. The collimator lens 305 is held by a holder 305a, and this holder 305a is supported by shafts 305b and 305c, and can be moved along the shafts 305b and 305c by a transmission system such as a motor and a feed screw (not shown). As a result, the distance between the collimator lens 305 and the blue semiconductor laser 203 is changed, and the degree of convergence of the light after passing through the collimator lens is changed to give the light a spherical aberration in a direction for canceling the spherical aberration generated on the optical disk. be able to. The collimator lens driving element 304, the collimator lens 305, and the holder 305a constitute the spherical aberration correcting means of the present invention. The collimator lens 305 alone constitutes the collimator lens of the present invention.
[0107] (実施の形態 3) [Embodiment 3]
本発明の実施の形態 3の光ヘッド装置は、第 1の光学系を構成する各光学素子の レイアウトに関するものである。構成は実施の形態 1と同様である。したがって図 1、図 2を参照して説明する。 The optical head device according to the third embodiment of the present invention relates to the layout of each optical element constituting the first optical system. The configuration is the same as in the first embodiment. Therefore, description will be made with reference to FIGS.
[0108] 実施の形態 2で説明したように、第 1の光学系における各光学素子は、光の出射側 については、光源である青色半導体レーザ 203の次にビームシエーパ 301、その次 にフィルタ切替素子 302、その次に偏光ビームスプリッタ 303、次にコリメータレンズ 3 05、最後に対物レンズ 201、の順で配置している。なお、偏向ビームスプリッタ 303 は本発明の分岐部に相当する。 As described in the second embodiment, each optical element in the first optical system has the beam shaper 301 next to the blue semiconductor laser 203 as the light source, and then the filter switching element on the light emission side. 302, then the polarizing beam splitter 303, then the collimator lens 305, and finally the objective lens 201. The deflecting beam splitter 303 corresponds to a branching portion of the present invention.
[0109] 上記のレイアウトとする理由は以下の通りである。 [0109] The reason for the above layout is as follows.
[0110] ビームシヱーパ 301は、第 1の光学系における光ビームの断面形状を規定するもの であり、断面形状の面積が小さい内に形状を決定する必要があるから、光源である青 色半導体レーザ 203との距離が短 、ことが望ま U、。そこで青色半導体レーザ 203 のすぐ後に配置している。 次に、実施の形態 2にて説明したように、フィルタ切替素 子 302は、光ディスクへ入射する光ビームの光量を調整するためのものであるから、 光の出射側の光学系だけに入れ、検出側の光学系に入れる必要はない。そこで、光
ディスクからの反射光を光検出器 204に分岐させる偏向ビームスプリッタ 303の手前 に配置している。 次に、偏向ビームスプリッタ 303及びコリメータレンズ 305をこの順 序で配置することは以下の理由がある。偏向ビームスプリッタ 303の後にコリメ一タレ ンズ 305を配置することにより、コリメータレンズ 305は、光の出射側及び反射側の双 方の光学系で共用される。これにより、第 1の光学系における光学素子の数を減らす とともに、球面収差補正のためにコリメータレンズ 305の位置を動力しても、光検出器 204と青色半導体レーザ 203の共役関係は変化しないという利点がある。 [0110] The beam shaper 301 defines the cross-sectional shape of the light beam in the first optical system, and since it is necessary to determine the shape within the area of the cross-sectional shape is small, the blue semiconductor laser 203, which is the light source, is used. It is desirable for the distance to be short. Therefore, it is arranged immediately after the blue semiconductor laser 203. Next, as described in the second embodiment, the filter switching element 302 is for adjusting the light amount of the light beam incident on the optical disc. It is not necessary to put in the optical system on the detection side. So light It is arranged in front of the deflecting beam splitter 303 for branching the reflected light from the disk to the photodetector 204. Next, the deflecting beam splitter 303 and the collimator lens 305 are arranged in this order for the following reason. By disposing the collimator lens 305 after the deflecting beam splitter 303, the collimator lens 305 is shared by both optical systems on the light emission side and the reflection side. As a result, the number of optical elements in the first optical system is reduced, and the conjugate relationship between the photodetector 204 and the blue semiconductor laser 203 does not change even if the position of the collimator lens 305 is driven to correct spherical aberration. There are advantages.
[0111] 以上のことから、本実施の形態においては、第 1の光学系は、光の出射側について は、青色半導体レーザ 203、ビームシエーパ 301、フィルタ切替素子 302、偏光ビー ムスプリッタ 303、コリメータレンズ 305、対物レンズ 201の順序で配置することが望ま しい。 [0111] From the above, in the present embodiment, the first optical system has the blue semiconductor laser 203, the beam shaper 301, the filter switching element 302, the polarization beam splitter 303, the collimator lens on the light emission side. It is desirable to arrange 305 and objective lens 201 in this order.
[0112] なお、本発明の分岐部として、偏向ビームスプリッタ以外の光学素子、例えばホログ ラム等を用いた場合は、コリメータレンズ 305より後、対物レンズ 201側に設けても良 い。この場合、第 1の光学系における光学素子全体の配置順は、青色半導体レーザ 203、ビームシエーパ 301、フィルタ切替素子 302、コリメータレンズ 305、偏光ビーム スプリッタ 303、対物レンズ 201となる。 [0112] When an optical element other than the deflection beam splitter, such as a hologram, is used as the branching portion of the present invention, it may be provided on the objective lens 201 side after the collimator lens 305. In this case, the arrangement order of the entire optical elements in the first optical system is blue semiconductor laser 203, beam shaper 301, filter switching element 302, collimator lens 305, polarization beam splitter 303, and objective lens 201.
[0113] (実施の形態 4) [0113] (Embodiment 4)
本発明の実施の形態 4の光ヘッド装置は、立ち上げミラー 306の形状に特徴を有 する。 図 6 (a)は、立ち上げミラー 306近傍の構成を示す斜視図である。図 6 (b)は、 立ち上げミラー 306の側面図である。又、図 6 (c)は、立ち上げミラー 306への入射光 の状態を模式的に示すための側面図である。 The optical head device according to the fourth embodiment of the present invention is characterized by the shape of the rising mirror 306. FIG. 6A is a perspective view showing a configuration in the vicinity of the rising mirror 306. FIG. 6B is a side view of the raising mirror 306. FIG. 6C is a side view for schematically showing the state of incident light on the rising mirror 306.
[0114] 以下、説明を行う。図 6 (a)に示すように、立ち上げミラー 306は、第 1の光学系にお V、て光を反射して対物レンズ 201へ導く第 1の反射面 306aと、第 2の光学系にお 、 て光を反射して対物レンズ 202へ導く第 2の反射面 306bとを有する。第 1の反射面 3 06aには青色光が入射角およそ 45度で入射したときに反射率が最大になるような反 射膜が設けられている。又、第 2の反射面 306bには赤色光や赤外光が入射角およ そ 45度で入射したときに反射率が最大になるような反射膜が設けられている。 [0114] A description will be given below. As shown in FIG. 6 (a), the rising mirror 306 has a first reflecting surface 306a that reflects light to the first optical system and guides the light to the objective lens 201, and a second optical system. A second reflecting surface 306b that reflects light and guides it to the objective lens 202 is provided. The first reflecting surface 310a is provided with a reflecting film that maximizes the reflectivity when blue light is incident at an incident angle of approximately 45 degrees. The second reflecting surface 306b is provided with a reflecting film that maximizes the reflectance when red light or infrared light is incident at an incident angle of about 45 degrees.
[0115] 又、図 6 (b)に示すように、立ち上げミラー 306において、第 1の反射面 306aと第 2
の反射面 306bとは直交しており、側面力もみて第 1の反射面 306aと第 2の反射面 3 06b及び底面 306eを有する略直角二等辺三角形を有している力 第 1の反射面 30 6a及び第 2の反射面 306bのそれぞれと、底面 306eとの接合部分は、第 1の反射面 306及び前記第 2の反射面 306bと平行な辺を成さず、面 306c、面 306dでそれぞ れ面取りされている。したがって側面形状は厳密には五角形となっている。 Further, as shown in FIG. 6B, in the rising mirror 306, the first reflecting surface 306a and the second reflecting surface 306a The first reflecting surface 30 has a substantially right isosceles triangle having a first reflecting surface 306a, a second reflecting surface 310b, and a bottom surface 306e. 6a and the second reflecting surface 306b are joined to the bottom surface 306e by a joint portion that does not form a side parallel to the first reflecting surface 306 and the second reflecting surface 306b. Each is chamfered. Therefore, the side shape is strictly a pentagon.
[0116] さらに、面 306cによる面取り量 C1と、面 306cによる面取り量 C2とは大きさが異なる ため、立ち上げミラー 306の側面は、第 1の反射面 306a及び第 2の反射面 306bが なす直角の二等分線 Bに対して非対称な五角形の形状を形成している。 [0116] Further, since the chamfering amount C1 by the surface 306c and the chamfering amount C2 by the surface 306c are different in size, the side surfaces of the rising mirror 306 are formed by the first reflecting surface 306a and the second reflecting surface 306b. It forms an asymmetric pentagonal shape with respect to the perpendicular bisector B.
[0117] このような構造とすることにより、組立時に作業者は、立ち上げミラー 306の二つの 反射面のうち、いずれが第 1の反射面 306aか、又第 2の反射面 306bかを、目視又 は触覚によって容易に判別することが可能となる。 [0117] With this structure, the operator can determine which of the two reflecting surfaces of the rising mirror 306 is the first reflecting surface 306a or the second reflecting surface 306b by assembling. It can be easily discriminated visually or by touch.
[0118] 従来、立ち上げミラー 306のような三角柱状のミラーは、その反射面のなす角の二 等分線に対して対称な形状を有しているため、光ヘッド装置の組立時において、反 射面を間違えて光ヘッド装置内に取り付けた場合、所望の反射率が得られないことと なる。第 1、第 2の反射面は、反射膜の種類の違いから、注意して見ると、その面は薄 く緑力かって見えたり、又は赤っぽく見えたりする力 判別は容易ではない。 [0118] Conventionally, a triangular prism-like mirror such as the rising mirror 306 has a symmetrical shape with respect to the bisector of the angle formed by the reflecting surface thereof. If the reflecting surface is installed in the wrong direction in the optical head device, the desired reflectance cannot be obtained. The first and second reflective surfaces are not easy to discern due to differences in the type of reflective film, if the surfaces are thin and appear greenish or reddish.
[0119] これに対し、本実施の形態においては、側面の形状を左右非対称とすることにより 、各反射面を容易に判別できる。 [0119] On the other hand, in the present embodiment, each reflecting surface can be easily discriminated by making the shape of the side surface asymmetrical.
[0120] 又、本実施の形態においては、第 1の反射面 306a側の面取り量 C1を、第 2の反射 面 306b側の面取り量 C2より大きくしている力 これは以下の効果を有する。すなわ ち、図 6 (c)に示すように、第 1の光学系において、コリメータレンズ 305はコリメ一タレ ンズ駆動素子 304上に固定されている力 コリメータレンズ駆動素子 304と立ち上げ ミラー 306とは同一面上に配置されてるため、第 1の反射面 306aの面取り量 C1を、 そのままコリメータレンズ駆動素子 304の可動範囲に含ませることができる。 In the present embodiment, the force that makes the chamfering amount C1 on the first reflecting surface 306a side larger than the chamfering amount C2 on the second reflecting surface 306b side has the following effects. That is, as shown in FIG. 6 (c), in the first optical system, the collimator lens 305 is a force collimator lens drive element 304 fixed on the collimator lens drive element 304, and the rising mirror 306. Are arranged on the same plane, the chamfering amount C1 of the first reflecting surface 306a can be included in the movable range of the collimator lens driving element 304 as it is.
[0121] 又、実施の形態 1にて説明したように、第 1の光学系における光ビームの直径は、 第 2の光学系における光ビームの直径は、第 2の光ビームの直径より小さくしてあるた め、第 1の反射面 306aが第 2の反射面 306bより面積が小さくとも、立ち上げミラー 30 6は、それぞれの光学系の入射光を、対応する対物レンズに導くことができる。
[0122] なお、立ち上げミラー 306は本発明の立ち上げミラーに相当する力 その構成は上 記の説明に限定される者ではない。面取り量 C2を面取り量 C1より大きくとってもよい 。又、第 1の反射面 306a又は第 2の反射面 306bのいずれか一方を面取りして、他方 は面取りしな 、構成としてもょ 、。 [0121] As described in Embodiment 1, the diameter of the light beam in the first optical system is smaller than the diameter of the second light beam. Therefore, even if the first reflecting surface 306a has a smaller area than the second reflecting surface 306b, the rising mirror 306 can guide the incident light of each optical system to the corresponding objective lens. It should be noted that the rising mirror 306 is a force corresponding to the rising mirror of the present invention, and its configuration is not limited to the above description. The chamfering amount C2 may be larger than the chamfering amount C1. Also, either the first reflecting surface 306a or the second reflecting surface 306b is chamfered and the other is not chamfered.
[0123] 更に、図 6 (a) (b)に示す構成においては、面取りは、第 1の反射面 306a及び第 2 の反射面 306bのそれぞれにつ 、て、底面 306eとの接合部分の全体に対して行うも のとしたが、一部についてのみ行うようにしてもよい。すなわち、立ち上げミラー 306 の左右非対称な側面形状は、立ち上げミラー 306の一部に形成されることになる。一 例として、図 7に、第 2の反射面 306bの中央部分のみ面取りして面 306dを設け、両 端は面取りしない構成を示す。 Further, in the configuration shown in FIGS. 6 (a) and 6 (b), the chamfering is performed on the whole of the joint portion with the bottom surface 306e for each of the first reflecting surface 306a and the second reflecting surface 306b. However, it may be performed only for a part. That is, the asymmetric side surface shape of the rising mirror 306 is formed in a part of the rising mirror 306. As an example, FIG. 7 shows a configuration in which only the central portion of the second reflecting surface 306b is chamfered to provide a surface 306d, and both ends are not chamfered.
[0124] 要するに、第 1の反射面 306a及び第 2の反射面 306bとが目視又は触覚によって 直接識別可能なほどに非対称な形状であれば、それぞれの面取り量の大きさ、位置 、範囲によって限定されることはない。 In short, if the first reflecting surface 306a and the second reflecting surface 306b are asymmetrical shapes that can be directly discerned by visual or tactile sense, they are limited by the size, position, and range of the respective chamfering amounts. It will never be done.
[0125] なお、上記の実施の形態 1〜4では、本発明の球面収差補正部として、コリメ一タレ ンズの位置を変える方法を例に説明したが、液晶を用いて光に球面収差相当の波 面を与えて補正しても良いし、ビームエキスパンダのように凸レンズと凹レンズを組み 合わせて、その間隔を変えることで光の発散度合いを変化させて球面収差を補正し ても良 、。これらの場合でも本実施の形態の発明の効果を妨げるものではな!/、。 In the first to fourth embodiments described above, the method of changing the position of the collimator lens is described as an example of the spherical aberration correction unit of the present invention. However, the liquid crystal is used for light equivalent to spherical aberration. You can correct it by giving a wavefront, or you can combine convex and concave lenses like a beam expander and change the distance to change the degree of light divergence to correct spherical aberration. Even in these cases, the effect of the invention of the present embodiment is not disturbed! /.
[0126] 又、上記の実施の形態 1〜4では、本発明のビーム整形部としてのビームシエーパ として入射面と出射面が略円柱面の例をあげた力 トーリック面のように、 2方向に異 なるパワーを持つ面によりビーム整形を行っても良い。その場合でも本実施の形態の 発明の効果を妨げるものではない。 In Embodiments 1 to 4 described above, the beam shaper as the beam shaping unit of the present invention is different in two directions, such as a force toric surface in which the incident surface and the output surface are substantially cylindrical surfaces. Beam shaping may be performed by a surface having the following power. Even in that case, the effect of the invention of the present embodiment is not disturbed.
[0127] 又、上記の実施の形態 1〜4では、本発明の調光部として NDフィルタを回転によつ て入れ替える構成を示した力 NDフィルタを平行移動して入れ替える構成としても 良いし、液晶と偏光板を使用しても良い。これらの方法でも本実施の形態の発明の 効果を妨げるものではな 、。 [0127] Also, in the above-described first to fourth embodiments, the force ND filter showing a configuration in which the ND filter is replaced by rotation as the dimming unit of the present invention may be configured to translate and replace the ND filter. A liquid crystal and a polarizing plate may be used. These methods do not disturb the effects of the invention of the present embodiment.
[0128] 又、上記の実施の形態 1〜4では、本発明の第 3の光学系として、第 3の波長 λ 3を 発する光源である CD用 LDPDモジュールまで備えた例を示した力 本発明は第 1の
波長と第 2の波長を発する 2種類の光源及び光学系を備えていれば良ぐその場合 も本実施の形態と同様の効果を得ることができる。 [0128] In Embodiments 1 to 4 described above, the power shown as an example in which the third optical system of the present invention includes an LDPD module for CD, which is a light source that emits the third wavelength λ3. Is the first The same effects as in this embodiment can be obtained even if two types of light sources and optical systems that emit the wavelength and the second wavelength are provided.
[0129] 又、本実施の形態では対物レンズ 201と対物レンズ 202を別体とし、光ディスクのタ ンゼンシャル方向に並んだ構成の例を示した力 これに限るものではなぐ図 8に示 すように、対物レンズ 201と対物レンズ 202の双方をラジアル方向に対物レンズを並 ベた構成としてもよい。 Further, in the present embodiment, the force shown in the example in which the objective lens 201 and the objective lens 202 are separated and arranged in the tangential direction of the optical disc is not limited to this, as shown in FIG. The objective lens 201 and the objective lens 202 may be configured so that the objective lenses are aligned in the radial direction.
[0130] 又、対物レンズ 201と対物レンズ 202を 1つの対物レンズで兼ねる、すなわち第 1の 光学系〜第 3の光学系で対物レンズを共有した構成としてもよい。この場合、光へッ ド装置 100においてはァクチユエータ 200が唯一の対物レンズを有する構成となる他 、立ち上げミラー 306の代わりに、各光源からの光ビームを同一方向、同一光軸で対 物レンズに導く立ち上げプリズムを用いる。 [0130] Further, the objective lens 201 and the objective lens 202 may be used as one objective lens, that is, the objective lens may be shared by the first to third optical systems. In this case, in the optical head device 100, the actuator 200 has a single objective lens, and instead of the rising mirror 306, the light beam from each light source is the same lens in the same direction and the same optical axis. Use a start-up prism.
図 9は、そのような立ち上げプリズム 401の斜視図である。立ち上げプリズム 401は 、 2方向から入射する波長の異なる光を同一方向、同一光軸の光として反射する手 段である。 FIG. 9 is a perspective view of such a rising prism 401. The rising prism 401 is a means for reflecting light having different wavelengths incident from two directions as light having the same direction and the same optical axis.
[0131] 立ち上げプリズム 401においては、反射面 402には赤(660nm付近) '赤外(780η m付近)の光は透過し、青色 (405nm付近)の光を反射する色選択性反射膜が形成 される。 [0131] In the rising prism 401, the reflection surface 402 has a color selective reflection film that transmits red (near 660nm) 'infrared (near 780ηm) and reflects blue (near 405nm) light. It is formed.
[0132] 一方、反射面 403には、青色 (405nm付近)の光は透過し、赤(660nm付近) '赤 外 (780nm付近)の光を反射する色選択性反射膜が形成される。これにより、 2方向 力 対向する形で入射した波長の異なる光は、同一の対物レンズへ向かって同一光 軸、同一方向へ反射される。 On the other hand, on the reflection surface 403, a color selective reflection film is formed which transmits blue (near 405 nm) light and reflects red (near 660 nm) ′ infrared (near 780 nm). As a result, light of different wavelengths that are incident in two opposite directions are reflected toward the same objective lens in the same optical axis and direction.
[0133] 図 10 (a) (b)に、立ち上げプリズム 401を組み込んだ場合の光ヘッド装置 100の動 作を模式的に示す。 FIGS. 10 (a) and 10 (b) schematically show the operation of the optical head device 100 when the rising prism 401 is incorporated.
図 10 (a)は、第 1の光学系として用いられる場合で、青色半導体レーザ 203からの 光ビームを照射した場合を示す。青色の光ビームはコリメータレンズ 350で平行光に なり、立ち上げプリズム 401に入射する。入射した青色光ビームは青色の光を反射す る反射面 402により反射され、共通対物レンズ 410に入射する。共通対物レンズ 410 は青色の光ビームを入射すると BDの記録 '再生に適した収束光を生成し、この光を
BD411に照射する。 BD411で反射 '回折された光は、再び、共通対物レンズ 410を 通り、立ち上げプリズム 401の反射面 402で反射され、コリメータレンズ 305を通り、 検出側の光学系へ向かう。 FIG. 10 (a) shows a case where the light beam from the blue semiconductor laser 203 is irradiated when used as the first optical system. The blue light beam is collimated by the collimator lens 350 and enters the rising prism 401. The incident blue light beam is reflected by the reflecting surface 402 that reflects blue light, and enters the common objective lens 410. When the common objective lens 410 receives a blue light beam, it generates convergent light suitable for BD recording and playback. Irradiate BD411. The light reflected and diffracted by the BD 411 passes through the common objective lens 410 again, is reflected by the reflecting surface 402 of the rising prism 401, passes through the collimator lens 305, and travels to the detection-side optical system.
[0134] 一方、図 10 (b)は第 2の光学系として用いられる場合で、 DVD用 LDPDモジユー ル 205からの光ビームを照射した場合を示す。赤色の光ビームはコリメータレンズ 32 1で平行光になり、立ち上げプリズム 401に入射する。入射した赤色光ビームは赤色 の光を反射する反射面 403により反射され、共通対物レンズ 410に入射する。 On the other hand, FIG. 10 (b) shows a case where the light beam from the LDPD module 205 for DVD is irradiated when used as the second optical system. The red light beam is collimated by the collimator lens 32 1 and enters the rising prism 401. The incident red light beam is reflected by the reflecting surface 403 that reflects the red light and enters the common objective lens 410.
共通対物レンズ 410は赤色の光ビームを入射すると DVDの記録 ·再生に適した収 束光を生成し、この光を DVD412に照射する。 DVD412で反射 ·回折された光は、 再び、共通対物レンズ 410を通り、立ち上げプリズム 401の反射面 403で反射され、 コリメータレンズ 321を通り、 DVD用 LDPDモジュール 205へ帰還する。第 3の光学 系として用いた場合も、図 10 (b)に示すのと同様の動作で CDに集光を行う。 When the common objective lens 410 receives a red light beam, the common objective lens 410 generates converged light suitable for DVD recording / playback, and irradiates the DVD 412 with this light. The light reflected and diffracted by the DVD 412 passes through the common objective lens 410 again, is reflected by the reflecting surface 403 of the rising prism 401, passes through the collimator lens 321, and returns to the DVD LDPD module 205. When it is used as the third optical system, it collects light on the CD in the same manner as shown in Fig. 10 (b).
[0135] このように、立ち上げプリズム 401と共通対物レンズ 410を用いれば、 1つの対物レ ンズを第 1の光学系〜第 3の光学系で共有して 3つの種類の光ディスクに対応でき、 実施の形態 2の効果に加えて、光学部品の数を減らすことができる。 [0135] In this way, if the rising prism 401 and the common objective lens 410 are used, one objective lens can be shared by the first to third optical systems to support three types of optical disks. In addition to the effects of the second embodiment, the number of optical components can be reduced.
[0136] (実施の形態 5) [Embodiment 5]
本発明の実施の形態 5は、実施の形態 1〜4の光ヘッド装置を搭載し、光ディスクに 対して信号の記録及び再生又は再生のみを行う光情報装置である。 Embodiment 5 of the present invention is an optical information device that mounts the optical head device of Embodiments 1 to 4 and that only records and reproduces or reproduces signals with respect to an optical disc.
[0137] 図 11に実施の形態 5の光情報装置 600の構成を模式的に示す。図 11において、 図 1と同一又は相当部には、同一符号を付し、詳細な説明は省略する。又、 601は 電気回路、 602はクランパー、 603はターンテーブルである。 FIG. 11 schematically shows the configuration of the optical information device 600 according to the fifth embodiment. In FIG. 11, the same or corresponding parts as in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. 601 is an electric circuit, 602 is a clamper, and 603 is a turntable.
[0138] 図 11において光ディスク 604は、ターンテーブル 603に乗せられ、モーター 112に よって回転される。光ヘッド装置 100は、光記録媒体 209の所望の情報の存在するト ラックのところまで、シャフト 110上を粗動する。 In FIG. 11, the optical disc 604 is placed on the turntable 603 and rotated by the motor 112. The optical head device 100 coarsely moves on the shaft 110 to a track where desired information of the optical recording medium 209 exists.
[0139] 光ヘッド装置 100は、また、光ディスク 604との位置関係に対応して、フォーカス誤 差信号やトラッキング誤差信号を電気回路 601へ送る。電気回路 601はこの信号に 対応して、光ヘッド装置 100へ光ディスク 604が対応する対物レンズ 202又は 201を 微動させるための信号を送る。この信号によって、光ヘッド装置 100は、光ディスク 60
4に対してフォーカス制御と、トラッキング制御を行い、光ディスク 604に対して情報の 読みだし、又は書き込み (記録)や消去を行う。 The optical head device 100 also sends a focus error signal and a tracking error signal to the electric circuit 601 corresponding to the positional relationship with the optical disc 604. In response to this signal, the electric circuit 601 sends a signal for finely moving the objective lens 202 or 201 corresponding to the optical disk 604 to the optical head device 100. By this signal, the optical head device 100 causes the optical disc 60 to 4 performs focus control and tracking control, and reads / writes (records) or erases information on the optical disk 604.
[0140] なお、上記の構成において、光情報装置 600は本発明の光情報装置に相当し、電 気回路 601は本発明の電気回路に相当する。 [0140] In the above configuration, the optical information device 600 corresponds to the optical information device of the present invention, and the electric circuit 601 corresponds to the electric circuit of the present invention.
[0141] 以上のように、本実施の形態は、光ヘッド装置として実施の形態 1〜4の光ヘッド装 置を用いているため、光ヘッド装置の小型化に伴い、内部容積も小型化して、全体 に小型化されると ヽぅ効果を有する。 [0141] As described above, the present embodiment uses the optical head device of Embodiments 1 to 4 as the optical head device, so that the internal volume is also reduced with the miniaturization of the optical head device. When it is downsized as a whole, it has a habit effect.
(実施の形態 6) (Embodiment 6)
実施の形態 5に記した光情報装置を備えたコンピュータの実施の形態を図 12に示 す。 FIG. 12 shows an embodiment of a computer provided with the optical information device described in the fifth embodiment.
[0142] 図 12において、パソコン(コンピュータ) 1000は実施の形態 5の光情報装置 600と 、情報の入力を行うためのキーボード 1003と、情報の表示を行うためのモニター 10 02とを備える。 In FIG. 12, a personal computer (computer) 1000 includes the optical information device 600 according to the fifth embodiment, a keyboard 1003 for inputting information, and a monitor 1002 for displaying information.
[0143] 上述の実施の形態 5の光情報装置 600を外部記憶装置として備えたコンピュータ は、異なる種類の光ディスクに情報を安定に記録あるいは再生でき、広い用途に使 用できるという効果を有するものとなる。光ディスクはその大容量性を生力して、コンビ ユータ内のハードディスクのバックアップをとつたり、メディア(光ディスク)が安価で携 帯が容易であること、他の光情報装置でも情報が読み出せるという互換性があること を生力して、プログラムやデータを人と交換したり、自分用に持ち歩いたりすることが できる。又、 BD、 DVDや CD等の既存のメディアの再生'記録にも対応できる。 [0143] A computer having the optical information device 600 of Embodiment 5 described above as an external storage device has the effect that information can be stably recorded or reproduced on different types of optical disks, and can be used in a wide range of applications. Become. Optical disks make use of their large capacity to back up hard disks in computers, media (optical disks) are inexpensive and easy to carry, and information can be read by other optical information devices. You can make use of the compatibility to exchange programs and data with people or carry them around for yourself. It can also support playback and recording of existing media such as BD, DVD and CD.
[0144] 又、従来より小型の本実施の形態 5の光情報装置 600を備えることにより、より小型 化できる。 [0144] Further, by providing the optical information device 600 of the fifth embodiment that is smaller than the conventional one, the size can be further reduced.
(実施の形態 7) (Embodiment 7)
実施の形態 5に記した光情報装置を備えた、光ディスクレコーダー(映像記録装置) の実施の形態を図 13に示す。 FIG. 13 shows an embodiment of an optical disk recorder (video recording apparatus) provided with the optical information apparatus described in the fifth embodiment.
[0145] 図 13において、光ディスクレコーダー(映像記録装置) 1010は実施の形態 5の光 情報装置 600を内蔵しており(図示省略)、記録している映像の表示を行うためのモ 二ター 1011と接続されて使用される。
[0146] 上述の実施の形態 5の光情報装置 600を備えた光ディスクレコーダ一は、異なる種 類の光ディスクに映像を安定に記録あるいは再生でき、広い用途に使用できるという 効果を有するものとなる。光ディスクレコーダ一はメディア(光ディスク)に映像を記録 し、好きな時にそれを再生することができる。光ディスクではテープのように記録後や 再生後に巻き戻しの作業が必要なぐある番組を記録しながらその番組の先頭部分 を再生する追つかけ再生や、ある番組を記録しながら以前に記録した番組を再生す る同時記録再生が可能となる。メディア (光ディスク)が安価で携帯が容易であること、 他の光ディスクレコーダーでも情報が読み出せるという互換性があることを生力して、 記録した映像を人と交換したり、自分用に持ち歩いたりすることができる。又、 BD、 D VDや CD等の既存のメディアの再生 ·記録にも対応する。 In FIG. 13, an optical disk recorder (video recording apparatus) 1010 includes the optical information apparatus 600 of Embodiment 5 (not shown), and a monitor 1011 for displaying the recorded video. Used in connection with. [0146] The optical disc recorder provided with the optical information device 600 of the above-described fifth embodiment has an effect that video can be stably recorded or reproduced on different types of optical discs and can be used in a wide range of applications. An optical disk recorder can record video on media (optical disk) and play it back whenever you like. On an optical disk, after recording or recording a program that requires rewinding after recording, such as tape, follow-up playback that plays back the beginning of the program, or program that was previously recorded while recording a program. Simultaneous recording and playback is possible. By taking advantage of the fact that the media (optical disc) is cheap and easy to carry, and that other optical disc recorders can read information, the recorded video can be exchanged with people or carried for yourself. can do. It also supports playback and recording of existing media such as BD, DVD, and CD.
[0147] 又、従来より小型の本実施の形態 5の光情報装置 600を備えることにより、より小型 化できる。 [0147] Further, by providing the optical information device 600 of the fifth embodiment that is smaller than the conventional one, the size can be further reduced.
[0148] なお、ここでは光情報装置 600だけを備える場合にっ 、て述べたが、ハードデイス クを内蔵していても良いし、ビデオテープの録画再生機能を内蔵していても良い。そ の場合映像の一時退避や、ノックアップが容易にできる。 [0148] Although only the optical information device 600 is described here, a hard disk may be incorporated or a video tape recording / playback function may be incorporated. In that case, the video can be temporarily saved and knocked up easily.
[0149] (実施の形態 8) [Embodiment 8]
実施の形態 5に記した光情報装置 600を備えた、光ディスクプレーヤー(映像再生 装置)の実施の形態を図 14に示す。 FIG. 14 shows an embodiment of an optical disc player (video playback device) provided with the optical information device 600 described in the fifth embodiment.
[0150] 図 14において、液晶モニター 1020を備えた光ディスクプレーヤー(映像再生装置[0150] In FIG. 14, an optical disc player (video playback device) equipped with a liquid crystal monitor 1020.
) 1021は実施の形態 5の光情報装置 600を内蔵しており(図示省略)、光ディスクに 記録された映像を液晶モニター 1020に表示することができる。 ) 1021 incorporates the optical information device 600 of the fifth embodiment (not shown), and can display the video recorded on the optical disk on the liquid crystal monitor 1020.
[0151] 上述の実施の形態 5の光情報装置 600を備えた光ディスクプレーヤ一は、異なる種 類の光ディスクに映像を安定に再生でき、広い用途に使用できるという効果を有する ものとなる。 [0151] The optical disc player including the optical information device 600 of the above-described fifth embodiment has an effect that video can be stably reproduced on different types of optical discs and can be used for a wide range of purposes.
[0152] 光ディスクプレーヤ一はメディア(光ディスク)に記録された映像を、好きな時に再生 することができる。光ディスクではテープのように再生後に巻き戻しの作業が必要なく 、ある映像の任意の場所にアクセスして再生することができる。又、 BD、 DVDや CD 等の既存のメディアの再生にも対応する。
[0153] 又、従来より小型の本実施の形態 5の光情報装置 600を備えることにより、より小型 化できる。 [0152] The optical disc player can play the video recorded on the medium (optical disc) at any time. An optical disc does not require a rewinding operation after reproduction like a tape, and can access and reproduce an arbitrary place of a video. It also supports playback of existing media such as BD, DVD and CD. [0153] Further, by providing the optical information device 600 of the fifth embodiment that is smaller than the conventional one, the size can be further reduced.
[0154] (実施の形態 9) [Embodiment 9]
実施の形態 5に記した光情報装置 600を備えた、サーバーの実施の形態を図 15に 示す。 FIG. 15 shows an embodiment of a server provided with the optical information device 600 described in the fifth embodiment.
[0155] 図 15において、サーバー 1030は実施の形態 5の光情報装置 600と、情報の表示 を行うためのモニター 1033と、情報の入力を行うためのキーボード 1034とを備え、 ネットワーク 1035と接続されている。 In FIG. 15, a server 1030 includes the optical information device 600 according to the fifth embodiment, a monitor 1033 for displaying information, and a keyboard 1034 for inputting information, and is connected to a network 1035. ing.
[0156] 上述の実施の形態 5の光情報装置 600を複数の外部記憶装置として備えたサーバ 一は、異なる種類の光ディスクに情報を安定に記録あるいは再生でき、広い用途に 使用できるという効果を有するものとなる。光ディスクドライブはその大容量性を生か して、ネットワーク 1035からの要求に応じ、光ディスクに記録されている情報 (画像、 音声、映像、 HTML文書、テキスト文書等)を送出する。又、ネットワーク力 送られ てくる情報をその要求された場所に記録する。又、 BD、 DVDディスクや CDディスク 等の既存のメディアに記録された情報も再生が可能であるので、それらの情報を送 出することも可能となる。 [0156] The server having the optical information device 600 of Embodiment 5 described above as a plurality of external storage devices has the effect that information can be stably recorded or reproduced on different types of optical disks, and can be used for a wide range of applications. It will be a thing. The optical disk drive takes advantage of its large capacity to send information (images, audio, video, HTML documents, text documents, etc.) recorded on the optical disk in response to a request from the network 1035. It also records the information sent to the network at the requested location. In addition, since information recorded on existing media such as BD, DVD disc and CD disc can be reproduced, it is also possible to send such information.
[0157] 又、従来より小型の本実施の形態 5の光情報装置を備えることにより、より小型化で きる。 [0157] Further, by providing the optical information device of the fifth embodiment that is smaller than the conventional one, the size can be further reduced.
[0158] (実施の形態 10) [Embodiment 10]
実施の形態 5に記した光情報装置を備えた、カーナビゲーシヨンシステムの実施の 形態を図 16に示す。 FIG. 16 shows an embodiment of a car navigation system provided with the optical information device described in the fifth embodiment.
[0159] 図 16において、カーナビゲーシヨンシステム 1040は実施の形態 5の光情報装置 6 00を内蔵しており(図示省略)、地形や行き先情報の表示を行うための液晶モニター 1041と接続されて使用される。 In FIG. 16, a car navigation system 1040 incorporates the optical information device 600 of Embodiment 5 (not shown) and is connected to a liquid crystal monitor 1041 for displaying topography and destination information. used.
[0160] 上述の実施の形態 5の光情報装置 600を備えたカーナビゲーシヨンシステムは、異 なる種類の光ディスクに映像を安定に記録あるいは再生でき、広い用途に使用でき ると 、う効果を有するものとなる。カーナビゲーシヨンシステム 1040はメディア(光ディ スク)に記録された地図情報と、地上位置確定システム (GPS)や、ジャイロスコープ、
速度計、走行距離計等の情報を元に、現在位置を割り出しその位置を、液晶モニタ 一上に表示する。又、行き先を入力すると、地図情報や道路情報をもとに行き先まで の最適な経路を割り出し、それを液晶モニターに表示する。 [0160] The car navigation system including the optical information device 600 according to the fifth embodiment described above can stably record or play back images on different types of optical disks, and has the effect of being usable in a wide range of applications. It will be a thing. The car navigation system 1040 uses map information recorded on the media (optical disk), ground positioning system (GPS), gyroscope, Based on information from speedometer, odometer, etc., the current position is determined and displayed on the LCD monitor. When the destination is entered, the optimum route to the destination is determined based on the map information and road information and displayed on the LCD monitor.
[0161] 地図情報を記録するために大容量の光ディスクを用いることで、一枚のディスクで 広い地域をカバーして細かい道路情報を提供することができる。又、その道路近辺 に付随する、レストランやコンビ-エンスストア、ガソリンスタンドなどの情報も同時に 光ディスクに格納して提供することができる。さらに、道路情報は時間がたっと古くな り、現実と合わなくなる力 光ディスクは互換性がありメディアが安価であるため、新し い道路情報を収めたディスクと交換することで最新の情報を得ることができる。又、 B D、 DVDディスクや CDディスク等の既存のメディアの再生 '記録にも対応するため、 自動車の中で映画を見たり音楽を聴 、たりすることも可能である。 [0161] By using a large-capacity optical disc for recording map information, a single disc can cover a wide area and provide detailed road information. In addition, information about restaurants, convenience stores, gas stations, etc. associated with the vicinity of the road can also be stored on an optical disc and provided. In addition, the road information is getting old and the power that doesn't match the reality. Optical discs are compatible and inexpensive, so you can get the latest information by exchanging with a disc containing new road information. Can do. It can also play and record existing media such as BD, DVD discs and CD discs, so you can watch movies and listen to music in the car.
[0162] 又、従来より小型の本実施の形態 5の光情報装置 600を備えることにより、より小型 化でき、特に車載においては有効である。 [0162] Further, by providing the optical information device 600 of the fifth embodiment that is smaller than the conventional one, the size can be further reduced, and this is particularly effective in the vehicle.
産業上の利用可能性 Industrial applicability
[0163] 本発明にかかる光ヘッド装置及び光情報装置は、光学系を小型化することで小型 化が可能な効果を有し、光ヘッド装置、光ヘッド装置、光情報装置、並びにそれらの 応用品としてのコンピュータ、ディスクプレーヤー、サーバー、カーナビゲーシヨンシ ステム、光ディスクレコーダ一として利用可能であり、映像、音楽その他の情報の記録 •再生装置等として有用である。
The optical head device and the optical information device according to the present invention have an effect that can be reduced by downsizing the optical system. The optical head device, the optical head device, the optical information device, and their applications As a product, it can be used as a computer, disc player, server, car navigation system, optical disc recorder, etc., and is useful as a recording / playback device for video, music and other information.
Claims
[1] 互いに波長の異なる光を発する複数の光源と、 [1] a plurality of light sources that emit light having different wavelengths from each other;
前記複数の光源力 の光を、それぞれ対応する光情報記録媒体へ集光するため の複数の対物レンズと、 A plurality of objective lenses for condensing the light of the plurality of light source powers onto the corresponding optical information recording medium, and
前記光情報記録媒体力 の反射光を検出する検出部と、 A detector for detecting reflected light of the optical information recording medium force;
前記複数の光源、前記複数の対物レンズ及び前記検出部が配置される光学基台 とを備え、 An optical base on which the plurality of light sources, the plurality of objective lenses, and the detection unit are disposed;
前記複数の光源からの光の、それぞれの光が対応する前記対物レンズの通過面に おける直径は、波長の短いものが波長の長いものよりも小さい、光ヘッド装置。 The diameter of the light from the plurality of light sources at the passing surface of the objective lens to which each light corresponds corresponds to an optical head device having a shorter wavelength than a longer wavelength.
[2] 前記複数の光源は、波長 λ 1の波長を発する第 1の光源及び波長 λ 1より長波長 の波長 λ 2の光を発する第 2の光源の 2つの光源であって、 [2] The plurality of light sources are two light sources, a first light source that emits a wavelength of λ 1 and a second light source that emits light of a wavelength λ 2 longer than the wavelength λ 1,
前記複数の対物レンズは、前記第 1の光源からの光を集光する第 1の対物レンズ及 び前記第 2の光源からの光を集光する第 2の対物レンズの 2つの対物レンズであり、 前記第 1の対物レンズは前記第 2の対物レンズよりも高い開口数を有し、 前記第 1の対物レンズの通過面における前記第 1の光源力 の光の直径は、前記 第 2の対物レンズの通過面における前記第 2の光源力 の光の直径より小さい、請求 の範囲第 1項に記載の光ヘッド装置。 The plurality of objective lenses are two objective lenses, a first objective lens that collects light from the first light source and a second objective lens that collects light from the second light source. The first objective lens has a higher numerical aperture than the second objective lens, and the diameter of the light of the first light source power on the passing surface of the first objective lens is the second objective lens. 2. The optical head device according to claim 1, wherein the optical head device is smaller than a diameter of light of the second light source power on a lens passing surface.
[3] 前記第 1の対物レンズのレンズ径は、前記第 2の対物レンズのレンズ径より小さい、 請求の範囲第 2項に記載の光ヘッド装置。 [3] The optical head device according to [2], wherein a lens diameter of the first objective lens is smaller than a lens diameter of the second objective lens.
[4] 前記第 1の光源の光により記録又は再生が行われる前記光情報記録媒体の表面 に対して前記第 1の対物レンズが移動可能な距離 WD1と、前記第 2の光源の光によ り記録又は再生が行われる前記光情報記録媒体の表面に対する前記第 2の対物レ ンズが移動可能な距離 WD2との間に、 WDKWD2の関係がある、請求の範囲第 2 項に記載の光ヘッド装置。 [4] The distance WD1 by which the first objective lens can move with respect to the surface of the optical information recording medium on which recording or reproduction is performed by the light of the first light source, and the light of the second light source 3. The optical head according to claim 2, wherein there is a relationship of WDKWD2 with a distance WD2 that the second objective lens can move with respect to the surface of the optical information recording medium on which recording or reproduction is performed. apparatus.
[5] 前記光学基台を前記光情報記録媒体の内周側と外周側との間で移動させるため の少なくとも一対のシャフトを保持する為の軸受けを備え、 [5] A bearing for holding at least a pair of shafts for moving the optical base between the inner peripheral side and the outer peripheral side of the optical information recording medium,
前記軸受けは、前記光学基台の両端に少なくともそれぞれ 1つ配置されており、 少なくとも前記第 2の対物レンズの中心を通過する、前記一対のシャフトと平行な基
準線と前記一対のシャフトの一方との距離 LIと、前記基準線と前記一対のシャフトの 他方との距離を L2との間には、 L1 >L2の関係があり、 At least one of the bearings is disposed at both ends of the optical base, and the base parallel to the pair of shafts passes through at least the center of the second objective lens. There is a relationship of L1> L2 between the distance LI between the quasi-line and one of the pair of shafts and the distance L2 between the reference line and the other of the pair of shafts,
前記第 1の光源は、前記一つのシャフトの前記一方寄りに設けられ、 The first light source is provided on the one side of the one shaft,
前記第 2の光源は、前記一つのシャフトの前記他方寄りに設けられている、請求の 範囲第 2項に記載の光ヘッド装置。 3. The optical head device according to claim 2, wherein the second light source is provided on the other side of the one shaft.
[6] 前記基準線は、前記光情報記録媒体を回転するモーターの回転中心を通る、請求 の範囲第 5項に記載の光ヘッド装置。 6. The optical head device according to claim 5, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
[7] 前記基準線は、前記第 1の対物レンズの中心も通る、請求の範囲第 6項に記載の 光ヘッド装置。 7. The optical head device according to claim 6, wherein the reference line also passes through the center of the first objective lens.
[8] 前記一対のシャフトを含む平面から見て、 [8] As seen from the plane including the pair of shafts,
前記第 1の光源及び前記第 1の対物レンズを含む第 1の光学系は、前記距離 L1の 幅に収まるよう形成されており、前記第 2の光源を含む第 2の光学系は、前記第 2の 対物レンズ及び前記第 2の対物レンズへ光を導くための立ち上げミラーをのぞいて前 記距離 L2の幅に収まるよう形成されている、請求の範囲第 6項に記載の光ヘッド装 置。 The first optical system including the first light source and the first objective lens is formed to be within the width of the distance L1, and the second optical system including the second light source is the first optical system. 7. The optical head device according to claim 6, wherein the optical head device is formed so as to be within a width of the distance L2 except for the objective lens of 2 and a rising mirror for guiding light to the second objective lens. .
[9] 前記光学基台は円弧状の切り欠きがあり、 [9] The optical base has an arc-shaped notch,
前記切り欠きの円弧は、その中心が前記基準線を通るように設けられている、請求 の範囲第 5項に記載の光ヘッド装置。 6. The optical head device according to claim 5, wherein the arc of the notch is provided so that a center thereof passes through the reference line.
[10] 前記第 1の対物レンズは前記第 2の対物レンズより前記第 1の光源に近い側に配置 されている、請求の範囲第 5項に記載の光ヘッド装置。 10. The optical head device according to claim 5, wherein the first objective lens is disposed closer to the first light source than the second objective lens.
[11] 波長 λ 2より長波長の波長 λ 3の光を発し、前記一つのシャフトの前記他方寄りに 設けられ第 3の光源を更に備え、 [11] A light source having a wavelength λ3 longer than the wavelength λ2, and further comprising a third light source provided near the other of the one shaft,
前記第 2の対物レンズ及び前記第 3の光源を含む第 3の光学系が形成されている、 請求の範囲第 5項に記載の光ヘッド装置。 6. The optical head device according to claim 5, wherein a third optical system including the second objective lens and the third light source is formed.
[12] 前記基準線は、前記光情報記録媒体を回転するモーターの回転中心を通る、請求 の範囲第 11項に記載の光ヘッド装置。 12. The optical head device according to claim 11, wherein the reference line passes through a rotation center of a motor that rotates the optical information recording medium.
[13] 波長 λ 1は 450nm以下である、請求の範囲第 5項に記載の光ヘッド装置。 13. The optical head device according to claim 5, wherein the wavelength λ 1 is 450 nm or less.
[14] 前記第 1の光源と前記第 1の対物レンズの間に設けられた、前記第 1の光源から出
た光の強度分布を補正するビーム整形部を有する、請求の範囲第 5項に記載の光 ヘッド装置。 [14] Output from the first light source provided between the first light source and the first objective lens. 6. The optical head device according to claim 5, further comprising a beam shaping unit that corrects the intensity distribution of the light.
[15] 前記第 1の光源と前記第 1の対物レンズの間に設けられた、前記第 1の対物レンズ から出射された前記光情報記録媒体に集光する際に生ずる球面収差を補正する球 面収差補正部を有する、請求の範囲第 5項に記載の光ヘッド装置。 [15] A sphere that is provided between the first light source and the first objective lens and corrects spherical aberration that occurs when the light is focused on the optical information recording medium emitted from the first objective lens. 6. The optical head device according to claim 5, further comprising a surface aberration correction unit.
[16] 前記第 1の光源と前記第 1の対物レンズの間に設けられた、前記第 1の光源から出 た光の透過率を制御する調光部を有する、請求の範囲第 5項に記載の光ヘッド装置 [16] The range of claim 5, further comprising a dimming unit that is provided between the first light source and the first objective lens and controls the transmittance of light emitted from the first light source. The optical head device described
[17] 前記第 1の光源力 の光を受けて強度分布の補正を行うビーム整形部と、 [17] a beam shaping unit that receives light of the first light source power and corrects the intensity distribution;
光の透過率を制御する調光部と、 A light control unit for controlling the light transmittance;
入射する光を略平行光に整形するコリメータレンズとを備え、 A collimator lens that shapes incident light into substantially parallel light;
前記第 1の光源から出た光は、前記ビーム整形部、前記調光部、前記コリメ一タレ ンズ、前記第 1の対物レンズの順に通る光学系を形成するように配置されている、請 求の範囲第 2項に記載の光ヘッド装置。 The light emitted from the first light source is disposed so as to form an optical system that passes in the order of the beam shaping unit, the light control unit, the collimator lens, and the first objective lens. 3. The optical head device according to item 2 of the above item.
[18] 前記第 1の光源から前記光情報記録媒体へ向かう光と前記光情報記録媒体から前 記検出部へ向かう光とを分離する分岐部を備えた、請求の範囲第 17項に記載の光 ヘッド装置。 [18] The method according to claim 17, further comprising a branching unit that separates light traveling from the first light source toward the optical information recording medium and light traveling from the optical information recording medium toward the detection unit. Optical head device.
[19] 前記第 1の光源からの光を反射して前記第 1の対物レンズへ導く第 1の反射面と、 前記第 1の反射面と直交する、前記第 2の光源からの光を反射して前記第 2の対物レ ンズへ導く第 2の反射面とを有する立ち上げミラーを備え、 [19] A first reflecting surface that reflects light from the first light source and guides it to the first objective lens; and reflects light from the second light source that is orthogonal to the first reflecting surface And a rising mirror having a second reflecting surface that leads to the second objective lens,
前記立ち上げミラーは、前記第 1の反射面及び前記第 2の反射面と直交する面から 見て、前記第 1の反射面及び前記第 2の反射面がなす角の二等分線に対して非対 称な断面形状を含む、請求の範囲第 2項に記載の光ヘッド装置。 The rising mirror is in relation to a bisector of an angle formed by the first reflecting surface and the second reflecting surface when viewed from a surface orthogonal to the first reflecting surface and the second reflecting surface. 3. The optical head device according to claim 2, comprising an asymmetric cross-sectional shape.
[20] 前記立ち上げミラーは実質上三角柱の形状を有し、 [20] The rising mirror has a substantially triangular prism shape,
前記第 1の反射面と前記第 2の反射面とがなす辺以外の辺であって、前記第 1の反 射面及び前記第 2の反射面と平行な 2辺の一方又は他方の全部又は一部が面取り されることにより、前記断面形状が形成されている、請求の範囲第 19項に記載の光 ヘッド装置。
A side other than the side formed by the first reflective surface and the second reflective surface, and one or all of one or the other of two sides parallel to the first reflective surface and the second reflective surface, or 20. The optical head device according to claim 19, wherein the cross-sectional shape is formed by chamfering a part.
[21] 前記第 1の反射面と前記第 2の反射面とがなす辺以外の 2辺の双方の全部が面取 りされており、 [21] All of the two sides other than the side formed by the first reflecting surface and the second reflecting surface are chamfered.
前記第 1の反射面側は、前記第 2の反射面側よりも多く面取りされている、請求の範 囲第 20項に記載の光ヘッド装置。 21. The optical head device according to claim 20, wherein the first reflecting surface side is chamfered more than the second reflecting surface side.
[22] 請求の範囲第 1項に記載の光ヘッド装置と、 [22] The optical head device according to claim 1,
前記光情報記録媒体を回転するモーターと、 A motor for rotating the optical information recording medium;
前記光ヘッド装置から得られる信号に基づき、前記モーター及び前記光源の動作 を制御する電気回路とを備えた光情報装置。
An optical information device comprising: an electric circuit that controls operations of the motor and the light source based on a signal obtained from the optical head device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006022023A JP2009093684A (en) | 2006-01-31 | 2006-01-31 | Optical head device, optical information device, computer, disk player, server, car navigation system, and optical disk recorder |
JP2006-022023 | 2006-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007088809A1 true WO2007088809A1 (en) | 2007-08-09 |
Family
ID=38327383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/051388 WO2007088809A1 (en) | 2006-01-31 | 2007-01-29 | Optical head device and optical information device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009093684A (en) |
WO (1) | WO2007088809A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002208173A (en) * | 2001-01-11 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Light head |
JP2004134056A (en) * | 2002-09-03 | 2004-04-30 | Samsung Electronics Co Ltd | Lens and optical pickup having a function of correcting wavefront aberration due to tilt |
JP2004272949A (en) * | 2003-03-05 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Optical head and optical information recording / reproducing device |
JP2005032286A (en) * | 2003-07-07 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
JP2005196859A (en) * | 2004-01-07 | 2005-07-21 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
WO2005104110A1 (en) * | 2004-04-22 | 2005-11-03 | Matsushita Electric Industrial Co., Ltd. | Optical head device and optical information device |
-
2006
- 2006-01-31 JP JP2006022023A patent/JP2009093684A/en active Pending
-
2007
- 2007-01-29 WO PCT/JP2007/051388 patent/WO2007088809A1/en active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002208173A (en) * | 2001-01-11 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Light head |
JP2004134056A (en) * | 2002-09-03 | 2004-04-30 | Samsung Electronics Co Ltd | Lens and optical pickup having a function of correcting wavefront aberration due to tilt |
JP2004272949A (en) * | 2003-03-05 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Optical head and optical information recording / reproducing device |
JP2005032286A (en) * | 2003-07-07 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
JP2005196859A (en) * | 2004-01-07 | 2005-07-21 | Matsushita Electric Ind Co Ltd | Optical pickup device and optical disk device |
WO2005104110A1 (en) * | 2004-04-22 | 2005-11-03 | Matsushita Electric Industrial Co., Ltd. | Optical head device and optical information device |
Also Published As
Publication number | Publication date |
---|---|
JP2009093684A (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4504180B2 (en) | Optical element, optical head, optical information recording / reproducing apparatus, computer, video recording apparatus, video reproducing apparatus, server, and car navigation system | |
US7616550B2 (en) | Optical pickup unit | |
JPWO2008081859A1 (en) | Optical pickup, optical disk device, composite coupling lens, composite prism, and optical information device | |
JP4663614B2 (en) | Optical pickup and optical information recording / reproducing apparatus | |
CN102483936A (en) | Optical head device, optical information device, and information processing device | |
JP5037516B2 (en) | Optical pickup device, optical information device, computer, optical disc player, car navigation system, optical disc recorder, and optical disc server | |
US8179769B2 (en) | Optical head device, optical information device, computer, disc player, car navigation system, optical disc recorder, and vehicle | |
WO2008075573A1 (en) | Optical element for optical pickup device, optical pickup device and method for assembling optical pickup device | |
US7505390B2 (en) | Compatible optical pickup | |
JP2005044467A (en) | Optical pickup device | |
WO2012063484A1 (en) | Optical pickup, inclination angle detection method, optical information device and information processing device | |
US20070013984A1 (en) | Active compensation device, and compatible optical pickup and optical recording and/or reproducing apparatus employing the active compensation device | |
WO2011033786A1 (en) | Light pickup optical system | |
JP2009009617A (en) | Optical head, optical information device, computer, video recording / reproducing device, video reproducing device, server, and car navigation system | |
US8760989B2 (en) | Objective lens element | |
WO2007088809A1 (en) | Optical head device and optical information device | |
JP6895633B2 (en) | Objective lens, optical head device, optical information device, and optical disk system | |
US7817524B2 (en) | Optical head device with multiple diffracting planes, and an optical information apparatus, computer, video recording/reproducing apparatus, video reproducing apparatus, server, and car navigation system including the same | |
JP2011040165A (en) | Objective lens unit and optical pickup device | |
US20060109771A1 (en) | Optical pickup device | |
JP2009009615A (en) | Optical head, optical head assembly method, optical recording / reproducing apparatus, computer, video recording / reproducing apparatus, video reproducing apparatus, server, and car navigation system | |
JP2006099924A (en) | Lens unit and optical pickup device | |
JP2006252614A (en) | Optical pickup device and optical disk driving device using the same | |
US20100110863A1 (en) | Compatible near field optical recording/reproducing apparatus | |
JP2008112558A (en) | Optical head device, optical information device, computer, video recording / reproducing device, video reproducing device, server, and car navigation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07707619 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |