[go: up one dir, main page]

WO2007083486A1 - 単相用出力インバータ装置とその出力電流検出方法 - Google Patents

単相用出力インバータ装置とその出力電流検出方法 Download PDF

Info

Publication number
WO2007083486A1
WO2007083486A1 PCT/JP2006/325742 JP2006325742W WO2007083486A1 WO 2007083486 A1 WO2007083486 A1 WO 2007083486A1 JP 2006325742 W JP2006325742 W JP 2006325742W WO 2007083486 A1 WO2007083486 A1 WO 2007083486A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
current
parallel
parallel connection
output
Prior art date
Application number
PCT/JP2006/325742
Other languages
English (en)
French (fr)
Inventor
Masato Higuchi
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US12/161,066 priority Critical patent/US8547714B2/en
Priority to GB0812964A priority patent/GB2448263B/en
Priority to CN2006800512446A priority patent/CN101361256B/zh
Priority to DE112006003675T priority patent/DE112006003675T5/de
Priority to JP2007554838A priority patent/JP4811674B2/ja
Publication of WO2007083486A1 publication Critical patent/WO2007083486A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a single-phase output inverter device, and more particularly to a single-phase output inverter device having a current detector and a method of detecting an output current of the single-phase output inverter device.
  • FIG. 4 is a configuration diagram of a current detection circuit of an inverter device according to the first prior art.
  • reference numerals 61 to 66 are parallel connection elements including semiconductor switching elements 11 to 16 and diodes 21 to 26 connected in parallel in the opposite direction to the semiconductor switching elements, respectively.
  • ⁇ 44 is an amplifier for amplifying the voltage across the terminals of the current detection resistor
  • 50 is an electrical load connected to the output terminals U, V and W of each arm
  • P is a positive electrode of the DC bus of the inverter device
  • N is It is a negative electrode.
  • 67 is a U arm
  • 68 is a V arm
  • 69 is a W arm
  • each arm is configured by connecting two parallel connectors in series.
  • the U arm 67 has a positive electrode P and a parallel connector.
  • a current detector 31 and a current detector 32 are respectively provided between the negative electrode 61 and the negative electrode N and the parallel connection 62
  • the W arm 69 is a current between the positive electrode P and the parallel connection 65 and between the negative electrode N and the parallel connection 66 respectively.
  • a detector 33 and a current detector 34 are provided.
  • FIG. 5 is a time chart explaining the current detection operation of the prior art.
  • a) is the U-phase output current
  • b) is the voltage between the terminals of the current detection resistor
  • c) is the voltage between the terminals of the current detection resistor 32.
  • the voltages of the current detection resistors 31 and 32 are amplified by the amplifiers 41 and 42, respectively, and added by an amplifier (not shown) to obtain a U-phase current detection signal as shown in FIG. 5d). That is, the U-phase output current is detected by the two current detection resistors connected to the U-arm, and the W-phase output current is detected by the two current detection resistors connected to the W-arm.
  • each arm of the three-phase inverter is provided with a current detector for detecting the current flowing in the parallel connection connected to the DC power supply negative electrode N side, and the two-phase negative electrode side has a shorter off time in PWM control.
  • a method is disclosed which simultaneously detects the current of the parallel connection conductor of the and the output current of the inverter (see, for example, Patent Document 2).
  • FIG. 6 is a block diagram of a current detection circuit of an inverter according to the second prior art.
  • reference numerals 61 to 66 denote parallel connection bodies
  • 35 to 37 denote current detectors for detecting the current flowing in the parallel connection bodies connected to the DC power source negative electrode N side of each arm
  • 50 denotes an electric load connected to the output
  • 72 is a current detection unit that samples the current detection value obtained from the selection unit.
  • FIG. 7 is an operation waveform diagram showing the operation of the prior art.
  • the carrier wave is compared with the U-phase, V-phase, and W-phase voltage commands, respectively, to generate the U-arm, V-arm, and W-arm drive signals.
  • Current detectors 35, 36, and 37 respectively detect the current flowing in the parallel connection members 62, 64, 66 connected to the negative electrode N side of the U arm 67, V arm 68, and W arm 69 shown in FIG. Input to 71.
  • the detection phase selection unit 71 selects the two phases of the semiconductor switching element connected to the DC power supply negative electrode N side for a long time, and inputs it to the current detection unit 72.
  • the current detection unit 71 simultaneously samples the selected two-phase conduction current based on the sample timing signal, and uses it as an output current of the selected phase.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-166247
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-79157
  • the present invention has been made in view of these problems, and is inexpensive because the number of parts is small, and highly accurate current detection can be performed. Furthermore, even if arm short circuit occurs due to noise or the like, the short circuit is short. It is an object of the present invention to provide a highly reliable single-phase output inverter device capable of detecting a fault current and a method of detecting the output current thereof.
  • the present invention is as follows.
  • the invention according to claim 1 is a series connected body in which a semiconductor switching element and two parallel connected bodies of diodes connected in parallel in a direction opposite to the semiconductor switching element are connected in series and the connection portion is a phase output terminal.
  • the first arm which is one arm of the arm, includes the first arm
  • a first current detector for detecting a current flowing in a parallel connection connected to the DC power supply positive electrode side is provided between the DC power supply positive electrode and the parallel connection
  • the second arm which is the other arm of the arm
  • the arm is provided with a second current detector for detecting a current flowing in a parallel connection connected to the DC power supply negative side of the second arm, between the DC power supply negative electrode and the parallel connection. It is characterized by
  • a semiconductor switching element and two parallel connected bodies of diodes connected in parallel in the reverse direction to the semiconductor switching element are connected in series, and the connection portion is a phase output terminal.
  • the series connection body is used as an arm for one phase, and two of the arms are connected in parallel between the positive electrode and the negative electrode of the DC power supply, and one arm of the arms is the first arm.
  • a first current detector for detecting a current flowing in a parallel connection connected to the DC power supply positive side is provided between the DC power supply positive and the parallel connection, and a second arm which is the other arm of the arm is provided.
  • a second current detector for detecting the current flowing in the parallel connection body connected to the DC power supply negative side of the second arm;
  • a first current detector detects a current in a first reflux mode that circulates through the parallel connector connected to the positive electrode.
  • a second current detector detects a current in a second return mode flowing back through the parallel connection body connected to the negative electrode, and an output signal of the first current detector and an output signal of the second current detector It is characterized by detecting force output current.
  • the semiconductor switching element of the first arm is driven by comparing the first output voltage command for commanding the voltage of the first arm with the carrier wave for generating the PWM signal. And generates a second arm drive signal for driving the semiconductor switching element of the second arm by comparing the second output voltage command for commanding the voltage of the second arm with the carrier wave. And sampling the current of the first return mode at the lowest point of the carrier wave and sampling the current of the second return mode at the uppermost point of the carrier wave.
  • each arm since one current detector is provided for each arm, the number of parts is smaller and the cost is lower than that of the prior art.
  • each arm since each arm is provided with a current detector and can detect upper and lower arm short circuit current and ground fault current, a highly reliable single-phase output inverter device can be realized.
  • FIG. 1 is a circuit diagram of a single-phase output inverter device according to an embodiment of the present invention.
  • FIG. 2 A circuit diagram showing the flow of current in the present embodiment
  • FIG. 3 A time chart showing the principle of current detection in the present embodiment
  • FIG. 4 The block diagram of the current detection circuit of the inverter device in the first prior art
  • FIG. 5 A time chart explaining the current detection operation of the first prior art
  • FIG. 6 A block diagram of a current detection circuit of an inverter according to the second prior art.
  • FIG. 7 Operation waveform chart showing the operation of the second prior art
  • FIG. 1 is a circuit diagram of a single-phase output inverter device according to an embodiment of the present invention.
  • P indicates the positive electrode side of the DC power supply
  • N indicates the negative electrode side of the DC power supply
  • 1 to 4 indicate parallel connections in which the semiconductor switching elements 11 to 14 and the diodes 21 to 24 are connected in parallel in opposite directions.
  • a connector 5 is an electrical load connected between the output terminal A and the output terminal B
  • 6 is a first current detector
  • 7 is a second current detector.
  • Reference numeral 8 denotes a first arm composed of parallel connection bodies 1 and 2
  • 9 denotes a second arm composed of parallel connection bodies 3 and 4.
  • FIG. 2 is a circuit diagram showing the flow of current in the single-phase output inverter device in the present embodiment
  • FIG. 3 is a time chart showing the principle of current detection in the single-phase output inverter device in the present embodiment. The case where the current flows from the output terminal A and flows from the output terminal B via the electric load 5 will be described as an example.
  • the A-phase output voltage command and the B-phase output voltage command are voltage commands for commanding the voltages of the output terminal A and the output terminal B, and the A-phase output voltage command is compared with the carrier wave and the first arm A drive signal is generated, and the B-phase output voltage command is compared with the carrier wave to generate a second arm drive signal.
  • the positive side switching element is on and the negative side switching element is off. If the voltage command is smaller than the carrier wave voltage, the positive side switching element is off and the negative side switching element is on. .
  • section tO-tl is a section in which the A-phase output voltage command is larger than the carrier wave and the B-phase output voltage command is smaller than the carrier wave, and in this case, the first arm drive signal is semiconductor switching on the positive electrode side.
  • the element is turned on, the semiconductor switching element on the negative electrode side is turned off, the Hi mode is set, and the second arm drive signal is switched to the Lo mode, which turns off the semiconductor switching element on the positive electrode side and the semiconductor switching element on the negative side.
  • this section the semiconductor switching element 11 of the parallel connection body 1 of the first arm and the semiconductor switching element 14 of the parallel connection body 4 of the second arm are turned on, and the DC power source P is connected to the output terminal through the parallel connection body 1 A current flows from A to the electric load 5 and a current is drawn from the electric load 5 to the output terminal B, and a current flows to the DC power supply negative electrode N through the parallel connection 4.
  • this section is a transistor mode (Tr mode) in which power is supplied to the electrical load as well as the DC power supply.
  • the drive signal of the first arm and the second arm are both in the Lo mode, the semiconductor switching element 11 is turned off, the semiconductor switching element 12 is turned on, and the output current is output terminal A Flows from the semiconductor switching element 14 to the output terminal B through the electric load 5 and the output from the semiconductor switching element 14 through the N line via the forward direction of the diode 22 of the parallel connection body 2 Return to terminal A.
  • this section is the second reflux mode in which the current flows to the electric load and flows back through the parallel connection conductor on the negative electrode side and the DC power supply negative electrode N, and the second current detector 7 converts it into the electric load. Detect the flowing current.
  • the semiconductor switching device 12 is turned off and the semiconductor switching device 11 is turned on in the same drive mode as during tO-tl, so the Tr mode is set.
  • the semiconductor switching element 14 is turned off and the semiconductor switching element 13 is turned on in a section where the first arm and second arm drive signals are both in the Hi mode, and the output current is output terminal It flows from A to the output terminal B through the electric load 5 and returns to the output terminal A through the semiconductor switching element 11 of the parallel connection 1 through the forward direction of the diode 23 of the parallel connection 3 and the P line on the positive side.
  • this section is the first return mode in which the current flows to the electrical load and flows back through the parallel connection conductor on the positive electrode side and the DC power supply positive pole P, and the first current detector 6 Detect the flowing current.
  • Tr mode is the DC power supply positive electrode P power A current flows from the output terminal A to the DC power supply negative electrode N through the semiconductor switching element 12 of the parallel connection 2 from the output terminal A through the electric load 5 and flows through the semiconductor switching element 13 of the parallel connection 3 to the output terminal B.
  • first and second reflux modes current flows in the opposite direction to the case where current flows from the output terminal A to B.
  • first reflux mode current flows to the parallel connection bodies 1 and 3
  • second reflux mode is parallel connection Current flows in bodies 2 and 4. Therefore, by detecting the current of parallel connection 1 and 4 or parallel connection 2 and 3, it is possible to detect current of both the first reflux mode and the second reflux mode. In the present embodiment, the currents of parallel connectors 1 and 4 were detected.
  • il is in the second reflux mode when the carrier between t1 and t2 reaches the highest point.
  • the current i.sub.2, i.sub.2 is the current in the first return mode when the carrier wave at t.sub.3-4 becomes the lowest point.
  • the detection signals in the second return mode and the first return mode obtained from the current detector 7 and the current detector 6 are sampled by the sampling circuit (not shown), and the timing when the carrier reaches the highest point and the carrier become the lowest point. It samples sequentially at the timing of
  • one arm of the two arms of the single-phase output inverter device is provided with a current detector between the DC power supply positive electrode and the parallel connection body, and the other arm is a DC power supply negative electrode Since the current detector is provided between the parallel-connected members, it is possible to detect the current of the first reflux mode and the current of the second reflux mode which are generated once in each carrier cycle. That is, since the output current can be detected twice in one carrier wave cycle, the detection cycle can be short and highly accurate detection can be performed.
  • each arm since it is sufficient to provide one current detector for each arm, the configuration is simple and inexpensive. Furthermore, since each arm is provided with a current detector, even if arm short circuit occurs due to noise or the like, overcurrent due to this arm short circuit can be detected.
  • the present invention is applicable to a servo drive device used for a machine tool, a robot, a general industrial machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 少ない部品点数で高精度の電流検出ができる単相用出力インバータ装置とその出力電流検出方法を提供する。  第1アーム(8)の直流電源正極P側と並列接続体(1)との間に第1電流検出器(6)を配置し、第2アーム(9)の直流電源負極N側と並列接続体(4)との間に第2電流検出器(7)を配置し、第1電流検出器(6)で第1還流モードの電流を検出し、第2電流検出器(7)で第2還流モードの電流を検出し、第1電流検出器(6)と2電流検出器(7)の出力信号から出力電流を検出する。

Description

明 細 書
単相用出力インバータ装置とその出力電流検出方法
技術分野
[0001] 本発明は、単相用出力インバータ装置に関し、特に電流検出器を備えた単相用出 力インバータ装置とその出力電流検出方法に関する。
背景技術
[0002] (従来例 1)
従来、一つのアームに直流電源正極側に接続した並列接続体に流れる電流と負 極側に接続した並列接続体に流れる電流の両方を検出し、出力電流を検出する方 法が開示されている (例えば特許文献 1参照)。
[0003] 図 4は、第 1従来技術におけるインバータ装置の電流検出回路の構成図である。
図において、 61〜66は半導体スイッチング素子 11〜16と、この半導体スィッチン グ素子とそれぞれ逆方向に並列接続したダイオード 21〜26から構成される並列接 続体、 31〜34は電流検出抵抗、 41〜44は前記電流検出抵抗の端子間電圧をそれ ぞれ増幅する増幅器、 50は各アームの出力端子 U、 V、 Wに接続された電気負荷、 Pはインバータ装置の直流母線の正極、 Nは負極である。
また、 67は Uアーム、 68は Vアーム、 69は Wアームで、それぞれのアームは並列 接続体を 2個直列に接続した構成になっており、さらに、 Uアーム 67は正極 Pと並列 接続体間 61及び負極 Nと並列接続体 62間にそれぞれ電流検出器 31及び電流検 出器 32を備え、 Wアーム 69は正極 Pと並列接続体 65間及び負極 Nと並列接続体間 66にそれぞれ電流検出器 33及び電流検出器 34を備えている。
[0004] 次に動作について説明する。
図 5は本従来技術の電流検出動作を説明するタイムチャートである。
図において、 a)は U相の出力電流、 b)は電流検出抵抗 31の端子間の電圧、 c)は 電流検出抵抗 32の端子間の電圧である。
電流検出抵抗 31及び 32の電圧をそれぞれ増幅器 41及び 42で増幅し、図示しな い増幅器で加算すれば、図 5d)に示すような U相の電流検出信号が得られる。 すなわち、 U相の出力電流を Uアームに接続した 2個の電流検出抵抗で検出し、 W 相の出力電流を Wアームに接続した 2個の電流検出抵抗で検出している。
[0005] (従来例 2)
また、従来、三相インバータの各アームに直流電源負極 N側に接続された並列接 続体に流れる電流を検出する電流検出器を備え、 PWM制御におけるオフ時間がよ り短い 2相の負極側の並列接続導体の電流を同時に検出しインバータの出力電流と する方法が開示されて 、る (例えば特許文献 2参照)。
[0006] 図 6は、第 2従来技術をおけるインバータ装置の電流検出回路の構成図である。
図において、 61〜66は並列接続体、 35〜37は各アームの直流電源負極 N側に 接続した並列接続体に流れる電流を検出する電流検出器、 50は出力に接続する電 気負荷、 71は、検出相を選択する検出相選択部、 72は、選択部から得られた電流 検出値をサンプリングする電流検出部である。
[0007] 次に動作について説明する。
図 7は、本従来技術の動作を示す動作波形図である。
搬送波と、 U相、 V相、 W相電圧指令がそれぞれ比較され、 Uアーム、 Vアーム、 W アームドライブ信号が生成される。図 6に示す Uアーム 67、 Vアーム 68、 Wアーム 69 の負極 N側に接続した並列接続体 62、 64、 66に流れる電流を電流検出器 35、 36、 37でそれぞれ検出し検出相選択部 71へ入力する。検出相選択部 71は直流電源負 極 N側に接続した半導体スイッチング素子のオン時間が長 、2相を選択し、電流検 出部 72に入力する。電流検出部 71は選択された 2相の通電電流をサンプルタイミン グ信号に基づいて同時にサンプリングし、選択された相の出力電流としている。 特許文献 1 :特開 2000— 166247号公報
特許文献 2:特開 2003 - 79157号公報
発明の開示
発明が解決しょうとする課題
[0008] 第 1従来技術に示した三相インバータ装置の 3つのアームの内の 2つのアームを用 いて単相用インバータ装置の構成できる力 仮に、 Uアームと Vアームで構成すると、 Vアームは電流検出器が無いため、半導体スイッチング素子の誤動作による上下ァ ーム短絡電流の検出はできないという問題があり、 uアームと wアームで構成すると、 電流検出器が合計 4個も必要となり、コスト高となるという問題があった。
[0009] 第 2従来技術に示した三相インバータ装置の電流検出回路を単相用出力インバー タ装置に応用すると、並列接続体と直流電源負極 N側を介して還流する第 2還流モ ードの電流しか検出できな 、ので検出精度としては低 、と 、う問題があった。
[0010] 本発明はこのような問題点に鑑みてなされたものであり、部品点数が少なぐ安価 で、かつ高精度な電流検出ができ、さらに、ノイズ等によりアーム短絡が発生しても短 絡電流を検出できる信頼性の高い単相用出力インバータ装置とその出力電流検出 方法を提供することを目的とする。
課題を解決するための手段
[0011] 上記問題を解決するため、本発明は、次のようにしたものである。
請求項 1に記載の発明は、半導体スイッチング素子と、この半導体スイッチング素 子と逆向きに並列接続したダイオードの並列接続体を 2個直列接続し、接続部を相 出力端子とした直列接続体を 1相分のアームとし、前記アームを直流電源の正極と 負極間に 2個並列接続した単相用出力インバータ装置において、前記アームの一方 のアームである第 1アームには、この第 1アームの直流電源正極側に接続した並列接 続体に流れる電流を検出する第 1電流検出器を、前記直流電源正極と前記並列接 続体の間に備え、前記アームのもう一方のアームである第 2アームには、この第 2ァ ームの直流電源負極側に接続した並列接続体に流れる電流を検出する第 2電流検 出器を、前記直流電源負極と前記並列接続体の間に備えたことを特徴としている。
[0012] また、請求項 2に記載の発明は、半導体スイッチング素子と、この半導体スィッチン グ素子と逆向きに並列接続したダイオードの並列接続体を 2個直列接続し、接続部 を相出力端子とした直列接続体を 1相分のアームとし、前記アームを直流電源の正 極と負極間に 2個並列接続し、前記アームの一方のアームである第 1アームには、こ の第 1アームの直流電源正極側に接続した並列接続体に流れる電流を検出する第 1 電流検出器を、前記直流電源正極と前記並列接続体の間に備え、前記アームのもう 一方のアームである第 2アームには、この第 2アームの直流電源負極側に接続した並 列接続体に流れる電流を検出する第 2電流検出器を、前記直流電源負極と前記並 列接続体の間に備えた単相用出力インバータ装置の電流検出方法において、前記 正極に接続された並列接続体を介して還流する第 1還流モードの電流を第 1電流検 出器で検出し、前記負極に接続された並列接続体を介して還流する第 2還流モード の電流を第 2電流検出器で検出し、前記第 1電流検出器の出力信号と前記第 2電流 検出器の出力信号力 出力電流を検出することを特徴としている。
[0013] また、請求項 3に記載の発明は、前記第 1アームの電圧を指令する第 1出力電圧指 令と PWM信号を生成する搬送波とを比較して第 1アームの半導体スイッチング素子 を駆動する第 1アームドライブ信号を生成し、前記第 2アームの電圧を指令する第 2 出力電圧指令と前記搬送波とを比較して第 2アームの半導体スイッチング素子を駆 動する第 2アームドライブ信号を生成し、前記搬送波の最下点で前記第 1還流モード の電流をサンプリングし、前記搬送波の最上点で前記第 2還流モードの電流をサン プリングすることを特徴として 、る。
発明の効果
[0014] 請求項 1に記載の発明によると、アーム毎に一つの電流検出器を備える構成である ため、従来技術より部品点数が少なく安価な構成である。また、各アームに電流検出 器を備え、上下アーム短絡電流及び地絡電流をも検出できるので信頼性の高い単 相用出力インバータ装置が実現できる。
請求項 2に記載の発明によると、搬送波 1周期中に 2回電流検出を行うタイミングが あるため、検出周期が短く高精度の電流検出が可能となる。
図面の簡単な説明
[0015] [図 1]本発明の実施例を示す単相用出力インバータ装置の回路構成図
[図 2]本実施例における電流の流れを示す回路図
[図 3]本実施例における電流検出の原理を示すタイムチャート
[図 4]第 1従来技術におけるインバータ装置の電流検出回路の構成図
[図 5]第 1従来技術の電流検出動作を説明するタイムチャート
[図 6]第 2従来技術をおけるインバータ装置の電流検出回路の構成図
[図 7]第 2従来技術の動作を示す動作波形図
符号の説明 [0016] 1〜4 並列接続体
11〜14 半導体スイッチング素子
15、 16 半導体スイッチング素子
21〜24 ダイオード
25、 26 ダイオード
31〜34 電流検出抵抗
35-37 電流検出器
41〜44 増幅器
5、 50 電気負荷
6 第 1電流検出器
7 第 2電流検出器
61〜66 並列接続体
67 Uアーム
68 Vアーム
69 Wアーム
71 検出相選択部
72 電流検出部
8 第 1アーム
9 第 2アーム
発明を実施するための最良の形態
[0017] 以下、本発明について図を用いて説明する。
実施例 1
[0018] 図 1は本発明の実施例を示す単相用出力インバータ装置の回路構成図である。
図 1において、 Pは直流電源の正極側を示し、 Nは直流電源の負極側を示し、 1〜4 は半導体スイッチング素子 11〜14とダイオード 21〜24がそれぞれ逆方向に並列接 続された並列接続体、 5は出力端子 Aと出力端子 B間に接続された電気負荷、 6は 第 1電流検出器、 7は第 2電流検出器である。また、 8は並列接続体 1と 2で構成され た第 1アーム、 9は並列接続体 3と 4で構成された第 2アームである。 [0019] 次に動作について説明する。
先ず、各動作モードにおける電流の流れにっ 、て説明する。
図 2は本実施例における単相用出力インバータ装置の電流の流れを示す回路図、 図 3は本実施例における単相用出力インバータ装置の電流検出の原理を示すタイム チャートである。出力端子 Aから電流を流し出し電気負荷 5を介し出力端子 Bから電 流を吸 、込む場合を例として説明する。
[0020] 図 3において A相出力電圧指令及び B相出力電圧指令は出力端子 A及び出力端 子 Bの電圧を指令する電圧指令で、 A相出力電圧指令は搬送波と比較され第 1ァー ムドライブ信号を生成し、 B相出力電圧指令は搬送波と比較され第 2アームドライブ 信号を生成する。
電圧指令が搬送波より大きい場合は正極側スイッチング素子がオンで負極側スイツ チング素子がオフとなり、電圧指令が搬送波の電圧より小さい場合は正極側スィッチ ング素子がオフで負極側スイッチング素子がオンとなる。
[0021] 図 3において、区間 tO— tlは、 A相出力電圧指令は搬送波より大きく B相出力電圧 指令は搬送波より小さい区間で、この場合、第 1アームドライブ信号は正極側の半導 体スイッチング素子をオン、負極側の半導体スイッチング素子をオフする Hiモードと なり、第 2アームドライブ信号は正極側の半導体スイッチング素子をオフ、負極側の 半導体スイッチング素子をオンする Loモードとなる。
従って、この区間は、第 1アームの並列接続体 1の半導体スイッチング素子 11と第 2 アームの並列接続体 4の半導体スイッチング素子 14がオンし、直流電源正極 Pから 並列接続体 1を介し出力端子 Aから電気負荷 5へ電流を流し、電気負荷 5から出力 端子 Bへ電流を吸い込み並列接続体 4を介し直流電源負極 Nへ電流が流れる。 このように本区間は直流電源力も電気負荷へ電力が供給されるトランジスタモード( Trモード)である。
[0022] tl—t2間は、第 1アーム及び第 2アームのドライブ信号が共に Loモードの区間で、 半導体スイッチング素子 11がオフ、半導体スイッチング素子 12がオンに変わり、出力 電流は、出力端子 Aから電気負荷 5を介し出力端子 Bに流れ込み、半導体スィッチン グ素子 14から Nラインを介し並列接続体 2のダイオード 22の順方向を経由して出力 端子 Aに戻る。
このように本区間は電気負荷に流れて!/、た電流が負極側の並列接続導体と直流 電源負極 Nを介して還流する第 2還流モードであり、第 2電流検出器 7で電機負荷に 流れる電流を検出する。
[0023] t2—t3間は、 tO— tl間と同一のドライブモードで、半導体スイッチング素子 12がォ フし、半導体スイッチング素子 11がオンするため、 Trモードとなる。
[0024] t3—t4間は、第 1アーム及び第 2アームドライブ信号が共に Hiモードの区間で、半 導体スイッチング素子 14がオフ、半導体スイッチング素子 13がオンに変わり、出力電 流は、出力端子 Aから電気負荷 5を介し出力端子 Bに流れ込み、並列接続体 3のダ ィオード 23の順方向及び正極側の Pラインを介し並列接続体 1の半導体スイッチング 素子 11を通して出力端子 Aに戻る。
このように本区間は電気負荷に流れて!/、た電流が正極側の並列接続導体と直流 電源正極 Pを介して還流する第 1還流モードであり、第 1電流検出器 6で電機負荷に 流れる電流を検出する。
[0025] 以上の動作説明では、出力電流が出力端子 A力 Bに電流が流れる場合を例とし て説明したが、出力端子 Bから Aに電流が流れる場合、 Trモードは、直流電源正極 P 力 並列接続体 3の半導体スイッチング素子 13を介し出力端子 Bへ電流を流し、電 気負荷 5を介して出力端子 Aから並列接続体 2の半導体スイッチング素子 12を介し 直流電源負極 Nへ電流が流れる。
また、第 1及び第 2還流モードでは、出力端子 Aから Bへ電流が流れる場合とはそ れぞれ反対向きに電流が流れることになる。しかし、出力端子 Aから Bへ電流が流れ る場合及び出力端子 Bから Aに流れる場合の双方とも第 1還流モードは、並列接続 体 1と 3に電流が流れ、第 2還流モードは、並列接続体 2と 4に電流が流れる。したが つて、並列接続体 1と 4、または並列接続体 2と 3の電流を検出すれば第 1還流モード 及び第 2還流モードの双方の電流を検出することができる。本実施例では、並列接 続体 1と 4の電流を検出した。
[0026] 次に出力電流の検出方法について説明する。
図 3において、 ilは tl—t2間の搬送波が最上点になった時の第 2還流モードにお ける電流、 i2は t3— 4間の搬送波が最下点になった時の第 1還流モードにおける電 流である。電流検出器 7及び電流検出器 6から得られる第 2還流モード及び第 1還流 モードにおける検出信号を、図示しないサンプリング回路で、搬送波が最上点になつ た時のタイミングと搬送波が最下点になった時のタイミングで順次サンプリングする。
[0027] このように、本発明では単相用出力インバータ装置の 2つのアームの一方のアーム が直流電源正極と並列接続体の間に電流検出器を備え、もう一方のアームが直流 電源負極と並列接続体の間に電流検出器を備えているので、搬送波 1周期にそれ ぞれ 1回発生する第 1還流モードの電流と第 2還流モードの電流を検出できる。すな わち、搬送波 1周期に 2回出力電流を検出できるので検出周期が短く高精度の検出 ができる。
また、各アームに対してそれぞれ 1つの電流検出器を設ければ良いので、構成が 簡単で安価である。さらに、各アームが電流検出器を備えているので、ノイズ等によ つてアーム短絡が発生しても、このアーム短絡による過電流を検出できる。
産業上の利用可能性
[0028] 本発明は、工作機械、ロボット、一般産業機械などに使用されるサーボドライブ装置 に適用できる。

Claims

請求の範囲
[1] 半導体スイッチング素子と、この半導体スイッチング素子と逆向きに並列接続したダ ィオードの並列接続体を 2個直列接続し、接続部を相出力端子とした直列接続体を 1相分のアームとし、前記アームを直流電源の正極と負極間に 2個並列接続した単 相用出力インバータ装置にぉ 、て、
前記アームの一方のアームである第 1アームには、この第 1アームの直流電源正極 側に接続した並列接続体に流れる電流を検出する第 1電流検出器を、前記直流電 源正極と前記並列接続体の間に備え、
前記アームのもう一方のアームである第 2アームには、この第 2アームの直流電源 負極側に接続した並列接続体に流れる電流を検出する第 2電流検出器を、前記直 流電源負極と前記並列接続体の間に備えたことを特徴とする単相用出力インバータ 装置。
[2] 半導体スイッチング素子と、この半導体スイッチング素子と逆向きに並列接続したダ ィオードの並列接続体を 2個直列接続し、接続部を相出力端子とした直列接続体を 1相分のアームとし、前記アームを直流電源の正極と負極間に 2個並列接続し、 前記アームの一方のアームである第 1アームには、この第 1アームの直流電源正極 側に接続した並列接続体に流れる電流を検出する第 1電流検出器を、前記直流電 源正極と前記並列接続体の間に備え、
前記アームのもう一方のアームである第 2アームには、この第 2アームの直流電源 負極側に接続した並列接続体に流れる電流を検出する第 2電流検出器を、前記直 流電源負極と前記並列接続体の間に備えた単相用出力インバータ装置の電流検出 方法において、
前記正極に接続された並列接続体を介して還流する第 1還流モードの電流を第 1 電流検出器で検出し、
前記負極に接続された並列接続体を介して還流する第 2還流モードの電流を第 2 電流検出器で検出し、
前記第 1電流検出器の出力信号と前記第 2電流検出器の出力信号から出力電流 を検出することを特徴とする単相用出力インバータ装置の出力電流検出方法。 [3] 前記第 1アームの電圧を指令する第 1出力電圧指令と PWM信号を生成する搬送 波とを比較して第 1アームの半導体スイッチング素子を駆動する第 1アームドライブ信 号を生成し、前記第 2アームの電圧を指令する第 2出力電圧指令と前記搬送波とを 比較して第 2アームの半導体スイッチング素子を駆動する第 2アームドライブ信号を 生成し、
前記搬送波の最下点で前記第 1還流モードの電流をサンプリングし、前記搬送波 の最上点で前記第 2還流モードの電流をサンプリングすることを特徴とする請求項 2 に記載の電流検出方法。
PCT/JP2006/325742 2006-01-17 2006-12-25 単相用出力インバータ装置とその出力電流検出方法 WO2007083486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/161,066 US8547714B2 (en) 2006-01-17 2006-12-25 Output inverter for single phase and output current detecting method thereof
GB0812964A GB2448263B (en) 2006-01-17 2006-12-25 Output inverter for single phase and output current detecting method thereof
CN2006800512446A CN101361256B (zh) 2006-01-17 2006-12-25 单相输出逆变器及其输出电流检测方法
DE112006003675T DE112006003675T5 (de) 2006-01-17 2006-12-25 Einphasen-Ausgangswechselrichter und Ausgangsstrom-Erfassungsverfahren
JP2007554838A JP4811674B2 (ja) 2006-01-17 2006-12-25 単相用出力インバータ装置とその出力電流検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-008285 2006-01-17
JP2006008285 2006-01-17

Publications (1)

Publication Number Publication Date
WO2007083486A1 true WO2007083486A1 (ja) 2007-07-26

Family

ID=38287442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325742 WO2007083486A1 (ja) 2006-01-17 2006-12-25 単相用出力インバータ装置とその出力電流検出方法

Country Status (8)

Country Link
US (1) US8547714B2 (ja)
JP (1) JP4811674B2 (ja)
KR (1) KR20080093993A (ja)
CN (1) CN101361256B (ja)
DE (1) DE112006003675T5 (ja)
GB (1) GB2448263B (ja)
TW (1) TW200745583A (ja)
WO (1) WO2007083486A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797773B2 (en) * 2010-08-30 2014-08-05 Cooper Technologies Company Isolated DC-DC converter including ZVS full-bridge and current doubler
TWI434622B (zh) * 2011-12-30 2014-04-11 Macroblock Inc 轉換器之等效電阻值的控制方法與裝置
DE102012219318A1 (de) * 2012-10-23 2014-04-24 Kuka Laboratories Gmbh Elektrische Vorrichtung mit einem getakteten Netzteil und Verfahren zum Testen des Netzteils der elektrischen Vorrichtung
DE102016123515B4 (de) * 2016-12-06 2019-02-07 Universität Paderborn Strommesseinrichtung sowie Verfahren zur Messung eines elektrischen Stromes in einem Stromleiter
JP7184706B2 (ja) * 2019-05-10 2022-12-06 株式会社日立産機システム 電力変換装置、それを用いたシステム、およびその診断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213275A (ja) * 1988-06-30 1990-01-17 Shinko Electric Co Ltd 出力トランスの偏磁防止装置
JPH07107751A (ja) * 1993-09-30 1995-04-21 Nissin Electric Co Ltd インバータ回路
JPH0993948A (ja) * 1995-09-26 1997-04-04 Mitsubishi Electric Corp モータの制御装置
JPH1028382A (ja) * 1996-07-05 1998-01-27 Motonobu Hattori インバータの出力段における電流検出法
JP2001025259A (ja) * 1999-07-05 2001-01-26 Tdk Corp Pwmインバーター装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782038B2 (ja) 1989-05-23 1995-09-06 三菱電機株式会社 Pwmインバータの電流検出方法
JPH0822146B2 (ja) 1993-07-19 1996-03-04 株式会社日立製作所 電圧形多相pwmインバータの制御装置
US5825597A (en) * 1996-09-25 1998-10-20 General Electric Company System and method for detection and control of circulating currents in a motor
JP2000166247A (ja) 1998-12-01 2000-06-16 Hitachi Ltd インバータ装置
JP3454212B2 (ja) * 1999-12-02 2003-10-06 株式会社日立製作所 モータ制御装置
JP2003079157A (ja) 2001-08-31 2003-03-14 Fuji Electric Co Ltd インバータの出力電流検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213275A (ja) * 1988-06-30 1990-01-17 Shinko Electric Co Ltd 出力トランスの偏磁防止装置
JPH07107751A (ja) * 1993-09-30 1995-04-21 Nissin Electric Co Ltd インバータ回路
JPH0993948A (ja) * 1995-09-26 1997-04-04 Mitsubishi Electric Corp モータの制御装置
JPH1028382A (ja) * 1996-07-05 1998-01-27 Motonobu Hattori インバータの出力段における電流検出法
JP2001025259A (ja) * 1999-07-05 2001-01-26 Tdk Corp Pwmインバーター装置

Also Published As

Publication number Publication date
GB2448263A (en) 2008-10-08
TW200745583A (en) 2007-12-16
US20100165687A1 (en) 2010-07-01
US8547714B2 (en) 2013-10-01
KR20080093993A (ko) 2008-10-22
DE112006003675T5 (de) 2008-12-18
CN101361256A (zh) 2009-02-04
CN101361256B (zh) 2010-12-15
GB0812964D0 (en) 2008-08-20
JPWO2007083486A1 (ja) 2009-06-11
GB2448263B (en) 2011-03-16
JP4811674B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
EP1808955B1 (en) Inverter device
US8384336B2 (en) Multiphase motor driving device
KR100863390B1 (ko) 모터 구동 회로의 지락 검출 장치
US7948205B2 (en) Multi-phase AC motor driving device
US20070120519A1 (en) System and method for driving synchronous motor
CN112242831A (zh) 栅极驱动器电路和检测逆变器支路中的短路事件的方法
JP2004201427A (ja) 電流検出装置及びそれを用いたpwmインバータ
CN101682292B (zh) 逆变器装置及其输出电压检测方法
JP2003164159A (ja) 三相インバータの電流検出装置
US10658947B2 (en) Semiconductor device, power module, and control method of power conversion device
JP4811674B2 (ja) 単相用出力インバータ装置とその出力電流検出方法
CN104380594A (zh) 功率转换装置
CN114553105A (zh) 马达控制装置及方法
CN212627729U (zh) 一种高压驱动集成电路及智能功率模块
JP2020025435A (ja) 集積回路及びモータ装置
JP2011193543A (ja) 電圧形インバータのゲート電圧制御装置、ゲート電圧制御方法及びインテリジェントパワーモジュール
JP3733986B2 (ja) 出力電流方向判別方法およびその方法を用いたインバータ
CN108196114B (zh) 电机电流采样系统及方法
JP2005278296A (ja) コンデンサ装置およびそれを備えた電源システム
JP2009065809A (ja) 電力変換装置およびその電流検出方法
WO2016165601A1 (zh) 用于识别电机初始位置的电流取样等效放大方法及电路
JPH0698564A (ja) 電流制御装置
JP4697579B2 (ja) 電力変換装置と欠相検出方法
JP2000333467A (ja) インバータ装置
CN119318108A (zh) 功率转换装置及功率转换装置中的直流电流的推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554838

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 0812964.5

Country of ref document: GB

Ref document number: 12161066

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680051244.6

Country of ref document: CN

Ref document number: 1020087017463

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120060036750

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006003675

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06843146

Country of ref document: EP

Kind code of ref document: A1