[go: up one dir, main page]

WO2007080004A1 - Verfahren und vorrichtung zur strommessung - Google Patents

Verfahren und vorrichtung zur strommessung Download PDF

Info

Publication number
WO2007080004A1
WO2007080004A1 PCT/EP2006/068500 EP2006068500W WO2007080004A1 WO 2007080004 A1 WO2007080004 A1 WO 2007080004A1 EP 2006068500 W EP2006068500 W EP 2006068500W WO 2007080004 A1 WO2007080004 A1 WO 2007080004A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
measurement
current
measuring
controllable switching
Prior art date
Application number
PCT/EP2006/068500
Other languages
English (en)
French (fr)
Inventor
Tero Jaervelaeinen
Gilles Schmitt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2007080004A1 publication Critical patent/WO2007080004A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the invention relates to a method for current measurement with the features mentioned in claim 1.
  • the invention relates to a device for measuring current with the features mentioned in claim 6.
  • Methods for current measurement are required, in particular, in the case of clocked applications in the motor vehicle sector, in which, in particular by means of an inverter, a sinusoidal current supply of a consumer, such as an electrical machine, e.g. an Asynchronous rotary machine is generated.
  • a sinusoidal current supply of a consumer such as an electrical machine, e.g. an Asynchronous rotary machine is generated.
  • the measured values obtained serve to monitor, control or protect by switching off when a predetermined limit value is exceeded.
  • the transistors of an inverter are driven by predetermined switching times. This allows a timely, consecutive measurement of all three streams.
  • the inventive method with the features mentioned in claim 1 offers the advantage that the fact that the clock patterns are shifted or changed in time when a measurement window falls below a predetermined size, such that a measurement window of sufficient size is formed, essentially no human can be generated perceptible noises and at the same time using a current measuring resistor all phase currents can be measured.
  • controllable switching elements by means of controllable switching elements, a 3-phase AC current is generated.
  • a total of six controllable switching elements are provided, which form an inverter and generate 3-phase three-phase current from a direct current, wherein the control unit is designed accordingly.
  • a three-phase asynchronous motor is energized as a consumer.
  • the control unit and the inverter for generating three-phase variable frequency is formed to e.g. to allow starting of the three-phase asynchronous motor without further aids.
  • each measuring window the measurement of a phase current is possible.
  • the current measurement of all phase currents takes place on a current measuring resistor, through which a sum current, formed from the sum of all phase currents, flows.
  • the measuring windows allow the measurement of each - A -
  • two measurement windows are formed at each start of the period in order to determine two phase currents and to calculate the third phase current from the already determined phase currents.
  • the invention further includes a device for measuring current, in particular designed for current measurement in a multiphase
  • Switching element acting control signals is formed to a substantially sinusoidal current flow of the
  • Measuring window for measuring electrical currents in particular of phase currents form.
  • the device according to the invention can be embodied as an inverter, with which three-phase three-phase current can be generated.
  • the device may have a capacitance, formed by an electrolytic capacitor, which serves as a smoothing capacitor, wherein an electrolytic capacitor current increase can be minimized by the device or the method.
  • the controllable switching elements may be formed by semiconductor devices such as transistors.
  • a current measuring resistor can be provided, through which a sum current, formed from all phase currents of the three-phase current, is conducted. It is preferably provided that the consumer is a three-phase asynchronous motor.
  • phase current is possible in each measurement window, so that the measurement of all phase currents is possible.
  • control unit is designed to generate control signals which control the controllable switching elements in such a way that two measurement windows are generated at each start of the period. This allows, as the sum of the phase currents of 3-phase three-phase current is equal to zero, the determination of all three phase currents, wherein the current measurement takes place on a current measuring resistor through which the Summen ström formed from the three phase currents, is passed.
  • Figure 1 is a schematic representation of a circuit according to the invention.
  • Figure 2 is a schematic representation of inventive
  • Fig. 1 there is shown a circuit having an inverter function for driving a load such as e.g. a star-connected 3-phase asynchronous motor (PSM or ASM) shown.
  • a load such as e.g. a star-connected 3-phase asynchronous motor (PSM or ASM) shown.
  • PSM 3-phase asynchronous motor
  • the circuit has two input terminals 1, 2, with which the circuit to a DC voltage source (not shown) can be connected.
  • the circuit has a parallel to the input terminals 1, 2 connected to the electrolytic capacitor 3.
  • the circuit has six transistors 4 - 9, which are arranged in pairs and form an inverter for generating a 3-phase three-phase current.
  • Lines 10 - 12 form connections of connection points 13 - 15 of each pair of transistors 4 - 9 with windings 16 - 18 of a three-phase asynchronous motor (not shown).
  • a current measuring resistor 20 is arranged in a line section 19, which establishes a connection from the input terminal 2 to the transistors 5, 7, 9, a current measuring resistor 20 is arranged.
  • a measuring amplifier which has an operational amplifier 21.
  • an A / D converter 22 is connected to the operational amplifier 21, an A / D converter 22 is connected.
  • a current measuring device 23 is connected to the A / D converter 22.
  • a control unit 24 which is connected to the transistors 4 - 9 by control lines (not shown).
  • control unit 24 In operation, the control unit 24 generates, for example, pulse-width-modulated drive signals (see FIG. 2) which cause, by driving the transistors 4-9, three mutually phase-shifted electrical currents with a substantially sinusoidal profile, which are known in the windings 16-18 generate magnetic rotating field.
  • pulse-width-modulated drive signals see FIG. 2 which cause, by driving the transistors 4-9, three mutually phase-shifted electrical currents with a substantially sinusoidal profile, which are known in the windings 16-18 generate magnetic rotating field.
  • the transistors 4 - 9 are driven by the drive signals such that at the beginning of each period two measurement windows 25, 26 are available for measuring two phase currents.
  • a first phase current can then be detected in the first measuring window 25, for example a phase current flowing through the transistor 4 and the line 10.
  • a second measurement is carried out in which both the phase current flowing through the transistor 4 and the line 10 as well as the second phase current flowing through the transistor 6 and the line 11 are detected as a summation current.
  • the measured values After the measured values have been amplified by the operational amplifier 21, they are converted into digital values by the A / D converter 22 and supplied to the current measuring device 23. After two measurements have been taken, the difference between the two measured values obtained during the measurements in the two measuring windows 25, 26 can be determined by forming the difference between the phase current flowing through the transistor 6 and the line 11. Furthermore, since the sum current of all three phase currents must be equal to zero, the third phase current is calculated from the two already determined phase currents.
  • the drive may also be such that e.g. in the second measuring window, only the phase current flowing through the transistor 6 and the line 11 is determined. The difference between the two measured values is then eliminated.
  • the clock patterns are shifted or changed in time.
  • the displacement takes place in such a way that again measurement windows are available for measuring the phase currents.
  • the measurement windows are shifted or changed in such a way that two measurement windows for measuring two phase currents are available again at the beginning of a period. If the pulse width modulated drive signal has a large amplitude, in this case, the measurement window can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Strommessung, insbesondere in einem mehrphasigen Stromnetz, bei dem durch wenigstens ein steuerbares Schaltelement eine gewünschte Bestromung eines Verbrauchers erfolgt, wobei eine Steuereinheit auf das wenigstens eine steuerbare Schaltelement wirkende Ansteuersignale erzeugt, um eine gewünschte Bestromung des Verbrauchers erreichen, wobei Taktmuster der Ansteuersignale Messfenster zur Messung von elekt- rischen Strömen, insbesondere von Phasenströmen, bilden. Es ist vorgesehen, dass die Taktmuster zeitlich verschoben werden, wenn ein Messfenster eine vorgegebene Größe unterschreitet, der- art, das ein Messfenster ausreichender Größe gebildet wird. Ferner betrifft die Erfindung eine Vorrichtung zur Strommessung, insbesondere zur Durchführung des erfindungsgemäßen Verfahrens.

Description

ROBERT BOSCH GMBH, 70442 STUTTGART
R. 313198
Titel
Verfahren und Vorrichtung zur Strommessung
Die Erfindung betrifft ein Verfahren zur Strommessung mit den im Anspruch 1 genannten Merkmalen.
Ferner betrifft die Erfindung eine Vorrichtung zur Strommessung mit den im Anspruch 6 genannten Merkmalen.
Stand der Technik
Verfahren zur Strommessung sind insbesondere bei getakteten Anwendungen im Kfz-Bereich erforderlich, bei denen insbesondere mit- tels eines Wechselrichters eine Sinusbestromung eines Verbrauchers wie einer elektrische Maschine, z.B. einer Asynchrondrehstrommaschine erzeugt wird. Die ermittelten Messwerte dienen dabei zur Überwachung, zur Regelung oder zum Schutz durch Abschaltung bei Überschreiten eines vorgegebenen Grenzwerts.
Üblicherweise werden zur Strommessung niederohmige Strommesswiderstände, sogenannte Strommessshunts bzw. Shuntwi- derstände mit einem nachgeschalteten Differenzverstärker zur Signalaufbereitung verwendet.
Bei einer konventionellen Stromregelung in einem Drehstromnetz mit drei Phasen ist es erforderlich, mindestens zwei Phasenströme der drei Phasenströme zu messen. Um die benötigen Messungen und einen Überstromschutz zu realisieren werden drei Shuntwiderstände benötigt. Es ist dabei eine zeitgleiche Messung des Wechselrichters möglich. Dabei erzeugt die Taktung der Schaltzustände kein hörbares Geräusch, wenn keine periodischen Änderungen im Taktmuster vorgenommen werden um den Strom zu messen.
Bei einer Messung mit nur einem Shuntwiderstand werden die Transistoren eines Wechselrichters durch vorgegebene Schaltzeiten angesteuert. Dies erlaubt eine zeitnahe, aufeinanderfolgende Messung aller drei Ströme.
Jedoch ist hierbei eine minimale Messfenstergröße erforderlich. So werden periodisch, z.B. im ms-Bereich, alle zur Strommessung der drei Phasenströme benötigten Schaltzustände der Transistoren durchlaufen, um so eine zeitnahe Messung der drei Phasenströme zu ermöglichen. Diese periodische Abweichung vom Bestromungs- Taktmuster, das zur Erzeugung einer sinusförmigen Bestromung verwendet wird, erzeugt aber ein hörbares Geräusch, wenn normalerweise mit 20 kHz getaktet wird, da die Änderungen dann Frequen- zen im hörbaren Bereich erzeugen. Die Taktfrequenz kann nicht mehr erhöht werden, weil noch mehr Taktverluste entstehen und Totzeiteffekte nicht vernachlässigbar sind.
Es sind weitere Verfahren bekannt, die unter Verwendung eines Shuntwiderstandes die Messung der drei Phasenströme erlauben, siehe z.B. Application note von Texas Instruments, Three Phase Cur- rent Measurement Using a Single Line Resitor on the TMS320F240, Literature number: BPRA077, May 1998). Dies Verfahren hat jedoch den Nachteil, dass die Messung asynchron zu der Taktperiode er- folgt. Daher muss der Messzeitpunkt bei diesem Verfahren für jede Taktperiode neu berechnet werden und die Tastverhältnisse müssen entsprechend angepasst werden. Dies bedeutet für einen μ- Controller einer Steuereinheit einen hohen Rechenaufwand allein aufgrund der Strommessung. Dieses Verfahren und andere, ver- gleichbare Verfahren, bei denen das Taktmuster zyklisch geändert wird, verursachen auch ein erhebliches akustisches Geräusch bei Taktfrequenzen von 20 kHz.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren mit den im Anspruch 1 genannten Merkmalen bietet demgegenüber den Vorteil, dass dadurch, dass die Taktmuster zeitlich verschoben oder geändert werden, wenn ein Messfenster eine vorgegebene Größe unterschreitet, derart, das ein Messfenster ausreichender Größe gebildet wird, im Wesentlichen keine vom Menschen wahrnehmbaren Geräusche erzeugt werden und zugleich unter Verwendung eines Strommesswiderstands alle Phasenströme gemessen werden können.
In bevorzugter Ausführungsform ist vorgesehen, dass mittels steuerbarer Schaltelemente ein 3-phasiger Drehstrom, erzeugt wird. Hierzu sind insgesamt sechs steuerbare Schaltelemente vorgesehen, die einen Wechselrichter bilden und aus einem Gleichstrom 3-phasigen Drehstrom erzeugen, wobei die Steuereinheit entsprechend ausgebildet ist.
Es ist bevorzugt vorgesehen, dass als Verbraucher ein Drehstrom- Asynchronmotor bestromt wird. Dabei ist die Steuereinheit und der Wechselrichter zur Erzeugung von Drehstrom variabler Frequenz ausgebildet, um z.B. ein Anlaufen des Drehstrom-Asynchronmotors ohne weitere Hilfsmittel zu ermöglichen.
Ferner ist bevorzugt vorgesehen, dass in je einem Messfenster die Messung eines Phasenstromes möglich ist. Hierzu erfolgt die Strommessung aller Phasenströme an einem Strommesswiderstand, durch den ein Summenstrom, gebildet aus der Summe aller Phasenströme, fließt. Dabei erlauben die Messfenster die Messung jedes - A -
einzelnen Phasenstromes oder alternativ die Messung einer ausgewählten Anzahl der Phasenströme.
Bevorzugt ist vorgesehen, dass bei jedem Periodenbeginn 2 Mess- fenster gebildet werden, um so zwei Phasenströme zu bestimmen und den dritten Phasenstrom aus den bereits bestimmten Phasenströmen zu berechnen.
Zur Erfindung gehört ferner eine Vorrichtung zur Strommessung, ins- besondere ausgebildet zur Strommessung in einem mehrphasigen
Stromnetz, mit wenigstens einem steuerbaren Schaltelement zur im
Wesentlichen sinusförmigen Bestromung eines Verbrauchers, wobei eine Steuereinheit zur Erzeugung von auf das wenigstens eine
Schaltelement wirkenden Ansteuersignalen ausgebildet ist, um eine im Wesentlichen sinusförmige Bestromung Bestromung des
Verbrauchers zu erreichen, wobei Taktmuster der Ansteuersignale
Messfenster zur Messung von elektrischen Strömen, insbesondere von Phasenströmen, bilden. Dadurch, dass die Steuereinheit ferner derart ausgebildet ist, dass die Taktmuster zeitlich verschoben wer- den, wenn ein Messfenster eine vorgegebene Größe unterschreitet, derart, das ein Messfenster ausreichender Größe zur Verfügung steht, wird eine erhebliche Geräuschreduzierung erreicht.
Die erfindungsgemäße Vorrichtung kann dabei als Wechselrichter ausgebildet sein, mit der 3-phasiger Drehstrom erzeugt werden kann. Hierzu kann die Vorrichtung eine Kapazität, gebildet durch einen E- lektrolytkondensator, aufweisen, der als Glättungskondensator dient, wobei durch die Vorrichtung bzw. das Verfahren eine Elektrolytkondensatorstromerhöhung minimiert werden kann. Die steuerbaren Schaltelemente können durch Halbleiterbauelement wie Transistoren gebildet sein. Ferner kann ein Strommesswiderstand vorgesehen sein, durch den im ein Summenstrom, gebildet aus allen Phasenströmen des 3-phasigen Drehstromes geleitet wird. Bevorzugt ist dabei vorgesehen, dass der Verbraucher ein Drehstrom-Asynchronmotor ist.
In einer bevorzugten Ausführungsform ist vorgesehen, dass in je ei- nem Messfenster die Messung eines Phasenstromes möglich ist, sodass die Messung aller Phasenströme möglich ist.
In einer bevorzugten Ausführungsform ist vorgesehen, dass die Steuereinheit zur Erzeugung von Steuersignalen ausgebildet ist, die die steuerbaren Schaltelemente derart ansteuern, dass beijedem Periodenbeginn zwei Messfenster, erzeugt sind. Dies erlaubt, da die Summe der Phasenströme von 3-phasigen Drehstrom gleich Null ist, die Bestimmung aller drei Phasenströme, wobei die Strommessung an einem Strommesswiderstand erfolgt, durch den der Summen- ström, gebildet aus den drei Phasenströmen, geleitet wird.
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung einer erfindungsgemäßen Schaltung, und
Figur 2 eine schematische Darstellung von erfindungsgemäßen
Ansteuersignalen.
In Figur 1 ist eine Schaltung mit Wechselrichterfunktion zur Ansteuerung eines Verbrauchers, wie z.B. eines sterngeschalteten 3-Phasen Asynchronmotors (PSM oder ASM) dargestellt.
Die Schaltung weist zwei Eingangsanschlüsse 1 , 2 auf, mit denen die Schaltung an eine Gleichspannungsquelle (nicht dargestellt) angeschlossen werden kann. Die Schaltung weist einen parallel zu den Eingangsanschlüssen 1 , 2 angeschlossenen Elektrolytkondensator 3 auf. Ferner weist die Schaltung sechs Transistoren 4 - 9 auf, die paarweise angeordnet sind und einen Wechselrichter zur Erzeugung eines 3-phasigen Drehstromes bilden. Leitungen 10 - 12 bilden Verbindungen von Anschlusspunkten 13 - 15 von jedem Transistorpaar 4 - 9 mit Wicklungen 16 - 18 eines 3-Phasen Drehstromasynchronmotors (nicht dargestellt).
In einem Leitungsabschnitt 19, der eine Verbindung von dem Ein- gangsanschluss 2 mit den Transistoren 5, 7, 9 herstellt, ist ein Strommesswiderstand 20 angeordnet. Mit dem Strommesswiderstand 20 ist ein Messverstärker verbunden, der einen Operationsverstärker 21 aufweist. Mit dem Operationsverstärker 21 ist ein A/D- Wandler 22 verbunden. Mit dem A/D-Wandler 22 ist eine Strommesseinrichtung 23 verbunden. Mit der Strommesseinrichtung 23 ist eine Steuereinheit 24 verbunden, die durch nicht dargestellte Steuerleitungen mit den Transistoren 4 - 9 verbunden ist.
Im Betrieb erzeugt die Steuereinheit 24 bspw. pulsweitenmodulierte Ansteuersignale (siehe Fig. 2), die bewirken, das durch Ansteuerung der Transistoren 4 - 9 drei zueinander phasenverschobene elektrische Ströme mit im wesentlichen sinusförmigen Verlauf erzeugt werden, die in den Wicklungen 16 - 18 ein bekanntes magnetisches Drehfeld erzeugen.
Ferner werden durch die Ansteuersignale die Transistoren 4 - 9 derart angesteuert, dass zu Beginn jeder Periode zwei Messfenster 25, 26 zur Messung von zwei Phasenströmen zur Verfügung stehen. Mit Hilfe des Strommesswiderstands 20 kann dann im ersten Messfenster 25 ein erster Phasenstrom erfasst werden, bspw. ein durch den Transistor 4 und die Leitung 10 fließende Phasenstrom. Anschließend wird im zweiten Messfenster 26 eine zweite Messung durchgeführt, bei der sowohl der durch den Transistor 4 und die Leitung 10 fließende Phasenstrom als auch der durch den Transistor 6 und die Leitung 11 fließende zweite Phasenstrom als Summenstrom erfasst wird.
Nachdem die Messwerte von dem Operationsverstärker 21 verstärkt wurden, werden sie vom A/D-Wandler 22 in Digitalwerte gewandelt und der Strommesseinrichtung 23 zugeführt. Nach Durchführung zweier Messungen kann aus der Differenz der beiden Messwerte, die während der Messungen in den beiden Messfenstern 25, 26 gewonnen wurden, durch Differenzbildung der durch den Transistor 6 und die Leitung 11 fließende Phasenstrom bestimmt werden. Ferner wird, da der Summenstrom aller drei Phasenströme gleich Null sein muss, aus den beiden bereits ermittelten Phasenströmen der dritte Phasenstrom berechnet.
Alternativ hierzu kann die Ansteuerung auch derart erfolgen, dass z.B. im zweiten Messfenster lediglich der durch den Transistor 6 und die Leitung 11 fließende Phasenstrom bestimmt wird. Die Differenzbildung der beiden Messwerte entfällt dann.
Wenn ein Zeitfenster zur Strommessung zu klein ist, werden die Taktmuster zeitlich verschoben oder geändert. Dabei erfolgt die Ver- Schiebung derart, das wieder Messfenster zur Messung der Phasenströme zu Verfügung stehen. Insbesondere werden die Messfenster derart verschoben oder geändert, dass wieder am Anfang einer Periode zwei Messfenster zur Messung zweier Phasenströme zur Verfügung stehen. Wenn das pulsweitenmodulierte Ansteuersignal eine große Amplitude aufweist, kann in diesem Fall das Messfenster vergrößert werden.

Claims

R. 313198Patentansprüche
1. Verfahren zur Strommessung, insbesondere in einem mehrphasigen Stromnetz, bei dem durch wenigstens ein steuerbares Schaltelement eine gewünschte Bestromung eines Verbrauchers erfolgt, wobei eine Steuereinheit auf das wenigstens eine steuerbare Schaltelement wirkende Ansteuersignale erzeugt, um die gewünschte Bestromung des Verbrauchers erreichen, wobei Taktmuster der Ansteuersignale Messfenster zur Messung von elektrischen Strömen, insbesondere von Phasenströmen, bilden, dadurch gekennzeichnet, dass die Taktmuster zeitlich verschoben werden, wenn ein Messfenster eine vorgegebene Größe unterschreitet, derart, das ein Messfenster ausreichender Größe zur Verfügung gebildet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass mittels steuerbarer Schaltelemente (4 - 9) ein mehrphasiger Dreh- ström erzeugt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Verbraucher ein Drehstrom-Asynchronmotor oder ein Permanentmagnet-Synchronmotor bestromt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in je einem Messfenster die Messung eines Phasenstromes möglich ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die steuerbaren Schaltelemente (4 - 9) derart angesteuert werden, dass (m-1 ) Messfenster gebildet werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass, dass bei jedem Periodenbeginn oder Periodenende (m-1 ) Messfenster gebildet werden.
7. Vorrichtung zur Strommessung, insbesondere zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, insbesondere ausgebildet zur Strommessung in einem mehrphasigen Stromnetz, mit wenigstens einem steuerbaren Schaltelement zur gewünschten Bestromung eines Verbrauchers, wobei eine Steuer- einheit zur Erzeugung von auf das wenigstens eine Schaltelement wirkenden Ansteuersignalen ausgebildet ist, um die gewünschte Bestromung des Verbrauchers erreichen, wobei Taktmuster der Ansteuersignale Messfenster zur Messung von elektrischen Strömen, insbesondere von Phasenströmen, bilden, dadurch gekennzeich- net, dass die Steuereinheit (24) ferner derart ausgebildet ist, dass die Taktmuster zeitlich verschoben oder geändert werden, wenn ein Messfenster eine vorgegebene Größe unterschreitet, derart, das ein Messfenster ausreichender Größe zur Verfügung steht, in dem das Taktmuster so wenig wie möglich geändert wird.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Vorrichtung zur Erzeugung von mehrphasigen Drehstrom ausgebildet ist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Verbraucher oder ein Permanentmagnet- Synchronmotor ein Drehstrom-Asynchronmotor ist.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch ge- kennzeichnet, dass in je einem Messfenster die Messung eines
Phasenstromes möglich ist.
11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Steuereinheit (24) zur Erzeugung von Steuersignalen aus- gebildet ist, die die steuerbaren Schaltelemente (4 - 9) derart ansteuern, dass (m-1 ) Messfenster erzeugt sind.
12. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass, dass bei jedem Periodenbeginn oder Periodenende (m-1 ) Messfenster erzeugt sind.
PCT/EP2006/068500 2005-12-28 2006-11-15 Verfahren und vorrichtung zur strommessung WO2007080004A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062759.5 2005-12-28
DE102005062759A DE102005062759A1 (de) 2005-12-28 2005-12-28 Verfahren und Vorrichtung zur Strommessung

Publications (1)

Publication Number Publication Date
WO2007080004A1 true WO2007080004A1 (de) 2007-07-19

Family

ID=37781984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068500 WO2007080004A1 (de) 2005-12-28 2006-11-15 Verfahren und vorrichtung zur strommessung

Country Status (2)

Country Link
DE (1) DE102005062759A1 (de)
WO (1) WO2007080004A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527691A (zh) * 2018-01-04 2020-08-11 罗伯特·博世有限公司 用于运行同步电机的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001025A1 (de) * 2008-04-07 2009-10-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Strommessung in Phasenleitungen
DE102010001181A1 (de) * 2010-01-25 2011-07-28 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur Strommessung in einem mehrphasigen Stromnetz
DE102011003897A1 (de) * 2011-02-10 2012-08-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Strommessung
CN102175907A (zh) * 2011-03-10 2011-09-07 华北电力大学(保定) 灵活的广域电网相量测量系统
DE102013216224A1 (de) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen von Phasenströmen und eines Erregerstroms einer elektrischen Maschine sowie Motorsystem
DE102018115844A1 (de) * 2018-06-29 2020-01-02 Elmos Semiconductor Aktiengesellschaft Verfahren zur Ermittlung der Phasenströme bei einer mehrphasigen H-Brücke zur Ansteuerung eines PMSM mittels eines einzigen Shunt-Widerstands
DE102018115821A1 (de) * 2018-06-29 2020-01-02 Elmos Semiconductor Aktiengesellschaft Verfahren zur Ermittlung der Phasenströme bei einer mehrphasigen H-Brücke zur Ansteuerung eines PMSM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529591A1 (de) * 1985-08-19 1987-02-26 Siemens Ag Verfahren und vorrichtung zum betrieb eines wechselrichters
US5146148A (en) * 1988-11-04 1992-09-08 Europe Patent Ltd. Process and a device for changing the effective speed of a polyphase asynchronous motor and a suitable motor system for the application of the process
EP0502226A1 (de) * 1991-03-06 1992-09-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bildung von Maschinenströmen einer stromrichtergespeisten Drehfeldmaschine
US5969958A (en) * 1995-01-23 1999-10-19 Danfoss Method for measuring phase currents in an inverter
US20060006899A1 (en) * 2004-07-12 2006-01-12 Ronan De Larminat Current sensing in a two-phase motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529591A1 (de) * 1985-08-19 1987-02-26 Siemens Ag Verfahren und vorrichtung zum betrieb eines wechselrichters
US5146148A (en) * 1988-11-04 1992-09-08 Europe Patent Ltd. Process and a device for changing the effective speed of a polyphase asynchronous motor and a suitable motor system for the application of the process
EP0502226A1 (de) * 1991-03-06 1992-09-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bildung von Maschinenströmen einer stromrichtergespeisten Drehfeldmaschine
US5969958A (en) * 1995-01-23 1999-10-19 Danfoss Method for measuring phase currents in an inverter
US20060006899A1 (en) * 2004-07-12 2006-01-12 Ronan De Larminat Current sensing in a two-phase motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527691A (zh) * 2018-01-04 2020-08-11 罗伯特·博世有限公司 用于运行同步电机的方法
CN111527691B (zh) * 2018-01-04 2024-05-14 罗伯特·博世有限公司 用于运行同步电机的方法

Also Published As

Publication number Publication date
DE102005062759A1 (de) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2007080004A1 (de) Verfahren und vorrichtung zur strommessung
EP0579694A1 (de) Verfahren und schaltungsanordnungen zur bestimmung maschinenbezogener elektromagnetischer und mechanischer zustandsgrössen an über umrichter gespeisten elektrodydynamischen drehfeldmaschinen.
WO2011026578A2 (de) Verfahren zur bestimmung der rotorlage einer feldorientiert betriebenen synchronmaschine
DE102009011674A1 (de) Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine
EP3639362B1 (de) Verfahren zur ermittlung von phasenströmen einer mittels eines pwm-gesteuerten wechselrichters gespeisten, rotierenden, mehrphasigen, elektrischen maschine
DE102008052933A1 (de) Verfahren zum Betreiben eines Elektromotors
DE102014107949A1 (de) Verfahren und Vorrichtung zur Erkennung eines Nulldurchgangs eines Stroms durch einen Strang eines bürstenlosen Gleichstrom- motors
EP4186157B1 (de) Parameteridentifikationsverfahren für drehfeldmaschinen und regelvorrichtung damit
DE102013204382A1 (de) Steuereinrichtung und Verfahren zum Ansteuern einer Drehfeldmaschine
EP3656050A1 (de) Elektrische maschine
EP1820032A1 (de) Verfahren zur strommessung mit einem shunt und vorrichtung zur strommessung
DE1613512C3 (de) Schaltung zur Speisung eines Drehfeldmotors
EP2911293A2 (de) Drehfeldmaschine und Verfahren zum Bestimmen der Winkelposition ihres Rotors
EP1768253A2 (de) Verfahren zur Strommessung mit einem Shunt und Vorrichtung zur Strommessung
DE3112326C2 (de)
DE102005028605B4 (de) Verfahren zur Strommessung mit einem Shunt und Vorrichtung zur Strommessung
DE19828046A1 (de) Bürstenloser Gleichstrommotor
EP3544173A1 (de) Verfahren und vorrichtung zur bestimmung einer induktivitätsangabe eines elektromagnetischen aktuators
DE102018206286A1 (de) Verfahren und Vorrichtung zur Strommessung eines Wechselrichters
EP2284544A1 (de) Verfahren und Vorrichtung zur sensorlosen Drehzahlmessung eines Elektromotors
WO2001014897A1 (de) Verfahren und einrichtung zum messen des ohmschen widerstandes eines statorkreises einer induktionsmaschine
DE102022208793A1 (de) Verfahren zum Ansteuern einer Anordnung mit mindestens einem Leistungsschalter
EP2777144A2 (de) Verfahren zum kalibrieren eines mehrphasigen wechselrichters, vorrichtung zum betreiben, computerprogramm, computer-programmprodukt
DE102023203133A1 (de) Verfahren und Motorsystem zum Betreiben einer elektronisch kommutierten elektrischen Maschine
DE2532356C2 (de) Einrichtung zur Messung und Grenzwertüberwachung der Phasenbeziehung zwischen Strom und Spannung einer an eine Drehstromleitung angeschlossenen Drehstrommaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06829996

Country of ref document: EP

Kind code of ref document: A1