WO2007078258A1 - Obtention d'une valeur seuil de division d'un jeu de donnees sur la base d'une variance de classe et du contraste entre classes - Google Patents
Obtention d'une valeur seuil de division d'un jeu de donnees sur la base d'une variance de classe et du contraste entre classes Download PDFInfo
- Publication number
- WO2007078258A1 WO2007078258A1 PCT/SG2006/000257 SG2006000257W WO2007078258A1 WO 2007078258 A1 WO2007078258 A1 WO 2007078258A1 SG 2006000257 W SG2006000257 W SG 2006000257W WO 2007078258 A1 WO2007078258 A1 WO 2007078258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- classes
- threshold value
- term
- contrast
- dataset
- Prior art date
Links
- 238000000638 solvent extraction Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000005192 partition Methods 0.000 claims abstract description 7
- 238000004590 computer program Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000002583 angiography Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Definitions
- the present invention relates to a method for processing a data set containing one or more images (typically, but not limited to, medical images, such as scans of a brain) to obtain a threshold which can be used to partition the image(s) into "object" and background regions.
- the invention further relates to systems employing the method.
- Histogram-based thresholding methods in which a threshold value is determined by analyzing an intensity histogram, are well-known as global thresholding techniques.
- Various criteria for obtaining the threshold have been studied. Among them, the most frequently used is an algorithm which selects the threshold such that the between-class variance of the data points above the threshold and not greater than the threshold is minimized (Otsu N., "A thresholding selection method from gray-level histograms", IEEE Transactions on System, Man and Cybernetics 1979; 9(1): 62-66.).
- object pixels which are respectively the pixels having an intensity not greater than and above the threshold T.
- probabilities that a pixel is a member of classes CO and C1 are respectively:
- between-class variance depend on the threshold T, but their sum does not. Therefore maximizing the between-class variance is equivalent to minimizing within-class variance.
- the within-class variance measures the homogeneity within object and background. This criterion, however, works poorly for segmentation of small objects from complex background. Specifically, when the size of background is much larger than that of object and the intensity distribution of background is complex (non-unimodal), the optimum threshold by Otsu tends to dichotomize the image into object and background of size as equal as possible. This is because the contrast between object and background has no explicit influence on threshold selection.
- Fig. 1(a) is an MRA (magnetic resonance angiography) image of a portion of a brain.
- a region of interest (ROI) is indicated by the light rectangle.
- Three generally-circular blood vessels are visible within this region.
- Fig. 1(b) shows the intensity histogram for this image.
- the distribution of the background intensities is bimodal with strong peaks at about 10 and about 30, and the points in the histogram relating to the three blood vessels are scattered centred at the small peak around intensity 100.
- Fig. 1(c) shows the result of applying Otsu's thresholding algorithm to the dataset of Fig. 1(a).
- the pixels above the derived threshold (object pixels) are shown as white and those not greater than the threshold (background pixels) as black.
- Fig. 1(d) shows the result of selecting the threshold by the "minimum error method". Again, the three blood vessels cannot be segmented.
- the present invention aims to provide new and useful methods and systems for obtaining a threshold for partitioning a data set comprising an image.
- the present invention proposes obtaining the threshold as a value which partitions a dataset of intensity values into two classes, by minimizing a weighted sum of (i) a term which varies with the within-class variance of the classes and (ii> a term which varies inversely with the contrast between the classes.
- the weighted sum may be denoted as:
- G( ⁇ y (T)) is the term including the within-class
- the process for selecting 7 amounts to finding the T* such that
- the weighted sum may be defined as:
- the term may be defined respectively as:
- J( ⁇ , T) (I - ⁇ ) In ⁇ w (T) - ⁇ ln
- m ⁇ (T) - m Q (T) , (5) J(X 1 T) (l-X) (6)
- the weighting factor ⁇ may be predetermined based on values which have been effective for previous datasets. For example, a supervised learning process may be carried out involving a user and a plurality of additional datasets which together constitute a "learning set". For each dataset in the learning set, the user is presented with the results of the thresholding process for each of a number of values of the weighting factor, and for each dataset the user selects the value of the weighting factor for which, in his view, the thresholding process is optimal.
- the selection process may, for example, be a feedback process in which the user is presented with the results of the process for a certain value of the weighting factor, and then instructs the algorithm to be repeated with a higher or lower weighting factor.
- the weighting factors thus derived for each member of the learning set may then be used for future datasets which obey at least one similarity criterion with the learning set.
- the weighting factor may be determined automatically, based on measured properties of the image and prior knowledge of the image. For example, the weighting factor may be selected such that it leads to a selection of a threshold such that the resultant segmented image is consistent with prior knowledge. For example, the weighting factor may be selected to be within a range of values which are determined using prior knowledge of the maximum and minimum proportions which the object should occupy within a region of interest of the image. The weighting factor may, for example, be defined as a median value within this range. Alternatively or additionally, the weighting factor may be selected to be within, and optionally a median value within, a range consistent with prior knowledge of the intensity contrast between the two classes.
- FIG. 1 which is composed of Figs. 1(a) to 1(d), illustrates processing a first experimental dataset using a known thresholding algorithm
- Fig. 2 shows steps in an embodiment of the present invention
- Fig. 3 shows possible sub-steps to carry out one of the steps of Fig. 2;
- Fig. 4 shows the results of the applying the embodiment of Fig. 2 to the dataset of Fig. 1 ;
- Fig. 5 which is composed of Figs. 5(a) and 5(b), shows results of a numerical analysis of parameters used by the embodiment in relation to the dataset of Fig. 1. Detailed description of the embodiments
- FIG. 2 the steps of a method which is an embodiment of the invention are illustrated.
- a region of interest within an experimental dataset is defined.
- J ⁇ J ( ⁇ - ⁇ ) ⁇ w (T) - ⁇ m,(T) - m Q (T)
- the optimum threshold value T is selected by minimizing J(A , T) with respect to T for a fixed ⁇ , i.e.
- the parameter ⁇ is a weight that balances the within-class variance and the
- ⁇ should be in the range of [0, 1).
- the weight ⁇ is application dependent, and in a second step of the method (step 20) the value of ⁇ is selected. This value is denoted as ⁇ *.
- one suitable way to estimate an appropriate value of ⁇ is by supervised learning. This method is suitable if a number of images with similar properties (for example, having similar intensity distributions and/or similar object proportions) are available for segmentation.
- the desired ⁇ can be manually determined for each of these images in turn by trying out a number of values for ⁇ , and by a human operator making a visual judgment for each image of the best value for ⁇ . Then the selected ⁇ can be used to segment similar images. For example, the proportion of cerebral vessels in most two-dimensional slices of a 3D MRA dataset varies within a small range.
- a neuroradiologist can manually adjust the value of /I to extract the desired vessels from background on a selected slice, and this value of A can then be applied to the segmentation of other slices.
- An alternative way of selecting ⁇ is based on any prior knowledge about the image.
- the knowledge about the proportion of the object in medical images may be derived from anatomical knowledge or other a priori knowledge, while the knowledge about the intensity contrast may be evaluated directly from a statistical analysis of the image to the analysed, or obtained from a statistical analysis of similar images.
- P 0 be the proportion of the region of interest which is occupied by the object.
- the prior knowledge about the object proportion is that
- the prior knowledge about intensity contrast can be expressed as m, ⁇ m o -m ⁇ ⁇ m h (8)
- the threshold T* satisfying (8) can be found. Once this is done, the corresponding object proportion and intensity contrast can be calculated and denoted as P 0 ( ⁇ ) and
- the following procedure, illustrated in Fig. 3, can estimate an appropriate ⁇ satisfying constraints (7) and (8), and thus perform step 20 of
- step 21 ⁇ is set to 0.
- step 22 the corresponding value of T * is obtained.
- step 23 we calculate the object proportion P 0 ( ⁇ ) and contrast
- step 24 it is determined whether the object proportion and contrast satisfy the predetermined constraints.
- step 25 it is determined whether ⁇ is not less than
- step 26 the value of ⁇ is increased by a predetermined step value. Otherwise, in a step 27, the values of ⁇ which in step 24 were found to satisfy the constraints are reviewed. The method finds the minimum and maximum ⁇
- the method finds the minimum and maximum ⁇ such that
- the method determines ⁇ min ⁇ 3x ) .
- the assumed values for mi and nri h are 50 and 75 respectively.
- the value of ⁇ * found in step 27 is 0.054, and the value of the T* is 69.
- the derived proportion of the object P 0 is 1.6%.
- Fig. 5(a) shows the how the value of J(A , T) varies with T for each of six values of ⁇
- Fig. 5(b) shows the derived value of T* for a range of values of ⁇
- the criterion of minimising J(/t , T) gives T* a low value, where the within-class variance dominates, so the derived threshold is close to that of the Otsu method.
- the within-class variance and the intensity contrast are balanced to yield a desirable threshold. This happens for ⁇ in about the range of 0:013 to 0:094.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
L'invention concerne un procédé permettant d'obtenir une valeur seuil T qui divise un jeu de données, tel qu'une image médicale, en deux classes qui sont composées de pixels ayant respectivement une valeur d'intensité non supérieure à la valeur seuil et inférieure à la valeur seuil. La valeur seuil T est sélectionnée pour réduire au minimum une somme pondérée (i) d'un terme qui varie avec la variance intra-classe des classes et (ii) d'un terme qui varie inversement avec le contraste entre les classes. La somme pondérée dépend d'un facteur de pondération ? qui peut être sélectionné sur la base d'un procédé d'apprentissage supervisé utilisant des jeux de données similaires ou bien obtenu par une connaissance à priori du jeu de données.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75655406P | 2006-01-06 | 2006-01-06 | |
US60/756,554 | 2006-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007078258A1 true WO2007078258A1 (fr) | 2007-07-12 |
Family
ID=38228516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2006/000257 WO2007078258A1 (fr) | 2006-01-06 | 2006-09-04 | Obtention d'une valeur seuil de division d'un jeu de donnees sur la base d'une variance de classe et du contraste entre classes |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007078258A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112396061A (zh) * | 2020-11-25 | 2021-02-23 | 福州大学 | 基于目标灰度倾向加权的Otsu目标检测方法 |
CN118967642A (zh) * | 2024-08-13 | 2024-11-15 | 保利长大工程有限公司 | 一种基于图像识别的混凝土板面板检测系统及其方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016696A1 (fr) * | 1998-09-18 | 2000-03-30 | Arch Development Corporation | Methode d'evaluation de l'etendue d'une tumeur dans des images obtenues par resonance magnetique |
WO2001073682A1 (fr) * | 2000-03-28 | 2001-10-04 | The University Of Chicago | Procede, systeme et support lisible par ordinateur servant a identifier des radiographies de la poitrine au moyen de techniques de cartographie d'image et de correspondance de modeles |
WO2002103065A2 (fr) * | 2001-06-20 | 2002-12-27 | Koninklijke Philips Electronics N.V. | Procede de segmentation d'images numeriques |
US20030214290A1 (en) * | 2002-05-15 | 2003-11-20 | Van Muiswinkel Arianne M.C. | Retrospective selection and various types of image alignment to improve DTI SNR |
US6882748B2 (en) * | 1999-03-02 | 2005-04-19 | University Of Adelaide | Method for image texture analysis |
WO2005057493A1 (fr) * | 2003-12-10 | 2005-06-23 | Agency For Science, Technology And Research | Procedes et appareil pour la binarisation d'images |
EP1557792A2 (fr) * | 2004-01-19 | 2005-07-27 | Konica Minolta Medical & Graphic, Inc. | Système pour le traitement d'images médicaux |
-
2006
- 2006-09-04 WO PCT/SG2006/000257 patent/WO2007078258A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016696A1 (fr) * | 1998-09-18 | 2000-03-30 | Arch Development Corporation | Methode d'evaluation de l'etendue d'une tumeur dans des images obtenues par resonance magnetique |
US6882748B2 (en) * | 1999-03-02 | 2005-04-19 | University Of Adelaide | Method for image texture analysis |
WO2001073682A1 (fr) * | 2000-03-28 | 2001-10-04 | The University Of Chicago | Procede, systeme et support lisible par ordinateur servant a identifier des radiographies de la poitrine au moyen de techniques de cartographie d'image et de correspondance de modeles |
WO2002103065A2 (fr) * | 2001-06-20 | 2002-12-27 | Koninklijke Philips Electronics N.V. | Procede de segmentation d'images numeriques |
US20030214290A1 (en) * | 2002-05-15 | 2003-11-20 | Van Muiswinkel Arianne M.C. | Retrospective selection and various types of image alignment to improve DTI SNR |
WO2005057493A1 (fr) * | 2003-12-10 | 2005-06-23 | Agency For Science, Technology And Research | Procedes et appareil pour la binarisation d'images |
EP1557792A2 (fr) * | 2004-01-19 | 2005-07-27 | Konica Minolta Medical & Graphic, Inc. | Système pour le traitement d'images médicaux |
Non-Patent Citations (2)
Title |
---|
KITTLER ET AL.: "Minimum Error Thresholding", PATTERN RECOGNITION, vol. 19, no. 1, 1986, pages 41 - 47, XP002090977 * |
OTSU N.A.: "A Threshold Selection Method from Gray-Level Histograms", IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, vol. SMC-9, no. 1, January 1979 (1979-01-01), pages 62 - 66, XP002386459 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112396061A (zh) * | 2020-11-25 | 2021-02-23 | 福州大学 | 基于目标灰度倾向加权的Otsu目标检测方法 |
CN118967642A (zh) * | 2024-08-13 | 2024-11-15 | 保利长大工程有限公司 | 一种基于图像识别的混凝土板面板检测系统及其方法 |
CN118967642B (zh) * | 2024-08-13 | 2025-03-14 | 保利长大工程有限公司 | 一种基于图像识别的混凝土板面板检测系统及其方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106651846B (zh) | 视网膜血管图像的分割方法 | |
Kumar et al. | Review on image segmentation techniques | |
Sopharak et al. | Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images | |
US9159127B2 (en) | Detecting haemorrhagic stroke in CT image data | |
EP2847738B1 (fr) | Procédé et appareil de comptage et d'analyse d'images | |
US20090129671A1 (en) | Method and apparatus for image segmentation | |
EP3469551B1 (fr) | Segmentation et classification tridimensionnelles et automatiques d'une tumeur cérébrale | |
US20030053685A1 (en) | Face detection in colour images with complex background | |
US20160275674A1 (en) | Method and system for performing multi-bone segmentation in imaging data | |
JP2017531883A (ja) | 画像の主要被写体を抽出する方法とシステム | |
EP3188127A1 (fr) | Procédé et système permettant d'effectuer une multi-segmentation d'os dans des données d'imagerie | |
Phan et al. | Automatic Screening and Grading of Age‐Related Macular Degeneration from Texture Analysis of Fundus Images | |
Hamednejad et al. | Retinal optic disk segmentation and analysis in fundus images using DBSCAN clustering algorithm | |
Faridi et al. | Cancerous nuclei detection and scoring in breast cancer histopathological images | |
CN114757953B (zh) | 医学超声图像识别方法、设备及存储介质 | |
Kolesnik et al. | Segmentation of wounds in the combined color-texture feature space | |
US10192308B2 (en) | Image processing apparatus, image processing method, and storage medium | |
WO2007078258A1 (fr) | Obtention d'une valeur seuil de division d'un jeu de donnees sur la base d'une variance de classe et du contraste entre classes | |
Sajadi et al. | A new seeded region growing technique for retinal blood vessels extraction | |
Khan et al. | Segmentation of single and overlapping leaves by extracting appropriate contours | |
Mirajkar et al. | Feature extraction of diabetic retinopathy images | |
Sari et al. | Preprocessing of skin images and feature selection for early stage of melanoma detection using color feature extraction | |
CN113269756B (zh) | 基于多尺度匹配滤波与粒子群优化视网膜血管分割方法、装置 | |
EP3244346A1 (fr) | Dispositif de détermination et procédé de détermination | |
Tamilarasi et al. | Template matching algorithm for exudates detection from retinal fundus images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06784269 Country of ref document: EP Kind code of ref document: A1 |