WO2007069686A1 - Vacuum capacitor and vacuum valve - Google Patents
Vacuum capacitor and vacuum valve Download PDFInfo
- Publication number
- WO2007069686A1 WO2007069686A1 PCT/JP2006/324940 JP2006324940W WO2007069686A1 WO 2007069686 A1 WO2007069686 A1 WO 2007069686A1 JP 2006324940 W JP2006324940 W JP 2006324940W WO 2007069686 A1 WO2007069686 A1 WO 2007069686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- movable
- coating layer
- hardness
- electrode
- vacuum
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 51
- 239000011247 coating layer Substances 0.000 claims abstract description 90
- 239000010419 fine particle Substances 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims description 44
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 230000007423 decrease Effects 0.000 claims description 7
- 238000007772 electroless plating Methods 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 15
- 238000005219 brazing Methods 0.000 description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/16—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/01—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/04—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode
- H01G5/14—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode due to longitudinal movement of electrodes
- H01G5/145—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode due to longitudinal movement of electrodes with profiled electrodes
Definitions
- the present invention attaches the thread groove of the movable conductor to which the movable electrode is attached to the thread groove of the adjustment nut that is rotatably inserted into the bearing, and the movable conductor is moved in accordance with the rotation of the adjustment nut.
- the present invention relates to a vacuum capacitor and a vacuum valve with an improved sliding surface that moves in the axial direction.
- the structure of a conventional vacuum capacitor can be broadly divided into two types: a fixed capacitance type vacuum capacitor with a fixed capacitance value and a variable capacitance type vacuum capacitor with a variable capacitance value. is there.
- the latter vacuum capacitor will be described with reference to FIGS.
- copper cylindrical tubes 11a and 11b are joined to both ends of an insulating cylinder 12 that also serves as a ceramic member, and a fixed side end plate 13 and a movable side end are connected to both ends of the cylindrical tubes 11a and ib. Mounted with the plate 14, the container 10 is formed.
- a plurality of cylindrical electrode plates F 1, F 2, -F having different radii are arranged on the inner side of the fixed side end plate 13.
- a fixed electrode 15 is formed by being attached at regular intervals in a circular shape.
- the fixed electrode 15 and the movable electrode 16 constitute a capacitor part.
- the mounting conductor 18 is provided with a movable lead 2.
- One end of the bellows 19 is applied to the movable lead 2, and the other end of the bellows 19 is brazed to the movable side end plate 14.
- the bellows 19 allows the movable lead 2 to move up and down.
- the fixed electrode 15 side and the movable electrode 16 side surrounded by the bellows 19 form a vacuum state, that is, a vacuum chamber.
- a guide pin 1 is provided on the fixed-side electrode shaft center portion of the fixed-side end plate 13 so as to extend inwardly of the container 10 so that the movable lead 2 can smoothly move in the axial direction.
- Guide pin 1 is formed of an insulating member.
- the guide pin 1 is inserted into a guide portion 5 provided on the movable lead 2, and the movable lead bolt 32 is guided in the axial direction using the guide portion 5 as a guide.
- the end of the movable lead bolt 32 opposite to the electrode is inserted into the bearing portion 34.
- the bearing portion 34 is configured as follows. One end of the screw receiving portion 31 is attached to the inner side of the movable side end plate 14, and the other end of the screw receiving portion 31 is bent at the end protruding to the electrode side to the movable lead bolt 32 side to form a flange 31a. . A through-hole is formed in the center of the collar 31a, although no figure number is attached. An adjustment nut 33 is disposed outside the collar portion 31a via a bearing portion 34 of a thrust bearing. A central portion of the bearing portion 34 forms a through hole communicating with the above-described through hole.
- the end portion 32b of the connecting portion 37 of the movable lead bolt 32 on the side opposite to the adjustment nut 33 is fixedly supported on the end face 2a of the movable lead 2 via the guide pin 1 and the space portion.
- the thread groove 32x formed in the outer peripheral portion of the other end of the movable lead bolt 32 passes through the through hole of the bearing portion 34 and the adjustment nut 33, and the screw hole 33c formed in the inner surface of the adjustment nut 33 (shown in FIG. 4). It is screwed into.
- a screw hole 32a is formed at the tip of the movable lead bolt 32 on the screw groove 32x side.
- the adjusting screw 36 is inserted into the screw hole 32a.
- FIG. 4 is an enlarged view showing details of the maximum capacitance adjusting portion 35.
- the maximum capacitance adjusting portion 35 is screwed into the screw hole 32a at the tip of the movable lead bolt 32 and screwed into the screw hole 32a.
- the adjustment screw 36, the adjustment nut 33 and the movable lead bolt 32, and the adjustment screw 36 inserted into the adjustment nut 33 where the movable lead bolt 32 is screwed into the adjustment nut 33.
- a force is formed between the drilled large-diameter portion 33a and a stepped portion 33b between the large-diameter portion 33a and the screw hole 33c.
- the adjustment screw 36 is screwed into the screw hole 32a until the contact surface of the head abuts on the stepped portion 33b. Fix the bolt 32 with adhesive, and regulate the raised position of the movable lead bolt 32 (does not bond to the adjusting nut 33). [0011] By regulating the raised position of the movable lead bolt 32 in this way, even if the maximum capacitance adjustment value of the manufactured vacuum capacitor varies, the maximum capacitance adjustment for each vacuum capacitor. The value can be adjusted, and a vacuum capacitor with a quality that matches the maximum capacitance adjustment value can be obtained.
- the electrostatic capacitance of the vacuum capacitor is adjusted by rotating the adjustment nut 33.
- the movable lead bolt 32 moves downward in the clockwise direction and moves upward in the counterclockwise direction, and the movable electrode 16 moves up and down.
- the capacitance value is arbitrarily adjusted by varying the total area facing the fixed electrode 15.
- This capacitance adjusting means is performed by, for example, an electric means (not shown).
- Patent Document 1 Japanese Patent No. 3263992
- Patent Document 2 Patent No. 3365082
- the adjustment nut In order to change the capacitance of the vacuum capacitor, the adjustment nut is rotated to overcome the vacuum pressure in the container and move the movable electrode. For this reason, when the other screw groove moves along one screw part according to the rotation of the adjusting nut, friction resistance force and surface pressure act on the adjusting screw part while it is being used. The thread is worn and deformed. There was a fear.
- the frictional resistance of the threaded portion may be further increased, and the rotational torque may be increased.
- the movable electrode with respect to the rotational position may be used. Since the position of is displaced by the amount of wear and deformation of the thread, there is a risk that the capacitance will change. In particular, when the motor rotates in the opposite direction to the vacuum pressure where the area between the counter electrodes decreases, the mounting conductor 18 is moved against the vacuum pressure in the vacuum vessel, which may cause a large surface pressure. It was.
- the operation interval of the power supply circuit has been relatively long as the rotation interval with a relatively long stop time.
- operations that are constantly rotating and finely hunting have been used. Yes.
- the adjustment nut and the adjustment screw as described above cannot cope with fine hunting of the same part, and there is a problem that they are worn out in a short period of time and the vacuum capacitor cannot be used.
- the container is subjected to high-temperature vacuum brazing of about 750 ° C to 850 ° C, so that the adjustment nut and adjusting screw are annealed by brazing and the hardness is lowered.
- high-temperature vacuum brazing of about 750 ° C to 850 ° C, so that the adjustment nut and adjusting screw are annealed by brazing and the hardness is lowered.
- each material is unlikely to generate heat even when high-frequency current is applied.
- heat treatment and demagnetization are performed to make the material highly hard.
- the problem that the hardness of the material decreases due to the heat generated by high-frequency energization is eliminated.
- the present invention has been made in view of the above circumstances, and reduces deformation and wear of the adjusting nut and adjusting screw due to rotation as much as possible, and solves problems that occur during brazing to improve durability.
- An object of the present invention is to provide a vacuum capacitor and a vacuum valve.
- a vacuum capacitor includes a vacuum vessel having a fixed side end plate on one end side of a cylindrical portion and a movable side end plate on the other end side, and the vacuum vessel
- a fixed electrode formed by concentrically attaching a plurality of concentric cylindrical electrode plates having different diameters to the fixed electrode mounting conductor, and the cylindrical electrode plates of the fixed electrode can be inserted and removed in a non-contact state.
- the center of the opposing surfaces of the movable electrode mounting conductor Each of which is provided with a guide portion formed by a guide pin provided to each of the guide pins and a guide portion that is electrically insulated and slidably inserted.
- a movable lead bolt is attached to the tip of the movable lead in the bellows in the axial direction, and the movable side end plate is provided with a screw receiving portion protruding into the bellows on the inner side, and a bearing is provided at the end.
- the movable lead bolt is screwed into an adjustment nut supported by a bearing, and the capacitance of the capacitor is adjusted by rotating the adjustment nut, and the movable lead bolt and the adjustment nut are screwed together. After adjusting to the maximum capacitance value defined by operating the adjustment nut, adjust the maximum capacitance adjustment means to restrict the movement of the movable lead bolt to the guide pin side at this adjustment position.
- the capacity adjustment means is provided with a screw hole at the tip of the movable lead bolt, and the adjustment nut is provided with a large diameter portion larger than the screw hole into which the movable lead bolt is screwed.
- the first high-hardness coating layer is provided on one of the adjustment screw and the adjustment nut, and the second is provided on the other. It is characterized by having a high hardness coating layer.
- the first high-hardness coating layer has a titanium nitride core. It is characterized by an electroless coating that retains slipping and hardness, and an electroless coating or titanium nitride coating that retains slipping and hardness on the second high hardness coating layer. To do.
- the vacuum capacitor of the third invention is characterized in that only one of the first and second high-hardness coating layers is provided with an electroless plating coating that maintains slipperiness and hardness. .
- a vacuum capacitor according to a fourth aspect of the present invention is a container in which a fixed side end plate and a movable side end plate are attached to both ends of an insulating cylinder, a fixed electrode provided on the fixed side end plate in the container, A movable electrode disposed so as to form a capacitance with the fixed electrode; a movable electrode having a movable electrode at one end and a movable screw groove at the other end; and the movable conductor and the movable end plate A bellows attached so as to create a vacuum on the electrode side, an adjustment nut having a thread groove that engages with a movable side thread groove outside the mouthpiece, and the adjustment nut is rotatably inserted. And a bearing portion attached to the movable side end plate, and when the adjustment nut is rotated, the movable side conductor moves in a direction to increase or decrease the capacitance via the movable side thread groove.
- a member having a hardness which is harder than the hardness of titanium nitride is formed with a coating layer having fine protrusions coated with titanium nitride on one side of the threaded side of the movable side conductor and the adjusting nut.
- the coating layer is brought into contact with the surface to remove minute protrusions, thereby making the coating layer a smooth surface.
- a vacuum capacitor according to a fifth aspect of the invention is characterized in that fine particles having a hardness higher than that of titanium nitride are sprayed on the coating layer to remove fine protrusions to make the coating layer a smooth surface. Is.
- a vacuum capacitor according to a sixth aspect of the invention is characterized in that the smooth surface is a smooth surface that does not cause damage from minute protrusions when the movable conductor is rotated.
- the sliding surface of the movable side conductor on which the movable side conductor moves while sliding on the bearing portion is formed on a coating layer having fine protrusions coated with titanium nitride,
- the coating layer is harder than the hardness of titanium nitride and is in contact with the coating layer to remove minute protrusions and make the coating layer smooth. It is a feature.
- a vacuum valve houses a pair of electrodes in a vacuum vessel, extends a movable side conductor from the one side electrode to the outside of the bearing portion of the vacuum vessel, and moves the movable side conductor to move to one side.
- the movable conductor has a smooth sliding surface coated with a titanium nitride coating layer. It is what.
- one of the adjusting screw and the adjusting nut is provided with the first high hardness coating layer, and the other is provided with the second high hardness coating layer. Since either one of the adjustment nuts is coated with titanium nitride and the other is coated with an electroless coating that retains slipperiness and hardness, high-hardness coated screws and nuts are constructed. Since the movable electrode can be moved with low frictional force by overcoming the vacuum pressure, it is possible to prevent the wear and deformation of the screw and nut, thereby suppressing the increase in rotational torque and extending the life of the rotating part. Can be planned.
- the adjustment screw and adjustment nut of the high-hardness coating layer are used to rotate with a low frictional force, so that higher speed and higher acceleration than conventional screw rotation are achieved. Since there is little wear and deformation even when rotating, variable control of capacitance can be performed faster.
- the high-hardness coating layer is a weak magnetic material, heat generation does not occur even in vacuum brazing by high-frequency energization even in a high-frequency environment with little hysteresis loss, and the temperature inside the vacuum vessel is increased.
- the high heat resistance of the high-hardness coating layer can be suppressed, and high hardness can be maintained even during high-temperature vacuum brazing at 750 ° C to 850 ° C, and no force is required during high-temperature vacuum brazing
- the present invention only has a high hardness coating on the adjusting screw, so that the life can be extended with the same shape without changing the arrangement inside the vacuum capacitor. Since any material can be used, screws can be manufactured without any restrictions on workability, and the inner diameter side of the adjusting nut can be coated. Thus, wear and deformation can be suppressed.
- the screw groove side on one side of the movable side conductor and the adjusting nut is formed on the coating layer having the microprojections coated with titanium nitride,
- the layer was contacted with the coating layer with a material harder than that of titanium nitride, and the microprotrusions were removed to make the coating layer smooth, so that the thread groove slid on the smooth surface and damaged the coating layer.
- the yield of movable conductors and vacuum capacitors was improved.
- the movable side conductor when the movable side conductor slides on the bearing portion, the movable side conductor has a smooth sliding surface coated with the titanium nitride coating layer. And the yield of vacuum valves was improved.
- FIG. 1 is an enlarged cross-sectional view showing an embodiment.
- FIG. 1 (a) shows an adjusting screw 36
- FIG. 1 (b) shows an adjusting nut ⁇ 33.
- the adjustment screw 36 uses SUS304 as a base material
- the first high-hardness coating layer 41 is coated on the movable side screw groove 32x formed on the outer peripheral side of the movable lead bolt 32 of the adjustment screw 36 formed of this SUS304. did.
- the first high-hardness coating layer 41 was coated with titanium nitride (TiN) [hardness: 2200HV] to a thickness of 3 ⁇ m.
- TiN titanium nitride
- SUS304 similar to the above is used as the base material for the adjustment nut 33 in FIG. 1 (b), and the screw hole 33c of the adjustment nut 33 formed of this SUS304 has a thread groove 33x on the inner surface.
- the second high hardness coating layer 42 was coated on the thread groove 33x.
- This second high-hardness coating layer 42 is made of a coating in which fine particles of PTFE are uniformly dispersed and co-deposited in the electroless nickel plating film, for example, Ni—P—PTFE (PTFE It has a content of 5%) and a [hardness: 750 to 900 HV] and is coated to a thickness of 10 m.
- the friction coefficient at this time is 0.10-10.12.
- the adjustment screw 36 uses SUS304 as the base material.
- the adjustment screw 36 formed of 304 has a movable side thread groove 32x formed on the outer peripheral side of the movable lead bolt 32.
- the movable side thread groove 32x is covered with the first high hardness coating layer 41! /
- the first high-hardness coating layer 41 is coated with titanium nitride (TiN) [hardness: 2200HV] to a thickness of 3 ⁇ m.
- the adjustment nut 33 uses the same SUS304 as the base material, and this SUS30
- the adjustment nut 33 formed of 4 has a second hard coating layer 42 Ni—P—PTF
- the first and second high hardness coating layers 41, 42 shown in the first and second embodiments are the first high hardness coating layer 41 on the adjusting nut 33 and the second high hardness coating layer 36 on the adjusting screw 36. Each of the hardness coating layers 42 may be coated.
- the adjustment nut 33 and the adjustment screw 36 shown in the first and second embodiments are covered with the first and second high-hardness coating layers 42, the maximum rotation speed 1200rpm, the maximum acceleration Z deceleration lOOrpmZ ms (lms Fig. 2 shows the results of investigating the life characteristics when the life is defined when the rotational torque exceeds the specified value for each lOOrpm change).
- the mechanical adjustment nut 33 and the adjustment screw 36 which have been hardened as shown in the first and second embodiments, are applied to the vacuum capacitor. Because it has high tensile strength and high heat resistance, it can withstand high temperature brazing.
- the coating with a higher hardness can reduce wear and deformation, and the sliding force can be reduced by the coating, thereby reducing wear. Is possible.
- Ni-P-PTFE electroless plating
- the coating thickness, multiple coating, coating manufacturing method, and thickness direction may be arbitrarily used.
- any thread shape such as single thread, multiple thread, trapezoidal thread, square thread, etc. can be used, and stainless steel, copper alloy, steel, etc. can be used as the screw base material.
- the configuration of bolts and nuts of the vacuum capacitor guide pin, capacitance adjustment means, male and female, etc. can be used arbitrarily. Of course.
- FIG. 5 is an enlarged view of the movable lead screw 32, which is a movable conductor, with the movable thread 32x on the movable nut 32 and the thread 33x on the adjustment nut 33 screwed together.
- FIG. 5 is an enlarged view of the movable lead screw 32, which is a movable conductor, with the movable thread 32x on the movable nut 32 and the thread 33x on the adjustment nut 33 screwed together.
- a screw groove 33x was formed on the inner surface of the screw hole 33c of the adjustment nut 33, and the second high hardness coating layer 42 as a coating layer was coated on the screw groove 33x.
- This second high-hardness coating layer 42 is made of a coating in which fine particles of PTFE are uniformly dispersed and co-deposited in the electroless nickel plating film, for example, Ni—P—PTFE (PTFE It has a content of 5%) and a [hardness: 750 to 900 HV] and is coated to a thickness of 10 m. The friction coefficient at this time is 0.10-10.12.
- a movable side thread groove 32x is formed on the outer peripheral side of the movable lead bolt 32 of the adjusting screw 36, and titanium nitride (TiN) is sprayed on the movable side thread groove 32x to form a hard coating layer.
- TiN titanium nitride
- a first high hardness coating layer 41 is formed. When the first high-hardness coating layer 41 is observed with a microscope, the first high-hardness coating layer 41 has innumerable protrusions 32y. This protrusion 32y is particularly present at the bottom of the movable side thread groove 32x, and the protrusion 32y is also called a droplet.
- the protrusion 32y may be rubbed with a cloth adhered with diamond cannons in addition to the spraying of this embodiment. Since the spray force reaches the bottom of 32x, there is an advantage that the entire movable side thread groove 32x can be finished to a uniform smooth surface.
- the smoothness of the smooth surface 47 may be a smooth surface that does not damage the first high-hardness coating layer 41 when the thread groove 33x slides and rotates on the movable side thread groove 32x.
- the second high-hardness coating layer 42 may be coated on the movable-side thread groove 32x side, and the first high-hardness coating layer 41 may be coated on the thread groove 33x side.
- the movable lead bolt 32 may be a movable side conductor having a movable side thread groove with a movable electrode attached to one end and inserted into the bearing portion at the other end.
- a sliding surface of the movable side conductor on which the movable side conductor moves while sliding with the bearing portion is provided.
- a pair of electrodes are housed in a vacuum vessel, a movable side conductor is extended from the one side electrode to the outside of the bearing portion of the vacuum vessel, and the movable side conductor is moved to move the one side electrode to the other side electrode.
- the open / close vacuum valve when the movable conductor slides on the bearing portion, the sliding surface of the movable conductor covered with the titanium nitride coating layer is made smooth.
- the sliding surface coated with the coating layer is made smooth to prevent the coating layer from being damaged, and the yield and life of the vacuum capacitor and the vacuum valve are reduced. I was able to improve it.
- FIG. 1 is an enlarged cross-sectional view showing an adjustment nut and an adjustment screw of the first embodiment.
- FIG. 2 Life characteristics when using the adjusting nut and adjusting screw used in Fig. 1.
- FIG. 3 is a cross-sectional view of a vacuum capacitor.
- FIG. 5 is an enlarged cross-sectional view when an adjusting nut and an adjusting screw according to a third embodiment of the present invention are combined.
- FIG. 6 is a cross-sectional view illustrating an operation for making the first high-hardness coating layer on the adjustment screw side a smooth surface according to the third embodiment of the present invention.
- FIG. 7 is a cross-sectional view of the first high-hardness coating layer made smooth according to FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transmission Devices (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
[PROBLEMS] To solve a problem that, when an adjusting nut is rotated in such a state that an adjusting screw and the adjusting nut are screwed together resulting in collision of thread grooves against microspikes during sliding between the thread grooves, cracking starts from the microspikes leading to breaking of a coating layer which in turn deteriorates the yield of a vacuum capacitor. [MEANS FOR SOLVING PROBLEMS] Fine particles (46) having a higher hardness than a first high-hardness coating layer (41) is sprayed from a nozzle (45) on the first high-hardness coating layer (41) covered with a moving-side thread groove (32x) located in a direction indicated by arrows, and a protruded part (32y) is removed to form a surface of the first high-hardness coating layer (41) on a smooth surface (47). Since the thread grooves are slid against each other on the smooth surface, the first high-hardness coating layer (41) is not broken, and the yield of the vacuum capacitor can be improved.
Description
明 細 書 Specification
真空コンデンサ及び真空バルブ 技術分野 Vacuum capacitor and vacuum valve technology
[0001] 本発明は、可動電極を取付けた可動側導体のねじ溝を軸受に回転自在に挿入し た調節ナットのねじ溝に装着し、調節ナットを回転するのに応じて、可動側導体が軸 方向に移動する摺動面を改良した真空コンデンサ及び真空バルブに関するものであ る。 [0001] The present invention attaches the thread groove of the movable conductor to which the movable electrode is attached to the thread groove of the adjustment nut that is rotatably inserted into the bearing, and the movable conductor is moved in accordance with the rotation of the adjustment nut. The present invention relates to a vacuum capacitor and a vacuum valve with an improved sliding surface that moves in the axial direction.
背景技術 Background art
[0002] 従来の真空コンデンサの構造は大別すると、静電容量値が固定されている静電容 量固定形真空コンデンサと、静電容量値が可変できる静電容量可変形真空コンデン サの 2つがある。後者の真空コンデンサを図 3及び図 4により説明する。 [0002] The structure of a conventional vacuum capacitor can be broadly divided into two types: a fixed capacitance type vacuum capacitor with a fixed capacitance value and a variable capacitance type vacuum capacitor with a variable capacitance value. is there. The latter vacuum capacitor will be described with reference to FIGS.
[0003] 図 3において、セラミック部材カもなる絶縁筒 12の両端側に銅製の円筒管 11a, 11 bを接合し、この円筒管 11a, l ibの両端に固定側端板 13と可動側端板 14と取付け 、容器 10を形成している。 In FIG. 3, copper cylindrical tubes 11a and 11b are joined to both ends of an insulating cylinder 12 that also serves as a ceramic member, and a fixed side end plate 13 and a movable side end are connected to both ends of the cylindrical tubes 11a and ib. Mounted with the plate 14, the container 10 is formed.
[0004] 固定側端板 13の内側には、半径の異なる複数の円筒状電極板 F , F , -Fを同 [0004] A plurality of cylindrical electrode plates F 1, F 2, -F having different radii are arranged on the inner side of the fixed side end plate 13.
1 2 n 心円状に一定間隔をもって取付けて固定電極 15を形成している。また、この固定電 極 15の各電極板間の間隙内に、非接触状態で出入できるように、内径の異なる複数 の円筒状電極板 M , M , 1 2 n A fixed electrode 15 is formed by being attached at regular intervals in a circular shape. In addition, a plurality of cylindrical electrode plates M 1, M 2, M 3,
1 2 〜Mを、取付導体 18に設けて可動電極 16を形成してい n 1 2 to M are provided on the mounting conductor 18 to form the movable electrode 16 n
る。固定電極 15及び可動電極 16によりコンデンサ部を構成している。 The The fixed electrode 15 and the movable electrode 16 constitute a capacitor part.
[0005] 取付導体 18には、可動リード 2が設けられ、この可動リード 2にべローズ 19の一端 力 一付けされ、ベローズ 19の他端は可動側端板 14にロー付けされている。ベロー ズ 19により可動リード 2を上下方向に移動できるようにしている。ベローズ 19に包囲さ れた固定電極 15側及び可動電極 16側は、真空状態つまり真空室を形成している。 この可動リード 2が円滑に軸方向に移動できるように、固定側端板 13の固定側電極 軸心部には、容器 10の内方に向力つて伸びるガイドピン 1が設けられている。ガイド ピン 1は絶縁部材により形成されている。ガイドピン 1は可動リード 2に設けられたガイ ド部 5に挿入され、このガイド部 5を案内として可動リードボルト 32を軸方向に案内す
る。可動リードボルト 32の電極と反対側端は軸受部 34に挿入されている。 The mounting conductor 18 is provided with a movable lead 2. One end of the bellows 19 is applied to the movable lead 2, and the other end of the bellows 19 is brazed to the movable side end plate 14. The bellows 19 allows the movable lead 2 to move up and down. The fixed electrode 15 side and the movable electrode 16 side surrounded by the bellows 19 form a vacuum state, that is, a vacuum chamber. A guide pin 1 is provided on the fixed-side electrode shaft center portion of the fixed-side end plate 13 so as to extend inwardly of the container 10 so that the movable lead 2 can smoothly move in the axial direction. Guide pin 1 is formed of an insulating member. The guide pin 1 is inserted into a guide portion 5 provided on the movable lead 2, and the movable lead bolt 32 is guided in the axial direction using the guide portion 5 as a guide. The The end of the movable lead bolt 32 opposite to the electrode is inserted into the bearing portion 34.
[0006] 軸受部 34は次のように構成されている。ねじ受部 31の一端は可動側端板 14の内 側に取付けられ、ねじ受部 31の他端は電極側に突出した端部を可動リードボルト 32 側に折り曲げ鍔部 31aを形成している。鍔部 31aの中心部には図番号を付していな いが貫通孔を形成している。鍔部 31aの外側にはスラストベアリングの軸受部 34を介 して調節ナット 33を配置している。軸受部 34の中心部は前述の貫通孔と連通する貫 通孔を形成している。 [0006] The bearing portion 34 is configured as follows. One end of the screw receiving portion 31 is attached to the inner side of the movable side end plate 14, and the other end of the screw receiving portion 31 is bent at the end protruding to the electrode side to the movable lead bolt 32 side to form a flange 31a. . A through-hole is formed in the center of the collar 31a, although no figure number is attached. An adjustment nut 33 is disposed outside the collar portion 31a via a bearing portion 34 of a thrust bearing. A central portion of the bearing portion 34 forms a through hole communicating with the above-described through hole.
[0007] 調節ナット 33と反対側である可動リードボルト 32の接続部 37の終端部 32bには、 ガイドピン 1と空間部を介した可動リード 2の端面 2aに固定支持されている。可動リー ドボルト 32の他端側外周部に形成されたねじ溝 32xは軸受部 34及び調節ナット 33 の貫通孔を貫通し、調節ナット 33の内面に形成されたねじ孔 33c (図 4に示す)に螺 合している。ねじ溝 32x側の可動リードボルト 32先端には、ねじ孔 32aを形成してい る。ねじ孔 32aには、調整ねじ 36を挿入する。 [0007] The end portion 32b of the connecting portion 37 of the movable lead bolt 32 on the side opposite to the adjustment nut 33 is fixedly supported on the end face 2a of the movable lead 2 via the guide pin 1 and the space portion. The thread groove 32x formed in the outer peripheral portion of the other end of the movable lead bolt 32 passes through the through hole of the bearing portion 34 and the adjustment nut 33, and the screw hole 33c formed in the inner surface of the adjustment nut 33 (shown in FIG. 4). It is screwed into. A screw hole 32a is formed at the tip of the movable lead bolt 32 on the screw groove 32x side. The adjusting screw 36 is inserted into the screw hole 32a.
[0008] 図 4は最大静電容量調整部 35の詳細を示す拡大図で、この最大静電容量調整部 35は、可動リードボルト 32の先端にねじ孔 32aと、このねじ孔 32aに螺入する調整ね じ 36と、調節ナット 33と可動リードボルト 32との螺合部分の調節ナット 33内に可動リ ードボルト 32が螺合するねじ孔 33cより大径で調整ねじ 36が挿入されるように穿設さ れた大径部 33aと、この大径部 33aとねじ孔 33cとの境の段部 33bと力 形成される。 FIG. 4 is an enlarged view showing details of the maximum capacitance adjusting portion 35. The maximum capacitance adjusting portion 35 is screwed into the screw hole 32a at the tip of the movable lead bolt 32 and screwed into the screw hole 32a. The adjustment screw 36, the adjustment nut 33 and the movable lead bolt 32, and the adjustment screw 36 inserted into the adjustment nut 33 where the movable lead bolt 32 is screwed into the adjustment nut 33. A force is formed between the drilled large-diameter portion 33a and a stepped portion 33b between the large-diameter portion 33a and the screw hole 33c.
[0009] 上記のように構成された真空コンデンサにお!/、て、その最大静電容量調整値を調 整する場合は、まず調整ねじ 36を螺入して固定する前に、調節ナット 33を若干右に 回し (右ねじの場合)、ガイドピン 1の先端部 laと可動リードボルト 32の接続部 37の終 端面 32bが突き当たる最大静電容量の位置より若干可動リード 2を下側に移動させ、 最大静電容量調整値に調整する。この若干の調整量は真空コンデンサの静電容量 のばらつきの程度で決まる。 [0009] When adjusting the maximum capacitance adjustment value of the vacuum capacitor configured as described above, first adjust the adjustment nut 36 before screwing in and adjusting the adjustment screw 36. Turn the screw slightly to the right (in the case of a right-hand thread), and move the movable lead 2 slightly below the position of the maximum capacitance where the tip la of the guide pin 1 and the end face 32b of the connecting part 37 of the movable lead bolt 32 abut. Adjust to the maximum capacitance adjustment value. This slight adjustment is determined by the degree of variation in the capacitance of the vacuum capacitor.
[0010] 次に、この状態で調整ねじ 36をその頭部の当接面が段部 33bに当接するまで調整 ねじ 36をねじ孔 32aに螺入し、当接したところで調整ねじ 36を可動リードボルト 32に 接着剤で固定し、可動リードボルト 32の上昇位置を規制する (調節ナット 33とは接着 しない)。
[0011] このように可動リードボルト 32の上昇位置を規制することにより、製作された真空コ ンデンサの最大静電容量調整値にばらつきがあっても、各真空コンデンサごとに最 大静電容量調整値が調整でき、最大静電容量調整値に合致した品質の真空コンデ ンサが得られる。 [0010] Next, in this state, the adjustment screw 36 is screwed into the screw hole 32a until the contact surface of the head abuts on the stepped portion 33b. Fix the bolt 32 with adhesive, and regulate the raised position of the movable lead bolt 32 (does not bond to the adjusting nut 33). [0011] By regulating the raised position of the movable lead bolt 32 in this way, even if the maximum capacitance adjustment value of the manufactured vacuum capacitor varies, the maximum capacitance adjustment for each vacuum capacitor. The value can be adjusted, and a vacuum capacitor with a quality that matches the maximum capacitance adjustment value can be obtained.
[0012] 調整ねじ 36は、その最大静電容量調整値の位置よりも調節ナット 33を左に回そうと しても調整ねじ 36が段部 33bに当たり、それ以上左に回らないので、調節ナット 33が 可動リードボルト 32から抜けるのを防止するストツバの機能を併せ持つ。 [0012] Even if the adjustment screw 36 tries to turn the adjustment nut 33 counterclockwise from the position of the maximum capacitance adjustment value, the adjustment screw 36 hits the step 33b and does not turn further to the left. It also has the function of a stagger to prevent 33 from coming off the movable lead bolt 32.
[0013] 真空コンデンサの静電容量の調整は、調節ナット 33を回転することにより、例えば 右回転では可動リードボルト 32が下方に移動し、左回転では上方に移動し、可動電 極 16を上下に移動させ、固定電極 15との対向総面積を可変して静電容量値を任意 に調整する。この静電容量調整手段は、例えば、図示しない電動手段等にて行われ る。 [0013] The electrostatic capacitance of the vacuum capacitor is adjusted by rotating the adjustment nut 33. For example, the movable lead bolt 32 moves downward in the clockwise direction and moves upward in the counterclockwise direction, and the movable electrode 16 moves up and down. The capacitance value is arbitrarily adjusted by varying the total area facing the fixed electrode 15. This capacitance adjusting means is performed by, for example, an electric means (not shown).
[0014] 上記のように構成された静電容量可変形真空コンデンサに要求される特性としては 、静電容量調整用の調節ナット 33や調整ねじ 36の長寿命化が要望されている。真 空コンデンサでは、調節ナットや調整ねじの材質と形状が、上記長寿命化に大きな 影響力を与える。特に半導体製造装置用の高周波電源回路に使用される真空コン デンサの場合には、静電容量値を頻繁に可変するために、調節ナットを高速かつ総 回転数も多いことから調節ナット、調整ねじの損傷も激しぐそれらの耐久性の低下を 招!、て 、る。この種の技術として下記特許文献 1及び特許文献 2の公報を挙げること ができる。 [0014] As a characteristic required for the capacitance variable vacuum capacitor configured as described above, there is a demand for extending the life of the adjustment nut 33 and the adjustment screw 36 for capacitance adjustment. In vacuum capacitors, the material and shape of the adjustment nut and adjustment screw have a significant impact on the above-mentioned long life. Particularly in the case of vacuum capacitors used in high-frequency power supply circuits for semiconductor manufacturing equipment, the adjustment nut and adjustment screw are used because the adjustment nut is fast and has a high total rotation speed in order to frequently change the capacitance value. Intense damage will cause a decline in their durability! As this type of technology, the following patent documents 1 and 2 can be cited.
[0015] 特許文献 1:特許第 3263992号 [0015] Patent Document 1: Japanese Patent No. 3263992
特許文献 2:特許第 3365082号 Patent Document 2: Patent No. 3365082
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0016] 真空コンデンサの静電容量を可変させるには、容器内の真空圧力に打ち勝って可 動電極を移動させるため、調節ナットを回転させて行っている。このため、調節ナット の回転に応じて、一方のねじ部に沿って他方のねじ溝が移動する際、調整のねじ部 には、摩擦抵抗力、面圧が働いて、使用しているうちにねじ部が摩耗、変形してしまう
恐れがあった。 [0016] In order to change the capacitance of the vacuum capacitor, the adjustment nut is rotated to overcome the vacuum pressure in the container and move the movable electrode. For this reason, when the other screw groove moves along one screw part according to the rotation of the adjusting nut, friction resistance force and surface pressure act on the adjusting screw part while it is being used. The thread is worn and deformed. There was a fear.
[0017] また、ねじ部が摩耗、変形すると、ねじ部の摩擦抵抗力がさらに高まり、回転トルク が上昇してしまう恐れもあり、更に、ねじ部が摩耗、変形すると、回転位置に対する可 動電極の位置がねじ部の摩耗、変形分だけ変位するため、静電容量に変化が生じ てしまう恐れがある。特に対向電極間の面積が減少する真空圧力と反対方向にモー タが回転する場合には、真空容器内の真空圧力に逆らって取付導体 18を移動させ るので、大きな面圧が働く恐れがあった。 [0017] Further, if the threaded portion is worn or deformed, the frictional resistance of the threaded portion may be further increased, and the rotational torque may be increased. Further, if the threaded portion is worn or deformed, the movable electrode with respect to the rotational position may be used. Since the position of is displaced by the amount of wear and deformation of the thread, there is a risk that the capacitance will change. In particular, when the motor rotates in the opposite direction to the vacuum pressure where the area between the counter electrodes decreases, the mounting conductor 18 is moved against the vacuum pressure in the vacuum vessel, which may cause a large surface pressure. It was.
[0018] また、高周波電源回路では、インピーダンス調整を迅速に行う必要があるため、時 間当たりの静電容量移動時間を短くするために、高速、高加速度で回転されるため、 より大きな負担がねじ部に働く恐れがあった。特に半導体製造装置用の高周波電源 回路用では、今までは、 600rpm程度のステッピングモータにて調節ナット 33を制御 する手段を講じていたが、近年ではサーボモータにて調節ナットを制御する手段を採 用している。このため、上述した調節ナット 33、調整ねじ 36では、高速化、高加速度 化には対応できず短期間でそれらは摩耗して使用できなくなってしまう問題がある。 [0018] Further, in the high-frequency power supply circuit, since it is necessary to quickly adjust the impedance, it is rotated at a high speed and a high acceleration in order to shorten the capacitance moving time per time. There was a risk of working on the thread. In particular, for high-frequency power supply circuits for semiconductor manufacturing equipment, until now, a means to control the adjustment nut 33 with a stepping motor of about 600 rpm has been taken, but recently, a means to control the adjustment nut with a servo motor has been adopted. I use it. For this reason, the adjustment nut 33 and the adjustment screw 36 described above cannot cope with high speed and high acceleration, and there is a problem that they are worn out and cannot be used in a short period of time.
[0019] また、従来では、上記電源回路の運転間隔は、停止時間が比較的長ぐ回転する 間隔も比較的長力つたが、近年では常に回転、微動ハンチングしている動作が使わ れてきている。このため、上述したような調節ナットや調整ねじでは、同じ箇所を微動 ハンチングすることには対応できず、短期間でそれらが摩耗して真空コンデンサの使 用ができなくなってしまう問題もある。 [0019] Conventionally, the operation interval of the power supply circuit has been relatively long as the rotation interval with a relatively long stop time. However, in recent years, operations that are constantly rotating and finely hunting have been used. Yes. For this reason, the adjustment nut and the adjustment screw as described above cannot cope with fine hunting of the same part, and there is a problem that they are worn out in a short period of time and the vacuum capacitor cannot be used.
[0020] 更に、真空コンデンサを製造する際には、容器を 750°C〜850°Cぐらいの高温真 空ロー付けを行うため、調節ナットや調整ねじがロー付けによる焼きなましで硬度低 下を起こしてしまう問題もあり、また、上記とは別に、各素材には高周波通電によって も発熱が発生しにく ヽ、非磁性かつ高硬度化するために熱処理ゃ脱磁処理を施して 素材を高硬度化しても、高周波通電による熱で素材の硬度低下を起こしてしまう問題 もめる。 [0020] Furthermore, when manufacturing a vacuum capacitor, the container is subjected to high-temperature vacuum brazing of about 750 ° C to 850 ° C, so that the adjustment nut and adjusting screw are annealed by brazing and the hardness is lowered. In addition to the above, each material is unlikely to generate heat even when high-frequency current is applied.In order to make it nonmagnetic and hard, heat treatment and demagnetization are performed to make the material highly hard. However, the problem that the hardness of the material decreases due to the heat generated by high-frequency energization is eliminated.
[0021] この他、高硬度な調節ナットや調整ねじ素材、コーティングしたものを使用して上記 と同様に高温真空ロー付けを行うと、ロー付け中にそれら素材やコーディング力 ガ スが放出され、真空コンデンサとしての機能がなくなってしまう問題もある。
[0022] 本発明は、上記の事情に鑑みてなされたもので、回転による調節ナット、調整ねじ の変形、摩耗を極力低減するとともに、ロー付け中に生じる不具合を解決して、耐久 性を向上させた真空コンデンサ及び真空バルブを提供することを目的とする。 [0021] In addition, if high-temperature vacuum brazing is performed using a high-hardness adjustment nut, adjustment screw material, or coated material in the same manner as described above, the material and coding force gas are released during brazing, There is also a problem that the function as a vacuum capacitor is lost. [0022] The present invention has been made in view of the above circumstances, and reduces deformation and wear of the adjusting nut and adjusting screw due to rotation as much as possible, and solves problems that occur during brazing to improve durability. An object of the present invention is to provide a vacuum capacitor and a vacuum valve.
課題を解決するための手段 Means for solving the problem
[0023] 上記課題を解決するために、第 1発明の真空コンデンサは、円筒部の一端側に固 定側端板、他端側に可動側端板を有する真空容器と、この真空容器内に、同心円状 で径の異なる複数の円筒状電極板を固定電極取付導体に同心状に取り付けて形成 した固定電極と、この固定電極の各円筒状電極板間に非接触状態で挿出入できるよ うに径の異なる複数の円筒状電極板を可動電極取付導体に同心状に取り付けて形 成した可動電極と、この可動電極を前記真空容器の可動側端板の外部力 円筒状 電極板の軸線方向に移動させる可動リードと、この可動リードの外周側で前記可動 側端板の内側に設けられ、真空状態を保持した状態で可動リードの移動を可能とす るべローズと、前記固定電極取付導体と可動電極取付導体の相対向する面の中心 部に夫々設けられたガイドピン、このガイドピンを電気的に絶縁して摺動自在に挿入 するガイド部とで形成した案内部を備えて真空コンデンサを構成し、 In order to solve the above problems, a vacuum capacitor according to a first aspect of the present invention includes a vacuum vessel having a fixed side end plate on one end side of a cylindrical portion and a movable side end plate on the other end side, and the vacuum vessel A fixed electrode formed by concentrically attaching a plurality of concentric cylindrical electrode plates having different diameters to the fixed electrode mounting conductor, and the cylindrical electrode plates of the fixed electrode can be inserted and removed in a non-contact state. A movable electrode formed by concentrically attaching a plurality of cylindrical electrode plates having different diameters to a movable electrode mounting conductor, and this movable electrode is applied to the external force of the movable side end plate of the vacuum vessel in the axial direction of the cylindrical electrode plate. A movable lead to be moved, a bellows provided inside the movable side end plate on an outer peripheral side of the movable lead and capable of moving the movable lead in a vacuum state, and the fixed electrode mounting conductor; The center of the opposing surfaces of the movable electrode mounting conductor Each of which is provided with a guide portion formed by a guide pin provided to each of the guide pins and a guide portion that is electrically insulated and slidably inserted.
前記べローズ内において可動リードの先端部に可動リードボルトを軸線方向に取 付け、且つ前記可動側端板には、その内側でベローズ内に突出したねじ受部を設け てその端部に軸受を設け、前記可動リードボルトを軸受に支持された調節ナットに螺 合して、この調節ナットの回転操作によりコンデンサの静電容量を調整するようにする とともに、前記可動リードボルトと調節ナットの螺合部に調節ナットを操作して定義し た最大静電容量値に調整した後、この調整位置で可動リードボルトのガイドピン側へ の移動を規制する最大静電容量調節手段を設け、この最大静電容量調節手段は、 可動リードボルトの先端にねじ穴を設け、且つ調節ナットには可動リードボルトが螺入 されるねじ穴より大径の大径部を設けて、この大径部力 調整ねじを挿入して前記可 動リードボルトの先端のねじ穴に螺入するようにした真空コンデンサにおいて、 前記調整ねじと調節ナットの一方には、第 1高硬度コーティング層を、他方には、第 2高硬度コーティング層を施したことを特徴とするものである。 A movable lead bolt is attached to the tip of the movable lead in the bellows in the axial direction, and the movable side end plate is provided with a screw receiving portion protruding into the bellows on the inner side, and a bearing is provided at the end. The movable lead bolt is screwed into an adjustment nut supported by a bearing, and the capacitance of the capacitor is adjusted by rotating the adjustment nut, and the movable lead bolt and the adjustment nut are screwed together. After adjusting to the maximum capacitance value defined by operating the adjustment nut, adjust the maximum capacitance adjustment means to restrict the movement of the movable lead bolt to the guide pin side at this adjustment position. The capacity adjustment means is provided with a screw hole at the tip of the movable lead bolt, and the adjustment nut is provided with a large diameter portion larger than the screw hole into which the movable lead bolt is screwed. In the vacuum capacitor in which the screw is inserted into the screw hole at the tip of the movable lead bolt, the first high-hardness coating layer is provided on one of the adjustment screw and the adjustment nut, and the second is provided on the other. It is characterized by having a high hardness coating layer.
[0024] 第 2発明の真空コンデンサは、前記第 1高硬度コーティング層には、窒化チタンコ
一ティング又は滑り性及び硬度を保持する無電解メツキコーティングを、第 2高硬度コ 一ティング層には、滑り性及び硬度を保持する無電解メツキコーティング又は窒化チ タンコーティングを施したことを特徴とするものである。 [0024] In the vacuum capacitor of the second invention, the first high-hardness coating layer has a titanium nitride core. It is characterized by an electroless coating that retains slipping and hardness, and an electroless coating or titanium nitride coating that retains slipping and hardness on the second high hardness coating layer. To do.
[0025] 第 3発明の真空コンデンサは、前記第 1、第 2高硬度コーティング層のどちらか一方 のみだけ、滑り性及び硬度を保持する無電解メツキコーティングを施したことを特徴と するものである。 [0025] The vacuum capacitor of the third invention is characterized in that only one of the first and second high-hardness coating layers is provided with an electroless plating coating that maintains slipperiness and hardness. .
[0026] 第 4発明の真空コンデンサは、絶縁筒の両端部に固定側端板及び可動側端板を 取付けてなる容器と、前記容器内の固定側端板に設けられた固定電極と、前記固定 電極との間に静電容量を形成するように配置された可動電極と、一端に可動電極を 他端に可動側ねじ溝を設けた可動側導体と、前記可動側導体と可動側端板との間 に電極側を真空状態になすように取付けられたべローズと、前記べ一口ズの外側の 可動側ねじ溝と螺合するねじ溝を有する調節ナットと、前記調節ナットを回転自在に 挿入すると共に、可動側端板に取付けられた軸受部とを備え、前記調節ナットを回転 すると前記可動側ねじ溝を介して可動側導体が静電容量を増減する方向に移動す る真空コンデンサにおいて、 [0026] A vacuum capacitor according to a fourth aspect of the present invention is a container in which a fixed side end plate and a movable side end plate are attached to both ends of an insulating cylinder, a fixed electrode provided on the fixed side end plate in the container, A movable electrode disposed so as to form a capacitance with the fixed electrode; a movable electrode having a movable electrode at one end and a movable screw groove at the other end; and the movable conductor and the movable end plate A bellows attached so as to create a vacuum on the electrode side, an adjustment nut having a thread groove that engages with a movable side thread groove outside the mouthpiece, and the adjustment nut is rotatably inserted. And a bearing portion attached to the movable side end plate, and when the adjustment nut is rotated, the movable side conductor moves in a direction to increase or decrease the capacitance via the movable side thread groove.
前記可動側導体と調節ナットとのいずれか一方側のねじ溝側を窒化チタンでコー ティングした微小突起を有するコーティング層に形成し、前記コーティング層を窒化 チタンの硬度より硬!、硬度を有する部材にてコーティング層に接触し、微小突起を除 去してコーティング層を平滑面にすることを特徴とするものである。 A member having a hardness which is harder than the hardness of titanium nitride, and is formed with a coating layer having fine protrusions coated with titanium nitride on one side of the threaded side of the movable side conductor and the adjusting nut. In this case, the coating layer is brought into contact with the surface to remove minute protrusions, thereby making the coating layer a smooth surface.
[0027] 第 5発明の真空コンデンサは、前記コーティング層を窒化チタンの硬度より硬い硬 度の微粒子をコーティング層に吹付け、微小突起を除去してコーティング層を平滑面 にすることを特徴とするものである。 [0027] A vacuum capacitor according to a fifth aspect of the invention is characterized in that fine particles having a hardness higher than that of titanium nitride are sprayed on the coating layer to remove fine protrusions to make the coating layer a smooth surface. Is.
[0028] 第 6発明の真空コンデンサは、前記平滑面は可動側導体を回転時に微小突起から 破損を生じない程度の平滑面であることを特徴とするものである。 [0028] A vacuum capacitor according to a sixth aspect of the invention is characterized in that the smooth surface is a smooth surface that does not cause damage from minute protrusions when the movable conductor is rotated.
[0029] 第 7発明の真空コンデンサは、前記可動側導体が軸受部と摺動しながら移動する 可動側導体の摺動面を、窒化チタンでコーティングした微小突起を有するコーティン グ層に形成し、前記コーティング層を窒化チタンの硬度より硬 、硬度を有する部材に てコーティング層に接触し、微小突起を除去してコーティング層を平滑面にすることを
特徴とするものである。 [0029] In the vacuum capacitor of the seventh invention, the sliding surface of the movable side conductor on which the movable side conductor moves while sliding on the bearing portion is formed on a coating layer having fine protrusions coated with titanium nitride, The coating layer is harder than the hardness of titanium nitride and is in contact with the coating layer to remove minute protrusions and make the coating layer smooth. It is a feature.
[0030] 第 8発明の真空バルブは、真空容器内に一対の電極を収納し、一方側電極より真 空容器の軸受部より外部に可動側導体を伸ばし、可動側導体を移動して一方側電 極を他方側電極と開閉する真空バルブにおいて、前記可動側導体が軸受部と摺動 する際に、可動側導体を窒化チタンのコーティング層を被覆した摺動面を平滑面に することを特徴とするものである。 [0030] A vacuum valve according to an eighth aspect of the present invention houses a pair of electrodes in a vacuum vessel, extends a movable side conductor from the one side electrode to the outside of the bearing portion of the vacuum vessel, and moves the movable side conductor to move to one side. In a vacuum valve that opens and closes an electrode with the other electrode, when the movable conductor slides on the bearing portion, the movable conductor has a smooth sliding surface coated with a titanium nitride coating layer. It is what.
発明の効果 The invention's effect
[0031] 以上述べたように、本発明によれば、調整ねじと調節ナットの一方には、第 1高硬度 コーティング層を、他方には、第 2高硬度コーティング層を施し、また、調整ねじ、調 節ナットのどちらか一方に窒化チタンコーティングを、他方に滑り性及び硬度を保持 する無電解メツキコーティングを施して高硬度コーティングのねじ、ナットを構成した ので、これら、ねじ、ナットによる回転により、真空圧力に打ち勝って可動電極を低摩 擦力で移動させることができるため、ねじ、ナットの摩耗、変形を防止することが可能 となり、回転トルクの上昇を抑制し、回転部の長寿命化を図ることができるようになる。 [0031] As described above, according to the present invention, one of the adjusting screw and the adjusting nut is provided with the first high hardness coating layer, and the other is provided with the second high hardness coating layer. Since either one of the adjustment nuts is coated with titanium nitride and the other is coated with an electroless coating that retains slipperiness and hardness, high-hardness coated screws and nuts are constructed. Since the movable electrode can be moved with low frictional force by overcoming the vacuum pressure, it is possible to prevent the wear and deformation of the screw and nut, thereby suppressing the increase in rotational torque and extending the life of the rotating part. Can be planned.
[0032] また、本発明によれば、高硬度コーティング層の調整ねじ、調節ナットを使用するこ とにより、低摩擦力で回転をしているため、従来のねじ回転よりも高速、高加速に回 転しても摩耗、変形が少ないため、静電容量の可変制御がより高速ィ匕することができ る。 [0032] Further, according to the present invention, the adjustment screw and adjustment nut of the high-hardness coating layer are used to rotate with a low frictional force, so that higher speed and higher acceleration than conventional screw rotation are achieved. Since there is little wear and deformation even when rotating, variable control of capacitance can be performed faster.
[0033] さらに、上記高硬度コーティング層は、弱磁性体であるので、高周波通電による真 空ロー付けにおいてもヒステリシス損が少なぐ高周波環境下でも発熱が発生せず、 真空容器内部の温度上昇を抑制でき、また、高硬度コーティング層の耐熱性が高い こと力も、 750°C〜850°Cの高温真空ロー付けにおいても高硬度を維持することがで き、し力も高温真空ロー付け中に不要なガスを放出することもないので、真空度低下 を発生させることも無くすることができる利点がある。 [0033] Furthermore, since the high-hardness coating layer is a weak magnetic material, heat generation does not occur even in vacuum brazing by high-frequency energization even in a high-frequency environment with little hysteresis loss, and the temperature inside the vacuum vessel is increased. The high heat resistance of the high-hardness coating layer can be suppressed, and high hardness can be maintained even during high-temperature vacuum brazing at 750 ° C to 850 ° C, and no force is required during high-temperature vacuum brazing There is an advantage that it is possible to eliminate the occurrence of a decrease in the degree of vacuum because no gas is released.
[0034] 本発明は上記の利点の他に、調整ねじを高硬度コーティングするだけなので、真 空コンデンサ内部の配置を変更することなく同じ形状で長寿命化ができ、し力も、そ のねじの素材を選ばないので、加工性に制約なくねじを製造することができ、また、 調節ナット内径側のコーティング処理が可能なため、そのナットも高硬度化することに
より、摩耗、変形を抑制することができる。 [0034] In addition to the above advantages, the present invention only has a high hardness coating on the adjusting screw, so that the life can be extended with the same shape without changing the arrangement inside the vacuum capacitor. Since any material can be used, screws can be manufactured without any restrictions on workability, and the inner diameter side of the adjusting nut can be coated. Thus, wear and deformation can be suppressed.
[0035] さらにまた、本発明によれば、可動側導体と調節ナットとの!/、ずれか一方側のねじ 溝側を、窒化チタンでコーティングした微小突起を有するコーティング層に形成し、 前記コーティング層を窒化チタンの硬度より硬い硬度を有する部材にてコーティング 層に接触し、微小突起を除去してコーティング層を平滑面にしたので、ねじ溝が平滑 面にて摺動し、コーティング層を破損しなくなり、可動側導体及び真空コンデンサの 歩留まりが向上した。 [0035] Furthermore, according to the present invention, the screw groove side on one side of the movable side conductor and the adjusting nut is formed on the coating layer having the microprojections coated with titanium nitride, The layer was contacted with the coating layer with a material harder than that of titanium nitride, and the microprotrusions were removed to make the coating layer smooth, so that the thread groove slid on the smooth surface and damaged the coating layer. As a result, the yield of movable conductors and vacuum capacitors was improved.
[0036] また、本発明によれば、可動側導体が軸受部と摺動する際に、可動側導体を窒化 チタンのコーティング層を被覆した摺動面を、平滑面にしたので、可動側導体及び真 空バルブの歩留まりが向上した。 [0036] According to the present invention, when the movable side conductor slides on the bearing portion, the movable side conductor has a smooth sliding surface coated with the titanium nitride coating layer. And the yield of vacuum valves was improved.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下本発明の第 1実施形態及び第 2実施形態と第 3実施形態を図面に基づいて説 明する。 Hereinafter, a first embodiment, a second embodiment, and a third embodiment of the present invention will be described with reference to the drawings.
[0038] [第 1実施形態] [0038] [First Embodiment]
図 1は実施形態を示す拡大断面図で、図 1 (a)は調整ねじ 36、図 1 (b)は調節ナツ 卜 33である。調整ねじ 36には、母材として SUS304を使用し、この SUS304で形成 された調整ねじ 36の可動リードボルト 32の外周側に形成された可動側ねじ溝 32xに 第 1高硬度コーティング層 41を被覆した。この第 1高硬度コーティング層 41には、窒 化チタン (TiN) [硬度: 2200HV]を、厚み 3 μ mにコーティングした。 FIG. 1 is an enlarged cross-sectional view showing an embodiment. FIG. 1 (a) shows an adjusting screw 36, and FIG. 1 (b) shows an adjusting nut 卜 33. The adjustment screw 36 uses SUS304 as a base material, and the first high-hardness coating layer 41 is coated on the movable side screw groove 32x formed on the outer peripheral side of the movable lead bolt 32 of the adjustment screw 36 formed of this SUS304. did. The first high-hardness coating layer 41 was coated with titanium nitride (TiN) [hardness: 2200HV] to a thickness of 3 μm.
[0039] また、図 1 (b)の調節ナット 33には、母材として上記と同様の SUS304を使用し、こ の SUS304で形成された調節ナット 33のねじ孔 33cは、内面にネジ溝 33xを形成し 、ネジ溝 33xに第 2高硬度コーティング層 42を被覆した。この第 2高硬度コーティング 層 42〖こは、滑り性及び硬度を保持させるため無電解ニッケルメツキ皮膜中に PTFE の微粒子を均一に分散'共析させたメツキ、例えば、 Ni— P— PTFE (PTFE含有量 5%)、 [硬度: 750〜900HV]を有し、厚み 10 mにコーティングする。このときの摩 擦係数は 0. 10-0. 12である。 [0039] In addition, SUS304 similar to the above is used as the base material for the adjustment nut 33 in FIG. 1 (b), and the screw hole 33c of the adjustment nut 33 formed of this SUS304 has a thread groove 33x on the inner surface. Then, the second high hardness coating layer 42 was coated on the thread groove 33x. This second high-hardness coating layer 42 is made of a coating in which fine particles of PTFE are uniformly dispersed and co-deposited in the electroless nickel plating film, for example, Ni—P—PTFE (PTFE It has a content of 5%) and a [hardness: 750 to 900 HV] and is coated to a thickness of 10 m. The friction coefficient at this time is 0.10-10.12.
[0040] [第 2実施形態] [0040] [Second Embodiment]
第 1実施形態と同様に、調整ねじ 36には、母材として SUS304を使用し、この SUS
304で形成された調整ねじ 36には可動リードボルト 32の外周側に可動側ねじ溝 32x を形成して 、る。可動側ねじ溝 32xには第 1高硬度コ一ティング層 41を被覆して!/、るAs in the first embodiment, the adjustment screw 36 uses SUS304 as the base material. The adjustment screw 36 formed of 304 has a movable side thread groove 32x formed on the outer peripheral side of the movable lead bolt 32. The movable side thread groove 32x is covered with the first high hardness coating layer 41! /
。この第 1高硬度コーティング層 41には、窒化チタン (TiN) [硬度: 2200HV]を、厚 み 3 μ mにコーティングする。 . The first high-hardness coating layer 41 is coated with titanium nitride (TiN) [hardness: 2200HV] to a thickness of 3 μm.
[0041] また、調節ナット 33には、母材として上記と同様の SUS304を使用し、この SUS30[0041] Further, the adjustment nut 33 uses the same SUS304 as the base material, and this SUS30
4で形成された調節ナット 33には、第 2高硬度コーティング層 42である Ni—P— PTFThe adjustment nut 33 formed of 4 has a second hard coating layer 42 Ni—P—PTF
E (PTFE含有量 20%タイプ)、 [硬度: 400〜600HV]を、厚み 10 μ mにコーティン グする。このときの摩擦係数は 0. 08-0. 10である。 E (PTFE content 20% type), [Hardness: 400-600HV] is coated to a thickness of 10 μm. The coefficient of friction at this time is 0.08-0.10.
[0042] なお、上記第 1、第 2実施形態に示す第 1、第 2高硬度コーティング層 41, 42は、調 節ナット 33に第 1高硬度コーティング層 41を、調整ねじ 36に第 2高硬度コーティング 層 42をそれぞれ被覆しても良い。 [0042] The first and second high hardness coating layers 41, 42 shown in the first and second embodiments are the first high hardness coating layer 41 on the adjusting nut 33 and the second high hardness coating layer 36 on the adjusting screw 36. Each of the hardness coating layers 42 may be coated.
[0043] 上記第 1、第 2実施形態に示す調節ナット 33、調整ねじ 36に第 1、第 2高硬度コー ティング層 42を被覆し、最大回転速度 1200rpm,最大加速度 Z減速度 lOOrpmZ ms (lms毎に lOOrpm変ィ匕)の場合で、回転トルクが規定値を超えたときに寿命と定 義した時の寿命特性を調べた結果を図 2に示した。 [0043] The adjustment nut 33 and the adjustment screw 36 shown in the first and second embodiments are covered with the first and second high-hardness coating layers 42, the maximum rotation speed 1200rpm, the maximum acceleration Z deceleration lOOrpmZ ms (lms Fig. 2 shows the results of investigating the life characteristics when the life is defined when the rotational torque exceeds the specified value for each lOOrpm change).
[0044] この図 2から、 SUS304だけでは、 20万サイクルであった力 調節ナット 33に無電 解メツキ (Ni— P— PTFE)を被覆した第 1、第 2実施形態の場合には、 80万サイクル までも寿命が延びたことになる。 [0044] From Fig. 2, it can be seen that with SUS304 alone, the force adjustment nut 33, which was 200,000 cycles, was coated with electroless plating (Ni—P—PTFE) in the first and second embodiments, 800,000. The life is extended even to the cycle.
[0045] 図 2に示す寿命特性の結果から、第 1、第 2実施形態に示すように高硬度化された コーティングの調節ナット 33、調整ねじ 36を真空コンデンサに適用することにより、機 械的性質として引っ張り強さが高ぐ耐熱性が高いことから高温ロー付けにも耐えるこ とができるようになる。 [0045] From the results of the life characteristics shown in FIG. 2, the mechanical adjustment nut 33 and the adjustment screw 36, which have been hardened as shown in the first and second embodiments, are applied to the vacuum capacitor. Because it has high tensile strength and high heat resistance, it can withstand high temperature brazing.
[0046] また、高硬度化されたコーティングを被覆したことにより、摩耗'変形を緩和すること ができ、し力もそのコーティングにより摺動摩擦を低減することができるようになり、摩 耗を緩和することが可能になる。 [0046] In addition, the coating with a higher hardness can reduce wear and deformation, and the sliding force can be reduced by the coating, thereby reducing wear. Is possible.
[0047] 更に、調節ナット 33、調整ねじ 36のどちらか一方だけのみに、無電解メツキ(Ni— P [0047] Furthermore, only one of the adjusting nut 33 and the adjusting screw 36 is provided with an electroless plating (Ni-P
PTFE)を、他方には、異なる材質のコーティング層を被覆しても良ぐ或いはどち らか一方だけのみに無電解メツキ (Ni— P— PTFE)を被覆しても同様な効果が得ら
れる。 The same effect can be obtained by coating a coating layer of a different material on the other side or coating only one of them with an electroless plating (Ni-P-PTFE). It is.
[0048] なお、上記第 1、第 2実施形態において、コーティングの厚み、多数コーティング、コ 一ティングの製法や厚み方向は任意に使用しても良い。また、 1条ねじ、多状ねじ、 台形ねじ、角ねじ等のねじ形状は何れのものでも使用可能であり、ねじ母材もステン レス鋼、銅合金、鉄鋼等が使用できる。更に、真空コンデンサのガイドピンの有無、静 電容量調節手段のボルト、ナットの雄'雌等の構成は何れでも良ぐねじ部へのダリ ース、潤滑油の種類や量も任意に使用できることは勿論である。 [0048] In the first and second embodiments, the coating thickness, multiple coating, coating manufacturing method, and thickness direction may be arbitrarily used. In addition, any thread shape such as single thread, multiple thread, trapezoidal thread, square thread, etc. can be used, and stainless steel, copper alloy, steel, etc. can be used as the screw base material. In addition, the configuration of bolts and nuts of the vacuum capacitor guide pin, capacitance adjustment means, male and female, etc. can be used arbitrarily. Of course.
[0049] [第 3実施形態] [0049] [Third embodiment]
本発明の第 3実施形態を図 5から図 7により説明する。図 5は可動側導体である可 動リードボルト 32の可動側ねじ溝 32xと調節ナット 33側のネジ溝 33xとが螺合状態 で装着された拡大図であり、顕微鏡で見た図を模写した図である。 A third embodiment of the present invention will be described with reference to FIGS. Fig. 5 is an enlarged view of the movable lead screw 32, which is a movable conductor, with the movable thread 32x on the movable nut 32 and the thread 33x on the adjustment nut 33 screwed together. FIG.
[0050] 調節ナット 33のねじ孔 33cの内面には、ネジ溝 33xを形成し、ネジ溝 33xにコーテ イング層である第 2高硬度コーティング層 42を被覆した。この第 2高硬度コーティング 層 42〖こは、滑り性及び硬度を保持させるため無電解ニッケルメツキ皮膜中に PTFE の微粒子を均一に分散'共析させたメツキ、例えば、 Ni— P— PTFE (PTFE含有量 5%)、 [硬度: 750〜900HV]を有し、厚み 10 mにコーティングする。このときの摩 擦係数は 0. 10-0. 12である。 [0050] A screw groove 33x was formed on the inner surface of the screw hole 33c of the adjustment nut 33, and the second high hardness coating layer 42 as a coating layer was coated on the screw groove 33x. This second high-hardness coating layer 42 is made of a coating in which fine particles of PTFE are uniformly dispersed and co-deposited in the electroless nickel plating film, for example, Ni—P—PTFE (PTFE It has a content of 5%) and a [hardness: 750 to 900 HV] and is coated to a thickness of 10 m. The friction coefficient at this time is 0.10-10.12.
[0051] 調整ねじ 36の可動リードボルト 32の外周側に可動側ねじ溝 32xを形成し、この可 動側ねじ溝 32xには窒化チタン (TiN)を溶射して硬度の硬!ヽコーティング層である 第 1高硬度コ一ティング層 41を形成して 、る。第 1高硬度コ一ティング層 41を顕微鏡 で観察すると、第 1高硬度コーティング層 41には無数の突起部 32yを形成している。 この突起部 32yは特に可動側ねじ溝 32xの底に多く存在し、突起部 32yはドロップレ ットとも称される。 [0051] A movable side thread groove 32x is formed on the outer peripheral side of the movable lead bolt 32 of the adjusting screw 36, and titanium nitride (TiN) is sprayed on the movable side thread groove 32x to form a hard coating layer. A first high hardness coating layer 41 is formed. When the first high-hardness coating layer 41 is observed with a microscope, the first high-hardness coating layer 41 has innumerable protrusions 32y. This protrusion 32y is particularly present at the bottom of the movable side thread groove 32x, and the protrusion 32y is also called a droplet.
[0052] 次に、突起部 32yを除去する場合を図 6により説明する。調整ねじ 36及び可動リー ドボルト 32を作業台(図示せず)に載せ、調整ねじ 36の真上に吹付け装置のノズル 4 5を配置する。ノズル 45は矢印方向 Xに移動する。ノズル 45から第 1高硬度コーティ ング層 41の硬度より硬い硬度を有する微粒子 46、例えば、ダイヤモンド砥粒を矢印 方向にある可動側ねじ溝 32xを被覆した第 1高硬度コーティング層 41に吹き付ける。
これにより図 7のように突起部 32yが除去されて第 1高硬度コーティング層 41の表面 が平滑面に形成される。 Next, the case where the protrusion 32y is removed will be described with reference to FIG. Place the adjusting screw 36 and the movable lead bolt 32 on a work table (not shown), and place the nozzle 45 of the spraying device directly above the adjusting screw 36. The nozzle 45 moves in the arrow direction X. Fine particles 46 having a hardness higher than that of the first high-hardness coating layer 41, for example, diamond abrasive grains, are sprayed from the nozzle 45 onto the first high-hardness coating layer 41 covering the movable-side thread groove 32x in the direction of the arrow. As a result, the protrusion 32y is removed as shown in FIG. 7, and the surface of the first high hardness coating layer 41 is formed into a smooth surface.
[0053] この平滑面 47を有する可動側ねじ溝 32xと調節ナット 33側のネジ溝 33xとを螺合 した状態で、調節ナット 33を回転すると、ネジ溝 33xが可動側ねじ溝 32xの平滑面 4 7をスムーズに摺動回転する。この際、突起部 32yが無いので、摩擦抵抗は突起部 3 2yが無い分だけ小さくなり、第 1高硬度コーティング層 41が破損するのを防止し、真 空コンデンサの歩留まり及び寿命を向上させることが出来るようになった。 [0053] When the adjustment nut 33 is rotated in a state where the movable side screw groove 32x having the smooth surface 47 and the screw groove 33x on the adjustment nut 33 side are screwed together, the screw groove 33x becomes a smooth surface of the movable side screw groove 32x. 4 Slide and rotate 7 smoothly. At this time, since there is no protrusion 32y, the frictional resistance is reduced by the absence of the protrusion 32y, preventing the first high hardness coating layer 41 from being damaged and improving the yield and life of the vacuum capacitor. Can be done.
[0054] また、突起部 32yを有する可動側ねじ溝 32xと調節ナット 33側のネジ溝 33xとを螺 合した状態で、調節ナット 33を回転すると、突起部 32yがネジ溝 33xを押圧しながら 、調節ナット 33が回転するので、突起部 32yがある分だけ負荷が増加し、モータは大 きな電力消費量を必要とするが、本発明では平滑面 47にした分だけ、負荷が減少し 、モータの電力消費量を少なく出来る。つまり、省エネ化を図ることが出来る。 [0054] Further, when the adjustment nut 33 is rotated in a state where the movable side screw groove 32x having the protrusion 32y and the screw groove 33x on the adjustment nut 33 side are screwed together, the protrusion 32y presses the screw groove 33x. As the adjustment nut 33 rotates, the load increases by the amount of the protrusion 32y, and the motor requires a large amount of power consumption.In the present invention, however, the load decreases by the smooth surface 47. The power consumption of the motor can be reduced. That is, energy saving can be achieved.
[0055] 更に、突起部 32yを除去するには、この実施例の吹付け以外にダイヤモンド砲粒を 付着した布で突起部 32yを擦っても良 、が、吹付けの場合は可動側ねじ溝 32xの底 まで吹付け力が及ぶので、可動側ねじ溝 32x全体を均一な平滑面に仕上げることが 出来る利点がある。 [0055] Further, in order to remove the protrusion 32y, the protrusion 32y may be rubbed with a cloth adhered with diamond cannons in addition to the spraying of this embodiment. Since the spray force reaches the bottom of 32x, there is an advantage that the entire movable side thread groove 32x can be finished to a uniform smooth surface.
[0056] また、平滑面 47の平滑度は、ネジ溝 33xが可動側ねじ溝 32xを摺動回転する際に 第 1高硬度コーティング層 41を破損しない程度の平滑面であれば良い。 The smoothness of the smooth surface 47 may be a smooth surface that does not damage the first high-hardness coating layer 41 when the thread groove 33x slides and rotates on the movable side thread groove 32x.
[0057] なお、可動側ねじ溝 32x側に第 2高硬度コーティング層 42を、ネジ溝 33x側に第 1 高硬度コーティング層 41を被覆しても良いが、第 3実施形態のように可動側ねじ溝 3 2x側に第 1高硬度コーティング層 41を、ネジ溝 33x側に第 2高硬度コーティング層 4 2を被覆した方が良い。それは第 1高硬度コーティング層 41側の周方向への伸縮が 第 2高硬度コーティング層 42側のそれより小さぐ第 1高硬度コーティング層 41が破 損し難いからである。 [0057] The second high-hardness coating layer 42 may be coated on the movable-side thread groove 32x side, and the first high-hardness coating layer 41 may be coated on the thread groove 33x side. However, as in the third embodiment, It is better to coat the first high hardness coating layer 41 on the screw groove 32x side and the second high hardness coating layer 42 on the screw groove 33x side. This is because the first high-hardness coating layer 41 whose expansion in the circumferential direction on the first high-hardness coating layer 41 side is smaller than that on the second high-hardness coating layer 42 side is difficult to break.
[0058] また、可動リードボルト 32は、一端に可動電極を取付け、他端に軸受部に挿入する 可動側ねじ溝を有する可動側導体を使用しても良い。 In addition, the movable lead bolt 32 may be a movable side conductor having a movable side thread groove with a movable electrode attached to one end and inserted into the bearing portion at the other end.
[0059] 更に、前記可動側導体が軸受部と摺動しながら移動をする可動側導体の摺動面を[0059] Further, a sliding surface of the movable side conductor on which the movable side conductor moves while sliding with the bearing portion is provided.
、窒化チタンでコーティングした微小突起を有するコーティング層に形成し、前記コー
ティング層を窒化チタンの硬度より硬 、硬度を有する部材にてコーティング層に吹付 け、微小突起を除去してコ一ティング層を平滑面にすることにも適用できる。 Formed on a coating layer having fine protrusions coated with titanium nitride, It can also be applied to spraying the coating layer on the coating layer with a member having a hardness higher than that of titanium nitride and removing the fine protrusions to make the coating layer smooth.
[0060] 例えば、真空容器内に一対の電極を収納し、一方側電極より真空容器の軸受部よ り外部に可動側導体を伸ばし、可動側導体を移動して一方側電極を他方側電極と 開閉する真空バルブにおいて、前記可動側導体が軸受部と摺動する際に、可動側 導体を窒化チタンのコーティング層で被覆した摺動面を平滑面にする。 [0060] For example, a pair of electrodes are housed in a vacuum vessel, a movable side conductor is extended from the one side electrode to the outside of the bearing portion of the vacuum vessel, and the movable side conductor is moved to move the one side electrode to the other side electrode. In the open / close vacuum valve, when the movable conductor slides on the bearing portion, the sliding surface of the movable conductor covered with the titanium nitride coating layer is made smooth.
[0061] 以上のように、本発明によれば、コーティング層を被覆した摺動面を平滑面にする ことにより、コーティング層が破損するのを防止し、真空コンデンサ及び真空バルブの 歩留まり及び寿命を向上させることが出来ようになった。 [0061] As described above, according to the present invention, the sliding surface coated with the coating layer is made smooth to prevent the coating layer from being damaged, and the yield and life of the vacuum capacitor and the vacuum valve are reduced. I was able to improve it.
図面の簡単な説明 Brief Description of Drawings
[0062] [図 1]第 1実施形態の調節ナット及び調整ねじを示す拡大断面図。 FIG. 1 is an enlarged cross-sectional view showing an adjustment nut and an adjustment screw of the first embodiment.
[図 2]図 1に使用した調節ナット及び調整ねじを使用した時の寿命特性図。 [Fig. 2] Life characteristics when using the adjusting nut and adjusting screw used in Fig. 1.
[図 3]真空コンデンサの断面図。 FIG. 3 is a cross-sectional view of a vacuum capacitor.
圆 4]最大静電容量調節部の拡大図。 圆 4] An enlarged view of the maximum capacitance adjustment section.
[図 5]本発明の第 3実施形態を示す調節ナットと調整ねじとを組合わせた時の拡大断 面図。 FIG. 5 is an enlarged cross-sectional view when an adjusting nut and an adjusting screw according to a third embodiment of the present invention are combined.
[図 6]本発明の第 3実施形態を示す調整ねじ側の第 1高硬度コーティング層を平滑面 にする作業を説明する断面図。 FIG. 6 is a cross-sectional view illustrating an operation for making the first high-hardness coating layer on the adjustment screw side a smooth surface according to the third embodiment of the present invention.
[図 7]図 6により第 1高硬度コーティング層を平滑面にした断面図。 FIG. 7 is a cross-sectional view of the first high-hardness coating layer made smooth according to FIG.
符号の説明 Explanation of symbols
[0063] 1…ガイドピン [0063] 1 ... Guide pin
2…可動リード 2 ... Moveable lead
32· · ·可動リードボル卜 32
32a…ねじ孑し 32a ... Screwing
32x…可動側ねじ溝 32x… Moving side thread groove
32y…突起部 32y ... Protrusions
33· · ·調節ナット 33 ··· Adjustment nut
33a…大径部
b…段部33a… large diameter part b ... Step
c---fcじ孑しc --- fc
χ···ネジ溝 χ ... thread groove
…軸受部 ... Bearing part
…最大静電容量調節部 …調整ねじ ... Maximum capacitance adjustment part ... Adjustment screw
…第 1高硬度コーティング層 …第 2高硬度コーティング層 …微粒子 ... 1st high hardness coating layer ... 2nd high hardness coating layer ... Fine particles
…平滑面
... smooth surface
Claims
請求の範囲 The scope of the claims
円筒部の一端側に固定側端板、他端側に可動側端板を有する真空容器と、 この真空容器内に、同心円状で径の異なる複数の円筒状電極板を固定電極取付 導体に同心状に取り付けて形成した固定電極と、 A vacuum vessel having a fixed end plate on one end of the cylindrical portion and a movable end plate on the other end, and a plurality of concentric cylindrical electrode plates having different diameters are concentric with the fixed electrode mounting conductor in the vacuum vessel. A fixed electrode formed in a shape,
この固定電極の各円筒状電極板間に非接触状態で挿出入できるように径の異なる 複数の円筒状電極板を可動電極取付導体に同心状に取り付けて形成した可動電極 と、 A movable electrode formed by concentrically attaching a plurality of cylindrical electrode plates having different diameters to the movable electrode mounting conductor so that the fixed electrode can be inserted / removed in a non-contact state between the cylindrical electrode plates;
この可動電極を前記真空容器の可動側端板の外部から円筒状電極板の軸線方向 に移動させる可動リードと、 A movable lead for moving the movable electrode in the axial direction of the cylindrical electrode plate from the outside of the movable side end plate of the vacuum vessel;
この可動リードの外周側で前記可動側端板の内側に設けられ、真空状態を保持し た状態で可動リードの移動を可能とするベローズと、 A bellows provided inside the movable side end plate on the outer peripheral side of the movable lead, and capable of moving the movable lead in a vacuum state;
前記固定電極取付導体と可動電極取付導体の相対向する面の中心部に夫々設け られたガイドピン、このガイドピンを電気的に絶縁して摺動自在に挿入するガイド部と で形成した案内部を備えて真空コンデンサを構成し、 A guide portion formed by a guide pin provided in the center of each of the opposing surfaces of the fixed electrode mounting conductor and the movable electrode mounting conductor, and a guide portion that is electrically insulated and slidably inserted. Comprises a vacuum capacitor,
前記べローズ内において可動リードの先端部に可動リードボルトを軸線方向に取 付け、且つ前記可動側端板には、その内側でベローズ内に突出したねじ受部を設け てその端部に軸受を設け、 A movable lead bolt is attached to the tip of the movable lead in the bellows in the axial direction, and the movable side end plate is provided with a screw receiving portion protruding into the bellows on the inner side, and a bearing is provided at the end. Provided,
前記可動リードボルトを軸受に支持された調節ナットに螺合して、この調節ナットの 回転操作によりコンデンサの静電容量を調整するようにするとともに、前記可動リード ボルトと調節ナットの螺合部に調節ナットを操作して定義した最大静電容量値に調整 した後、この調整位置で可動リードボルトのガイドピン側への移動を規制する最大静 電容量調節手段を設け、 The movable lead bolt is screwed into an adjustment nut supported by a bearing, and the capacitance of the capacitor is adjusted by rotating the adjustment nut. After adjusting the maximum capacitance value defined by operating the adjustment nut, a maximum capacitance adjustment means is provided to regulate the movement of the movable lead bolt toward the guide pin at this adjustment position.
この最大静電容量調節手段は、可動リードボルトの先端にねじ穴を設け、且つ調節 ナットには可動リードボルトが螺入されるねじ穴より大径の大径部を設けて、この大径 部から調整ねじを挿入して前記可動リードボルトの先端のねじ穴に螺入するようにし た真空コンデンサにおいて、 This maximum capacitance adjusting means is provided with a screw hole at the tip of the movable lead bolt, and the adjusting nut is provided with a large diameter portion larger than the screw hole into which the movable lead bolt is screwed. In a vacuum capacitor in which an adjustment screw is inserted from and inserted into the screw hole at the tip of the movable lead bolt,
前記調整ねじと調節ナットの一方には、第 1高硬度コーティング層を、他方には、第 2高硬度コ一ティング層を施したことを特徴とする真空コンデンサ。
One of the adjusting screw and the adjusting nut is provided with a first high-hardness coating layer, and the other is provided with a second high-hardness coating layer.
[2] 前記第 1高硬度コーティング層には、窒化チタンコーティング又は滑り性及び硬度を 保持する無電解メツキコーティングを、第 2高硬度コーティング層には、滑り性及び硬 度を保持する無電解メツキコーティング又は窒化チタンコーティングを施したことを特 徴とする請求項 1に記載の真空コンデンサ。 [2] The first high-hardness coating layer is a titanium nitride coating or an electroless coating that retains slipperiness and hardness, and the second high-hardness coating layer is an electroless plating that retains slipperiness and hardness. 2. The vacuum capacitor according to claim 1, wherein a coating or a titanium nitride coating is applied.
[3] 前記第 1、第 2高硬度コーティング層のどちらか一方のみだけ、滑り性及び硬度を保 持する無電解メツキコーティングを施したことを特徴とする請求項 1に記載の真空コン デンサ。 [3] The vacuum capacitor according to [1], wherein only one of the first and second high-hardness coating layers is provided with an electroless plating coating that maintains slipperiness and hardness.
[4] 絶縁筒の両端部に固定側端板及び可動側端板を取付けてなる容器と、前記容器内 の固定側端板に設けられた固定電極と、前記固定電極との間に静電容量を形成す るように配置された可動電極と、一端に可動電極を他端に可動側ねじ溝を設けた可 動側導体と、前記可動側導体と可動側端板との間に電極側を真空状態になすように 取付けられたべローズと、前記べ一口ズの外側の可動側ねじ溝と螺合するねじ溝を 有する調節ナットと、前記調節ナットを回転自在に挿入すると共に、可動側端板に取 付けられた軸受部とを備え、前記調節ナットを回転すると前記可動側ねじ溝を介して 可動側導体が静電容量を増減する方向に移動する真空コンデンサにおいて、 前記可動側導体と調節ナットとのいずれか一方側のねじ溝側を窒化チタンでコー ティングした微小突起を有するコーティング層に形成し、前記コーティング層を窒化 チタンの硬度より硬!、硬度を有する部材にてコーティング層に接触し、微小突起を除 去してコ一ティング層を平滑面にすることを特徴とする真空コンデンサ。 [4] A container having a fixed side end plate and a movable side end plate attached to both ends of the insulating cylinder, a fixed electrode provided on the fixed side end plate in the container, and a static electrode between the fixed electrode. A movable electrode arranged so as to form a capacitor; a movable electrode having a movable electrode at one end and a movable screw groove at the other end; and an electrode side between the movable conductor and the movable end plate And an adjustment nut having a thread groove screwed to a movable side thread groove outside the mouthpiece, and the adjustment nut is rotatably inserted, and the movable side end A vacuum capacitor in which the movable side conductor moves in a direction to increase or decrease the capacitance via the movable side thread groove when the adjustment nut is rotated. Coat the thread groove on either side of the nut with titanium nitride. The coating layer is formed with a coated microprojection, and the coating layer is harder than the hardness of titanium nitride. The coating layer is contacted with a member having a hardness to remove the microprojection, and the coating layer becomes a smooth surface. A vacuum capacitor characterized by that.
[5] 前記コーティング層を窒化チタンの硬度より硬 、硬度の微粒子をコーティング層に吹 付け、微小突起を除去してコーティング層を平滑面にすることを特徴とする請求項 4 に記載の真空コンデンサ。 5. The vacuum capacitor according to claim 4, wherein the coating layer is harder than the hardness of titanium nitride, and fine particles having a hardness are sprayed on the coating layer to remove minute protrusions to make the coating layer a smooth surface. .
[6] 前記平滑面は可動側導体を回転時に微小突起力 破損を生じない程度の平滑面で あることを特徴とする請求項 4に記載の真空コンデンサ。 6. The vacuum capacitor according to claim 4, wherein the smooth surface is a smooth surface that does not cause a microprojection force damage when the movable conductor is rotated.
[7] 前記可動側導体が軸受部と摺動しながら移動する可動側導体の摺動面を、窒化チ タンでコーティングした微小突起を有するコーティング層に形成し、前記コーティング 層を窒化チタンの硬度より硬い硬度を有する部材にてコーティング層に接触し、微小 突起を除去してコ一ティング層を平滑面にすることを特徴とする請求項 4に記載の真
空コンデンサ。 [7] The sliding surface of the movable conductor that moves while the movable conductor slides on the bearing portion is formed on a coating layer having fine protrusions coated with titanium nitride, and the coating layer has a hardness of titanium nitride. 5. The trueness according to claim 4, wherein the coating layer is brought into contact with a member having a harder hardness to remove minute protrusions, thereby making the coating layer a smooth surface. Empty capacitor.
真空容器内に一対の電極を収納し、一方側電極より真空容器の軸受部より外部に可 動側導体を伸ばし、可動側導体を移動して一方側電極を他方側電極と開閉する真 空バルブにおいて、 A vacuum valve that houses a pair of electrodes in a vacuum vessel, extends the movable conductor from the bearing of the vacuum vessel to the outside from one side electrode, and moves the movable side conductor to open and close the one side electrode with the other side electrode In
前記可動側導体が軸受部と摺動する際に、可動側導体を窒化チタンのコーティン グ層を被覆した摺動面を平滑面にすることを特徴とする真空バルブ。
A vacuum valve characterized in that, when the movable conductor slides with the bearing portion, the sliding surface of the movable conductor covered with a coating layer of titanium nitride is made smooth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007550222A JP5024049B2 (en) | 2005-12-16 | 2006-12-14 | Vacuum capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005364068 | 2005-12-16 | ||
JP2005-364068 | 2005-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007069686A1 true WO2007069686A1 (en) | 2007-06-21 |
Family
ID=38162988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/324940 WO2007069686A1 (en) | 2005-12-16 | 2006-12-14 | Vacuum capacitor and vacuum valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5024049B2 (en) |
WO (1) | WO2007069686A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010538480A (en) * | 2007-09-04 | 2010-12-09 | コメット アクチェンゲゼルシャフト | Drive system for variable vacuum capacitors |
JP2015053513A (en) * | 2014-11-11 | 2015-03-19 | コメット アクチェンゲゼルシャフト | Drive system for variable capacity vacuum capacitor |
JP2016522995A (en) * | 2013-05-30 | 2016-08-04 | コメット アクチェンゲゼルシャフト | Vacuum variable capacitor |
US9534205B2 (en) | 2008-03-17 | 2017-01-03 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03230438A (en) * | 1990-02-02 | 1991-10-14 | Toshiba Corp | Vacuum valve |
JPH07264881A (en) * | 1994-03-23 | 1995-10-13 | Nikon Corp | Ultrasonic motor |
JPH10217103A (en) * | 1997-02-07 | 1998-08-18 | Ebara Corp | Dresser of cloth for polishing and its manufacture |
JP3365082B2 (en) * | 1994-09-29 | 2003-01-08 | 株式会社明電舎 | Vacuum condenser |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134168A (en) * | 1984-07-25 | 1986-02-18 | Seiko Instr & Electronics Ltd | Production of case for timepiece |
JP2508712B2 (en) * | 1986-05-27 | 1996-06-19 | ブリヂストンサイクル株式会社 | Bicycle rim |
JPH06307437A (en) * | 1993-04-20 | 1994-11-01 | Nippon Seiko Kk | Dynamical pressure gas bearing device |
JP4251883B2 (en) * | 2003-02-10 | 2009-04-08 | Ntn株式会社 | Chain tensioner |
JP2004308741A (en) * | 2003-04-04 | 2004-11-04 | Tsubaki Emerson Co | Electrically-operated linear actuator |
-
2006
- 2006-12-14 WO PCT/JP2006/324940 patent/WO2007069686A1/en active Application Filing
- 2006-12-14 JP JP2007550222A patent/JP5024049B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03230438A (en) * | 1990-02-02 | 1991-10-14 | Toshiba Corp | Vacuum valve |
JPH07264881A (en) * | 1994-03-23 | 1995-10-13 | Nikon Corp | Ultrasonic motor |
JP3365082B2 (en) * | 1994-09-29 | 2003-01-08 | 株式会社明電舎 | Vacuum condenser |
JPH10217103A (en) * | 1997-02-07 | 1998-08-18 | Ebara Corp | Dresser of cloth for polishing and its manufacture |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010538480A (en) * | 2007-09-04 | 2010-12-09 | コメット アクチェンゲゼルシャフト | Drive system for variable vacuum capacitors |
US9534205B2 (en) | 2008-03-17 | 2017-01-03 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
JP2016522995A (en) * | 2013-05-30 | 2016-08-04 | コメット アクチェンゲゼルシャフト | Vacuum variable capacitor |
KR101811412B1 (en) * | 2013-05-30 | 2017-12-21 | 코멧 아게 | Fast vacuum variable capacitor |
JP2015053513A (en) * | 2014-11-11 | 2015-03-19 | コメット アクチェンゲゼルシャフト | Drive system for variable capacity vacuum capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007069686A1 (en) | 2009-05-28 |
JP5024049B2 (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007069686A1 (en) | Vacuum capacitor and vacuum valve | |
JP6043786B2 (en) | High pressure fluid switching valve with variable pressure load | |
EP1905863A2 (en) | Slide member | |
CN107841717B (en) | A kind of low-friction coefficient MoS2Base Metal-oxide composite solid lubrication film preparation method | |
EP2824214B1 (en) | Coating arrangement for fuel control metering valve and method | |
WO2008046294A1 (en) | A selfadapting screw transmission mechanism with variable lead | |
CN107815645A (en) | A kind of low-friction coefficient MoS2Base Metal composite solid lubricant film | |
CN109058331A (en) | A kind of robot no backhaul gap electricity loss brake | |
US20110265717A1 (en) | Coated coating machine component, particularly bell plate,and corresponding production method | |
CN106299946A (en) | Sliding contact part | |
CN111156255A (en) | Rolling transmission device for plating super-lubricating solid film | |
US7042699B2 (en) | Vacuum variable capacitor | |
JP2008047676A (en) | Multilayer piezoelectric element | |
JP2006095646A (en) | Wire-cut electric discharge machine | |
JP5714901B2 (en) | Drive system for variable vacuum capacitors | |
CN109735820A (en) | A kind of gold-nickel-carbon composite conductive lubricating coating material and preparation method thereof | |
JP4461880B2 (en) | Bell-type atomizing head and manufacturing method thereof | |
CN113494453A (en) | Screw rotor blank and processing method thereof, screw rotor and screw compressor | |
CN208151465U (en) | A kind of target penstock sandblasting electric arc end face protective device | |
CN221525172U (en) | Anti-drop anti-bearing electric corrosion fan | |
CN100481653C (en) | A method for controlling insertion and withdraw force of self-force high-voltage electric contact | |
EP4220038A1 (en) | Control valve | |
CN206017143U (en) | Scroll compressor with high-abrasion ring pin structure | |
JPH11101238A (en) | Static pressure air bearing spindle | |
Shen et al. | Study of RAINBOW Actuator and its Intergation with SMA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007550222 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834694 Country of ref document: EP Kind code of ref document: A1 |