[go: up one dir, main page]

WO2007065393A1 - Amortisseur de vibrations en torsion - Google Patents

Amortisseur de vibrations en torsion Download PDF

Info

Publication number
WO2007065393A1
WO2007065393A1 PCT/DE2006/002030 DE2006002030W WO2007065393A1 WO 2007065393 A1 WO2007065393 A1 WO 2007065393A1 DE 2006002030 W DE2006002030 W DE 2006002030W WO 2007065393 A1 WO2007065393 A1 WO 2007065393A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration damper
torsional vibration
coupling
coupled
energy storage
Prior art date
Application number
PCT/DE2006/002030
Other languages
German (de)
English (en)
Inventor
Philippe Schwederle
Klemens Ehrmann
Markus Züfle
Uwe Grahl
Ad Kooy
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to CN200680041522XA priority Critical patent/CN101305207B/zh
Priority to DE112006002814.6T priority patent/DE112006002814B4/de
Priority to BRPI0619768A priority patent/BRPI0619768A8/pt
Priority to EP06828535A priority patent/EP1960689A1/fr
Publication of WO2007065393A1 publication Critical patent/WO2007065393A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/1232Wound springs characterised by the spring mounting
    • F16F15/1234Additional guiding means for springs, e.g. for support along the body of springs that extend circumferentially over a significant length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses

Definitions

  • the invention relates to a torsional vibration damper, in particular a divided flywheel, with at least two flywheels which can be rotated against the resistance of at least two deformable energy storage elements, in particular helical compression springs, which are coupled to one another by at least one coupling device which, when a first energy storage element deforms, in particular is relaxed, a targeted entrainment of a second energy storage element is effected and has at least one first and one second entraining device.
  • the object of the invention is to prevent unwanted shaking in the operation of a motor vehicle equipped with a torsional vibration damper according to the preamble of claim 1.
  • a preferred exemplary embodiment of the torsional vibration damper is characterized in that the coupling sliding elements are each formed by the sliding element of a plurality of sliding elements, which is first moved together with the associated energy storage element when the torsional vibration damper is subjected to tensile stress.
  • the energy storage elements are preferably arcuate helical compression springs.
  • the coupling sliding elements are preferably sliding shoes which are arranged in the radial direction between the associated energy storage element and the primary flywheel mass or the input part of the torsional vibration damper.
  • Another preferred exemplary embodiment of the torsional vibration damper is characterized in that the coupling sliding elements are arranged diametrically opposite one another. This arrangement has proven to be particularly advantageous in the context of the present invention.
  • the coupling sliding elements are arranged between two driver fingers, which extend from the coupling device.
  • the coupling sliding elements can also be provided with a hole into which a driver finger engages, which extends from the coupling device.
  • torsional vibration damper are characterized in that the driver fingers extend radially inwards or in the axial direction from the coupling device. This enables the installation of an additional internal damper.
  • the coupling device comprises an annular base body from which the driver fingers extend.
  • the coupling device is preferably formed in one piece as a sheet metal part.
  • torsional vibration damper is characterized in that the annular base body has an angular cross section. This enables a stable mounting of the coupling device.
  • Another preferred exemplary embodiment of the torsional vibration damper is characterized in that the annular base body is floatingly supported between the primary flywheel mass of the torsional vibration damper and the sliding elements.
  • Figure 1 shows a torsional vibration damper according to a first embodiment in half section
  • Figure 2 shows the torsional vibration damper from Figure 1 in cross section
  • Figure 3 is a similar view as in Figure 1 according to a second embodiment
  • Figure 5 shows a coupling ring according to a first embodiment in perspective
  • FIG. 6 shows the coupling ring from FIG. 5 in a top view
  • Figure 7 is a sectional view taken along the line VII-VII in Figure 6;
  • Figure 8 shows the coupling ring in front view
  • FIG. 9 shows an enlarged detail IX from FIG. 8.
  • Figure 10 shows a coupling ring according to a second embodiment in perspective
  • Figure 11 shows the coupling ring from Figure 10 in plan view
  • Figure 12 is a sectional view taken along the line XII-XII in Figure 11 and 13 shows an enlarged detail XIII from FIG. 11.
  • the torsional vibration damper shown in different views in FIGS. 1 and 2 forms a divided flywheel 1 which has a first or primary flywheel mass 2, which can be fastened to an output shaft of an internal combustion engine, not shown, and a second or secondary flywheel mass 3.
  • a friction clutch is attached to the second flywheel 3 with the interposition of a clutch disc, via which an input shaft of a transmission, also not shown, can be engaged and disengaged.
  • the primary flywheel mass 2 is also referred to as the input part of the torsional vibration damper.
  • the secondary mass 3 is also referred to as the output part of the torsional vibration damper.
  • the two flywheels 2 and 3 are rotatably supported relative to each other by means of a bearing 4.
  • the bearing 4 is arranged radially outside of bores 5 for carrying out fastening screws for mounting the first flywheel mass on the output shaft of the internal combustion engine.
  • a damping device 6 is effective, which comprises energy storage elements, which in turn are formed by helical compression springs 7, 8.
  • An inner damper 11, which comprises helical compression springs 12, is arranged radially inside the helical compression springs 7, 8.
  • the helical compression springs 7, 8 are curved in the circumferential direction and each extend over an angular range of almost 180 degrees.
  • the two helical compression springs 7 and 8 are arranged diametrically opposite one another.
  • the two flywheels 2 and 3 have loading areas 14, 15, 16 for the energy stores 7, 8.
  • the loading areas 14, 15 are formed on the input side of the primary flywheel mass 2.
  • the application area 16 is arranged on the output side in each case between the application areas 14 and 15.
  • the loading area 16 is connected to the secondary flywheel mass 3 via a flange-like loading part 20 with the aid of rivet connecting elements 21.
  • the flange-like loading part 20 serves as a torque transmission element between the energy stores 7, 8 and the secondary flywheel mass 3.
  • the flange-like loading part 20 is also referred to as the output part.
  • the primary flywheel mass 2 is connected in a rotationally fixed manner to a hub part 10 via a so-called flex plate 9.
  • the two helical compression springs 7 and 8 are coupled to one another via a coupling device or via a coupling ring 24.
  • the coupling device 24 is shown in FIGS. 10 to 13 in different views.
  • the coupling device 24 comprises an annular base body 25 and is therefore also referred to as a coupling ring.
  • the coupling ring 24 has an angular cross section, as can be seen in FIG.
  • Two pairs of driver fingers 27, 28 and 29, 30 extend radially inward from the annular base body 25. The two driver finger pairs are arranged diametrically opposite one another.
  • the helical compression spring 7 is coupled to a coupling sliding element 31 and eight sliding shoes 34 to 41.
  • the coupling sliding element 31 and the sliding shoes 34 to 41 are arranged radially outside the helical compression spring 7.
  • the coupling sliding element 31 is coupled to the coupling ring 24 via the driver fingers 27, 28 which partially surround it.
  • a further coupling sliding element 32 is coupled to the coupling ring 24 by the driver fingers 29, 30.
  • FIG. 3 shows a similar embodiment to that shown in FIG. 1.
  • the same reference numerals are used to designate the same parts. To avoid repetition, reference is made to the previous description of FIG. 1. Only the differences between the two exemplary embodiments are discussed below.
  • the helical compression springs 7, 8 are coupled to one another with the aid of a coupling ring 64.
  • the coupling ring 64 has an annular base body 65 with an angular cross section.
  • driver fingers 67, 68 which extend from the coupling ring 64, engage around a coupling sliding element 71 radially on the outside.
  • the coupling sliding element 71 is coupled to the helical compression spring 7.
  • eight sliding shoes 74 to 81 are coupled to the helical compression spring 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Motor Power Transmission Devices (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

L'invention concerne un amortisseur de vibrations en torsion, en particulier un volant d'inertie divisé, qui présente au moins deux masses d'inertie (2, 3) qui peuvent tourner en opposition à la résistance d'au moins deux éléments déformables (7, 8) d'accumulation d'énergie, en particulier des ressorts hélicoïdaux de compression accouplés l'un à l'autre par au moins un dispositif d'accouplement (24), qui, lorsqu'un premier élément (7) d'accumulation d'énergie se déforme et en particulier est détendu, a pour effet un entraînement contrôlé d'un deuxième élément (8) d'accumulation d'énergie et qui présente au moins un premier et un deuxième dispositifs d'entraînement (27, 28). Pour éviter des secousses indésirables lors du fonctionnement d'un véhicule automobile équipé de l'amortisseur de vibrations en torsion, le premier dispositif d'entraînement (27) est accouplé au premier élément coulissant d'accouplement (32) qui lui-même est accouplé au premier élément (7) d'accumulation d'énergie, et le deuxième dispositif d'entraînement (28) est accouplé à un deuxième élément coulissant d'accouplement (32) qui lui-même est accouplé au deuxième élément (8) d'accumulation d'énergie.
PCT/DE2006/002030 2005-12-09 2006-11-20 Amortisseur de vibrations en torsion WO2007065393A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200680041522XA CN101305207B (zh) 2005-12-09 2006-11-20 扭转振动减振器
DE112006002814.6T DE112006002814B4 (de) 2005-12-09 2006-11-20 Drehschwingungsdämpfer
BRPI0619768A BRPI0619768A8 (pt) 2005-12-09 2006-11-20 Amortecedor de vibrações devido à torção
EP06828535A EP1960689A1 (fr) 2005-12-09 2006-11-20 Amortisseur de vibrations en torsion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058842 2005-12-09
DE102005058842.5 2005-12-09

Publications (1)

Publication Number Publication Date
WO2007065393A1 true WO2007065393A1 (fr) 2007-06-14

Family

ID=37744666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/002030 WO2007065393A1 (fr) 2005-12-09 2006-11-20 Amortisseur de vibrations en torsion

Country Status (6)

Country Link
EP (1) EP1960689A1 (fr)
KR (1) KR20080074091A (fr)
CN (1) CN101305207B (fr)
BR (1) BRPI0619768A8 (fr)
DE (1) DE112006002814B4 (fr)
WO (1) WO2007065393A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966817B2 (en) * 2005-03-26 2011-06-28 Luk Vermoegensverwaltungsgesellschaft Mbh Compound transmission
DE102011101129A1 (de) 2011-05-11 2012-11-15 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
US11703103B2 (en) * 2021-09-02 2023-07-18 Schaeffler Technologies AG & Co. KG Torque converter damper assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937305B (zh) * 2013-01-23 2018-07-17 舍弗勒技术股份两合公司 螺旋压力弹簧和扭转振动减振器
US10352396B2 (en) 2014-02-27 2019-07-16 Exedy Corporation Damper device
DE102018125615A1 (de) * 2018-10-16 2020-04-16 Schaeffler Technologies AG & Co. KG Fliehkraftpendel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371857B1 (en) * 1999-01-25 2002-04-16 Unisia Jecs Corporation Torsional vibration dampers
DE102004011829A1 (de) * 2003-03-13 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576654B1 (fr) * 1985-01-29 1987-04-24 Valeo Dispositif amortisseur de torsion a grand debattement angulaire, notamment pour vehicule automobile
FR2676789A1 (fr) * 1991-05-23 1992-11-27 Valeo Amortisseur de torsion, notamment pour vehicules automobiles.
DE19733334B4 (de) * 1997-08-01 2009-01-22 Zf Sachs Ag Torsionsschwingungsdämpfer
CN1112525C (zh) * 1998-03-25 2003-06-25 卢克摩擦片和离合器有限公司 扭转振荡阻尼器
DE10029317A1 (de) * 2000-06-20 2002-01-10 Hasse & Wrede Gmbh Verfahren zur Herstellung eines Drehschwingungsdämfergehäuses, insbesondere eines Gehäuses für einen Viskositätsdrehschwingungsdämpfer
DE10209409A1 (de) * 2001-03-08 2002-09-12 Luk Lamellen & Kupplungsbau Drehschwingungsdämpfer
FR2830915B1 (fr) * 2001-10-16 2004-03-12 Valeo Double volant amortisseur en particulier pour vehicule automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371857B1 (en) * 1999-01-25 2002-04-16 Unisia Jecs Corporation Torsional vibration dampers
DE102004011829A1 (de) * 2003-03-13 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966817B2 (en) * 2005-03-26 2011-06-28 Luk Vermoegensverwaltungsgesellschaft Mbh Compound transmission
DE102011101129A1 (de) 2011-05-11 2012-11-15 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
US11703103B2 (en) * 2021-09-02 2023-07-18 Schaeffler Technologies AG & Co. KG Torque converter damper assembly

Also Published As

Publication number Publication date
DE112006002814A5 (de) 2008-08-28
CN101305207B (zh) 2010-07-21
BRPI0619768A8 (pt) 2016-12-06
BRPI0619768A2 (pt) 2011-10-18
DE112006002814B4 (de) 2016-07-21
KR20080074091A (ko) 2008-08-12
EP1960689A1 (fr) 2008-08-27
CN101305207A (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
DE102011012606B4 (de) Fliehkraftpendeleinrichtung
DE69417402T2 (de) Dämpfendes schwungrad, insbesondere für kraftfahrzeuge
DE102006028556A1 (de) Drehmomentübertragungseinrichtung
DE19959962A1 (de) Drehmomentübertragungseinrichtung
WO2007062618A1 (fr) Dispositif de transfert de couple
DE102016205420A1 (de) Fliehkraftpendeleinrichtung und Drehmomentübertragungseinrichtung
DE112006002814B4 (de) Drehschwingungsdämpfer
DE102016124412A1 (de) Schwingungsdämpfer
DE112006002997B4 (de) Drehschwingungsdämpfer
DE10338673B4 (de) Kupplungsvorrichtung
DE112011103176T5 (de) An einer Turbine befestigter Massendämpfer mit Schraubenfedern
DE102011104415B4 (de) Schwingungsdämpfungseinrichtung
DE202020102864U1 (de) Schwingungsdämpfungseinheit mit Drehmomentbegrenzer mit zweiteiliger Nabe
EP3867548A1 (fr) Amortisseur de vibrations de torsion
DE102004034086B4 (de) Drehschwingungsdämpfer
DE102004011829A1 (de) Drehschwingungsdämpfer
DE112015004974T5 (de) Schwingungsdämpfungsvorrichtung vom Typ Trägheitsdämpfer
DE102007024135B4 (de) Drehschwingungsdämpfungseinrichtung
WO2018095459A1 (fr) Ensemble flasque pour un volant d'inertie à deux masses
DE102021100472A1 (de) Drehschwingungsdämpfer und Verfahren zum Ablösen eines Drehschwingungsdämpfers
DE102020113751A1 (de) Übertragungsvorrichtung mit mindestens einem ersten Dämpfer und einem dynamischen Schwingungstilger
DE102019120222A1 (de) Schwingungsdämpfeinheit für ein hybridisiertes Kraftfahrzeug mit Federdämpfer und Rutschkupplung; sowie Antriebsstrang
DE102019126172A1 (de) Drehschwingungsdämpfer
DE3448586B4 (de) Einrichtung zum Kompensieren von Drehstößen
DE102006008362B4 (de) Dämpfer für Verbrennungsmotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041522.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087006870

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006828535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120060028146

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006828535

Country of ref document: EP

REF Corresponds to

Ref document number: 112006002814

Country of ref document: DE

Date of ref document: 20080828

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8629

ENP Entry into the national phase

Ref document number: PI0619768

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080606