[go: up one dir, main page]

WO2007063855A1 - マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法 - Google Patents

マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法 Download PDF

Info

Publication number
WO2007063855A1
WO2007063855A1 PCT/JP2006/323727 JP2006323727W WO2007063855A1 WO 2007063855 A1 WO2007063855 A1 WO 2007063855A1 JP 2006323727 W JP2006323727 W JP 2006323727W WO 2007063855 A1 WO2007063855 A1 WO 2007063855A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission signal
transmission
received signal
complex
Prior art date
Application number
PCT/JP2006/323727
Other languages
English (en)
French (fr)
Inventor
Shoichi Fujita
Sadaki Futagi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007063855A1 publication Critical patent/WO2007063855A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels

Definitions

  • Multicarrier transmission apparatus multicarrier reception apparatus, transmission method, and reception method
  • the present invention relates to a multicarrier transmission apparatus, a multicarrier reception apparatus, a transmission method, and a reception method, and in particular, an imbalance in amplitude or delay time between an in-phase component (I component) and a quadrature component (Q component)
  • the present invention relates to a multicarrier transmission apparatus, a multicarrier reception apparatus, a transmission method, and a reception method.
  • LPF analog Z digital
  • AZD analog Z digital
  • LPF is necessary to remove aliasing noise that occurs at the time of DZA conversion and AZD conversion and is more than half of the sampling frequency.
  • an amplitude imbalance and a delay time imbalance occur between the I channel and the Q channel. Amplitude imbalance and delay time imbalance between the I channel and Q channel cause inter-carrier interference and degrade performance.
  • FIG. 1 is a diagram showing a reception constellation result when there is no delay time imbalance between the in-phase component and the quadrature component caused by individual differences in LPF
  • FIG. It is a figure which shows the performance degradation by the imbalance of the delay time between the in-phase component and quadrature component which arise by a difference.
  • Figure 2 shows the case where a delay time difference of 1Z8 samples occurs between the in-phase component and the quadrature component.
  • the delay time difference is greatly affected, and even a slight difference of one sample time or less greatly deteriorates. This is because even a baseband signal has subcarriers, and the delay time difference cannot be ignored with respect to the subcarrier period. Therefore, the influence is greater for subcarriers with higher frequencies, and for IFZRF band modulation signals, the effect of the delay time difference is greater for subcarriers that are farther away from the center of the signal band.
  • analog LPFs are more difficult to avoid because they are more sensitive to variations near the cutoff, that is, at the end of the passband, and the variation becomes larger.
  • the group delay time is 48 ns
  • FIG. 3 is a diagram showing a reception constellation result when there is no amplitude imbalance between the in-phase component and the quadrature component caused by individual differences in LPF.
  • Fig. 4 shows individual differences in LPF.
  • FIG. 5 is a diagram showing performance deterioration due to an amplitude imbalance between an in-phase component and a quadrature component generated by the above.
  • Figure 4 shows the case where an amplitude difference of ldB occurs between the in-phase component and the quadrature component.
  • interference between subcarriers also occurs due to amplitude imbalance, which degrades performance.
  • the amplitude difference is less affected than the delay time difference. For example, suppressing the LPF passband amplitude difference to ldB is easier than suppressing the group delay difference to 1%.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-24722
  • the first method and the second method have strict LPF specifications, which increases the cost and cannot achieve low cost. is there.
  • the third method it is possible to compensate for a delay time smaller than one sample period, but there is a problem that the circuit scale becomes large because two timing extraction circuits are required.
  • the third method has a problem that it cannot compensate for the amplitude imbalance.
  • An object of the present invention is to provide a multicarrier transmission device, a multicarrier reception device, a transmission method, and a reception method capable of compensating for delay time and amplitude imbalance at low cost without increasing the circuit scale. It is to be.
  • the multicarrier transmission device of the present invention performs complex transmission consisting of a first transmission signal that is an I-component frequency domain signal and a second transmission signal that is a Q-component frequency domain signal by orthogonally modulating transmission data.
  • a digital modulation means for generating a signal, and a fifth transmission signal which is a frequency domain signal of the third transmission signal which becomes an I component time domain signal when the complex transmission signal is subjected to inverse high-speed Fourier transform, and a time domain of the Q component Separating means for separating the complex transmission signal into a sixth transmission signal that is a frequency domain signal of a fourth transmission signal that becomes a signal, and the third transmission signal and the fourth transmission signal when band-limiting the fourth transmission signal.
  • Three transmission signals and the fourth transmission Correction means for correcting the fifth transmission signal or the sixth transmission signal so that an amplitude difference and a delay time difference from the signal become small, and the fifth transmission signal and the sixth transmission signal after correction by the correction means.
  • Combining means for combining the transmission signal to regenerate the complex transmission signal; and inverse fast Fourier transform of the complex transmission signal regenerated by the combining means to perform the third transmission signal and the fourth transmission signal.
  • An inverse fast Fourier transform unit for generating the band, a band limiting unit for limiting a band between the third transmission signal and the fourth transmission signal generated by the inverse fast Fourier transform unit, and the band limiting unit A transmission unit configured to transmit a transmission signal composed of the third transmission signal and the fourth transmission signal which are band-limited.
  • the multicarrier receiver of the present invention performs orthogonal demodulation to generate a first received signal that is an I component time domain signal and a second received signal that is a Q component time domain signal by performing orthogonal demodulation on the received signal.
  • band limiting means for limiting the band of the first received signal and the second received signal, and fast Fourier transform of the first received signal and the second received signal band-limited by the band limiting means
  • Fast Fourier transform means for generating a complex received signal composed of a third received signal that is a frequency domain signal of I component and a fourth received signal that is a frequency domain signal of Q component, and the frequency domain of the first received signal
  • Separating means for separating the complex received signal into a fifth received signal that is a signal and a sixth received signal that is a frequency domain signal of the second received signal, and the first received signal and the second received signal are divided into the band
  • the fifth received signal or the sixth received signal is corrected so that an amplitude difference and a delay time difference between the first received signal and the second received signal generated when band limiting is performed by the limiting means are reduced.
  • transmission data is orthogonally modulated to generate a complex transmission signal composed of a first transmission signal that is an I component frequency domain signal and a second transmission signal that is a frequency domain signal of a Q component. And a fifth transmission signal and a Q component which are frequency domain signals of a third transmission signal that becomes an I component time domain signal by performing inverse fast Fourier transform on the complex transmission signal. Separating the complex transmission signal from the sixth transmission signal, which is the frequency domain signal of the fourth transmission signal to be the time domain signal, and band-limiting the third transmission signal and the fourth transmission signal.
  • Send transmission signal was to be provided and the step, the.
  • the reception method of the present invention includes a step of generating a first reception signal that is an I-component time-domain signal and a second reception signal that is a Q-component time-domain signal by performing orthogonal demodulation on the reception signal; A step of limiting the bands of the first reception signal and the second reception signal, and a third Fourier transform of the band-limited first reception signal and the second reception signal to form an I component frequency domain signal. Generating a complex received signal comprising a received signal and a fourth received signal that is a frequency domain signal of the Q component; and a fifth received signal that is a frequency domain signal of the first received signal and a second received signal.
  • FIG. 1 is a diagram showing a simulation result of a reception constellation.
  • FIG.2 Diagram showing simulation results of reception constellation
  • FIG. 8 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram showing a simulation result of the reception constellation according to Embodiment 1 of the present invention.
  • FIG. 12 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 14 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 15 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 18 is a diagram showing a simulation result of the reception constellation according to Embodiment 1 of the present invention.
  • FIG. 19 is a diagram showing a simulation result of a reception constellation according to Embodiment 1 of the present invention.
  • FIG. 20 is a block diagram showing a configuration of a correction coefficient storage unit according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of multicarrier transmission apparatus 100 according to Embodiment 1 of the present invention.
  • the digital modulation unit 101 performs quadrature modulation on transmission data encoded by an encoding unit (not shown) using a modulation scheme such as QPSK or 16QAM, and performs first transmission as a frequency domain signal of I component A second transmission signal that is a frequency domain signal of the signal and the Q component is generated. Also, when providing a guard band, digital modulation section 101 inserts data “0” into the subcarriers assigned to the guard band. For example, when the inverse fast Fourier transform (hereinafter referred to as “IF FT”) point is 512, 1S can generate 512 subcarriers. In this case, the digital modulation unit 101 includes OHz including the inner negative frequency.
  • IF FT inverse fast Fourier transform
  • Digital modulation section 101 converts the generated complex transmission signal (first transmission signal (I component) + j X second transmission signal (Q component)) composed of the first transmission signal and the second transmission signal in units of lOFDM symbols. To output to separation unit 102.
  • Separating section 102 converts a complex transmission signal composed of the first transmission signal and the second transmission signal input from digital modulation section 101 into two transmission signals, a fifth transmission signal and a sixth transmission signal, in units of lOFDM symbols.
  • the signal is separated into complex transmission signals and output to the correction unit 103.
  • the fifth transmission signal is the frequency domain signal of the third transmission signal, which is the time domain signal of the I component after IFFT of the complex transmission signal that also has the first transmission signal and the second transmission signal power, and the sixth transmission signal.
  • the signal is a frequency domain signal of the fourth transmission signal, which is a time domain signal of the Q component after IFFT of the complex transmission signal composed of the first transmission signal and the second transmission signal.
  • Correction section 103 corrects one of two complex transmission signals of the fifth transmission signal and the sixth transmission signal input from separation section 102 in the frequency domain. As a result, the delay time difference and the amplitude difference between the third transmission signal and the fourth transmission signal generated by band limiting the third transmission signal and the fourth transmission signal by LPF 109 and LPF 110, which will be described later, are reduced. Can be compensated. Then, after correcting the delay time difference and the amplitude difference, the correction unit 103 outputs the fifth transmission signal and the sixth transmission signal to the synthesis unit 104.
  • the combining unit 104 combines the fifth transmission signal and the sixth transmission signal input from the correction unit 103 and forms a complex composed of the first transmission signal and the second transmission signal before being separated by the separation unit 102. Regenerate the transmission signal. Then, combining section 104 outputs the regenerated first transmission signal and second transmission signal to the IFFT section 105.
  • IFFT section 105 converts the complex transmission signal composed of the first transmission signal and the second transmission signal input from combining section 104 into an IFFT, that is, a frequency domain signal and a time domain signal, and transmits the third transmission signal. A signal and a fourth transmission signal are generated. Then, IFFT section 105 outputs the generated third transmission signal and fourth transmission signal to GI adding section 106.
  • GI adding section 106 adds GI to the third transmission signal and the fourth transmission signal input from IFFT section 105.
  • the GI adding unit 106 outputs the third transmission signal to which the GI is added to the DZA unit 107, and outputs the fourth transmission signal to which the GI is added to the DZA unit 108.
  • the DZA unit 107 converts the third transmission signal input from the GI adding unit 106 from a digital signal to an analog signal and outputs the analog signal to the LPF 109.
  • DZA unit 108 converts the fourth transmission signal input from GI adding unit 106 from a digital signal to an analog signal, and outputs the analog signal to LPF 110.
  • the LPF 109 which is a band limiting unit, limits the band of the third transmission signal input from the DZA unit 107 by passing only the low frequency region and outputs the third transmission signal to the quadrature modulation unit 111.
  • LPF 110 which is a band limiting unit, limits the band of the fourth transmission signal input from DZA unit 107 by passing only the low frequency region and outputs the fourth transmission signal to quadrature modulation unit 111. Due to the individual difference between LPF110 and LPF109, the fourth transmission signal that has passed through LPF110 has a delay time difference and amplitude difference from the third transmission signal that has passed through LPF109. Since the delay time difference and the amplitude difference are corrected by the force correction unit 103, the delay time difference and the amplitude difference generated with the third transmission signal that has passed through the LPF 109 are suppressed.
  • the orthogonal modulation unit 111 generates an IF (intermediate frequency) signal by performing orthogonal modulation on the third transmission signal input from the LPF 109 and the fourth transmission signal input from the LPF 110, and outputs the IF (intermediate frequency) signal to the wireless transmission unit 112.
  • Radio transmission section 112 up-converts the IF signal input from quadrature modulation section 111 to the radio frequency and outputs it to antenna 113 as a transmission signal.
  • the antenna 113 transmits the transmission signal input from the wireless transmission unit 112.
  • FIG. 6 is a block diagram showing a configuration of multicarrier receiving apparatus 200.
  • Antenna 201 receives a signal and outputs the signal to radio reception section 202.
  • Radio reception section 202 down-converts the received signal input from antenna 201 from a radio frequency to a baseband frequency and outputs the result to orthogonal demodulation section 203.
  • the quadrature demodulating unit 203 performs quadrature demodulation on the received signal input from the wireless receiving unit 202 to obtain a first received signal that is an I component time domain signal and a second received signal that is a Q component time domain signal. Generate. Then, quadrature demodulation section 203 outputs the generated first received signal to LPF 204 and outputs the generated second received signal to LPF 205.
  • LPF 204 serving as band limiting means performs band limiting by passing only the low frequency region of the first received signal input from quadrature demodulating section 203 and outputs the result to AZD section 206.
  • LPF 205 serving as band limiting means performs band limiting by passing only the low frequency region of the second received signal input from quadrature demodulating section 203 and outputs the result to AZD section 207.
  • the second received signal that has passed through the LPF 205 is a signal that has a delay time difference and an amplitude difference from the first received signal that has passed through the LPF 204 due to individual differences between the LPF 204 and the LPF 205.
  • the AZD unit 206 converts the first reception signal input from the LPF 204 into an analog signal power digital signal and outputs the analog signal power digital signal to the GI removal unit 208.
  • the AZD unit 207 converts the second received signal input from the LPF 205 into a digital signal and also outputs it to the GI removing unit 208.
  • GI removal section 208 removes GI from the first received signal input from AZD section 206 and the second received signal force input from AZD section 207, and outputs the result to FFT section 209.
  • the FFT unit 209 performs FFT on the first received signal and the second received signal input from the GI removing unit 208 and converts them into a time domain force frequency domain, and a third reception signal that is an I component frequency domain signal. And a fourth received signal that is a frequency domain signal of the Q component. Then, the FFT unit 209 outputs the generated complex reception signal (third reception signal (I component) + j X fourth reception signal (Q component)) composed of the third reception signal and the fourth reception signal to the separation unit 210. To do.
  • Separation section 210 receives the complex reception signal that also has the third reception signal and the fourth reception signal power input from FFT section 209, in two complex receptions of the fifth reception signal and the sixth reception signal in lOFDM symbol units.
  • the signal is separated and output to the correction unit 211.
  • the fifth received signal is the frequency domain signal of the first received signal after band limitation, GI removal and AZD conversion
  • the sixth received signal is the second after the band limitation, GI removal and AZD conversion. This is the frequency domain signal of the received signal.
  • the I component of the fifth received signal and the sixth received signal consists of the third received signal
  • the Q component of the fifth received signal and the sixth received signal consists of the fourth received signal.
  • Correction section 211 corrects one of the two complex reception signals, the fifth reception signal and the sixth reception signal, input from separation section 210 in the frequency domain. As a result, it is possible to compensate for the delay time difference and the amplitude difference between the first received signal and the second received signal that are generated by band limiting the first received signal and the second received signal with the LPF 204 and the LPF 205. Then, after correcting the delay time difference and the amplitude difference, the correction unit 211 outputs the fifth reception signal and the sixth reception signal to the synthesis unit 212.
  • the combining unit 212 combines the fifth received signal and the sixth received signal input from the correcting unit 211 and forms a complex composed of the third received signal and the fourth received signal before being separated by the separating unit 210. Regenerate the received signal. Then, combining section 212 outputs the regenerated third received signal and the complex received signal having the fourth received signal power to transmission path estimation compensating section 213.
  • Transmission path estimation / compensation section 213 performs transmission path estimation of a complex reception signal composed of the third reception signal and the fourth reception signal input from combining section 212. That is, the transmission path estimation compensation unit 213 Compensation is performed by estimating the amplitude and phase responses of the transmission paths of the third reception signal and the fourth reception signal input from the synthesis unit 212 using the known signal. Then, the transmission path estimation compensation unit 213 outputs the compensated third reception signal and fourth reception signal to the demodulation unit 214.
  • Demodulation section 214 demodulates the third reception signal and the fourth reception signal input from transmission path estimation compensation section 213 for each subcarrier and outputs the received data.
  • FIG. 7 is a block diagram showing the configuration of the correction unit 103.
  • the configuration of the correction unit 211 is the same as that in FIG.
  • Delay section 301 delays the fifth transmission signal input from demultiplexing section 102 and outputs the delayed signal to combining section 104.
  • the delay unit 301 delays the fifth transmission signal to be output at substantially the same timing as the timing at which the sixth transmission signal is output from the multiplication unit 302.
  • Multiplying section 302 performs correction by performing complex multiplication on the sixth transmission signal input from demultiplexing section 102 and the complex correction coefficient input from correction coefficient storage section 303. Then, multiplication section 302 outputs the corrected sixth transmission signal to combining section 104.
  • the correction coefficient storage unit 303 stores a plurality of complex correction coefficients (correction values) in advance, and multiplies the stored correction coefficient based on symbol head information that is information indicating the head of the symbol. Output to unit 302. The method for setting the correction coefficient will be described later.
  • digital modulation section 101 performs orthogonal modulation on transmission data to generate a first transmission signal and a second transmission signal.
  • the digital modulation unit 101 outputs in units of 1 OFDM symbol.
  • lOFDM symbols can be represented by first transmission signals for the number of IFFT points and second transmission signals for the number of IFFT points.
  • separation section 102 converts a complex transmission signal composed of a first transmission signal and a second transmission signal into two complex transmission signals, a fifth transmission signal and a sixth transmission signal. Separate into signals.
  • A is the complex output of digital modulator 101 (I + j X Q)
  • a * is the complex conjugate of A
  • N is the number of IFFT points
  • A is the complex output of digital modulator 101 (I + j X Q)
  • a * is the complex conjugate of A
  • N is the number of IFFT points
  • the separation unit 102 outputs the fifth transmission signal of the equation (1) and the sixth transmission signal of the equation (2).
  • multicarrier transmitting apparatus 100 uses correction section 103 to determine the amplitude difference and delay time difference between LPF 109 and LPF 110 for either one of equations (1) and (2).
  • Complex multiplication of complex correction coefficient Ck (k 0, 1, "',? ⁇ 1) that corrects imbalance of.
  • multicarrier transmitting apparatus 100 adds and combines the corrected fifth transmission signal and sixth transmission signal in combining section 104, and performs IFFT in IFFT section 105 to perform the time domain.
  • a third transmission signal and a fourth transmission signal converted into signals are generated.
  • the multicarrier transmission apparatus 100 converts the third transmission signal and the fourth transmission signal from a digital signal to an analog signal in the DZA unit 107 and the DZA unit 108, and only the low frequency is output in the LPF 109 and the LPF 110. Let it pass, quadrature-modulate by quadrature modulator 111 and send I believe.
  • FIG. 8 is a diagram showing a simulation result of reception constellation in the case where the delay time difference is 1Z8 sample period and there is no amplitude difference and multicarrier transmission apparatus 100 does not compensate.
  • FIG. 9 is a diagram showing a simulation result of reception constellation when the multicarrier transmitting apparatus 100 compensates when the delay time difference is 1Z8 sample period and there is no amplitude difference.
  • 8 and 9 show the simulation results when the number of subcarriers is 384, the number of FFT points is 512, the GI is 256 samples, the modulation method is 16QAM, and the channel estimation is estimated using a time-multiplexed pilot signal. 8 and 9, the interference can be almost completely eliminated by correcting the imbalance in the delay time difference between the third transmission signal and the fourth transmission signal.
  • FIG. 10 is a diagram showing a simulation result of the reception constellation when there is no delay time difference and the amplitude difference is ldB and the multicarrier transmission apparatus 100 does not compensate.
  • FIG. 11 is a diagram showing a simulation result of reception constellation when there is no delay time difference and the amplitude difference is Id B and compensation is performed by multicarrier transmitting apparatus 100. From Fig. 10 and Fig. 11, the interference can be almost completely eliminated by correcting the phase difference imbalance between the third transmission signal and the fourth transmission signal.
  • multicarrier receiving apparatus 200 that has received the multicarrier signal generates a first reception signal and a second reception signal by performing quadrature demodulation at orthogonal demodulation section 203, and LPF109 and LPF1 10 at a low frequency Only pass through.
  • the first received signal that has passed through LPF 109 and the second received signal that has passed through LPF 110 are signals in which an amplitude difference and a delay difference are added due to individual differences between LPFs 204 and 205.
  • the correction unit 211 needs to perform correction.
  • separation section 210 converts a complex received signal made up of the third received signal and the fourth received signal into a fifth received signal as shown in equation (1) and (2 This is separated into the sixth received signal as shown in equation (4).
  • multicarrier receiving apparatus 200 uses correction section 211 to perform equation (1) and equation (2) above.
  • Complex correction coefficient Ck (k 0, 1, "',? ⁇ 1) for correcting the imbalance between LPF204 and LPF205 for either the fifth received signal or the sixth received signal as shown in the equation Is a complex multiplication.
  • transmission path estimation / compensation section 213 performs compensation by estimating the amplitude and phase response of the transmission path using a known signal. Note that the transmission path estimation compensation unit 213 cannot compensate for the imbalance between the third received signal and the fourth received signal.
  • multicarrier receiving apparatus 200 performs demodulation processing on each subcarrier in demodulation section 214 and outputs received data.
  • FIG. 12 is a diagram showing a simulation result of reception constellation when the multicarrier receiving apparatus 200 does not compensate when the delay time difference is 1Z8 sample period and there is no amplitude difference.
  • FIG. 13 is a diagram illustrating a simulation result of reception constellation when the multicarrier receiving apparatus 200 compensates for a delay time difference of 1Z8 sample period and no amplitude difference. From Fig. 12 and Fig. 13, the interference can be almost completely eliminated by correcting the imbalance in the delay time difference between the first received signal and the second received signal.
  • FIG. 14 is a diagram showing a simulation result of reception constellation when there is no delay time difference and the amplitude difference is ldB and the multicarrier receiving apparatus 200 does not compensate.
  • FIG. 15 is a diagram showing a simulation result of reception constellation when there is no delay time difference and the amplitude difference is Id B and compensation is performed by multicarrier receiving apparatus 200. 14 and 15 show the simulation results when the number of subcarriers is 384, the number of FFT points is 512, the GI is 256 samples, the modulation method is 16QAM, and the channel estimation is estimated by a time-multiplexed pilot signal. From FIG. 14 and FIG. 15, the interference can be almost completely eliminated by correcting the imbalance in the phase difference between the first received signal and the second received signal.
  • FIG. 16 is a diagram showing LPF delay time characteristics when both the delay time difference and the amplitude difference exist and the delay time difference and the amplitude difference have frequency characteristics (ripple).
  • Is the group delay and the horizontal axis is the normal frequency.
  • Fig. 17 shows the LP when both the delay time difference and the amplitude difference exist and the delay time difference and the amplitude difference have frequency characteristics. It is a figure which shows the amplitude characteristic of F, A vertical axis
  • the I component has a ripple of ⁇ 1Z4 sample period, and the Q component is flat within the signal band.
  • the I component has a ⁇ ldB ripple, and the Q component is flat within the signal band.
  • FIG. 18 is a diagram illustrating a simulation result of reception constellation in the case of FIGS. 16 and 17 when the multicarrier receiving apparatus 200 does not compensate.
  • FIG. 19 is a diagram showing a simulation result of reception constellation in the case of FIG. 16 and FIG. From Fig. 18 and Fig. 19, interference can be almost completely eliminated even when there are frequency characteristics in the delay time difference and amplitude difference.
  • correction coefficients calculated in advance using LPFs 109 and 110 and LPFs 204 and 205 are set.
  • the correction unit 103 determines a correction coefficient based on the LPF characteristics that have been preliminarily measured using a network analyzer or the like.
  • Real frequency subcarrier k 0 to (NZ2) — LPF109 gain MAk (dB), group delay DAk (s), LPF110 gain MBk (dB), group delay DBk (s) at frequency 1 ) If the sampling period is Ts (s), the amplitude difference and delay time difference based on the LPF109 side (in-phase component side) are as shown in Equations (3) and (4).
  • Ck 10 "(-Mk / 20) X exp (j X D ZTs X k X 2 w ZN) (0 ⁇ k ⁇ (N / 2) — 1) k
  • Ck 10 "(-M Z20) X exp (—j X D / Ts X (N ⁇ k) X 2 ⁇ / N) (N / 2 ⁇ k
  • N-k is the part that corrects the amplitude difference.
  • jXD / TsX (N-k) X2 [pi] / N) is a portion for correcting the group delay time difference.
  • the complex transmission signal composed of the first transmission signal and the second transmission signal is converted into two complex signals, that is, the fifth transmission signal and the sixth transmission signal.
  • the reception side separates the complex reception signal composed of the third reception signal and the fourth reception signal into two complex reception signals of the fifth reception signal and the sixth reception signal. Since the fifth transmission signal and the sixth transmission signal are corrected and the separated fifth reception signal and sixth reception signal are corrected, the circuit scale is increased compared to the case where the delay time difference and the amplitude difference are corrected by other methods. It is possible to compensate for delay time and amplitude imbalance at low cost.
  • the first embodiment by correcting the amplitude difference and the delay time difference in the frequency domain, the high-order oversampling and the interpolation calculation required for correcting one sample or less in the time domain are unnecessary. Therefore, it is possible to reduce the manufacturing cost of the multicarrier transmission apparatus and the multicarrier reception apparatus and to prevent the circuit scale from increasing.
  • FIG. 20 is a block diagram showing a configuration of correction coefficient storage section 303 according to Embodiment 2 of the present invention.
  • the configuration of the multicarrier transmission apparatus is as shown in FIG.
  • the configuration of the multicarrier receiver is the same as in FIG. 6, and the configurations of the correction unit 103 and the correction unit 211 are the same as those in FIG.
  • the selection information storage unit 1601 stores the address of the amplitude coefficient storage unit 1602 in which the amplitude coefficient that optimizes the constellation is stored for each subcarrier, and the constellation is optimal. It stores the address of exp (j ⁇ 0 m) storage unit 1603 in which exp (j. 0 m) is stored. Then, the selection information storage unit 1601 stores the symbol head information as a trigger, and stores the address information, which is the address information, in order of the subcarrier numbers in the order of the amplitude coefficient storage unit 1602 and exp (j′ ⁇ m). Output to part 1603.
  • the amplitude coefficient storage unit 1602 outputs the amplitude coefficient stored in the address information address input from the selection information storage unit 1601 to the multiplier 1604 and the multiplier 1605.
  • exp (j-0 m) storage unit 1603 outputs exp (j' ⁇ m) stored in the address information address input from selection information storage unit 1601 to multiplier 1604 and multiplier 1605
  • Multiplier 1604 multiplies the amplitude coefficient input from amplitude coefficient storage section 1602 by the real part of exp (j′ ⁇ m) input from exp (j ⁇ ⁇ m) storage section 1603, thereby correcting coefficient. Calculate the real part of (correction value). Then, the multiplier 1604 outputs the real part of the calculated correction coefficient to the multiplication unit 302.
  • the multiplier 1605 multiplies the amplitude coefficient input from the amplitude coefficient storage unit 1602 by the imaginary part of exp (j′ ⁇ m) input from the exp (j ⁇ m) storage unit 1603, thereby correcting the correction coefficient. Calculate the imaginary part of (correction value). Then, the multiplier 1605 outputs the imaginary part of the calculated correction coefficient to the multiplication unit 302. Note that the operations of the multicarrier transmission apparatus and the multicarrier reception apparatus are the same as those in the first embodiment, and a description thereof will be omitted.
  • the correction coefficient is set by adjusting the constellation of each subcarrier to be the best in the apparatus adjustment stage.
  • the correction coefficient storage unit 303 stores 16 exp (j. 0 m) values in advance, and sets a constant for each subcarrier. Best for best or least error vector magnitude (EVM) e Select xp (j- ⁇ m).
  • EVM error vector magnitude
  • correction coefficient storage section 303 stores exp (j ⁇ 0 m) selected for each subcarrier. Based on exp (j. ⁇ m) for each subcarrier stored in the correction coefficient storage unit 303, exp (j ⁇ 0m) is called and used for correction.
  • a plurality of correction coefficients are stored for each predetermined amplitude difference, and the one with the best constellation or the minimum EVM is selected for each subcarrier.
  • ⁇ Rub For example, when it is desired to suppress the amplitude difference to 0.5 dB or less, the correction coefficient storage unit 303 sets the maximum amplitude difference of LPF, for example, “1, ⁇ 0.5 dB, ⁇ ldB, ⁇ 1.5 dB---J
  • the correction coefficient is the product of the amplitude coefficient and exp (j ′ ⁇ m). It becomes.
  • the delay time difference is corrected first, and then the amplitude difference is corrected. If necessary, repeat the delay time difference correction and the amplitude difference correction again. Even when delay time correction and amplitude difference correction are performed repeatedly, the delay time difference is corrected first, and then the amplitude difference is corrected.
  • a complex transmission signal composed of the first transmission signal and the second transmission signal is converted into two complex signals, the fifth transmission signal and the sixth transmission signal.
  • Transmission signal And the reception side separates the complex reception signal composed of the third reception signal and the fourth reception signal into two complex reception signals of the fifth reception signal and the sixth reception signal, and separates the fifth reception signal. Since the transmission signal and the sixth transmission signal are corrected and the separated fifth reception signal and sixth reception signal are corrected, the circuit scale must be increased compared to the case where the delay time difference and the amplitude difference are corrected by other methods. It is possible to compensate for delay time and amplitude imbalance at low cost.
  • the second embodiment by correcting the amplitude difference and the delay time difference in the frequency domain, the high-order oversampling and the interpolation calculation required for correcting one sample or less in the time domain are unnecessary. Therefore, it is possible to reduce the manufacturing cost of the multicarrier transmission apparatus and the multicarrier reception apparatus and to prevent the circuit scale from increasing.
  • correction is performed on the sixth transmission signal.
  • the present invention is not limited to this, and correction may be performed on the fifth transmission signal. Corrections may be made to both the fifth transmission signal and the sixth transmission signal.
  • the sixth received signal is corrected.
  • the present invention is not limited to this, and the fifth received signal may be corrected. Corrections may be made to both the fifth received signal and the sixth received signal.
  • the power for correcting the amplitude difference and the delay time difference in both the multicarrier transmission apparatus 100 and the multicarrier reception apparatus 200 is not limited to this. The amplitude difference and the delay time difference may be corrected by only one of the apparatus 100 and the multicarrier receiving apparatus 200.
  • the multicarrier transmission apparatus, multicarrier reception apparatus, transmission method, and reception method that are useful in the present invention are particularly suitable for compensating for an imbalance in amplitude or delay time between the in-phase component and the quadrature component. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 回路規模を大きくすることなく低コストにて遅延時間及び振幅の不均衡を補償することができるマルチキャリア送信装置。この装置では、ディジタル変調部(101)は、直交変調してI成分の周波数領域信号である第一送信信号とQ成分の周波数領域信号である第二送信信号とからなる複素送信信号を生成する。分離部(102)は、IFFTするとI成分の時間領域信号になる第三送信信号の周波数領域信号である第五送信信号とQ成分の時間領域信号になる第四送信信号の周波数領域信号である第六送信信号とに複素送信信号を分離する。補正部(103)は、第五送信信号または第六送信信号の何れか一方を補正して、第三送信信号と第四送信信号を帯域制限する際に生じる第三送信信号と第四送信信号との間の遅延時間差及び振幅差が小さくなるように補正する。

Description

明 細 書
マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信 方法
技術分野
[0001] 本発明は、マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信 方法に関し、特に、同相成分 (I成分)と直交成分 (Q成分)との間の振幅または遅延 時間の不均衡を補償するマルチキャリア送信装置、マルチキャリア受信装置、送信 方法及び受信方法に関する。
背景技術
[0002] 例えば、信号帯域が 100MHzの広帯域のマルチキャリア通信では、ディジタル直 交検波が困難であり、一般にアナログ直交検波が用いられる。この場合、ディジタル Zアナログ(以下「DZA」と記載する)変換のポストフィルタ、アナログ Zディジタル ( 以下「AZD」と記載する)変換のプリフィルタとして Iチャネル及び Qチャネルにアナ口 グロ一パスフィルタ(以下「LPF」と記載する)が必要になる。即ち、 LPFは、 DZA変 換及び AZD変換の際に生じる、サンプリング周波数の 2分の 1以上の折り返しノイズ を除去するために必要である。この際に、 LPFの個体差により、 Iチャネルと Qチヤネ ルとの間に振幅の不均衡及び遅延時間の不均衡が生じる。 Iチャネルと Qチャネルと の間の振幅の不均衡及び遅延時間の不均衡は、キャリア間干渉を引き起こして性能 が劣化する。
[0003] マルチキャリア通信の 1つである OFDM(Orthogonal Frequency Division Multiplexi ng)では、 Iチャネルと Qチャネルとの間の遅延差の影響が大きぐ高速フーリエ変換( 以下「FFT」と記載する)のサンプル周期の 1Z10程度の遅延時間差に抑えないと劣 化が大きくなることがわ力つてきた。なお、以下の説明において、 FFTの 1サンプル時 間または 1サンプル周期を「サンプル」と記載する。また、 AZDの際には、オーバー サンプリングする場合があるので、 AZDの 1サンプルと FFTの 1サンプルとは必ずし も一致しない。
[0004] しかし、 1Z10サンプル周期程度に遅延時間差を抑えることは、アナログ LPFにと つては非常に厳しいものである。そこで、 Iチャネルと Qチャネルとの間の振幅と遅延 時間の不均衡をディジタル回路で補償する方法が必要になった。
[0005] 従来、 Iチャネルと Qチャネルとの間の振幅の不均衡及び遅延時間の不均衡を補償 する方法としては、振幅及び群遅延の個体差の小さい LPFを用いる方法 (以下、「第 一の方法」と記載する)、または LPFを個別に調整して振幅差及び群遅延差を抑える 方法 (以下「第二の方法」と記載する)がある。また、従来、同相成分と直交成分から 別々にタイミングを抽出し、同相成分及び直交成分それぞれの最適タイミングで AZ D変換することで遅延時間差を吸収する方法 (以下「第三の方法」と記載する)が知ら れて 、る(例えば、特許文献 1)。
[0006] 図 1は、 LPFの個体差により生じる同相成分と直交成分との間の遅延時間の不均 衡がない場合の受信コンスタレーシヨン結果を示す図であり、図 2は、 LPFの個体差 により生じる同相成分と直交成分との間の遅延時間の不均衡による性能劣化を示す 図である。図 2は、同相成分と直交成分との間に 1Z8サンプルの遅延時間差が生じ た場合を示すものである。
[0007] OFDM等のマルチキャリアでは、遅延時間差の影響が大きぐ 1サンプル時間以下 の僅かな差でも大きく劣化する。これは、ベースバンド信号であってもサブキャリアを 持っており、サブキャリアの周期に対して遅延時間差が無視できなくなるためである。 したがって、周波数の高いサブキャリアほど影響が大きくなり、 IFZRF帯の変調信号 では信号帯域の中心から離れたサブキャリアほど遅延時間差の影響が大きくなる。ま た、アナログ LPFはカットオフ近傍、即ち通過帯域の端ほど素子感度が高くばらつき が大きくなるため、劣化を避けるのは困難である。
[0008] 図 2に示すように、 1Z8サンプルの遅延時間差でも、サブキャリア間の直交性が崩 れてコンスタレーシヨンが大きく劣化する。信号帯域を 100MHz (ベースバンド信号 は 50MHz)とし、サブキャリア数を 384本にして FFTポイント数を 512にした場合、サ ンプリングクロックは ΙΟΟΜΗζ Χ 512Z384= 133MHz程度となり、 1サンプル時間 は 7. 5nsとなる。したがって、 1/8サンプルは 940psになる。一方、 50MHz帯域の LPFの群遅延時間は通常数 10nsのオーダーとなる。例えば、 LPFの群遅延時間を 48nsとすると、送信側と受信側とで LPFを用いる場合には、群遅延時間は 48 X 2 = 96nsになる。したがって、遅延差を 1Z8サンプル = 940psに抑えるには、約 1%の ばらつき、即ち約 1%の個体差し力許されない。
[0009] 図 3は、 LPFの個体差により生じる同相成分と直交成分との間の振幅の不均衡がな い場合の受信コンスタレーシヨン結果を示す図であり、図 4は、 LPFの個体差により生 じる同相成分と直交成分との間の振幅の不均衡による性能劣化を示す図である。図 4は、同相成分と直交成分との間に ldBの振幅差が生じる場合を示すものである。図 4に示すように、振幅の不均衡によってもサブキャリア間の干渉が起こり、性能が劣化 する。振幅差は、遅延時間差と比べると影響は小さい。例えば、 LPFの通過域振幅 差を ldBに抑えることは、群遅延差を 1%に抑えることより容易である。
特許文献 1:特開 2001— 24722号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、従来の装置においては、第一の方法及び第二の方法では、 LPFの 仕様が厳し 、ためにコストがアップして低コストィ匕が図れな ヽと 、う問題がある。また、 第三の方法では、 1サンプル周期より小さい遅延時間の補償は可能であるが、タイミ ング抽出回路が 2つ必要なために回路規模が大きくなるという問題がある。また、第 三の方法では、振幅の不均衡を補償することができな 、と 、う問題がある。
[0011] 本発明の目的は、回路規模を大きくすることなく低コストにて遅延時間及び振幅の 不均衡を補償することができるマルチキャリア送信装置、マルチキャリア受信装置、 送信方法及び受信方法を提供することである。
課題を解決するための手段
[0012] 本発明のマルチキャリア送信装置は、送信データを直交変調して I成分の周波数領 域信号である第一送信信号と Q成分の周波数領域信号である第二送信信号とから なる複素送信信号を生成するディジタル変調手段と、前記複素送信信号を逆高速フ 一リエ変換すると I成分の時間領域信号になる第三送信信号の周波数領域信号であ る第五送信信号と Q成分の時間領域信号になる第四送信信号の周波数領域信号で ある第六送信信号とに前記複素送信信号を分離する分離手段と、前記第三送信信 号及び前記第四送信信号を帯域制限する際の前記第三送信信号と前記第四送信 信号との間の振幅差及び遅延時間差が小さくなるように前記第五送信信号または前 記第六送信信号を補正する補正手段と、前記補正手段にて補正後に前記第五送信 信号と前記第六送信信号とを合成して前記複素送信信号を再生成する合成手段と、 前記合成手段にて再生成された前記複素送信信号を逆高速フーリエ変換して前記 第三送信信号と前記第四送信信号とを生成する逆高速フーリエ変換手段と、前記逆 高速フーリエ変換手段にて生成された前記第三送信信号と前記第四送信信号との 帯域を制限する帯域制限手段と、前記帯域制限手段にて帯域制限された前記第三 送信信号及び前記第四送信信号からなる送信信号を送信する送信手段と、を具備 する構成を採る。
[0013] 本発明のマルチキャリア受信装置は、受信信号を直交復調することにより I成分の 時間領域信号である第一受信信号と Q成分の時間領域信号である第二受信信号を 生成する直交復調手段と、前記第一受信信号及び前記第二受信信号の帯域を制 限する帯域制限手段と、前記帯域制限手段にて帯域制限された前記第一受信信号 及び前記第二受信信号を高速フーリエ変換して I成分の周波数領域信号である第三 受信信号と Q成分の周波数領域信号である第四受信信号とからなる複素受信信号 を生成する高速フーリエ変換手段と、前記第一受信信号の周波数領域信号である 第五受信信号と前記第二受信信号の周波数領域信号である第六受信信号とに前記 複素受信信号を分離する分離手段と、前記第一受信信号及び前記第二受信信号を 前記帯域制限手段にて帯域制限する際に生じる前記第一受信信号と前記第二受信 信号との間の振幅差及び遅延時間差が小さくなるように前記第五受信信号または前 記第六受信信号を補正する補正手段と、前記補正手段にて補正後に前記第五受信 信号と前記第六受信信号とを合成して前記複素受信信号を再生成する合成手段と、 前記合成手段にて再生成された前記複素受信信号を復調する復調手段と、を具備 する構成を採る。
[0014] 本発明の送信方法は、送信データを直交変調して I成分の周波数領域信号である 第一送信信号と Q成分の周波数領域信号である第二送信信号とからなる複素送信 信号を生成するステップと、前記複素送信信号を逆高速フーリエ変換すると I成分の 時間領域信号になる第三送信信号の周波数領域信号である第五送信信号と Q成分 の時間領域信号になる第四送信信号の周波数領域信号である第六送信信号とに前 記複素送信信号を分離するステップと、前記第三送信信号及び前記第四送信信号 を帯域制限する際の前記第三送信信号と前記第四送信信号との間の振幅差及び遅 延時間差が小さくなるように前記第五送信信号または前記第六送信信号を補正する ステップと、前記補正後に前記第五送信信号と前記第六送信信号とを合成して前記 複素送信信号を再生成するステップと、再生成された前記複素送信信号を逆高速フ 一リエ変換して前記第三送信信号と前記第四送信信号とを生成するステップと、生 成された前記第三送信信号と前記第四送信信号との帯域を制限するステップと、帯 域制限された前記第三送信信号及び前記第四送信信号からなる送信信号を送信す るステップと、を具備するようにした。
[0015] 本発明の受信方法は、受信信号を直交復調することにより I成分の時間領域信号 である第一受信信号と Q成分の時間領域信号である第二受信信号を生成するステツ プと、前記第一受信信号及び前記第二受信信号の帯域を制限するステップと、帯域 制限された前記第一受信信号及び前記第二受信信号を高速フーリエ変換して I成分 の周波数領域信号となる第三受信信号と Q成分の周波数領域信号となる第四受信 信号とからなる複素受信信号を生成するステップと、前記第一受信信号の周波数領 域信号である第五受信信号と前記第二受信信号の周波数領域信号である第六受信 信号とに前記複素受信信号を分離するステップと、前記第一受信信号及び前記第 二受信信号の帯域を制限する際に生じる前記第一受信信号と前記第二受信信号と の間の振幅差及び遅延時間差が小さくなるように前記第五受信信号または前記第 六受信信号を補正するステップと、前記補正後に前記第五受信信号と前記第六受 信信号とを合成して前記複素受信信号を再生成するステップと、再生成された前記 複素受信信号を復調するステップと、を具備するようにした。
発明の効果
[0016] 本発明によれば、回路規模を大きくすることなく低コストにて遅延時間及び振幅の 不均衡を補償することができる。
図面の簡単な説明
[0017] [図 1]受信コンスタレーシヨンのシミュレーション結果を示す図 [図 2]受信コンスタレーシヨンのシミュレーション結果を示す図
[図 3]受信コンスタレーシヨンのシミュレーション結果を示す図
[図 4]受信コンスタレーシヨンのシミュレーション結果を示す図
圆 5]本発明の実施の形態 1に係るマルチキャリア送信装置の構成を示すブロック図 圆 6]本発明の実施の形態 1に係るマルチキャリア受信装置の構成を示すブロック図 圆 7]本発明の実施の形態 1に係る補正部の構成を示すブロック図
[図 8]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 9]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 10]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 11]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 12]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 13]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 14]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 15]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
圆 16]本発明の実施の形態 1に係る LPFの遅延時間特性を示す図
圆 17]本発明の実施の形態 1に係る LPFの振幅特性を示す図
[図 18]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図
[図 19]本発明の実施の形態 1に係る受信コンスタレーシヨンのシミュレーション結果を 示す図 [図 20]本発明の実施の形態 2に係る補正係数格納部の構成を示すブロック図 発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0019] (実施の形態 1)
図 5は、本発明の実施の形態 1に係るマルチキャリア送信装置 100の構成を示すブ ロック図である。
[0020] ディジタル変調部 101は、図示しない符号化部にて符号化された送信データを、 Q PSKまたは 16QAM等の変調方式にて直交変調して、 I成分の周波数領域信号で ある第一送信信号と Q成分の周波数領域信号である第二送信信号を生成する。また 、ディジタル変調部 101は、ガード帯域を設ける場合には、ガード帯域に割り当てる サブキャリアに対してデータ「0」を挿入する。例えば、逆高速フーリエ変換 (以下「IF FT」と記載する)ポイントが 512の場合には 512本のサブキャリアを生成できる 1S こ の場合、ディジタル変調部 101は、内側の負の周波数を含む OHzの両側の 384本の サブキャリアにデータを挿入し、 OHzのサブキャリアと残りの外側のサブキャリアの計 128本にはデータ「0」を挿入する。これにより、データが挿入されるサブキャリアは低 い周波数帯域だけになるので、折り返しノイズの除去が容易になる。そして、ディジタ ル変調部 101は、生成した第一送信信号及び第二送信信号からなる複素送信信号 (第一送信信号 (I成分) +j X第二送信信号 (Q成分) )を lOFDMシンボル単位で分 離部 102へ出力する。
[0021] 分離部 102は、ディジタル変調部 101から入力した第一送信信号及び第二送信信 号からなる複素送信信号を、 lOFDMシンボル単位で、第五送信信号及び第六送 信信号の 2つの複素送信信号に分離して補正部 103へ出力する。ここで、第五送信 信号は、第一送信信号及び第二送信信号力もなる複素送信信号を IFFTした後の I 成分の時間領域信号である第三送信信号の周波数領域信号であり、第六送信信号 は、第一送信信号及び第二送信信号からなる複素送信信号を IFFTした後の Q成分 の時間領域信号である第四送信信号の周波数領域信号である。また、第五送信信 号及び第六送信信号の I成分は第一送信信号からなり、第五送信信号及び第六送 信信号の Q成分は第二送信信号力 なる。 [0022] 補正部 103は、周波数領域にて、分離部 102から入力した第五送信信号及び第六 送信信号の 2つの複素送信信号の何れか一方を補正する。これにより、第三送信信 号及び第四送信信号を後述する LPF109及び LPF110にて帯域制限することにより 生じる第三送信信号と第四送信信号との間の遅延時間差及び振幅差が小さくなるよ うに補償することができる。そして、補正部 103は、遅延時間差及び振幅差を補償し た後、第五送信信号及び第六送信信号を合成部 104へ出力する。
[0023] 合成部 104は、補正部 103から入力した第五送信信号と第六送信信号とを合成し 、分離部 102にて分離する前の第一送信信号と第二送信信号とからなる複素送信信 号を再生成する。そして、合成部 104は、再生成した第一送信信号と第二送信信号 カゝらなる複素送信信号を IFFT部 105へ出力する。
[0024] IFFT部 105は、合成部 104から入力した第一送信信号及び第二送信信号からな る複素送信信号を IFFT、即ち周波数領域信号カゝら時間領域信号に変換して、第三 送信信号と第四送信信号とを生成する。そして、 IFFT部 105は、生成した第三送信 信号及び第四送信信号を GI付加部 106へ出力する。
[0025] GI付加部 106は、 IFFT部 105から入力した第三送信信号及び第四送信信号に G Iを付加する。そして GI付加部 106は、 GIを付加した第三送信信号を DZA部 107へ 出力するとともに、 GIを付加した第四送信信号を DZA部 108へ出力する。
[0026] DZA部 107は、 GI付加部 106から入力した第三送信信号をディジタル信号から アナログ信号に変換して LPF109に出力する。
[0027] DZA部 108は、 GI付加部 106から入力した第四送信信号をディジタル信号から アナログ信号に変換して LPF110に出力する。
[0028] 帯域制限手段である LPF109は、 DZA部 107から入力した第三送信信号に対し て、低周波数領域のみを通過させることにより帯域制限を行って直交変調部 111へ 出力する。
[0029] 帯域制限手段である LPF110は、 DZA部 107から入力した第四送信信号に対し て、低周波数領域のみを通過させることにより帯域制限を行って直交変調部 111へ 出力する。 LPF110を通過した第四送信信号は、 LPF110と LPF109との個体差に よって、 LPF109を通過した第三送信信号とは遅延時間差及び振幅差が生じること になる力 補正部 103にてあら力じめ遅延時間差及び振幅差が補正されているため 、LPF109を通過した第三送信信号との間に生じる遅延時間差及び振幅差は抑制 されたものとなる。
[0030] 直交変調部 111は、 LPF109から入力した第三送信信号及び LPF110から入力し た第四送信信号を直交変調して IF (中間周波数)信号を生成して無線送信部 112へ 出力する。
[0031] 無線送信部 112は、直交変調部 111から入力した IF信号を IF力も無線周波数にァ ップコンバートして送信信号としてアンテナ 113へ出力する。
[0032] アンテナ 113は、無線送信部 112から入力した送信信号を送信する。
[0033] 次に、マルチキャリア受信装置 200の構成について、図 6を用いて説明する。図 6 は、マルチキャリア受信装置 200の構成を示すブロック図である。
[0034] アンテナ 201は、信号を受信して無線受信部 202へ出力する。
[0035] 無線受信部 202は、アンテナ 201から入力した受信信号を無線周波数からベース バンド周波数にダウンコンバートして直交復調部 203へ出力する。
[0036] 直交復調部 203は、無線受信部 202から入力した受信信号を直交復調して I成分 の時間領域信号である第一受信信号及び Q成分の時間領域信号である第二受信信 号を生成する。そして、直交復調部 203は、生成した第一受信信号を LPF204出力 するとともに、生成した第二受信信号を LPF205へ出力する。
[0037] 帯域制限手段である LPF204は、直交復調部 203から入力した第一受信信号の 低周波数領域のみを通過させることにより帯域制限を行って AZD部 206へ出力す る。
[0038] 帯域制限手段である LPF205は、直交復調部 203から入力した第二受信信号の 低周波数領域のみを通過させることにより帯域制限を行って AZD部 207へ出力す る。 LPF205を通過した第二受信信号は、 LPF204と LPF205との個体差によって、 LPF204を通過した第一受信信号とは遅延時間差及び振幅差が生じた信号になつ ている。
[0039] AZD部 206は、 LPF204から入力した第一受信信号をアナログ信号力 ディジタ ル信号に変換して GI除去部 208へ出力する。 [0040] AZD部 207は、 LPF205から入力した第二受信信号をアナログ信号力もディジタ ル信号に変換して GI除去部 208へ出力する。
[0041] GI除去部 208は、 AZD部 206から入力した第一受信信号及び AZD部 207から 入力した第二受信信号力も GIを除去して、 FFT部 209へ出力する。
[0042] FFT部 209は、 GI除去部 208から入力した第一受信信号及び第二受信信号を FF Tして時間領域力 周波数領域に変換して、 I成分の周波数領域信号である第三受 信信号と Q成分の周波数領域信号である第四受信信号とを生成する。そして、 FFT 部 209は、生成した第三受信信号及び第四受信信号からなる複素受信信号 (第三 受信信号 (I成分) +j X第四受信信号 (Q成分) )を分離部 210へ出力する。
[0043] 分離部 210は、 FFT部 209から入力した第三受信信号及び第四受信信号力もなる 複素受信信号を、 lOFDMシンボル単位で、第五受信信号と第六受信信号の 2つ の複素受信信号に分離して補正部 211へ出力する。ここで、第五受信信号は、帯域 制限、 GI除去及び AZD変換した後の第一受信信号の周波数領域信号であり、第 六受信信号は、帯域制限、 GI除去及び AZD変換した後の第二受信信号の周波数 領域信号である。また、第五受信信号及び第六受信信号の I成分は第三受信信号か らなり、第五受信信号及び第六受信信号の Q成分は第四受信信号からなる。
[0044] 補正部 211は、周波数領域にて、分離部 210から入力した第五受信信号及び第六 受信信号の 2つの複素受信信号の何れか一方を補正する。これにより、第一受信信 号及び第二受信信号を LPF204及び LPF205にて帯域制限することにより生じる第 一受信信号と第二受信信号との間の遅延時間差及び振幅差を補償することができる 。そして、補正部 211は、遅延時間差及び振幅差を補償した後、第五受信信号及び 第六受信信号を合成部 212へ出力する。
[0045] 合成部 212は、補正部 211から入力した第五受信信号と第六受信信号とを合成し 、分離部 210にて分離する前の第三受信信号と第四受信信号とからなる複素受信信 号を再生成する。そして、合成部 212は、再生成した第三受信信号及び第四受信信 号力 なる複素受信信号を伝送路推定補償部 213へ出力する。
[0046] 伝送路推定補償部 213は、合成部 212から入力した第三受信信号と第四受信信 号とからなる複素受信信号の伝送路推定を行う。即ち、伝送路推定補償部 213は、 既知信号を用いて、合成部 212から入力した第三受信信号及び第四受信信号の伝 送路の振幅及び位相応答を推定して補償を行う。そして、伝送路推定補償部 213は 、補償した後の第三受信信号及び第四受信信号を復調部 214へ出力する。
[0047] 復調部 214は、伝送路推定補償部 213から入力した第三受信信号及び第四受信 信号をサブキャリア毎に復調して受信データとして出力する。
[0048] 次に、補正部 103の構成について、図 7を用いて説明する。図 7は、補正部 103の 構成を示すブロック図である。なお、補正部 211の構成は図 7と同一であるので、そ の説明は省略する。
[0049] 遅延部 301は、分離部 102から入力した、第五送信信号を遅延させて合成部 104 へ出力する。遅延部 301は、第六送信信号が乗算部 302から出力されるタイミングと 略同一のタイミングで、第五送信信号が出力されるように遅延させる。
[0050] 乗算部 302は、分離部 102から入力した第六送信信号に対して、補正係数格納部 303から入力した複素数の補正係数を複素乗算することにより補正を行う。そして、 乗算部 302は、補正した第六送信信号を合成部 104へ出力する。
[0051] 補正係数格納部 303は、複数の複素数の補正係数 (補正値)をあらかじめ記憶して おり、シンボルの先頭を示す情報であるシンボル先頭情報に基づいて、記憶している 補正係数を乗算部 302へ出力する。なお、補正係数を設定する方法については後 述する。
[0052] 次に、マルチキャリア送信装置 100及びマルチキャリア受信装置 200の動作につい て説明する。
[0053] 最初に、マルチキャリア送信装置 100は、ディジタル変調部 101にて、送信データ を直交変調して第一送信信号と第二送信信号を生成する。この際、ディジタル変調 部 101は、 1 OFDMシンボル単位で出力する。 lOFDMシンボルは、 IFFTポイント 数分の第一送信信号及び IFFTポイント数分の第二送信信号で表すことができる。
[0054] 次に、マルチキャリア送信装置 100は、分離部 102にて、第一送信信号及び第二 送信信号からなる複素送信信号を、第五送信信号と第六送信信号の 2つの複素送 信信号に分離する。分離部 102にて分離された第五送信信号は、(1)式のようにな る。 [0055] X = 1/2 (A +A* ) (1)
k k N-k
ただし、 Xは第五送信信号
k
Aはディジタル変調部 101の複素出力(I +j X Q )
k k k
A*は Aの複素共役
Nは IFFTポイント数
A =A
N 0
k=0、 1、 · · ·、 N— 1
[0056] また、分離部 102にて分離された第六送信信号は、(2)式のようになる。
[0057] Y = 1/2 (A -A* ) (2)
k k N-k
ただし、 Yは第六送信信号
k
Aはディジタル変調部 101の複素出力(I+j X Q)
k
A*は Aの複素共役
Nは IFFTポイント数
A =A
N 0
k=0、 1、 · · ·、 N— 1
[0058] そして、分離部 102は、上記(1)式の第五送信信号及び (2)式の第六送信信号を 出力する。なお、 X
kは、複素共役対称 (X =X* )
k N-K になるため、 IFFTの対称性によ り、 IFFT後は実数になる。また、 Yは、複素共役反対称 (Yk= -Y* )になるため k N-K
、同様の理由で、 IFFT後は純虚数になる。
[0059] 次に、マルチキャリア送信装置 100は、補正部 103にて、上記(1)式及び上記(2) 式の何れか一方に対して、 LPF109と LPF110との間の振幅差及び遅延時間差の 不均衡を補正する複素補正係数 Ck(k=0、 1、 " '、?^ 1)を複素乗算する。
[0060] 次に、マルチキャリア送信装置 100は、合成部 104にて、補正後の第五送信信号と 第六送信信号とを加算して合成し、 IFFT部 105にて、 IFFTして時間領域信号に変 換した第三送信信号及び第四送信信号を生成する。
[0061] そして、マルチキャリア送信装置 100は、 DZA部 107及び DZA部 108にて、第三 送信信号及び第四送信信号をディジタル信号からアナログ信号に変換し、 LPF109 及び LPF110にて低周波数のみを通過させ、直交変調部 111にて直交変調して送 信する。
[0062] 図 8は、遅延時間差が 1Z8サンプル周期で振幅差がない場合において、マルチキ ャリア送信装置 100にて補償しな力つた場合の受信コンスタレーシヨンのシミュレーシ ヨン結果を示す図である。また、図 9は、遅延時間差が 1Z8サンプル周期で振幅差 がない場合において、マルチキャリア送信装置 100にて補償した場合の受信コンスタ レーシヨンのシミュレーション結果を示す図である。なお、図 8及び図 9は、サブキヤリ ァ数は 384、 FFTポイント数は 512、 GIは 256サンプル、変調方式は 16QAM及び チャネル推定は時間多重パイロット信号により推定した場合のシミュレーション結果で ある。図 8及び図 9より、第三送信信号及び第四送信信号の遅延時間差の不均衡を 補正することにより、ほぼ完全に干渉を取り除くことができる。
[0063] また、図 10は、遅延時間差がない場合で振幅差が ldBである場合において、マル チキャリア送信装置 100にて補償しなかつた場合の受信コンスタレーションのシミュレ ーシヨン結果を示す図である。また、図 11は、遅延時間差がない場合で振幅差が Id Bである場合において、マルチキャリア送信装置 100にて補償した場合の受信コンス タレーシヨンのシミュレーション結果を示す図である。図 10及び図 11より、第三送信 信号及び第四送信信号の位相差の不均衡を補正することにより、ほぼ完全に干渉を 取り除くことができる。
[0064] 次に、マルチキャリア信号を受信したマルチキャリア受信装置 200は、直交復調部 203にて直交復調して第一受信信号と第二受信信号を生成し、 LPF109及び LPF1 10にて低周波数のみを通過させる。 LPF109を通過した第一受信信号及び LPF11 0を通過した第二受信信号は、 LPF204と 205との個体差によって、振幅差と遅延差 が加わった信号となっている。このような第一受信信号と第二受信信号を、ガードイン ターバルを除去し FFTすると、 FFT後の第三受信信号と第四受信信号はサブキヤリ ァ間干渉が加わったものとなる。従って、補正部 211にて補正する必要が生じる。
[0065] 次に、マルチキャリア受信装置 200は、分離部 210にて、第三受信信号及び第四 受信信号からなる複素受信信号を、 (1)式に示すような第五受信信号及び (2)式に 示すような第六受信信号に分離する。
[0066] 次に、マルチキャリア受信装置 200は、補正部 211にて、上記(1)式及び上記(2) 式に示すような第五受信信号及び第六受信信号の何れか一方に対して、 LPF204 と LPF205との不均衡を補正する複素補正係数 Ck (k=0、 1、 " '、?^ 1)を複素乗 算する。
[0067] 次に、マルチキャリア受信装置 200は、伝送路推定補償部 213にて、既知信号を 用いて伝送路の振幅及び位相応答を推定して補償を行う。なお、伝送路推定補償 部 213は、第三受信信号と第四受信信号との不均衡は補償できない。
[0068] 次に、マルチキャリア受信装置 200は、復調部 214にて、各サブキャリアに対して復 調処理を行い、受信データを出力する。
[0069] 図 12は、遅延時間差が 1Z8サンプル周期で振幅差がない場合において、マルチ キャリア受信装置 200にて補償しな力つた場合の受信コンスタレーシヨンのシミュレ一 シヨン結果を示す図である。また、図 13は、遅延時間差が 1Z8サンプル周期で振幅 差がない場合において、マルチキャリア受信装置 200にて補償した場合の受信コン スタレーシヨンのシミュレーション結果を示す図である。図 12及び図 13より、第一受信 信号及び第二受信信号の遅延時間差の不均衡を補正することにより、ほぼ完全に干 渉を取り除くことができる。
[0070] また、図 14は、遅延時間差がない場合で振幅差が ldBである場合において、マル チキャリア受信装置 200にて補償しな力つた場合の受信コンスタレーシヨンのシミュレ ーシヨン結果を示す図である。また、図 15は、遅延時間差がない場合で振幅差が Id Bである場合において、マルチキャリア受信装置 200にて補償した場合の受信コンス タレーシヨンのシミュレーション結果を示す図である。なお、図 14及び図 15は、サブ キャリア数は 384、 FFTポイント数は 512、 GIは 256サンプル、変調方式は 16QAM 及びチャネル推定は時間多重パイロット信号により推定した場合のシミュレーション 結果である。図 14及び図 15より、第一受信信号及び第二受信信号の位相差の不均 衡を補正することにより、ほぼ完全に干渉を取り除くことができる。
[0071] また、図 16は、遅延時間差と振幅差の両方が存在する場合で遅延時間差及び振 幅差が周波数特性を持つ(リップル)場合の LPFの遅延時間特性を示す図であり、 縦軸が群遅延であり横軸が正規ィ匕周波数である。また、図 17は、遅延時間差と振幅 差の両方が存在する場合で遅延時間差及び振幅差に周波数特性がある場合の LP Fの振幅特性を示す図であり、縦軸が振幅であり横軸が正規ィ匕周波数である。図 16 において、 I成分は ± 1Z4サンプル周期のリップルを持ち、 Q成分は信号帯域内で 平坦である。また、図 17において、 I成分は ± ldBのリップルを持ち、 Q成分は信号 帯域内で平坦である。
[0072] 図 18は、図 16及び図 17の場合において、マルチキャリア受信装置 200にて補償 しなかった場合の受信コンスタレーシヨンのシミュレーション結果を示す図である。ま た、図 19は、図 16及び図 17の場合において、マルチキャリア受信装置 200にて補 償した場合の受信コンスタレーシヨンのシミュレーション結果を示す図である。図 18及 び図 19より、遅延時間差及び振幅差に周波数特性がある場合でもほぼ完全に干渉 を取り除くことができる。
[0073] 次に、補正部 103にて補正係数を設定する方法について説明する。本実施の形態 1においては、あらかじめ LPF109、 110及び LPF204、 205を用いて算出した補正 係数を設定する。
[0074] 補正部 103は、ネットワークアナライザ等を用いて、あら力じめ測定しておいた LPF 特性を元に補正係数を決定する。複素ベースバンド信号において、サブキャリアは、 番号 k = 0を DCとし、 DCからサンプリング周波数に向かって N— 1までの番号が振ら れているものとする。この場合、 k=0〜(NZ2)— 1は実周波数キャリア、 k=NZ2 〜N—1はイメージキャリアとなる。実周波数サブキャリア k=0〜(NZ2)— 1の周波 数における、 LPF109のゲインを MAk(dB)、群遅延を DAk(s)、 LPF110のゲイン を MBk(dB)、群遅延を DBk(s)、サンプリング周期を Ts (s)とおくと、 LPF109側(同 相成分側)を基準とした振幅差及び遅延時間差は、 (3)式及び (4)式のようになる。
[0075] 振幅差 Mk (dB) =MBk— MAk(0≤k≤(NZ2)— 1) (3)
[0076] 遅延差 Dk (s) =DBk— DAk(0≤k≤(NZ2)— 1) (4)
[0077] このとき、補正係数 Ckは、(5)式及び(6)式のようになる。
[0078] Ck= 10" (-Mk/20) X exp (j X D ZTs X k X 2 w ZN) (0≤k≤ (N/2)— 1) k
(5)
[0079] Ck= 10" (-M Z20) X exp (—j X D /Ts X (N~k) X 2 π /N) (N/2≤k
N-k N-k
≤N— 1) (6) [0080] 補正係数 Ckにおいて、(5)式の 10' (— MkZ20)と(6)式の 10' (— M Z20)と
N-k は振幅差の補正を行う部分であり、(5)式の (j X D ZTs X kX 2 w ZN;^ (6) ( k
j X D /Ts X (N— k) X 2 π /N)とは群遅延時間差の補正を行う部分である。
N-k
[0081] マルチキャリア送信装置 100においては、補正係数 Ckの絶対値は、サンプリング 周波数の 1Z2の周波数の周波数軸に対して対称であり、位相は逆方向になってい る。したがって、第六送信信号 Ykに補正係数 Ckを乗じても Ykの複素共役反対称性 (Yk= Y* )は失われず、また第五送信信号 Xkに補正係数 Ckを乗じても Xkの
N-K
複素共役対称性 (Xk=X* )は失われな ヽ。即ち、 IFFT演算しても I成分と Q成分
N-K
とは干渉しない。
[0082] 補正係数 Ckを、 IFFT出力の直交成分のみに関係する成分 Ykに乗ずることで、 L PF109、 110通過後の同相成分と直交成分との不均衡が除かれる。上記計算で求 めた複素補正係数 Ckを補正係数格納部 303に記憶しておき、シンボル毎に呼び出 して使用する。
[0083] このように、本実施の形態 1によれば、送信側にて、第一送信信号及び第二送信信 号からなる複素送信信号を第五送信信号及び第六送信信号の 2つの複素送信信号 に分離するとともに、受信側にて、第三受信信号及び第四受信信号からなる複素受 信信号を第五受信信号及び第六受信信号の 2つの複素受信信号に分離して、分離 した第五送信信号及び第六送信信号を補正するとともに、分離した第五受信信号と 第六受信信号を補正するので、他の方式により遅延時間差及び振幅差を補正する 場合に比べて回路規模を大きくすることなぐ低コストにて遅延時間及び振幅の不均 衡を補償することができる。また、本実施の形態 1によれば、周波数領域で振幅差及 び遅延時間差を補正することにより、時間領域で 1サンプル以下の補正をする場合 に必要となる高次オーバーサンプリング及び補間演算を不要にすることができるので 、マルチキャリア送信装置及びマルチキャリア受信装置の製造コストを低減することが できるとともに、回路規模が大きくなることを防ぐことができる。
[0084] (実施の形態 2)
図 20は、本発明の実施の形態 2に係る補正係数格納部 303の構成を示すブロック 図である。なお、実施の形態 2においては、マルチキャリア送信装置の構成は図 5と 同一であり、マルチキャリア受信装置の構成は図 6と同一であるとともに、補正部 103 及び補正部 211の構成は図 7と同一であるので、その説明は省略する。
[0085] 選択情報記憶部 1601は、各サブキャリアについて、コンスタレーシヨンが最良にな るような振幅係数が格納されている振幅係数記憶部 1602のアドレスと、コンスタレ一 シヨンが最良になるような exp (j . 0 m)が格納されている exp (j · 0 m)記憶部 1603の アドレスとを記憶する。そして、選択情報記憶部 1601は、シンボル先頭情報をトリガ 一として、記憶して 、るアドレスの情報であるアドレス情報をサブキャリア番号順に順 次振幅係数記憶部 1602及び exp (j ' Θ m)記憶部 1603へ出力する。
[0086] 振幅係数記憶部 1602は、選択情報記憶部 1601から入力したアドレス情報のアド レスに格納されて ヽる振幅係数を乗算器 1604及び乗算器 1605へ出力する。
[0087] exp (j - 0 m)記憶部 1603は、選択情報記憶部 1601から入力したアドレス情報の アドレスに格納されている exp (j ' Θ m)を乗算器 1604及び乗算器 1605へ出力する
[0088] 乗算器 1604は、振幅係数記憶部 1602から入力した振幅係数と exp (j · Θ m)記憶 部 1603から入力した exp (j ' Θ m)の実部とを乗算することにより補正係数 (補正値) の実部を算出する。そして、乗算器 1604は、算出した補正係数の実部を乗算部 30 2へ出力する。
[0089] 乗算器 1605は、振幅係数記憶部 1602から入力した振幅係数と exp (j - Θ m)記憶 部 1603から入力した exp (j ' Θ m)の虚部とを乗算することにより補正係数 (補正値) の虚部を算出する。そして、乗算器 1605は、算出した補正係数の虚部を乗算部 30 2へ出力する。なお、マルチキャリア送信装置及びマルチキャリア受信装置の動作は 、上記実施の形態 1と同一であるので、その説明は省略する。
[0090] 次に、補正部 103にて補正係数を設定する方法について説明する。本実施の形態 2においては、装置調整段階で各サブキャリアのコンスタレーシヨンが最良となるよう に調整することにより補正係数を設定する。
[0091] 例えば、 1Z16サンプル周期以下の遅延時間差にする必要がある場合、補正係数 格納部 303は、 16通りの exp (j . 0 m)の値をあらかじめ記憶しておき、サブキャリア 毎にコンスタレーシヨンが最良または EVM (Error Vector Magnitude)が最小になる e xp (j - Θ m)を選択するようにする。ここで、 exp (j ' Θ m)は(7)式より求めることができ る。
[0092] exp (j - Θ m) =cos Θ m+j X sin θ m (m=0~15) (7)
[0093] また、 0 mは(8)式より求めることができる。
[0094] 0 πι=πι Χ 2 π Ζΐ6 (πι=Ο〜15) (8)
[0095] ただし、サブキャリア毎の調整は半数のサブキャリアでよ!/、。イメージサブキャリア(k
=nに対して k=N— n)の値は逆位相となる。上記では Θ mを 0〜2 πで設定してい るため、 Θ mの逆位相 - Θ mは、 2 π - 0 m= 0 となる。サブキャリア k番を補正
16-m
する場合には、 Ykの複素共役反対称性あるいは Xkの複素共役対称性を崩さないよ うにするため、同時に N—k番の選択も行う必要がある。即ち、サブキャリア k番を補正 する場合には、 0 111と0 とを一対として選択して補正する。
16-m
[0096] そして、補正係数格納部 303は、サブキャリア毎に選択した exp (j - 0 m)を記憶す る。補正係数格納部 303が記憶しているサブキャリア毎の exp (j . Θ m)に基づいて、 exp (j - 0 m)が呼び出されて補正に用いられる。
[0097] 振幅についても、同様に、所定の振幅差毎に複数の補正係数 (実数)を記憶させて おき、サブキャリア毎にコンスタレーシヨンが最良または EVMが最小となるものを選 択するよう〖こする。例えば、振幅差を 0. 5dB以下に抑えたい場合、補正係数格納部 303は、 LPFの最大の振幅差まで、例えば「1、 ±0. 5dB、 ± ldB、 ± 1. 5dB- - - J の各補正係数を記憶しておき、調整時に、サブキャリア毎に選択した補正係数を記 憶する。遅延時間差と同様、調整は半数のサブキャリアでよぐイメージサブキャリア( k = Nに対して k = N— 1)の値は同値となる。サブキャリア k番を調整する場合には、 同時に N—k番の選択も行う。補正係数は、振幅係数と exp (j ' Θ m)との積となる。
[0098] 遅延時間差に比べて振幅差の影響は小さいため、遅延時間差の補正を先に行い 、その上で振幅差の補正を行う。必要に応じて、再度遅延時間差の補正と振幅差の 補正を繰返し行う。遅延時間の補正と振幅差の補正とを繰り返し行う場合にも、都度 先に遅延時間差の補正を行い、その上で振幅差の補正を行う。
[0099] このように、本実施の形態 2によれば、送信側にて、第一送信信号及び第二送信信 号からなる複素送信信号を第五送信信号及び第六送信信号の 2つの複素送信信号 に分離するとともに、受信側にて、第三受信信号及び第四受信信号からなる複素受 信信号を第五受信信号及び第六受信信号の 2つの複素受信信号に分離して、分離 した第五送信信号及び第六送信信号を補正するとともに、分離した第五受信信号と 第六受信信号を補正するので、他の方式により遅延時間差及び振幅差を補正する 場合に比べて回路規模を大きくすることなぐ低コストにて遅延時間及び振幅の不均 衡を補償することができる。また、本実施の形態 2によれば、周波数領域で振幅差及 び遅延時間差を補正することにより、時間領域で 1サンプル以下の補正をする場合 に必要となる高次オーバーサンプリング及び補間演算を不要にすることができるので 、マルチキャリア送信装置及びマルチキャリア受信装置の製造コストを低減することが できるとともに、回路規模が大きくなることを防ぐことができる。
[0100] 上記実施の形態 1及び実施の形態 2において、第六送信信号に対して補正を行つ たが、これに限らず、第五送信信号に対して補正を行っても良いし、第五送信信号 及び第六送信信号の両方に対して補正を行っても良い。また、上記実施の形態 1及 び実施の形態 2において、第六受信信号に対して補正を行ったが、これに限らず、 第五受信信号に対して補正を行っても良!、し、第五受信信号及び第六受信信号の 両方に対して補正を行っても良い。また、上記実施の形態 1及び実施の形態 2にお V、て、マルチキャリア送信装置 100とマルチキャリア受信装置 200の両方で振幅差及 び遅延時間差を補正した力 これに限らず、マルチキャリア送信装置 100及びマル チキャリア受信装置 200の何れか一方のみで振幅差及び遅延時間差を補正するよう にしても良い。
[0101] 2005年 11月 29日出願の特願 2005— 344130の日本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0102] 本発明に力かるマルチキャリア送信装置、マルチキャリア受信装置、送信方法及び 受信方法は、特に同相成分と直交成分との間の振幅または遅延時間の不均衡を補 償するのに好適である。

Claims

請求の範囲
[1] 送信データを直交変調して I成分の周波数領域信号である第一送信信号と Q成分 の周波数領域信号である第二送信信号とからなる複素送信信号を生成するディジタ ル変調手段と、
前記複素送信信号を逆高速フーリエ変換すると I成分の時間領域信号になる第三 送信信号の周波数領域信号である第五送信信号と Q成分の時間領域信号になる第 四送信信号の周波数領域信号である第六送信信号とに前記複素送信信号を分離 する分離手段と、
前記第三送信信号及び前記第四送信信号を帯域制限する際の前記第三送信信 号と前記第四送信信号との間の振幅差及び遅延時間差が小さくなるように前記第五 送信信号または前記第六送信信号を補正する補正手段と、
前記補正手段にて補正後に前記第五送信信号と前記第六送信信号とを合成して 前記複素送信信号を再生成する合成手段と、
前記合成手段にて再生成された前記複素送信信号を逆高速フーリエ変換して前 記第三送信信号と前記第四送信信号とを生成する逆高速フーリエ変換手段と、 前記逆高速フーリエ変換手段にて生成された前記第三送信信号と前記第四送信 信号との帯域を制限する帯域制限手段と、
前記帯域制限手段にて帯域制限された前記第三送信信号及び前記第四送信信 号からなる送信信号を送信する送信手段と、
を具備するマルチキャリア送信装置。
[2] 前記補正手段は、前記第五送信信号または前記第六送信信号に対してあらかじめ 記憶している補正値を乗算することにより前記補正を行う請求項 1記載のマルチキヤ リア送信装置。
[3] 受信信号を直交復調することにより I成分の時間領域信号である第一受信信号と Q 成分の時間領域信号である第二受信信号を生成する直交復調手段と、
前記第一受信信号及び前記第二受信信号の帯域を制限する帯域制限手段と、 前記帯域制限手段にて帯域制限された前記第一受信信号及び前記第二受信信 号を高速フーリエ変換して I成分の周波数領域信号である第三受信信号と Q成分の 周波数領域信号である第四受信信号とからなる複素受信信号を生成する高速フーリ ェ変換手段と、
前記第一受信信号の周波数領域信号である第五受信信号と前記第二受信信号の 周波数領域信号である第六受信信号とに前記複素受信信号を分離する分離手段と 前記第一受信信号及び前記第二受信信号を前記帯域制限手段にて帯域制限す る際に生じる前記第一受信信号と前記第二受信信号との間の振幅差及び遅延時間 差が小さくなるように前記第五受信信号または前記第六受信信号を補正する補正手 段と、
前記補正手段にて補正後に前記第五受信信号と前記第六受信信号とを合成して 前記複素受信信号を再生成する合成手段と、
前記合成手段にて再生成された前記複素受信信号を復調する復調手段と、 を具備するマルチキャリア受信装置。
[4] 前記補正手段は、前記第五受信信号または前記第六受信信号に対してあらかじめ 記憶している補正値を乗算することにより前記補正を行う請求項 3記載のマルチキヤ リア受信装置。
[5] 送信データを直交変調して I成分の周波数領域信号である第一送信信号と Q成分 の周波数領域信号である第二送信信号とからなる複素送信信号を生成するステップ と、
前記複素送信信号を逆高速フーリエ変換すると I成分の時間領域信号になる第三 送信信号の周波数領域信号である第五送信信号と Q成分の時間領域信号になる第 四送信信号の周波数領域信号である第六送信信号とに前記複素送信信号を分離 するステップと、
前記第三送信信号及び前記第四送信信号を帯域制限する際の前記第三送信信 号と前記第四送信信号との間の振幅差及び遅延時間差が小さくなるように前記第五 送信信号または前記第六送信信号を補正するステップと、
前記補正後に前記第五送信信号と前記第六送信信号とを合成して前記複素送信 信号を再生成するステップと、 再生成された前記複素送信信号を逆高速フーリエ変換して前記第三送信信号と前 記第四送信信号とを生成するステップと、
生成された前記第三送信信号と前記第四送信信号との帯域を制限するステップと 帯域制限された前記第三送信信号及び前記第四送信信号からなる送信信号を送 信するステップと、
を具備する送信方法。
受信信号を直交復調することにより I成分の時間領域信号である第一受信信号と Q 成分の時間領域信号である第二受信信号を生成するステップと、
前記第一受信信号及び前記第二受信信号の帯域を制限するステップと、 帯域制限された前記第一受信信号及び前記第二受信信号を高速フーリエ変換し て I成分の周波数領域信号となる第三受信信号と Q成分の周波数領域信号となる第 四受信信号とからなる複素受信信号を生成するステップと、
前記第一受信信号の周波数領域信号である第五受信信号と前記第二受信信号の 周波数領域信号である第六受信信号とに前記複素受信信号を分離するステップと、 前記第一受信信号及び前記第二受信信号の帯域を制限する際に生じる前記第一 受信信号と前記第二受信信号との間の振幅差及び遅延時間差が小さくなるように前 記第五受信信号または前記第六受信信号を補正するステップと、
前記補正後に前記第五受信信号と前記第六受信信号とを合成して前記複素受信 信号を再生成するステップと、
再生成された前記複素受信信号を復調するステップと、
を具備する受信方法。
PCT/JP2006/323727 2005-11-29 2006-11-28 マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法 WO2007063855A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-344130 2005-11-29
JP2005344130 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063855A1 true WO2007063855A1 (ja) 2007-06-07

Family

ID=38092188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323727 WO2007063855A1 (ja) 2005-11-29 2006-11-28 マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法

Country Status (1)

Country Link
WO (1) WO2007063855A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111900A (ja) * 2007-10-31 2009-05-21 Kenwood Corp シンボル判定装置およびシンボル判定方法
JP2009272683A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 無線通信装置
JP2011215128A (ja) * 2010-03-16 2011-10-27 Denso Corp Glonass受信機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274642A (ja) * 1991-03-01 1992-09-30 Nippon Telegr & Teleph Corp <Ntt> 直交変調回路
WO1997008866A1 (en) * 1995-08-31 1997-03-06 Usa Digital Radio Partners, L.P. Am compatible digital waveform frame timing recovery and frame synchronous power measurement
WO2003003686A1 (en) * 2001-06-29 2003-01-09 Nokia Corporation Iq-imbalance
JP2003032314A (ja) * 2001-07-18 2003-01-31 Fujitsu General Ltd 位相誤差補正方法および装置
US20030231726A1 (en) * 2002-06-12 2003-12-18 Andreas Schuchert Arrangement and method for frequency domain compensation of OFDM signals with IQ imbalance
WO2004039028A2 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Quadrature mismatch compensation
US20040095993A1 (en) * 2002-11-20 2004-05-20 Der-Zheng Liu Method and apparatus for I/Q imbalance estimation
WO2004082232A1 (en) * 2003-03-12 2004-09-23 Koninklijke Philips Electronics N.V. Transceiver with i/q mismatch compensation scheme
US20050118963A1 (en) * 2003-12-02 2005-06-02 Mao-Ching Chiu Method and apparatus for I/Q imbalance calibration of a transmitter system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274642A (ja) * 1991-03-01 1992-09-30 Nippon Telegr & Teleph Corp <Ntt> 直交変調回路
WO1997008866A1 (en) * 1995-08-31 1997-03-06 Usa Digital Radio Partners, L.P. Am compatible digital waveform frame timing recovery and frame synchronous power measurement
WO2003003686A1 (en) * 2001-06-29 2003-01-09 Nokia Corporation Iq-imbalance
JP2003032314A (ja) * 2001-07-18 2003-01-31 Fujitsu General Ltd 位相誤差補正方法および装置
US20030231726A1 (en) * 2002-06-12 2003-12-18 Andreas Schuchert Arrangement and method for frequency domain compensation of OFDM signals with IQ imbalance
WO2004039028A2 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Quadrature mismatch compensation
US20040095993A1 (en) * 2002-11-20 2004-05-20 Der-Zheng Liu Method and apparatus for I/Q imbalance estimation
WO2004082232A1 (en) * 2003-03-12 2004-09-23 Koninklijke Philips Electronics N.V. Transceiver with i/q mismatch compensation scheme
US20050118963A1 (en) * 2003-12-02 2005-06-02 Mao-Ching Chiu Method and apparatus for I/Q imbalance calibration of a transmitter system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORI T. ET AL.: "OFDM System ni okeru Hencho Seido no Kitei ni Kansuru Kento", TECHNICAL REPORT OF IEICE, vol. 98, no. 535, 21 January 1999 (1999-01-21), pages 15 - 20, XP003013268 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111900A (ja) * 2007-10-31 2009-05-21 Kenwood Corp シンボル判定装置およびシンボル判定方法
JP2009272683A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 無線通信装置
JP2011215128A (ja) * 2010-03-16 2011-10-27 Denso Corp Glonass受信機

Similar Documents

Publication Publication Date Title
CN101258701B (zh) 自适应无线电/调制装置、接收器装置、无线通信系统和无线通信方法
JP5524943B2 (ja) 受信装置
JP4550746B2 (ja) Ofdmを用いた無線通信方法、ofdm送信装置及びofdm受信装置
JP4213734B2 (ja) Ofdmを用いた無線通信方法及びofdm受信装置
CN101378377B (zh) 正交多路复用信号的峰值抑制方法、峰值抑制电路及发送装置
CN101507221B (zh) 一种用于消除载波间干扰的传输方法和装置
US20090092193A1 (en) Multi carrier transmission device, multi carrier reception device, and communication method
CN100448184C (zh) 正交频分多路复用系统的接收机
CN101199150B (zh) 接收装置、集成电路及接收方法
JP5632457B2 (ja) マルチキャリア信号におけるピーク電力対平均電力比の低減
CN102090035B (zh) 用于对通信系统中的残留频率误差进行估计的方法和设备
WO2007014067A2 (en) Overlap-and-add with dc-offset correction
JP4311132B2 (ja) Ofdm伝送方式における受信装置
EP2159980B1 (en) Apparatus and method for receiving orthogonal frequency division multiplexed signals
JP2004080731A (ja) Ofdm受信装置及びofdm信号の補正方法
US20110167321A1 (en) Apparatus and method of transmitting and receiving data for improving transmission rate
KR20040035291A (ko) 주파수영역에 파일럿 톤을 삽입한 다중 반송파 송신시스템 및 그의 파일럿 삽입방법
WO2007063855A1 (ja) マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法
US7321550B2 (en) Method of equalization in an OFDM system
JP6743327B2 (ja) 無線通信システム、無線送信装置および無線受信装置
CN101133580A (zh) 接收装置
US8311137B1 (en) Method for DC offset removal in OFDM systems
JP3539383B2 (ja) Ofdm通信装置
JP2008022339A (ja) 無線通信装置及び無線通信方法
JP2005229207A (ja) Ofdm受信装置、および、ofdm受信信号のオフセット補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP