WO2007052433A1 - Apparatus for melting metal and method for manufacturing metal - Google Patents
Apparatus for melting metal and method for manufacturing metal Download PDFInfo
- Publication number
- WO2007052433A1 WO2007052433A1 PCT/JP2006/319490 JP2006319490W WO2007052433A1 WO 2007052433 A1 WO2007052433 A1 WO 2007052433A1 JP 2006319490 W JP2006319490 W JP 2006319490W WO 2007052433 A1 WO2007052433 A1 WO 2007052433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- base
- melting
- molten metal
- ingot
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 125
- 239000002184 metal Substances 0.000 title claims abstract description 125
- 238000002844 melting Methods 0.000 title claims abstract description 52
- 230000008018 melting Effects 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 title abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 29
- 239000010936 titanium Substances 0.000 claims description 29
- 229910052719 titanium Inorganic materials 0.000 claims description 29
- 238000010894 electron beam technology Methods 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- 230000001154 acute effect Effects 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 2
- 229910052715 tantalum Inorganic materials 0.000 claims 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 2
- 229910052726 zirconium Inorganic materials 0.000 claims 2
- 230000007547 defect Effects 0.000 abstract description 15
- 239000007769 metal material Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/08—Accessories for starting the casting procedure
- B22D11/081—Starter bars
- B22D11/083—Starter bar head; Means for connecting or detaching starter bars and ingots
Definitions
- the present invention relates to an apparatus for melting a metal material and a method for producing a metal using the apparatus, and in particular, when producing an ingot of a metal material in an electron beam melting furnace or a plasma arc melting furnace,
- the present invention relates to a technology for suppressing melting defects and surface defects in a formed ingot site.
- a metal material is irradiated with an electron beam under a vacuum atmosphere using a melting furnace in which a water-cooled copper crucible is disposed in a melting furnace and a water-cooled base movable downward is disposed at the bottom of the crucible.
- a technique for producing an ingot of the metal material by continuously or intermittently pulling down the water-cooling base while pouring or dripping the metal material into the water-cooling base.
- a molten metal (hereinafter sometimes referred to as “molten metal”) is in direct contact with the water-cooled base, and the contact portion force solidification starts.
- the molten metal deposits and solidifies on almost the entire surface of the water cooling base.
- the metal material deposited on the water-cooled base is irradiated with an electron beam to melt the entire surface, and the force water-cooled base is pulled downward.
- the melt surface descends as the water-cooled base is pulled downward, the electron beam melted melt is further supplied. In this manner, the molten metal is continuously supplied while the water-cooled base is pulled downward, and metal ingots are continuously produced.
- the surface of the water-cooled base is flat, and when the poured molten metal falls onto the water-cooled base, it solidifies in a short time on the spot. Furthermore, when the next molten metal falls on the solidified metal, the molten metal flows in any direction and solidifies in a short time. In the early stage of melting, such dropping and solidification of the molten metal to the water-cooled base occur repeatedly. For this reason, defective melting portions and surface defects are formed in the ingot portion generated at the initial stage of melting (hereinafter sometimes referred to as "initial molten metal portion"), particularly in the ingot portion at the contact surface with the water-cooled base. Since these defects may be an obstacle in the processing steps performed in the post process, they may be cut in advance. Or removed by cutting. While this has reduced the yield of ingots, improvements have been sought.
- a metal block material of the same grade as the metal to be melted is disposed in advance on a water-cooled base, and the upper surface of the material is irradiated with an electron beam to form a sufficient molten metal surface.
- a technique for starting dissolution is disclosed (see, for example, Patent Document 1). According to this method, it is possible to solve the problem that the molten metal solidifies by the time the electron beam is irradiated to the dropping part of the molten metal and the problem that the water cooling base is damaged by irradiating the electron beam to the range including the dropping part.
- a water-cooled base having a bowl-shaped portion capable of engaging with the ingot is provided at the bowl-shaped bottom portion, and the molten metal is dropped to the water-cooled base to engage the wedge-shaped portion with the initial molten metal portion of the ingot.
- a technique is disclosed for continuously producing an ingot by pulling the water-cooled base downward after joining and solidifying the ingot (see, for example, Patent Document 2).
- Patent Document 1 Japanese Patent Application Laid-Open No. 2000-274957
- Patent Document 2 Japanese Patent Application Laid-Open No. 2000-153345 Disclosure of the invention
- the present invention has been made in view of the above situation, and aims to solve the problems remaining in the prior art as described above and to produce an ingot with a high yield. That is, the present invention provides a method of melting a metal material in which the melting defects and surface defects of the initial molten metal portion generated at the start of melting are suppressed.
- the present inventor uses a melting furnace in which a formed ingot bow I is placed at the bottom of a water-cooled copper crucible. And by providing a slope on the surface of the base surrounding the recess provided on the surface of the water-cooled base, it has been found that the molten metal dropped or dropped in the mold can be concentrated in the recess provided on the water-cooled base. It came to
- the present invention is a metal melting apparatus including a hearth for melting a raw material metal and a crucible for pouring the molten metal to produce a metal ingot, and the bottom of the crucible is provided with: A base for pulling out the ingot is provided, and a recess is provided in any part of the surface of the base, and the base surface surrounding the recess among the base surface is characterized by being inclined toward the recess.
- the present invention is further characterized in that a recess is further provided at the bottom of the recess provided on the surface of the base. Furthermore, the drawing base is configured to be divisible so that the ingot formed on the drawing base for drawing the ingot can be drawn from the base. .
- the base surface of the bowl-shaped bottom portion Since the other part of the surface of the base is inclined toward the recess provided in the case, when the molten metal poured from the hearth first reaches the base, it is led to the inclination and is first caused to flow into the recess, and so on. Since the molten metal supplied is sequentially filled from the concave portion and is solidified by cooling, it is possible to effectively suppress the generation of surface defects and defective melting portions in the initial molten metal portion of the metal ingot to be formed. is there.
- the molten metal can be reduced to the bottom of the recess provided on the surface of the base, and the generation of the surface defects and the defective melting can be further reduced. .
- the ingot drawing base is configured to be dividable, the ingot produced on the base can be easily extracted after melting is completed. is there.
- the defective portion of the initial molten metal portion is cut and removed by the conventional method!
- the surface defect and melting failure of the initial molten metal portion Since almost no part is generated, the yield of the ingot can be enhanced as compared with the conventional method.
- FIG. 1 is a schematic cross-sectional view of an electron beam melting apparatus according to the present invention.
- FIG. 2 is a schematic cross-sectional view showing a modified example of the water-cooling base of the present invention.
- FIG. 3 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
- FIG. 4 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
- FIG. 5 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
- FIG. 6 is a schematic cross-sectional view showing a conventional water-cooled base.
- Electron beam irradiation means 7a to 7e water-cooled base (example of the present invention)
- FIG. 1 shows a preferred embodiment in melting a metal titanium ingot using a hearth electron beam melting furnace using sponge titanium as a melting material.
- symbol 1 is a raw material supply means for supplying the sponge titanium 2 which is a raw material.
- a hose 3 made of water-cooled copper is provided, and the hearth 3 holds a molten metal 4 which also has a molten titanium power.
- a bowl 5 is provided downstream of the hearth 3, and since the hearth 3 is arranged in an inclined manner, the molten metal 4 can flow from the hearth 3 into the bowl 5 It has become.
- Electron beam irradiation means 6 is provided above the hearth 3 and the crucible 5, and the molten metal 4 can be brought into a molten state by irradiating with a force electron beam.
- a water-cooling base 7 a is provided at the bottom of the bowl 5.
- the water-cooled base 7a is formed with a base recess 72 at the center, and a base slope 71 is formed around the base recess 72 so as to be inclined toward the base recess 72.
- the base recess 72 is composed of a reverse taper portion 73 and a base bottom portion 74 forming the side wall of the base recess 72.
- the reverse taper portion 73 is inclined from the vertical direction, and is configured such that the angle formed by the reverse taper portion 73 and the base bottom portion 74 is an acute angle! .
- a solid layer of titanium called a skull (not shown) is placed.
- the molten metal 4 is formed by irradiating an electron beam here.
- sponge titanium 2 is supplied to the substrate 3 by the raw material supply means 1, and the sponge titanium 2 is melted by irradiation of the electron beam and integrated with the molten metal 4.
- the molten metal 4 flows in the hearth 3 and is refined, and then flows into the crucible 5.
- the molten metal 4 flowing into the crucible 5 reaches the water cooling base 7 a disposed at the bottom of the crucible 5.
- the molten metal 4 that reached the water-cooled base 7a was cooled by the base bottom 74 and solidified after a while, and that that reached the base inclined portion 71 was the base inclined portion 71.
- the inclination quickly causes the base recess 72 to flow and solidify as well. In this way, the molten metal reaching any point on the base can be introduced into the base recess 72 and solidified.
- the molten metal 4 is supplied to fill the molten metal to such an extent that it covers the inclined base portion 71 and is solidified to form an initial molten metal portion of the titanium ingot.
- the molten metal tends to solidify in a short time because the water-cooled base is not sufficiently heated by the heat of the molten metal and is in a low temperature state. It is in. Therefore, it is preferable to increase the irradiation output of the electron beam.
- the water cooling base 7a is pulled downward to enlarge the space above the wedge 5, and further supply of the molten metal 4 to this space. To continue. In this manner, the molten metal is gradually cooled and solidified from the lower part to the upper part of the mold by continuously drawing the molten metal 4 into the mold 5 while pulling the water-cooling base 7a downward. Titanium ingot can be manufactured. At this time, since the reverse tapered portion 73 in the base concave portion 72 is engaged with the initial molten metal portion of the titanium ingot, the titanium ingot is pulled downward so that the initial molten metal portion and the water cooling base 72 do not separate. It is
- the base slope portion of the water-cooling base of the present invention be configured to be inclined from the periphery to the center.
- the inclination angle of the base inclination portion is preferably in the range of 2 to 10 ° with respect to the horizontal surface.
- the supplied molten metal can be uniformly distributed to the central portion of the water cooling base.
- the inclination angle is less than 2 °, it will be difficult to rapidly distribute to any part of the water cooling base due to the viscosity of molten titanium, and if the inclination angle exceeds 10 °, it will occupy in the ingot to be melted. Since the ratio of the initial molten metal part is increased, the processing yield may be reduced.
- the lower limit 2 ° of the inclination angle range is the case where the metal to be melted is titanium, and the lower limit differs depending on the viscosity when other metals are melted.
- sponge titanium is disposed on a water-cooled base in advance, and it is irradiated with an electron beam to be melted therein and poured into a hearth recess to form an initial molten metal part. You may. According to such an aspect, since the sponge titanium covers the water-cooled hearth, it is possible to suppress the damage of the water-cooled hose due to the irradiation of the electron beam when forming the initial molten metal part.
- FIG. 2 shows another embodiment according to the present invention. That is, it is a modified example of the water cooling base 7a in FIG.
- the bottom of the base recess 72 is not horizontal, and the center is provided with a sloped portion 75 which is inclined toward the center.
- the water cooling base 7b having such a configuration, it is possible to suppress solidification at a random point of the molten metal flowing first and guide the molten metal to the center in the base recess and to solidify sequentially. become.
- FIG. 3 shows still another preferred! /-Aspect of the water-cooled base 7a! /.
- the water cooling base 7 c further comprises an inclined portion 75 and a horizontal portion 76. With such a recess configuration, the bottom of the initial molten metal portion of the formed ingot can form a gentle convex portion, and is easier to handle than the initial molten metal portion manufactured by the water-cooled base 7b shown in FIG. It becomes.
- FIG. 4 shows a further preferable aspect of the water-cooled base 7a! /, Representing the aspect! /,
- the water-cooled base 7d is a force in which the bottom 77 of the base recess 72 is flat. It has the same structure.
- the molten metal flowing into the base can be introduced along the inclination direction of the bottom portion of the base concave portion 72 and the molten metal flowing into the hearth.
- solidification of the molten metal proceeds sequentially from the lowermost end of the bottom portion 77, and as a result, it is possible to produce a healthy ingot in which the formation of macro defects in the solidified portion of the molten metal disappears.
- the water-cooling base according to the present invention shown in FIG. 5 is rectangular, and shows a plan view as viewed from above. That is, the ingot melted in the embodiment of the present invention has a rectangular cross section.
- the base concave portion 72 is characterized by being formed in a trapezoidal shape.
- a straight line L-L ' represents the wedge-shaped parting line.
- the water-cooled base 7e can be divided into two parts (7e-a, 7e-b) with the dividing line as a boundary.
- the lower base of the trapezoid be positioned on the dividing line side. At this time, there is no particular limitation as long as each side connecting the upper and lower bases of the trapezoid is open at the top, but it is practical to set the angle of each side to the horizontal line in the range of 30 to 60 °. Above preferred.
- the water-cooled base 7e-a is separated from 7e-b, and then the ingot placed on the upper surface of the water-cooled base 7e is removed.
- the ingot formed with the fitting portion in the recess can be separated from the water cooling base 7e.
- the division structure of the water cooling base described above is applied to the water cooling bases 7 a to 7 d described above. By adopting such a divided structure, it is possible to easily extract the ingot melted and produced by the water cooling base.
- the horizontal cross sections of the water-cooled bases 7a to 7e can be applied not only to the rectangular shape described above, but also to the case of melting a circular ingot.
- the molten metal having the hearth force introduced therein is suitably led to the concave portion to carry out the initial molten metal portion and the water-cooled portion. While the engagement of the base can be made strong, the ingot melted after the end of melting can be pulled out reliably by the water-cooling base force.
- the water-cooled base 7c shown in FIG. 3 was attached to the wedge 5 of the electron beam melting apparatus shown in FIG. Subsequently, the hearth 3 was irradiated with an electron beam and at the same time, the sponge titanium 2 was supplied to the nose 3 to form a molten metal 4 which was supplied to the crucible 5 to melt the titanium ingot. After the molten ingot was cooled, the water cooling base 7c was cut to obtain a titanium ingot. Cut ingot The structure at the bottom was sound and of quality that could be subjected to hot forging as it is. The yield of the recovered titanium ingot is 98% of the theoretical yield from the input material.
- titanium ingot was melted under the same conditions as in Example 1.
- the melted titanium ingot was cut off by water cooling base force.
- a portion with insufficient melting was found, and the portion was cut and removed.
- the yield of net titanium ingot remained at 95%.
- the method of electron beam melting of a metal material according to the present invention makes it possible to suppress melting defects and surface defects in the initial molten metal portion of the ingot, so that the yield of manufacturing metal ingots is significantly improved. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Provided is a method for melting metal materials, by which melting failure and surface defects formed on an initial melting portion at the time of starting to melt a metal ingot are suppressed. An apparatus for melting metal is provided with a hearth for melting a material metal and a mold for manufacturing the metal ingot by applying the molten metal to the mold. The apparatus is characterized in that a base for pulling out the ingot is provided at a bottom section of the mold, a recessed section is provided at a discretionary part on the base surface, and the base surface portion surrounding the recessed section is inclined toward the recessed section.
Description
明 細 書 Specification
金属の溶解装置および製造方法 Apparatus and method for melting metal
技術分野 Technical field
[0001] 本発明は、金属材料の溶解装置およびその装置を用いた金属の製造方法に係り、 特に、電子ビーム溶解炉またはプラズマアーク溶解炉で金属材料のインゴットを製造 するに当り、溶解初期に生成されるインゴット部位における溶融不良及び表面欠陥を 抑制する技術に関する。 The present invention relates to an apparatus for melting a metal material and a method for producing a metal using the apparatus, and in particular, when producing an ingot of a metal material in an electron beam melting furnace or a plasma arc melting furnace, The present invention relates to a technology for suppressing melting defects and surface defects in a formed ingot site.
背景技術 Background art
[0002] 溶解炉内に水冷銅ルツボを配置し、下方に移動可能な水冷ベースをこのルツボの 底部に配置した溶解炉を使用して、真空雰囲気下で電子ビームを金属材料に照射 し、溶融した金属材料を当該水冷ベースに注ぎ込みながら、あるいは滴下させながら 当該水冷ベースを継続的にあるいは断続的に引き下げることによって、当該金属材 料のインゴットを製造する技術が知られて 、る。 A metal material is irradiated with an electron beam under a vacuum atmosphere using a melting furnace in which a water-cooled copper crucible is disposed in a melting furnace and a water-cooled base movable downward is disposed at the bottom of the crucible. There is known a technique for producing an ingot of the metal material by continuously or intermittently pulling down the water-cooling base while pouring or dripping the metal material into the water-cooling base.
[0003] 溶解開始時は、溶融金属(以下、「溶湯」と称する場合がある)が水冷ベースと直接 接触し、その接触部力 凝固が開始する。溶湯の供給が進行すると水冷ベースのほ ぼ全面に溶湯が堆積固化する。次いで、水冷ベースに堆積した金属材料に電子ビ ームを照射して全面を溶融させて力 水冷ベースを下方に引き抜く。水冷ベースの 下方への引き抜きに伴って溶湯面が下降するので、さらに電子ビーム溶解した溶湯 を供給する。このようにして水冷ベースを下方に引き抜きつつ溶湯を供給し続け、連 続的に金属インゴットを製造する。 At the start of melting, a molten metal (hereinafter sometimes referred to as “molten metal”) is in direct contact with the water-cooled base, and the contact portion force solidification starts. As the supply of molten metal advances, the molten metal deposits and solidifies on almost the entire surface of the water cooling base. Next, the metal material deposited on the water-cooled base is irradiated with an electron beam to melt the entire surface, and the force water-cooled base is pulled downward. As the melt surface descends as the water-cooled base is pulled downward, the electron beam melted melt is further supplied. In this manner, the molten metal is continuously supplied while the water-cooled base is pulled downward, and metal ingots are continuously produced.
[0004] この水冷ベース表面は平坦状となっており、注ぎ込んだ溶湯は水冷ベースに落下 するとその場で短時間に凝固する。さらに、凝固したその金属の上に次の溶湯が落 下すると、任意の方向に溶湯が流れ短時間に凝固する。溶解初期には、このような 水冷ベースへの溶湯の落下と凝固が繰り返し起こる。このため、溶解初期に生成され たインゴット部位 (以降、「初期溶湯部」と称する場合がある)、特に水冷ベースとの接 触面におけるインゴット部位においては溶融不良部や表面欠陥が形成される。これら の欠陥は、後工程で行われる加工工程で障害となる場合があることから、予め切削ま
たは切断等により除去していた。し力しながら、これはインゴットの歩留りを低下させて しま 、改善が求められて 、た。 The surface of the water-cooled base is flat, and when the poured molten metal falls onto the water-cooled base, it solidifies in a short time on the spot. Furthermore, when the next molten metal falls on the solidified metal, the molten metal flows in any direction and solidifies in a short time. In the early stage of melting, such dropping and solidification of the molten metal to the water-cooled base occur repeatedly. For this reason, defective melting portions and surface defects are formed in the ingot portion generated at the initial stage of melting (hereinafter sometimes referred to as "initial molten metal portion"), particularly in the ingot portion at the contact surface with the water-cooled base. Since these defects may be an obstacle in the processing steps performed in the post process, they may be cut in advance. Or removed by cutting. While this has reduced the yield of ingots, improvements have been sought.
[0005] このような欠陥を抑制するため、溶湯が水冷ベース上へ落下した直後から電子ビー ムを照射して、初期溶湯部を常時溶融状態に維持する技術が知られているが、この 技術では、水冷ベース上に溶湯が落下してから落下部位に電子ビームを照射して溶 湯形成および維持を行う際に、照射位置を設定する間に溶湯の凝固が進行してしま うという問題があった。 [0005] In order to suppress such defects, a technique is known in which the initial molten metal portion is maintained in a molten state at all times by irradiating the electron beam immediately after the molten metal falls onto the water-cooling base. In this case, when the molten metal falls onto the water-cooled base and the molten metal is irradiated with the electron beam to form and maintain the molten metal, solidification of the molten metal proceeds while setting the irradiation position. there were.
[0006] この問題に対しては、水冷ベース上の溶湯落下部を含む広い面に電子ビームを照 射することで初期溶湯部の凝固を抑制する技術が考案されているが、この技術では 、初期溶湯部の部分的な凝固は一時的に抑制することはできるものの、溶湯に覆わ れて 、な 、水冷ベース面に直接電子ビームが照射されて水冷ベース面を溶損させ ることがあり改善が求められていた。 [0006] To address this problem, a technique has been devised to suppress solidification of the initial molten metal portion by irradiating an electron beam to a wide surface including the molten metal dropping portion on the water-cooled base. Although partial solidification of the initial molten metal part can be temporarily suppressed, it may be covered with the molten metal, and the electron beam may be directly irradiated to the water-cooled base surface to melt away the water-cooled base surface. Was required.
[0007] 上記諸問題を解決する方法として、水冷ベース上にあらかじめ被溶解金属と同等 品位の金属ブロック材料を配置し、同材料の上面に電子ビームを照射して十分な溶 湯面を形成した後、溶解を開始する技術が開示されている (例えば、特許文献 1参照 )。この方法によれば、溶湯の落下部位に電子ビームを照射するまでに溶湯が凝固 する問題や、落下部位を含む範囲に電子ビームを照射して水冷ベースが損傷する 問題は解決することができる力 水冷ベースにあら力じめ配置した金属ブロックの頂 部に溶湯面を形成した後に铸型への溶湯の供給を開始する方法しか開示されてお らず、初期溶湯部の形成方法に関する記載はない。そのため、水冷ベース上に配置 して 、た金属ブロックの相当部分を除去する必要が生じるため、収率が低下すること や、除去に要する費用が発生するという問題があった。 As a method of solving the above problems, a metal block material of the same grade as the metal to be melted is disposed in advance on a water-cooled base, and the upper surface of the material is irradiated with an electron beam to form a sufficient molten metal surface. After that, a technique for starting dissolution is disclosed (see, for example, Patent Document 1). According to this method, it is possible to solve the problem that the molten metal solidifies by the time the electron beam is irradiated to the dropping part of the molten metal and the problem that the water cooling base is damaged by irradiating the electron beam to the range including the dropping part. Only the method of starting the supply of the molten metal to the crucible after forming the molten metal surface on the top of the metal block placed in the water-cooled base is disclosed, but there is no description on the method of forming the initial molten metal part. . Therefore, since it is necessary to dispose the metal block on the water-cooled base to remove a considerable portion of the metal block, there is a problem that the yield is lowered and the cost required for the removal occurs.
[0008] また、铸型底部に、インゴットと係合することが可能な楔形状部を有する水冷ベース を設け、この水冷ベースに溶湯を落下させて楔形状部とインゴットの初期溶湯部とを 係合させ、インゴットの凝固後に水冷ベースを下方へ引き抜くことによってインゴットを 連続铸造する技術が開示されている (例えば、特許文献 2参照)。 Further, a water-cooled base having a bowl-shaped portion capable of engaging with the ingot is provided at the bowl-shaped bottom portion, and the molten metal is dropped to the water-cooled base to engage the wedge-shaped portion with the initial molten metal portion of the ingot. A technique is disclosed for continuously producing an ingot by pulling the water-cooled base downward after joining and solidifying the ingot (see, for example, Patent Document 2).
[0009] 特許文献 1:特開 2000— 274957号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2000-274957
特許文献 2 :特開 2000— 153345号公報
発明の開示 Patent Document 2: Japanese Patent Application Laid-Open No. 2000-153345 Disclosure of the invention
発明が解決しょうとする課題 Problem that invention tries to solve
[0010] し力しながら、上記特許文献 2の開示においても、初期溶湯部の形成方法あるいは 初期溶湯部における欠陥発生の回避方法に関する記載は見られない。このように、 金属インゴット製造の際の初期溶湯部形成に関する上記問題に対して有効な対策 は未だ講じられていない。 [0010] At the same time, in the disclosure of Patent Document 2 described above, there is no description regarding the method of forming the initial molten metal portion or the method of avoiding the occurrence of defects in the initial molten metal portion. Thus, no effective measures have been taken yet for the above-mentioned problems concerning the formation of the initial molten metal part in the production of metal ingots.
[0011] 本発明は、上記状況に鑑みてなされたものであり、上記のような従来技術に残され た問題点を解決し、さらに歩留まりよくインゴットを製造することを目的としている。す なわち、溶解開始時に生成する初期溶湯部の溶融不良や表面欠陥を抑制した金属 材料の溶解方法を提供するものである。 The present invention has been made in view of the above situation, and aims to solve the problems remaining in the prior art as described above and to produce an ingot with a high yield. That is, the present invention provides a method of melting a metal material in which the melting defects and surface defects of the initial molten metal portion generated at the start of melting are suppressed.
課題を解決するための手段 Means to solve the problem
[0012] 本発明者は、上記従来技術に残された課題を解決すべく鋭意検討を重ねた結果、 水冷銅铸型の底部に生成インゴット弓 Iき抜き用水冷ベースを配置した溶解炉を使用 し、かつ水冷ベース表面に設けた凹部を取り囲むベースの表面に傾斜を設けること によって、铸型内に落下或いは滴下した溶湯を水冷ベースに設けた凹部に集約でき ることを見出し、本願発明を完成するに至った。 [0012] As a result of intensive studies to solve the problems remaining in the above-mentioned prior art, the present inventor uses a melting furnace in which a formed ingot bow I is placed at the bottom of a water-cooled copper crucible. And by providing a slope on the surface of the base surrounding the recess provided on the surface of the water-cooled base, it has been found that the molten metal dropped or dropped in the mold can be concentrated in the recess provided on the water-cooled base. It came to
[0013] すなわち、本発明は、原料金属を溶解するハースと、溶解した金属を流し込んで金 属インゴットを作製する铸型とを備えた金属の溶解装置であって、铸型の底部には、 インゴット引き抜き用のベースが設けられ、ベース表面の任意の部位に凹部が設けら れ、ベース表面のうち凹部を囲むベース表面が、凹部に向力つて傾斜していることを 特徴としている。 That is, the present invention is a metal melting apparatus including a hearth for melting a raw material metal and a crucible for pouring the molten metal to produce a metal ingot, and the bottom of the crucible is provided with: A base for pulling out the ingot is provided, and a recess is provided in any part of the surface of the base, and the base surface surrounding the recess among the base surface is characterized by being inclined toward the recess.
[0014] また、本発明はベース表面に設けた凹部の底部に更に凹部を設けたことを特徴と するものである。さら〖こは、前記インゴット引抜き用ベースの上に形成されたインゴット を前記ベースから抜出すことができるように前記引抜き用ベースが分割可能に構成さ れて 、ることを特徴とするものである。 The present invention is further characterized in that a recess is further provided at the bottom of the recess provided on the surface of the base. Furthermore, the drawing base is configured to be divisible so that the ingot formed on the drawing base for drawing the ingot can be drawn from the base. .
発明の効果 Effect of the invention
[0015] 上記の構成を有する本発明の金属の溶解装置によれば、铸型底部のベース表面
に設けられた凹部に向かってベース表面の他の部分が傾斜しているので、ハースよ り流し込まれる溶湯が最初にベースに到達した際、その傾斜に導かれてまず凹部に 流入させられ、続いて供給される溶湯は凹部より順次充填されて冷却凝固するので、 生成する金属インゴットの初期溶湯部における表面欠陥や溶融不良部の発生を効 果的に抑制することができるという効果を奏するものである。 [0015] According to the metal melting apparatus of the present invention having the above configuration, the base surface of the bowl-shaped bottom portion Since the other part of the surface of the base is inclined toward the recess provided in the case, when the molten metal poured from the hearth first reaches the base, it is led to the inclination and is first caused to flow into the recess, and so on. Since the molten metal supplied is sequentially filled from the concave portion and is solidified by cooling, it is possible to effectively suppress the generation of surface defects and defective melting portions in the initial molten metal portion of the metal ingot to be formed. is there.
[0016] さらに、前記ベース表面に設けた凹部の底面に溶湯^^約することができ、前記の 表面欠陥や溶融不良部の発生を更によりいっそう削減することができるという効果を 奏するものである。 Furthermore, the molten metal can be reduced to the bottom of the recess provided on the surface of the base, and the generation of the surface defects and the defective melting can be further reduced. .
[0017] さらには、前記インゴット引抜き用ベースが分割可能に構成されているために、前記 ベースの上に生成されたインゴットを溶解終了後、容易に抜出すことができるという効 果を奏するものである。 Furthermore, since the ingot drawing base is configured to be dividable, the ingot produced on the base can be easily extracted after melting is completed. is there.
[0018] 従来方法にお!、ては、初期溶湯部の欠陥部を切断除去して!/、たが、本発明にお ヽ ては、上述のように初期溶湯部の表面欠陥や溶融不良部がほとんど発生しないため 、インゴットの歩留まりを従来の方法に比べて高めることができるという効果を奏する。 図面の簡単な説明 According to the conventional method, the defective portion of the initial molten metal portion is cut and removed by the conventional method! However, according to the present invention, as described above, the surface defect and melting failure of the initial molten metal portion Since almost no part is generated, the yield of the ingot can be enhanced as compared with the conventional method. Brief description of the drawings
[0019] [図 1]本発明の電子ビーム溶解装置の概略断面図である。 FIG. 1 is a schematic cross-sectional view of an electron beam melting apparatus according to the present invention.
[図 2]本発明の水冷ベースの変更例を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing a modified example of the water-cooling base of the present invention.
[図 3]本発明の水冷ベースの他の変更例を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
[図 4]本発明の水冷ベースの他の変更例を示す概略断面図である。 FIG. 4 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
[図 5]本発明の水冷ベースの他の変更例を示す概略断面図である。 FIG. 5 is a schematic cross-sectional view showing another modification of the water-cooled base of the present invention.
[図 6]従来の水冷ベースを示す概略断面図である。 FIG. 6 is a schematic cross-sectional view showing a conventional water-cooled base.
符号の説明 Explanation of sign
[0020] 1 原料供給手段 [0020] 1 Raw material supply means
2 スポンジチタン 2 sponge titanium
3 ノヽース 3 Nose
4 溶湯 4 Molten metal
5 铸型 5 square
6 電子ビーム照射手段
7a〜7e 水冷ベース(本発明例) 6 Electron beam irradiation means 7a to 7e water-cooled base (example of the present invention)
7f 水冷ベース (従来例) 7f water cooling base (conventional example)
71 ベース傾斜部 71 Base slope
72 ベース凹部 72 Base recess
73 逆テーパ部 73 Reverse Taper
74 ベース底部 74 Base bottom
75 傾斜底部 75 Sloped bottom
76 水平底部 76 Horizontal bottom
77 傾斜底部 77 Sloped bottom
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の好ましい実施態様について図面を用いて詳細に説明する。 Preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、スポンジチタンを溶解原料としてハース電子ビーム溶解炉を用いて金属チ タンインゴットを溶製する際の好ましい実施態様を表している。符号 1は、原料である スポンジチタン 2を供給するための原料供給手段である。原料供給手段 1の下流には 、水冷銅で構成されたノヽース 3が設けられており、ハース 3は、溶融チタン力もなる溶 湯 4を保持している。ハース 3の下流側には、铸型 5が設けられており、ハース 3は全 体が傾斜して配置されて 、るので、ハース 3から铸型 5へ溶湯 4を流入させることが可 能になっている。ハース 3および铸型 5の上方には、電子ビーム照射手段 6が設けら れており、ここ力 電子ビームを照射することによって、溶湯 4を溶融状態にすること ができる。 FIG. 1 shows a preferred embodiment in melting a metal titanium ingot using a hearth electron beam melting furnace using sponge titanium as a melting material. The code | symbol 1 is a raw material supply means for supplying the sponge titanium 2 which is a raw material. At the downstream side of the raw material supply means 1, a hose 3 made of water-cooled copper is provided, and the hearth 3 holds a molten metal 4 which also has a molten titanium power. A bowl 5 is provided downstream of the hearth 3, and since the hearth 3 is arranged in an inclined manner, the molten metal 4 can flow from the hearth 3 into the bowl 5 It has become. Electron beam irradiation means 6 is provided above the hearth 3 and the crucible 5, and the molten metal 4 can be brought into a molten state by irradiating with a force electron beam.
[0022] 铸型 5の底部には、水冷ベース 7aが設けられている。水冷ベース 7aは、図 1に示す ように、中央にベース凹部 72が形成され、ベース凹部 72の周囲は、ベース凹部 72 に向力つて傾斜するようにベース傾斜部 71が形成されている。さらに、ベース凹部 7 2は、ベース凹部 72の側壁をなす逆テーパ部 73およびベース底部 74からなる。図 に示すように、逆テーパ部 73は、垂直方向から傾斜しており、逆テーパ部 73とべ一 ス底部 74とがなす角度が鋭角となるように構成されて!、る。 A water-cooling base 7 a is provided at the bottom of the bowl 5. As shown in FIG. 1, the water-cooled base 7a is formed with a base recess 72 at the center, and a base slope 71 is formed around the base recess 72 so as to be inclined toward the base recess 72. Furthermore, the base recess 72 is composed of a reverse taper portion 73 and a base bottom portion 74 forming the side wall of the base recess 72. As shown in the figure, the reverse taper portion 73 is inclined from the vertical direction, and is configured such that the angle formed by the reverse taper portion 73 and the base bottom portion 74 is an acute angle! .
[0023] 次に、このハース電子ビーム溶解炉の動作を説明する。チタン溶解が開始される前 のハース 3底部には、図示しないスカルと呼ばれるチタンの固形層が配置されており
、まず、ここに電子ビームを照射することによって、溶湯 4を形成する。続いて、原料 供給手段 1によってスポンジチタン 2をノヽース 3に供給し、電子ビームの照射によって スポンジチタン 2を溶解して溶湯 4と一体ィ匕する。次いで溶湯 4は、ハース 3内を流れ て精製された後、铸型 5内に流入する。 Next, the operation of this hearth electron beam melting furnace will be described. At the bottom of Hearth 3 before titanium dissolution starts, a solid layer of titanium called a skull (not shown) is placed. First, the molten metal 4 is formed by irradiating an electron beam here. Subsequently, sponge titanium 2 is supplied to the substrate 3 by the raw material supply means 1, and the sponge titanium 2 is melted by irradiation of the electron beam and integrated with the molten metal 4. Next, the molten metal 4 flows in the hearth 3 and is refined, and then flows into the crucible 5.
[0024] 铸型 5に流入した溶湯 4は、铸型 5の底部に配置した水冷ベース 7aに達する。水冷 ベース 7aに達した溶湯 4のうち、ベース凹部 72に到達したものは、ベース底部 74に よって冷却されて暫時の後に凝固し、ベース傾斜部 71に到達したものは、ベース傾 斜部 71の傾斜によって速やかにベース凹部 72に流入させられ、同様に凝固する。こ のように、ベース上のいずれの箇所に到達した溶湯も、ベース凹部 72内に導いて凝 固させることができる。さらに溶湯 4を供給して、ベース傾斜部 71を覆う程度まで、溶 湯を満たし、凝固させてチタンインゴットの初期溶湯部を形成する。なお、ベース凹部 72に最初に溶湯が供給された直後においては、水冷ベースが溶湯力 の熱によつ て十分に加熱されておらずに低温状態にあるため、溶湯が短時間に凝固する傾向 にある。したがって、電子ビームの照射出力を増カロさせておくことが好ましい。 The molten metal 4 flowing into the crucible 5 reaches the water cooling base 7 a disposed at the bottom of the crucible 5. Among the molten metal 4 that reached the water-cooled base 7a, the molten metal 4 that reached the base recess 72 was cooled by the base bottom 74 and solidified after a while, and that that reached the base inclined portion 71 was the base inclined portion 71. The inclination quickly causes the base recess 72 to flow and solidify as well. In this way, the molten metal reaching any point on the base can be introduced into the base recess 72 and solidified. Further, the molten metal 4 is supplied to fill the molten metal to such an extent that it covers the inclined base portion 71 and is solidified to form an initial molten metal portion of the titanium ingot. Immediately after the molten metal is first supplied to the base recess 72, the molten metal tends to solidify in a short time because the water-cooled base is not sufficiently heated by the heat of the molten metal and is in a low temperature state. It is in. Therefore, it is preferable to increase the irradiation output of the electron beam.
[0025] ベース凹部 72およびベース傾斜部 71を覆う初期溶湯部が形成された後は、水冷 ベース 7aを下方へ引いて铸型 5上部の空間を拡大し、この空間にさらに溶湯 4の供 給を継続する。このように、溶湯 4を铸型 5内に供給しつつ水冷ベース 7aを下方へ引 き抜くことによって、铸型の下部から上部へ向けて徐々に溶湯が冷却されて凝固して いくので、連続的にチタンインゴットを製造することができる。この引き抜きの際、ベー ス凹部 72内の逆テーパ部 73がチタンインゴットの初期溶湯部と係合しているため、 初期溶湯部と水冷ベース 72が剥離することなぐチタンインゴットを下方へ引き抜くこ とがでさる。 After the initial molten metal portion covering the base concave portion 72 and the base inclined portion 71 is formed, the water cooling base 7a is pulled downward to enlarge the space above the wedge 5, and further supply of the molten metal 4 to this space. To continue. In this manner, the molten metal is gradually cooled and solidified from the lower part to the upper part of the mold by continuously drawing the molten metal 4 into the mold 5 while pulling the water-cooling base 7a downward. Titanium ingot can be manufactured. At this time, since the reverse tapered portion 73 in the base concave portion 72 is engaged with the initial molten metal portion of the titanium ingot, the titanium ingot is pulled downward so that the initial molten metal portion and the water cooling base 72 do not separate. It is
[0026] 次に、本発明の構成要素の他の好ましい変更例について説明する。 Next, other preferable modifications of the components of the present invention will be described.
本発明の水冷ベースのベース傾斜部は、周囲から中心へ向けて傾斜構成しておく 方が好ましい。 It is preferable that the base slope portion of the water-cooling base of the present invention be configured to be inclined from the periphery to the center.
[0027] また、ベース傾斜部の傾斜角度は、溶湯がチタンの場合は、水平面に対して 2〜1 0° の範囲となるように構成することが好ましい。この範囲の角度でベース傾斜部を 構成することで、供給された溶湯を水冷ベースの中心部に均一に配流させることがで
きる。傾斜角度が 2° 未満の場合は、チタン溶湯の粘性のために水冷ベースの任意 の部位に迅速に配流させることが困難となり、傾斜角度が 10° を越える場合は、溶 製されるインゴットに占める初期溶湯部の比率が増大するため、加工歩留まりを低下 させるおそれがある。なお、傾斜角度範囲の下限値 2° は溶製する金属がチタンの 場合であって、他の金属を溶製する場合はその粘性により下限値は異なる。 When the molten metal is titanium, the inclination angle of the base inclination portion is preferably in the range of 2 to 10 ° with respect to the horizontal surface. By forming the base inclined portion at an angle in this range, the supplied molten metal can be uniformly distributed to the central portion of the water cooling base. Can. If the inclination angle is less than 2 °, it will be difficult to rapidly distribute to any part of the water cooling base due to the viscosity of molten titanium, and if the inclination angle exceeds 10 °, it will occupy in the ingot to be melted. Since the ratio of the initial molten metal part is increased, the processing yield may be reduced. The lower limit 2 ° of the inclination angle range is the case where the metal to be melted is titanium, and the lower limit differs depending on the viscosity when other metals are melted.
[0028] 本発明の他の態様として、水冷ベース上にあら力じめスポンジチタンを配置してお き、ここに電子ビームを照射して溶解させてハース凹部に流し込み、初期溶湯部を形 成しても良い。このような態様によれば、スポンジチタンが水冷ハースを覆っているの で、初期溶湯部を形成する際の電子ビームの照射によって水冷ノヽースが損傷するこ とを抑制することがでさる。 As another embodiment of the present invention, sponge titanium is disposed on a water-cooled base in advance, and it is irradiated with an electron beam to be melted therein and poured into a hearth recess to form an initial molten metal part. You may. According to such an aspect, since the sponge titanium covers the water-cooled hearth, it is possible to suppress the damage of the water-cooled hose due to the irradiation of the electron beam when forming the initial molten metal part.
[0029] 図 2は、本発明に係る別の実施態様を表している。すなわち、図 1における水冷べ ース 7aの変更例である。この水冷ベース 7bは、ベース凹部 72の底部が水平ではな く、中心部に向力つて傾斜した傾斜部 75を設けている。このような構成の水冷ベース 7bによれば、最初に流入してきた溶湯力ランダムな箇所で凝固することを抑制し、ベ ース凹部内の中心に溶湯を導いて順次凝固させていくことが可能になる。 [0029] FIG. 2 shows another embodiment according to the present invention. That is, it is a modified example of the water cooling base 7a in FIG. In the water-cooled base 7b, the bottom of the base recess 72 is not horizontal, and the center is provided with a sloped portion 75 which is inclined toward the center. According to the water cooling base 7b having such a configuration, it is possible to suppress solidification at a random point of the molten metal flowing first and guide the molten metal to the center in the base recess and to solidify sequentially. become.
[0030] 図 3は、水冷ベース 7aのさらに別の好まし!/、態様を表して!/、る。水冷ベース 7cは、 さらに傾斜部 75と水平部 76とから構成されている。このような凹部構成とすることで、 生成インゴットの初期溶湯部の底部は、緩やかな凸部を形成することができ、図 2に 示す水冷ベース 7bによって製造した初期溶湯部に比べて取り扱いが容易となる。 [0030] FIG. 3 shows still another preferred! /-Aspect of the water-cooled base 7a! /. The water cooling base 7 c further comprises an inclined portion 75 and a horizontal portion 76. With such a recess configuration, the bottom of the initial molten metal portion of the formed ingot can form a gentle convex portion, and is easier to handle than the initial molten metal portion manufactured by the water-cooled base 7b shown in FIG. It becomes.
[0031] 図 4は、水冷ベース 7aの更に好まし!/、態様を表して!/、る、水冷ベース 7dは、ベース 凹部 72の底部 77が平坦ではある力 紙面右方向に向力つて傾斜した構造を有して いる。このような構成の水冷ベース 7dによれば、当該ベースに流入してきた溶湯を前 記ベース凹部 72の底部の傾斜方向に沿ってハース力 流入してきた溶湯を導くこと ができる。その結果、前記溶湯が前記底部 77の最下端より順次凝固が進行し、その 結果、前記溶湯の凝固部にマクロ的な欠陥の形成がなぐ健全なインゴットを製造で きるという効果を奏する。 [0031] FIG. 4 shows a further preferable aspect of the water-cooled base 7a! /, Representing the aspect! /, The water-cooled base 7d is a force in which the bottom 77 of the base recess 72 is flat. It has the same structure. According to the water-cooled base 7d having such a configuration, the molten metal flowing into the base can be introduced along the inclination direction of the bottom portion of the base concave portion 72 and the molten metal flowing into the hearth. As a result, solidification of the molten metal proceeds sequentially from the lowermost end of the bottom portion 77, and as a result, it is possible to produce a healthy ingot in which the formation of macro defects in the solidified portion of the molten metal disappears.
[0032] 図 5に示した本願発明に係る水冷ベースは矩形であり、上方から見た平面図を表し ている。即ち、本願実施態様にて溶製されるインゴットは断面が矩形になる。本実施
態様にお ヽては、前記ベース凹部 72が台形状に構成されて ヽることを特徴とするも のである。また、直線 L— L'は前記铸型の分割線を表している。前記分割線を境界 にして、前記水冷ベース 7eを 2つの部位(7e— a、 7e— b)に分割することができるよう に構成されていることを特徴としている。特に、前記台形の下底が前記分割線側に位 置するように構成しておくことが好ましい。この際、前記台形の上底から下底を結ぶ 各辺は上開きになっておれば特に制限はないが、水平線に対する各辺の角度は 30 〜60° の範囲に設定しておく方が実用上好ましい。 The water-cooling base according to the present invention shown in FIG. 5 is rectangular, and shows a plan view as viewed from above. That is, the ingot melted in the embodiment of the present invention has a rectangular cross section. This implementation In the embodiment, the base concave portion 72 is characterized by being formed in a trapezoidal shape. Further, a straight line L-L 'represents the wedge-shaped parting line. It is characterized in that the water-cooled base 7e can be divided into two parts (7e-a, 7e-b) with the dividing line as a boundary. In particular, it is preferable that the lower base of the trapezoid be positioned on the dividing line side. At this time, there is no particular limitation as long as each side connecting the upper and lower bases of the trapezoid is open at the top, but it is practical to set the angle of each side to the horizontal line in the range of 30 to 60 °. Above preferred.
[0033] このような配置とすることで、予定量のインゴットを溶製した後、前記水冷ベース 7e — aを 7e— bから分離した後、水冷ベース 7eの上面に載置されているインゴットを直 線 L L 'と直交する方向〖こ摺動させることにより、前記凹部に嵌合部を形成してなる インゴットを水冷ベース 7eから分離することができるという効果を奏する。 With this arrangement, after a predetermined amount of ingot is melted, the water-cooled base 7e-a is separated from 7e-b, and then the ingot placed on the upper surface of the water-cooled base 7e is removed. By sliding in a direction orthogonal to the straight line LL ′, the ingot formed with the fitting portion in the recess can be separated from the water cooling base 7e.
[0034] なお、前記した水冷ベースの分割構造は、前記した水冷ベース 7aから 7dに対し ても適用することが好ましい。このような分割構造を採用することで溶製されたインゴ ットを水冷ベース力も容易に抜出すことができる。 It is preferable that the division structure of the water cooling base described above is applied to the water cooling bases 7 a to 7 d described above. By adopting such a divided structure, it is possible to easily extract the ingot melted and produced by the water cooling base.
[0035] また、水冷ベース 7a〜7eの水平断面は、前記した矩形のみならず円形のインゴッ トを溶製する場合にも適用することができる。 The horizontal cross sections of the water-cooled bases 7a to 7e can be applied not only to the rectangular shape described above, but also to the case of melting a circular ingot.
[0036] 以上説明したような水冷ベース 7a〜7eを溶解に先立って铸型 5に配置しておくこと で、ハース力 流入して来た溶湯を好適に凹部に導いて初期溶湯部と水冷ノヽースの 係合を強固なものとすることができると共に、溶解終了後に溶製されたインゴットを前 記水冷ベース力 確実に引き抜くことができるという効果を奏するものである。 By disposing the water-cooled bases 7a to 7e as described above in the crucible 5 prior to melting, the molten metal having the hearth force introduced therein is suitably led to the concave portion to carry out the initial molten metal portion and the water-cooled portion. While the engagement of the base can be made strong, the ingot melted after the end of melting can be pulled out reliably by the water-cooling base force.
実施例 Example
[0037] 以下、実施例を挙げて本発明をさらに具体的に説明する力 これらは本発明の実 施形態の例示であって、本発明を制限するものではな 、。 Hereinafter, the power of the present invention will be described in more detail by way of examples. These are merely examples of the embodiments of the present invention and do not limit the present invention.
[実施例 1] [Example 1]
図 3に示した水冷ベース 7cを図 1の電子ビーム溶解装置の铸型 5に装着した。続い てハース 3に電子ビームを照射すると共にスポンジチタン 2をノヽース 3に供給して溶湯 4を形成し、これを铸型 5に供給してチタンインゴットを溶製した。溶製後のインゴット を冷却後、水冷ベース 7cを切断して、チタンインゴットを得た。切断されたインゴット
底部の組織は健全であり、そのまま熱間鍛造に供することができる品質であった。回 収されたチタンインゴットの歩留まりは、投入原料からの理論収量に対して、 98%で めつに。 The water-cooled base 7c shown in FIG. 3 was attached to the wedge 5 of the electron beam melting apparatus shown in FIG. Subsequently, the hearth 3 was irradiated with an electron beam and at the same time, the sponge titanium 2 was supplied to the nose 3 to form a molten metal 4 which was supplied to the crucible 5 to melt the titanium ingot. After the molten ingot was cooled, the water cooling base 7c was cut to obtain a titanium ingot. Cut ingot The structure at the bottom was sound and of quality that could be subjected to hot forging as it is. The yield of the recovered titanium ingot is 98% of the theoretical yield from the input material.
[実施例 2] [Example 2]
実施例 1にお 、て用いた水冷ベース 7cに代えて 7dを用いた以外は同じ条件でイン ゴットを溶製した。その結果、回収されたチタンインゴットの歩留まりは、投入原料から の理論収量に対して 98%であった。 Ingot was melted under the same conditions except using 7d instead of the water-cooled base 7c used in Example 1. As a result, the yield of the recovered titanium ingot was 98% of the theoretical yield from the input material.
[0038] [比較例] [Comparative Example]
図 6に示した従来の水冷ベース 7fを用 、た以外は、実施例 1と同じ条件でチタンィ ンゴットを溶製した。溶製されたチタンインゴットを水冷ベース力 切断して切り離した 。切り離されたチタンインゴットの切断面を調べたところ、溶融不十分な部位が見られ 、その部位を切断除去した。その結果、正味のチタンインゴットの歩留まりは、 95%に 留まった。 Using the conventional water-cooled base 7f shown in FIG. 6, titanium ingot was melted under the same conditions as in Example 1. The melted titanium ingot was cut off by water cooling base force. When the cut surface of the separated titanium ingot was examined, a portion with insufficient melting was found, and the portion was cut and removed. As a result, the yield of net titanium ingot remained at 95%.
産業上の利用可能性 Industrial applicability
[0039] 本発明による金属材料の電子ビーム溶解方法によりインゴットの初期溶湯部におけ る溶融不良及び表面欠陥を抑制することが可能となるため、金属インゴット製造の歩 留りを著しく向上させることができる。
The method of electron beam melting of a metal material according to the present invention makes it possible to suppress melting defects and surface defects in the initial molten metal portion of the ingot, so that the yield of manufacturing metal ingots is significantly improved. it can.
Claims
請求の範囲 The scope of the claims
[I] 原料金属を溶解するハースと、溶解した上記金属を流し込んで金属インゴットを作 製する铸型とを備えた金属の溶解装置であって、 [I] A metal melting apparatus comprising: a hearth for melting a raw material metal; and a mold for pouring the melted metal to produce a metal ingot;
上記铸型の底部には、インゴット引き抜き用のベースが設けられ、 At the bottom of the bowl, a base for drawing an ingot is provided.
上記ベース表面の任意の部位に凹部が設けられ、 A recess is provided in any part of the base surface,
上記ベース表面のうち上記凹部を囲むベース表面が、上記凹部に向力つて傾斜して The base surface of the base surface surrounding the recess is inclined toward the recess.
V、ることを特徴とする金属の溶解装置。 V, a metal melting apparatus characterized in that.
[2] 前記凹部に向力つて傾斜している前記ベース表面の傾斜角が 2〜10° の範囲に あることを特徴とする請求項 1に記載の金属の溶解装置。 [2] The metal melting apparatus according to claim 1, wherein the inclination angle of the base surface inclined toward the recess is in the range of 2 to 10 °.
[3] 前記凹部は、底部と側壁部からなり、上記側壁部は垂直方向から傾斜して上記底 部と上記側壁部とのなす角度が鋭角であることを特徴とする請求項 1または 2に記載 の金属の溶解装置。 [3] The concave portion comprises a bottom and a side wall, and the side wall is inclined from the vertical direction, and an angle formed between the bottom and the side wall is an acute angle. Dissolution device for metals as described in.
[4] 前記凹部の底部に、更に凹部を設けたことを特徴とする請求項 1〜3のいずれかに 記載の金属の溶解装置。 [4] The metal melting apparatus according to any one of claims 1 to 3, wherein a recess is further provided at the bottom of the recess.
[5] 前記凹部の底部に設けた凹部の底面が水平面に対して任意の方向に傾斜してい ることを特徴とする請求項 4に記載の金属の溶解装置。 [5] The metal melting apparatus according to claim 4, wherein a bottom surface of the recess provided at the bottom of the recess is inclined in an arbitrary direction with respect to a horizontal surface.
[6] 前記インゴット引き抜き用ベースの上に形成されたインゴットを前記ベースから抜き 出すことができるように、前記引き抜き用ベースが分割可能に構成されていることを特 徴とする請求項 1〜5のいずれかに記載の金属の容器装置。 [6] The drawing base is configured to be dividable so that the ingot formed on the ingot drawing base can be drawn out from the base. Metal container device according to any of the.
[7] 前記ベースが水冷銅で構成されていることを特徴とする請求項 1〜6のいずれかに 記載の金属の溶解装置。 [7] The apparatus for melting a metal according to any one of claims 1 to 6, wherein the base is made of water-cooled copper.
[8] 前記金属の溶解装置が電子ビーム溶解炉またはプラズマアーク溶解炉であること を特徴とする請求項 1〜7のいずれかに記載の金属の溶解装置。 [8] The apparatus for melting a metal according to any one of claims 1 to 7, wherein the apparatus for melting a metal is an electron beam melting furnace or a plasma arc melting furnace.
[9] 前記金属がチタン、ジルコニウム、またはタンタルであることを特徴とする請求項 1〜[9] The above-mentioned metal is titanium, zirconium or tantalum, characterized in that
8の 、ずれかに記載の金属の溶解装置。 The metal melting apparatus as described in any one of 8.
[10] 請求項 1〜9のいずれかに記載の金属の溶解装置を用いることを特徴とする金属の 製造方法。 [10] A method for producing a metal comprising using the apparatus for dissolving a metal according to any one of claims 1 to 9.
[II] 前記金属が、チタン、ジルコニウム、またはタンタルであることを特徴とする請求項 1
に記載の金属の製造方法。
[II] The metal is titanium, zirconium or tantalum. The manufacturing method of the metal as described in.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/092,471 US20090223646A1 (en) | 2005-11-02 | 2006-09-29 | Apparatus for melting metal and method for manufacturing metal |
JP2007542289A JP5074197B2 (en) | 2005-11-02 | 2006-09-29 | Metal melting apparatus and manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-319312 | 2005-11-02 | ||
JP2005319312 | 2005-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007052433A1 true WO2007052433A1 (en) | 2007-05-10 |
Family
ID=38005587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319490 WO2007052433A1 (en) | 2005-11-02 | 2006-09-29 | Apparatus for melting metal and method for manufacturing metal |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090223646A1 (en) |
JP (1) | JP5074197B2 (en) |
WO (1) | WO2007052433A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016533269A (en) * | 2013-10-15 | 2016-10-27 | リテック システムズ エルエルシー | System and method for forming solid castings |
WO2025108818A1 (en) * | 2023-11-21 | 2025-05-30 | Constellium Muscle Shoals Llc | Bottom block for a semi-continuous metal casting mold system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102451520B1 (en) | 2021-01-13 | 2022-10-07 | (주) 한국진공야금 | Drawing apparatus for metal melts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6024453U (en) * | 1983-07-22 | 1985-02-19 | 株式会社神戸製鋼所 | dummy bar head |
JPH071083A (en) * | 1993-03-05 | 1995-01-06 | Ver Alum Werke Ag (Vaw) | Continuous casting device for rolling billet |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234606A (en) * | 1962-09-06 | 1966-02-15 | Temescal Metallurgical Corp | Apparatus for melting and casting |
US3602290A (en) * | 1968-08-23 | 1971-08-31 | Mclouth Steel Corp | Dummy bar for continuous casting |
IT1243500B (en) * | 1990-12-20 | 1994-06-15 | Alures S C P A | MOBILE BASE FOR VERTICAL CASTING EQUIPMENT OF LIGHT ALLOYS, ESPECIALLY OF ALUMINUM AND ITS ALLOYS |
JP2660477B2 (en) * | 1993-03-31 | 1997-10-08 | 住友シチックス株式会社 | Silicon casting method |
JPH0957400A (en) * | 1995-08-29 | 1997-03-04 | Sumitomo Electric Ind Ltd | Melting and casting equipment |
JPH1080751A (en) * | 1996-09-09 | 1998-03-31 | Fuji Electric Co Ltd | Continuous casting equipment |
JP2000153345A (en) * | 1998-11-19 | 2000-06-06 | Nisshin Steel Co Ltd | Method for fitting dummy bar in continuous caster and dummy bar head |
JP3759933B2 (en) * | 2003-03-13 | 2006-03-29 | 東邦チタニウム株式会社 | Electron beam melting method for refractory metals |
-
2006
- 2006-09-29 WO PCT/JP2006/319490 patent/WO2007052433A1/en active Application Filing
- 2006-09-29 US US12/092,471 patent/US20090223646A1/en not_active Abandoned
- 2006-09-29 JP JP2007542289A patent/JP5074197B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6024453U (en) * | 1983-07-22 | 1985-02-19 | 株式会社神戸製鋼所 | dummy bar head |
JPH071083A (en) * | 1993-03-05 | 1995-01-06 | Ver Alum Werke Ag (Vaw) | Continuous casting device for rolling billet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016533269A (en) * | 2013-10-15 | 2016-10-27 | リテック システムズ エルエルシー | System and method for forming solid castings |
WO2025108818A1 (en) * | 2023-11-21 | 2025-05-30 | Constellium Muscle Shoals Llc | Bottom block for a semi-continuous metal casting mold system |
Also Published As
Publication number | Publication date |
---|---|
JP5074197B2 (en) | 2012-11-14 |
US20090223646A1 (en) | 2009-09-10 |
JPWO2007052433A1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7169242B2 (en) | Method of removing casting defects | |
WO2007052433A1 (en) | Apparatus for melting metal and method for manufacturing metal | |
CN111940704A (en) | Method for smelting heterogeneous ingot in electric furnace | |
JP5788691B2 (en) | Melting furnace for melting metal and method for melting metal using the same | |
KR20100050307A (en) | Continuous casting equipment and method for high purity silicon | |
RU2613253C2 (en) | Method of continuous casting for titanium or titanium alloy ingot | |
JP5774438B2 (en) | Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy | |
JP5896811B2 (en) | Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same | |
JP3759933B2 (en) | Electron beam melting method for refractory metals | |
JP5730738B2 (en) | Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy | |
JP7035885B2 (en) | Manufacturing method and manufacturing equipment for titanium ingots or titanium alloy ingots | |
JP5627015B2 (en) | Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy | |
JP2012240050A5 (en) | ||
CN112899491A (en) | Method for smelting heterogeneous ingot in electric furnace | |
JP4366705B2 (en) | Ingot manufacturing method and apparatus | |
JP4201653B2 (en) | Method for producing aluminum alloy | |
JP7376790B2 (en) | Equipment for titanium casting | |
JP2013091072A (en) | System for semi-continuous casting of aluminum and method for semi-continuous casting of aluminum using the same | |
JP7095470B2 (en) | Manufacturing method and manufacturing equipment for titanium ingots or titanium alloy ingots | |
JPS6372840A (en) | Electroslag remelting method | |
KR100964305B1 (en) | How to prevent remelting of solid fins in vacuum ingot method | |
JP2009113076A (en) | Casting method and casting apparatus | |
KR102442578B1 (en) | Method for manufacturing of titanium alloy ingot | |
JP4029573B2 (en) | Electroslag remelting electrode and electroslag remelting method | |
JP2006265570A (en) | Ingot manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007542289 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06798458 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12092471 Country of ref document: US |