[go: up one dir, main page]

WO2007040034A1 - Composite membrane material for hydrogen separation and element for hydrogen separation employing the same - Google Patents

Composite membrane material for hydrogen separation and element for hydrogen separation employing the same Download PDF

Info

Publication number
WO2007040034A1
WO2007040034A1 PCT/JP2006/318411 JP2006318411W WO2007040034A1 WO 2007040034 A1 WO2007040034 A1 WO 2007040034A1 JP 2006318411 W JP2006318411 W JP 2006318411W WO 2007040034 A1 WO2007040034 A1 WO 2007040034A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
permeable membrane
hydrogen separation
shape
membrane
Prior art date
Application number
PCT/JP2006/318411
Other languages
French (fr)
Japanese (ja)
Inventor
Hideomi Ishibe
Hiroyasu Taga
Original Assignee
Nippon Seisen Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co., Ltd filed Critical Nippon Seisen Co., Ltd
Priority to CN2006800360960A priority Critical patent/CN101277752B/en
Priority to US11/992,658 priority patent/US8226751B2/en
Priority to GB0806301A priority patent/GB2445492B/en
Priority to KR1020087008857A priority patent/KR101280790B1/en
Publication of WO2007040034A1 publication Critical patent/WO2007040034A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/067Tubular membrane modules with pleated membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/14Pleat-type membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/42Catalysts within the flow path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Definitions

  • the present invention relates to a composite membrane material for hydrogen separation that can be used to selectively permeate hydrogen gas in a mixed gas containing hydrogen and to be separated with high purity, and for hydrogen separation using the same. Regarding elements.
  • Hydrogen is used as a next-generation energy source, and for its production, for example, a method using electrolysis of water, or various “source gas” powers such as methanol, propane gas, liquefied natural gas, and city gas. It is known how to obtain hydrogen gas depending on the quality. In particular, in the latter case, a hydrogen mixed gas is obtained in which hydrogen gas is mixed by reforming or transforming those gases. However, in order to use hydrogen gas as fuel for power generation, it is necessary to separate 99.99% or higher purity hydrogen gas.
  • a raw material gas that is natural gas and sometimes the following hydrogen separation process is used.
  • This hydrogen separation process involves desulfurization at 350 ° C desulfurizer a, then introducing reforming steam at 800 ° C reformer b, 400 ° C high-temperature CO converter c, 250 ° Go through low-temperature CO converter d at C and generate hydrogen with PSA (hydrogen purifier by catalyst adsorption) e at a temperature of 100 ° C or less.
  • PSA hydrogen purifier by catalyst adsorption
  • hydrogen can be purified and separated from the introduced raw material gas and water vapor in two steps, and the off-gas is taken out and reused, for example, by utilizing its temperature.
  • the hydrogen separator using the membrane reactor f can be processed at a relatively low temperature. Therefore, it can be greatly reduced in size and simplified as compared with the conventional process apparatus, and can be used as an on-site apparatus for home use or stand use. It is also expected to be used as a high-purity hydrogen generator for fuel cells.
  • the hydrogen separation element in such an apparatus has a thin hydrogen permeable membrane made of Pd or an alloy thereof, which is known as a metal that selectively permeates hydrogen gas, facing the source gas side. Arrange.
  • This hydrogen permeable membrane is usually supported by a porous support.
  • the hydrogen gas separated by the hydrogen permeable membrane is taken out through the support. Therefore, the support supports the pressure of the supply gas exerted on the hydrogen permeable membrane to prevent deformation of the membrane. It is also used as a flow path member for allowing the hydrogen gas after separation to flow well.
  • Patent Document 1 proposes that the hydrogen separation efficiency (volume efficiency) per unit volume can be increased.
  • an inorganic porous or organic membrane support having a large number of projections and depressions is formed using a mold prepared by an electroplating method.
  • Patent Document 2 discloses that by forming a separation membrane on the surface of the membrane support by electroless plating, a gas separation membrane having a large surface area and an increased throughput can be obtained.
  • Patent Document 3 proposes a separation apparatus having high flux capacity and low cost.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-239353
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-29761
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-162144
  • the separation membrane according to Patent Document 1 permeates hydrogen through a surface treatment method such as electroless plating or ion plating on the outer surface of a porous support having irregularities on the surface. A film is formed. Therefore, it is difficult to increase the adhesion strength between the porous support and the hydrogen permeable membrane. In addition, partial fatigue failure phenomenon (cracking, peeling of support force, etc.) of the permeable membrane is likely to occur due to repeated expansion and contraction of the separation membrane accompanying absorption and release of hydrogen gas or heating and cooling. Further, since the rough outer surface of the porous support is used, it is difficult to stabilize the quality of the formed permeable membrane and improve the production yield.
  • Patent Document 2 is merely a separation device in which the permeable membrane itself is manufactured to have irregularities and placed on a flat support so that the space between them is a hydrogen gas flow path.
  • the gas separator according to Patent Document 3 has an undulating surface along the texture of the support (wire mesh screen) so that it can follow even when the foil expands and contracts when exposed to a gaseous hydrogen stream.
  • pressing or roller processing is performed at a pressure of about 3.1 to 11 tons per lcm 2 and then integrated. This technology also combines and integrates the support and the permeable membrane.
  • the gas separation membrane according to each of the above-mentioned patent documents is supported by coupling a support member disposed on the downstream side (secondary side) of the permeable membrane with the permeable membrane exposed on the surface. It is a thing of the structure to do. Therefore, care should be taken to prevent damage to the permeable membrane due to careless handling and supply pressure of the raw material gas, to prevent cracking due to expansion and contraction of the permeable membrane, and to prevent performance degradation due to diffusion that occurs when the permeable membrane contacts the support. Cost. Furthermore, it must have the workability for mounting on machinery. Therefore, these gas separation membranes are not satisfactory. Moreover, the hydrogen permeable membrane is fixed to the support in any case, and it is difficult to recycle only the permeable membrane when discarded.
  • a shape retaining mesh made of a refractory metal is laminated in a non-bonded state along the permeable membrane. Forms corrugation folds. This increases the hydrogen permeation amount per unit area and prevents defects such as cracks in the permeable membrane due to heating and cooling.
  • Another object of the present invention is to provide a high-quality, long-life composite membrane material for hydrogen separation that can improve the recyclability of only expensive hydrogen-permeable membranes, and a hydrogen separation element using the membrane material.
  • a retaining mesh disposed on at least one side of the hydrogen permeable membrane to retain the hydrogen permeable membrane
  • the hydrogen permeable membrane is rolled to a thickness of 30 m or less, which makes it difficult to maintain the shape by itself, and the shape retaining mesh does not cause heat diffusion with the hydrogen permeable membrane! /, Selected from refractory metals Made of metal wire,
  • the ratio SZSo of the area So of the reference surface at the average height passing through the center of the height of the fold of the hydrogen permeable membrane to the surface area S of the hydrogen permeable membrane in the reference surface is 3 to It is a composite membrane material for hydrogen separation characterized by being molded 10 times.
  • the refractory metal of the shape retaining mesh is a metal wire having a melting point of 2,000 ° C or more
  • the invention according to claim 3 is characterized in that the shape retaining mesh is
  • the refractory metal is formed of a molybdenum metal wire having a wire diameter of 0.3 mm or less.
  • the invention according to claim 4 is characterized in that the fold has a peak height H of 5 mn in its transverse cross section. ! It is characterized in that the pitch P, which is a straight line connecting the centers of the heights of adjacent folds to ⁇ 30 mm, is set to be 0.8 times or less of the peak height.
  • the invention according to claim 5 is a compound for hydrogen separation according to any one of claims 1 to 4.
  • This is an element for hydrogen separation using a composite membrane material.
  • the porous outer cylinder and Z or the porous inner cylinder are formed of either a punching plate or a wire mesh
  • the invention according to claim 7 is at least one of A connecting joint is provided on the end face of the substrate
  • the invention according to claim 8 is characterized in that the hydrogen separation membrane is formed on the primary side where the mixed gas before the permeation of hydrogen flows and the porous outer surface.
  • the catalyst is arranged in a non-contact state through the shape retaining mesh in a space between the tube or the porous inner tube and the shape retaining mesh.
  • the present invention according to claim 1 uses a membrane-shaped hydrogen permeable membrane that cannot withstand the supply pressure of the source gas alone and whose shape is difficult to maintain.
  • a shape-retaining mesh is laminated and reinforced along this hydrogen permeable membrane, and laminated in a non-bonded state that does not cause bonding due to heat diffusion.
  • the hydrogen separation permeation area ratio is increased to a large area of 3 to LO times. Increased by folding. Therefore, this fold shape can be effectively maintained, and the hydrogen separation efficiency can be greatly improved.
  • the shape-retaining mesh uses a refractory metal, it is possible to prevent influences such as diffusion with the filled catalyst powder and other metal members and resulting performance degradation. In addition, it is a long-life, high-precision composite membrane material that can be used effectively for hydrogen separation.
  • the mesh and the hydrogen permeable membrane are laminated and formed in a non-bonded state. For this reason, even when the hydrogen permeable membrane itself expands and contracts with heating and cooling when using it, it can be displaced relatively freely, and the occurrence of defects such as cracks and cracks can be suppressed. In addition, since both are simply laminated in a non-bonded state, only the expensive hydrogen permeable membrane can be easily separated and recovered and reused.
  • the hydrogen permeable membrane may be a thin film material obtained by rolling a plate material or a block piece to a predetermined thickness. Therefore, it is a high-quality thin film material having a uniform quality and having no voids as compared with the case of a thin film formed by a conventional method such as a plating method.
  • the shape-retaining mesh is composed of a metal wire having a melting point of 2000 ° C or higher, and the difference from the hydrogen permeable membrane is large. Heat diffusion Can be prevented. Thereby, it is possible to prevent a decrease in hydrogen separation characteristics of the membrane material.
  • the shape-retaining mesh made of molybdenum metal has a feature that the spring back is small when the crease processing is performed while having sufficient rigidity. As a result, it is possible to easily impart a fold shape to the hydrogen permeable membrane, and the hydrogen permeable membrane can be supported with great elasticity after shaping. Therefore, this formability makes it possible to use thinner wires. Therefore, a sufficient gas flow path can be provided, the reaction area on the surface of the hydrogen permeable membrane can be increased, and a large fold shape can be set.
  • the composite membrane material for hydrogen separation folded at a predetermined pitch is attached to the outer peripheral surface of a porous porous inner cylinder. Further, on the outside, a porous outer cylinder is concentrically wrapped. As a result, when the effective treatment area per unit area is increased! /, the composite membrane material is firmly supported by the porous inner cylinder. Further, since the surface is encapsulated by the porous outer cylinder, the surface of the thin composite film is not exposed and handling is easy. Achieves miniaturization of the element itself and greatly improves hydrogen separation performance. In the present invention, it is also possible to carry out the present invention at a low cost and a light weight, which is used in the case of a conventional plating process and requires the use of an expensive porous sintered body.
  • the porous inner cylinder and the porous outer cylinder can also be constituted by a punching plate or a coarse metal mesh which is a perforated steel plate.
  • the composite membrane material is provided with the shape retaining mesh using a high melting point metal on the surface thereof. Therefore, even when the composite membrane material is in direct contact with the porous inner cylinder and the porous outer cylinder, the hydrogen permeable membrane itself is isolated from them by the mesh. Therefore, there is an advantage that interdiffusion between these members and accompanying characteristic deterioration can be prevented.
  • the hydrogen separation performance is enhanced by arranging the catalyst on the primary side. Further, since the catalyst does not come into contact with the separation membrane, the heating reaction is suppressed and the life is prevented from being shortened.
  • FIG. 1 is an enlarged partial sectional view of a composite membrane material for hydrogen separation according to the present invention.
  • FIG. 2 is a plan view showing an enlargement of the hydrogen permeable membrane 1000 times.
  • FIG. 3 is a front view showing the upper half of the hydrogen separation element in cross section.
  • FIG. 4 is a sectional view of the trunk.
  • FIG. 5 is an enlarged cross-sectional view of a trough when catalyst powder is used.
  • FIG. 6 is a front view showing a cross section of the upper half of one embodiment of the hydrogen separation element.
  • FIG. 7 is a cross-sectional view showing an example of a membrane former formed by arranging a plurality of modules in which a plurality of hydrogen separation elements are connected in parallel.
  • FIG. 8 is a block diagram illustrating a conventional hydrogen production process.
  • FIG. 9 is a block diagram illustrating a hydrogen production process using a membrane reactor. Explanation of symbols
  • FIG. 1 is an enlarged cross-sectional view showing a part of a composite film material 1 according to the present invention.
  • a hydrogen permeable membrane 2 that selectively permeates hydrogen gas and a shape retaining mesh 3 disposed on the inner and outer surfaces of the hydrogen permeable membrane 2 are provided.
  • This shape-retaining mesh 3 is woven with a refractory metal wire w.
  • the hydrogen permeable membrane 2 and the shape retaining mesh 3 are laminated in a non-bonded state.
  • both of them are formed into a corrugated shape having ridges 5 and 5 extending in a certain direction (the length direction in the present embodiment) by folding into a predetermined shape.
  • the hydrogen permeable membrane 2 is selected from metal materials having hydrogen permeation performance such as Pd metal, Pd—Cu or Pd—Ag Pd alloy.
  • the thickness is 30 ⁇ m or less (for example, 2 to 30 ⁇ m, preferably 5 to 20 ⁇ m), which is difficult to maintain the shape by itself.
  • the hydrogen permeable membrane 2 may be a rolled membrane formed by pressing a plate material, block, or the like by a method such as rolling or pressing.
  • the Pd metal is, for example, 10% by mass or more (preferably 20% Pd alloys containing up to 50%) Cu, Ag, or Au can be used.
  • a trace amount of a third element may be added in combination.
  • the third element is at least one selected from group VIII elements such as Pt, Rh, Ru, In, Fe, Ni, and Co, or via group elements such as Mo, and is 5% or less.
  • group VIII elements such as Pt, Rh, Ru, In, Fe, Ni, and Co
  • group elements such as Mo
  • Pd-Cu alloys can improve durability as well as hydrogen permeation performance by using a membrane material containing 35-45% Cu. Further, as other film materials, for example, those having V-based or V-Ni-based metal force, or amorphous film materials can be used. The type and form of the metal composition can be arbitrarily selected as necessary.
  • the molding film thickness be as thin as possible to shorten the permeation time.
  • the internal pores can be reduced to reduce the size.
  • inevitable impurities are reduced so that, for example, non-metallic inclusions are not generated.
  • cold crucible is used as a dissolution method. It is desirable to adopt a high purity melting method such as vacuum melting or double melt method. Usually it is set to a thickness of at least 2 m.
  • the thin film material formed by rolling can improve mechanical properties such as elasticity and toughness as well as structural stability by the processing, and can suppress the occurrence of defects such as pinholes.
  • Fig. 2 shows the state without defects.
  • Fig. 2 is a diagram in which the metal structure on the surface of the hydrogen permeable membrane heat-treated at 1050 ° C is magnified 1000 times by repeatedly rolling and heat-treating it to a thickness of 20 m.
  • the crystal grain size has an equivalent diameter of about 6 to 20 m, and has a very stable structure.
  • the equivalent diameter is a value obtained from the cross-sectional area on the assumption that the crystal grains are circular.
  • Such a membrane material is preferable since it has good hydrogen permeation performance. However, since it is difficult to maintain a predetermined film shape with a single thin film, in the present invention, it is combined with the shape retaining mesh 3 in a non-bonded state (metallic) and subjected to predetermined corrugation.
  • the shape retaining mesh 3 can maintain a fold shape.
  • the two are combined in a non-bonded state. Therefore, even when the hydrogen permeable membrane 2 itself expands or contracts due to the heating or cooling, it can be displaced relatively easily without restriction. Further, the possibility of occurrence of pinholes and cracks in the hydrogen permeable membrane 2 can be reduced, and the surface area ratio per unit area can be increased by scoring as described above.
  • the shape-retaining mesh 3 used in this way is made by weaving a wire w using a refractory metal having a melting point higher than that of the hydrogen permeable membrane 2, for example, 1800 ° C or higher, preferably 2000 ° C or higher.
  • the mesh 3 is disposed on at least one side of the hydrogen permeable membrane 2. In the form shown in Fig. 1, they are arranged on both sides. This one side is the primary side of the hydrogen permeable membrane 2 (the side into which the fluid to be treated flows is called the primary side!), Or the secondary side (the outflow side is called the secondary side).
  • the shape retaining meshes 3A and 3B are provided on both sides, that is, the primary side and the secondary side, respectively, so that the shape of the fold 4 is efficiently and reliably held. If necessary, the shape retaining mesh 3 is provided only on the secondary side of the separation membrane 2 to ensure its support.
  • the wire diameter is 0.05 to 0.4 mm. With a fine wire of about 30 to: A net material that is plain or twilled to about LOO # can be used.
  • other materials such as knitting and expansion mesh can be used.
  • Such a metal material having a high melting point prevents mutual diffusion with the hydrogen permeable membrane 2 in contact therewith. In addition, it prevents mutual diffusion with the catalyst powder described later when used as a hydrogen separation element. Even when heated in contact with the hydrogen permeable membrane 2 and the catalyst powder, mutual diffusion between the two can be prevented, thereby preventing performance degradation. Moreover, since the shape-retaining mesh 3 is a metal material, the mesh formation can be easily performed, and since it has sufficient flexibility, it is suitable as a shape-retaining member.
  • the refractory metal include metals such as molybdenum, vanadium, niobium, chromium, and tantalum, as well as some third elements (for example, W, YO of 10 mass% or less). ) Is selected. Especially the molybdenum or moly
  • the mesh using a Buden alloy has a very high melting point of about 2600 ° C., and the difference in melting point from the hydrogen permeable membrane 2 is 1000 degrees or more. Therefore, mutual diffusion between the two can be reliably prevented and performance degradation can be suppressed.
  • its mechanical properties for example, have a high coefficient of elasticity of about 250,000 to 350, OOON / mm 2 and a yield strength of about 400 to 600 N / mm 2 even in the soft state. Therefore, when forming with pleats, it can be shaped easily with less spring back, and the shape can be maintained with great elasticity for maintaining the shape after formation. Therefore, it is excellent as a shape-retaining mesh 3 such that a thinner wire can be used. It also has a high temperature strength at a working temperature of about 550 ° C.
  • the hydrogen permeable membrane 2 and the shape retaining mesh 3 are laminated in a non-bonded state as described above, and the laminated membrane material of the present invention is formed by creping the laminated body at a predetermined pitch. 1 is configured.
  • the number, shape, and size of the folds 4 can be set as appropriate in terms of quality characteristics such as use, hydrogen separation conditions, and thickness of the hydrogen permeable membrane 2.
  • the permeation 4 is added to increase the hydrogen permeation area.
  • it has a shape that can resist the hydrogen mixed gas supplied with pleats. . This prevents buckling deformation of the folds. Therefore, the ratio (SZSo) with the surface area S of the hydrogen permeable membrane 2 per area So of the reference plane passing through the center position of the peak height of the fold 4 is set to 3 times or more and 10 times or less. As a result, the effective transmission area can be increased.
  • “surface area S” means the permeation area of the permeation membrane 2.
  • the ratio (SZSo) is, for example, in FIG. 1, the pitch length of the arc between the pitch points at the center of the peak height, It can be obtained as a ratio of the lengths between the pitches P and the ratio of the cross-sectional lengths of the permeable membrane 2.
  • the pitch length of the arc is the value obtained by converting the pitch P, which is the straight line length between the pitch points at the center of the peak height, into an arc.
  • the center of the peak height is set to a radius. And the circumferential surface.
  • the surface passes through the center of the height of the peak portion in the same manner as described above. In this case, since the shape is planar, the unit area on the plane is used regardless of the crease.
  • the average height in the case of non-uniform shapes such as the height of each fold 4 being different, for example, folds of 1Z4 or more of the total number of folds are arbitrarily extracted, and more preferably, all the folds are It is shown by the average value of the measured height.
  • the pitch P is set to about 0.8 times or less (preferably 0.2 to 0.7 times) of the peak height H.
  • the “peak height H” is the height to the peak force valley bottom point of the peak 4 of the hydrogen permeable membrane 2 (in the case of FIG. 1, the height in the radial direction).
  • “pitch P” is a straight line length between the height center positions (pitch points) of the ridges where two adjacent folds 4 correspond to each other.
  • the ratio is less than 3 times, as described above, the hydrogen permeation reaction area is not sufficiently increased.
  • the pleat 4 is flat and incorporated, for example, the shape may not be sufficiently maintained with respect to the pressure of the supply gas during use.
  • the ratio exceeds 10 times, the rise of the fold 4 becomes abrupt and there is a problem that the supply gas does not enter sufficiently between the folds.
  • the composite membrane material 1 of the present invention is a material in which the hydrogen permeable membrane 2 and the shape retaining mesh 3 thus configured are overlapped and creased at a predetermined pitch.
  • a flat plate As it is, for example, as shown in FIG. 3 and FIG. 4, it can be used as a cylindrical body with a pleat such as a cylindrical shape or a rectangular shape. For this purpose, at both ends, they are butted or overlapped with other members and are tightly coupled.
  • the shape and dimensions are arbitrarily set.
  • the flat plate is a flat plate in which, for example, two sheets are overlapped with a gap, and the outer peripheral edge is closely closed using a frame inserted into the gap, and integrally joined.
  • a hollow element can be used.
  • a through hole for injecting raw material gas or taking out hydrogen gas is formed in the frame.
  • a heat bonding method such as welding or brazing is preferred, and brazing can be performed relatively easily.
  • it has a high sealing property and can be combined.
  • FIGS. 3 and 4 show an example of the hydrogen separation element 10 using the composite membrane material 1 formed into such a cylindrical shape with reference to FIG.
  • Porous inner cylinder 11 in which a punching plate is formed in a cylindrical shape, porous outer cylinder 12, a fitting metal 15A as an end fitting 15 fixed to one end thereof, and a sealing as an end fitting 15 closing the other end Use bracket 15B. Therefore, for example, the porous inner cylinder 11 is densely inserted into the inner hole of the composite membrane material 1, and the sealing fitting 15B is arranged concentrically. The inner surface of the sealing metal fitting 15B and the facing end surface of the composite film material 1 are welded without causing leakage.
  • the composite film material 1 can also be airtightly bonded to the inner surface of the sealing metal fitting 15B by heating from the outer surface of the sealing metal fitting 15B. At this time, the porous inner cylinder 11 and the porous outer cylinder 12 may be welded in advance to the inner surface of the sealing metal fitting 15B.
  • the joint fitting 15A also has a force with the inner member 15a, the ring-shaped outer member 15b, and the base member 15c.
  • the inner member 15a is welded to the porous inner cylinder 11 and the end faces of the composite membrane material 1 facing each other.
  • the outer member 15b also has a ring strength that is joined to the flange of the inner member 15a and closes the gap between the porous outer cylinder 12 and the outer member 15b.
  • the base member 15 c can be joined to the inner member 15 a to form an extraction hole 17 that communicates with the inner hole of the porous inner cylinder 11.
  • the base member 15c is provided with a hexagonal nut portion and an external thread portion for connection. These are assembled together, for example, by welding each joint.
  • the mixed gas for raw material containing hydrogen to be supplied is introduced from the opening 12 A provided in the porous outer cylinder 12 as shown by an arrow in FIG. Only the hydrogen separated by the hydrogen permeable membrane 2 is taken out from the opening 11A of the porous inner cylinder 11 and fed to the next step from the take-out hole 17 of the fitting 15A.
  • the mixed gas of the raw material can be supplied in the opposite direction, that is, from the porous inner cylinder 11 toward the porous outer inner cylinder 12 side. In the present invention, when the hydrogen gas is taken out from the hole 17, the mixed gas is reformed in the primary side of the composite membrane material 1, that is, in the gap between the composite membrane material 1 and the porous outer cylinder 12.
  • a reforming catalyst 20 for this purpose. Further, as schematically shown in FIG. 5, the gap between the secondary side of the composite membrane material 1 and the porous inner cylinder 11 can also be filled. At this time, the reforming catalyst 20 functions as a support material 22 for supporting and retaining the shape of the composite membrane material 1. Note that alumina powder or the like can also be used when used simply as a support material 22 for support and shape retention.
  • the porous inner cylinder 11 and the composite membrane material 1 fitted to the porous inner cylinder 11 are set between the inner member 15a of the joint fitting 15A and the sealing fitting 15B and brazed to each other.
  • one end of the porous outer cylinder 12 is attached to the sealing metal fitting 15B.
  • a gap is formed between the other end portion of the porous outer cylinder 12 and radially outward of the inner member 15a.
  • a vacant space is formed in the porous outer cylinder 12 and the vacant chamber is filled with the catalyst powder 20. Thereafter, the ring-shaped outer member 15b and the base member 15c are attached and sealed.
  • the silver wax has a relatively low melting point and does not need to be heated at a high temperature, and since silver has the basic composition of the hydrogen permeable membrane 2 itself, it does not substantially impair the hydrogen permeation performance.
  • the shape and structure of the end fitting are merely examples, and include various shapes and structures that have been practiced in the past other than the above description and do not restrict the invention as a whole.
  • the dimensions and shape of the hydrogen separation element 10 can be set in consideration of its use conditions and installation space. Usually, for example, an outer diameter of 5-30 cm and a length of 5-50 cm This is relatively easy to use, but is not limited to this, and various dimensions and non-circular shapes such as a square cross section can be changed as necessary.
  • the porous inner cylinder 11 and the porous outer cylinder 12 are formed by forming a perforated steel plate such as a punching plate into a cylindrical body having a circular cross section.
  • a perforated steel plate such as a punching plate
  • various types of porous cylindrical bodies such as woven wire nets, expanded metal, and other metal porous sintered bodies can be used.
  • the former perforated steel sheet is easily used because it is inexpensive in price and has sufficient strength and opening.
  • the sintered molded product such as the latter metal powder is used for the porous outer cylinder 12, for example, it functions as a prefilter member for removing in advance the impurity particles in the supplied hydrogen mixed gas.
  • a sintered body using metal powder of about # 140Z200 to 200Z250 or metal fiber having a fiber diameter of about 10 to 30 ⁇ m can be used.
  • the porous inner cylinder 11 and the porous outer cylinder 12 are used as necessary. Therefore, as shown in this embodiment, both can be formed of the same kind of perforated steel plate. Either the porous inner cylinder 11 or the porous outer cylinder 12 can be used as another member such as the sintered compact.
  • the sizes of the openings 11A and 12A provided in the porous inner cylinder 11 and the porous outer cylinder 12 are, for example, such that gas fluid can freely pass therethrough and the catalyst powder 20 and the composite membrane material 1 are held.
  • the porous outer cylinder 12 can be made into a sintered body to have a filtration function. In some cases, a finer mesh or the like is provided on the inner side of the porous outer cylinder 12 so as to securely hold the catalyst powder.
  • the porous inner cylinder 11 and the porous outer cylinder 12 have a metal that does not react with a hydrogen mixed gas or the like to be treated even when the hydrogen permeable membrane 1 or the catalyst powder 20 is heated.
  • Material is selected.
  • stainless steel, cobalt alloy, titanium alloy and the like having excellent hydrogen embrittlement resistance can be used relatively suitably.
  • Stainless steel, particularly austenitic stainless steel with a nickel equivalent of 26% or more (preferably 27 to 30%) is also effective. Also, it can be preferably used because it is relatively easy to process such as welding and brazing and has excellent corrosion resistance.
  • the nickel equivalent is shown as indicating the stability of austenite.
  • the following formula force can be obtained.
  • the shape retaining mesh 3 provided on the primary side of the hydrogen permeable membrane 2 is in direct contact between the porous outer cylinder 12, the catalyst powder 20 filled on the secondary side, and the hydrogen permeable membrane 2. To prevent that.
  • the shape retaining mesh 3 is used on both sides of the primary side and the secondary side, as described above, the secondary side of the hydrogen permeable membrane 2 and the porous inner side are not porous.
  • the support material 22 can also be filled in the gap between the cylinder 11.
  • the porous outer cylinder 12 has a slightly larger diameter as in this embodiment.
  • the catalyst powder 20 is also filled in the gap between the crests of the fold 4 and the gap between the crest tip and the porous outer cylinder 12.
  • the fold 4 has a central force that is directed outward and is expanded by ⁇ .
  • the catalyst powder 20 can be used as necessary.
  • the specific type and quantity are also set arbitrarily.
  • the source gas is hydrocarbon, the catalyst powder 20
  • the catalyst powder 20 for example, a particle-like body having a particle size of several hundreds / zm and a size of about several mm is used. Specific examples thereof include those containing a Group VIII metal such as Fe, Co, Ni, Ru, Rh, and Pt, and NiO. The amount is adjusted in consideration of the type and form of the raw material gas and catalyst powder, as well as the raw gas supply processing conditions.
  • a receiving fitting 15C having a screw hole 21 can be used as shown in FIG.
  • the screw hole 21 of the receiving fixture 15C can be screwed into the screw of the fitting 15A.
  • an end fitting for communicating by directly welding the end fittings 15 may be used.
  • a module in which a plurality of the elements 10 are connected is formed. A plurality of the modules are mounted side by side on one large end plate, and the whole is housed in one large-diameter tube 25. As a result, each element is piped to form a large-capacity membrane reformer for hydrogen separation and separation.
  • a hydrogen permeable membrane was obtained from Pd — 25% Ag metal foil of width lOOmm x length lm that was cold-rolled to a thickness of 20 ⁇ m and heat-treated at 1050 ° C.
  • a shape-retaining mesh (# 100) made of molybdenum fine wire with a wire diameter of 0.2 mm was laminated, and the laminate was set in a crease forming machine. Then, continuous folds with a peak height of 20 mm and a center pitch of 6.5 mm were formed on these three laminates to create a pleated composite membrane material.
  • the Pd—Ag alloy is 99.91% pure by vacuum melting, and the raw material is an alloy plate that is processed by repeated rolling and heat treatment.
  • the hydrogen permeable membrane and the shape retaining mesh are in close contact with each other although they are in a non-bonded state. It was easy to apply a pleated shape with little rebound of spring force and spring force. Also, in this state, the membrane material has elasticity as a whole, and it is possible to maintain a strong pleated shape that cannot be obtained with only a hydrogen permeable membrane. In addition, the surface of the hydrogen permeable membrane has a good surface state that does not transfer marks such as the mesh texture.
  • the front and rear end portions (opposing end portions) of the laminated material were overlapped with each other, and brazing was performed by placing an Ag brazing material having a thickness of 0.5 mm and a width of 2 mm therebetween. As a result, a cylindrical product having the folds in the axial direction was formed. In this brazing portion, the brazing material was completely filled in the gap between the mesh and the hydrogen permeable membrane and joined without leakage.
  • This cylindrical product is used as the composite membrane material, and is fitted into a porous inner cylinder having a length of 32 mm and a thickness of 2 mm, made of stainless steel (S US316L), and having a length of 100 mm.
  • a porous inner cylinder having a length of 32 mm and a thickness of 2 mm, made of stainless steel (S US316L), and having a length of 100 mm.
  • S US316L stainless steel
  • hydrogen separation element is manufactured by attaching a porous outer cylinder (outer diameter 80mm) made of the same perforated plate, joint fittings, and sealing fittings, and then brazing them together. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A composite membrane material characterized by comprising: a hydrogen-permeable membrane which is selectively permeable to hydrogen and has been formed by rolling into a thickness of 30 µm or smaller, in which it is difficult for the membrane by itself to retain its shape; and, disposed on either side of the hydrogen-permeable membrane, a shape-retention mesh constituted of a wire made of a material selected among high-melting metals which do not thermally diffuse into the hydrogen-permeable membrane. It is further characterized in that the shape-retention mesh and the hydrogen-permeable membrane have been superposed and pleated in an unbonded state so that they are separable and have a shape in which the hydrogen-permeable membrane has a surface area at least 3 times per unit area. This material is used to constitute an element for hydrogen separation.

Description

明 細 書  Specification
水素分離用の複合膜材料、及びそれを用いた水素分離用エレメント 技術分野  Composite membrane material for hydrogen separation, and element for hydrogen separation using the same
[0001] 本発明は、水素を含有する混合ガス中の水素ガスを選択的に透過し、かつ高純度 で分離するのに用いうる水素分離用の複合膜材料、及びそれを用いた水素分離用 エレメントに関する。  The present invention relates to a composite membrane material for hydrogen separation that can be used to selectively permeate hydrogen gas in a mixed gas containing hydrogen and to be separated with high purity, and for hydrogen separation using the same. Regarding elements.
背景技術  Background art
[0002] 水素は次世代のエネルギー源として、その生成のために、例えば水の電気分解に よる方法、あるいはメタノール、プロパンガス、液化天然ガス、都市ガスなどの各種の「 原料ガス」力 水蒸気改質によって水素ガスをうる方法が知られて 、る。特に後者に おいては、それらのガスの改質、変成によって水素ガスを混合する水素混合ガスが 得られる。しかし、水素ガスを発電燃料等として利用するには、 99. 99%以上の高純 度の水素ガスを分離することが必要となる。  [0002] Hydrogen is used as a next-generation energy source, and for its production, for example, a method using electrolysis of water, or various “source gas” powers such as methanol, propane gas, liquefied natural gas, and city gas. It is known how to obtain hydrogen gas depending on the quality. In particular, in the latter case, a hydrogen mixed gas is obtained in which hydrogen gas is mixed by reforming or transforming those gases. However, in order to use hydrogen gas as fuel for power generation, it is necessary to separate 99.99% or higher purity hydrogen gas.
[0003] 図 8に例示するように、例えば天然ガスである原料ガス、ときには以下の水素分離 プロセスが用いられる。この水素分離プロセスは、 350° Cの脱硫器 aで脱硫したのち 、改質用の水蒸気を導入する 800° Cでの改質器 b、 400° Cでの高温 CO変成器 c、 2 50° Cでの低温 CO変成器 dをへて、 100° C以下の温度の PSA (触媒吸着による水 素精製装置) eで水素を生成して取り出す。  [0003] As illustrated in FIG. 8, for example, a raw material gas that is natural gas, and sometimes the following hydrogen separation process is used. This hydrogen separation process involves desulfurization at 350 ° C desulfurizer a, then introducing reforming steam at 800 ° C reformer b, 400 ° C high-temperature CO converter c, 250 ° Go through low-temperature CO converter d at C and generate hydrogen with PSA (hydrogen purifier by catalyst adsorption) e at a temperature of 100 ° C or less.
[0004] しかしながら PSAを用いるこのプロセスでは、反応平衡反応が 800°C程度の高温と なる。また装置自体の複雑化 ·大型化とともに、処理工程及び機器数が多くなる他、 設備費も高額で装置メンテナンスにも困難を要する。しカゝも得られる水素ガスもその 純度は満足できな 、など、このプロセスは水素ガスの精製効率の面からも改善が望 まれ、十分な普及は見られていない。  [0004] However, in this process using PSA, the reaction equilibrium reaction becomes a high temperature of about 800 ° C. In addition to the complexity and size of the equipment itself, the number of processing steps and the number of equipment will increase, and the equipment costs will be high, making equipment maintenance difficult. However, the purity of the hydrogen gas that can be obtained is also not satisfactory, and this process is expected to improve in terms of the purification efficiency of hydrogen gas, and has not been sufficiently spread.
[0005] こうした問題を改善するものとして、近年、図 9に示すように、脱硫器 aの下流で水蒸 気による原料ガスの改質を行なう方法がある。この改質の後、水素分離膜によるメン プレンリアクター fで高純度水素ガスを得る。このシステムは、各々触媒を用いまた非 平衡反応であることから、改質温度も例えば 550° C程度の低い温度でよい。改質は 、例えば天然ガスを原料ガスに用いる場合は、 CH + 2H 0→4H +Co の反応に [0005] In order to improve such a problem, as shown in FIG. 9, in recent years, there is a method of reforming the raw material gas by water steam downstream of the desulfurizer a. After this reforming, high purity hydrogen gas is obtained in the membrane reactor f with a hydrogen separation membrane. Since this system uses a catalyst and is a non-equilibrium reaction, the reforming temperature may be as low as about 550 ° C., for example. Reform For example, when natural gas is used as the source gas, the reaction of CH + 2H 0 → 4H + Co
4 2 2 2 よって水素と、オフガス (炭酸ガス)とに分離し取り出す。  4 2 2 2 Therefore, it is separated into hydrogen and off-gas (carbon dioxide).
[0006] このように、導入される原料ガスと水蒸気とから水素を 2つの工程で精製分離でき、 又オフガスは取り出されてその温度が活用されるなど再利用される。このプロセスはメ ンブレンリアクター fを用いる水素分離装置が比較的低温処理が可能である。ゆえに 、前記従来のプロセスの装置に比して大幅に小型化、簡易化でき、家庭用、スタンド 用などのオンサイトの装置として利用できる。燃料電池用の高純度水素発生装置とし ての利用も期待されている。  [0006] As described above, hydrogen can be purified and separated from the introduced raw material gas and water vapor in two steps, and the off-gas is taken out and reused, for example, by utilizing its temperature. In this process, the hydrogen separator using the membrane reactor f can be processed at a relatively low temperature. Therefore, it can be greatly reduced in size and simplified as compared with the conventional process apparatus, and can be used as an on-site apparatus for home use or stand use. It is also expected to be used as a high-purity hydrogen generator for fuel cells.
[0007] し力しこのような装置における水素分離エレメントは、水素ガスを選択的に透過する 金属として知られている Pd又はその合金カゝらなる薄膜状の水素透過膜を原料ガス側 に向けて配置する。この水素透過膜は、多孔質の支持体で通常支持される。水素透 過膜で分離された水素ガスは、支持体を通り外部に取り出されるものである。したが つて、前記支持体は水素透過膜に力かる供給ガスの圧力を支持して該膜の変形を 防ぐ。又分離後の水素ガスを良好に流下させるための流路部材としても用いられて いる。  [0007] However, the hydrogen separation element in such an apparatus has a thin hydrogen permeable membrane made of Pd or an alloy thereof, which is known as a metal that selectively permeates hydrogen gas, facing the source gas side. Arrange. This hydrogen permeable membrane is usually supported by a porous support. The hydrogen gas separated by the hydrogen permeable membrane is taken out through the support. Therefore, the support supports the pressure of the supply gas exerted on the hydrogen permeable membrane to prevent deformation of the membrane. It is also used as a flow path member for allowing the hydrogen gas after separation to flow well.
[0008] このような水素分離用部材について、電解メツキ、無電解メツキ、 化学的気相堆積 法などの方法により多孔質支持体に直接水素透過膜を担持させる。この方法におい ては、単位体積当たりの水素分離効率 (体積効率)を大きくできると、例えば特許文 献 1は提案して ヽる。また電铸法で作成した金型を用いて多数の凹凸を有する無機 多孔質または有機質の膜支持体を形成する。その膜支持体の表面に無電解メツキ によって分離膜を形成することにより、表面積を広くして処理量を増大させた気体の 分離膜が得られることを、例えば特許文献 2は開示している。  With respect to such a hydrogen separation member, a hydrogen permeable membrane is directly supported on a porous support by a method such as electrolytic plating, electroless plating, or chemical vapor deposition. In this method, for example, Patent Document 1 proposes that the hydrogen separation efficiency (volume efficiency) per unit volume can be increased. In addition, an inorganic porous or organic membrane support having a large number of projections and depressions is formed using a mold prepared by an electroplating method. For example, Patent Document 2 discloses that by forming a separation membrane on the surface of the membrane support by electroless plating, a gas separation membrane having a large surface area and an increased throughput can be obtained.
[0009] さらに支持構造体としてメッシュスクリーンを用いる。水素分離箔をスクリーンに重ね てローラー等で押圧することにより、該メッシュの起伏凹凸面に沿わせる。又それらの 接触面を固着することによって高温高圧における耐久性を向上させる。又、高いフラ ックス 'キャパシティーと低コスト性を有するという分離機器を、例えば特許文献 3が提 案している。  [0009] Further, a mesh screen is used as the support structure. The hydrogen separation foil is placed on the screen and pressed with a roller or the like so as to follow the uneven surface of the mesh. Moreover, the durability at high temperature and high pressure is improved by fixing these contact surfaces. Further, for example, Patent Document 3 proposes a separation apparatus having high flux capacity and low cost.
[0010] 特許文献 1:特開 2002— 239353号公報 特許文献 2:特開 2001— 29761号公報 [0010] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-239353 Patent Document 2: Japanese Patent Laid-Open No. 2001-29761
特許文献 3:特開 2001 - 162144号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-162144
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力しながら、前記特許文献 1による分離膜は、表面に凹凸を有する多孔質の支持 体の外表面上に、無電解めつき、イオンプレーティング等の表面処理方法によって水 素透過膜を形成するものである。従って有孔の支持体と水素透過膜との密着強度を 大にすることが困難である。又水素ガスの吸収や放出、あるいは加熱及び冷却に伴 なう分離膜の膨張及び収縮の繰り返しにより発生する透過膜の部分的な疲労破壊現 象 (亀裂、支持体力もの剥離など)が生じやすい。さらに多孔性の支持体の粗な外表 面を用いるため、形成される透過膜の品質の安定、製造歩留まりの向上が困難とな る。 [0011] However, the separation membrane according to Patent Document 1 permeates hydrogen through a surface treatment method such as electroless plating or ion plating on the outer surface of a porous support having irregularities on the surface. A film is formed. Therefore, it is difficult to increase the adhesion strength between the porous support and the hydrogen permeable membrane. In addition, partial fatigue failure phenomenon (cracking, peeling of support force, etc.) of the permeable membrane is likely to occur due to repeated expansion and contraction of the separation membrane accompanying absorption and release of hydrogen gas or heating and cooling. Further, since the rough outer surface of the porous support is used, it is difficult to stabilize the quality of the formed permeable membrane and improve the production yield.
[0012] また特許文献 2のものは,透過膜自体を凹凸に製作し平坦な支持体に載置するこ とによりその間の空間を水素ガス流路とする分離装置に過ぎない。他方、特許文献 3 による気体分離器は、気体水素流に晒され箔が膨張及び収縮する場合にも追従し 得るよう、箔は支持体 (ワイヤーメッシュスクリーン)の織目に沿う起伏面となる。その方 法として、例えば lcm2当たり 3. 1〜11トン程度の圧力でプレスやローラー加工し、 一体ィ匕することを開示して ヽる。この技術も支持体と透過膜とを結合一体化するもの である。分離膜の膨張及び収縮の繰り返しにより、この結合に由来して発生する透過 膜の部分的な疲労破壊現象 (亀裂など)は防ぎえない。特に支持体としてスクリーン を用いるため箔押しに際して、微薄な前記箔材料が損傷する危険性があり、力えって 新たな品質欠陥の原因となる。 [0012] In addition, the one of Patent Document 2 is merely a separation device in which the permeable membrane itself is manufactured to have irregularities and placed on a flat support so that the space between them is a hydrogen gas flow path. On the other hand, the gas separator according to Patent Document 3 has an undulating surface along the texture of the support (wire mesh screen) so that it can follow even when the foil expands and contracts when exposed to a gaseous hydrogen stream. As a method, for example, it is disclosed that pressing or roller processing is performed at a pressure of about 3.1 to 11 tons per lcm 2 and then integrated. This technology also combines and integrates the support and the permeable membrane. Due to repeated expansion and contraction of the separation membrane, the partial fatigue failure phenomenon (cracking, etc.) of the permeable membrane caused by this bond cannot be prevented. In particular, since a screen is used as a support, there is a risk of damaging the thin foil material during foil stamping, which may cause new quality defects.
[0013] このように、先行する前記各特許文献による気体分離膜は、 Vヽずれも透過膜を表面 上に露出させ、その下流側(二次側)に配置した支持体に結合して支持する構成の ものである。従って、不用意な取扱いや原料ガスの供給圧による透過膜の損傷防止 、透過膜の膨張と収縮による亀裂発生の防止、透過膜が支持体と接触し起こる拡散 による性能低下の防止には注意を要する。さらには機械装置に装着する為の加工性 を備えなければならな 、。ゆえにこれらの気体分離膜は満足するものとは 、 、難 、。 しかも、水素透過膜はいずれの場合も支持体に固着され、廃棄する場合に透過膜だ けのリサイクルを困難とする。 As described above, the gas separation membrane according to each of the above-mentioned patent documents is supported by coupling a support member disposed on the downstream side (secondary side) of the permeable membrane with the permeable membrane exposed on the surface. It is a thing of the structure to do. Therefore, care should be taken to prevent damage to the permeable membrane due to careless handling and supply pressure of the raw material gas, to prevent cracking due to expansion and contraction of the permeable membrane, and to prevent performance degradation due to diffusion that occurs when the permeable membrane contacts the support. Cost. Furthermore, it must have the workability for mounting on machinery. Therefore, these gas separation membranes are not satisfactory. Moreover, the hydrogen permeable membrane is fixed to the support in any case, and it is difficult to recycle only the permeable membrane when discarded.
[0014] そこで本発明は、単体ではガス供給圧に対し形状維持困難な薄膜の水素透過膜 にお 、て、該透過膜に沿って高融点金属でなる保形メッシュを非結合状態で積層し 波付けヒダを形成する。これにより、単位面積当たりの水素透過量を高めるとともに、 加熱や冷却に伴う透過膜のクラック等の欠陥を防止できる。又高価な水素透過膜だ けのリサイクル回収性を高め得る、高品質で長寿命の水素分離用複合膜材料並び に該膜材料による水素分離エレメントの提供を目的にする。  [0014] Therefore, according to the present invention, in a thin hydrogen permeable membrane that is difficult to maintain its shape against a gas supply pressure by itself, a shape retaining mesh made of a refractory metal is laminated in a non-bonded state along the permeable membrane. Forms corrugation folds. This increases the hydrogen permeation amount per unit area and prevents defects such as cracks in the permeable membrane due to heating and cooling. Another object of the present invention is to provide a high-quality, long-life composite membrane material for hydrogen separation that can improve the recyclability of only expensive hydrogen-permeable membranes, and a hydrogen separation element using the membrane material.
課題を解決するための手段  Means for solving the problem
[0015] 本件請求項 1に係る発明は、  [0015] The invention of claim 1 is
水素を選択的に透過する水素透過膜と  A hydrogen permeable membrane that selectively permeates hydrogen;
該水素透過膜の少なくともいずれか一面側に配置され該水素透過膜を保形する保 形メッシュを備え、  A retaining mesh disposed on at least one side of the hydrogen permeable membrane to retain the hydrogen permeable membrane;
前記水素透過膜は、単体では形状維持困難な厚さ 30 m以下に圧延成形され、 前記保形メッシュは、前記水素透過膜との間で加熱拡散を生じな!/、高融点金属か ら選択された金属線材を用いてなり、  The hydrogen permeable membrane is rolled to a thickness of 30 m or less, which makes it difficult to maintain the shape by itself, and the shape retaining mesh does not cause heat diffusion with the hydrogen permeable membrane! /, Selected from refractory metals Made of metal wire,
前記水素透過膜と保形メッシュとを組合せ、かつヒダを連続して設けるヒダ折り加工 を施こすとともに、  A combination of the hydrogen permeable membrane and the shape retaining mesh, and a fold folding process for continuously providing folds,
このヒダ折り加工によって、該水素透過膜のヒダの高さの中央を通る平均高さにお ける基準面の面積 Soと、基準面内にある水素透過膜の表面積 Sとの比 SZSoを 3〜 10倍に成形したことを特徴とする水素分離用の複合膜材料である。  By this folding process, the ratio SZSo of the area So of the reference surface at the average height passing through the center of the height of the fold of the hydrogen permeable membrane to the surface area S of the hydrogen permeable membrane in the reference surface is 3 to It is a composite membrane material for hydrogen separation characterized by being molded 10 times.
[0016] そして請求項 2に係わる発明は、前記保形メッシュの前記高融点金属が、融点が 2 000°C以上の金属線材であること、請求項 3に係る発明は、前記保形メッシュの前記 高融点金属が、線径 0. 3mm以下のモリブデンの金属線材で形成されるものである こと、請求項 4に係る発明は、前記ヒダが、その横断面での山部高さ Hが 5mn!〜 30 mm、かつ隣合うヒダの該ヒダの高さの中央を結ぶ直線長さであるピッチ Pを、該山部 高さの 0. 8倍以下としたことをそれぞれ特徴として 、る。  [0016] In the invention according to claim 2, the refractory metal of the shape retaining mesh is a metal wire having a melting point of 2,000 ° C or more, and the invention according to claim 3 is characterized in that the shape retaining mesh is The refractory metal is formed of a molybdenum metal wire having a wire diameter of 0.3 mm or less. The invention according to claim 4 is characterized in that the fold has a peak height H of 5 mn in its transverse cross section. ! It is characterized in that the pitch P, which is a straight line connecting the centers of the heights of adjacent folds to ˜30 mm, is set to be 0.8 times or less of the peak height.
[0017] また請求項 5に係わる発明は、請求項 1〜4のいずれかに記載の水素分離用の複 合膜材料を用いる水素分離用エレメントである。多孔性内筒と、該多孔性内筒に外 嵌され所定ピッチでヒダ折りされた前記水素分離用の複合膜材料と、さらに該複合膜 材料を被包する多孔性外筒とを具えることを特徴としている。 [0017] The invention according to claim 5 is a compound for hydrogen separation according to any one of claims 1 to 4. This is an element for hydrogen separation using a composite membrane material. A porous inner cylinder; a composite membrane material for hydrogen separation that is fitted on the porous inner cylinder and folded at a predetermined pitch; and a porous outer cylinder that encapsulates the composite membrane material. It is characterized by.
[0018] そして、請求項 6に係わる発明では、前記多孔性外筒及び Z又は多孔性内筒が、 パンチングプレート又は金網のいずれかで構成されること、請求項 7に係わる発明は 、少なくとも一方の端面には、接続用の継ぎ金具が設けられること、さらに請求項 8に 係る発明は、前記水素分離膜が、水素を前記透過する前の混合ガスが流入する一 次側かつ前記多孔性外筒又は多孔性内筒と、前記保形メッシュとの間の空間内に、 前記保形メッシュを介して非接触状態で触媒を配置したことを特徴とする。  [0018] In the invention according to claim 6, the porous outer cylinder and Z or the porous inner cylinder are formed of either a punching plate or a wire mesh, and the invention according to claim 7 is at least one of A connecting joint is provided on the end face of the substrate, and the invention according to claim 8 is characterized in that the hydrogen separation membrane is formed on the primary side where the mixed gas before the permeation of hydrogen flows and the porous outer surface. The catalyst is arranged in a non-contact state through the shape retaining mesh in a space between the tube or the porous inner tube and the shape retaining mesh.
発明の効果  The invention's effect
[0019] 請求項 1に係る本発明にお 、ては、単体では原料ガスの供給圧に耐え得な 、形状 維持困難な膜状の水素透過膜を用いている。この水素透過膜に沿って保形メッシュ を積層補強するとともに、加熱拡散による結合を生じない非結合状態で積層し、さら に水素の分離透過面積比を 3〜: LO倍の大面積に、ヒダ折りにより増加している。その ため、このヒダ形状を効果的に維持でき水素の分離処理効率を大幅に向上すること ができる。前記保形メッシュは、高融点金属を用いるから、前記充填される触媒粉末 や他の金属部材との拡散、それによる性能低下などの影響が防止できる。又長寿命 で高精度の複合膜材料となり、水素分離用として有効に利用できる。  The present invention according to claim 1 uses a membrane-shaped hydrogen permeable membrane that cannot withstand the supply pressure of the source gas alone and whose shape is difficult to maintain. A shape-retaining mesh is laminated and reinforced along this hydrogen permeable membrane, and laminated in a non-bonded state that does not cause bonding due to heat diffusion. Furthermore, the hydrogen separation permeation area ratio is increased to a large area of 3 to LO times. Increased by folding. Therefore, this fold shape can be effectively maintained, and the hydrogen separation efficiency can be greatly improved. Since the shape-retaining mesh uses a refractory metal, it is possible to prevent influences such as diffusion with the filled catalyst powder and other metal members and resulting performance degradation. In addition, it is a long-life, high-precision composite membrane material that can be used effectively for hydrogen separation.
[0020] 本発明では該メッシュと前記水素透過膜は非結合状態に積層形成されている。こ のことから、これを使用する場合の加熱や冷却に伴って水素透過膜自体が膨張ゃ収 縮する場合にも比較的自由に変位でき、割れやクラックなどの欠陥発生が抑制でき る。又両者は非結合状態で単に積層されていることから、高価な前記水素透過膜だ けを容易に分離して回収し、再利用できる利点を有する。  In the present invention, the mesh and the hydrogen permeable membrane are laminated and formed in a non-bonded state. For this reason, even when the hydrogen permeable membrane itself expands and contracts with heating and cooling when using it, it can be displaced relatively freely, and the occurrence of defects such as cracks and cracks can be suppressed. In addition, since both are simply laminated in a non-bonded state, only the expensive hydrogen permeable membrane can be easily separated and recovered and reused.
[0021] しかも前記水素透過膜は、板材、ブロック片を所定厚さに圧延成形した薄膜材料を 用いうる。そのため従来のメツキ法等の方法による薄膜の場合に比較して均一な品質 を有し、空孔等のない良質な薄膜材料となる。  In addition, the hydrogen permeable membrane may be a thin film material obtained by rolling a plate material or a block piece to a predetermined thickness. Therefore, it is a high-quality thin film material having a uniform quality and having no voids as compared with the case of a thin film formed by a conventional method such as a plating method.
[0022] また、請求項 2乃至 4の発明によれば、前記保形メッシュは 2000°C以上の融点を 持つ金属線材で構成され、前記水素透過膜との差が大き!、ことから両者間の熱拡散 が防止できる。それによつて該膜材の水素分離特性低下が阻止できる。また、特にモ リブデン金属による保形メッシュは、十分な剛性を有しながらも前記ヒダ付け加工をす る場合にはスプリングバックが小さい特徴もある。その結果、前記水素透過膜へのヒ ダ形状の付与を容易に行うことができ、形付け後には、大きな弾性で水素透過膜を 支持することができる。したがって、このような形付け性はより細い線材の使用を可能 とする。ゆえに十分なガス流路を有することができ、前記水素透過膜表面上での反応 面積を高めるとともに、大きなヒダ形状の設定ができる。 [0022] Further, according to the inventions of claims 2 to 4, the shape-retaining mesh is composed of a metal wire having a melting point of 2000 ° C or higher, and the difference from the hydrogen permeable membrane is large. Heat diffusion Can be prevented. Thereby, it is possible to prevent a decrease in hydrogen separation characteristics of the membrane material. In particular, the shape-retaining mesh made of molybdenum metal has a feature that the spring back is small when the crease processing is performed while having sufficient rigidity. As a result, it is possible to easily impart a fold shape to the hydrogen permeable membrane, and the hydrogen permeable membrane can be supported with great elasticity after shaping. Therefore, this formability makes it possible to use thinner wires. Therefore, a sufficient gas flow path can be provided, the reaction area on the surface of the hydrogen permeable membrane can be increased, and a large fold shape can be set.
[0023] さらに請求項 5の発明によれば、所定ピッチでヒダ折りされた前記水素分離用の複 合膜材料を多孔性の多孔性内筒の外周面に取付ける。さらにその外側には多孔性 の多孔性外筒で、それぞれ同心状に包んでいる。その結果、単位面積当たりの有効 処理面積を大きくすると!/、う複合膜材料での前記作用効果に加え、該複合膜材料は 前記多孔性内筒によって強固に支持される。また表面は前記多孔性外筒で被包さ れているから、微薄な複合膜の表面露出がなく取扱いを容易にする。エレメント自体 の小型化を達成して水素分離性能を大幅に向上する。し力も本発明では、従来のメ ツキ処理による場合などで用いられて 、た高価な多孔質焼結体などの使用が必要な ぐ安価、軽量に実施できるものである。  [0023] Further, according to the invention of claim 5, the composite membrane material for hydrogen separation folded at a predetermined pitch is attached to the outer peripheral surface of a porous porous inner cylinder. Further, on the outside, a porous outer cylinder is concentrically wrapped. As a result, when the effective treatment area per unit area is increased! /, In addition to the above-described effects of the composite membrane material, the composite membrane material is firmly supported by the porous inner cylinder. Further, since the surface is encapsulated by the porous outer cylinder, the surface of the thin composite film is not exposed and handling is easy. Achieves miniaturization of the element itself and greatly improves hydrogen separation performance. In the present invention, it is also possible to carry out the present invention at a low cost and a light weight, which is used in the case of a conventional plating process and requires the use of an expensive porous sintered body.
[0024] 更に請求項 6〜7の発明によれば、前記多孔性内筒や多孔性外筒についても穴明 き鋼板であるパンチングプレートや粗大金網で構成できる。その為、安価な水素分離 用エレメントの提供が可能となる。また、前記複合膜材料にはその表面に高融点金 属を用いた前記保形メッシュを設けている。このため、該複合膜材料が前記多孔性 内筒、多孔性外筒と直接接触する場合においても、前記水素透過膜自体は前記メッ シュでそれらから隔離される。したがってこれら部材同士への相互拡散やそれに伴う 特性低下が防止できる利点がある。また、請求項 7の発明のように、長さ方向の一方 の端面に接続用継手を設けることで、容易に機器本体への取付けができる。又例え ばこの複数を連結して大容量型の装置とすることもできる。また請求項 8のように、そ の一次側に触媒を配置することにより水素分離性能を高める。また該触媒は分離膜 に接触しな!ヽことから加熱反応を抑え、寿命低下を防止する。  [0024] Further, according to the inventions of claims 6 to 7, the porous inner cylinder and the porous outer cylinder can also be constituted by a punching plate or a coarse metal mesh which is a perforated steel plate. This makes it possible to provide an inexpensive element for hydrogen separation. The composite membrane material is provided with the shape retaining mesh using a high melting point metal on the surface thereof. Therefore, even when the composite membrane material is in direct contact with the porous inner cylinder and the porous outer cylinder, the hydrogen permeable membrane itself is isolated from them by the mesh. Therefore, there is an advantage that interdiffusion between these members and accompanying characteristic deterioration can be prevented. Further, as in the invention of claim 7, by providing a connecting joint on one end face in the length direction, it can be easily attached to the apparatus main body. For example, a plurality of these devices can be connected to form a large capacity type device. Further, as in claim 8, the hydrogen separation performance is enhanced by arranging the catalyst on the primary side. Further, since the catalyst does not come into contact with the separation membrane, the heating reaction is suppressed and the life is prevented from being shortened.
図面の簡単な説明 [0025] [図 1]本発明に係わる水素分離用の複合膜材料の拡大部分断面図である。 Brief Description of Drawings FIG. 1 is an enlarged partial sectional view of a composite membrane material for hydrogen separation according to the present invention.
[図 2]水素透過膜 1000倍に拡大して示す平面図である。  FIG. 2 is a plan view showing an enlargement of the hydrogen permeable membrane 1000 times.
[図 3]水素分離用エレメントの上半分を断面で示す正面図である。  FIG. 3 is a front view showing the upper half of the hydrogen separation element in cross section.
[図 4]その胴部断面図である。  FIG. 4 is a sectional view of the trunk.
[図 5]触媒粉末を用いる場合の谷部を拡大した断面図である。  FIG. 5 is an enlarged cross-sectional view of a trough when catalyst powder is used.
[図 6]水素分離用エレメントの一形態の上半分を断面で示す正面図である。  FIG. 6 is a front view showing a cross section of the upper half of one embodiment of the hydrogen separation element.
[図 7]複数本の水素分離用エレメントを連結したモジュールの複数本を並設して形成 したメンブレンフォーマーの一例を示す断面図である。  FIG. 7 is a cross-sectional view showing an example of a membrane former formed by arranging a plurality of modules in which a plurality of hydrogen separation elements are connected in parallel.
[図 8]従来の水素製造プロセスを例示するブロック図である。  FIG. 8 is a block diagram illustrating a conventional hydrogen production process.
[図 9]メンブレンリアクターによる水素製造プロセスを例示するブロック図である。 符号の説明  FIG. 9 is a block diagram illustrating a hydrogen production process using a membrane reactor. Explanation of symbols
[0026] 1複合膜材料 [0026] 1 Composite membrane material
2水素透過膜  2 Hydrogen permeable membrane
3保形メッシュ  3 shaped mesh
10水素分離用エレメント  10 Hydrogen separation element
11多孔性内筒  11 Porous inner cylinder
12多孔性外筒  12 porous outer cylinder
15端金具  15 end fitting
15A継手金具  15A fitting bracket
15B封止金具  15B sealing bracket
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、図面とともに本発明の好ましい形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明に係わる複合膜材料 1の一部を拡大して示す断面図である。本形 態では、水素ガスを選択的に透過する水素透過膜 2と、この水素透過膜 2の内外面 に各々配置した保形メッシュ 3とを具える。この保形メッシュ 3は、高融点金属の線材 wで織られて ヽる。又この水素透過膜 2と保形メッシュ 3は非結合状態で積層される。 かつ両者は合わせて、所定形状にヒダ折りすることにより一定方向(本形態では長さ 方向)にのびる山部 5、 5を備えた波付け形状に形成されている。 [0028] 前記水素透過膜 2は、例えば Pd金属、乃至 Pd— Cu又は Pd— Agである Pd合金等 の水素透過性能を有する金属材料から選択される。その厚さは、単体では形状維持 困難な 30 μ m以下(例えば 2〜30 μ m、好ましくは 5〜20 μ m)を有する。この水素 透過膜 2は板材、ブロック等をロール、プレスなどの方法で押圧によって形成された 圧延膜を用い得る。 FIG. 1 is an enlarged cross-sectional view showing a part of a composite film material 1 according to the present invention. In the present embodiment, a hydrogen permeable membrane 2 that selectively permeates hydrogen gas and a shape retaining mesh 3 disposed on the inner and outer surfaces of the hydrogen permeable membrane 2 are provided. This shape-retaining mesh 3 is woven with a refractory metal wire w. The hydrogen permeable membrane 2 and the shape retaining mesh 3 are laminated in a non-bonded state. In addition, both of them are formed into a corrugated shape having ridges 5 and 5 extending in a certain direction (the length direction in the present embodiment) by folding into a predetermined shape. The hydrogen permeable membrane 2 is selected from metal materials having hydrogen permeation performance such as Pd metal, Pd—Cu or Pd—Ag Pd alloy. The thickness is 30 μm or less (for example, 2 to 30 μm, preferably 5 to 20 μm), which is difficult to maintain the shape by itself. The hydrogen permeable membrane 2 may be a rolled membrane formed by pressing a plate material, block, or the like by a method such as rolling or pressing.
[0029] これら Pd金属、 Pd合金が水素のみを選択的に透過する機能を有することは従来か ら知られている。その原理は例えば科学雑誌「機能材料」(2003年 No. 4, P76〜8 7)をはじめ種々文献に記載されている。水素分子が Pd膜に接触すると、その瞬間に 水素原子に解離してイオンィ匕し、プロトンとして Pd膜中を通過する。裏面に到達した 時点でエレクトロンと結合することで水素分子になるものとされている。  [0029] It has been conventionally known that these Pd metals and Pd alloys have a function of selectively permeating only hydrogen. The principle is described in various literatures including the scientific journal “Functional Materials” (2003 No. 4, P76 to 87). When the hydrogen molecule comes into contact with the Pd film, at that moment it dissociates into a hydrogen atom and ionizes, passing through the Pd film as a proton. When it reaches the back side, it is supposed to become a hydrogen molecule by combining with electrons.
[0030] またこうした現象を促進し、水素の透過性能、耐久性、耐水素脆性、ある!/ヽは加工 性などを改善する為に、該 Pd金属に例えば 10質量%以上 (好ましくは 20%〜50% )の Cu, Ag、 Auのいずれ力 1種以上を含有する Pd合金を用い得る。更に他の目的 の為に微量の第三元素を併用して添加することもできる。この場合の第三元素として は例えば Pt, Rh, Ru, In, Fe, Ni, Coなどの VIII族元素、又は Mo等の Via族元素 から選択される 1種以上で、 5%以下とする。なお、前記 Pd— Ag合金として例えば A gを 20〜45%含有するものは水素透過性能はより向上する。また Pd— Cu合金では Cuを 35〜45%含有する膜材料とすることにより水素透過性能とともに耐久性を高め ることができる。さらに他の膜材料としては、例えば V系や V— Ni系金属力もなるもの 、又はアモルファスによる膜材料などを用いることもできる。金属組成の種類、形態に ついては、必要に応じて任意に選択できる。  [0030] Further, in order to promote such a phenomenon and improve the hydrogen permeation performance, durability, hydrogen embrittlement resistance, etc.! / Soot is improved in workability and the like, the Pd metal is, for example, 10% by mass or more (preferably 20% Pd alloys containing up to 50%) Cu, Ag, or Au can be used. For other purposes, a trace amount of a third element may be added in combination. In this case, the third element is at least one selected from group VIII elements such as Pt, Rh, Ru, In, Fe, Ni, and Co, or via group elements such as Mo, and is 5% or less. Note that the Pd—Ag alloy containing, for example, 20 to 45% Ag has improved hydrogen permeation performance. Pd-Cu alloys can improve durability as well as hydrogen permeation performance by using a membrane material containing 35-45% Cu. Further, as other film materials, for example, those having V-based or V-Ni-based metal force, or amorphous film materials can be used. The type and form of the metal composition can be arbitrarily selected as necessary.
[0031] なお、水素透過性能を高める為に、通常はその成形膜厚さは可能な範囲で薄くし て透過時間の短縮を図ることが推奨される。しかし、必要以上に厚さを薄くした薄膜 材料を用いる場合は、微視的な不可避ピンホールなどがそのまま分離精度に影響す ることが懸念される。前記ピンホール等を防止する方策として、前記金属材料の板材 、ブロックを原材料として圧延成形したものを用いるときには、内部空孔の軽減ゃ微 細化を図りうる。また溶解によるときには、例えば非金属介在物などの発生しないよう 不可避不純物を軽減する。そのための溶解方法としてコールドクルーシブルを用い た真空溶解、ダブルメルト法などの高純度溶解法を採用することが望ましい。通常は 少なくとも 2 m以上の厚さに設定される。 [0031] In order to improve the hydrogen permeation performance, it is usually recommended that the molding film thickness be as thin as possible to shorten the permeation time. However, when using a thin film material with a thickness that is thinner than necessary, there is a concern that microscopic inevitable pinholes directly affect the separation accuracy. As a measure for preventing the pinholes and the like, when using the metal material plate material and the block rolled material as a raw material, the internal pores can be reduced to reduce the size. When dissolved, inevitable impurities are reduced so that, for example, non-metallic inclusions are not generated. For this purpose, cold crucible is used as a dissolution method. It is desirable to adopt a high purity melting method such as vacuum melting or double melt method. Usually it is set to a thickness of at least 2 m.
[0032] このように水素透過性金属の水素透過膜 2の品質は、極めて重要である。  [0032] Thus, the quality of the hydrogen-permeable metal hydrogen-permeable film 2 is extremely important.
特に前記圧延により成形した薄膜材料は、該加工によって組織的な安定とともに弾 性ゃ靭性等の機械的特性を向上し、また前記ピンホールなどの欠陥発生を抑制でき る。欠陥のない状態を例えば図 2に示す。図 2は、圧延加工と熱処理を繰り返し行つ て厚さ 20 m〖こし、さらに 1050°Cで熱処理された水素透過膜の表面の金属組織を 1000倍に拡大した図である。この図からわ力るように、結晶粒度はその等価直径が 6 〜20 m程度であって、極めて安定した組織状態を有している。なお等価直径とは 、断面の面積から、結晶粒が円形と仮定して求める値をいう。  In particular, the thin film material formed by rolling can improve mechanical properties such as elasticity and toughness as well as structural stability by the processing, and can suppress the occurrence of defects such as pinholes. For example, Fig. 2 shows the state without defects. Fig. 2 is a diagram in which the metal structure on the surface of the hydrogen permeable membrane heat-treated at 1050 ° C is magnified 1000 times by repeatedly rolling and heat-treating it to a thickness of 20 m. As can be seen from this figure, the crystal grain size has an equivalent diameter of about 6 to 20 m, and has a very stable structure. The equivalent diameter is a value obtained from the cross-sectional area on the assumption that the crystal grains are circular.
[0033] このような膜材料は良好な水素透過性能を備え好ましい。しかし厚さが薄くそれ単 体では所定の膜形状の維持が困難であることから、本発明では前記保形メッシュ 3と 非結合状態 (金属的)で複合化して所定の波付けを施すことを特徴とする。  [0033] Such a membrane material is preferable since it has good hydrogen permeation performance. However, since it is difficult to maintain a predetermined film shape with a single thin film, in the present invention, it is combined with the shape retaining mesh 3 in a non-bonded state (metallic) and subjected to predetermined corrugation. Features.
[0034] すなわち、前記水素透過膜 2が剛性、弾性を持つものであっても保形メッシュ 3によ つてヒダ形状の維持を可能にする。又両者は非結合状態で重ねて組合せられて 、る 。ゆえに、前記加熱や冷却に伴ない水素透過膜 2自体が膨張や収縮する場合にも 拘束なく比較的容易に変位できる。又、水素透過膜 2のピンホールやクラック発生な どの可能性を低減でき、かつヒダ付けによって前記したように、単位面積当たりの表 面積比を高めることができる。  That is, even if the hydrogen permeable membrane 2 has rigidity and elasticity, the shape retaining mesh 3 can maintain a fold shape. The two are combined in a non-bonded state. Therefore, even when the hydrogen permeable membrane 2 itself expands or contracts due to the heating or cooling, it can be displaced relatively easily without restriction. Further, the possibility of occurrence of pinholes and cracks in the hydrogen permeable membrane 2 can be reduced, and the surface area ratio per unit area can be increased by scoring as described above.
[0035] このように用いられる前記保形メッシュ 3は、前記水素透過膜 2より高い融点、例え ば 1800°C以上、好ましくは 2000°C以上の高融点金属を用いた線材 wを織製し、こ のメッシュ 3を該水素透過膜 2の少なくともいずれか一面側に配置する。図 1に示す 形態では、両面に配している。この一面側は、前記水素透過膜 2の一次側 (被処理 流体が流入する側を一次側と呼んで!/、る)又は 2次側(流出する側を二次側と呼んで いる)とすることもできる。本形態では両面側、即ち 1次、 2次側にそれぞれ保形メッシ ュ 3A, 3Bを設けて、前記ヒダ 4の形状を効率よく確実に保持させる。また必要ならば 、該保形メッシュ 3を前記分離膜 2の二次側のみに設けることで、その支持を確実に する。なお、保形メッシュ 3の具体的な構成としては、例えば線径が 0. 05〜0. 4mm 程度の細線で、 30〜: LOO #程度に平織乃至綾織りした網材が用い得る。又保形メッ シュ 3は、その他、例えばメリヤス編み、エキスパンジョンメッシュなどを用いることがで きる。又その目開きについては、前記型付けの機能と、水素透過膜 2の支持性能と、 該保形メッシュ 3に接して各種粉末が充填される場合の該各種粉末を保持する被覆 体としての機能とから選択できる。 [0035] The shape-retaining mesh 3 used in this way is made by weaving a wire w using a refractory metal having a melting point higher than that of the hydrogen permeable membrane 2, for example, 1800 ° C or higher, preferably 2000 ° C or higher. The mesh 3 is disposed on at least one side of the hydrogen permeable membrane 2. In the form shown in Fig. 1, they are arranged on both sides. This one side is the primary side of the hydrogen permeable membrane 2 (the side into which the fluid to be treated flows is called the primary side!), Or the secondary side (the outflow side is called the secondary side). You can also In this embodiment, the shape retaining meshes 3A and 3B are provided on both sides, that is, the primary side and the secondary side, respectively, so that the shape of the fold 4 is efficiently and reliably held. If necessary, the shape retaining mesh 3 is provided only on the secondary side of the separation membrane 2 to ensure its support. In addition, as a specific configuration of the shape retaining mesh 3, for example, the wire diameter is 0.05 to 0.4 mm. With a fine wire of about 30 to: A net material that is plain or twilled to about LOO # can be used. For the shape retaining mesh 3, other materials such as knitting and expansion mesh can be used. As for the mesh opening, the function of molding, the support performance of the hydrogen permeable membrane 2, and the function as a covering for holding the various powders when filled with various powders in contact with the shape retaining mesh 3. You can choose from.
[0036] このような高融点を持つ金属材料は、これと接する前記水素透過膜 2との相互拡散 を防ぐ。又、水素分離エレメントとして用いる場合に採用する後記する触媒粉末との 相互拡散を防ぐ。水素透過膜 2、触媒粉末と接触状態で加熱するときでも、両者の間 の相互拡散を防ぎ、それによる性能低下を防止できる。しかも該保形メッシュ 3は金 属材料であることから、前記メッシュ成形は容易に行うことができ、また十分な柔軟性 を備えることから保形用の部材として適して 、る。  [0036] Such a metal material having a high melting point prevents mutual diffusion with the hydrogen permeable membrane 2 in contact therewith. In addition, it prevents mutual diffusion with the catalyst powder described later when used as a hydrogen separation element. Even when heated in contact with the hydrogen permeable membrane 2 and the catalyst powder, mutual diffusion between the two can be prevented, thereby preventing performance degradation. Moreover, since the shape-retaining mesh 3 is a metal material, the mesh formation can be easily performed, and since it has sufficient flexibility, it is suitable as a shape-retaining member.
[0037] この高融点金属の具体的なものとしては、例えばモリブデン,バナジュゥム、ニオブ 、クロム、タンタルなどの各金属の他、これに若干の第 3元素(例えば 10質量%以下 の W, Y Oなど)を添加した合金材料が選択される。特に前記モリブデン、乃至モリ [0037] Specific examples of the refractory metal include metals such as molybdenum, vanadium, niobium, chromium, and tantalum, as well as some third elements (for example, W, YO of 10 mass% or less). ) Is selected. Especially the molybdenum or moly
2 3 twenty three
ブデン合金を用いたメッシュは、融点が 2600°C程度と非常に高ぐしかも前記水素 透過膜 2との融点の差も 1000度以上大きい。そのため両者の相互拡散は確実に防 止でき性能低下が抑制できる。しかもその機械的特性についても、例えば軟質状態 でも 250, 000〜350, OOON/mm2程度の高!ヽ弹'性係数と、 400〜600N/mm2 程度の降伏強さを有している。ゆえに、前記ヒダ付け成形する時にはスプリングバッ クが少なく容易に形付けでき、また形成後の形状維持性につ!ヽては大きな弾性で保 持できる。したがって、より細い線材を用い得るなど、保形用メッシュ 3として優れてい る。又使用温度の 550°C程度での高温強度も具える。 The mesh using a Buden alloy has a very high melting point of about 2600 ° C., and the difference in melting point from the hydrogen permeable membrane 2 is 1000 degrees or more. Therefore, mutual diffusion between the two can be reliably prevented and performance degradation can be suppressed. In addition, its mechanical properties, for example, have a high coefficient of elasticity of about 250,000 to 350, OOON / mm 2 and a yield strength of about 400 to 600 N / mm 2 even in the soft state. Therefore, when forming with pleats, it can be shaped easily with less spring back, and the shape can be maintained with great elasticity for maintaining the shape after formation. Therefore, it is excellent as a shape-retaining mesh 3 such that a thinner wire can be used. It also has a high temperature strength at a working temperature of about 550 ° C.
[0038] このような前記水素透過膜 2と前記保形メッシュ 3とは、前記したように非結合状態 で積層され、この積層体を所定ピッチにヒダ付けすることにより本発明の前記複合膜 材料 1が構成される。 [0038] The hydrogen permeable membrane 2 and the shape retaining mesh 3 are laminated in a non-bonded state as described above, and the laminated membrane material of the present invention is formed by creping the laminated body at a predetermined pitch. 1 is configured.
[0039] このヒダ 4の個数、形状、大きさは、用途、水素分離条件、水素透過膜 2の厚さ等の 品質特性面力 適宜設定できる。本発明では前記ヒダ 4を付けることによって水素透 過面積の増大を図る。さらに、ヒダを供給される水素混合ガスに対抗しうる形状とする 。これによりヒダの座屈変形を防止する。そのため、該ヒダ 4の山部高さの中央位置を 通る基準面の面積 Soあたりの水素透過膜 2の表面積 Sとの比(SZSo)を 3倍以上、 かつ 10倍以下にする。これによつて有効透過面積の増大を図ることができる。なお本 願明細書で「表面積 S」とは、該透過膜 2の透過面積を意味する。又ヒダ 4が山部高さ Hを含めて全て同一形状であるとき、又前記比(SZSo)は、例えば図 1では、山部高 さの中央位置のピッチ点間の円弧のピッチ長さと、そのピッチ P間に位置して 、る透 過膜 2の断面長さの比とした長さの比として求めることができる。円弧のピッチ長さと は、山部高さの中央位置であるピッチ点間の直線長さであるピッチ Pを、円弧に換算 した値をいう。 [0039] The number, shape, and size of the folds 4 can be set as appropriate in terms of quality characteristics such as use, hydrogen separation conditions, and thickness of the hydrogen permeable membrane 2. In the present invention, the permeation 4 is added to increase the hydrogen permeation area. In addition, it has a shape that can resist the hydrogen mixed gas supplied with pleats. . This prevents buckling deformation of the folds. Therefore, the ratio (SZSo) with the surface area S of the hydrogen permeable membrane 2 per area So of the reference plane passing through the center position of the peak height of the fold 4 is set to 3 times or more and 10 times or less. As a result, the effective transmission area can be increased. In the present specification, “surface area S” means the permeation area of the permeation membrane 2. When the pleats 4 are all the same shape including the peak height H, the ratio (SZSo) is, for example, in FIG. 1, the pitch length of the arc between the pitch points at the center of the peak height, It can be obtained as a ratio of the lengths between the pitches P and the ratio of the cross-sectional lengths of the permeable membrane 2. The pitch length of the arc is the value obtained by converting the pitch P, which is the straight line length between the pitch points at the center of the peak height, into an arc.
[0040] また前記"基準面"については、ヒダ付けされた水素透過膜 2が例えば図 1乃至図 4 に見られるように円筒状に成形されたものでは、前記山部高さの中央を半径とする円 周面とする。一方、該透過膜 2が平板状に成形された場合も、前記と同様に山部高さ の中央を連ねて通る面とする。この場合は、形状が平面状であることから、ヒダ付けに は関係なく平面上での単位面積が用 ヽられる。  [0040] As for the "reference plane", in the case where the pleated hydrogen permeable membrane 2 is formed in a cylindrical shape as shown in FIGS. 1 to 4, for example, the center of the peak height is set to a radius. And the circumferential surface. On the other hand, even when the permeable membrane 2 is formed into a flat plate shape, the surface passes through the center of the height of the peak portion in the same manner as described above. In this case, since the shape is planar, the unit area on the plane is used regardless of the crease.
さらに各ヒダ 4の高さが各々異なるなど、不均一な形状の場合の平均高さについて は、例えば全ヒダ数の 1Z4以上のヒダを任意に抽出し、より好ましくはその全ヒダに ついて、各々測定した高さの平均値で示される。  Furthermore, for the average height in the case of non-uniform shapes, such as the height of each fold 4 being different, for example, folds of 1Z4 or more of the total number of folds are arbitrarily extracted, and more preferably, all the folds are It is shown by the average value of the measured height.
[0041] 形状が同じヒダカもなる場合のヒダの寸法の一例として、その横断面における山部 高さ Hが 5〜30mm、ピッチ Pが 3〜30mm程度のものを用いうる。より好ましくは、該 ピッチ Pは前記山部高さ Hの 0. 8倍以下 (好ましくは 0. 2〜0. 7倍)程度に設定する 。この場合、 "山部高さ H"は水素透過膜 2の山部 4の頂点力 谷部底点までの高さ( 図 1の場合は半径方向の高さ)とする。一方、 "ピッチ P"は、前記のように、二つの隣 り合うヒダ 4同士が相対応する前記山部の高さ中央位置 (ピッチ点)の間の直線長さと する。  [0041] As an example of the size of the fold when the folds having the same shape are formed, one having a ridge height H of 5 to 30 mm and a pitch P of about 3 to 30 mm can be used. More preferably, the pitch P is set to about 0.8 times or less (preferably 0.2 to 0.7 times) of the peak height H. In this case, the “peak height H” is the height to the peak force valley bottom point of the peak 4 of the hydrogen permeable membrane 2 (in the case of FIG. 1, the height in the radial direction). On the other hand, as described above, “pitch P” is a straight line length between the height center positions (pitch points) of the ridges where two adjacent folds 4 correspond to each other.
[0042] 前記比が 3倍未満のものでは、前記したように水素の透過反応面積の増大が十分 でない。またヒダ 4が平坦ィ匕して、例えば組込みする場合、使用時での供給ガスの圧 力に対する形状維持が十分に成し得ない場合が生じる。又比が 10倍を越えるときに は、ヒダ 4の立上がりが急となり、ヒダ間に供給ガスが十分に入らないなどの問題があ り、好ましくは 4〜: LO倍、さらに好ましくは 4〜8倍とする。 [0042] When the ratio is less than 3 times, as described above, the hydrogen permeation reaction area is not sufficiently increased. In addition, when the pleat 4 is flat and incorporated, for example, the shape may not be sufficiently maintained with respect to the pressure of the supply gas during use. Also, when the ratio exceeds 10 times, the rise of the fold 4 becomes abrupt and there is a problem that the supply gas does not enter sufficiently between the folds. Preferably, 4 to: LO times, more preferably 4 to 8 times.
[0043] 本発明の複合膜材料 1は、こうして構成された前記水素透過膜 2と保形メッシュ 3を 重ね合わせ、かつ所定ピッチでヒダ付けされたものである。そのまま平板状で用い得 る他、例えば図 3、図 4に示すように、円筒型や角状型などの筒状にしたヒダ付き筒状 体として用い得る。そのためには,両端において、他の部材と突き合わせ又は重ね合 わせて密に結合する。その形状や寸法は任意に設定される。また前記平板状のもの として、図示しないが、例えば、 2枚を間隙を有して重ね合わせ、その外周縁部を前 記間隙に挿入されるフレームを用いて密に閉じ、一体に結合した平板状中空エレメ ントを用いうる。フレームには、原料ガス注入用、又は水素ガス取出し用の通孔を形 成しておく。なお、前記成形組立てする際の透過膜 2 (又は複合膜材料 1)を結合す る方法としては、例えば溶接やロウ付け等の加熱結合法が好ましぐ特にロウ付けは 比較的容易に実施でき、しかもシール性の高!ヽ結合状態が得られる。  [0043] The composite membrane material 1 of the present invention is a material in which the hydrogen permeable membrane 2 and the shape retaining mesh 3 thus configured are overlapped and creased at a predetermined pitch. In addition to being used as a flat plate as it is, for example, as shown in FIG. 3 and FIG. 4, it can be used as a cylindrical body with a pleat such as a cylindrical shape or a rectangular shape. For this purpose, at both ends, they are butted or overlapped with other members and are tightly coupled. The shape and dimensions are arbitrarily set. Although not shown in the drawings, the flat plate is a flat plate in which, for example, two sheets are overlapped with a gap, and the outer peripheral edge is closely closed using a frame inserted into the gap, and integrally joined. A hollow element can be used. A through hole for injecting raw material gas or taking out hydrogen gas is formed in the frame. As a method for bonding the permeable membrane 2 (or the composite membrane material 1) during the molding and assembling, for example, a heat bonding method such as welding or brazing is preferred, and brazing can be performed relatively easily. In addition, it has a high sealing property and can be combined.
[0044] 図 3、図 4は、図 5を参照して、このような筒状に成形した前記複合膜材料 1を用い た水素分離用エレメント 10の一例を示す。パンチングプレートを筒状に成形した多孔 性内筒 11と、多孔性外筒 12と、その一端側に固定され端金具 15としての継手金具 15Aと、他端側を閉じる端金具 15としての封止金具 15Bとを用いる。そのため、例え ば複合膜材料 1の内孔に前記多孔性内筒 11を密に挿入し、かつ封止金具 15Bを同 心に配置する。この封止金具 15Bの内面と複合膜材料 1の向き合う端面とをリークを 生じることなく溶着する。なお、封止金具 15Bの外面からの加熱により複合膜材料 1 を封止金具 15Bの内面に気密に接合することもできる。このときには、該封止金具 15 Bの内面に前記多孔性内筒 11と、多孔性外筒 12とを予め溶着しておくこともできる。  FIGS. 3 and 4 show an example of the hydrogen separation element 10 using the composite membrane material 1 formed into such a cylindrical shape with reference to FIG. Porous inner cylinder 11 in which a punching plate is formed in a cylindrical shape, porous outer cylinder 12, a fitting metal 15A as an end fitting 15 fixed to one end thereof, and a sealing as an end fitting 15 closing the other end Use bracket 15B. Therefore, for example, the porous inner cylinder 11 is densely inserted into the inner hole of the composite membrane material 1, and the sealing fitting 15B is arranged concentrically. The inner surface of the sealing metal fitting 15B and the facing end surface of the composite film material 1 are welded without causing leakage. The composite film material 1 can also be airtightly bonded to the inner surface of the sealing metal fitting 15B by heating from the outer surface of the sealing metal fitting 15B. At this time, the porous inner cylinder 11 and the porous outer cylinder 12 may be welded in advance to the inner surface of the sealing metal fitting 15B.
[0045] 継手金具 15Aは本例では、内部材 15a、リング状の外部材 15b、及び口金部材 15 cと力もなる。内部材 15aとは、前記多孔性内筒 11と前記複合膜材料 1の向き合う端 面とに溶着される。前記外部材 15bは、該内部材 15aのフランジに接合されかつ前 記多孔性外筒 12との間の隙間を閉じるリング体力もなる。前記口金部材 15cは、前 記内部材 15aに接合されることにより前記多孔性内筒 11の内孔と連通する取出し孔 17を形成しうる。なお口金部材 15cには、 6角ナット部と、接続用の外ネジ部とを連設 している。これらは、例えば各接合部を溶接することにより一体に組立てられる。 [0046] 係る構成において、供給される水素を含む原料用の混合ガスを図 3に矢示するよう に、前記多孔性外筒 12に設けられている開口 12Aカゝら導入する。前記水素透過膜 2 で分離された水素のみが前記多孔性内筒 11の開口 11A力 取り出され、前記継手 金具 15Aの取出し孔 17から次工程に送給される。なお、原料の混合ガスは逆方向 に、即ち多孔性内筒 11から多孔性外内筒 12側に向かって供給することもできる。又 本発明では、水素ガスを取出し孔 17から送り出す場合において、前記複合膜材料 1 の一次側、すなわち複合膜材料 1と前記多孔性外筒 12との間の隙間内に、混合ガス を改質する為の改質用触媒 20を配置することもできる。また図 5に略示するように、 前記複合膜材料 1の二次側と多孔性内筒 11との間の隙間にも充填することもできる 。このときこの改質用触媒 20は複合膜材料 1を支持し保形する支持材料 22として機 能している。なお単に支持、保形のための支持材料 22として用いるときにはアルミナ 粉末なども用いうる。 [0045] In this example, the joint fitting 15A also has a force with the inner member 15a, the ring-shaped outer member 15b, and the base member 15c. The inner member 15a is welded to the porous inner cylinder 11 and the end faces of the composite membrane material 1 facing each other. The outer member 15b also has a ring strength that is joined to the flange of the inner member 15a and closes the gap between the porous outer cylinder 12 and the outer member 15b. The base member 15 c can be joined to the inner member 15 a to form an extraction hole 17 that communicates with the inner hole of the porous inner cylinder 11. The base member 15c is provided with a hexagonal nut portion and an external thread portion for connection. These are assembled together, for example, by welding each joint. In such a configuration, the mixed gas for raw material containing hydrogen to be supplied is introduced from the opening 12 A provided in the porous outer cylinder 12 as shown by an arrow in FIG. Only the hydrogen separated by the hydrogen permeable membrane 2 is taken out from the opening 11A of the porous inner cylinder 11 and fed to the next step from the take-out hole 17 of the fitting 15A. The mixed gas of the raw material can be supplied in the opposite direction, that is, from the porous inner cylinder 11 toward the porous outer inner cylinder 12 side. In the present invention, when the hydrogen gas is taken out from the hole 17, the mixed gas is reformed in the primary side of the composite membrane material 1, that is, in the gap between the composite membrane material 1 and the porous outer cylinder 12. It is also possible to arrange a reforming catalyst 20 for this purpose. Further, as schematically shown in FIG. 5, the gap between the secondary side of the composite membrane material 1 and the porous inner cylinder 11 can also be filled. At this time, the reforming catalyst 20 functions as a support material 22 for supporting and retaining the shape of the composite membrane material 1. Note that alumina powder or the like can also be used when used simply as a support material 22 for support and shape retention.
[0047] また、このような端金具 15、前記複合膜材料 1、多孔性内筒 11,多孔性外筒 12間 の取り付けには、例えば前記ロウ付け法の他、溶接が採用できる。ロウ付けには銀口 ゥが好適に利用できる。その組立ては例えば前記多孔性内筒 11とこれに嵌められた 複合膜材料 1を、継手金具 15Aの内部材 15aと、封止金具 15Bとの間にセットして各 々ロウ付けする。更に前記多孔性外筒 12の一方端部を封止金具 15Bに取り付ける。 これにより前記内部材 15aの半径方向外方で前記多孔性外筒 12の他方端部との間 に隙間を形成する。また、多孔性外筒 12内に空室が形成されその空室内に触媒粉 末 20を充填する。その後、リング状の外部材 15b、口金部材 15cを取付け封止するこ とちでさる。  [0047] Further, for the attachment between the end fitting 15, the composite membrane material 1, the porous inner cylinder 11, and the porous outer cylinder 12, for example, welding can be employed in addition to the brazing method. Ginguchi can be used for brazing. For example, the porous inner cylinder 11 and the composite membrane material 1 fitted to the porous inner cylinder 11 are set between the inner member 15a of the joint fitting 15A and the sealing fitting 15B and brazed to each other. Further, one end of the porous outer cylinder 12 is attached to the sealing metal fitting 15B. As a result, a gap is formed between the other end portion of the porous outer cylinder 12 and radially outward of the inner member 15a. In addition, a vacant space is formed in the porous outer cylinder 12 and the vacant chamber is filled with the catalyst powder 20. Thereafter, the ring-shaped outer member 15b and the base member 15c are attached and sealed.
[0048] なお前記銀ロウは、比較的融点が低く高温加熱の必要がなぐしかも銀は前記水素 透過膜 2自体の基本組成となるから、実質的に水素透過性能を損なうこともない。ま たこの端金具の形状や構造はあくまでもその一例であって、何ら発明全体を拘束す るものではなぐ前記説明以外の従来から実施されている種々形状や構造によるもの を含む。  [0048] The silver wax has a relatively low melting point and does not need to be heated at a high temperature, and since silver has the basic composition of the hydrogen permeable membrane 2 itself, it does not substantially impair the hydrogen permeation performance. Further, the shape and structure of the end fitting are merely examples, and include various shapes and structures that have been practiced in the past other than the above description and do not restrict the invention as a whole.
[0049] 該水素分離用エレメント 10の寸法や形状については、その使用条件や設置スぺー ス等を考慮して設定できる。通常は例えば外径 5〜30cm、長さ 5〜50cm程度のも のが比較的使用しやすいが、これに限るものではなぐ種々の寸法や断面角形等の 非円形形状にしたものなど必要に応じて変化し得る。 [0049] The dimensions and shape of the hydrogen separation element 10 can be set in consideration of its use conditions and installation space. Usually, for example, an outer diameter of 5-30 cm and a length of 5-50 cm This is relatively easy to use, but is not limited to this, and various dimensions and non-circular shapes such as a square cross section can be changed as necessary.
[0050] また前記多孔性内筒 11及び多孔性外筒 12として、本形態ではパンチングプレート などの有孔鋼板を断面円形の筒体に成形したものを用いている。これに代えて、例 えば織金網、エキスパンドメタル等の網材ゃ金属多孔質焼結体など、種々形態の多 孔性筒体を用いることもできる。特に、前者の有孔鋼板ゃ網材によるものでは価格的 に安価で、し力も十分な強度と開口を備えることから容易に用いられる。しかしながら 、後者の金属粉末等の焼結成形品を例えば多孔性外筒 12に用いるときには、供給 される水素混合ガス中の不純物粒子を予め除去するプレフィルター用部材としての 機能を発揮させる。そのために、例えば # 140Z200〜200Z250程度の金属粉末 や繊維径 10〜30 μ m程度の金属繊維を用いた焼結体を用い得る。  In the present embodiment, the porous inner cylinder 11 and the porous outer cylinder 12 are formed by forming a perforated steel plate such as a punching plate into a cylindrical body having a circular cross section. Instead of this, for example, various types of porous cylindrical bodies such as woven wire nets, expanded metal, and other metal porous sintered bodies can be used. In particular, the former perforated steel sheet is easily used because it is inexpensive in price and has sufficient strength and opening. However, when the sintered molded product such as the latter metal powder is used for the porous outer cylinder 12, for example, it functions as a prefilter member for removing in advance the impurity particles in the supplied hydrogen mixed gas. For this purpose, for example, a sintered body using metal powder of about # 140Z200 to 200Z250 or metal fiber having a fiber diameter of about 10 to 30 μm can be used.
[0051] このように、前記多孔性内筒 11と多孔性外筒 12とは必要に応じて使用される。した がって、本形態に示すように両者を同種の有孔鋼板で形成できる。多孔性内筒 11又 は多孔性外筒 12のいずれか一方を前記焼結成形体など他の部材にすることもでき る。多孔性内筒 11及び多孔性外筒 12に設ける開口 11A, 12Aの大きさは、例えば ガス流体が自由に通過でき、かつ触媒粉末 20、前記複合膜材料 1を保持する程度と する。また、前記のように多孔性外筒 12を焼結体にして濾過機能を持たせることがで きる。ある 、は触媒粉末の保持を確実に行うように多孔性外筒 12の内側に更に微細 なメッシュ等を設けることちでさる。  Thus, the porous inner cylinder 11 and the porous outer cylinder 12 are used as necessary. Therefore, as shown in this embodiment, both can be formed of the same kind of perforated steel plate. Either the porous inner cylinder 11 or the porous outer cylinder 12 can be used as another member such as the sintered compact. The sizes of the openings 11A and 12A provided in the porous inner cylinder 11 and the porous outer cylinder 12 are, for example, such that gas fluid can freely pass therethrough and the catalyst powder 20 and the composite membrane material 1 are held. Further, as described above, the porous outer cylinder 12 can be made into a sintered body to have a filtration function. In some cases, a finer mesh or the like is provided on the inner side of the porous outer cylinder 12 so as to securely hold the catalyst powder.
[0052] また前記多孔性内筒 11及び多孔性外筒 12には、前記水素透過膜 1、又は触媒粉 末 20が加熱されたときにも処理される水素混合ガスなどと反応を生じない金属材料 が選択される。例えば耐水素脆性に優れたステンレス鋼、コバルト合金、チタン合金 などが比較的好適に利用できる。ステンレス鋼、特にニッケル当量が 26%以上 (好ま しくは 27〜30%)のオーステナイト系ステンレス鋼も有効である。又溶接やロウ付け などの処理も比較的容易でかつ耐食性にも優れることから好ましく用いうる。  [0052] The porous inner cylinder 11 and the porous outer cylinder 12 have a metal that does not react with a hydrogen mixed gas or the like to be treated even when the hydrogen permeable membrane 1 or the catalyst powder 20 is heated. Material is selected. For example, stainless steel, cobalt alloy, titanium alloy and the like having excellent hydrogen embrittlement resistance can be used relatively suitably. Stainless steel, particularly austenitic stainless steel with a nickel equivalent of 26% or more (preferably 27 to 30%) is also effective. Also, it can be preferably used because it is relatively easy to process such as welding and brazing and has excellent corrosion resistance.
[0053] なお、前記ニッケル当量はオーステナイトの安定ィ匕を示すものとして示されるもので 、例えば次式力 求められる。  [0053] The nickel equivalent is shown as indicating the stability of austenite. For example, the following formula force can be obtained.
Ni当量 =Ni+0. 65Cr+0. 98Mo + l. 05Mn+0. 35Si+ 12. 6C [0054] 本形態では、水素透過膜 2の一次側に設けた保形メッシュ 3は、多孔性外筒 12,— 次側に充填される触媒粉末 20と、水素透過膜 2とが直接接触することを防止する。な お、図 5に示しているように、一次側と、二次側との両側に保形メッシュ 3を用いるとき には、前記のように、水素透過膜 2の二次側と多孔性内筒 11との間の間隙にも前記 支持材料 22を充填できる。 Ni equivalent = Ni + 0. 65Cr + 0.98Mo + l.05Mn + 0.35Si + 12. 6C [0054] In this embodiment, the shape retaining mesh 3 provided on the primary side of the hydrogen permeable membrane 2 is in direct contact between the porous outer cylinder 12, the catalyst powder 20 filled on the secondary side, and the hydrogen permeable membrane 2. To prevent that. As shown in FIG. 5, when the shape retaining mesh 3 is used on both sides of the primary side and the secondary side, as described above, the secondary side of the hydrogen permeable membrane 2 and the porous inner side are not porous. The support material 22 can also be filled in the gap between the cylinder 11.
[0055] また触媒粉末 20を充填する場合は、本形態のように前記多孔性外筒 12をやや大 径とする。これによりヒダ 4の山部同士の間の間隙、山部先端部と多孔性外筒 12との 間の隙間にも触媒粉末 20が充填される。これによりヒダ 4は中心力も外側に向力つて 拡 Φでさる。  [0055] When the catalyst powder 20 is filled, the porous outer cylinder 12 has a slightly larger diameter as in this embodiment. As a result, the catalyst powder 20 is also filled in the gap between the crests of the fold 4 and the gap between the crest tip and the porous outer cylinder 12. As a result, the fold 4 has a central force that is directed outward and is expanded by Φ.
[0056] このように本発明では触媒粉末 20は必要に応じて用い得る。その具体的な種類や 分量などについても任意に設定される。触媒粉末 20は、例えば原料ガスが炭化水素 では  [0056] Thus, in the present invention, the catalyst powder 20 can be used as necessary. The specific type and quantity are also set arbitrarily. For example, if the source gas is hydrocarbon, the catalyst powder 20
CH + 2H 0→4H +CO に、またメタノールでは、 CH OH+H 0→4H +CO CH + 2H 0 → 4H + CO and in methanol, CH OH + H 0 → 4H + CO
4 2 2 2 3 2 2 2 に各々反応させる。この分離した H ガスを、水素透過膜 2を通して選択的に分離す React with 4 2 2 2 3 2 2 2 respectively. The separated H gas is selectively separated through the hydrogen permeable membrane 2.
2  2
る。通常は、触媒粉末 20として、例えば粒径数百/ z m力ゝら数 mm程度の大きさの粒 子状体が用いられる。その具体的なものとして、例えば Fe, Co, Ni, Ru, Rh, Ptな どの第 VIII族金属を含有するもの、 NiOなどが選択される。その分量は、原料ガスや 触媒粉末の種類、形態、ないし原料ガスの供給処理条件などを勘案して調整される  The Usually, as the catalyst powder 20, for example, a particle-like body having a particle size of several hundreds / zm and a size of about several mm is used. Specific examples thereof include those containing a Group VIII metal such as Fe, Co, Ni, Ru, Rh, and Pt, and NiO. The amount is adjusted in consideration of the type and form of the raw material gas and catalyst powder, as well as the raw gas supply processing conditions.
[0057] なお、図 3の水素分離用エレメント 10において、例えば、前記した封止金具 15Bに 代えて、図 6示すように、ネジ孔 21を有する受け金具 15Cとすることもできる。受け金 具 15Cの前記ネジ孔 21は、前記継ぎ金具 15Aのネジが螺合しうる。また封止金具 1 5Bに代えて直接に端金具 15同士を溶接することにより連通するための端金具を用 いることもできる。さらには、例えば図 7に示すように、このエレメント 10の複数本を連 結したモジュールを形成する。かつ一枚の大型の端板上に、複数本の前記モジユー ルを並設して取り付け、その全体を 1つの大径の筒 25内に収納する。これにより、各 エレメント同士を配管して大容量の水素分離分離用のメンブレンリフォーマーを構成 させる。 [0058] また例えば、前記エレメント 10の両端面に、各々汎用的なリング状の端金具を付設 したものだけを標準品として在庫しておく。その後、必要に応じてこの端金具(図示せ ず)に接続用、封止用の他の金具を必要に応じてその都度取り付けエレメント 1とする こともできる。又触媒粉末 20、支持材料 22を予め充填することにより、エレメントの在 庫管理を容易にする。図 6のような連結形式とすることもできる。又図 7に示すように, 連結した水素分離用エレメントにして大容量型の水素分離用部材とすることもできる 。この為、小型かつ簡易型の高純度水素発生装置として、例えば燃料電池や半導体 産業、あるいは光ファイバ一製造などの広範分野において種々利用できるものである In the hydrogen separation element 10 of FIG. 3, for example, instead of the sealing fitting 15B described above, a receiving fitting 15C having a screw hole 21 can be used as shown in FIG. The screw hole 21 of the receiving fixture 15C can be screwed into the screw of the fitting 15A. Further, instead of the sealing fitting 15B, an end fitting for communicating by directly welding the end fittings 15 may be used. Further, as shown in FIG. 7, for example, a module in which a plurality of the elements 10 are connected is formed. A plurality of the modules are mounted side by side on one large end plate, and the whole is housed in one large-diameter tube 25. As a result, each element is piped to form a large-capacity membrane reformer for hydrogen separation and separation. [0058] Further, for example, only those with general ring-shaped end fittings attached to both end faces of the element 10 are stocked as standard products. Thereafter, if necessary, other metal fittings for connection and sealing can be used as the attachment element 1 each time if necessary. Also, by prefilling the catalyst powder 20 and the support material 22, the inventory management of the element is facilitated. It can also be connected as shown in Fig. 6. Also, as shown in Fig. 7, it is possible to make a large-capacity hydrogen separation member by connecting hydrogen separation elements. For this reason, as a small and simple high-purity hydrogen generator, it can be used in various fields such as the fuel cell, semiconductor industry, and optical fiber manufacturing.
[0059] (実施例 1) [Example 1]
厚さ 20 μ mに冷間圧延され、 1050°Cで熱処理された幅 lOOmm X長さ lmの Pd — 25% Ag金属箔を水素透過膜をえた。その両面に、線径 0. 2mmのモリブデン細 線〖こよる保形メッシュ( # 100)を各々積層し、かつ積層体をヒダ成形機にセットした。 そしてこの 3枚の積層品に、山高さ 20mm、中心ピッチ 6. 5mmの連続ヒダを形成し、 ヒダ付けされた複合膜材料を作成した。なお、前記 Pd—Ag合金は真空溶解によつ て純度 99. 91%、圧延と熱処理を繰り返し行ないながら加工した合金板を原材料と している。  A hydrogen permeable membrane was obtained from Pd — 25% Ag metal foil of width lOOmm x length lm that was cold-rolled to a thickness of 20 μm and heat-treated at 1050 ° C. On both sides, a shape-retaining mesh (# 100) made of molybdenum fine wire with a wire diameter of 0.2 mm was laminated, and the laminate was set in a crease forming machine. Then, continuous folds with a peak height of 20 mm and a center pitch of 6.5 mm were formed on these three laminates to create a pleated composite membrane material. The Pd—Ag alloy is 99.91% pure by vacuum melting, and the raw material is an alloy plate that is processed by repeated rolling and heat treatment.
[0060] この状態で、前記水素透過膜と保形メッシュは非結合状態ではあるもののよく密着 している。し力もスプリングバックなどの戻りは少なぐヒダ形状の付与は容易に行うこ とができた。またこの状態で、膜材料は全体的に弾性を持ち、水素透過膜だけでは 得られな力つたヒダ形状の維持が可能となる。しかも水素透過膜表面に前記メッシュ の織目などのマークが転写されることもなぐ良好な表面状態を有するものであった。  [0060] In this state, the hydrogen permeable membrane and the shape retaining mesh are in close contact with each other although they are in a non-bonded state. It was easy to apply a pleated shape with little rebound of spring force and spring force. Also, in this state, the membrane material has elasticity as a whole, and it is possible to maintain a strong pleated shape that cannot be obtained with only a hydrogen permeable membrane. In addition, the surface of the hydrogen permeable membrane has a good surface state that does not transfer marks such as the mesh texture.
[0061] 次に、この積層材料の前後端部 (対向端部)同士を重ね合せて、その間に厚さ 0. 5 mm,幅 2mmの Agロウ材を配したロウ付けを行った。これにより前記ヒダが軸方向と なる筒状品を形成した。このロウ付け部では、前記ロウ材が前記メッシュと水素透過 膜同士の隙間を完全に埋めリークなく結合されたものであった。  [0061] Next, the front and rear end portions (opposing end portions) of the laminated material were overlapped with each other, and brazing was performed by placing an Ag brazing material having a thickness of 0.5 mm and a width of 2 mm therebetween. As a result, a cylindrical product having the folds in the axial direction was formed. In this brazing portion, the brazing material was completely filled in the gap between the mesh and the hydrogen permeable membrane and joined without leakage.
[0062] この筒状品を前記複合膜材料として、外径 32mm,厚さ 2mmのステンレス鋼製 (S US316L)の有孔板カもなる長さ 100mmの多孔性内筒に嵌めるとともに、さらに図 3 , 4に示すように同様の有孔板でなる多孔性外筒(外径 80mm)、及び各継手金具、 封止金具を装着して各々ロウ付け一体化するすることで水素分離用エレメントを製作 した。 [0062] This cylindrical product is used as the composite membrane material, and is fitted into a porous inner cylinder having a length of 32 mm and a thickness of 2 mm, made of stainless steel (S US316L), and having a length of 100 mm. Three As shown in Fig. 4, hydrogen separation element is manufactured by attaching a porous outer cylinder (outer diameter 80mm) made of the same perforated plate, joint fittings, and sealing fittings, and then brazing them together. did.
[0063] なおこの状態で、該膜材料自体の透過面積は 0. lm2で、かつヒダ高さは 20mm であることから、この表面積は、該膜材料のヒダ高さの中心点を半径とする表面積の 6 . 1倍を有するものであった。そこで、このエレメント 4本を連結した 7本のモジュール を図 7のようにセットして、外径 260mm X長さ 460mmのハウジング容器内に収納し 、 20Nm3 ZH用の水素分離装置を作成した。そのリフォーマー容積は 0. 024m3 であった。 [0063] In this state, since the transmission area of the membrane material itself is 0.1 lm 2 and the fold height is 20 mm, this surface area is determined by taking the center point of the fold height of the membrane material as the radius. It had a surface area of 6.1 times. Therefore, seven modules with these four elements connected were set as shown in Fig. 7 and housed in a housing container with an outer diameter of 260mm x length of 460mm to create a hydrogen separator for 20Nm 3 ZH. The reformer volume was 0.024 m 3 .
[0064] (比較例)  [0064] (Comparative example)
前記実施例と同様の 20Nm3 /H用のメンブレンリフォーマーになるよう、外径 35 mm、長さ lmの多孔質支持体表面上に、厚さ mの Pd— 25%Ag金属箔を卷き 付け、その成形品を外径 300mm X長さ 1000mmの容器内に収納したものを設計し た。このリフォーマー容積は 0. 078m3であったことから、容積比は 1/3. 2となり、こ れは本発明によるヒダ付き構造にすることで達成されたものである。 Pd—25% Ag metal foil with a thickness of m is coated on the surface of a porous support with an outer diameter of 35 mm and a length of lm so that it becomes a membrane reformer for 20 Nm 3 / H as in the previous example. The product was designed to be housed in a container with an outer diameter of 300 mm and a length of 1000 mm. Since the volume of the reformer was 0.078 m 3 , the volume ratio was 1 / 3.2, which was achieved by using the pleated structure according to the present invention.
[0065] (試験 1)水素透過,熱サイクル試験 [Test 1] Hydrogen permeation and thermal cycle test
両者の分離装置について、各々加熱温度 600°C,差圧 0. IMPaの条件で水素透 過を 1H行う。その後、 N2ガスに置換して冷却する処理を合計 100回繰り返し、温度 の昇降による水素透過膜の亀裂発生を調べた。その結果、単位エレメント当たりの水 素透過量は各々 l lLZminで純度 99. 99%以上の特性が得られ。また水素透過膜 への亀裂有無についても、前記 N2ガスのリークが全くなかった。本実施例品につい ては亀裂などの欠陥は発生しないことが確認された。これは、該水素透過膜が前記 保形メッシュ間に非結合状態で配置され、比較的フリーな状態で変位できることによ るものと推測された。  For both separators, hydrogen permeation is performed for 1 H under the conditions of heating temperature 600 ° C and differential pressure 0. IMPa. After that, the process of cooling by substituting with N2 gas was repeated 100 times in total, and the occurrence of cracks in the hydrogen permeable membrane due to the temperature rise and fall was investigated. As a result, the hydrogen permeation amount per unit element is l lZmin, respectively, and the characteristics with a purity of 99.99% or more are obtained. Further, there was no leakage of the N2 gas with respect to the presence or absence of cracks in the hydrogen permeable membrane. It was confirmed that defects such as cracks did not occur in this example product. This was presumed to be because the hydrogen permeable membrane was disposed in a non-bonded state between the shape retaining meshes and could be displaced in a relatively free state.
[0066] (試験 2)拡散発生の確認試験 [0066] (Test 2) Diffusion generation confirmation test
更に試験 2の熱サイクル試験に伴う拡散有無を確認する為、各装置エレメントを分 解して水素透過膜を切除した試料について厚さ方向における各金属元素のォージ ェ分析を行った。その結果、本実施例品については前記保形メッシュで隔離され、し 力も該メッシュは高融点金属であることから、水素透過膜への拡散が防止でき、当初 の組成比を維持して 、ることが確認された。 In addition, in order to confirm the presence or absence of diffusion associated with the thermal cycle test in Test 2, an aging analysis of each metal element in the thickness direction was performed on a sample obtained by disassembling each device element and excising the hydrogen permeable membrane. As a result, the product of this example is isolated by the shape retaining mesh. Since the mesh is a refractory metal, it was confirmed that diffusion to the hydrogen permeable membrane can be prevented and the initial composition ratio is maintained.

Claims

請求の範囲 The scope of the claims
[1] 水素を選択的に透過する水素透過膜と  [1] A hydrogen permeable membrane that selectively permeates hydrogen,
該水素透過膜の少なくともいずれか一面側に配置され該水素透過膜を保形する保 形メッシュを備え、  A retaining mesh disposed on at least one side of the hydrogen permeable membrane to retain the hydrogen permeable membrane;
前記水素透過膜は、単体では形状維持困難な厚さ 30 m以下に圧延成形され、 前記保形メッシュは、前記水素透過膜との間で加熱拡散を生じな!/、高融点金属か ら選択された金属線材を用いてなり、  The hydrogen permeable membrane is rolled to a thickness of 30 m or less, which makes it difficult to maintain the shape by itself, and the shape retaining mesh does not cause heat diffusion with the hydrogen permeable membrane! /, Selected from refractory metals Made of metal wire,
前記水素透過膜と保形メッシュとを組合せ、かつヒダを連続して設けるヒダ折り加工 を施こすとともに、  A combination of the hydrogen permeable membrane and the shape retaining mesh, and a fold folding process for continuously providing folds,
このヒダ折り加工によって、該水素透過膜のヒダの高さの中央を通る平均高さにお ける基準面の面積 Soと、基準面内にある水素透過膜の表面積 Sとの比 SZSoを 3〜 By this folding process, the ratio SZSo of the area So of the reference surface at the average height passing through the center of the height of the fold of the hydrogen permeable membrane to the surface area S of the hydrogen permeable membrane in the reference surface is 3 to
10倍に成形したことを特徴とする水素分離用の複合膜材料。 A composite membrane material for hydrogen separation characterized by being molded 10 times.
[2] 前記保形メッシュの前記高融点金属は、融点が 2000°C以上の金属線材である請 求項 1に記載の水素分離用の複合膜材料。 [2] The composite membrane material for hydrogen separation according to claim 1, wherein the refractory metal of the shape retaining mesh is a metal wire having a melting point of 2000 ° C or higher.
[3] 前記保形メッシュの前記高融点金属は、線径 0. 3mm以下のモリブデンの金属線 材で形成されるものであることを特徴とする請求項 2に記載の水素分離用の複合膜 材料。 [3] The composite membrane for hydrogen separation according to [2], wherein the refractory metal of the shape retaining mesh is formed of a molybdenum metal wire having a wire diameter of 0.3 mm or less. material.
[4] 前記ヒダは、その横断面での山部高さ Hが 5mn!〜 30mm、かつ隣合うヒダの該ヒダ の高さの中央を結ぶ直線長さであるピッチ Pを、該山部高さの 0. 8倍以下としたことを 特徴とする請求項 2又は 3に記載の水素分離用の複合膜材料。  [4] The fold has a peak height H of 5 mn in its cross section! The pitch P, which is a straight length connecting the centers of the heights of adjacent folds to 30 mm, is not more than 0.8 times the height of the ridges. The composite membrane material for hydrogen separation as described.
[5] 請求項 1〜4のいずれかに記載の水素分離用の複合膜材料を用いる水素分離用 のエレメントであって、  [5] An element for hydrogen separation using the composite membrane material for hydrogen separation according to any one of claims 1 to 4,
多孔性内筒と、該多孔性内筒に外嵌された前記水素分離用の複合膜材料と、該複 合膜材料を外側で被包する多孔性外筒とを具え、  A porous inner cylinder, a composite membrane material for hydrogen separation externally fitted to the porous inner cylinder, and a porous outer cylinder enclosing the composite membrane material on the outside,
力つ多孔性内筒と、該複合膜材料と、多孔性外筒とは同心長さ方向に配されること を特徴とする水素分離用エレメント。  A hydrogen separation element, wherein the strong porous inner cylinder, the composite membrane material, and the porous outer cylinder are arranged in a concentric length direction.
[6] 前記多孔性外筒及び Z又は多孔性内筒は、パンチングプレート又は金網のいず れかで構成されたことを特徴とする請求項 5に記載の水素分離用エレメント。 6. The hydrogen separation element according to claim 5, wherein the porous outer cylinder and the Z or porous inner cylinder are formed of either a punching plate or a wire mesh.
[7] 水素分離用エレメントは、長さ方向の少なくとも一方の端面に、接続用の継ぎ金具 が設けられていることを特徴とする請求項 5又は 6に記載の水素分離用エレメント。 7. The hydrogen separation element according to claim 5 or 6, wherein the hydrogen separation element is provided with a connecting joint on at least one end face in the length direction.
[8] 前記水素分離膜は、水素を透過する前の混合ガスが流入する一次側の前記多孔 性外筒又は多孔性内筒と、前記保形メッシュとの間の空間内に、前記保形メッシュを 介することにより触媒を水素分離膜と接触させることなく該触媒を配置したことを特徴 とする請求項 5〜7のいずれかに記載の水素分離用エレメント。  [8] The hydrogen separation membrane has the shape retaining shape in a space between the porous outer tube or the porous inner tube on the primary side into which the mixed gas before permeating hydrogen flows and the shape retaining mesh. The element for hydrogen separation according to any one of claims 5 to 7, wherein the catalyst is disposed without contacting the catalyst with the hydrogen separation membrane through a mesh.
PCT/JP2006/318411 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation employing the same WO2007040034A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800360960A CN101277752B (en) 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation employing the same
US11/992,658 US8226751B2 (en) 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation using the same
GB0806301A GB2445492B (en) 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation using the same
KR1020087008857A KR101280790B1 (en) 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation employing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005286021 2005-09-30
JP2005-286021 2005-09-30
JP2006-244497 2006-09-08
JP2006244497A JP5395322B2 (en) 2005-09-30 2006-09-08 Hydrogen separation element

Publications (1)

Publication Number Publication Date
WO2007040034A1 true WO2007040034A1 (en) 2007-04-12

Family

ID=37906078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318411 WO2007040034A1 (en) 2005-09-30 2006-09-15 Composite membrane material for hydrogen separation and element for hydrogen separation employing the same

Country Status (6)

Country Link
US (1) US8226751B2 (en)
JP (1) JP5395322B2 (en)
KR (1) KR101280790B1 (en)
CN (1) CN101277752B (en)
GB (1) GB2445492B (en)
WO (1) WO2007040034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092353A1 (en) * 2007-06-11 2010-04-15 Ngk Insulators, Ltd. Hydrogen separation membrane and permselective membrane reactor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279885A (en) * 2009-06-03 2010-12-16 Asahi Kasei Chemicals Corp Gas separation device
US8568665B2 (en) 2010-12-28 2013-10-29 Nippon Seisen Co., Ltd. Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure
KR101285568B1 (en) * 2011-11-01 2013-07-15 한국에너지기술연구원 Multi layer membrane module for hydrogen separation
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices
KR101475679B1 (en) * 2012-12-14 2014-12-23 한국에너지기술연구원 Hydrogen membrane module for carbon dioxide capture
KR102130069B1 (en) 2013-09-06 2020-07-03 삼성전자주식회사 Separation membrane, hydrogen separation membrane including the separation membrane, and method manufacturing the separation membrane
DE112017005335T5 (en) * 2016-10-20 2019-07-04 Cummins Filtration Ip, Inc. Luftströmungskonditioniervorrichtung
KR102213792B1 (en) * 2017-12-29 2021-02-10 주식회사 금강씨엔티 A porous filter with a large amount of powder supported on metal or ceramics based structure and preparation method and use thereof
CN113260443B (en) * 2018-12-28 2023-06-13 日东电工株式会社 Filter pleat pack and air filter unit
US12128358B2 (en) * 2019-09-04 2024-10-29 Battelle Energy Alliance, Llc Methods of treating fluids using thermal gradient osmosis
AU2021333791B2 (en) * 2020-08-27 2024-03-21 Element 1 Corp. Hydrogen purification devices
US12187612B2 (en) 2021-06-15 2025-01-07 Element 1 Corp Hydrogen generation assemblies
US20240082780A1 (en) * 2022-09-14 2024-03-14 Tronic Purity, Inc. Method for purification of electronic gases and a purification device for the method
DE102023206019A1 (en) * 2023-06-27 2025-01-02 Forschungszentrum Jülich GmbH Structured membrane unit, manufacturing process and preparation process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097024A (en) * 1983-09-08 1985-05-30 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Hydrogen pervious wall
JPS6157159U (en) * 1984-09-21 1986-04-17
JPH08318142A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Hydrogen separation device, hydrogen separation wall and manufacturing method thereof
JP2000005580A (en) * 1998-06-19 2000-01-11 Nippon Metal Ind Co Ltd Composite hydrogen permeable membrane having pressure resistance, method of manufacturing and repairing the same
JP2002003204A (en) * 2000-06-15 2002-01-09 Toshiba Corp Fuel reformer
JP2003192302A (en) * 2001-12-26 2003-07-09 Sumitomo Seika Chem Co Ltd Hydrogen production apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266223A (en) * 1961-10-06 1966-08-16 Sinclair Research Inc Diffusion apparatus
US3238704A (en) * 1963-03-07 1966-03-08 Engelhard Ind Inc Diffusion purification of gases
US3447288A (en) * 1965-08-23 1969-06-03 Prototeck Inc Gas-diffusion assembly including thin hydrogen-permeable impervious foil
DE4110285A1 (en) * 1991-03-28 1992-10-01 Schwaebische Huettenwerke Gmbh FILTER OR CATALYST BODY
JPH05111622A (en) * 1991-10-23 1993-05-07 Nippon Millipore Kogyo Kk Production of filter element
DE19843306C2 (en) * 1998-09-22 2001-06-28 Heraeus Gmbh W C Process for producing a tubular hydrogen permeation membrane
US6183542B1 (en) * 1998-11-09 2001-02-06 Peter R. Bossard Method and apparatus for purifying hydrogen
JP4153623B2 (en) 1999-07-23 2008-09-24 アテネ株式会社 Gas separation membrane and method for producing the same
DE10044406A1 (en) 1999-10-19 2001-07-05 Ford Global Tech Inc Hydrogen separator and process for its manufacture
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generator for fuel cell and composite material for hydrogen separation
JP2001348205A (en) * 2000-06-02 2001-12-18 Mitsubishi Kakoki Kaisha Ltd Membrane reactor
JP2002239353A (en) 2001-02-16 2002-08-27 Sumitomo Electric Ind Ltd Hydrogen permeable structure
US6866693B2 (en) * 2002-06-06 2005-03-15 Shuetsutechnica Co., Ltd. Washable air filter for internal combustion engine
JP2004107109A (en) * 2002-09-13 2004-04-08 Honda Motor Co Ltd Hydrogen generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097024A (en) * 1983-09-08 1985-05-30 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Hydrogen pervious wall
JPS6157159U (en) * 1984-09-21 1986-04-17
JPH08318142A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Hydrogen separation device, hydrogen separation wall and manufacturing method thereof
JP2000005580A (en) * 1998-06-19 2000-01-11 Nippon Metal Ind Co Ltd Composite hydrogen permeable membrane having pressure resistance, method of manufacturing and repairing the same
JP2002003204A (en) * 2000-06-15 2002-01-09 Toshiba Corp Fuel reformer
JP2003192302A (en) * 2001-12-26 2003-07-09 Sumitomo Seika Chem Co Ltd Hydrogen production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092353A1 (en) * 2007-06-11 2010-04-15 Ngk Insulators, Ltd. Hydrogen separation membrane and permselective membrane reactor
US8747766B2 (en) * 2007-06-11 2014-06-10 Ngk Insulators, Ltd. Hydrogen separation membrane and permselective membrane reactor

Also Published As

Publication number Publication date
GB2445492B (en) 2011-04-13
US20100018397A1 (en) 2010-01-28
GB0806301D0 (en) 2008-05-14
KR20080047603A (en) 2008-05-29
US8226751B2 (en) 2012-07-24
GB2445492A (en) 2008-07-09
KR101280790B1 (en) 2013-07-05
CN101277752B (en) 2013-03-20
JP2007117992A (en) 2007-05-17
JP5395322B2 (en) 2014-01-22
CN101277752A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP5395322B2 (en) Hydrogen separation element
CA2455434C (en) Hydrogen purification devices, components and fuel processing systems containing the same
US6494937B1 (en) Hydrogen purification devices, components and fuel processing systems containing the same
US10476093B2 (en) Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
JP2004502622A (en) Hydrogen permeable metal film module and method of forming the same
JP6398020B2 (en) Membrane hydrogen purifier
US8226750B2 (en) Hydrogen purifier module with membrane support
JP2008155118A (en) Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane
WO2003035547A1 (en) Hydrogen purification module
JP2001162144A (en) Gas separator
JP4917787B2 (en) Hydrogen separation member and method for producing the same
KR102344813B1 (en) Device and Process for hydrogen production using pre-reformer and membrane reformer
JP3917709B2 (en) Flat plate hydrogen separation membrane module
JP5243690B2 (en) Hydrogen separation component
JP2008023496A (en) Manufacturing method of hydrogen separation membrane cell
JP4917786B2 (en) Hydrogen separation member and hydrogen separation module using the hydrogen separation member
JP2007245123A (en) Composite multilayer structure hydrogen permeable membrane and method for producing the same
US10189084B2 (en) Method and system for fabrication of hydrogen-permeable membranes
Edlund Engineering Scale‐up for Hydrogen Transport Membranes
Tosti et al. Pd-based metallic membranes for hydrogen separation and production
CA2494680A1 (en) Hydrogen purification devices, components and fuel processing systems containing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036096.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0806301

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060915

WWE Wipo information: entry into national phase

Ref document number: 0806301.8

Country of ref document: GB

Ref document number: 806301

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1020087008857

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06810203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11992658

Country of ref document: US