WO2007040033A1 - Cooling system, operation method for the cooling system, and plasma processing system using the cooling system - Google Patents
Cooling system, operation method for the cooling system, and plasma processing system using the cooling system Download PDFInfo
- Publication number
- WO2007040033A1 WO2007040033A1 PCT/JP2006/318385 JP2006318385W WO2007040033A1 WO 2007040033 A1 WO2007040033 A1 WO 2007040033A1 JP 2006318385 W JP2006318385 W JP 2006318385W WO 2007040033 A1 WO2007040033 A1 WO 2007040033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- gas
- compressor
- heat
- cooling system
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 253
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 126
- 239000003507 refrigerant Substances 0.000 claims abstract description 121
- 239000007789 gas Substances 0.000 claims abstract description 93
- 239000011261 inert gas Substances 0.000 claims description 4
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 14
- 239000000498 cooling water Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000009834 vaporization Methods 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
Definitions
- Cooling system operating method thereof and plasma processing system using the cooling system
- the present invention relates to a cooling system that cools a heat source with a refrigerant, an operating method thereof, and a plasma processing system using the cooling system
- a heat pump is a system that performs cooling or heating.
- heat of vaporization is used.
- the heat of vaporization is heat that the refrigerant absorbs from the surroundings when the refrigerant changes from liquid to gas.
- Heat pump also uses heat of condensation. Condensation heat is the heat that the refrigerant releases to the surroundings when it changes from gas to liquid.
- compressors and heat exchangers are used to utilize the heat of vaporization and condensation.
- the above-described heat pump is used in an internal combustion engine, a refrigerator, or the like. These usually have a built-in cooling system that also has a closed circuit force.
- liquid refrigerant such as chlorofluorocarbon gas is vaporized by adiabatic expansion.
- the compressor compresses the vaporized refrigerant in an adiabatic state. Thereby, the vaporized refrigerant is condensed and returned to the liquid refrigerant.
- Such a heat exchange cycle is repeated. According to the heat exchange cycle as described above, a large amount of heat can be exchanged efficiently.
- the surface areas of furnaces, tanks, and chimneys in large plants are very large.
- the heat of vaporization of the refrigerant flowing in the refrigerant pipe provided so as to meander along the surface is used.
- a force that causes rapid cooling by the heat of vaporization at a position near the inlet of the refrigerant pipe is used. Since the liquid refrigerant has already vaporized at a position near the outlet of the refrigerant pipe, the heat of vaporization Cooling is not performed.
- Patent Document 1 JP-A-1 193561
- Patent Document 2 Japanese Patent Laid-Open No. 2003-329355
- the conventional heat pump using the heat of vaporization and the heat of condensation in which the gas as described above is used as a refrigerant has the following problems.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to use a cooling system capable of uniformly cooling a large heat source, an operation method thereof, and the cooling system.
- V is to provide a plasma processing system.
- the cooling system of the present invention includes a compressor that compresses and sends gas refrigerant other than air to a level that does not liquefy, and a heat source that is cooled by the gas refrigerant when the compressed gas refrigerant passes through the compressor. It has.
- the system also includes a heat exchanger in which the gas refrigerant after absorbing heat from the heat source releases heat to the outside, and the gas refrigerant after releasing heat to the heat exchanger!
- a compressor tank, a heat source, a heat exchanger, and a buffer tank are connected in this order to form a closed circuit, and piping for circulating the gas refrigerant is provided.
- the heat source is cooled using the gas refrigerant having a small specific heat
- the cooling using the liquid refrigerant having a large specific heat is used to cool the heat source.
- the degree of uneven temperature distribution on the surface of the heat source can be reduced.
- the gas refrigerant circulates in the closed circuit, so that the above-described problems do not occur.
- the cooling system further includes another kaffa tank that temporarily stores the gaseous refrigerant between the compressor and the heat source, the flow rate of the gas supplied to the heat source is stabilized.
- the capacity power of the buffer tank described above is necessary for the gaseous refrigerant to circulate once in the closed circuit. If the amount of gas refrigerant discharged by the compressor is equal to or greater than the amount of gas refrigerant discharged, the risk of losing the gas refrigerant discharged by the compressor is reduced.
- the cooling system includes a replenishment pipe connected to the buffer tank so that the gas refrigerant can be replenished with an external force, and a discharge pipe connected to the buffer tank so that the gas refrigerant can be discharged to the outside. It is desirable to further include.
- the compressor has the capability of discharging a larger amount of gaseous refrigerant than the circulation amount of gaseous refrigerant necessary for cooling the heat source to the target temperature, the gaseous refrigerant to the heat source is discharged. If there is a shortage of supply, there will be no situation.
- the gaseous refrigerant contains nitrogen, oxygen, carbon dioxide, or an inert gas. Since these gaseous refrigerants are less likely to react with other substances, they are less likely to adversely affect the surrounding environment if the gaseous refrigerant leaks outside the closed circuit.
- the pipe, in the heat source acts as a cooling pipe
- the surface area of the cooling tubes is equal heat lm 3 Ah or 20 cm 2 or more and 750 cm 2 or less, it is possible to perform sufficient heat exchange.
- the heat exchange ⁇ obstructs the flow of the gaseous refrigerant necessary for cooling the heat source. What to do.
- the amount of gaseous refrigerant discharged by the compressor after the compressor is started and before the gaseous refrigerant circulates once in the closed circuit is reduced to the compressor. If the refrigerant supply path that can supply the refrigerant is further provided, the operation immediately after the compressor is started is stabilized.
- the cooling system of the present invention provides an exhaust valve that automatically exhausts the gas refrigerant in the buffer tank when the pressure of the gas refrigerant in the notch tank is a pressure that is approximately the upper limit of the suction pressure of the compressor.
- the pressure of the gas refrigerant in the buffer tank It is desirable to further include an intake valve that automatically sucks the gaseous refrigerant into the buffer tank when the pressure is almost the lower limit of the penetration pressure. According to this, it is possible to automatically ensure the safety of the notch tank and the proper operating state of the compressor.
- the plasma processing system of the present invention is a compressor that compresses and sends a gaseous refrigerant other than air so as not to be liquefied, and an apparatus that generates heat when performing a predetermined process using a plasma processing gas.
- the compressor processing device includes a plasma processing apparatus that is cooled by the gaseous refrigerant when the gaseous refrigerant that has been sent out passes.
- the system includes a heat exchanger in which the gas refrigerant after absorbing heat from the plasma processing apparatus releases heat to the outside, and the gas refrigerant after releasing heat to the outside in the heat exchanger. And a buffer tank for temporarily storing water.
- the system forms a closed circuit that connects the compressor, the heat source, the heat exchanger, and the buffer tank in this order, and includes a pipe for circulating the gaseous refrigerant in the closed circuit.
- the gas refrigerant also has one or more gas forces that do not react with the plasma processing gas.
- the operation method of the cooling system of the present invention is the above-described operation method of the cooling system, and when the compressor is started, the gas refrigerant pressure in the buffer tank is reduced to the buffer tank. After the step of sucking the gas refrigerant and the time longer than the time necessary for circulating the gas refrigerant in the closed circuit has elapsed, the pressure of the gas refrigerant in the buffer tank is set to a value that does not damage the compressor. And maintaining steps. According to this, since the state where the gaseous refrigerant is not supplied to the compressor does not occur, the compressor is prevented from being damaged.
- the present invention since a gas having a small specific heat is used as the refrigerant, variations in the temperature surface of the heat source hardly occur. In addition, since the gas refrigerant circulates in the closed circuit, an increase in running cost can be suppressed. In addition, since the type of gas can be arbitrarily selected, the heat source can be safely cooled if a gas with low risk is used according to the atmosphere around the heat source. Furthermore, since the cooling system of the present invention does not use the phase change between gas and liquid, the cooling capacity can be adjusted relatively easily. [0026]
- FIG. 1 is a diagram showing a configuration of a cooling system according to an embodiment.
- FIG. 2 is a diagram showing a compressor used in the cooling system of the embodiment.
- FIG. 3 is a diagram showing a configuration of a cooling system of another example of the embodiment.
- FIG. 4 is a diagram showing a heat source used in the cooling system of the embodiment.
- FIG. 5 is a diagram showing a heat exchanger used in the cooling system of the embodiment.
- FIG. 6 is a diagram showing a buffer tank used in the cooling system of the embodiment.
- the cooling system of the embodiment is used for cooling a heat source that needs to be cooled while maintaining a uniform temperature distribution on the surface, for example, a large heater.
- the heat source to be cooled is installed in an atmosphere that easily reacts with oxygen. Therefore, nitrogen or argon can be considered as the refrigerant of this cooling system.
- the refrigerant is appropriately selected according to the atmosphere around the heat source, and is not limited to the aforementioned refrigerant as long as it is a gas.
- each device used in the cooling system of the present embodiment is an example, and each device used in the cooling system of the present invention is not limited to the one described below.
- the cooling system 100 of the present embodiment includes a compressor 1 stored in a notch tank 4 for sucking in and sucking in the refrigerant, and compressing and feeding the refrigerant.
- Nitrogen is used as the refrigerant sent out by the compressor 1 in consideration of price and thermal conductivity. As nitrogen passes through heat source 2, it takes heat away from heat source 2 and cools heat source 2. Nitrogen deprived of heat from heat source 2 reaches heat exchanger 3. In the heat exchanger 3, the nitrogen releases heat to the outside. Thereby, the temperature of nitrogen falls. Then nitrogen is It reaches the noffer tank 4 and is temporarily stored.
- the compressor 1, the heat source 2, the heat exchanger 3, and the buffer tank 4 are connected in this order by the pipe 5 through which nitrogen flows, so that the nitrogen is not touched by the outside air.
- a closed circuit that circulates is configured.
- the refrigerant circulating in the closed circuit is a gas other than air that absorbs heat from a heat source that does not liquefy when circulating in the closed circuit, and releases the heat to the outside. Any gas may be used.
- the cooling system of the present embodiment since the heat source 2 having a large surface area is cooled using nitrogen having a small specific heat, a liquid having a large specific heat is used, or a phase change of the cooling medium. Compared with the case where the heat source is cooled by this, the degree of uneven temperature distribution on the surface of the heat source 2 can be reduced.
- nitrogen is used in an atmosphere that reacts with nitrogen, there is a risk that problems may occur due to the reaction between nitrogen and other substances.
- nitrogen is contained in a closed circuit. The above-mentioned problems are not likely to occur.
- the rotation of the rotating body lc that is rotated by a motor (not shown) or the like is transmitted to the piston la by a crank or the like.
- the piston la reciprocates in the cylinder le.
- nitrogen flowing through the pipe 5 is sucked into the cylinder le from the suction port If.
- the plate panel valve Id is opened by the increased pressure of nitrogen.
- nitrogen in the cylinder le is discharged from the discharge port lg to the pipe 5.
- the nitrogen exhaled by compressor 1 is a gas. That is, the compressor 1 compresses and discharges gaseous nitrogen to such an extent that it does not liquefy.
- the compressor 1 has an ability to discharge a larger amount of gas than the amount of gas circulation required for cooling the heat source 2 to a target temperature. Therefore, if the supply of nitrogen to heat source 2 is insufficient, a situation will not occur.
- the cooling system of the present embodiment separates the amount of nitrogen discharged by the compressor 1 while the nitrogen circulates once in the closed circuit after the compressor 1 is started, separately from the closed circuit.
- Another nitrogen supply path for supplying to the presser 1 is provided. Specifically, other nitrogen As shown in FIG. 1, the element supply path is a nitrogen replenishment pipe 8a connected to a notch tank 4. Therefore, immediately after the compressor 1 is started, the nitrogen replenishment control valve 80 a is opened, nitrogen is supplied from the nitrogen tank 200 into the buffer tank 4, and nitrogen is sequentially fed into the compressor 1. Therefore, the operation immediately after the compressor 1 starts is stable.
- the time for nitrogen to circulate once at a speed of lm 3 Zmin is 6 seconds.
- the heat quantity of about 50 KcalZcm 2 Zh needs to be uniformly removed from the large heater as the heat source 2. Therefore, if the temperature difference between the large heater and the refrigerant nitrogen ( ⁇ is 150 ° C), it is necessary to constantly circulate the nitrogen in the closed circuit at a speed of lm 3 Zmin. Is selected so that it can circulate nitrogen at a discharge rate of lm 3 / min or more, but the discharge rate of compressor 1 must be determined in consideration of the pressure loss of the entire pipe 5.
- the discharge amount of nitrogen from the compressor 1 is preferably at least 1.2 times the required circulation amount of nitrogen, but the value is more preferably 1.5 times or more. Considering the pressure loss caused by the 5 curved parts and the valves provided in the pipe 5, sufficient nitrogen circulation flow rate can be secured.
- gas temporarily accumulates between the compressor 1 and the heat source 2 and can withstand high pressure.
- Other koffa tanks 6 may be provided. According to this, the flow rate of the gas supplied to the heat source 2 is stabilized.
- the koffa tank 6 is provided as necessary, and is not an essential component of the present invention.
- the heat source 2 has a large surface area, as shown in FIG. 4, a pipe 5 through which nitrogen circulates is provided to meander. Nitrogen is fed from the compressor 1 to the meandering pipe 5 in the heat source 2 through the inlet 2a. The nitrogen that has passed through the heat source 2 is sent out to the pipe 5 through the outlet 2b.
- the cooling system 100 of the present embodiment since nitrogen having a small specific heat is used as the refrigerant, the heat exchange capacity of nitrogen near the inlet 2a of the heat source 2 and the heat exchange capacity of nitrogen near the outlet 2b of the heat source 2 There is almost no difference. Therefore, the temperature distribution on the surface of the heat source 2 is not uneven. Further, as shown in FIG.
- the heat exchanger 3 is provided so that the pipe 5 meanders.
- the nitrogen that has passed through the heat source 2 is sent to the meandering pipe 5 through the heat exchanger 3 through the inlet 3a, and releases heat to the outside while flowing through the meandering pipe 5.
- the heat of nitrogen is transmitted to the cooling water that flows from the inlet pipe 7a to the outlet pipe 7b. Further, nitrogen flowing in the heat exchanger 3 is discharged to the pipe 5 through the outlet 3b.
- the cooling water is stored in the cooling water tank 300 and is circulated between the cooling water tank 300 and the heat exchanger ⁇ 3 by the cooling water pump 310. Yes. Therefore, the temperature of the nitrogen that has passed through the heat exchanger 3 has decreased, and the temperature is such that heat can be taken from the heat source 2 again when passing through the heat source 2.
- the cooling water pump 310 is controlled by the control device 30.
- the cooling water tank 300 is provided with a cooling fan, and heat exchange is performed between the atmosphere and the cooling water.
- the pressure loss of nitrogen in the heat exchanger 3 is 1Z10 or less of the pressure loss of nitrogen in the entire closed circuit. Therefore, the heat exchanger 3 does not impede the nitrogen flow necessary for cooling the heat source 2.
- the surface area of the piping 5 as a cooling pipe in the heat source 2 is either One 750 cm 2 or less heat lm 3 per 20 cm 2 or more. Therefore, the heat source 2 has a sufficient heat exchange capability.
- the heat exchanger 3 needs to perform heat exchange in an amount excluding the amount of heat released from nitrogen in the pipe 5.
- the heat exchange 3 needs to be able to perform heat exchange of about 50 KcalZcm 2 Zh or more.
- the pipe 5 be made of a material having a high thermal conductivity such as copper or aluminum. As a result, the size of the heat exchange ⁇ 3 can be reduced.
- the pipe 5 is also connected to the koffa tank 4 and introduced into the buffer tank 4 through the nitrogen power inlet 4a which has finished the heat exchange in the heat exchange 3, and then the buffer tank 4 is stored. Then, every time the space in the cylinder le becomes negative due to the reciprocating motion of the piston la of the compressor 1, nitrogen is sucked into the compressor 1 from the kaffa tank 4. It is. Nitrogen in the notch tank 4 is sent out to the pipe 5 through the outlet 4b.
- the capacity force nitrogen of the buffer tank 4 described above is equal to or more than the amount of nitrogen discharged by the compressor 1 within the time required for one circulation of the closed circuit. More specifically, the capacity of the noffer tank 4 is 100L or more. The capacity of the buffer tank 4 greatly affects the stability of the closed circuit, so it is desirable that the safety factor is high. Specifically, the safety factor of the noffer tank 4 is preferably 2 or more. A safety factor of 2 means that a capacity of 200L is secured for the required capacity of 10 OL. According to the above-described configuration, the nitrogen discharged from the compressor 1 does not disappear in the buffer tank 4. For this reason, there is no situation where the compressor 1 continues to drive even though there is no nitrogen supplied to the compressor 1. As a result, the risk of damage to the compressor 1 is reduced.
- the notfer tank 4 is connected to a nitrogen replenishing pipe 8a for replenishing nitrogen from the outside and a nitrogen exhausting pipe 8b for discharging gas to the outside.
- the nitrogen replenishment pipe 8a and the nitrogen discharge pipe 8b are connected to a nitrogen tank 200 as shown in FIG.
- a nitrogen replenishment pump 210 is provided in the nitrogen replenishment pipe 8a.
- the nitrogen exhaust pipe 8b is provided with a nitrogen exhaust pump 220.
- the nitrogen supply pipe 8a and the nitrogen discharge pipe 8b are provided with a nitrogen supply control valve 80a and a nitrogen discharge control valve 80b, respectively.
- the nitrogen replenishment control valve 80a, the nitrogen discharge control valve 80b, the nitrogen replenishment pump 210, and the nitrogen discharge pump 220 are each controlled by the control device 30.
- the control device 30 receives a signal capable of specifying the measurement value of the pressure sensor 20 provided in the notch tank 4, and based on the signal, the nitrogen replenishment control valve 80a, the nitrogen discharge control valve 80b, and the nitrogen replenishment control valve
- the pump 210 and the nitrogen exhaust pump 220 are controlled.
- the control device 30 also controls the compressor 1.
- the control device 30 is the amount that the gas pressure in the buffer tank 4 has decreased due to the start of the compressor 1.
- the nitrogen replenishment control valve 80a is opened and the nitrogen replenishment pump 210 is driven.
- the control device 30 After a time longer than the time necessary for one circulation of nitrogen in the closed circuit has elapsed, the gas pressure in the kaffa tank 4 is such a value that does not damage the compressor 1, for example, positive pressure 0.5 atm.
- the opening and closing of the nitrogen replenishment control valve 80a and the nitrogen discharge control valve 80b and the driving states of the nitrogen replenishment pump 210 and the nitrogen discharge pump 220 are controlled.
- the control device 30 opens the nitrogen replenishment control valve 80a and drives the nitrogen replenishing pump 210 to supply the nitrogen replenishing piping. Nitrogen is replenished from the nitrogen tank 200 to the buffer tank 4 through 8a. If the amount of nitrogen in the notifier tank 4 is too large, the control device 30 opens the nitrogen discharge control valve 80b and drives the nitrogen discharge pump 220 to pass through the nitrogen discharge pipe 8b. Then, nitrogen is exhausted from the noffer tank 4 to the nitrogen tank 200. Therefore, the compressor 1 is prevented from being damaged because no state is generated unless nitrogen is supplied to the compressor 1.
- the control device 30 detects from the signal received from the pressure sensor 20 that the pressure of the nitrogen in the notch tank 4 is approximately the upper limit of the suction pressure of the compressor 1,
- the nitrogen replenishment control valve 80a is closed and the nitrogen discharge control valve 80b is opened, and the nitrogen discharge pump 220 is driven to automatically discharge the nitrogen in the buffer tank 4.
- the control device 30 detects that the pressure of nitrogen in the stopper tank 4 is a pressure almost equal to the suction pressure of the compressor 1 based on a signal received from the pressure sensor 20, the nitrogen discharge control valve 80b Is closed and the nitrogen replenishment control knob 80a is opened, and the nitrogen replenishment pump 210 can be driven to automatically suck nitrogen into the buffer tank 4.
- the upper limit value and the lower limit value described above are values determined for each type of the compressor 1, and if an amount of nitrogen within the range defined by these values is supplied into the buffer tank 4, , Compressor 1 and buffer tank 4 will not be damaged. Therefore, according to the above configuration, the safety of the koffa tank 4 and the proper operating state of the compressor 1 can be automatically ensured.
- oxygen, carbon dioxide, or an inert gas may be used in place of nitrogen as the refrigerant.
- an inert gas for example, argon
- these gases are less likely to react with other substances, they are less likely to adversely affect the surrounding environment if the gas leaks outside the closed circuit.
- the cooling efficiency is taken into consideration, and the reaction with the gas that has been used in the plasma processing apparatus. It is desirable to use a gas refrigerant. According to this, even if the gas used for the plasma processing in the plasma processing apparatus leaks out of the plasma processing apparatus power and the gaseous refrigerant leaks out from the piping 5 of the cooling system, the gases react with each other. (For example, a chemical reaction) will not cause problems. Therefore, the safety of the plasma processing system using the above-described cooling system is improved.
- the gas refrigerant may be one kind of gas force or may be composed of multiple kinds of gases! /.
- the cooling system 100 of the above-described embodiment when the large heat source 2 is cooled, the high temperature heat source 2 can be cooled without adopting a large-scale structure. As a result, safety can be ensured and the heat source can be cooled uniformly without damaging the surrounding area.
- the control device 30 opens the valve 10 provided between the buffer tank 4 and the compressor 1 shown in FIG.
- nitrogen is supplied from the nitrogen replenishment pipe 8a to the buffer tank 4 in order to prevent the compressor 1 from operating in a negative pressure state.
- the compressor 1 is likely to operate in a negative pressure state, so it is necessary to supply nitrogen to the notch tank 4. is there.
- the nitrogen discharge control valve 80b is opened, and the nitrogen in the notch tank 4 is discharged. As a result, the compressor 1 can be operated stably.
- the cooling system of the present embodiment nitrogen as a refrigerant is circulated and used, and there is no need to supply a new refrigerant. Therefore, the running cost is only the cost of the power consumption of the compressor 1, so that the cost can be greatly reduced compared to the cooling system that sequentially discharges nitrogen.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
A cooling system in which a compressor (1), a heat source (2), a heat exchanger (3), and a buffer tank (4) are connected in that order by piping (5) to form a closed circuit. In the closed circuit, nitrogen as the refrigerant is circulated without being in contact with the outside air. The refrigerant is sufficient if only it is gas (refrigerant) other than air, absorbs heat from the heat source (2) without being liquefied when circulated in the closed circuit, and discharges the heat to the outside at the heat exchanger (3).
Description
明 細 書 Specification
冷却システム、その運転方法およびその冷却システムが用いられたプラズ マ処理システム 技術分野 Cooling system, operating method thereof and plasma processing system using the cooling system
[0001] 本発明は、冷媒によって熱源を冷却する冷却システム、その運転方法およびその 冷却システムが用いられたプラズマ処理システム The present invention relates to a cooling system that cools a heat source with a refrigerant, an operating method thereof, and a plasma processing system using the cooling system
に関するものである。 It is about.
背景技術 Background art
[0002] 従来から、ヒートポンプが用いられている。ヒートポンプとは、冷却または加熱を行な うシステムである。ヒートポンプにおいては、気化熱が利用されている。気化熱とは、 冷媒が液体から気体に変化するときに、冷媒が周囲から吸収する熱である。また、ヒ ートポンプにおいては、凝縮熱も利用されている。凝縮熱とは、冷媒が気体から液体 へ変化するときに、冷媒が周囲へ放出する熱である。なお、ヒートポンプにおいては、 前述の気化熱および凝縮熱を利用するためにコンプレッサおよび熱交換器等が利 用されている。 [0002] Conventionally, heat pumps have been used. A heat pump is a system that performs cooling or heating. In heat pumps, heat of vaporization is used. The heat of vaporization is heat that the refrigerant absorbs from the surroundings when the refrigerant changes from liquid to gas. Heat pump also uses heat of condensation. Condensation heat is the heat that the refrigerant releases to the surroundings when it changes from gas to liquid. In heat pumps, compressors and heat exchangers are used to utilize the heat of vaporization and condensation.
[0003] より具体的には、前述のヒートポンプは、内燃機関または冷蔵庫等に用いられてい る。これらにおいては、通常、閉回路力もなる冷却システムが内蔵されている。冷却シ ステムにおいては、フロンガス等の液体冷媒が断熱膨張によって気化する。それによ り、吸熱作用が生じる。また、コンプレッサは、気化した冷媒を断熱状態で圧縮する。 それにより、気化した冷媒は凝縮して液体冷媒に戻る。このような熱交換サイクルが 繰り返される。前述のような熱交換サイクルによれば、大きな熱量の交換を効率的に 行なうことができる。 [0003] More specifically, the above-described heat pump is used in an internal combustion engine, a refrigerator, or the like. These usually have a built-in cooling system that also has a closed circuit force. In the cooling system, liquid refrigerant such as chlorofluorocarbon gas is vaporized by adiabatic expansion. As a result, an endothermic effect occurs. The compressor compresses the vaporized refrigerant in an adiabatic state. Thereby, the vaporized refrigerant is condensed and returned to the liquid refrigerant. Such a heat exchange cycle is repeated. According to the heat exchange cycle as described above, a large amount of heat can be exchanged efficiently.
[0004] 一方、大型プラントにおける炉、槽、および煙突などの表面積は非常に大きい。こ の大きな表面を有する大型プラントの冷却においては、その表面に沿って蛇行する ように設けられた冷媒配管内を流れる冷媒の気化熱が用いられる。この場合、冷媒 配管の入口に近い位置においては、気化熱による急激な冷却が行なわれる力 冷媒 配管の出口に近い位置においては、既に液体冷媒が気化しているため、気化熱によ
る冷却が行なわれない。そのため、大型プラント等は、前述のような液体と気体との相 変化を伴う熱交換サイクルを用いて冷却されると、その表面温度の分布に極端なば らつきが生じてしまう。したがって、特定の大型プラント設備を冷却するためのヒートポ ンプの冷媒としては、比熱が小さ 、窒素または不活性ガスのアルゴンなど気体が用 いられている。 [0004] On the other hand, the surface areas of furnaces, tanks, and chimneys in large plants are very large. In the cooling of a large plant having this large surface, the heat of vaporization of the refrigerant flowing in the refrigerant pipe provided so as to meander along the surface is used. In this case, a force that causes rapid cooling by the heat of vaporization at a position near the inlet of the refrigerant pipe. Since the liquid refrigerant has already vaporized at a position near the outlet of the refrigerant pipe, the heat of vaporization Cooling is not performed. For this reason, when a large plant or the like is cooled by using a heat exchange cycle that involves a phase change between a liquid and a gas as described above, extreme variations in the surface temperature distribution will occur. Therefore, as a refrigerant for a heat pump for cooling a specific large plant facility, a gas such as nitrogen or an inert gas argon is used because of its low specific heat.
特許文献 1 :特開平 1 193561号公報 Patent Document 1: JP-A-1 193561
特許文献 2:特開 2003 - 329355号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-329355
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 上記のような気体が冷媒として使用される従来の気化熱および凝縮熱を利用するヒ ートポンプは、次のような 、くつかの問題点を有して 、る。 [0005] The conventional heat pump using the heat of vaporization and the heat of condensation in which the gas as described above is used as a refrigerant has the following problems.
[0006] まず、ヒートポンプの閉回路において気体が熱源を冷却するための冷媒として用い られる場合を考える。この場合には、気化熱および凝縮熱を利用して冷却が行なわ れると、冷却管の入口から出口まで間において、気体がすべて液体に変化してしまう ことがある。この場合には、冷却管の位置によって冷媒の吸熱能力が大きく異なって しなう。そのため、冷却管内の温度分布に大きなむらが生じてしまう。したがって、熱 源を均一に冷却することができな!/、。 First, consider a case where gas is used as a coolant for cooling a heat source in a closed circuit of a heat pump. In this case, when cooling is performed using the heat of vaporization and heat of condensation, all the gas may change into a liquid between the inlet and outlet of the cooling pipe. In this case, the heat absorption capacity of the refrigerant differs greatly depending on the position of the cooling pipe. Therefore, large unevenness occurs in the temperature distribution in the cooling pipe. Therefore, the heat source cannot be cooled uniformly! /.
[0007] 次に、気体が、閉回路を循環するのではなぐ開回路を流れた後、順次排出される 方式によって、熱源を冷却する場合を考える。一般に、気体は水のような液体に比べ て極めて比熱が小さい。そのため、前述の場合には、開回路の形態によっては、大 量の気体を排出することが必要になる。したがって、気体の消費量が極めて大きくな る。その結果、ヒートポンプのランニングコストが大幅に増加してしまう。なお、この気 体を他の用途のために再利用すること可能である力 気体の再利用のための設備は 大規模であるため、コスト面での不利益が大きい。 [0007] Next, consider a case in which the heat source is cooled by a method in which gas flows through an open circuit rather than circulating in a closed circuit and then sequentially discharged. In general, a gas has a much lower specific heat than a liquid such as water. Therefore, in the case described above, depending on the form of the open circuit, it is necessary to discharge a large amount of gas. Therefore, the consumption of gas becomes extremely large. As a result, the running cost of the heat pump is greatly increased. This gas can be reused for other purposes. The equipment for reusing the power gas is large, so there is a large cost penalty.
[0008] 次に、通常の冷却水を冷媒として用いて熱源を冷却する場合を考える。この場合に は、水の比熱が大きいため、大型の熱源の表面温度の分布のばらつきが大きくなる。 したがって、このような冷媒として水を用いる冷却システムは、熱源を均一に冷却する 冷却システムとしては適さない。また、熱源が真空雰囲気内に設置されている場合お
よび周辺雰囲気に水と反応し易!ヽ物質が存在する場合には、冷却管から水が漏れる と、真空槽が大気圧以上に加圧されるために生じる水蒸気爆発および漏洩した水と 周辺雰囲気との反応による冷却システムの周辺部の破損などが発生するおそれがあ る。 Next, consider a case where the heat source is cooled using normal cooling water as a refrigerant. In this case, since the specific heat of water is large, the variation in the surface temperature distribution of the large heat source becomes large. Therefore, such a cooling system using water as the refrigerant is not suitable as a cooling system for uniformly cooling the heat source. If the heat source is installed in a vacuum atmosphere Easily reacts with water in the surrounding atmosphere!ヽ In the presence of dredged material, if water leaks from the cooling pipe, the water vapor explosion that occurs because the vacuum chamber is pressurized above atmospheric pressure, and the reaction of the leaked water with the surrounding atmosphere causes There is a risk of damage.
[0009] また、金型保温器のように、加圧水を用いて温度制御する場合を考える。この場合 、 160°C以上の温度の熱源を冷却することは原理的に不可能である。また、上記と同 様に、水蒸気爆発および冷却システムの周辺部の破損などのおそれがある。 [0009] Further, let us consider a case where temperature control is performed using pressurized water as in a mold incubator. In this case, it is impossible in principle to cool a heat source having a temperature of 160 ° C. or higher. In addition, as above, there is a risk of steam explosion and damage to the periphery of the cooling system.
[0010] 本発明は、上述の問題に鑑みてなされたものであり、その目的は、大型の熱源を均 一に冷却することができる冷却システム、その運転方法およびその冷却システムが用 [0010] The present invention has been made in view of the above-described problems, and an object of the present invention is to use a cooling system capable of uniformly cooling a large heat source, an operation method thereof, and the cooling system.
V、られたプラズマ処理システムを提供することである。 V, is to provide a plasma processing system.
課題を解決するための手段 Means for solving the problem
[0011] 本発明の冷却システムは、空気以外の気体冷媒を液化しない程度に圧縮して送り 出すコンプレッサと、コンプレッサ力 送り出されてきた気体冷媒が通過するときに、 気体冷媒によって冷却される熱源とを備えている。また、そのシステムは、熱源から熱 を吸収した後の気体冷媒が外部へ熱を放出する熱交換器と、熱交換器にお!/、て熱 を外部へ放出した後の気体冷媒を一時的に貯留するノ ッファタンクと、コンプレッサ、 熱源、熱交換器、およびバッファタンクをこの順番で連結し閉回路を構成し、気体冷 媒を循環させるための配管とを備えている。 [0011] The cooling system of the present invention includes a compressor that compresses and sends gas refrigerant other than air to a level that does not liquefy, and a heat source that is cooled by the gas refrigerant when the compressed gas refrigerant passes through the compressor. It has. The system also includes a heat exchanger in which the gas refrigerant after absorbing heat from the heat source releases heat to the outside, and the gas refrigerant after releasing heat to the heat exchanger! A compressor tank, a heat source, a heat exchanger, and a buffer tank are connected in this order to form a closed circuit, and piping for circulating the gas refrigerant is provided.
[0012] 上記の構成によれば、比熱が小さな気体冷媒を用いて熱源を冷却するため、大き な表面を有する熱源を冷却する場合に、比熱が大きな液体冷媒を用いて熱源を冷 却する冷却システムまたは冷媒の相変化によって熱源を冷却する冷却システムに比 較して、熱源の表面の温度分布のむらが生じる度合いを低減することできる。また、 冷媒として気体が用いられると、気体と他の物質とが反応することに起因する不具合 が生じるおそれがある。し力しながら、上記の構成によれば、気体冷媒は閉回路内を 循環するため、前述の不具合が生じるおそれがない。 [0012] According to the above configuration, since the heat source is cooled using the gas refrigerant having a small specific heat, when the heat source having a large surface is cooled, the cooling using the liquid refrigerant having a large specific heat is used to cool the heat source. Compared to a cooling system that cools the heat source by a system or refrigerant phase change, the degree of uneven temperature distribution on the surface of the heat source can be reduced. In addition, when gas is used as the refrigerant, there is a risk that problems caused by the reaction between the gas and other substances may occur. However, according to the above-described configuration, the gas refrigerant circulates in the closed circuit, so that the above-described problems do not occur.
[0013] また、冷却システムがコンプレッサと熱源との間に気体冷媒を一時的に貯留する他 のノ ッファタンクをさらに備えていれば、熱源に供給される気体の流量が安定する。 [0013] Further, if the cooling system further includes another kaffa tank that temporarily stores the gaseous refrigerant between the compressor and the heat source, the flow rate of the gas supplied to the heat source is stabilized.
[0014] また、前述のバッファタンクの容量力 気体冷媒が閉回路を 1回循環するために要
する時間内にコンプレッサが吐出する気体冷媒の量以上であれば、コンプレッサが 吐出する気体冷媒がなくってしまうおそれが低減される。 [0014] Further, the capacity power of the buffer tank described above is necessary for the gaseous refrigerant to circulate once in the closed circuit. If the amount of gas refrigerant discharged by the compressor is equal to or greater than the amount of gas refrigerant discharged, the risk of losing the gas refrigerant discharged by the compressor is reduced.
[0015] また、冷却システムは、気体冷媒を外部力も補充し得るようにバッファタンクに接続 された補充用配管と、気体冷媒を外部へ排出し得るようにバッファタンクに接続され た排出用配管とをさらに備えていることが望ましい。 [0015] Further, the cooling system includes a replenishment pipe connected to the buffer tank so that the gas refrigerant can be replenished with an external force, and a discharge pipe connected to the buffer tank so that the gas refrigerant can be discharged to the outside. It is desirable to further include.
[0016] 上記の構成によれば、ノ ッファタンク内の気体冷媒の量が少な過ぎる場合には、補 充用配管を介して、外部からバッファタンクへ気体冷媒を補充することができ、ノ ッフ ァタンク内の気体冷媒の量が多過ぎる場合には、排出用配管を介して、ノ ッファタン クから外部へ気体冷媒を排出することができる。 [0016] According to the above configuration, when the amount of the gaseous refrigerant in the notch tank is too small, it is possible to replenish the gaseous refrigerant from the outside to the buffer tank via the supplementary piping. When the amount of the gaseous refrigerant in the inside is too large, the gaseous refrigerant can be discharged from the notifier tank to the outside through the discharge pipe.
[0017] また、コンプレッサが、熱源を目標とする温度まで冷却するために必要な気体冷媒 の循環量よりも大きな量の気体冷媒を吐出する能力を有していれば、熱源への気体 冷媒の供給が不足すると 、う事態が生じな 、。 [0017] Further, if the compressor has the capability of discharging a larger amount of gaseous refrigerant than the circulation amount of gaseous refrigerant necessary for cooling the heat source to the target temperature, the gaseous refrigerant to the heat source is discharged. If there is a shortage of supply, there will be no situation.
[0018] また、気体冷媒が、窒素、酸素、二酸ィ匕炭素または不活性ガスを含んでいることが 望ましい。これらの気体冷媒は、他の物質と反応するおそれが低いため、気体冷媒 が閉回路の外部に漏れた場合に、気体冷媒が周囲環境へ悪影響を与えるおそれが 低い。 [0018] Further, it is desirable that the gaseous refrigerant contains nitrogen, oxygen, carbon dioxide, or an inert gas. Since these gaseous refrigerants are less likely to react with other substances, they are less likely to adversely affect the surrounding environment if the gaseous refrigerant leaks outside the closed circuit.
[0019] また、配管は、熱源においては冷却管として機能し、冷却管の表面積が熱源 lm3あ たり 20cm2以上かつ 750cm2以下であれば、十分な熱交換を行なうことができる。 [0019] Moreover, the pipe, in the heat source acts as a cooling pipe, the surface area of the cooling tubes is equal heat lm 3 Ah or 20 cm 2 or more and 750 cm 2 or less, it is possible to perform sufficient heat exchange.
[0020] また、熱交換器における気体冷媒の圧力損失が閉回路全体における気体冷媒の 圧力損失の 1Z10以下であれば、熱交^^が熱源の冷却のために必要な気体冷媒 の流れを阻害することはな 、。 [0020] Further, if the pressure loss of the gaseous refrigerant in the heat exchanger is 1Z10 or less of the pressure loss of the gaseous refrigerant in the entire closed circuit, the heat exchange ^^ obstructs the flow of the gaseous refrigerant necessary for cooling the heat source. What to do.
[0021] また、本発明の冷却システム力 閉回路とは別に、コンプレッサが起動された後、気 体冷媒が閉回路内を 1回循環するまでの間にコンプレッサが吐出する量の気体冷媒 をコンプレッサに供給し得る冷媒供給経路をさらに備えて 、れば、コンプレッサの起 動直後の運転が安定する。 [0021] In addition to the cooling system power closed circuit of the present invention, the amount of gaseous refrigerant discharged by the compressor after the compressor is started and before the gaseous refrigerant circulates once in the closed circuit is reduced to the compressor. If the refrigerant supply path that can supply the refrigerant is further provided, the operation immediately after the compressor is started is stabilized.
[0022] また、本発明の冷却システムは、ノ ッファタンク内の気体冷媒の圧力がコンプレッサ の吸い込み圧力のほぼ上限値の圧力である場合に、バッファタンク内の気体冷媒を 自動的に排気する排気弁と、バッファタンク内の気体冷媒の圧力がコンプレッサの吸
い込み圧力のほぼ下限値の圧力である場合に、バッファタンク内へ気体冷媒を自動 的に吸気する吸気弁とをさらに備えていることが望ましい。これによれば、ノ ッファタ ンクの安全性およびコンプレッサの適正な運転状態を自動的に確保することができる [0022] In addition, the cooling system of the present invention provides an exhaust valve that automatically exhausts the gas refrigerant in the buffer tank when the pressure of the gas refrigerant in the notch tank is a pressure that is approximately the upper limit of the suction pressure of the compressor. And the pressure of the gas refrigerant in the buffer tank It is desirable to further include an intake valve that automatically sucks the gaseous refrigerant into the buffer tank when the pressure is almost the lower limit of the penetration pressure. According to this, it is possible to automatically ensure the safety of the notch tank and the proper operating state of the compressor.
[0023] 本発明のプラズマ処理システムは、空気以外の気体冷媒を液化しない程度に圧縮 して送り出すコンプレッサと、プラズマ処理用の気体を用いて所定の処理を行なうとき に熱を発する装置であって、コンプレッサ力 送り出されてきた気体冷媒が通過する ときに、気体冷媒によって冷却されるプラズマ処理装置とを備えている。また、そのシ ステムは、プラズマ処理装置力 熱を吸収した後の前記気体冷媒が外部へ熱を放出 する熱交換器と、熱交換器にお 、て熱を外部へ放出した後の前記気体冷媒を一時 的に貯留するバッファタンクとを備えている。さらに、そのシステムは、コンプレッサ、 熱源、熱交^^、およびバッファタンクをこの順番で連結する閉回路を構成し、その 閉回路において気体冷媒を循環させるための配管を備えている。また、気体冷媒は 、プラズマ処理用の気体とは反応しない 1または 2以上の気体力もなつている。 [0023] The plasma processing system of the present invention is a compressor that compresses and sends a gaseous refrigerant other than air so as not to be liquefied, and an apparatus that generates heat when performing a predetermined process using a plasma processing gas. The compressor processing device includes a plasma processing apparatus that is cooled by the gaseous refrigerant when the gaseous refrigerant that has been sent out passes. In addition, the system includes a heat exchanger in which the gas refrigerant after absorbing heat from the plasma processing apparatus releases heat to the outside, and the gas refrigerant after releasing heat to the outside in the heat exchanger. And a buffer tank for temporarily storing water. In addition, the system forms a closed circuit that connects the compressor, the heat source, the heat exchanger, and the buffer tank in this order, and includes a pipe for circulating the gaseous refrigerant in the closed circuit. The gas refrigerant also has one or more gas forces that do not react with the plasma processing gas.
[0024] 本発明の冷却システムの運転方法は、前述の冷却システムの運転方法であって、 コンプレッサが起動されたときに、バッファタンク内の気体冷媒の圧力が低下した分 だけ、バッファタンク内へ気体冷媒を吸引するステップと、閉回路において気体冷媒 力 回循環するために必要な時間以上の時間が経過した後、バッファタンク内の気 体冷媒の圧力をコンプレッサが損傷しな 、程度の値に維持するステップとを備えて ヽ る。これによれば、コンプレッサに気体冷媒が供給されない状態が発生しないため、 コンプレッサが損傷することが防止される。 [0024] The operation method of the cooling system of the present invention is the above-described operation method of the cooling system, and when the compressor is started, the gas refrigerant pressure in the buffer tank is reduced to the buffer tank. After the step of sucking the gas refrigerant and the time longer than the time necessary for circulating the gas refrigerant in the closed circuit has elapsed, the pressure of the gas refrigerant in the buffer tank is set to a value that does not damage the compressor. And maintaining steps. According to this, since the state where the gaseous refrigerant is not supplied to the compressor does not occur, the compressor is prevented from being damaged.
発明の効果 The invention's effect
[0025] 本発明によれば、冷媒として比熱が小さい気体が用いられるため、熱源の温度表 面のばらつきが生じ難い。また、閉回路内を気体冷媒が循環するため、ランニングコ ストの増加を抑制することができる。また、気体の種類は任意に選択され得るものであ るため、熱源の周囲の雰囲気に応じて、危険性が低い気体を使用すれば、安全に熱 源を冷却することができる。さらに、本発明の冷却システムは、気体と液体との相変化 を利用するものではないため、比較的簡単に冷却能力を調整することができる。
[0026] この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連し て理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。 [0025] According to the present invention, since a gas having a small specific heat is used as the refrigerant, variations in the temperature surface of the heat source hardly occur. In addition, since the gas refrigerant circulates in the closed circuit, an increase in running cost can be suppressed. In addition, since the type of gas can be arbitrarily selected, the heat source can be safely cooled if a gas with low risk is used according to the atmosphere around the heat source. Furthermore, since the cooling system of the present invention does not use the phase change between gas and liquid, the cooling capacity can be adjusted relatively easily. [0026] The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention taken in conjunction with the accompanying drawings.
図面の簡単な説明 Brief Description of Drawings
[0027] [図 1]実施の形態の冷却システムの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a cooling system according to an embodiment.
[図 2]実施の形態の冷却システムに用いられるコンプレッサを示す図である。 FIG. 2 is a diagram showing a compressor used in the cooling system of the embodiment.
[図 3]実施の形態の他の例の冷却システムの構成を示す図である。 FIG. 3 is a diagram showing a configuration of a cooling system of another example of the embodiment.
[図 4]実施の形態の冷却システムに用いられる熱源を示す図である。 FIG. 4 is a diagram showing a heat source used in the cooling system of the embodiment.
[図 5]実施の形態の冷却システムに用いられる熱交換器を示す図である。 FIG. 5 is a diagram showing a heat exchanger used in the cooling system of the embodiment.
[図 6]実施の形態の冷却システムに用いられるバッファタンクを示す図である。 FIG. 6 is a diagram showing a buffer tank used in the cooling system of the embodiment.
符号の説明 Explanation of symbols
[0028] 1 コンプレッサ、 2 熱源(大型ヒータ)、 3 熱交^^、 4 バッファタンク。 [0028] 1 compressor, 2 heat source (large heater), 3 heat exchanger ^^, 4 buffer tank.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 図面を参照しながら、本発明の実施の形態の冷却システムを説明する。 [0029] A cooling system according to an embodiment of the present invention will be described with reference to the drawings.
実施の形態の冷却システムは、表面の温度分布を均一に維持しながら冷却するこ とが必要な熱源、たとえば、大型ヒータの冷却のために用いられる。また、実施の形 態においては、冷却される熱源は、酸素と反応し易い雰囲気中に設置されているも のとする。そのため、この冷却システムの冷媒としては、窒素またはアルゴン等が考え られる。しカゝしながら、冷媒は、熱源の周囲の雰囲気に応じて適宜選択されるもので あり、気体であれば、前述の冷媒に限定されるものではない。また、本実施の形態の 冷却システムにおいて用いられる各機器は一例であって、本発明の冷却システムに 用いられる各機器は、以下説明されるものに限定されない。 The cooling system of the embodiment is used for cooling a heat source that needs to be cooled while maintaining a uniform temperature distribution on the surface, for example, a large heater. In the embodiment, the heat source to be cooled is installed in an atmosphere that easily reacts with oxygen. Therefore, nitrogen or argon can be considered as the refrigerant of this cooling system. However, the refrigerant is appropriately selected according to the atmosphere around the heat source, and is not limited to the aforementioned refrigerant as long as it is a gas. Moreover, each device used in the cooling system of the present embodiment is an example, and each device used in the cooling system of the present invention is not limited to the one described below.
[0030] 図 1を用いて、実施の形態の冷却システム 100の全体構成を説明する。 [0030] The overall configuration of the cooling system 100 of the embodiment will be described with reference to FIG.
本実施の形態の冷却システム 100は、図 1に示すように、ノ ッファタンク 4内に貯留 されて 、る冷媒を吸!、込み、その冷媒を圧縮して送り出すコンプレッサ 1を備えて ヽ る。コンプレッサ 1が送り出す冷媒としては、価格および熱伝導率を考慮して、窒素が 用いられている。窒素は、熱源 2を通過するときに、熱源 2から熱を奪い、熱源 2を冷 却する。熱源 2から熱を奪った窒素は、熱交換器 3へ至る。熱交換器 3において、窒 素は、外部へ熱を放出する。それにより、窒素の温度は低下する。その後、窒素は、
ノ ッファタンク 4に至り、一時的に貯留される。 As shown in FIG. 1, the cooling system 100 of the present embodiment includes a compressor 1 stored in a notch tank 4 for sucking in and sucking in the refrigerant, and compressing and feeding the refrigerant. Nitrogen is used as the refrigerant sent out by the compressor 1 in consideration of price and thermal conductivity. As nitrogen passes through heat source 2, it takes heat away from heat source 2 and cools heat source 2. Nitrogen deprived of heat from heat source 2 reaches heat exchanger 3. In the heat exchanger 3, the nitrogen releases heat to the outside. Thereby, the temperature of nitrogen falls. Then nitrogen is It reaches the noffer tank 4 and is temporarily stored.
[0031] また、本実施の形態においては、コンプレッサ 1、熱源 2、熱交換器 3、およびバッフ ァタンク 4が、この順番で、窒素が流れる配管 5によって接続されて、窒素が外気に触 れずに循環する閉回路が構成されている。なお、閉回路内を循環する冷媒は、空気 以外の気体であって、閉回路を循環するときに、液ィ匕することなぐ熱源から熱を吸 収し、その熱を外部へ放出する気体でれば、いかなる気体であってもよい。 [0031] Further, in the present embodiment, the compressor 1, the heat source 2, the heat exchanger 3, and the buffer tank 4 are connected in this order by the pipe 5 through which nitrogen flows, so that the nitrogen is not touched by the outside air. A closed circuit that circulates is configured. Note that the refrigerant circulating in the closed circuit is a gas other than air that absorbs heat from a heat source that does not liquefy when circulating in the closed circuit, and releases the heat to the outside. Any gas may be used.
[0032] 前述のような本実施の形態の冷却システムによれば、比熱が小さな窒素を用いて 表面積が大きな熱源 2を冷却するため、比熱が大きな液体を用いる場合、または、冷 媒の相変化によって熱源を冷却する場合に比較して、熱源 2の表面の温度分布のむ らが生じる度合いを低減することできる。また、窒素と反応する雰囲気中で窒素が用 V、られると、窒素と他の物質とが反応することに起因する不具合が生じるおそれがあ る力 本実施の形態においては、窒素は閉回路内を循環するため、前述の不具合が 生じるおそれがない。 [0032] According to the cooling system of the present embodiment as described above, since the heat source 2 having a large surface area is cooled using nitrogen having a small specific heat, a liquid having a large specific heat is used, or a phase change of the cooling medium. Compared with the case where the heat source is cooled by this, the degree of uneven temperature distribution on the surface of the heat source 2 can be reduced. In addition, if nitrogen is used in an atmosphere that reacts with nitrogen, there is a risk that problems may occur due to the reaction between nitrogen and other substances. In this embodiment, nitrogen is contained in a closed circuit. The above-mentioned problems are not likely to occur.
[0033] たとえば、コンプレッサ 1においては、図 2に示すように、モータ(図示せず)等によつ て回転する回転体 lcの回転がクランク等によってピストン laに伝達される。それによ り、シリンダ le内では、ピストン laが往復運動する。また、図 1において矢印で示すよ うに、配管 5を流れる窒素が、吸込口 Ifからシリンダ le内へ吸い込まれる。シリンダ le 内では、窒素がピストン laによって圧縮される。その結果、圧力が高まった窒素によ つて板パネ弁 Idが開放される。それにより、図 2において矢印で示すように、シリンダ le内の窒素が吐出口 lgから配管 5へ吐き出される。コンプレッサ 1が吐き出す窒素 は、気体である。つまり、コンプレッサ 1は、気体の窒素を液化させない程度に圧縮し て吐き出す。 [0033] For example, in the compressor 1, as shown in FIG. 2, the rotation of the rotating body lc that is rotated by a motor (not shown) or the like is transmitted to the piston la by a crank or the like. As a result, the piston la reciprocates in the cylinder le. Further, as indicated by an arrow in FIG. 1, nitrogen flowing through the pipe 5 is sucked into the cylinder le from the suction port If. In the cylinder le, nitrogen is compressed by the piston la. As a result, the plate panel valve Id is opened by the increased pressure of nitrogen. Thereby, as indicated by an arrow in FIG. 2, nitrogen in the cylinder le is discharged from the discharge port lg to the pipe 5. The nitrogen exhaled by compressor 1 is a gas. That is, the compressor 1 compresses and discharges gaseous nitrogen to such an extent that it does not liquefy.
[0034] また、コンプレッサ 1は、熱源 2を目標とする温度まで冷却するために必要な気体の 循環量よりも大きな量の気体を吐出する能力を有している。したがって、熱源 2への 窒素の供給が不足すると 、う事態が生じな 、。 [0034] Further, the compressor 1 has an ability to discharge a larger amount of gas than the amount of gas circulation required for cooling the heat source 2 to a target temperature. Therefore, if the supply of nitrogen to heat source 2 is insufficient, a situation will not occur.
[0035] また、本実施の形態の冷却システムは、閉回路とは別に、コンプレッサ 1が起動され た後、窒素が閉回路内を 1回循環する間にコンプレッサ 1が吐出する量の窒素をコン プレッサ 1に供給するための他の窒素供給経路を備えている。具体的には、他の窒
素供給経路は、図 1に示すように、ノ ッファタンク 4に接続されている窒素補充用配管 8aである。したがって、コンプレッサ 1の起動直後においては、窒素補充制御バルブ 80aが開かれて、バッファタンク 4内に窒素が窒素タンク 200から供給され、コンプレ ッサ 1に順次窒素が送り込まれる。そのため、コンプレッサ 1の起動直後の運転が安 定する。なお、図 1に示される閉回路内において lm3Zminの速度で窒素が 1回循環 するための時間は 6秒である。 [0035] Further, the cooling system of the present embodiment separates the amount of nitrogen discharged by the compressor 1 while the nitrogen circulates once in the closed circuit after the compressor 1 is started, separately from the closed circuit. Another nitrogen supply path for supplying to the presser 1 is provided. Specifically, other nitrogen As shown in FIG. 1, the element supply path is a nitrogen replenishment pipe 8a connected to a notch tank 4. Therefore, immediately after the compressor 1 is started, the nitrogen replenishment control valve 80 a is opened, nitrogen is supplied from the nitrogen tank 200 into the buffer tank 4, and nitrogen is sequentially fed into the compressor 1. Therefore, the operation immediately after the compressor 1 starts is stable. In the closed circuit shown in Fig. 1, the time for nitrogen to circulate once at a speed of lm 3 Zmin is 6 seconds.
[0036] 本実施の形態にぉ 、ては、熱源 2としての大型ヒータから、約 50KcalZcm2Zhの 熱量を均一に取り除く必要があるものとする。そのため、大型ヒータと冷媒である窒素 との温度差 ( Δ が 150°Cであるとすると、 lm3Zminの速度で窒素を閉回路内にお いて常時循環させる必要がある。したがって、コンプレッサ 1としては lm3/min以上 の吐出量で窒素を循環させることができるものが選択される。ただし、コンプレッサ 1 の吐出量は、配管 5全体の圧力損失も考慮して決定される必要がある。したがって、 コンプレッサ 1の窒素の吐出量は、少なくとも窒素の必要循環量の 1. 2倍以上である ことが好ましいが、その値は、 1. 5倍以上であればより好ましい。これによれば、配管 5の曲部および配管 5に設けられたバルブ等に起因する圧力損失分も考慮して、十 分な窒素の循環流量を確保することができる。 In the present embodiment, it is assumed that the heat quantity of about 50 KcalZcm 2 Zh needs to be uniformly removed from the large heater as the heat source 2. Therefore, if the temperature difference between the large heater and the refrigerant nitrogen (Δ is 150 ° C), it is necessary to constantly circulate the nitrogen in the closed circuit at a speed of lm 3 Zmin. Is selected so that it can circulate nitrogen at a discharge rate of lm 3 / min or more, but the discharge rate of compressor 1 must be determined in consideration of the pressure loss of the entire pipe 5. The discharge amount of nitrogen from the compressor 1 is preferably at least 1.2 times the required circulation amount of nitrogen, but the value is more preferably 1.5 times or more. Considering the pressure loss caused by the 5 curved parts and the valves provided in the pipe 5, sufficient nitrogen circulation flow rate can be secured.
[0037] なお、負荷変動に応じたコンプレッサ 1の稼働率の変動を緩和するために、図 3に 示すように、コンプレッサ 1と熱源 2との間に気体が一時的に溜まりかつ高圧に耐え得 る他のノ ッファタンク 6が設けられていてもよい。これによれば、熱源 2に供給される気 体の流量が安定する。ただし、ノ ッファタンク 6は、必要に応じて設けられるものであり 、本発明に必須の構成ではない。 [0037] In order to mitigate fluctuations in the operating rate of the compressor 1 in response to load fluctuations, as shown in Fig. 3, gas temporarily accumulates between the compressor 1 and the heat source 2 and can withstand high pressure. Other koffa tanks 6 may be provided. According to this, the flow rate of the gas supplied to the heat source 2 is stabilized. However, the koffa tank 6 is provided as necessary, and is not an essential component of the present invention.
[0038] また、熱源 2は、その表面積が大きなものであるため、図 4に示すように、窒素が循 環する配管 5が蛇行するように設けられている。コンプレッサ 1から熱源 2内の蛇行す る配管 5へ入口 2aを介して窒素が送り込まれる。また、熱源 2内を通過した窒素は、 出口 2bを介して、配管 5へ送り出される。本実施の形態の冷却システム 100によれば 、冷媒として比熱が小さな窒素が用いられているため、熱源 2の入口 2a付近の窒素 の熱交換能力と熱源 2の出口 2b付近の窒素の熱交換能力とにほとんど差はない。し たがって、熱源 2の表面の温度分布にむらが生じない。
[0039] また、熱交^^ 3には、図 5に示すように、配管 5が蛇行するように設けられている。 熱源 2を通過した窒素は、入口 3aを介して、熱交換器 3内を蛇行する配管 5へ送り込 まれ、蛇行する配管 5内を流れる間に、熱を外部へ放出する。熱交換器 3内において 、窒素の熱は、入口配管 7aから出口配管 7bへ向力つて流れる冷却水に伝達される。 また、熱交翻3内を流れる窒素は、出口 3bを介して、配管 5へ排出される。 [0038] Further, since the heat source 2 has a large surface area, as shown in FIG. 4, a pipe 5 through which nitrogen circulates is provided to meander. Nitrogen is fed from the compressor 1 to the meandering pipe 5 in the heat source 2 through the inlet 2a. The nitrogen that has passed through the heat source 2 is sent out to the pipe 5 through the outlet 2b. According to the cooling system 100 of the present embodiment, since nitrogen having a small specific heat is used as the refrigerant, the heat exchange capacity of nitrogen near the inlet 2a of the heat source 2 and the heat exchange capacity of nitrogen near the outlet 2b of the heat source 2 There is almost no difference. Therefore, the temperature distribution on the surface of the heat source 2 is not uneven. Further, as shown in FIG. 5, the heat exchanger 3 is provided so that the pipe 5 meanders. The nitrogen that has passed through the heat source 2 is sent to the meandering pipe 5 through the heat exchanger 3 through the inlet 3a, and releases heat to the outside while flowing through the meandering pipe 5. In the heat exchanger 3, the heat of nitrogen is transmitted to the cooling water that flows from the inlet pipe 7a to the outlet pipe 7b. Further, nitrogen flowing in the heat exchanger 3 is discharged to the pipe 5 through the outlet 3b.
[0040] また、冷却水は、図 1に示すように、冷却水タンク 300に貯留されており、冷却水ポ ンプ 310によって、冷却水タンク 300と熱交^^ 3との間を循環している。したがって 、熱交換器 3を通過した窒素は、温度が低下しており、再び、熱源 2を通過するときに 、熱源 2から熱を奪うことができる程度の温度になっている。なお、冷却水ポンプ 310 の制御は、制御装置 30によって行なわれている。また、冷却水タンク 300においては 、冷却ファンが設けられており、大気と冷却水との間で熱交換が行なわれている。 [0040] Further, as shown in FIG. 1, the cooling water is stored in the cooling water tank 300 and is circulated between the cooling water tank 300 and the heat exchanger ^^ 3 by the cooling water pump 310. Yes. Therefore, the temperature of the nitrogen that has passed through the heat exchanger 3 has decreased, and the temperature is such that heat can be taken from the heat source 2 again when passing through the heat source 2. The cooling water pump 310 is controlled by the control device 30. Moreover, the cooling water tank 300 is provided with a cooling fan, and heat exchange is performed between the atmosphere and the cooling water.
[0041] また、熱交換器 3における窒素の圧力損失が閉回路全体における窒素の圧力損失 の 1Z10以下である。したがって、熱交換器 3が熱源 2の冷却のために必要な窒素の 流れを阻害することはない。 [0041] Further, the pressure loss of nitrogen in the heat exchanger 3 is 1Z10 or less of the pressure loss of nitrogen in the entire closed circuit. Therefore, the heat exchanger 3 does not impede the nitrogen flow necessary for cooling the heat source 2.
[0042] また、熱源 2内の冷却管としての配管 5の表面積は、熱源 lm3あたり 20cm2以上か つ 750cm2以下である。したがって、熱源 2は、十分な熱交換能力を有している。 [0042] Further, the surface area of the piping 5 as a cooling pipe in the heat source 2 is either One 750 cm 2 or less heat lm 3 per 20 cm 2 or more. Therefore, the heat source 2 has a sufficient heat exchange capability.
[0043] 一般に、熱交換器 3は、配管 5における窒素の放熱量を除いた量の熱交換を行なう 必要がある。ただし、本実施の形態においては、配管 5の放熱量が無視され得る場 合にも、熱交^^ 3は、約 50KcalZcm2Zh以上の熱交換を行なうことができる必要 がある。また、多量の窒素ガスが熱交換器 3内の配管 5を流れる必要があるため、配 管 5の圧力損失を低減することも必要である。さらに、熱交換をスムーズに行なう必要 がある。そのため、配管 5は、熱伝導率の大きな銅またはアルミニウム等の材料によつ て構成されていることが望ましい。これによつて、熱交^^ 3のサイズを小さくすること ができる。 [0043] Generally, the heat exchanger 3 needs to perform heat exchange in an amount excluding the amount of heat released from nitrogen in the pipe 5. However, in the present embodiment, even when the heat radiation amount of the pipe 5 can be ignored, the heat exchange 3 needs to be able to perform heat exchange of about 50 KcalZcm 2 Zh or more. Further, since a large amount of nitrogen gas needs to flow through the pipe 5 in the heat exchanger 3, it is also necessary to reduce the pressure loss of the pipe 5. Furthermore, it is necessary to exchange heat smoothly. Therefore, it is desirable that the pipe 5 be made of a material having a high thermal conductivity such as copper or aluminum. As a result, the size of the heat exchange ^^ 3 can be reduced.
[0044] また、図 6に示すように、ノ ッファタンク 4にも配管 5が接続され、熱交 3で熱交 換を終えた窒素力 入口 4aを介して、バッファタンク 4へ導入され、バッファタンク 4内 で貯留される。その後、コンプレッサ 1のピストン laの往復運動によって、シリンダ le 内の空間が負圧になるごとに、ノ ッファタンク 4からコンプレッサ 1へ窒素が吸い込ま
れる。また、ノ ッファタンク 4内の窒素は、出口 4bを介して、配管 5へ送り出される。 Further, as shown in FIG. 6, the pipe 5 is also connected to the koffa tank 4 and introduced into the buffer tank 4 through the nitrogen power inlet 4a which has finished the heat exchange in the heat exchange 3, and then the buffer tank 4 is stored. Then, every time the space in the cylinder le becomes negative due to the reciprocating motion of the piston la of the compressor 1, nitrogen is sucked into the compressor 1 from the kaffa tank 4. It is. Nitrogen in the notch tank 4 is sent out to the pipe 5 through the outlet 4b.
[0045] また、前述のバッファタンク 4の容量力 窒素が閉回路を 1回循環するために要する 時間内にコンプレッサ 1が吐出する窒素の量以上である。より具体的には、ノ ッファタ ンク 4の容量は 100L以上である。また、このバッファタンク 4の容量は、閉回路の安定 性に大きく影響するため、その安全率は高いことが望ましい。具体的には、ノ ッファタ ンク 4の安全率は、 2以上であることが好ましい。なお、安全率が 2とは、必要容量 10 OLに対して 200Lの容量が確保されることを意味する。前述の構成によれば、コンプ レッサ 1が吐出する窒素がバッファタンク 4内になくなることがない。そのため、コンプ レッサ 1に供給される窒素がないにもかかわらず、コンプレッサ 1が駆動し続ける状態 が発生しない。そのため、コンプレッサ 1が損傷するおそれが低減されている。 [0045] Further, the capacity force nitrogen of the buffer tank 4 described above is equal to or more than the amount of nitrogen discharged by the compressor 1 within the time required for one circulation of the closed circuit. More specifically, the capacity of the noffer tank 4 is 100L or more. The capacity of the buffer tank 4 greatly affects the stability of the closed circuit, so it is desirable that the safety factor is high. Specifically, the safety factor of the noffer tank 4 is preferably 2 or more. A safety factor of 2 means that a capacity of 200L is secured for the required capacity of 10 OL. According to the above-described configuration, the nitrogen discharged from the compressor 1 does not disappear in the buffer tank 4. For this reason, there is no situation where the compressor 1 continues to drive even though there is no nitrogen supplied to the compressor 1. As a result, the risk of damage to the compressor 1 is reduced.
[0046] また、ノ ッファタンク 4が、図 6に示すように、窒素を外部から補充するための窒素補 充用配管 8aおよび気体を外部へ排出するための窒素排出用配管 8bに接続されて いる。また、窒素補充用配管 8aおよび窒素排出用配管 8bは、図 1に示すように、窒 素タンク 200に接続されている。窒素補充用配管 8aには、窒素補充用ポンプ 210が 設けられている。窒素排出用配管 8bには、窒素排出用ポンプ 220が設けられている Further, as shown in FIG. 6, the notfer tank 4 is connected to a nitrogen replenishing pipe 8a for replenishing nitrogen from the outside and a nitrogen exhausting pipe 8b for discharging gas to the outside. Further, the nitrogen replenishment pipe 8a and the nitrogen discharge pipe 8b are connected to a nitrogen tank 200 as shown in FIG. A nitrogen replenishment pump 210 is provided in the nitrogen replenishment pipe 8a. The nitrogen exhaust pipe 8b is provided with a nitrogen exhaust pump 220.
[0047] また、窒素補充用配管 8aおよび窒素排出用配管 8bには、それぞれ、窒素補充制 御バルブ 80aおよび窒素排出制御バルブ 80bが設けられて 、る。窒素補充制御バ ルブ 80a、窒素排出制御バルブ 80b、窒素補充用ポンプ 210、および窒素排出用ポ ンプ 220は、それぞれ、制御装置 30によって制御される。制御装置 30は、ノ ッファタ ンク 4内に設けられた圧力センサ 20の測定値を特定可能な信号を受信し、その信号 に基づいて、窒素補充制御バルブ 80a、窒素排出制御バルブ 80b、窒素補充用ポ ンプ 210、および窒素排出用ポンプ 220を制御する。なお、制御装置 30は、コンプレ ッサ 1の制御も行なっている。 [0047] Further, the nitrogen supply pipe 8a and the nitrogen discharge pipe 8b are provided with a nitrogen supply control valve 80a and a nitrogen discharge control valve 80b, respectively. The nitrogen replenishment control valve 80a, the nitrogen discharge control valve 80b, the nitrogen replenishment pump 210, and the nitrogen discharge pump 220 are each controlled by the control device 30. The control device 30 receives a signal capable of specifying the measurement value of the pressure sensor 20 provided in the notch tank 4, and based on the signal, the nitrogen replenishment control valve 80a, the nitrogen discharge control valve 80b, and the nitrogen replenishment control valve The pump 210 and the nitrogen exhaust pump 220 are controlled. The control device 30 also controls the compressor 1.
[0048] 本実施の形態の冷却システムの運転時には、制御装置 30は、コンプレッサ 1を起 動した直後においては、コンプレッサ 1の起動に起因してバッファタンク 4内の気体の 圧力が低下した分だけ、ノ ッファタンク 4内へ窒素を供給するために、窒素補充制御 バルブ 80aを開くとともに、窒素補充用ポンプ 210を駆動する。また、制御装置 30は
、閉回路において窒素が 1回循環するために必要な時間以上の時間が経過した後、 ノ ッファタンク 4内の気体の圧力が、コンプレッサ 1が損傷しない程度の値、たとえば、 正圧 0. 5気圧以下に設定されるように、窒素補充制御バルブ 80aおよび窒素排出制 御バルブ 80bの開閉、ならびに、窒素補充用ポンプ 210および窒素排出用ポンプ 22 0の駆動状態を制御する。 [0048] During the operation of the cooling system of the present embodiment, immediately after starting the compressor 1, the control device 30 is the amount that the gas pressure in the buffer tank 4 has decreased due to the start of the compressor 1. In order to supply nitrogen into the notch tank 4, the nitrogen replenishment control valve 80a is opened and the nitrogen replenishment pump 210 is driven. Also, the control device 30 After a time longer than the time necessary for one circulation of nitrogen in the closed circuit has elapsed, the gas pressure in the kaffa tank 4 is such a value that does not damage the compressor 1, for example, positive pressure 0.5 atm. As described below, the opening and closing of the nitrogen replenishment control valve 80a and the nitrogen discharge control valve 80b and the driving states of the nitrogen replenishment pump 210 and the nitrogen discharge pump 220 are controlled.
[0049] つまり、ノ ッファタンク 4内の窒素の量が少な過ぎる場合には、制御装置 30は、窒 素補充制御バルブ 80aを開き、かつ、窒素補充用ポンプ 210を駆動して、窒素補充 用配管 8aを介して、窒素タンク 200からバッファタンク 4へ窒素を補充する。また、ノ ッファタンク 4内の窒素の量が多過ぎる場合には、制御装置 30は、窒素排出制御バ ルブ 80bを開き、かつ、窒素排出用ポンプ 220を駆動して、窒素排出用配管 8bを介 して、ノ ッファタンク 4から窒素タンク 200へ窒素を排出する。したがって、コンプレツ サ 1に窒素が供給されな 、状態が発生しな 、ため、コンプレッサ 1が損傷することが 防止される。 In other words, when the amount of nitrogen in the notch tank 4 is too small, the control device 30 opens the nitrogen replenishment control valve 80a and drives the nitrogen replenishing pump 210 to supply the nitrogen replenishing piping. Nitrogen is replenished from the nitrogen tank 200 to the buffer tank 4 through 8a. If the amount of nitrogen in the notifier tank 4 is too large, the control device 30 opens the nitrogen discharge control valve 80b and drives the nitrogen discharge pump 220 to pass through the nitrogen discharge pipe 8b. Then, nitrogen is exhausted from the noffer tank 4 to the nitrogen tank 200. Therefore, the compressor 1 is prevented from being damaged because no state is generated unless nitrogen is supplied to the compressor 1.
[0050] また、制御装置 30は、圧力センサ 20から受ける信号よつて、ノ ッファタンク 4内の窒 素の圧力がコンプレッサ 1の吸い込み圧力のほぼ上限値の圧力であることを検出し た場合に、窒素補充制御バルブ 80aを閉じかつ窒素排出制御バルブ 80bを開くとと もに、窒素排出用ポンプ 220を駆動して、バッファタンク 4内の窒素を自動的に排出 することができる。また、制御装置 30は、圧力センサ 20から受ける信号によって、ノ ッ ファタンク 4内の窒素の圧力がコンプレッサ 1の吸い込み圧力のほぼ下限値の圧力で あることを検出した場合に、窒素排出制御バルブ 80bを閉じかつ窒素補充制御ノ レ ブ 80aを開くとともに、窒素補充用ポンプ 210を駆動して、バッファタンク 4内へ窒素を 自動的に吸気することができる。なお、前述の上限値および下限値とは、コンプレツ サ 1の種類ごとに決まる値であって、それらの値によって規定される範囲内の量の窒 素がバッファタンク 4内へ供給されていれば、コンプレッサ 1およびバッファタンク 4が 損傷しない。したがって、上記の構成によれば、ノ ッファタンク 4の安全性およびコン プレッサ 1の適正な運転状態を自動的に確保することができる。 [0050] Further, when the control device 30 detects from the signal received from the pressure sensor 20 that the pressure of the nitrogen in the notch tank 4 is approximately the upper limit of the suction pressure of the compressor 1, The nitrogen replenishment control valve 80a is closed and the nitrogen discharge control valve 80b is opened, and the nitrogen discharge pump 220 is driven to automatically discharge the nitrogen in the buffer tank 4. In addition, when the control device 30 detects that the pressure of nitrogen in the stopper tank 4 is a pressure almost equal to the suction pressure of the compressor 1 based on a signal received from the pressure sensor 20, the nitrogen discharge control valve 80b Is closed and the nitrogen replenishment control knob 80a is opened, and the nitrogen replenishment pump 210 can be driven to automatically suck nitrogen into the buffer tank 4. The upper limit value and the lower limit value described above are values determined for each type of the compressor 1, and if an amount of nitrogen within the range defined by these values is supplied into the buffer tank 4, , Compressor 1 and buffer tank 4 will not be damaged. Therefore, according to the above configuration, the safety of the koffa tank 4 and the proper operating state of the compressor 1 can be automatically ensured.
[0051] なお、本実施の形態においては、冷媒として、窒素が用いられている力 窒素の代 わりに、酸素、二酸ィ匕炭素または不活性ガス (たとえば、アルゴン)が用いられてもよ
い。これらの気体は、他の物質と反応するおそれが低いため、気体が閉回路の外部 に漏れた場合に、周囲環境へ悪影響を与えるおそれが低い。 [0051] In the present embodiment, oxygen, carbon dioxide, or an inert gas (for example, argon) may be used in place of nitrogen as the refrigerant. Yes. Since these gases are less likely to react with other substances, they are less likely to adversely affect the surrounding environment if the gas leaks outside the closed circuit.
[0052] 特に、温度が高い真空雰囲気中に設置された熱源を液体冷媒を用いて冷却すると 、液体が沸騰して爆発するおそれ、たとえば、水蒸気爆発が発生するおそれがある。 そのため、この場合においては、冷却システムにおいて液体冷媒を使用することはで きない。また、たとえば、プラズマ CVD (Chemical Vapor Deposition)装置のように、 反応性が高 、かまたは毒性が強 、気体がわずかに含まれた真空雰囲気を形成する 装置がある。このようなプラズマ処理装置は、所定の気体を用いて所望の処理を行な う過程で、熱を発する。このようなプラズマ処理装置が熱源 2として組み込まれている 冷却システムが使用される場合には、冷却効率を考慮することとともに、プラズマ処 理装置内にぉ ヽて使用されて ヽる気体とは反応しな ヽ気体冷媒を使用することが望 ましい。これによれば、プラズマ処理装置内においてプラズマ処理のために使用され ている気体がプラズマ処理装置力 漏れ出すとともに、冷却システムの配管 5から気 体冷媒が漏れ出しても、それらの気体同士が反応 (たとえば、化学反応)して、不具 合が発生することはない。したがって、前述の冷却システムが用いられたプラズマ処 理システムの安全性が向上する。なお、気体冷媒は、 1種類の気体力 なっているも のであっても、複数種類の気体からなって 、るものであってもよ!/、。 [0052] In particular, when a heat source installed in a high-temperature vacuum atmosphere is cooled using a liquid refrigerant, the liquid may boil and explode, for example, a steam explosion may occur. Therefore, in this case, liquid refrigerant cannot be used in the cooling system. Also, for example, there is an apparatus that forms a vacuum atmosphere that is highly reactive or highly toxic and contains a slight amount of gas, such as a plasma CVD (Chemical Vapor Deposition) apparatus. Such a plasma processing apparatus generates heat in a process of performing a desired process using a predetermined gas. When a cooling system in which such a plasma processing apparatus is incorporated as the heat source 2 is used, the cooling efficiency is taken into consideration, and the reaction with the gas that has been used in the plasma processing apparatus. It is desirable to use a gas refrigerant. According to this, even if the gas used for the plasma processing in the plasma processing apparatus leaks out of the plasma processing apparatus power and the gaseous refrigerant leaks out from the piping 5 of the cooling system, the gases react with each other. (For example, a chemical reaction) will not cause problems. Therefore, the safety of the plasma processing system using the above-described cooling system is improved. The gas refrigerant may be one kind of gas force or may be composed of multiple kinds of gases! /.
[0053] 上述の実施の形態の冷却システム 100によれば、大型の熱源 2を冷却する場合に おいて、大規模な構造を採用することなぐ高い温度の熱源 2を冷却することが可能 であり、安全性が確保され、かつ、周辺部を損傷させずに、熱源を均一に冷却するこ とがでさる。 [0053] According to the cooling system 100 of the above-described embodiment, when the large heat source 2 is cooled, the high temperature heat source 2 can be cooled without adopting a large-scale structure. As a result, safety can be ensured and the heat source can be cooled uniformly without damaging the surrounding area.
[0054] 次に、実施の形態の冷却システムの運転方法を説明する。 Next, an operation method of the cooling system of the embodiment will be described.
まず、制御装置 30は、コンプレッサ 1を始動した後、図 1に示すバッファタンク 4とコ ンプレッサ 1との間に設けられたバルブ 10を開く。このとき、コンプレッサ 1が負圧状 態で動作することを防止するために窒素が窒素補充用配管 8aからバッファタンク 4へ 供給される。特に、窒素が循環して冷却システム 100が定常状態になるまでの間(6 秒以内)においては、コンプレッサ 1は負圧状態で動作し易いため、ノ ッファタンク 4 へ窒素の供給することが必要である。
[0055] この後、窒素が閉回路の配管 5を循環すると、ノ ッファタンク 4内の圧力が安定し、 コンプレッサ 1は、負荷が生じない程度の正圧状態で動作する。また、コンプレッサ 1 のシリンダ le内の空間が過度に正圧になった場合には、窒素排出制御ノ レブ 80b を開いて、ノ ッファタンク 4内の窒素が排出される。これによつて、コンプレッサ 1を安 定して動作させることがでさる。 First, after starting the compressor 1, the control device 30 opens the valve 10 provided between the buffer tank 4 and the compressor 1 shown in FIG. At this time, nitrogen is supplied from the nitrogen replenishment pipe 8a to the buffer tank 4 in order to prevent the compressor 1 from operating in a negative pressure state. In particular, during the period until nitrogen circulates and the cooling system 100 reaches a steady state (within 6 seconds), the compressor 1 is likely to operate in a negative pressure state, so it is necessary to supply nitrogen to the notch tank 4. is there. Thereafter, when nitrogen circulates through the closed circuit pipe 5, the pressure in the kaffa tank 4 is stabilized, and the compressor 1 operates in a positive pressure state in which no load is generated. Further, when the space in the cylinder le of the compressor 1 becomes excessively positive pressure, the nitrogen discharge control valve 80b is opened, and the nitrogen in the notch tank 4 is discharged. As a result, the compressor 1 can be operated stably.
[0056] 上記本実施の形態の冷却システムによれば、冷媒としての窒素が循環して使用さ れ、冷媒を新たに供給する必要がない。そのため、ランニングコストはコンプレッサ 1 の消費電力のコストのみであるため、窒素を順次排出する冷却システムに比較して、 大幅なコストダウンを図ることができる。 [0056] According to the cooling system of the present embodiment, nitrogen as a refrigerant is circulated and used, and there is no need to supply a new refrigerant. Therefore, the running cost is only the cost of the power consumption of the compressor 1, so that the cost can be greatly reduced compared to the cooling system that sequentially discharges nitrogen.
[0057] この発明を詳細に説明し示してきた力 これは例示のためのみであって、限定ととつ てはならず、発明の範囲は添付の請求の範囲によってのみ限定されることが明らか に理解されるであろう。
[0057] Force that has described and illustrated this invention in detail. This is for illustrative purposes only, and not as a limitation, and it is clear that the scope of the invention is limited only by the appended claims. Will be understood.
Claims
[1] 空気以外の気体冷媒を液化しない程度に圧縮して送り出すコンプレッサ(1)と、 前記コンプレッサ(1)から送り出されてきた気体冷媒が通過するときに、前記気体冷 媒によって冷却される熱源 (2)と、 [1] A compressor (1) that compresses and sends gas refrigerant other than air to a level that does not liquefy, and a heat source that is cooled by the gas refrigerant when the gas refrigerant sent from the compressor (1) passes through (2) and
前記熱源 (2)力 熱を吸収した後の前記気体冷媒が外部へ熱を放出する熱交換 器 (3)と、 The heat source (2) force heat exchanger (3) from which the gaseous refrigerant after absorbing heat releases heat to the outside;
前記熱交換器 (3)において熱を外部へ放出した後の前記気体冷媒を一時的に貯 留するバッファタンク (4)と、 A buffer tank (4) for temporarily storing the gaseous refrigerant after releasing heat to the outside in the heat exchanger (3);
前記コンプレッサ(1)、前記熱源 (2)、前記熱交換器 (3)、および前記バッファタン ク (4)をこの順番で連結する閉回路を構成し、該閉回路にお!、て前記気体冷媒を循 環させるための配管(5)とを備えた、冷却システム。 A closed circuit that connects the compressor (1), the heat source (2), the heat exchanger (3), and the buffer tank (4) in this order is configured, and the gas is connected to the closed circuit. A cooling system comprising a pipe (5) for circulating the refrigerant.
[2] 前記コンプレッサ(1)と前記熱源 (2)との間に前記気体冷媒を一時的に貯留する他 のバッファタンク(200)をさらに備えた、請求項 1に記載の冷却システム。 [2] The cooling system according to claim 1, further comprising another buffer tank (200) for temporarily storing the gaseous refrigerant between the compressor (1) and the heat source (2).
[3] 前記バッファタンク (4)の容量は、前記気体冷媒が前記閉回路を 1回循環するため に要する時間内に前記コンプレッサ(1)が吐出する前記気体冷媒の量以上である、 請求項 1に記載の冷却システム。 [3] The capacity of the buffer tank (4) is not less than the amount of the gas refrigerant discharged by the compressor (1) within a time required for the gas refrigerant to circulate once through the closed circuit. The cooling system according to 1.
[4] 前記気体冷媒を外部から補充し得るように前記バッファタンク (4)に接続された補 充用配管 (8a)と、 [4] A supplementary pipe (8a) connected to the buffer tank (4) so that the gaseous refrigerant can be supplemented from the outside,
前記気体冷媒を外部へ排出し得るように前記バッファタンク (4)に接続された排出 用配管(8b)とをさらに備えた、請求項 1に記載の冷却システム。 The cooling system according to claim 1, further comprising a discharge pipe (8b) connected to the buffer tank (4) so that the gaseous refrigerant can be discharged to the outside.
[5] 前記コンプレッサ(1)は、前記熱源 (2)を目標とする温度まで冷却するために必要 な前記気体冷媒の循環量よりも大きな量の前記気体冷媒を吐出する能力を有する、 請求項 1に記載の冷却システム。 [5] The compressor (1) has a capability of discharging a larger amount of the gas refrigerant than a circulation amount of the gas refrigerant necessary for cooling the heat source (2) to a target temperature. The cooling system according to 1.
[6] 前記気体冷媒が、窒素、酸素、二酸ィ匕炭素または不活性ガスを含む、請求項 1に 記載の冷却システム。 6. The cooling system according to claim 1, wherein the gaseous refrigerant includes nitrogen, oxygen, carbon dioxide, or an inert gas.
[7] 前記配管(5)は、前記熱源 (2)にお 、ては冷却管として機能し、 [7] The pipe (5) functions as a cooling pipe for the heat source (2),
前記冷却管の表面積が熱源 lm3あたり 20cm2以上かつ 750cm2以下である、請求 項 1に記載の冷却システム。
The surface area of the cooling tubes 20 cm 2 or more per heat lm 3 and is 750 cm 2 or less, cooling system according to claim 1.
[8] 前記熱交換器 (3)における気体の圧力損失が前記閉回路全体における気体の圧 力損失の 1Z10以下である、請求項 1に記載の冷却システム。 8. The cooling system according to claim 1, wherein the pressure loss of the gas in the heat exchanger (3) is 1Z10 or less of the pressure loss of the gas in the entire closed circuit.
[9] 前記閉回路とは別に、前記コンプレッサ(1)が起動された後、前記気体が前記閉回 路内を 1回循環するまでの間に前記コンプレッサ(1)が吐出する量の前記気体冷媒 を前記コンプレッサ(1)に供給し得る冷媒供給経路(200, 210, 8a)をさらに備えた 、請求項 1に記載の冷却システム。 [9] Separately from the closed circuit, the amount of the gas discharged by the compressor (1) after the compressor (1) is started and before the gas circulates once in the closed circuit The cooling system according to claim 1, further comprising a refrigerant supply path (200, 210, 8a) capable of supplying a refrigerant to the compressor (1).
[10] 前記バッファタンク (4)内の前記気体冷媒の圧力が前記コンプレッサ(1)の吸い込 み圧力のほぼ上限値の圧力である場合に、前記バッファタンク (4)内の前記気体冷 媒を自動的に排気する排気弁 (80b)と、 [10] The gas refrigerant in the buffer tank (4) when the pressure of the gas refrigerant in the buffer tank (4) is approximately the upper limit of the suction pressure of the compressor (1). An exhaust valve (80b) that automatically exhausts
前記バッファタンク (4)内の前記気体冷媒の圧力が前記コンプレッサ(1)の吸い 込み圧力のほぼ下限値の圧力である場合に、前記バッファタンク (4)内へ前記気体 冷媒を自動的に吸気する吸気弁(80a)とをさらに備えた、請求項 1に記載の冷却シ ステム。 When the pressure of the gaseous refrigerant in the buffer tank (4) is almost the lower limit of the suction pressure of the compressor (1), the gaseous refrigerant is automatically sucked into the buffer tank (4). The cooling system according to claim 1, further comprising an intake valve (80a) for performing the operation.
[11] 空気以外の気体冷媒を液化しない程度に圧縮して送り出すコンプレッサ(1)と、 プラズマ処理用の気体を用 、て所定の処理を行なうときに熱を発する装置であって [11] A compressor (1) that compresses and sends gas refrigerant other than air to a level that does not liquefy, and a device that generates heat when performing a predetermined process using a gas for plasma processing.
、前記コンプレッサ(1)から送り出されてきた気体冷媒が通過するときに、前記気体冷 媒によって冷却されるプラズマ処理装置(2)と、 A plasma processing apparatus (2) cooled by the gas refrigerant when the gas refrigerant sent from the compressor (1) passes through;
前記プラズマ処理装置(2)から熱を吸収した後の前記気体冷媒が外部へ熱を放出 する熱交換器 (3)と、 A heat exchanger (3) in which the gaseous refrigerant after absorbing heat from the plasma processing device (2) releases heat to the outside;
前記熱交換器 (3)において熱を外部へ放出した後の前記気体冷媒を一時的に貯 留するバッファタンク (4)と、 A buffer tank (4) for temporarily storing the gaseous refrigerant after releasing heat to the outside in the heat exchanger (3);
前記コンプレッサ(1)、前記熱源 (2)、前記熱交換器 (3)、および前記バッファタン ク (4)をこの順番で連結する閉回路を構成し、該閉回路にお!、て前記気体冷媒を循 環させるための配管(5)とを備え、 A closed circuit that connects the compressor (1), the heat source (2), the heat exchanger (3), and the buffer tank (4) in this order is configured, and the gas is connected to the closed circuit. A pipe (5) for circulating the refrigerant,
前記気体冷媒は、前記プラズマ処理用の気体とは反応しない 1または 2以上の気 体からなる、プラズマ処理システム。 The plasma processing system, wherein the gaseous refrigerant comprises one or more gases that do not react with the plasma processing gas.
[12] 請求項 1に記載の冷却システムの運転方法であって、 [12] A method of operating a cooling system according to claim 1,
前記コンプレッサ(1)が起動されたときに、前記バッファタンク (4)内の気体冷媒の
圧力が低下した分だけ、前記バッファタンク (4)内へ前記気体冷媒を吸引するステツ プと、 When the compressor (1) is started, the gaseous refrigerant in the buffer tank (4) A step of sucking the gaseous refrigerant into the buffer tank (4) by the amount of the pressure drop;
前記閉回路において前記気体冷媒が 1回循環するために必要な時間以上の時間 が経過した後、前記バッファタンク (4)内の前記気体の圧力を前記コンプレッサ(1) が損傷しな 、程度の値に維持するステップとを備えた、冷却システムの運転方法。
After a time longer than the time required for the gaseous refrigerant to circulate once in the closed circuit, the pressure of the gas in the buffer tank (4) is not damaged by the compressor (1). A method for operating the cooling system comprising the step of maintaining the value.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/064,703 US20090113912A1 (en) | 2005-09-30 | 2006-09-15 | Cooling System, Method for Operating the Same, and Plasma Processing System Using Cooling System |
JP2007538682A JPWO2007040033A1 (en) | 2005-09-30 | 2006-09-15 | Cooling system, operating method thereof, and plasma processing system using the cooling system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-287921 | 2005-09-30 | ||
JP2005287921 | 2005-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007040033A1 true WO2007040033A1 (en) | 2007-04-12 |
Family
ID=37906077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/318385 WO2007040033A1 (en) | 2005-09-30 | 2006-09-15 | Cooling system, operation method for the cooling system, and plasma processing system using the cooling system |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090113912A1 (en) |
JP (1) | JPWO2007040033A1 (en) |
TW (1) | TW200726949A (en) |
WO (1) | WO2007040033A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090272129A1 (en) * | 2008-04-30 | 2009-11-05 | Altarock Energy, Inc. | Method and cooling system for electric submersible pumps/motors for use in geothermal wells |
WO2010146961A1 (en) * | 2009-06-19 | 2010-12-23 | 東京エレクトロン株式会社 | Plasma processing device and cooling device for plasma processing devices |
JP2013117323A (en) * | 2011-12-01 | 2013-06-13 | Isuzu Motors Ltd | Thermoacoustic refrigeration device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102686242B1 (en) * | 2017-01-23 | 2024-07-17 | 에드워드 코리아 주식회사 | Nitrogen oxide reduction apparatus and gas treating apparatus |
KR102646623B1 (en) * | 2017-01-23 | 2024-03-11 | 에드워드 코리아 주식회사 | Plasma generating apparatus and gas treating apparatus |
GB2592022A (en) * | 2020-02-12 | 2021-08-18 | Edwards Vacuum Llc | A pressure regulated semiconductor wafer cooling apparatus and method and a pressure regulating apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH031053A (en) * | 1989-05-26 | 1991-01-07 | Mitsubishi Electric Corp | Refrigerating machine |
JPH04147615A (en) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Mocvd system |
JPH04242926A (en) * | 1991-01-08 | 1992-08-31 | Matsushita Electric Ind Co Ltd | Semiconductor substrate temperature control method, semiconductor substrate temperature control device, and various vacuum devices |
JPH0927459A (en) * | 1995-07-10 | 1997-01-28 | Canon Inc | Processing equipment for semiconductor device |
JPH0992624A (en) * | 1995-09-25 | 1997-04-04 | Semitsukusu Eng Kk | Heat treatment oven |
JP2000274852A (en) * | 1999-03-26 | 2000-10-06 | Sumitomo Heavy Ind Ltd | Method and apparatus for controlling helium liquefying device |
JP2001196321A (en) * | 2000-01-07 | 2001-07-19 | Ohkura Electric Co Ltd | Gas-cooled vertical wafer processing device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4175400A (en) * | 1977-02-18 | 1979-11-27 | The Rovac Corporation | Air conditioning system employing non-condensing gas with accumulator for pressurization and storage of gas |
US6986382B2 (en) * | 2002-11-01 | 2006-01-17 | Cooligy Inc. | Interwoven manifolds for pressure drop reduction in microchannel heat exchangers |
JP2004193307A (en) * | 2002-12-11 | 2004-07-08 | Matsushita Electric Ind Co Ltd | Thin film manufacturing equipment |
JP2005079539A (en) * | 2003-09-03 | 2005-03-24 | Hitachi Ltd | Plasma processing equipment |
JP4073854B2 (en) * | 2003-09-26 | 2008-04-09 | 三菱エンジニアリングプラスチックス株式会社 | Injection molding method for molded product having hollow part |
US7024883B2 (en) * | 2003-12-19 | 2006-04-11 | Carrier Corporation | Vapor compression systems using an accumulator to prevent over-pressurization |
-
2006
- 2006-09-15 WO PCT/JP2006/318385 patent/WO2007040033A1/en active Application Filing
- 2006-09-15 JP JP2007538682A patent/JPWO2007040033A1/en active Pending
- 2006-09-15 US US12/064,703 patent/US20090113912A1/en not_active Abandoned
- 2006-09-28 TW TW095136088A patent/TW200726949A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH031053A (en) * | 1989-05-26 | 1991-01-07 | Mitsubishi Electric Corp | Refrigerating machine |
JPH04147615A (en) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Mocvd system |
JPH04242926A (en) * | 1991-01-08 | 1992-08-31 | Matsushita Electric Ind Co Ltd | Semiconductor substrate temperature control method, semiconductor substrate temperature control device, and various vacuum devices |
JPH0927459A (en) * | 1995-07-10 | 1997-01-28 | Canon Inc | Processing equipment for semiconductor device |
JPH0992624A (en) * | 1995-09-25 | 1997-04-04 | Semitsukusu Eng Kk | Heat treatment oven |
JP2000274852A (en) * | 1999-03-26 | 2000-10-06 | Sumitomo Heavy Ind Ltd | Method and apparatus for controlling helium liquefying device |
JP2001196321A (en) * | 2000-01-07 | 2001-07-19 | Ohkura Electric Co Ltd | Gas-cooled vertical wafer processing device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090272129A1 (en) * | 2008-04-30 | 2009-11-05 | Altarock Energy, Inc. | Method and cooling system for electric submersible pumps/motors for use in geothermal wells |
US9874077B2 (en) * | 2008-04-30 | 2018-01-23 | Altarock Energy Inc. | Method and cooling system for electric submersible pumps/motors for use in geothermal wells |
WO2010146961A1 (en) * | 2009-06-19 | 2010-12-23 | 東京エレクトロン株式会社 | Plasma processing device and cooling device for plasma processing devices |
JP2011003464A (en) * | 2009-06-19 | 2011-01-06 | Tokyo Electron Ltd | Plasma processing device and cooling device for plasma processing device |
CN102804931A (en) * | 2009-06-19 | 2012-11-28 | 东京毅力科创株式会社 | Plasma Processing Device And Cooling Device For Plasma Processing Devices |
JP2013117323A (en) * | 2011-12-01 | 2013-06-13 | Isuzu Motors Ltd | Thermoacoustic refrigeration device |
Also Published As
Publication number | Publication date |
---|---|
US20090113912A1 (en) | 2009-05-07 |
TWI323330B (en) | 2010-04-11 |
JPWO2007040033A1 (en) | 2009-04-16 |
TW200726949A (en) | 2007-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9064913B2 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium | |
WO2007040033A1 (en) | Cooling system, operation method for the cooling system, and plasma processing system using the cooling system | |
WO2004025199A1 (en) | Processing device, and processing device maintenance method | |
CN114270112B (en) | Cooling and/or liquefying method and system | |
WO2002090843A1 (en) | Refrigerating device | |
JP2007309184A (en) | Cryopump and method for regeneration | |
CN116499143B (en) | Condenser cooling device and cooling method, air conditioner and control method thereof, and storage medium | |
JP5269006B2 (en) | Power generator that reuses liquid air | |
JP2004163037A (en) | Compression type heat pump system | |
JP2011075208A (en) | Bleed air recovery device, method for operating the bleed air recovery device, and turbo refrigerator including the bleed air recovery device | |
JP2002372397A (en) | Cooling system | |
JPH06157027A (en) | Apparatus for recovery and liquefaction of gaseous ammonia | |
JP3606883B2 (en) | Rotary compressor cooling system | |
JP4978361B2 (en) | Surplus gas type surge avoidance compressor system | |
JP2002070737A (en) | Regenerating method of cryopump | |
JP2010130923A (en) | Vacuum thawing apparatus | |
RU2432522C1 (en) | Thermo-compression device (versions) | |
TWI826199B (en) | Cooling system and operating method thereof | |
JP6643711B2 (en) | Refrigeration cycle apparatus and cooling method | |
WO2006006400A1 (en) | Refrigerator and method of operating the same | |
KR20250088415A (en) | Cooling System | |
JP2006038365A (en) | Heat exchange system | |
KR102798080B1 (en) | A chiller system using corbon dioxide gas for the industrial use | |
JPH11132581A (en) | Refrigerator | |
JPH07234025A (en) | Vapor compression heat pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12064703 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2007538682 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06798048 Country of ref document: EP Kind code of ref document: A1 |