WO2007037346A1 - HIGH-SPEED QoS HAND-OVER METHOD, AND PROCESSING NODE USED IN THE METHOD - Google Patents
HIGH-SPEED QoS HAND-OVER METHOD, AND PROCESSING NODE USED IN THE METHOD Download PDFInfo
- Publication number
- WO2007037346A1 WO2007037346A1 PCT/JP2006/319383 JP2006319383W WO2007037346A1 WO 2007037346 A1 WO2007037346 A1 WO 2007037346A1 JP 2006319383 W JP2006319383 W JP 2006319383W WO 2007037346 A1 WO2007037346 A1 WO 2007037346A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- qos
- path
- signaling
- handover
- access point
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/26—Reselection being triggered by specific parameters by agreed or negotiated communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/76—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
- H04L47/765—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the end-points
- H04L47/767—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the end-points after changing the attachment point, e.g. after hand-off
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/824—Applicable to portable or mobile terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0019—Control or signalling for completing the hand-off for data sessions of end-to-end connection adapted for mobile IP [MIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
Definitions
- the present invention relates to a high-speed QoS handover method for a mobile terminal (mobile node) that performs wireless communication and a processing node used in the method, and in particular, a mobile Internet Protocol version 6 that is a next-generation Internet protocol.
- the present invention relates to a high-speed QoS handover method in a mopile node that performs wireless communication using a protocol and a processing node used in the method.
- NSIS Next Step In Signaling
- QoS Quality of Service
- Recent internet drafts include QoS sibling and mobility support in other NSIS (see Non-Patent Documents 2 to 4 below) in addition to general NSIS (see Non-Patent Documents 5 and 6 below). Needs and suggestions are described. Not all routers or terminals in the network are NSIS Entities (NE), but NEs have NSIS functionality. Not all NEs support QoS in mobility functions. Here, the NE with QoS function is called QNE (QoS NE).
- QoS resources are reserved by each QNE along a path through which data is transferred.
- a flow ID is used to identify a QoS packet guaranteed on the path. Since the flow ID includes the IP addresses of the data transmission side and the reception side (see Non-Patent Document 5 below), the flow ID changes when the IP address changes due to mobility movement such as handover.
- session ID is used to identify a session between MN (Mobile Node) and CN (Correspondent Node). Therefore, the session ID remains the same even if the flow ID changes due to mobility movement.
- a route (old path) 24 ′ and a route (new It has an important role to avoid double reservation in QoS handover, up to 12 CRN (Crossover Node) QNE located at the branch point with 34 '.
- CRN Cross Node
- the overlapping path part (between CN6CT and CRN12 ') and the new path part (CRN 12'-MN 1 (between) must be treated differently: CN6 (between T and CRN12' Status update and CRN12'—MN1 (needs QoS status reservation between T. Therefore, discovery of CRN12 'is one of the important issues in QoS handover. In order to avoid or minimize it must be processed quickly, but the CRN discovery takes time and increases the signaling load.
- Non-Patent Document 7 proposes several techniques for solving such a problem.
- the technology disclosed in Non-Patent Document 7 below suggests a proxy that realizes CRN discovery!
- the MN sends a request including the old flow ID and session ID pair to the NAR (New Access Router) acting as a proxy.
- the NAR sends a QU ERY message to the CN to find the upstream CRN.
- Each QNE on the path gets a QUERY message, compares the old flow ID and session ID pair and checks whether it is a CRN.
- the CN Upon receiving the QUERY message, the CN sends a QUERY message to the NAR to discover the downstream CRN that is not just the RE SPONSE message for the received QUERY message. It takes at least one RTT (Round Trip Time) to discover a CRN, and every time the MN performs a handover, the CRN must be discovered.
- RTT Random Trip Time
- a QNE In order to reduce the signaling load, one method is to specify a QNE as a CRN. A QNE on an old QoS path is specified as a CRN, and PAR (Previous Access Router) can be considered as the specified QNE. With this configuration, the signaling load can be reduced. Such techniques are disclosed in Patent Documents 1 and 2 below.
- Non-Patent Document 1 NSIS WG (http://www.ietf.org/html.charters/nsis-charter.html)
- Non-Patent Document 2 H. Shi haskar, Ed, "Requirements of a Quality of service (QoS) Solution for Mobile IP ", RFC3583, September 2003
- Non-Patent Document 3 Sven Van den Bosch, Georgios Karagiannis and Andrew McDonald, "N SLP for Quality— of— Service signaling, draft-ietf-nsis-qos-nslp-06.txt, May 2005
- Non-Patent Document 4 S.
- Non-Patent Document 5 R. Hancock et al., “Next Steps in Signaling: Framework ", RFC4080, June 2005
- Non-Patent Document 6 M. Brunner (Editor), Requirements for Signaling Protocols ", RFC372 6, April 2004
- Patent Document 1 Japanese Patent No. 3441367 (Fig. 1)
- Patent Document 2 Japanese Translation of Special Publication 2002-528976 (paragraphs 0024, 0032)
- the present invention makes the QoS path reconfigured before handover as an optimum QoS path after handover as much as possible, and reduces the load of the reroute configuration of the QoS path performed after handover.
- An object of the present invention is to provide a high-speed QoS handover method capable of minimizing the QoS interruption time and the processing node used in the method.
- an access point in which a plurality of access routers, each constituting a subnet, are connected via a communication network to form a unique communicable area. And a plurality of access routers connected to each of the plurality of access routers, wherein the access router is connected to the access point through wireless communication with the access point within the communicable area.
- a mobile terminal configured to perform communication of A high-speed QoS handover method by changing a QoS path when a connection is switched from a first access point connected to one access router to a second access point connected to a second access router.
- the second access router to which the second access point is connected from a terminal of a communication partner of the mobile terminal itself with the predetermined QoS path power And passing through the first access router to which the first access point is connected is a preferred aspect of the present invention.
- the QoS path reconfigured before the handover can be the optimum QoS path after the handover as much as possible.
- the first signaling includes information on the QoS path before the handover.
- the QoS path can be reconfigured before handover.
- the information of the QoS path before the handover is session identification information and flow identification information.
- the QoS path can be reconfigured before handover.
- the processing node after the predetermined QoS path is configured and the mobile terminal performs the handover, the processing node, the first arc
- the difference between the first access router to which the access point is connected and the second access router to which the second access point is connected is the difference between the second QoS and the second QoS. It is a preferable aspect of the present invention to delete the QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected. With this configuration, unnecessary QoS paths can be deleted, and wasted bandwidth consumption can be reduced.
- a plurality of access routers each constituting a subnet are connected via a communication network, and an access point forming a unique communicable area is provided for each of the plurality of access routers.
- the communication system is configured to communicate with the access router to which the access point is connected through wireless communication with the access point within the communicable area in the communication system connected to at least one of the access routers.
- a processing node comprising signaling generating means for generating the signaling and transmission means for connecting the generated second signaling to the processing node and sending it to the path.
- the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible, and the load of the reroute configuration of the QoS path performed after the handover can be reduced.
- the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
- the second access router and the second access point to which the second access point is connected from a terminal of a communication partner of the mobile terminal with the predetermined QoS path strength Passing through the first access router to which one access point is connected is a preferred aspect of the present invention.
- the QoS path reconfigured before handover can be the optimal QoS path after handover as much as possible.
- the first signaling includes information on the QoS path before the handover.
- the QoS path can be reconfigured before handover.
- the information of the QoS path before the handover is session identification information and flow identification information.
- the QoS path can be reconfigured before the handover.
- the predetermined QoS path is configured, and after the mobile terminal performs the handover, the second access point is connected in the predetermined QoS path.
- the apparatus further comprises path erasure means for erasing a QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected.
- the high-speed QoS handover method of the present invention and the processing node used in the method have the above-described configuration, and the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible.
- the load on the re-route configuration of the QoS path to be performed can be reduced.
- the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
- FIG. 1 is a configuration diagram showing a configuration of a communication network according to first and second embodiments of the present invention.
- FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention.
- FIG. 3 is a configuration diagram showing a configuration of a processing node according to the first embodiment of the present invention.
- FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention.
- FIG. 5 is a configuration diagram showing the configuration of a processing node according to the second embodiment of the present invention.
- FIG. 6 Diagram showing a conventional communication network
- FIG.7 Diagram showing QoS path immediately after handover of a mobile terminal in a conventional communication network
- FIG. 1 is a configuration diagram showing a configuration of a communication network according to the first embodiment of the present invention.
- FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention.
- FIG. 3 is a block diagram showing the configuration of the processing node according to the first embodiment of the present invention.
- the communication network is located between the MN (mobile terminal) 10, the communication partner CN 60 of MN10, and between MN10 and CN60, and relays signaling (also called signaling messages) and data packets between MN10 and CN60 QNE11, 12, 13, 14, AP (Access Point) 22, 23, 23, which is connected to PAR21 and NA R31, PAR21 and NAR31, which are access routers constituting each subnet 20, 30 and forms a unique communicable area It consists of 32 and 33.
- the configuration of the communication network here is merely an example, and the present invention is not limited to this.
- the MN 10 is currently in the subnet 20, is connected to the AP 22 wirelessly, and communicates with the CN 60 through a route (QoS path) 24.
- the MN 10 communicates with the CN 60 through the AP 22, PAR 21, QNE 11, QNE 12, and QNE 13 on the QoS path 24.
- NAR 31 belonging to subnet 30 is designated as a processing node that performs processing associated with QoS path change according to the first embodiment of the present invention.
- PAR21 belonging to subnet 20 is specified as a processing node will be described.
- the processing node is not limited to NAR31 or PAR21, but may be another QNE (proxy).
- the MN 10 moves from the subnet 20 to the subnet 30 (handover), the MN 10 makes a route (QoS path) via the PAR21 to which the NAR31 and the AP22 are connected from the CN60 to the NAR31 before the handover 64 (
- This signaling includes QoS path information such as the session ID and flow ID of the current QoS path 24! /.
- QoS path information such as the session ID and flow ID of the current QoS path 24! /.
- Y that is the session ID of QoS path 24
- X that is the flow ID are included in the signaling.
- the session ID of the new route (QoS path) 34 after handover of the MN 10 is Y and the flow ID is Z. As described above, the session ID remains the same even when the MN 10 moves.
- the NAR 31 Upon receiving the signaling, the NAR 31 starts two processes.
- the first process is a process for configuring a QoS path toward NAR3 1 force CN60.
- the NAR 31 sends signaling for configuring the QoS path (setting the QoS state) toward the CN 60.
- a new QoS path state is set based on the transmitted signaling, and a QoS path (one path 64) is set between CN60 and NAR31. Part of the QoS path).
- the configured QoS path is the optimal path between NAR31 and CN60.
- the second process is a process for configuring a temporary QoS path (QoS path to AP22) from NAR31 to PAR21.
- NAR31 sends signaling to PAR21 to make temporary QoS path configuration (QoS state setting).
- the state of the temporary QoS path is set by the transmitted signaling, and a temporary QoS path (part of the route 64) is configured between the AP 22 and the NAR 31.
- the configured temporary QoS path is deleted by NAR31 or PAR21 when handover of MN10 is completed. This prevents unnecessary bandwidth consumption due to unnecessary QoS paths.
- the signaling sequence in the above-described processing will be described with reference to FIG.
- a QoS path 24 (old QoS path) has already been configured between the MN 10 and the CN 60. From this state, when the MN 10 decides to perform a handover, the MN 10 transmits signaling including a session ID and a flow ID to the NAR 31 (step S201). Note that the signaling to be transmitted may include information requesting to become a branch point between the re-routed QoS path 64 and the new QoS path 34 after the handover of the MN 10.
- NAR31 Upon receiving the signaling from MN10, NAR31 sends signaling for temporary QoS path configuration (QoS state setting) from NAR31 to AP22 to PAR21 (step S202), and from NAR31 to CN60 Signaling for QoS path configuration (QoS state setting) is sent to CN 60 (step S 203).
- the state setting of the re-routed QoS path 64 is performed by these signaling, and the QoS path 64 is configured between the CN 60 and the AP 22.
- the temporary QoS path to the NAR3 1 AP22 is deleted, and a new QoS path 34 is formed between the CN60 and the AP32.
- the QoS path after the handover of the MN 10 becomes an optimum QoS path as much as possible, and the load of the re-route configuration of the QoS path performed after the handover can be reduced.
- the QoS path setting interval performed immediately after the handover is PAR2r -NAR31 'AP32'- ⁇ 1 ( ⁇ as shown in Fig. 7, whereas in the first embodiment of the present invention, it is shown in Fig. 1. As shown in the figure, it becomes shorter as NAR31—AP32—MN 10. Therefore, the time required for QoS path configuration is shortened and the QoS interruption time can be shortened, and the generated QoS path passes through both PAR21 and NAR31. Therefore, it is also useful in the so-called “ping-pong phenomenon” in which MN10 moves back and forth between PAR21 and NAR31.
- the NAR 31 belonging to the subnet 30 after the handover of the MN 10 is taken as an example of the processing node.
- the NAR 31 includes a receiving unit 301, a transmitting unit 302, a signaling generating unit 303, a path erasing unit 304, and a storage unit 305.
- the receiving unit 301 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like.
- the transmission unit 302 transmits signaling for configuring the QoS path 64 generated by the signaling generation unit 303 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
- the signaling generation means 303 is based on the QoS path between the CN 60 and the NAR 31, and between the NAR 31 and the AP 22. Signaling to construct QoS paths between Are generated respectively.
- the path erasure unit 304 erases a temporary QoS path from NAR 31 to AP 22 when the MN 10 completes the handover after the QoS path 64 is configured between the CN 60 and the AP 22. This temporary QoS path deletion may be performed by PAR21 or other devices.
- the storage unit 305 stores information such as a control program for controlling the operation of the NAR 31 and data generated when the NAR 31 performs processing.
- FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention.
- FIG. 5 is a configuration diagram showing a configuration of a processing node according to the second embodiment of the present invention.
- a route (old QoS path) 24 is configured between the MN 10 and the CN 60 before handover.
- the MN 10 When the MN 10 decides to perform handover from this state, the MN 10 transmits signaling (including a session ID, a flow ID, etc.) to the PAR 21 (step S401). Then, the PAR 21 that has received the signaling transmits signaling for setting the QoS state to the NAR 31 (step S402). The NA R31 that has received the signaling transmits the QoS state setting signaling to the CN 60 in the same manner (step S403). As a result, QNE14, QNE12, and QNE13 located between NAR31 and CN60 perform a new QoS path state setting based on the transmitted signaling, and the rerouted QoS path 64 is set between CN60 and AP22. Configured between.
- the temporary QoS path from the NAR 31 to the AP 22 is deleted, and a new QoS path 34 is configured between the CN 60 and the AP 32.
- the QoS path after handover of MN10 is The QoS path is optimized as much as possible, and the load on the re-route configuration of the QoS path performed after handover can be reduced.
- the QoS path setting interval performed immediately after handover is conventionally PAR2r-NAR31'-AP32'- ⁇ 1 ( ⁇ as shown in FIG. 7, whereas in the second embodiment of the present invention, the path shown in FIG. As shown in Fig.
- the time required for QoS path configuration is shortened and the QoS interruption time can be shortened, and the generated QoS path power PAR21 and NAR31 are both shortened. This is also useful for the so-called “ping-pong phenomenon” in which MN10 moves back and forth between PAR21 and NAR31.
- the PAR 21 includes a receiving unit 501, a transmitting unit 502, a signaling generating unit 503, a path erasing unit 504, and a storage unit 505.
- the receiving unit 501 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like.
- the transmitting unit 502 transmits signaling for configuring the QoS path 64 generated by the signaling generating unit 503 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
- the signaling generation unit 503 Based on the signaling for configuring the QoS path 64 transmitted from the MN 10 received by the receiving unit 501, the signaling generation unit 503 performs signaling for configuring the QoS path between the CN 60 and the AP 22. Is generated. Then, the NAR 31 that receives the generated signaling generates signaling for configuring a QoS path between the CN 60 and the NAR 31 itself based on the received signaling, and transmits the generated signaling to the CN 60.
- the node elimination means 504 creates a temporary QoS path from NAR31 to AP22 when MN10 starts and completes handover after QoS path 64 is configured between CN60 and AP22. It is to be erased. Note that this temporary QoS path deletion may be performed by the NAR 31 or another device.
- the storage means 505 stores a control program for controlling the operation of the PAR21 and information such as data generated when the PAR21 performs processing. It is.
- each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- IC system LSI
- super LSI super LSI
- ultra LSI depending on the difference in power integration of LSI.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
- integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other technologies derived from it, it is natural that the integration of functional blocks may be performed using this technology. For example, biotechnology can be applied.
- the high-speed QoS handover method according to the present invention and the processing node used in the method are such that the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible.
- the load on the route configuration can be reduced, and the QoS path setup section to be performed immediately after handover is shortened to minimize the QoS interruption time. Therefore, the high-speed Qo S of mobile terminals (mopile nodes) that perform wireless communication can be minimized. It can be used for the handover method and processing nodes used in the method, and in particular, high-speed QoS hand-over in a mopile node that performs wireless communication using the Mobile Internet Protocol version 6 (Mobile IPv6) protocol, which is the next-generation Internet protocol. It is useful for the method and the processing nodes used in the method.
- Mobile IPv6 Mobile Internet Protocol version 6
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
明 細 書 Specification
高速 QoSハンドオーバ方法及びその方法で用いられる処理ノード 技術分野 High-speed QoS handover method and processing node used in the method
[0001] 本発明は、無線通信を行う移動端末 (モバイルノード)の高速 QoSハンドオーバ方 法及びその方法で用いられる処理ノードに関し、特に、次世代インターネットプロトコ ルであるモパイル IPv6 (Mobile Internet Protocol version 6)プロトコルを利用した無 線通信を行うモパイルノードにおける高速 QoSハンドオーバ方法及びその方法で用 Vヽられる処理ノードに関する。 TECHNICAL FIELD [0001] The present invention relates to a high-speed QoS handover method for a mobile terminal (mobile node) that performs wireless communication and a processing node used in the method, and in particular, a mobile Internet Protocol version 6 that is a next-generation Internet protocol. The present invention relates to a high-speed QoS handover method in a mopile node that performs wireless communication using a protocol and a processing node used in the method.
背景技術 Background art
[0002] 新たなシグナリングプロトコルとして、 NSIS (Next Step In Signaling)力 ETFの NSI Sワーキンググループ(下記の非特許文献 1を参照)によって標準化されつつある。 N SISは QoS (Quality of Service)リソース予約において特に有効であると期待されて いる。最近のインターネットドラフトには、一般的な NSIS (下記の非特許文献 5及び 6 を参照)だけでなぐ他の NSIS (下記の非特許文献 2から 4を参照)における QoSシ ダナリングやモビリティサポートの実施の必要性や提案が記載されて 、る。ネットヮー クにおけるルータ若しくはターミナルのすべてが NSIS Entities (NE)ではないが、 NEは NSIS機能を有している。なお、 NEのすべてがモビリティ機能における QoSを サポートするわけではない。ここでは、 QoS機能を有する NEを QNE (QoS NE)と呼 [0002] As a new signaling protocol, NSIS (Next Step In Signaling) power ETF NSI S working group (see Non-Patent Document 1 below) is being standardized. N SIS is expected to be particularly effective in QoS (Quality of Service) resource reservation. Recent internet drafts include QoS sibling and mobility support in other NSIS (see Non-Patent Documents 2 to 4 below) in addition to general NSIS (see Non-Patent Documents 5 and 6 below). Needs and suggestions are described. Not all routers or terminals in the network are NSIS Entities (NE), but NEs have NSIS functionality. Not all NEs support QoS in mobility functions. Here, the NE with QoS function is called QNE (QoS NE).
[0003] QoSリソースは、転送されるデータを通すパスに沿ってそれぞれの QNEで予約さ れる。パス上で保証された QoSのパケットを識別するためにフロー IDが用いられる。 フロー IDはデータ送信側と受信側の IPアドレスを含んで 、る(下記の非特許文献 5を 参照)ので、フロー IDは IPアドレスがハンドオーバなどのモビリティの移動により変わ ると変化する。一方、セッション IDは MN (Mobile Node)と CN (Correspondent Node) との間のセッションを識別するために用いられる。そのため、セッション IDはフロー ID がモビリティの移動により変化しても同じままである。 [0003] QoS resources are reserved by each QNE along a path through which data is transferred. A flow ID is used to identify a QoS packet guaranteed on the path. Since the flow ID includes the IP addresses of the data transmission side and the reception side (see Non-Patent Document 5 below), the flow ID changes when the IP address changes due to mobility movement such as handover. On the other hand, session ID is used to identify a session between MN (Mobile Node) and CN (Correspondent Node). Therefore, the session ID remains the same even if the flow ID changes due to mobility movement.
[0004] ここで、図 6に示すように、ハンドオーバが起こると、経路(古いパス) 24'と経路 (新 たなパス) 34'との分岐点に位置する QNEである CRN (Crossover Node) 12Ίま、 Q oSハンドオーバで二重予約を避けるために重要な役割を有する。 CRN12 ま、重な り合うパス部分(CN6CT— CRN12'間)と新たなパス部分(CRN 12'— MN 1(Τ間) で異なる処理をする必要がある。すなわち、 CN6(T—CRN12'間における状態の 更新と CRN12'—MN1(T間における QoSの状態予約をする必要がある。したがつ て、 CRN12'の発見は QoSハンドオーバで重要な問題の 1つである。ハンドオーバ による QoS中断を避けるため、若しくは最小限にするため、すばやく処理しなければ ならない。し力しながら、 CRN発見には時間を要し、シグナリング負荷も大きくなる。 Here, as shown in FIG. 6, when a handover occurs, a route (old path) 24 ′ and a route (new It has an important role to avoid double reservation in QoS handover, up to 12 CRN (Crossover Node) QNE located at the branch point with 34 '. Until CRN12, the overlapping path part (between CN6CT and CRN12 ') and the new path part (CRN 12'-MN 1 (between) must be treated differently: CN6 (between T and CRN12' Status update and CRN12'—MN1 (needs QoS status reservation between T. Therefore, discovery of CRN12 'is one of the important issues in QoS handover. In order to avoid or minimize it must be processed quickly, but the CRN discovery takes time and increases the signaling load.
[0005] そこで、このような問題を解消するためのいくつかのテクニックが提案されている。例 えば、下記の非特許文献 7に開示されている技術がある。下記の非特許文献 7に開 示されて!/、る技術ではすばゃ 、CRN発見を実現するプロキシを提案して!/、る。 MN はプロキシとして振舞う NAR (New Access Router)に、古いフロー IDとセッション ID の組を含めたリクエストを送信する。 NARは上流方向の CRNを発見するために QU ERYメッセージを CNに送信する。パス上のそれぞれの QNEは QUERYメッセージ を取得し、古いフロー IDとセッション IDの組を比較し、自身が CRNか否かをチェック する。 QUERYメッセージを受けると、 CNは、受けた QUERYメッセージに対する RE SPONSEメッセージだけでなぐ下流方向の CRNを発見するための QUERYメッセ ージを NARに送信する。 CRNの発見には少なくとも 1回の RTT(Round Trip Time) がかかり、 MNがハンドオーバをするたびに CRNの発見をしなければならず負荷が か 、 。 [0005] Therefore, several techniques for solving such a problem have been proposed. For example, there is a technique disclosed in Non-Patent Document 7 below. The technology disclosed in Non-Patent Document 7 below suggests a proxy that realizes CRN discovery! The MN sends a request including the old flow ID and session ID pair to the NAR (New Access Router) acting as a proxy. The NAR sends a QU ERY message to the CN to find the upstream CRN. Each QNE on the path gets a QUERY message, compares the old flow ID and session ID pair and checks whether it is a CRN. Upon receiving the QUERY message, the CN sends a QUERY message to the NAR to discover the downstream CRN that is not just the RE SPONSE message for the received QUERY message. It takes at least one RTT (Round Trip Time) to discover a CRN, and every time the MN performs a handover, the CRN must be discovered.
[0006] そこで、シグナリングの負荷を低減させるため、 1つの方法として CRNとしてある QN Eを指定する方法がある。ある CRNとして古い QoSパス上の QNEが指定され、その 指定される QNEとして、例えば PAR (Previous Access Router)が考えられる。このよ うに構成することにより、シグナリングの負荷を低減させることができる。このような技術 は下記の特許文献 1及び 2に開示されている。 [0006] In order to reduce the signaling load, one method is to specify a QNE as a CRN. A QNE on an old QoS path is specified as a CRN, and PAR (Previous Access Router) can be considered as the specified QNE. With this configuration, the signaling load can be reduced. Such techniques are disclosed in Patent Documents 1 and 2 below.
非特許文献 1 :NSIS WG (http://www.ietf.org/html.charters/nsis-charter.html) 非特干文献 2 : H. し haskar, Ed, "Requirements of a Quality of service (QoS) Solution for Mobile IP", RFC3583, September 2003 非特許文献 3 : Sven Van den Bosch, Georgios Karagiannis and Andrew McDonald, "N SLP for Quality— of— Service signalling , draft-ietf-nsis-qos-nslp-06.txt, May 2005 非特許文献 4 : S. Lee, et al., "Applicability Statement of NSIS Protocols in Mobile E nvironments", draft— ietf—nsis— applicability— mobility— signaling— 01. txt, February 2005 非特許文献 5 : R. Hancock et al.,"Next Steps in Signaling: Framework", RFC4080, J une 2005 Non-Patent Document 1: NSIS WG (http://www.ietf.org/html.charters/nsis-charter.html) Non-Patent Document 2: H. Shi haskar, Ed, "Requirements of a Quality of service (QoS) Solution for Mobile IP ", RFC3583, September 2003 Non-Patent Document 3: Sven Van den Bosch, Georgios Karagiannis and Andrew McDonald, "N SLP for Quality— of— Service signaling, draft-ietf-nsis-qos-nslp-06.txt, May 2005 Non-Patent Document 4: S. Lee, et al., "Applicability Statement of NSIS Protocols in Mobile Environments", draft— ietf—nsis— applicability— mobility— signaling— 01. txt, February 2005 Non-Patent Document 5: R. Hancock et al., “Next Steps in Signaling: Framework ", RFC4080, June 2005
非特許文献 6 : M. Brunner (Editor), Requirements for Signaling Protocols", RFC372 6, April 2004 Non-Patent Document 6: M. Brunner (Editor), Requirements for Signaling Protocols ", RFC372 6, April 2004
f^^ j¾ : T.Ue,T.Sanda,K.Honma, QoS Mobility Support with Proxy-assisted Fast Crossover Node Discovery", WPMC2004,September 2004 f ^^ j¾: T.Ue, T.Sanda, K. Honma, QoS Mobility Support with Proxy-assisted Fast Crossover Node Discovery ", WPMC2004, September 2004
特許文献 1 :特許第 3441367号公報(図 1) Patent Document 1: Japanese Patent No. 3441367 (Fig. 1)
特許文献 2:特表 2002— 528976号公報(段落 0024、 0032) Patent Document 2: Japanese Translation of Special Publication 2002-528976 (paragraphs 0024, 0032)
[0007] し力しながら、図 7に示すような、上記の特許文献 1及び 2に開示された技術におけ るネットワークにおいて、ハンドオーバ直後の QoSパス 64Ίま、ほとんど古い QoSパ ス 2 と同じであり最適なパスではない。それゆえ、 ΜΝ10Ίまハンドオーバ後に Qo Sパス 34'を再度構成する必要があり負荷力かかってしまうという問題がある。 However, in the network in the technology disclosed in Patent Documents 1 and 2 as shown in FIG. 7 as shown in FIG. 7, the QoS path 64 immediately after handover is almost the same as the old QoS path 2. There is no optimal path. Therefore, there is a problem in that it is necessary to reconfigure the Qo S path 34 'after the handover of up to 10 minutes, and load is applied.
発明の開示 Disclosure of the invention
[0008] 本発明は、上記の問題点に鑑み、ハンドオーバ前に再構成された QoSパスができ る限りハンドオーバ後の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再 ルート構成の負荷を低減させることができ、ハンドオーバ直後に行う QoSパス設定区 間が短くなり、 QoS中断時間を最小にすることができる高速 QoSハンドオーバ方法 及びその方法で用いられる処理ノードを提供することを目的とする。 [0008] In view of the above problems, the present invention makes the QoS path reconfigured before handover as an optimum QoS path after handover as much as possible, and reduces the load of the reroute configuration of the QoS path performed after handover. An object of the present invention is to provide a high-speed QoS handover method capable of minimizing the QoS interruption time and the processing node used in the method.
[0009] 上記目的を達成するために、本発明によれば、それぞれがサブネットを構成する複 数のアクセスルータが通信ネットワークを介して接続されており、固有の通信可能領 域を形成するアクセスポイントが前記複数のアクセスルータのそれぞれに少なくとも 1 つ以上接続されて 、る通信システムで、前記通信可能領域内で前記アクセスポイント との無線通信を通じて、前記アクセスポイントが接続されて ヽる前記アクセスルータと の通信を行うよう構成されている移動端末が、ハンドオーバにより、現在通信中の、第 1のアクセスルータに接続する第 1のアクセスポイントから、第 2のアクセスルータに接 続する第 2のアクセスポイントへ接続が切り替わる際の QoSパスの変更による高速 Qo Sハンドオーバ方法であって、前記移動端末が、前記ハンドオーバ後の前記 QoSパ スの変更処理の負荷を低減させるための所定の処理を行う処理ノードに対して、所 定の QoSパスを構成させるための第 1のシグナリングを送信するステップと、前記第 1 のシグナリングを受信する前記処理ノードが、受信した前記第 1のシグナリングに基 づいて、前記所定の QoSパスの QoS設定をするための第 2のシグナリングを生成し、 生成された前記第 2のシグナリングを自身につながつているパスに送出するステップ とを有する高速 QoSハンドオーバ方法が提供される。この構成により、ハンドオーバ 前に再構成された QoSパスができる限りハンドオーバ後の最適な QoSパスとなり、ハ ンドオーバ後に行う QoSパスの再ルート構成の負荷を低減させることができる。また、 ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS中断時間を最小にする ことができる。 [0009] In order to achieve the above object, according to the present invention, an access point in which a plurality of access routers, each constituting a subnet, are connected via a communication network to form a unique communicable area. And a plurality of access routers connected to each of the plurality of access routers, wherein the access router is connected to the access point through wireless communication with the access point within the communicable area. A mobile terminal configured to perform communication of A high-speed QoS handover method by changing a QoS path when a connection is switched from a first access point connected to one access router to a second access point connected to a second access router. A step in which a terminal transmits first signaling for configuring a predetermined QoS path to a processing node that performs predetermined processing for reducing a load of processing for changing the QoS path after the handover; And the processing node receiving the first signaling generates a second signaling for setting a QoS of the predetermined QoS path based on the received first signaling, and is generated. And a method for sending the second signaling to a path connected to the second signaling. With this configuration, the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible, and the load on the reroute configuration of the QoS path performed after the handover can be reduced. In addition, the QoS path setting section to be performed immediately after handover is shortened, and the QoS interruption time can be minimized.
[0010] また、本発明の高速 QoSハンドオーバ方法において、前記所定の QoSパス力 前 記移動端末自身の通信相手の端末から、前記第 2のアクセスポイントが接続されて 、 る前記第 2のアクセスルータ及び前記第 1のアクセスポイントが接続されている前記第 1のアクセスルータを経由することは、本発明の好ましい態様である。この構成により 、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最適な Qo Sパスとなることができる。 [0010] Further, in the high-speed QoS handover method of the present invention, the second access router to which the second access point is connected from a terminal of a communication partner of the mobile terminal itself with the predetermined QoS path power And passing through the first access router to which the first access point is connected is a preferred aspect of the present invention. With this configuration, the QoS path reconfigured before the handover can be the optimum QoS path after the handover as much as possible.
[0011] また、本発明の高速 QoSハンドオーバ方法において、前記第 1のシグナリングが前 記ハンドオーバ前の QoSパスの情報を含むことは、本発明の好ましい態様である。こ の構成により、ハンドオーバ前に QoSパスを再構成することができる。 In the fast QoS handover method of the present invention, it is a preferred aspect of the present invention that the first signaling includes information on the QoS path before the handover. With this configuration, the QoS path can be reconfigured before handover.
[0012] また、本発明の高速 QoSハンドオーバ方法において、前記ハンドオーバ前の QoS パスの前記情報がセッション識別情報及びフロー識別情報であることは、本発明の 好ましい態様である。この構成により、ハンドオーバ前に QoSパスを再構成することが できる。 In the fast QoS handover method of the present invention, it is a preferred aspect of the present invention that the information of the QoS path before the handover is session identification information and flow identification information. With this configuration, the QoS path can be reconfigured before handover.
[0013] また、本発明の高速 QoSハンドオーバ方法において、前記所定の QoSパスが構成 され、前記移動端末が前記ハンドオーバをした後、前記処理ノード、前記第 1のァク セスポイントが接続されて 、る前記第 1のアクセスルータ、前記第 2のアクセスポイント が接続されて ヽる前記第 2のアクセスルータのうちの ヽずれかが、前記所定の QoS パスのうち、前記第 2のアクセスルータと前記ハンドオーバ前の前記移動端末が接続 していた前記第 1のアクセスポイントとの間の QoSパスを消去することは、本発明の好 ましい態様である。この構成により、不必要となった QoSパスを消去でき、無駄な帯 域の消費を減らすことができる。 [0013] Further, in the fast QoS handover method of the present invention, after the predetermined QoS path is configured and the mobile terminal performs the handover, the processing node, the first arc The difference between the first access router to which the access point is connected and the second access router to which the second access point is connected is the difference between the second QoS and the second QoS. It is a preferable aspect of the present invention to delete the QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected. With this configuration, unnecessary QoS paths can be deleted, and wasted bandwidth consumption can be reduced.
[0014] また、本発明によれば、それぞれがサブネットを構成する複数のアクセスルータが 通信ネットワークを介して接続されており、固有の通信可能領域を形成するアクセス ポイントが前記複数のアクセスルータのそれぞれに少なくとも 1つ以上接続されて 、る 通信システムで、前記通信可能領域内で前記アクセスポイントとの無線通信を通じて 、前記アクセスポイントが接続されて ヽる前記アクセスルータとの通信を行うよう構成 されている移動端末力 ハンドオーバにより、現在通信中の、第 1のアクセスルータに 接続する第 1のアクセスポイントから、第 2のアクセスルータに接続する第 2のアクセス ポイントへ接続が切り替わる際の QoSパスの変更による高速 QoSハンドオーバ方法 で用いられる処理ノードであって、所定の QoSパスを構成させるための第 1のシグナ リングを前記移動端末力 受信する受信手段と、受信された前記第 1のシグナリング に基づ!/、て、前記所定の QoSパスの QoS設定をするための第 2のシグナリングを生 成するシグナリング生成手段と、生成された前記第 2のシグナリングを前記処理ノード につながって 、るパスに送出する送信手段とを備える処理ノードが提供される。この 構成により、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の 最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低減 させることができる。また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 Qo S中断時間を最小にすることができる。 [0014] Further, according to the present invention, a plurality of access routers each constituting a subnet are connected via a communication network, and an access point forming a unique communicable area is provided for each of the plurality of access routers. The communication system is configured to communicate with the access router to which the access point is connected through wireless communication with the access point within the communicable area in the communication system connected to at least one of the access routers. Change of QoS path when connection is switched from the first access point connected to the first access router to the second access point connected to the second access router due to handover A processing node used in the high-speed QoS handover method based on A receiving means for receiving the first signaling for generating the mobile terminal, and a second for setting the QoS of the predetermined QoS path based on the received first signaling! / There is provided a processing node comprising signaling generating means for generating the signaling and transmission means for connecting the generated second signaling to the processing node and sending it to the path. With this configuration, the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible, and the load of the reroute configuration of the QoS path performed after the handover can be reduced. In addition, the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
[0015] また、本発明の処理ノードにおいて、前記所定の QoSパス力 前記移動端末の通 信相手の端末から、前記第 2のアクセスポイントが接続されて 、る前記第 2のアクセス ルータ及び前記第 1のアクセスポイントが接続されている前記第 1のアクセスルータを 経由することは、本発明の好ましい態様である。この構成により、ハンドオーバ前に再 構成された QoSパスができる限りハンドオーバ後の最適な QoSパスとなることができ る。 [0015] Further, in the processing node of the present invention, the second access router and the second access point to which the second access point is connected from a terminal of a communication partner of the mobile terminal with the predetermined QoS path strength Passing through the first access router to which one access point is connected is a preferred aspect of the present invention. With this configuration, the QoS path reconfigured before handover can be the optimal QoS path after handover as much as possible. The
[0016] また、本発明の処理ノードにおいて、前記第 1のシグナリングが前記ハンドオーバ 前の QoSパスの情報を含むことは、本発明の好ましい態様である。この構成により、 ハンドオーバ前に QoSパスを再構成することができる。 In the processing node of the present invention, it is a preferable aspect of the present invention that the first signaling includes information on the QoS path before the handover. With this configuration, the QoS path can be reconfigured before handover.
[0017] また、本発明の処理ノードにおいて、前記ハンドオーバ前の QoSパスの前記情報 がセッション識別情報及びフロー識別情報であることは、本発明の好まし 、態様であ る。この構成により、ハンドオーバ前に QoSパスを再構成することができる。 [0017] Further, in the processing node of the present invention, it is a preferred aspect of the present invention that the information of the QoS path before the handover is session identification information and flow identification information. With this configuration, the QoS path can be reconfigured before the handover.
[0018] また、本発明の処理ノードにおいて、前記所定の QoSパスが構成され、前記移動 端末が前記ハンドオーバをした後、前記所定の QoSパスのうち、前記第 2のアクセス ポイントが接続されている第 2のアクセスルータと前記ハンドオーバ前の前記移動端 末が接続していた前記第 1のアクセスポイントとの間の QoSパスを消去するパス消去 手段を更に備えることは、本発明の好ましい態様である。この構成により、不必要とな つた QoSパスを消去でき、無駄な帯域の消費を減らすことができる。 [0018] Further, in the processing node of the present invention, the predetermined QoS path is configured, and after the mobile terminal performs the handover, the second access point is connected in the predetermined QoS path. In a preferred aspect of the present invention, the apparatus further comprises path erasure means for erasing a QoS path between the second access router and the first access point to which the mobile terminal before the handover was connected. . With this configuration, unnecessary QoS paths can be deleted, and wasted bandwidth consumption can be reduced.
[0019] 本発明の高速 QoSハンドオーバ方法及びその方法で用いられる処理ノードは、上 記構成を有し、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後 の最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低 減させることができる。また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS中断時間を最小にすることができる。 [0019] The high-speed QoS handover method of the present invention and the processing node used in the method have the above-described configuration, and the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible. The load on the re-route configuration of the QoS path to be performed can be reduced. In addition, the QoS path setting section performed immediately after handover is shortened, and the QoS interruption time can be minimized.
図面の簡単な説明 Brief Description of Drawings
[0020] [図 1]本発明の第 1及び第 2の実施の形態における通信ネットワークの構成を示す構 成図 FIG. 1 is a configuration diagram showing a configuration of a communication network according to first and second embodiments of the present invention.
[図 2]本発明の第 1の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングのシーケンスを示すシーケンスチャート FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施の形態に係る処理ノードの構成を示す構成図 FIG. 3 is a configuration diagram showing a configuration of a processing node according to the first embodiment of the present invention.
[図 4]本発明の第 2の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリ ングのシーケンスを示すシーケンスチャート FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention.
[図 5]本発明の第 2の実施の形態に係る処理ノードの構成を示す構成図 FIG. 5 is a configuration diagram showing the configuration of a processing node according to the second embodiment of the present invention.
[図 6]従来の通信ネットワークを示す図 [図 7]従来の通信ネットワークにおける移動端末のハンドオーバ直後の QoSパスを示 す図 [Figure 6] Diagram showing a conventional communication network [Fig.7] Diagram showing QoS path immediately after handover of a mobile terminal in a conventional communication network
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0021] <第 1の実施の形態 > [0021] <First embodiment>
以下、本発明の第 1の実施の形態について図 1から図 3を用いて説明する。図 1は 本発明の第 1の実施の形態における通信ネットワークの構成を示す構成図である。 図 2は本発明の第 1の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナ リングのシーケンスを示すシーケンスチャートである。図 3は本発明の第 1の実施の形 態に係る処理ノードの構成を示す構成図である。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram showing a configuration of a communication network according to the first embodiment of the present invention. FIG. 2 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the first embodiment of the present invention. FIG. 3 is a block diagram showing the configuration of the processing node according to the first embodiment of the present invention.
[0022] まず、本発明の第 1の実施の形態における通信ネットワークの構成について図 1を 用いて説明する。通信ネットワークは、 MN (移動端末) 10、 MN10の通信相手の C N60、 MN10と CN60との間に位置し、 MN10と CN60との間におけるシグナリング( シグナリングメッセージとも言う)やデータパケットなどを中継する QNE11、 12、 13、 14、それぞれのサブネット 20、 30を構成するアクセスルータである PAR21及び NA R31、 PAR21及び NAR31に接続し、固有の通信可能領域を形成する AP (Access Point) 22、 23、 32、 33から構成されている。なお、ここでの通信ネットワークの構成 は一例であり、これに限られるものではない。 First, the configuration of the communication network in the first embodiment of the present invention will be described with reference to FIG. The communication network is located between the MN (mobile terminal) 10, the communication partner CN 60 of MN10, and between MN10 and CN60, and relays signaling (also called signaling messages) and data packets between MN10 and CN60 QNE11, 12, 13, 14, AP (Access Point) 22, 23, 23, which is connected to PAR21 and NA R31, PAR21 and NAR31, which are access routers constituting each subnet 20, 30 and forms a unique communicable area It consists of 32 and 33. Note that the configuration of the communication network here is merely an example, and the present invention is not limited to this.
[0023] MN10は現在サブネット 20におり、無線で AP22と接続し、経路(QoSパス) 24を 通じて CN60と通信をしている。すなわち、 MN10は QoSパス 24上の AP22、 PAR2 1、 QNE11、 QNE12、 QNE13を通じて CN60と通信をしている。以下では、本発 明の第 1の実施の形態に係る QoSパス変更に伴う処理を行う処理ノードに、サブネッ ト 30に属する NAR31を指定した場合について説明する。後述する第 2の実施の形 態では、処理ノードにサブネット 20に属する PAR21を指定した場合について説明す る。なお、処理ノードは NAR31や PAR21に限られるものではなぐ他の QNE (プロ キシ)などであってもよい。 [0023] The MN 10 is currently in the subnet 20, is connected to the AP 22 wirelessly, and communicates with the CN 60 through a route (QoS path) 24. In other words, the MN 10 communicates with the CN 60 through the AP 22, PAR 21, QNE 11, QNE 12, and QNE 13 on the QoS path 24. In the following, a case will be described in which NAR 31 belonging to subnet 30 is designated as a processing node that performs processing associated with QoS path change according to the first embodiment of the present invention. In the second embodiment described later, a case where PAR21 belonging to subnet 20 is specified as a processing node will be described. The processing node is not limited to NAR31 or PAR21, but may be another QNE (proxy).
[0024] MN10がサブネット 20からサブネット 30へ移動(ハンドオーバ)する場合、 MN10 は、ハンドオーバ前に NAR31に対して、 CN60から NAR31及び AP22が接続され ている PAR21を経由した経路(QoSパス) 64 (ここでは、 CN60から AP22までの経 路)を構成させるためのシグナリングを送信する。このシグナリングには、現在の QoS パス 24のセッション ID及びフロー IDのような QoSパス情報が含まれて!/、る。具体的 には、図 1に示すような、例えば QoSパス 24のセッション IDである Yとフロー IDである Xがシグナリングには含まれる。なお、 MN10のハンドオーバ後の新たな経路(QoS パス) 34のセッション IDは Yであり、フロー IDは Zである。上述したように、セッション I Dは MN10の移動によっても同じままである。 [0024] When the MN 10 moves from the subnet 20 to the subnet 30 (handover), the MN 10 makes a route (QoS path) via the PAR21 to which the NAR31 and the AP22 are connected from the CN60 to the NAR31 before the handover 64 ( Here, the process from CN60 to AP22 Signaling for configuring the path) is transmitted. This signaling includes QoS path information such as the session ID and flow ID of the current QoS path 24! /. Specifically, as shown in FIG. 1, for example, Y that is the session ID of QoS path 24 and X that is the flow ID are included in the signaling. Note that the session ID of the new route (QoS path) 34 after handover of the MN 10 is Y and the flow ID is Z. As described above, the session ID remains the same even when the MN 10 moves.
[0025] シグナリングを受信した NAR31は 2つの処理を開始する。 1つ目の処理は、 NAR3 1力 CN60に向かって QoSパスを構成する処理である。具体的には、 NAR31は C N60に向かって QoSパスの構成(QoSの状態設定)をするためのシグナリングを送 信する。そして、 NAR31と CN60との間に位置する QNE14、 QNE12、 QNE13で は、送信されるシグナリングに基づく新たな QoSパスの状態設定が行われ、 CN60と NAR31との間に QoSパス(経路 64の一部の QoSパス)が構成される。構成される Q oSパスは、 NAR31と CN60との間の最適なパスとなる。 [0025] Upon receiving the signaling, the NAR 31 starts two processes. The first process is a process for configuring a QoS path toward NAR3 1 force CN60. Specifically, the NAR 31 sends signaling for configuring the QoS path (setting the QoS state) toward the CN 60. In QNE14, QNE12, and QNE13 located between NAR31 and CN60, a new QoS path state is set based on the transmitted signaling, and a QoS path (one path 64) is set between CN60 and NAR31. Part of the QoS path). The configured QoS path is the optimal path between NAR31 and CN60.
[0026] 2つ目の処理は、 NAR31から PAR21に向かって一時的な QoSパス(AP22まで の QoSパス)を構成する処理である。具体的には、 NAR31は PAR21に向力つて一 時的な QoSパスの構成 (QoSの状態設定)をするためのシグナリングを送信する。そ して、送信されるシグナリングにより一時的な QoSパスの状態設定が行われ、 AP22 と NAR31との間に一時的な QoSパス (経路 64の一部)が構成される。構成される一 時的な QoSパスは、 MN10のハンドオーバが完了すると NAR31若しくは PAR21な どによって消去される。これにより、不要となった QoSパスによる帯域の無駄な消費を 防ぐことができる。以下に、上述した処理におけるシグナリングのシーケンスについて 図 2を用いて説明する。 [0026] The second process is a process for configuring a temporary QoS path (QoS path to AP22) from NAR31 to PAR21. Specifically, NAR31 sends signaling to PAR21 to make temporary QoS path configuration (QoS state setting). Then, the state of the temporary QoS path is set by the transmitted signaling, and a temporary QoS path (part of the route 64) is configured between the AP 22 and the NAR 31. The configured temporary QoS path is deleted by NAR31 or PAR21 when handover of MN10 is completed. This prevents unnecessary bandwidth consumption due to unnecessary QoS paths. Hereinafter, the signaling sequence in the above-described processing will be described with reference to FIG.
[0027] 図 2に示すように、 MN10と CN60との間には既に QoSパス 24 (古い QoSパス)が 構成されている。この状態から、 MN10がハンドオーバをすると決定すると、 MN10 は NAR31に対してセッション ID及びフロー IDを含むシグナリングを送信する(ステツ プ S201)。なお、送信されるシグナリングには、再ルート構成される QoSパス 64と、 MN10のハンドオーバ後の新たな QoSパス 34との分岐点になるようリクエストする情 報を含めるようにしてもよい。 [0028] MN10からのシグナリングを受信した NAR31は、 NAR31から AP22までの一時 的な QoSパスの構成(QoSの状態設定)のためのシグナリングを PAR21に送信し( ステップ S202)、 NAR31から CN60までの QoSパスの構成(QoSの状態設定)のた めのシグナリングを CN60に送信する(ステップ S 203)。これらのシグナリングにより 再ルート構成された QoSパス 64の状態設定が行われ、 CN60と AP22との間に QoS パス 64が構成される。そして、 MN10がハンドオーバを開始して完了すると、 NAR3 1力 AP22までの一時的な QoSパスは消去され、 CN60と AP32との間に新たな Q oSパス 34が構成される。このように構成されることにより、 MN10のハンドオーバ後の QoSパスができる限り最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ル ート構成の負荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス設 定区間は、従来では図 7に示すように PAR2r -NAR31' AP32'— ΜΝ1(Γで あるのに対し、本発明の第 1の実施の形態では図 1に示すように NAR31— AP32— MN10と短くなる。このため、 QoSパス構成に要する時間が短くなり、 QoS中断時間 も短くすることができる。また、生成される QoSパスが PAR21及び NAR31の双方を 通っているため、 PAR21と NAR31との間で MN10が行ったり来たりする、いわゆる" ピンポン現象"においても有用である。 As shown in FIG. 2, a QoS path 24 (old QoS path) has already been configured between the MN 10 and the CN 60. From this state, when the MN 10 decides to perform a handover, the MN 10 transmits signaling including a session ID and a flow ID to the NAR 31 (step S201). Note that the signaling to be transmitted may include information requesting to become a branch point between the re-routed QoS path 64 and the new QoS path 34 after the handover of the MN 10. [0028] Upon receiving the signaling from MN10, NAR31 sends signaling for temporary QoS path configuration (QoS state setting) from NAR31 to AP22 to PAR21 (step S202), and from NAR31 to CN60 Signaling for QoS path configuration (QoS state setting) is sent to CN 60 (step S 203). The state setting of the re-routed QoS path 64 is performed by these signaling, and the QoS path 64 is configured between the CN 60 and the AP 22. When the MN 10 starts and completes the handover, the temporary QoS path to the NAR3 1 AP22 is deleted, and a new QoS path 34 is formed between the CN60 and the AP32. With this configuration, the QoS path after the handover of the MN 10 becomes an optimum QoS path as much as possible, and the load of the re-route configuration of the QoS path performed after the handover can be reduced. In addition, the QoS path setting interval performed immediately after the handover is PAR2r -NAR31 'AP32'- ΜΝ1 (Γ as shown in Fig. 7, whereas in the first embodiment of the present invention, it is shown in Fig. 1. As shown in the figure, it becomes shorter as NAR31—AP32—MN 10. Therefore, the time required for QoS path configuration is shortened and the QoS interruption time can be shortened, and the generated QoS path passes through both PAR21 and NAR31. Therefore, it is also useful in the so-called “ping-pong phenomenon” in which MN10 moves back and forth between PAR21 and NAR31.
[0029] 次に、本発明の第 1の実施の形態に係る処理ノードの構成について図 3を用いて 説明する。以下では、処理ノードとして MN10のハンドオーバ後のサブネット 30に属 する NAR31を例にとって説明する。図 3に示すように、 NAR31は、受信手段 301、 送信手段 302、シグナリング生成手段 303、パス消去手段 304、記憶手段 305から 構成されている。受信手段 301は、上述した MN10からの QoSパス 64の構成のため のシグナリングや、 CN60と MN10との間でやりとりされるパケットなどを受信するもの である。送信手段 302は、後述するシグナリング生成手段 303によって生成された Q oSパス 64を構成するためのシグナリングや、 CN60と MN10との間でやりとりされる パケットなどを送信するものである。 Next, the configuration of the processing node according to the first embodiment of the present invention will be described using FIG. In the following description, the NAR 31 belonging to the subnet 30 after the handover of the MN 10 is taken as an example of the processing node. As shown in FIG. 3, the NAR 31 includes a receiving unit 301, a transmitting unit 302, a signaling generating unit 303, a path erasing unit 304, and a storage unit 305. The receiving unit 301 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like. The transmission unit 302 transmits signaling for configuring the QoS path 64 generated by the signaling generation unit 303 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
[0030] シグナリング生成手段 303は、受信手段 301によって受信された、 MN10から送信 される QoSパス 64を構成するためのシグナリングに基づいて、 CN60と NAR31との 間の QoSパス及び NAR31と AP22との間の QoSパスを構成するためのシグナリング をそれぞれ生成するものである。パス消去手段 304は、 CN60と AP22との間に QoS パス 64が構成された後に MN10がハンドオーバを完了した場合に、 NAR31から A P22までの一時的な QoSパスを消去するものである。なお、この一時的な QoSパス の消去は PAR21や他の装置などが行うようにしてもよい。記憶手段 305は、 NAR31 の動作を制御するための制御プログラムや、 NAR31が処理を行う際に生じるデータ などの情報を格納するものである。 [0030] Based on the signaling for configuring the QoS path 64 transmitted from the MN 10, which is received by the receiving means 301, the signaling generation means 303 is based on the QoS path between the CN 60 and the NAR 31, and between the NAR 31 and the AP 22. Signaling to construct QoS paths between Are generated respectively. The path erasure unit 304 erases a temporary QoS path from NAR 31 to AP 22 when the MN 10 completes the handover after the QoS path 64 is configured between the CN 60 and the AP 22. This temporary QoS path deletion may be performed by PAR21 or other devices. The storage unit 305 stores information such as a control program for controlling the operation of the NAR 31 and data generated when the NAR 31 performs processing.
[0031] <第 2の実施の形態 > [0031] <Second embodiment>
以下、本発明の第 2の実施の形態について図 4及び図 5を用いて説明する。図 4は 本発明の第 2の実施の形態に係る高速 QoSハンドオーバ方法におけるシグナリング のシーケンスを示すシーケンスチャートである。図 5は本発明の第 2の実施の形態に 係る処理ノードの構成を示す構成図である。 Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 4 and FIG. FIG. 4 is a sequence chart showing a signaling sequence in the fast QoS handover method according to the second embodiment of the present invention. FIG. 5 is a configuration diagram showing a configuration of a processing node according to the second embodiment of the present invention.
[0032] 第 2の実施の形態では、上述したように処理ノードに、サブネット 20に属する PAR2 1を指定した場合について説明する。なお、第 2の実施の形態における通信ネットヮ ークは、第 1の実施の形態における通信ネットワークと同様のものとする。第 2の実施 の形態の場合のシグナリングシーケンスについて図 4を用いて説明する。図 4に示す ように、ハンドオーバをする前には、 MN10と CN60との間には経路(古い QoSパス) 24が構成されている。 In the second embodiment, a case will be described in which PAR2 1 belonging to subnet 20 is designated as a processing node as described above. Note that the communication network in the second embodiment is the same as the communication network in the first embodiment. A signaling sequence in the case of the second embodiment will be described with reference to FIG. As shown in FIG. 4, a route (old QoS path) 24 is configured between the MN 10 and the CN 60 before handover.
[0033] この状態から、 MN10がハンドオーバをすると決定すると、 MN10はシグナリング( セッション ID、フロー IDなどを含む)を PAR21に対して送信する(ステップ S401)。 そして、シグナリングを受け取った PAR21は、 NAR31に向けて QoSの状態設定の ためのシグナリングを送信する(ステップ S402)。そのシグナリングを受け取った NA R31は、 CN60に向けて同様に QoSの状態設定のためのシグナリングを送信する( ステップ S403)。これにより、 NAR31と CN60との間に位置する QNE14、 QNE12 、 QNE13では、送信されるシグナリングに基づく新たな QoSパスの状態設定が行わ れ、再ルート構成された QoSパス 64が CN60と AP22との間に構成される。 [0033] When the MN 10 decides to perform handover from this state, the MN 10 transmits signaling (including a session ID, a flow ID, etc.) to the PAR 21 (step S401). Then, the PAR 21 that has received the signaling transmits signaling for setting the QoS state to the NAR 31 (step S402). The NA R31 that has received the signaling transmits the QoS state setting signaling to the CN 60 in the same manner (step S403). As a result, QNE14, QNE12, and QNE13 located between NAR31 and CN60 perform a new QoS path state setting based on the transmitted signaling, and the rerouted QoS path 64 is set between CN60 and AP22. Configured between.
[0034] そして、 MN10がハンドオーバを実際に開始し完了すると、 NAR31から AP22ま での一時的な QoSパスは消去され、 CN60と AP32との間に新たな QoSパス 34が構 成される。このように構成されることにより、 MN10のハンドオーバ後の QoSパスがで きる限り最適な QoSパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負 荷を低減させることができる。また、ハンドオーバ直後に行う QoSパス設定区間は、従 来では図 7に示すように PAR2r -NAR31'—AP32'—ΜΝ1(Γであるのに対し、 本発明の第 2の実施の形態では図 1に示すように NAR31— AP32— MN10と短くな る。このため、 QoSパス構成に要する時間が短くなり、 QoS中断時間も短くすることが できる。また、生成される QoSパス力 PAR21及び NAR31の双方を通っているため、 PAR21と NAR31との間で MN10が行ったり来たりする、いわゆる"ピンポン現象"に おいても有用である。 [0034] When the MN 10 actually starts and completes the handover, the temporary QoS path from the NAR 31 to the AP 22 is deleted, and a new QoS path 34 is configured between the CN 60 and the AP 32. With this configuration, the QoS path after handover of MN10 is The QoS path is optimized as much as possible, and the load on the re-route configuration of the QoS path performed after handover can be reduced. In addition, the QoS path setting interval performed immediately after handover is conventionally PAR2r-NAR31'-AP32'-ΜΝ1 (Γ as shown in FIG. 7, whereas in the second embodiment of the present invention, the path shown in FIG. As shown in Fig. 4, the time required for QoS path configuration is shortened and the QoS interruption time can be shortened, and the generated QoS path power PAR21 and NAR31 are both shortened. This is also useful for the so-called “ping-pong phenomenon” in which MN10 moves back and forth between PAR21 and NAR31.
[0035] 次に、本発明の第 2の実施の形態に係る処理ノードの構成について図 5を用いて 説明する。以下では、処理ノードとして MN10のハンドオーバ前のサブネット 20に属 する PAR21を例にとって説明する。図 5に示すように、 PAR21は、受信手段 501、 送信手段 502、シグナリング生成手段 503、パス消去手段 504、記憶手段 505から 構成されている。受信手段 501は、上述した MN10からの QoSパス 64の構成のため のシグナリングや、 CN60と MN10との間でやりとりされるパケットなどを受信するもの である。送信手段 502は、後述するシグナリング生成手段 503によって生成された Q oSパス 64を構成するためのシグナリングや、 CN60と MN10との間でやりとりされる パケットなどを送信するものである。 Next, the configuration of the processing node according to the second embodiment of the present invention will be described with reference to FIG. In the following description, PAR21 belonging to subnet 20 before handover of MN 10 is taken as an example of the processing node. As shown in FIG. 5, the PAR 21 includes a receiving unit 501, a transmitting unit 502, a signaling generating unit 503, a path erasing unit 504, and a storage unit 505. The receiving unit 501 receives signaling for configuring the QoS path 64 from the MN 10 described above, packets exchanged between the CN 60 and the MN 10, and the like. The transmitting unit 502 transmits signaling for configuring the QoS path 64 generated by the signaling generating unit 503 described later, a packet exchanged between the CN 60 and the MN 10, and the like.
[0036] シグナリング生成手段 503は、受信手段 501によって受信された、 MN10から送信 される QoSパス 64を構成するためのシグナリングに基づいて、 CN60と AP22との間 の QoSパスを構成するためのシグナリングを生成するものである。そして、生成された シグナリングを受信する NAR31は、受信したシグナリングに基づいて、 CN60と NA R31自身との間の QoSパスを構成するためのシグナリングを生成して CN60へ送信 する。 [0036] Based on the signaling for configuring the QoS path 64 transmitted from the MN 10 received by the receiving unit 501, the signaling generation unit 503 performs signaling for configuring the QoS path between the CN 60 and the AP 22. Is generated. Then, the NAR 31 that receives the generated signaling generates signaling for configuring a QoS path between the CN 60 and the NAR 31 itself based on the received signaling, and transmits the generated signaling to the CN 60.
[0037] ノ ス消去手段 504は、 CN60と AP22との間に QoSパス 64が構成された後に MN1 0がハンドオーバを開始して完了した場合に、 NAR31から AP22までの一時的な Qo Sパスを消去するものである。なお、この一時的な QoSパスの消去は NAR31や他の 装置などが行うようにしてもよい。記憶手段 505は、 PAR21の動作を制御するための 制御プログラムや、 PAR21が処理を行う際に生じるデータなどの情報を格納するも のである。 [0037] The node elimination means 504 creates a temporary QoS path from NAR31 to AP22 when MN10 starts and completes handover after QoS path 64 is configured between CN60 and AP22. It is to be erased. Note that this temporary QoS path deletion may be performed by the NAR 31 or another device. The storage means 505 stores a control program for controlling the operation of the PAR21 and information such as data generated when the PAR21 performs processing. It is.
[0038] 以上、本発明の各実施の形態について説明した。なお、上記実施の形態の説明に 用いた各機能ブロックは、典型的には集積回路である LSIとして実現される。これら は個別に 1チップ化されてもよいし、一部又はすベてを含むように 1チップ化されても よい。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI 、ウルトラ LSIと呼称されることもある。また、集積回路化の手法は LSIに限るものでは なぐ専用回路又は汎用プロセッサで実現してもよい。 LSI製造後に、プログラムする ことが可能な FPGA (Field Programmable Gate Array)や、 LSI内部の回路セルの接 続や設定を再構成可能なリコンフィギユラブル'プロセッサを利用してもよい。さら〖こは 、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回路化の技術 が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行ってもよい。例え ばバイオ技術の適応などが可能性としてあり得る。 [0038] The embodiments of the present invention have been described above. Note that each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it is sometimes called IC, system LSI, super LSI, or ultra LSI, depending on the difference in power integration of LSI. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other technologies derived from it, it is natural that the integration of functional blocks may be performed using this technology. For example, biotechnology can be applied.
産業上の利用可能性 Industrial applicability
[0039] 本発明に係る高速 QoSハンドオーバ方法及びその方法で用いられる処理ノードは 、ハンドオーバ前に再構成された QoSパスができる限りハンドオーバ後の最適な Qo Sパスとなり、ハンドオーバ後に行う QoSパスの再ルート構成の負荷を低減させること ができ、また、ハンドオーバ直後に行う QoSパス設定区間が短くなり、 QoS中断時間 を最小にすることができるため、無線通信を行う移動端末 (モパイルノード)の高速 Qo Sハンドオーバ方法及びその方法で用いられる処理ノードに利用することができ、特 に、次世代インターネットプロトコルであるモパイル IPv6 (Mobile Internet Protocol ve rsion 6)プロトコルを利用した無線通信を行うモパイルノードにおける高速 QoSハンド オーバ方法及びその方法で用いられる処理ノードに有用である。 [0039] The high-speed QoS handover method according to the present invention and the processing node used in the method are such that the QoS path reconfigured before the handover becomes the optimum QoS path after the handover as much as possible. The load on the route configuration can be reduced, and the QoS path setup section to be performed immediately after handover is shortened to minimize the QoS interruption time. Therefore, the high-speed Qo S of mobile terminals (mopile nodes) that perform wireless communication can be minimized. It can be used for the handover method and processing nodes used in the method, and in particular, high-speed QoS hand-over in a mopile node that performs wireless communication using the Mobile Internet Protocol version 6 (Mobile IPv6) protocol, which is the next-generation Internet protocol. It is useful for the method and the processing nodes used in the method.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005285028 | 2005-09-29 | ||
JP2005-285028 | 2005-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007037346A1 true WO2007037346A1 (en) | 2007-04-05 |
Family
ID=37899769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319383 WO2007037346A1 (en) | 2005-09-29 | 2006-09-28 | HIGH-SPEED QoS HAND-OVER METHOD, AND PROCESSING NODE USED IN THE METHOD |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007037346A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040008689A1 (en) * | 2002-06-20 | 2004-01-15 | Cedric Westphal | QoS signaling for mobile IP |
-
2006
- 2006-09-28 WO PCT/JP2006/319383 patent/WO2007037346A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040008689A1 (en) * | 2002-06-20 | 2004-01-15 | Cedric Westphal | QoS signaling for mobile IP |
Non-Patent Citations (1)
Title |
---|
WESTPHAL C. AND CHASKAR H.: "QoS Signaling Framework for Mobile IP, draft-westphal-nsis-qos-mobileip-00.txt", 24 June 2002 (2002-06-24), XP015005718 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5570611B2 (en) | Communication method, communication protocol, and communication apparatus for improved service quality processing | |
JP5485345B2 (en) | Mobile terminal and method performed by mobile terminal | |
US20080137625A1 (en) | Communication System Resource Management Device Resource Management Method Communication Management Device and Communication Management Method | |
US8982855B2 (en) | Systems and methods for improved mobility and quality of service in a wireless network | |
WO2010098146A1 (en) | Method for a communication node with a plurality of communication interfaces to notify dynamic path setup and associated apparatus thereof | |
WO2007119598A1 (en) | HIGH-SPEED QoS HANDOVER METHOD AND PROCESSING NODE USED IN THE METHOD | |
WO2007114183A1 (en) | Network relay apparatus, data receiving apparatus, data transmitting apparatus, multipath mtu finding method and multipath mtu finding system | |
CN1993941B (en) | New path setting method, mobile terminal, and path managing device | |
KR20140124116A (en) | Apparatus and method for optimizing data-path in mobile communication network | |
US20100214998A1 (en) | Network Management Device and Packet Transfer Device | |
WO2006118188A1 (en) | Crossover node detection method and crossover node detection program for causing computer to execute the method | |
WO2008047930A1 (en) | Tunneling processing apparatus and tunneling processing method | |
US20090190551A1 (en) | Route Setting Method and Route Management Device | |
JP4664965B2 (en) | Communication system and communication node | |
US20100157939A1 (en) | Crossover node detection pre-processing method, crossover node detection pre-processing program for executing this method by computer, and mobile terminal used in this method | |
WO2007037372A1 (en) | Aggregation management method, aggregate node, and deaggregate node | |
WO2007037346A1 (en) | HIGH-SPEED QoS HAND-OVER METHOD, AND PROCESSING NODE USED IN THE METHOD | |
JP4750115B2 (en) | Crossover node detection method, crossover node detection program for executing this method by computer, mobile terminal and relay device used in crossover node detection method | |
JPWO2007074885A1 (en) | Proxy node discovery method and relay node used in the method, and node discovery method and first node, second node, and relay node used in the method | |
WO2005122504A1 (en) | Communication handover method and communication message processing method | |
US20100115109A1 (en) | Communication continuing method and communication terminal device used in the method | |
JP2006352444A (en) | Packet transfer system and packet transfer method | |
WO2008072565A1 (en) | QoS EARLY ESTABLISHING METHOD, MOBILE TERMINAL DEVICE USED FOR THE METHOD, ACCESS ROUTER USED FOR THE METHOD AND COMMUNICATION DEVICE USED FOR THE METHOD | |
Carli et al. | Mobility management for the next generation of mobile cellular systems | |
JP2008283417A (en) | Crossover node selection method, and relay node used in the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06798431 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |