WO2007034784A1 - Ctgf gene expression inhibitor - Google Patents
Ctgf gene expression inhibitor Download PDFInfo
- Publication number
- WO2007034784A1 WO2007034784A1 PCT/JP2006/318512 JP2006318512W WO2007034784A1 WO 2007034784 A1 WO2007034784 A1 WO 2007034784A1 JP 2006318512 W JP2006318512 W JP 2006318512W WO 2007034784 A1 WO2007034784 A1 WO 2007034784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ctgf
- gene expression
- pyrrole
- expression inhibitor
- region
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
- A61K31/787—Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
Definitions
- the present invention relates to a connective tissue growth factor (CTGF) gene expression inhibitor and a therapeutic agent for CTGF-related diseases. More specifically, the present invention relates to a CTGF gene expression inhibitor comprising pyrrole-imidazole polyamide having a specific structure.
- CTGF connective tissue growth factor
- TGF- ⁇ transforming growth factor- ⁇
- TGF- ⁇ is associated with cell proliferative diseases such as hypertensive vascular disease, neointimal formation after angioplasty, and atherosclerosis. Yes.
- Cell growth in these pathologies is one of the forces that could be suppressed by various mechanisms of action, one of which is to suppress TGF- ⁇ expression.
- TGF- ⁇ works to suppress the growth of most cells, but has a biphasic growth effect on mesenchymal cells such as fibroblasts and vascular smooth muscle cells (VSMCs), so it suppresses growth under normal conditions. However, when inflammation, mechanical stress, etc. are applied, it works to stimulate growth.
- TGF- ⁇ is involved in neointimal formation after vascular injury by promoting VSMC proliferation and extracellular matrix formation.
- TGF- ⁇ is also involved in the formation of arteriosclerotic lesions.
- TGF- ⁇ is also thought to be involved in restenosis of the renal artery after percutaneous renal arthroplasty. Therefore, local vascular therapy aimed at regulating the effects of TGF- ⁇ is considered effective in reducing the above-mentioned vascular proliferative diseases.
- the present inventors have developed a pyrrole-imidazole polyamide that binds to the FSE2 protein binding region of the TGF- ⁇ 1 gene and suppresses the expression of the gene, and filed a patent application in 2003 (Patent Literature). 1).
- the present inventors are also known from subsequent studies to be associated with overexpression of the TGF- ⁇ 1 gene in various pathologies such as fibroproliferative diseases and vascular proliferative diseases.
- Renal fibrosis refers to glomerular sclerosis and interstitial fibrosis, and is one of the pathological conditions of chronic renal failure. This fibrosis is caused by growth factors such as TGF- ⁇ 1 acting on renal fibroblasts directly or indirectly through the production of CTGF, causing extracellular matrix production and fibrosis. It is believed that. CTGF is a protein with a molecular weight of 38 kDa belonging to the CCN family. This protein is involved in fibrosis, cell proliferation, extracellular matrix metabolism, angiogenesis, arteriosclerosis, etc., and is the most important growth factor in fibrosis in the past. It is located downstream of the fiber growth cascade by TGF- ⁇ 1, which was considered (Non-patent Document 1).
- CTGF is selectively induced by TGF- ⁇ in fibroblasts. It has been reported that the promoter region of CTGF gene has a base sequence called TGF-
- pyrrole imidazole polyamides specifically recognize the base sequence of DNA, and have a specific gene. It has been reported that the expression of can be controlled by extracellular force.
- a pyrrole-imidazole polyamide is a group of synthetic organic compounds, and is composed of N-methylpyrrole units (hereinafter also referred to as Py) and N-methylimidazole units (hereinafter also referred to as Im) which are aromatic rings.
- Py and Im can take U-shaped conformation in the presence of ⁇ -aminobutyric acid by coupling and folding in succession.
- the general structure and production method are known (Patent Documents 3-5).
- Such a synthetic polyamide can bind with high affinity and specificity to a specific base pair in a minor groove of a double helix DNA. Specific recognition of base pairs depends on the one-to-one pairing of Py and Im. That is, in a U-shaped conformation in the minor groove of DNA, PyZlm pair targets C-G base pair, ImZPy targets G-C base pair, and PyZPy targets A-T base pair and TA Target both base pairs (Non-patent Document 45). Recent studies show that AT condensation can be overcome by preferential binding of HpZPy to the TZA pair as a result of replacing one pyrrole ring of the PyZPy pair with 3-hydroxypyrrole (Hp). The power of Gawa (Non-Patent Document 6).
- initiation of transcription is considered to be an important point of gene regulation. Initiation of transcription requires several transcription factors that bind to specific recognition sequences in the gene promoter region.
- the polyamide in the minor groove may interfere with gene regulation by blocking transcription factor binding if the transcription factor is important in gene expression. This hypothesis has been proven in in vitro and in vivo experiments.
- the 8-membered Py-Im polyamide bound to the inside of the Jintafinger recognition site (TFIIIA binding site) inhibited 5SRNA gene transcription (Non-patent Document 7).
- Patent Document 1 Japanese Patent Application No. 2003-312365
- Patent Document 2 Japanese Patent Application No. 2004-238533
- Patent Document 3 Patent No. 3045706
- Patent Document 4 JP2001-136974
- Patent Document 5 WO 03/000683 A1
- Non-patent literature l Takigawa: Drug News Perspect "16: 11-21 (2003)
- Non-Patent Document 2 Goldschmeding et ahNephrol. Dial Transplant, 15: 296 (2000)
- Non-Patent Document 3 Trauger et ahNature., 382: 559-61 (1996)
- Non-Patent Document 4 White et ahChem Biol, 4: 569-78 (1997)
- Non-Patent Document 5 Dervan: Bioorg Med Chem., 9: 2215-35 (2001)
- Non-Patent Document 6 White at ahNature., 391: 468-71 (1998)
- Non-Patent Document 7 Genfeld et ahNature., 387: 202-5 (1997)
- CTGF is important in fibroproliferative diseases where its expression is induced in response to stimulation by TGF- ⁇ 1 and its expression changes in response to stimulation by TGF- ⁇ 1 It is a protein that plays a role. Therefore, the suppression of CTGF expression can reduce the unexpected effect compared to suppressing the expression of TGF- ⁇ 1, which can be involved in more types of diseases, and is higher. It becomes possible to suppress fibrosis having safety and specificity.
- no organic compound that specifically suppresses the expression of CTGF has been known so far.
- CTGF gene expression inhibitors or therapeutic agents for TGF- ⁇ related diseases using pyro-l-imidazole polyamide that binds to the CTGF gene base sequence.
- the present inventors have conducted extensive research on the development and pharmacological effect of pyrrole-imidazole polyamide that can specifically bind to a specific region of the CTGF gene promoter and inhibit the expression of the CTGF gene.
- compounds that can inhibit gene expression and can serve as therapeutic agents among polyamides that target various fragments of the CTGF gene promoter, those in the 195 to 150 region of the promoter region home,
- the ability to bind to the region of 164 to 150 or 195 to 174, more preferably the region of 160 to 155 or the region of 190 to 184 significantly reduces the activity of the CTGF gene promoter. Inhibiting and down-regulating the expression of the CTGF gene has led to the present invention.
- the present invention is as follows.
- a target region comprising a part or all of the base sequence 195 to 150 (SEQ ID NO: 2) shown below and the complementary strand thereto, ⁇ -Can be folded at the site of an aminobutyric acid unit to take a U-shaped conformation.
- CTGF gene expression inhibitor comprising the above-mentioned pyrrolimidazole polyamide, each corresponding to a PyZPy pair.
- the target region is a double helix region comprising a part or all of the base sequence shown below of the CTGF promoter—164 to 150 (SEQ ID NO: 3) and a complementary strand thereto. 2)
- CTGF gene expression inhibitor which is an amide with the above amidecylaminopropylamine or N, N-dimethylaminopropylamine.
- a CTGF gene expression inhibitor comprising a pyrrole-imidazole polyamide represented by the following formula:
- a CTGF gene expression inhibitor comprising a pyrrole-imidazole polyamide represented by the following formula:
- CTGF gene expression inhibitor that does not have the disadvantage of being decomposed by ribonuclease because it is an organic compound and has no side effects such as legal agents.
- the CTG F gene expression inhibitor of the present invention is effective as a therapeutic agent for the above-mentioned various fibroproliferative diseases, vascular proliferative diseases, and arteriosclerotic diseases. Since CTGF acts on fibrosis in the downstream region rather than involving TGF- ⁇ 1, the gene expression inhibitor of CTGF can lead to more safe and specific inhibition of high fibrosis.
- N-methylpyrrole unit hereinafter also referred to as Py
- N-methylimidazole unit hereinafter also referred to as Im
- ⁇ -aminobutyric acid unit ⁇ linker
- pyrrole-imidazole polyamide can be easily produced by an automatic synthesis method using a solid phase method (solid phase Fmoc method) using Fmoc (9-fluorenylmethoxycarbon) (Patent Document 5).
- solid phase Fmoc method solid phase Fmoc method
- Fmoc (9-fluorenylmethoxycarbon) Patent Document 5
- the end of pyrrole-imidazole polyamide can be cut out as a solid carrier by using a carboxylic acid residue, so that various functional groups can be introduced into the end of the molecule to create derivatives of pyrrole-imidazole polyamide. it can .
- a compound having an alkylotrophic ability with respect to DNA such as duo force noremycin, pyro-benzodiazepine, bleomycin, enediyne compound, nitrogen mustard, and derivatives thereof, can be introduced as necessary.
- the solid-phase Fmoc method is an automated synthesis method using a commercially available protein (peptide) synthesizer, it is also possible to synthesize conjugates (conjugates) of naturally occurring proteins and non-natural proteins and pyrrole-imidazole polyamides. .
- the Fmoc method has milder reaction conditions than the t-BOC method, it is also possible to introduce organic compounds other than proteins (including compounds having functional groups that are unstable under acidic conditions). For example, it is possible to automatically synthesize conjugates of pyrrole-imidazole polyamide and DNA or RNA (or their derivatives).
- a pyrrole imidazole polyamide having a carboxyl group at the terminal can be synthesized.
- Specific examples thereof include, for example, a pyrrolimine having a j8-alanine residue (j8-aminopropionic acid residue) or a ⁇ -aminobutyric acid residue at the terminal.
- a dazole polyamide etc. are mentioned.
- the pyrrole imidazole polyamide having a terminal j8-alanine residue or ⁇ -aminobutyric acid residue is, for example, an aminopyrrole carboxylic acid, an amino imidazole carboxylic acid, j8-alanine or y-amino having an amino group protected by Fmoc, respectively. It can be synthesized by solid phase Fmoc method using a peptide synthesizer using a solid phase carrier carrying butyric acid.
- aminopyrrole carboxylic acid examples include, for example, 4 amino-2-pyrrole carboxylic acid, 4 amino-1-methyl-2-pyrrole carboxylic acid, 4 amino-1-ethyl-2-pyrrole carboxylic acid, 4 amino-1-propyl.
- aminoimidazole carboxylic acid examples include, for example, 4 amino-2 imidazole carboxylic acid, 4-amino 1-methyl-2 imidazole carboxylic acid, 4 amino 1 ethyl 2 imidazole carboxylic acid, 4 amino-1 propyl 2 imidazole carboxylic acid, 4 amino 1 Butyl-2-imidazolecarboxylic acid and the like.
- a conjugate of pyrrole imidazole polyamide and FITC fluorescein isothiocyanate
- FITC fluorescein isothiocyanate
- the resulting conjugate can be used to prove that the pyrrole imidazole polyamide recognizes a specific DNA sequence.
- the CTGF gene expression inhibitor of the present invention is a pyrrole-imidazole polyamide containing an N-methylpyrrole unit (Py), an N-methylimidazole unit (Im), and a ⁇ -aminobutyric acid unit, wherein the base sequence of the CTGF promoter is from 195 to In a minor groove of a double helix region (hereinafter also referred to as a target region) containing part or all of 150 (SEQ ID NO: 2) and a complementary strand thereto, it is folded at the site of the ⁇ -aminobutyric acid unit and is U-shaped.
- a target region containing part or all of 150 (SEQ ID NO: 2) and a complementary strand thereto
- the DNA double helix skeleton forms two rows of grooves.
- the wide and deep groove is called the main groove (major group), and the narrow and shallow groove is called the minor groove (minor group).
- the above pillow Ruimidazole polyamides can bind in a non-conjugated manner with high affinity and specificity to minor grooves created by specific base pairs.
- the PyZlm pair of pyrrole imidazole polyamide is against the CG base pair in the minor groove
- the ImZPy pair is against the G-C base pair
- the AT base pair and TA base pair are not. PyZPy pairs correspond to each other.
- the molecule is folded at the site of the ⁇ -aminobutyric acid unit in the pyrrole-imidazole polyamide molecule to take a U-shaped conformation.
- the base pair of the minor groove and the Py and Im pair of pyrrole imidazole polyamide do not correspond as described above, the bond between the minor groove and the pyrrole imidazole polyamide becomes insufficient.
- the pyrrole imidazole polyamide is called mismatch or mismatch polyamide, where the minor groove base pair and Py-Im pair correspond to each other as described above.
- the nucleotide sequence of the CTGF gene regulatory region is as shown in Fig. 1 and SEQ ID NO: 1 (Xine tal, J. Clin, Pathol. 49, 91-97 (1996)).
- the pyrrole-imidazole polyamides GBP2101 and GBP2102 of the present invention are as shown below.
- GBP2101 has the molecular formula C H N O, molecular weight 1667.75, and its target sequence is
- CTGF gene regulatory region — 195 to 150 SEQ ID NO: 2
- the region downstream from the Smad binding region is 164 to 150 (SEQ ID NO: 3)
- directly gctga g Suppresses the expression of CTGF gene by binding to 6 bases of (SEQ ID NO: 4).
- GBP2102 has the molecular formula C H N O, molecular weight 1912.00, and its target sequence is
- the region upstream of the Smad binding region — 195 to 174 (SEQ ID NO: 5), which is directly gagtgt g ( — 190 to 184) Suppresses the expression of the CTGF gene by binding to 7 bases of (SEQ ID NO: 6).
- Py-Im polyamides are effective inhibitors or activators of transcription factors that are common or tissue-specific in in vitro studies.
- the growth of Dro sophila under specific polyamide administration is the ability to gain or lose a functional phenotype with no particular toxicity. This is the result of polyamides specifically controlling gene expression.
- polyamides Compared to antisense oligonucleotides and ribozymes, polyamides have better permeability (low concentration, no transfection medium required) and higher stability in cultured human mesangial cells. It showed. The high permeability and stability of polyamides provides an ideal drug approach to the nucleus of eukaryotic cells for gene therapy.
- TATA box D Transcription mediator D
- TBP TATA box binding protein
- PIC pre-initiator complex
- TBP also binds to the minor groove of the double helix DNA (Lee et al: Cell.l991 Dec 20; 67 (6): 1241-50, Starr et al: Cell.l991; 67: 1231- 40, Courey et al: Cell.l988; 55: 887-98), synthetic polyamides competitively occupy the binding site of the TATA binding protein and interfere with gene transcription.
- polyamides designed with various promoters those targeting the TATA box are known to always work.
- SP-1 sequences O In the vicinity of the transcription start site There are several SP-1 sequences and two AP-1 sequences. Since various viral and cellular promoters are activated by SP-1 protein, a single SP-1 sequence is sufficient for the promoter to be stimulated by SP-1. (Kadonaga et al: Cell.l987; 51: 1079-90, Courey et al: Cell.l988; 55: 887-98). AP-1 sequence responds to AP-1 transcription factor, which also acts as an unhomodimer or FosZjun heterodimer complex!
- Transcriptional repressors that suppress transcription from core promoters containing a TATA box have been found. Forces have not been found from promoters without TATA (Aso et ahEMBO J.1994; 13: 435-45, Mack et al: Nature.l993; 3 63: 281-3, Merino et al: Nature.l993; 365: 227-32). Since the expression of most mammalian genes tends to depend on a combination of the actions of a large number of proteins bound to a promoter and an enzyme sequence, the simplest model to explain this result is the present model. The bright pyrrole-imidazole polyamide blocks transcription factor-DNA interactions and has an inhibitory effect on CTGF promoter activity.
- Synthetic polyamides can approach the target site due to the position of the nucleonome, and may influence the condensation / decondensation structure of chromatin by targeting specific sequences (Gottesfeld et al: J Mol Biol. 2002; 321: 249-63; Gottesfeld et al: J Mol Biol.20 01; 309: 615-29.). It has been demonstrated that pyrrole-imidazole polyamides open heterochromatin brown satellites and allow GAF binding, resulting in phenotypic changes in drosophila melanogaster. Because pyrrole-imidazole polyamides can be designed to target sequences of interest, functional genomic studies are ultimately useful for gene therapy such as CTGF gene inhibition and activity.
- the Py-Im polyamide according to the present invention can be designed upstream from the transcription initiation region, which shows an inhibitory effect on the expression of the CTGF gene.
- CTGF is a renal disease (IgA nephropathy, focal glomerulosclerosis, crescent nephritis, focal sclerosis lupus nephritis, diffuse proliferative lupus nephritis, diabetic nephropathy, hypertensive nephropathy)
- IgA nephropathy, focal glomerulosclerosis, crescent nephritis, focal sclerosis lupus nephritis, diffuse proliferative lupus nephritis, diabetic nephropathy, hypertensive nephropathy are reported to be deeply involved in fibrosis (Qi W et al: Am J Physio 1 Renal Physiol Nov 9, 2004, Okada H et al: J Am Soc Nephrol 16 (1) 133-43, 2004, Kanemoto K et al: Lab Invest 83 (11) 1615-25, 2003, Zhou G et al: Am
- CTGF is also expressed in vascular endothelial cells and vascular smooth muscle cells, and has been shown to play an important role in angiotensin II vascular cell proliferation and sclerosis in vascular proliferative diseases ( Ruperez M et al: Circulation 108 (12) 1499-505, 2003, Kaji T et al: Biochem Biophys Res Commun 322 (1) 22-8, 2004, Chowdhury I et al: Eur J Bio chem 271 (22) 4436- 50, 2004). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for vascular proliferative diseases.
- CTGF has also been shown to play an important role in myocardial hypertrophy and fibrosis in heart disease (Ahmed MS et al: J Mol Cell Cardiol 36 (3) 393-404, 2004, Matsui Y et al: JM ol Cell Cardiol 37 (2) 477-81, 2004). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for cardiomyopathy.
- CTGF plays an important role in stellate cell activation and adhesion (Gao R et al: J Biol Chem 279 (10) 8848-5 5), and CTGF suppression is known to suppress liver fibrosis. (Uchio K et al: Wo und Repair Regen 12 (1) 60-6). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for liver fibroproliferative diseases.
- CAPD unlike hemodialysis, is established as a very effective treatment for rehabilitation of patients without requiring frequent visits because patients are performed at home or work. . If the patient undergoes CAPD, the fibrosis of the peritoneum progresses, and the peritoneal sclerosis develops. If the efficiency of CAPD decreases and it becomes difficult to continue CAPD, The development of encapsulated peritoneal sclerosis, which can lead to bad habits, is a problem. In this encapsulated peritoneal sclerosis, the expression of CTGF was excessive, and it was reported that it was deeply involved in its onset and progression. Based on these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for encapsulating peritoneal sclerosis.
- CTGF has been reported to play an important role in the development and progression of pulmonary fibrosis model animals (Xie S et al: Am J Physiol Lung Cell Mol Physiol 288). (1) L68-76, 2004) o It has also been reported that CTGF expression in airway cells is related to TGF- ⁇ (Bonniaud P et al: Am J Respir Cell Mol Biol 31 (5) 510 -6, 2004). From these facts, it can be reasonably considered that the present invention, which is a CTGF gene expression inhibitor of the present invention, is effective as a therapeutic agent for pulmonary fibrosis.
- TGF- ⁇ As the etiology of scleroderma CTGF has also been reported to play an important role in the fibroblasts of this disease (Leask A: Keio J Med 53 (2) 74-7, Chujo S et al: J Cell Phisiol Dec 16 2004) 0
- the present invention which is a gene expression inhibitor, can be reasonably considered to be effective as a therapeutic agent for skin fibrosis.
- CTGF has been reported to play an important role in the development and progression of diabetic retinopathy (Kuiper EJ et al: Br J Ophthalmol 88 (8 1082-7, 2004) o From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for diabetic retinopathy.
- GBP2101 or GBP2102 as described above was designed to bind to 160-1155 or 190-1184 base pairs of the CTGF promoter as Py-Im polyamide.
- FITC coupling A 4-fold excess of fluorescein (0.40 mmol) and DIEA (without HATU) dissolved in DMF was flushed through the column for 60 minutes.
- Decomposition as amine The synthetic polyamide was isolated by cold ethyl ether precipitation after the decomposition step (N, N-dimethylaminopropylamine 5 ml Z resin 0.1 mmol, 50 ° C, ⁇ ).
- DM EM Dulbecco's modified Eagle medium
- Ivitrogen 10% offspring serum
- PBS free phosphate buffered saline
- Oligonucleotides were synthesized and annealed into 12 double-stranded oligonucleotides corresponding to the CTGF promoter base pairs. Double-stranded DNA was labeled with T4 polynucleotide kinase using [ ⁇ - 32 P] -ATP, and binding buffer (40 mM Tris, pH 7.9, 250 mM NaCl, 25 mM EDTA, 25 mM DTT for 15 minutes at 37 ° C) , lOOmM KC
- RNA extraction and reverse transcription reaction for growth factor mRNA RNA extraction and reverse transcription reaction for growth factor mRNA, polymerase chain reaction (R T-PCR)
- RNA sample is 0.5 U in 0.5 ml DNase buffer (20 mM Tris—HC1 pH 8.3, 50 mM KC1, 2.5 mM MgCl 2) for 45 min at room temperature. Treated with DNase (Gibco). DNase
- RNA (l i u gZ20 i u L) inactivated by adding 0.5 mL 0.5 M EDTA and heating at 98 ° C for 10 min was added to 10 mM Tris—HCl (pH 8.3 ), 5 mM MgCl 2, 50 mM KC1, ImM Deoxy NTPs, and 2.5 M in random hexamers, 2
- avian myeloblastoma virus reverse transcriptase (Takara Biochemicals, Osaka, Japan) was used for reverse transcription into single-stranded cDNA.
- q DNA polymerase (Takara Biochemicals, Osaka, Japan) and upstream sense primer and downstream antisense primer were mixed with 0.2 M each to make a total of 25 ⁇ L.
- the sense primer (5, -CCTGGTCCAGACCACAGAGT-3) (SEQ ID NO: 7) and the antisense primer (5, -TGGAGATTTTGGGAGTACGG-3,) (SEQ ID NO: 8) were used for PCR amplification of CTGF mRNA.
- RNA Sense primer 5, -TCAAGAACGAAAGTCGGACG-3 '
- antisense primer 5,-GGACATCTAAGGGCATCACA-3,
- PCR was performed on a thermal cycler (Perkin Elmer, Foster, CA). PCR conditions were 94 ° C for 2 min, followed by 30 cycles of denaturation at 94 ° C for 1 min, annealing at 58 ° C for 1 min, extension at 72 ° C for 1 min, and finally an extension reaction at 72 ° C for 10 min. It was. PCR with primers for 18S rRNA was included in each reaction as an internal control.
- CTGF gene expression level was increased 20% by PMA stimulation 1 ⁇ 10 _6 ⁇ , was inhibited up to 50% or less 1 ⁇ 10 _6 ⁇ by GBP2101 added pressure (Fig. 3).
- the cells were subconfluent and replaced with serum-free medium and cultured for 24 hours, and 1x10 "6M PMA and various concentrations of Py-Im were added, and the cells were further cultured for 12 hours without serum. It was dissolved and electrophoresed on a polyacrylamide gel and transferred to a trocellulose membrane.
- the protein transferred to the nitrocellulose membrane consists of an anti-human CTGF antibody as the primary antibody and an anti-goat IgG antibody as the secondary antibody.
- Western blot was performed using ECL (Amersham-Pharmacia), and the color was quantified using NIH Image.
- CTGF protein expression level was increased 20% by PMA stimulation 1 ⁇ 10 _6 ⁇ , was inhibited up to 50% or less 1 ⁇ 10 _6 ⁇ by GBP2101 added Caro ( Figure 4).
- the cells were subconfluent and replaced with serum-free medium for 24 hours, and 1x10 "6M TGF- ⁇ 1 and each concentration of Py-Im were added and cultured for 12 hours without serum.
- messenger RNA was isolated by guanidium thiocyanate method, reverse transcribed by avian myeloblastoma virus reverse transcriptase, and amplified by PCR method. The PCR product was quantified by A gilent Bioanalyzer. An image was prepared and PCR was performed, and the CTGF gene expression level was corrected at 18 s. CTGF gene expression level was increased 20% by PMA stimulation 1 ⁇ 10 _6 ⁇ , was inhibited up to 50% or less 1 ⁇ 10 _6 ⁇ by GBP2102 added pressure (Figure 5).
- the cells were subconfluent and replaced with serum-free medium and cultured for 24 hours, and 1x10 "6M PMA and various concentrations of Py-Im were added, and the cells were further cultured for 12 hours without serum. It was dissolved and electrophoresed on a polyacrylamide gel and transferred to a trocellulose membrane.
- the protein transferred to the nitrocellulose membrane consists of an anti-human CTGF antibody as the primary antibody and an anti-goat IgG antibody as the secondary antibody.
- Western blot was performed using ECL (Amersham-Pharmacia), and the color was quantified using NIH Image.
- CTGF protein expression level was increased 20% by PMA stimulation 1 ⁇ 10 _6 ⁇ , was inhibited up to 50% or less 1 ⁇ 10 _6 ⁇ by GBP2102 added Caro ( Figure 6).
- CTGF gene expression inhibitor of the present invention can be used as a therapeutic agent for diseases associated with the production of TGF- ⁇ and thus CTGF.
- Fig. 1 shows the base sequence of the regulatory region of the human CTGF gene.
- FIG. 2 shows gel shift assembly of Py-Im polyamide oligonucleotide complex.
- FIG. 3 is a graph showing the inhibitory effect of GBP2101 on the expression of CTGF messenger RNA.
- FIG. 4 is a graph showing the effect of suppressing the expression of CTGF protein by GBP2101.
- FIG. 5 is a graph showing the effect of suppressing the expression of CTGF messenger RNA by GBP2102.
- FIG. 6 is a graph showing the effect of suppressing the expression of CTGF protein by GBP2102.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Epidemiology (AREA)
- Urology & Nephrology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Vascular Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Disclosed is an inhibitor of the expression of CTGF gene, which comprises a pyrrole-imidazole polyamide. The pyrrole-imidazole polyamide has an N-methylpyrrole unit (hereinafter, referred to as “Py”), an N-methylimidazole unit (hereinafter, referred to as “Im”) and a Ϝ-aminobutanoic acid unit. In the pyrrole-imidazole polyamide, the region of the Ϝ-aminobutanoic acid unit is folded to form an U-shaped conformation in a miner groove of a double-helical region having a part or the entirety of a nucleotide sequence lying between position -195 to position -150 (SEQ ID NO:2) in a connective tissue growth factor (hereinafter, referred to as “CTGF”) promoter or a sequence complementary to the nucleotide sequence (hereinafter, the double-helical region is referred to a 'target region'). In the pyrrole-imidazole polyamide, a Pm/Im pair corresponds to a C-G base pair, an Im/Py pair corresponds to a G-C base pair, and a Py/Py pair corresponds to both an A-T base pair and a T-A base pair.
Description
明 細 書 Specification
CTGF遺伝子発現抑制剤 CTGF gene expression inhibitor
技術分野 Technical field
[0001] 本発明は結合組織増殖因子(Connective Tissue Growth Factor: CTGF) 遺伝子発現抑制剤及び CTGF関連疾患の治療薬に関する。より詳細には特定の構 造を有するピロールイミダゾールポリアミドを含んでなる CTGF遺伝子発現抑制剤に 関する。 [0001] The present invention relates to a connective tissue growth factor (CTGF) gene expression inhibitor and a therapeutic agent for CTGF-related diseases. More specifically, the present invention relates to a CTGF gene expression inhibitor comprising pyrrole-imidazole polyamide having a specific structure.
背景技術 Background art
[0002] 高血圧性血管疾患のような細胞増殖性疾患、血管形成術後の新生内膜形成及び ァテローム性動脈硬化症には、トランスフォーミング増殖因子 TGF— βが関連してい ることが知られている。これらの病態における細胞増殖は種々の作用機構によって抑 制できると考えられる力 そのうちの 1つが、 TGF- βの発現を抑制することである。 TGF- βはほとんどの細胞に対して増殖抑制に働くが、線維芽細胞、血管平滑筋 細胞 (VSMC)などの間葉系細胞に対しては二相性増殖作用をもっため、通常状態 では増殖抑制に働くが、炎症、機械的ストレスなどが加わると増殖刺激に働く。これら のことから、 TGF- βは VSMC増殖と細胞外マトリクス形成を促進することにより血 管傷害後の新生内膜形成に関与していると考えられる。 TGF— βはまた、動脈硬化 症の病巣の形成にも関与している。また、 TGF- βは経皮的腎動脈形成術後の腎 動脈の再狭窄にも関与していると考えられている。従って、 TGF- βの効果を調節 することに向けられた局所血管療法が上記の血管増殖性疾患の軽減に有効と考えら れる。 [0002] It is known that the transforming growth factor TGF-β is associated with cell proliferative diseases such as hypertensive vascular disease, neointimal formation after angioplasty, and atherosclerosis. Yes. Cell growth in these pathologies is one of the forces that could be suppressed by various mechanisms of action, one of which is to suppress TGF-β expression. TGF-β works to suppress the growth of most cells, but has a biphasic growth effect on mesenchymal cells such as fibroblasts and vascular smooth muscle cells (VSMCs), so it suppresses growth under normal conditions. However, when inflammation, mechanical stress, etc. are applied, it works to stimulate growth. These results suggest that TGF-β is involved in neointimal formation after vascular injury by promoting VSMC proliferation and extracellular matrix formation. TGF-β is also involved in the formation of arteriosclerotic lesions. TGF-β is also thought to be involved in restenosis of the renal artery after percutaneous renal arthroplasty. Therefore, local vascular therapy aimed at regulating the effects of TGF-β is considered effective in reducing the above-mentioned vascular proliferative diseases.
[0003] 逆遺伝学による遺伝子機能の不活性ィ匕の手法は、ある特定の遺伝子の機能を解 祈するために用いられるものであるが、一方でウィルス感染、癌、及び遺伝子の異常 発現に基づくその他の疾病の治療にも大きな可能性を開いている。すなわち、遺伝 子機能の不活性ィ匕を、相同的組換えにより DNAレベルで、又はアンチセンスオリゴ デォキシヌクレオチドやリボザィム、 siRNAなどにより RNAレベルで実施できることが 知られている。しかし、アンチセンスオリゴデォキシヌクレオチドやリボザィムの手法は
、ターゲットとする配列に制約があり、糸且織、細胞への移行が悪ぐリボヌクレアーゼに より分解されやす 、と 、う課題があった。 [0003] The method of inactivation of gene function by reverse genetics is used to pray for the function of a specific gene. On the other hand, it is used for viral infection, cancer, and abnormal expression of a gene. There is also great potential for the treatment of other diseases based. That is, it is known that inactivation of gene function can be performed at the DNA level by homologous recombination, or at the RNA level by antisense oligonucleotides, ribozymes, siRNA, and the like. However, antisense oligonucleotide and ribozyme methods However, there is a problem that the target sequence is limited, and is easily degraded by ribonuclease, which is poor in thread and texture and migration into cells.
[0004] 本発明者らは、 TGF- β 1遺伝子の FSE2タンパク結合領域に結合してその遺伝 子の発現を抑制するピロールイミダゾールポリアミドを開発し、 2003年に特許出願を している(特許文献 1)。本発明者らはまた、その後の研究により、線維増殖性疾患、 血管増殖性疾患など様々な病態での TGF— β 1遺伝子の過剰発現に関連している ことが知られている ΑΡ— 1タンパク結合領域をターゲットとしてその領域に結合し、 A P—1タンパクの該当領域への結合を抑制することにより、 TGF- β 1遺伝子の発現 を抑制するピロールイミダゾールポリアミドを開発し、 2004年に特許出願をしている( 特許文献 2)。 [0004] The present inventors have developed a pyrrole-imidazole polyamide that binds to the FSE2 protein binding region of the TGF-β1 gene and suppresses the expression of the gene, and filed a patent application in 2003 (Patent Literature). 1). The present inventors are also known from subsequent studies to be associated with overexpression of the TGF-β1 gene in various pathologies such as fibroproliferative diseases and vascular proliferative diseases. Developed pyrrole-imidazole polyamide that suppresses the expression of TGF-β1 gene by binding to the binding region as a target and suppressing the binding of AP-1 protein to the relevant region, and applied for a patent in 2004. (Patent Document 2).
[0005] 腎線維化は糸球体の硬化と間質の線維化とを指すものであり、慢性腎不全の病態 の一つである。この線維化は、 TGF— β 1などの増殖因子が直接的に又は CTGFの 産生を介して間接的に腎線維芽細胞に作用して、細胞外基質の産生と線維化を引 き起こしていると考えられている。 CTGFは CCNファミリーに属する分子量 38kDaの タンパク質である。このタンパク質は、線維化、細胞の増殖、細胞外基質の代謝、血 管形成、動脈硬化等に関与しており、線維芽細胞に対する作用としては、従来線維 化において最も重要な増殖因子であると考えられていた TGF— β 1による繊維増殖 カスケードの下流に位置して 、る(非特許文献 1)。様々な線維増殖性疾患で CTGF の発現の増加が確認され、線維芽細胞において CTGFは TGF— βにより選択的に 誘導される。 CTGF遺伝子のプロモーター領域には TGF— |8応答配列と呼ばれる 塩基配列が存在し、これにより TGF— βが直接 CTGFmRNAを誘導することも報告 されている(非特許文献 2)。即ち、 TGF— β力 SCTGFを誘導し、この CTGFが、 TG F- β 1が関与する臓器や組織の線維化のメカニズムにおいて、 TGF— β 1よりも下 流で線維化を促進することが推察され、新たな治療ターゲットとなる可能性が考えら れる。 [0005] Renal fibrosis refers to glomerular sclerosis and interstitial fibrosis, and is one of the pathological conditions of chronic renal failure. This fibrosis is caused by growth factors such as TGF-β1 acting on renal fibroblasts directly or indirectly through the production of CTGF, causing extracellular matrix production and fibrosis. It is believed that. CTGF is a protein with a molecular weight of 38 kDa belonging to the CCN family. This protein is involved in fibrosis, cell proliferation, extracellular matrix metabolism, angiogenesis, arteriosclerosis, etc., and is the most important growth factor in fibrosis in the past. It is located downstream of the fiber growth cascade by TGF-β1, which was considered (Non-patent Document 1). Increased CTGF expression has been observed in various fibroproliferative diseases, and CTGF is selectively induced by TGF-β in fibroblasts. It has been reported that the promoter region of CTGF gene has a base sequence called TGF- | 8 responsive element, and TGF-β directly induces CTGF mRNA (Non-patent Document 2). That is, TGF-β force SCTGF is induced, and it is inferred that this CTGF promotes fibrosis downstream of TGF-β1 in the mechanism of fibrosis of organs and tissues involving TGF-β1. This could be a new therapeutic target.
[0006] 一方、アンチセンス試薬ゃリボザィムのような核酸試薬とは異なり、ピロールイミダゾ 一ルポリアミド(以下、 Py— Imポリアミドとも言う)類が DNAの塩基配列を特異的に認 識し、特定遺伝子の発現を細胞外力 コントロールできることが報告されて 、る。
[0007] ピロールイミダゾールポリアミドは一群の合成有機化合物であり、芳香族環である N ーメチルビロール単位(以下 Pyとも言う)及び N—メチルイミダゾール単位(以下 Imと も言う)力 構成されて 、る(非特許文献 3 - 5)。 Py及び Imは連続してカップリングし 折りたたむことにより γ—ァミノ酪酸の存在下で U字型のコンフオメーシヨンを採ること ができる。本発明に係るピロールイミダゾールポリアミドにおいて、 Ν—メチルビロール 単位 (Py)、 N—メチルイミダゾール単位 (Im)及び γ—ァミノ酪酸単位 ( γリンカ一と も言う)は互 、にアミド結合( C ( = Ο) ΝΗ )で連結されており、その一般構造 及び製造方法は公知である(特許文献 3— 5)。 On the other hand, unlike nucleic acid reagents such as antisense reagents such as ribozyme, pyrrole imidazole polyamides (hereinafter also referred to as Py-Im polyamides) specifically recognize the base sequence of DNA, and have a specific gene. It has been reported that the expression of can be controlled by extracellular force. [0007] A pyrrole-imidazole polyamide is a group of synthetic organic compounds, and is composed of N-methylpyrrole units (hereinafter also referred to as Py) and N-methylimidazole units (hereinafter also referred to as Im) which are aromatic rings. Patent Document 3-5). Py and Im can take U-shaped conformation in the presence of γ-aminobutyric acid by coupling and folding in succession. In the pyrrole-imidazole polyamide according to the present invention, the Ν-methylpyrrole unit (Py), the N-methylimidazole unit (Im) and the γ-aminobutyric acid unit (also referred to as γ-linker) are mutually connected with an amide bond (C (= Ο ) The general structure and production method are known (Patent Documents 3-5).
[0008] このような合成ポリアミドは二重らせん DNAの副溝(マイナーグループ)中の特定の 塩基対に高 、親和性と特異性を以つて結合することができる。塩基対の特異的認識 は Pyと Imとの 1対 1の対形成に依存している。即ち、 DNAの副溝内での U字型コン フオメーシヨンにおいて、 PyZlm対は C— G塩基対を標的とし、 ImZPyは G— C塩 基対を標的とし、そして PyZPyは A— T塩基対及び T A塩基対の両方を標的とす る(非特許文献 4 5)。最近の研究によれば A— T縮合は PyZPy対の一つのピロ一 ル環を 3—ヒドロキシピロール (Hp)で置換した結果として HpZPyが優先的に TZA 対に結合することによって克服することができることがわ力つて 、る(非特許文献 6)。 [0008] Such a synthetic polyamide can bind with high affinity and specificity to a specific base pair in a minor groove of a double helix DNA. Specific recognition of base pairs depends on the one-to-one pairing of Py and Im. That is, in a U-shaped conformation in the minor groove of DNA, PyZlm pair targets C-G base pair, ImZPy targets G-C base pair, and PyZPy targets A-T base pair and TA Target both base pairs (Non-patent Document 45). Recent studies show that AT condensation can be overcome by preferential binding of HpZPy to the TZA pair as a result of replacing one pyrrole ring of the PyZPy pair with 3-hydroxypyrrole (Hp). The power of Gawa (Non-Patent Document 6).
[0009] 一般的には転写の開始が遺伝子制御の重要なポイントであると考えられている。転 写の開始には遺伝子プロモータ領域において特異的な認識配列に結合する転写因 子をいくつか必要とする。副溝中のポリアミドは、もし転写因子が遺伝子発現におい て重要であれば、転写因子の結合を遮断して遺伝子の調節に干渉する可能性があ る。この仮説はインビトロ及びインビボの実験で証明されている。ジンタフインガーの 認識部位 (TFIIIAの結合部位)の内部に結合した 8員環 Py— Imポリアミドは 5SRN A遺伝子の転写を阻害した (非特許文献 7)。 [0009] In general, initiation of transcription is considered to be an important point of gene regulation. Initiation of transcription requires several transcription factors that bind to specific recognition sequences in the gene promoter region. The polyamide in the minor groove may interfere with gene regulation by blocking transcription factor binding if the transcription factor is important in gene expression. This hypothesis has been proven in in vitro and in vivo experiments. The 8-membered Py-Im polyamide bound to the inside of the Jintafinger recognition site (TFIIIA binding site) inhibited 5SRNA gene transcription (Non-patent Document 7).
[0010] 特許文献 1 :特願第 2003— 312365号 [0010] Patent Document 1: Japanese Patent Application No. 2003-312365
特許文献 2:特願第 2004— 238533号 Patent Document 2: Japanese Patent Application No. 2004-238533
特許文献 3:特許第 3045706号 Patent Document 3: Patent No. 3045706
特許文献 4:特開 2001— 136974 Patent Document 4: JP2001-136974
特許文献 5 :WO 03/000683 A1
非特許文献 l : Takigawa:Drug News Perspect" 16:11-21(2003) Patent Document 5: WO 03/000683 A1 Non-patent literature l: Takigawa: Drug News Perspect "16: 11-21 (2003)
非特許文献 2 : Goldschmeding et ahNephrol. Dial Transplant, 15:296(2000) 非特許文献 3 : Trauger et ahNature., 382:559-61(1996) Non-Patent Document 2: Goldschmeding et ahNephrol. Dial Transplant, 15: 296 (2000) Non-Patent Document 3: Trauger et ahNature., 382: 559-61 (1996)
非特許文献 4 :White et ahChem Biol, 4:569-78(1997) Non-Patent Document 4: White et ahChem Biol, 4: 569-78 (1997)
非特許文献 5 : Dervan:Bioorg Med Chem., 9:2215-35(2001) Non-Patent Document 5: Dervan: Bioorg Med Chem., 9: 2215-35 (2001)
非特許文献 6 : White at ahNature., 391:468-71(1998) Non-Patent Document 6: White at ahNature., 391: 468-71 (1998)
非特許文献 7 : Gottesfeld et ahNature., 387:202-5(1997) Non-Patent Document 7: Gottesfeld et ahNature., 387: 202-5 (1997)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0011] CTGFは TGF— β 1による刺激に応答してその発現が誘導され、 TGF— β 1によ る刺激に応答してその発現が変化することが知られている線維増殖性疾患で重要な 役割を担うタンパク質である。従って、 CTGFの発現の抑制は、より多くの種類の疾 患〖こ関与し得る TGF— β 1の発現を抑制する場合に比べ、予想外の作用を減少さ せることが可能であり、より高い安全性や特異性を有する線維化抑制が可能となる。 しかし、これまで CTGFの発現を特異的に抑制する有機化合物は知られて 、なかつ た。特に、 CTGFの遺伝子塩基配列に結合するピロ一ルーイミダゾールポリアミドを 用いた CTGF遺伝子発現抑制剤又は TGF— β関連疾患の治療薬についての報告 は全くなかった。 [0011] CTGF is important in fibroproliferative diseases where its expression is induced in response to stimulation by TGF-β1 and its expression changes in response to stimulation by TGF-β1 It is a protein that plays a role. Therefore, the suppression of CTGF expression can reduce the unexpected effect compared to suppressing the expression of TGF-β1, which can be involved in more types of diseases, and is higher. It becomes possible to suppress fibrosis having safety and specificity. However, no organic compound that specifically suppresses the expression of CTGF has been known so far. In particular, there were no reports of CTGF gene expression inhibitors or therapeutic agents for TGF-β related diseases using pyro-l-imidazole polyamide that binds to the CTGF gene base sequence.
また、従来からのアンチセンスオリゴデォキシヌクレオチドやリボザィムを用いた TG F- β 1遺伝子や CTGF遺伝子の発現抑制の手法は、ターゲットとする配列に制約 があり、薬物の組織、細胞への移行が悪ぐまたリボヌクレアーゼにより分解されやす いという課題があった。 In addition, conventional methods for suppressing the expression of TGF-β1 gene and CTGF gene using antisense oligonucleotides and ribozymes have limited target sequences, and transfer to drug tissues and cells. There is a problem that it is bad and easily broken down by ribonuclease.
課題を解決するための手段 Means for solving the problem
[0012] 本発明者らは、 CTGF遺伝子プロモータの特定の領域に特異的に結合して CTGF 遺伝子の発現を阻害することができるピロールイミダゾールポリアミドの開発とその薬 理効果について鋭意研究した結果、 CTGF遺伝子の発現を阻害することができ、且 つ治療薬として役立ち得る化合物を得るベぐ CTGF遺伝子プロモータの様々な断 片を標的とするポリアミド類のうち、プロモータ領域の— 195〜― 150の領域のうち、
好ましくは— 164〜一 150の領域又は 195〜一 174の領域、より好ましくは— 160 〜― 155の領域又は— 190〜― 184の領域に結合する化合物力 CTGF遺伝子プ 口モータの活性を有意に阻害し、 CTGF遺伝子の発現をダウンレギュレートすること を見出し、本発明をなすに至った。 [0012] The present inventors have conducted extensive research on the development and pharmacological effect of pyrrole-imidazole polyamide that can specifically bind to a specific region of the CTGF gene promoter and inhibit the expression of the CTGF gene. To obtain compounds that can inhibit gene expression and can serve as therapeutic agents, among polyamides that target various fragments of the CTGF gene promoter, those in the 195 to 150 region of the promoter region home, Preferably, the ability to bind to the region of 164 to 150 or 195 to 174, more preferably the region of 160 to 155 or the region of 190 to 184 significantly reduces the activity of the CTGF gene promoter. Inhibiting and down-regulating the expression of the CTGF gene has led to the present invention.
即ち、本発明は以下の通りである。 That is, the present invention is as follows.
(1) N—メチルビロール単位(以下 Pyとも言う)、 N—メチルイミダゾール単位(以下 I mとも言う)及び γ—ァミノ酪酸単位を含むピロールイミダゾールポリアミドであって、 結合組織増殖因子 (以下 CTGFとも言う)プロモーターの以下に示す塩基配列 19 5〜一 150 (配列番号 2)の一部又は全部とこれに対する相補鎖を含む二重らせん領 域 (以下標的領域とも言う)の副溝内において、前記 Ύーァミノ酪酸単位の部位で折 りたたまれて U字型のコンフオメーションをとることができ、 C G塩基対に対しては Py Zlm対が、 G— C塩基対に対しては ImZPy対力 A— T塩基対及び T A塩基対 に対しては!ヽずれも PyZPy対がそれぞれ対応する、上記ピロールイミダゾールポリ アミドを含んでなる CTGF遺伝子発現抑制剤。 (1) A pyrrole-imidazole polyamide containing N-methylpyrrole unit (hereinafter also referred to as Py), N-methylimidazole unit (hereinafter also referred to as Im) and γ-aminobutyric acid unit, and connective tissue growth factor (hereinafter also referred to as CTGF). ) In the minor groove of a double helix region (hereinafter also referred to as a target region) comprising a part or all of the base sequence 195 to 150 (SEQ ID NO: 2) shown below and the complementary strand thereto, Ύ -Can be folded at the site of an aminobutyric acid unit to take a U-shaped conformation. Py Zlm pair for CG base pair, ImZPy counter force A for G-C base pair — For T base pairs and TA base pairs! CTGF gene expression inhibitor comprising the above-mentioned pyrrolimidazole polyamide, each corresponding to a PyZPy pair.
(2)更に βーァラニン単位を含む上記(1)記載の CTGF遺伝子発現抑制剤。 (2) The CTGF gene expression inhibitor according to (1), further comprising a β-alanine unit.
(3)前記標的領域が CTGFプロモーターの以下に示す塩基配列— 164〜― 150 ( 配列番号 3)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である上 記(1)又は(2)記載の CTGF遺伝子発現抑制剤。 (3) The above (1) or (3) wherein the target region is a double helix region comprising a part or all of the base sequence shown below of the CTGF promoter—164 to 150 (SEQ ID NO: 3) and a complementary strand thereto. 2) The CTGF gene expression inhibitor described in 2).
(4)前記標的領域が CTGFプロモーターの以下に示す塩基配列 160〜一 155 ( 配列番号 4)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である上 記(1)又は(2)記載の CTGF遺伝子発現抑制剤。 (4) The above target region (1) or (2) wherein the target region is a double helix region comprising part or all of the base sequence 160 to 155 (SEQ ID NO: 4) shown below of the CTGF promoter and a complementary strand thereto: ) CTGF gene expression inhibitor as described in the above.
(5)前記標的領域が CTGFプロモーターの以下に示す塩基配列— 195〜― 174 ( 配列番号 5)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である上 記(1)又は(2)記載の CTGF遺伝子発現抑制剤。 (5) The above target region (1) or (1), wherein the target region is a double helix region comprising part or all of the base sequence shown below of the CTGF promoter—195 to 174 (SEQ ID NO: 5) and a complementary strand thereto: 2) The CTGF gene expression inhibitor described in 2).
(6)前記標的領域が CTGFプロモーターの以下に示す塩基配列— 190〜― 184 ( 配列番号 6)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である上 記(1)又は(2)記載の CTGF遺伝子発現抑制剤。 (6) The above target region (1) or (1), wherein the target region is a double helix region comprising part or all of the base sequence shown below of the CTGF promoter: 190 to 184 (SEQ ID NO: 6) and a complementary strand thereto. 2) The CTGF gene expression inhibitor described in 2).
(7)前記ピロールイミダゾールポリアミドの末端のカルボキシル基がアミドを形成して
V、る上記(1)〜(6)の 、ずれか一項記載の CTGF遺伝子発現抑制剤。 (7) The carboxyl group at the end of the pyrrole-imidazole polyamide forms an amide. V, The CTGF gene expression inhibitor according to any one of (1) to (6) above.
(8)前記アミドカ^チルァミノプロピルアミン又は N, N—ジメチルァミノプロピルアミン とのアミドである上記(7)記載の CTGF遺伝子発現抑制剤。 (8) The CTGF gene expression inhibitor according to the above (7), which is an amide with the above amidecylaminopropylamine or N, N-dimethylaminopropylamine.
発現抑制剤。 Expression inhibitor.
(9)下式で表されるピロールイミダゾールポリアミドを含んでなる CTGF遺伝子発現 抑制剤。 (9) A CTGF gene expression inhibitor comprising a pyrrole-imidazole polyamide represented by the following formula:
[化 1] [Chemical 1]
(10)下式で表されるピロールイミダゾールポリアミドを含んでなる CTGF遺伝子発現 抑制剤。 (10) A CTGF gene expression inhibitor comprising a pyrrole-imidazole polyamide represented by the following formula:
[化 2] [Chemical 2]
ol. Wt.: 1912.00 発明の効果 ol. Wt .: 1912.00 Effects of the Invention
本発明によれば、特定の遺伝子発現を特異的に抑制することができるので化学療
法剤のような副作用がなぐまた有機化合物であるためリボヌクレアーゼにより分解さ れるという欠点もない、 CTGF遺伝子発現抑制剤を得ることができる。本発明の CTG F遺伝子発現抑制薬は、上記の各種線維増殖性疾患、血管増殖性疾患、動脈硬化 性疾患に対する治療薬として有効である。 CTGFは TGF— β 1の関与よりも下流域 において線維化に作用するので、その CTGFの遺伝子発現抑制薬はより安全性、特 異性の高 ヽ線維化抑制へと導くことができる。 According to the present invention, since specific gene expression can be specifically suppressed, It is possible to obtain a CTGF gene expression inhibitor that does not have the disadvantage of being decomposed by ribonuclease because it is an organic compound and has no side effects such as legal agents. The CTG F gene expression inhibitor of the present invention is effective as a therapeutic agent for the above-mentioned various fibroproliferative diseases, vascular proliferative diseases, and arteriosclerotic diseases. Since CTGF acts on fibrosis in the downstream region rather than involving TGF-β1, the gene expression inhibitor of CTGF can lead to more safe and specific inhibition of high fibrosis.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明に係るピロールイミダゾールポリアミドにお!/、て、 N—メチルビロール単位(以 下 Pyとも言う)、 N—メチルイミダゾール単位(以下 Imとも言う)及び γ—ァミノ酪酸単 位(γリンカ一とも言う)は互いにアミド結合(-C ( = 0)— ΝΗ-)で連結されており、 その一般構造及び製造方法は公知である (例えば、特許文献 3〜5参照)。 [0015] In the pyrrole-imidazole polyamide according to the present invention! /, N-methylpyrrole unit (hereinafter also referred to as Py), N-methylimidazole unit (hereinafter also referred to as Im) and γ-aminobutyric acid unit (γ linker). Are also linked to each other by an amide bond (—C (= 0) —ΝΗ—), and their general structure and production method are known (see, for example, Patent Documents 3 to 5).
[0016] 例えば、ピロールイミダゾールポリアミドは Fmoc (9—フルォレニルメトキシカルボ- ル)を用いた固相法(固相 Fmoc法)による自動合成法によって簡便に製造すること ができる(特許文献 5)。固相 Fmoc法によれば、ピロールイミダゾールポリアミドの末 端をカルボン酸残基として固体担体力 切り出すことができるので、種々の官能基を 分子末端に導入してピロールイミダゾールポリアミドの誘導体を作成することもできる 。例えば、デュオ力ノレマイシン、ピロ口べンゾジァゼピン、ブレオマイシン、ェンジイン 化合物、ナイトロジェンマスタード、これらの誘導体等、 DNAに対してアルキルィ匕能 を有する化合物を必要に応じて導入することもできる。固相 Fmoc法は市販のタンパ ク(ペプチド)合成機を用いる自動合成法であるため、天然に存在するタンパク質や 非天然タンパク質とピロールイミダゾールポリアミドとの共役体 (コンジュゲート)を合成 することもできる。また、 Fmoc法は t—BOC法に比べて反応条件が緩和であるため、 タンパク質以外の有機化合物 (酸性条件下で不安定な官能基を有する化合物をも含 む)の導入も可能である。例えば、ピロールイミダゾールポリアミドと DNAや RNA (又 はそれらの誘導体)との共役体を自動的に合成することも可能である。 [0016] For example, pyrrole-imidazole polyamide can be easily produced by an automatic synthesis method using a solid phase method (solid phase Fmoc method) using Fmoc (9-fluorenylmethoxycarbon) (Patent Document 5). ). According to the solid-phase Fmoc method, the end of pyrrole-imidazole polyamide can be cut out as a solid carrier by using a carboxylic acid residue, so that various functional groups can be introduced into the end of the molecule to create derivatives of pyrrole-imidazole polyamide. it can . For example, a compound having an alkylotrophic ability with respect to DNA, such as duo force noremycin, pyro-benzodiazepine, bleomycin, enediyne compound, nitrogen mustard, and derivatives thereof, can be introduced as necessary. Since the solid-phase Fmoc method is an automated synthesis method using a commercially available protein (peptide) synthesizer, it is also possible to synthesize conjugates (conjugates) of naturally occurring proteins and non-natural proteins and pyrrole-imidazole polyamides. . In addition, since the Fmoc method has milder reaction conditions than the t-BOC method, it is also possible to introduce organic compounds other than proteins (including compounds having functional groups that are unstable under acidic conditions). For example, it is possible to automatically synthesize conjugates of pyrrole-imidazole polyamide and DNA or RNA (or their derivatives).
[0017] 上記公知の Fmoc法等によれば、末端にカルボキシル基を有するピロールイミダゾ ールポリアミドを合成することができる。その具体例としては、例えば、末端に j8—ァ ラニン残基(j8—ァミノプロピオン酸残基)や γ—ァミノ酪酸残基を有するピロールイミ
ダゾールポリアミド等が挙げられる。末端に j8—ァラニン残基又は γ ァミノ酪酸残 基を有するピロールイミダゾールポリアミドは、例えば、それぞれ Fmocでアミノ基を保 護した、アミノビロールカルボン酸、ァミノイミダゾールカルボン酸、 j8—ァラニン又は yーァミノ酪酸を担持した固相担体を用い、ペプチド合成機を使用して固相 Fmoc 法により合成することができる。 [0017] According to the known Fmoc method and the like, a pyrrole imidazole polyamide having a carboxyl group at the terminal can be synthesized. Specific examples thereof include, for example, a pyrrolimine having a j8-alanine residue (j8-aminopropionic acid residue) or a γ-aminobutyric acid residue at the terminal. A dazole polyamide etc. are mentioned. The pyrrole imidazole polyamide having a terminal j8-alanine residue or γ-aminobutyric acid residue is, for example, an aminopyrrole carboxylic acid, an amino imidazole carboxylic acid, j8-alanine or y-amino having an amino group protected by Fmoc, respectively. It can be synthesized by solid phase Fmoc method using a peptide synthesizer using a solid phase carrier carrying butyric acid.
[0018] アミノビロールカルボン酸の具体例としては、例えば、 4 アミノー 2 ピロールカル ボン酸、 4 アミノー 1—メチル 2 ピロ一ルカルボン酸、 4 アミノー 1—ェチルー 2 ピロ一ルカルボン酸、 4 アミノー 1—プロピル— 2 ピロ一ルカルボン酸、 4 ァ ミノー 1 ブチル 2—ピロ一ルカルボン酸等が挙げられる。ァミノイミダゾールカルボ ン酸の具体例としては、例えば、 4 アミノー 2 イミダゾールカルボン酸、 4ーァミノ 1ーメチルー 2 イミダゾールカルボン酸、 4 ァミノ 1 ェチルー 2 イミダゾー ルカルボン酸、 4 アミノー 1 プロピル 2 イミダゾールカルボン酸、 4 アミノー 1 ブチルー 2—イミダゾールカルボン酸等が挙げられる。 [0018] Specific examples of the aminopyrrole carboxylic acid include, for example, 4 amino-2-pyrrole carboxylic acid, 4 amino-1-methyl-2-pyrrole carboxylic acid, 4 amino-1-ethyl-2-pyrrole carboxylic acid, 4 amino-1-propyl. — 2-pyrrole carboxylic acid, 4-amino 1 butyl 2-pyrrole carboxylic acid and the like. Specific examples of the aminoimidazole carboxylic acid include, for example, 4 amino-2 imidazole carboxylic acid, 4-amino 1-methyl-2 imidazole carboxylic acid, 4 amino 1 ethyl 2 imidazole carboxylic acid, 4 amino-1 propyl 2 imidazole carboxylic acid, 4 amino 1 Butyl-2-imidazolecarboxylic acid and the like.
[0019] 固相 Fmoc法によれば、例えば、ピロールイミダゾールポリアミドと FITC (フルォレ セインイソチオシァネート)との共役体を合成することもできる。 FITCは従来力も抗体 の蛍光標識試薬として知られているので、得られる共役体は、当該ピロールイミダゾ ールポリアミドが特定の DNA配列を認識することを証明するために用いることができ る。 [0019] According to the solid phase Fmoc method, for example, a conjugate of pyrrole imidazole polyamide and FITC (fluorescein isothiocyanate) can also be synthesized. Since FITC is conventionally known as a fluorescent labeling reagent for antibodies, the resulting conjugate can be used to prove that the pyrrole imidazole polyamide recognizes a specific DNA sequence.
[0020] 本発明の CTGF遺伝子発現抑制剤は、 N—メチルビロール単位 (Py)、 N—メチル イミダゾール単位 (Im)及び γ ァミノ酪酸単位を含むピロールイミダゾールポリアミド であって、 CTGFプロモーターの塩基配列 195〜一 150 (配列番号 2)の一部又は 全部とこれに対する相補鎖を含む二重らせん領域 (以下標的領域とも言う)の副溝内 において、前記 γ—ァミノ酪酸単位の部位で折りたたまれて U字型のコンフオメーシ ヨンをとることができ、 C G塩基対に対しては PyZlm対力 G— C塩基対に対して は ImZPy対力 A— T塩基対及び T A塩基対に対しては 、ずれも PyZPy対がそ れぞれ対応する、上記ピロールイミダゾールポリアミドを含む。 [0020] The CTGF gene expression inhibitor of the present invention is a pyrrole-imidazole polyamide containing an N-methylpyrrole unit (Py), an N-methylimidazole unit (Im), and a γ-aminobutyric acid unit, wherein the base sequence of the CTGF promoter is from 195 to In a minor groove of a double helix region (hereinafter also referred to as a target region) containing part or all of 150 (SEQ ID NO: 2) and a complementary strand thereto, it is folded at the site of the γ-aminobutyric acid unit and is U-shaped. Type conformation, PyZlm counterforce for CG base pairs, ImZPy counterforce for G—C base pairs, A—T base pairs and TA base pairs, the difference is PyZPy pair Each contains the corresponding pyrrole-imidazole polyamide.
[0021] 通常 DNA二重らせんの骨格は 2列の溝をつくり、広くて深い溝を主溝 (メジャーグ ループ)、狭くて浅い溝を副溝 (マイナーグループ)と呼んでいる。ここで上記ピロ一
ルイミダゾールポリアミドは、特定の塩基対がつくる副溝 (マイナーグループ)に高い 親和性と特異性を以つて非共役結合的に結合することができる。この時の結合は、副 溝の C G塩基対に対してはピロールイミダゾールポリアミドの PyZlm対が、 G— C 塩基対に対しては ImZPy対が、 A T塩基対及び T A塩基対に対しては ヽずれ も PyZPy対がそれぞれ対応している。そして、ピロールイミダゾールポリアミド分子中 の γ—ァミノ酪酸単位の部位で分子が折りたたまれて U字型のコンフオメーシヨンをと る。 [0021] Usually, the DNA double helix skeleton forms two rows of grooves. The wide and deep groove is called the main groove (major group), and the narrow and shallow groove is called the minor groove (minor group). Where the above pillow Ruimidazole polyamides can bind in a non-conjugated manner with high affinity and specificity to minor grooves created by specific base pairs. In this case, the PyZlm pair of pyrrole imidazole polyamide is against the CG base pair in the minor groove, the ImZPy pair is against the G-C base pair, and the AT base pair and TA base pair are not. PyZPy pairs correspond to each other. Then, the molecule is folded at the site of the γ-aminobutyric acid unit in the pyrrole-imidazole polyamide molecule to take a U-shaped conformation.
[0022] 副溝の塩基対とピロールイミダゾールポリアミドの Pyと Imの対が上述のように対応し ていないと、副溝とピロールイミダゾールポリアミドとの結合が不十分となる。このよう に、副溝の塩基対と Py— Im対が上述のように対応して ヽな 、ピロ一ルイミダゾール ポリアミドを本願ではミスマッチ又はミスマッチポリアミドと呼ぶ。 [0022] If the base pair of the minor groove and the Py and Im pair of pyrrole imidazole polyamide do not correspond as described above, the bond between the minor groove and the pyrrole imidazole polyamide becomes insufficient. Thus, the pyrrole imidazole polyamide is called mismatch or mismatch polyamide, where the minor groove base pair and Py-Im pair correspond to each other as described above.
[0023] CTGF遺伝子調節領域の塩基配列は図 1及び配列番号 1に示す通りである (Xin e t al, J. Clin, Pathol. 49, 91—97 (1996))。 [0023] The nucleotide sequence of the CTGF gene regulatory region is as shown in Fig. 1 and SEQ ID NO: 1 (Xine tal, J. Clin, Pathol. 49, 91-97 (1996)).
本発明のピロールイミダゾールポリアミド GBP2101及び GBP2102は下記に示す 通りである。 The pyrrole-imidazole polyamides GBP2101 and GBP2102 of the present invention are as shown below.
[化 3] [Chemical 3]
G B P 2 1 0 又は G B P 2 1 0 or
ol. Wi: 1912.00 ol. Wi: 1912.00
G B P 2 1 0 2 G B P 2 1 0 2
[0024] GBP2101は、分子式 C H N O 、分子量 1667. 75を有し、その標的配列は [0024] GBP2101 has the molecular formula C H N O, molecular weight 1667.75, and its target sequence is
76 94 30 15 76 94 30 15
CTGF遺伝子調節領域の— 195〜― 150 (配列番号 2)の領域のうち、 Smad結合 領域の下流域である 164〜一 150 (配列番号 3)の領域であり、直接的には gctga g (— 160〜― 155) (配列番号 4)の 6塩基に結合することにより、 CTGF遺伝子の発 現を抑制する。 Of the CTGF gene regulatory region — 195 to 150 (SEQ ID NO: 2), the region downstream from the Smad binding region is 164 to 150 (SEQ ID NO: 3), directly gctga g (— 160--155) Suppresses the expression of CTGF gene by binding to 6 bases of (SEQ ID NO: 4).
[0025] GBP2102は、分子式 C H N O 、分子量 1912. 00を有し、その標的配列は [0025] GBP2102 has the molecular formula C H N O, molecular weight 1912.00, and its target sequence is
88 106 34 17 88 106 34 17
CTGF遺伝子調節領域の— 195〜― 150 (配列番号 2)の領域のうち、 Smad結合 領域の上流域である— 195〜― 174 (配列番号 5)の領域であり、直接的には gagtgt g (— 190〜― 184) (配列番号 6)の 7塩基に結合することにより、 CTGF遺伝子の発 現を抑制する。 Among the regions of the CTGF gene regulatory region — 195 to 150 (SEQ ID NO: 2), the region upstream of the Smad binding region — 195 to 174 (SEQ ID NO: 5), which is directly gagtgt g ( — 190 to 184) Suppresses the expression of the CTGF gene by binding to 7 bases of (SEQ ID NO: 6).
[0026] Py— Imポリアミドはインビトロ研究では一般的な又は組織特異的な転写因子の有 効な阻害剤又は活性化剤である。特異的なポリアミド投与下でショウジヨウバエ (Dro sophila)を発育させると、特に毒性もなく機能的表現型を獲得したり喪失したりする 力 これはポリアミドが特異的に遺伝子発現を制御した結果である (Janssen et ahMol Cell.2000;6:1013-24, Janssen at al:Mol Cell.2000;6:999- 1011.)。本発明者らは CT GFプロモータの特定の領域を標的とする Py— Imポリアミド類を合成した。これらの ポリアミドは核内に 48時間以上特に消失することもなく安定に滞留した。アンチセン スオリゴヌクレオチド及びリボザィムと比較して、ポリアミドはよりすぐれた透過性 (低濃 度、トランスフエクシヨン媒体不要)とより高い安定性を培養ヒトメサンギゥム細胞にお
いて示した。ポリアミドの高い透過性と安定性は、遺伝子治療法のための真核細胞の 核への理想的な薬剤アプローチを提供する。 [0026] Py-Im polyamides are effective inhibitors or activators of transcription factors that are common or tissue-specific in in vitro studies. The growth of Dro sophila under specific polyamide administration is the ability to gain or lose a functional phenotype with no particular toxicity. This is the result of polyamides specifically controlling gene expression. (Janssen et ahMol Cell. 2000; 6: 1013-24, Janssen at al: Mol Cell. 2000; 6: 999-1011.). We have synthesized Py-Im polyamides that target specific regions of the CT GF promoter. These polyamides stayed stably in the core for 48 hours without disappearing. Compared to antisense oligonucleotides and ribozymes, polyamides have better permeability (low concentration, no transfection medium required) and higher stability in cultured human mesangial cells. It showed. The high permeability and stability of polyamides provides an ideal drug approach to the nucleus of eukaryotic cells for gene therapy.
[0027] 最近まで Py— Imポリアミドの開発はプロモータ配列における転写因子 DNA複 合体の構造的特性に基づ ヽて 、た。 TATAボックス含有プロモータ中の配列を標的 とする効率的な方法は、 TATAボックスに隣接する塩基対に結合するよう設計するこ とであろう。 TATAボックスはほとんどのタンパク質コード遺伝子にぉ 、て転写開始 部位の上流 25〜35塩基対に位置している。転写介在因子 D (TAF D)は TATAボ [0027] Until recently, the development of Py-Im polyamides was based on the structural properties of transcription factor DNA complexes in the promoter sequence. An efficient way to target sequences in a TATA box-containing promoter would be to design a base pair adjacent to the TATA box. The TATA box is located 25 to 35 base pairs upstream of the transcription start site of most protein-coding genes. Transcription mediator D (TAF D) is
II II
ッタスに特異的に結合する TATAボックス結合タンパク質 (TBP)を含んでおり、コア プロモータにおける他の転写関与因子を採用してプレ開始コンプレックス(PIC)を形 成する。 PICは遺伝子転写を開始してァクチベータ又はサブレッサと相互作用して遺 伝子発現を調節する。 TBPも二重らせん DNAの副溝 (マイナーグループ)に結合す るので(Lee et al:Cell.l991 Dec 20;67(6): 1241-50, Starr et al:Cell.l991;67:1231- 40 , Courey et al:Cell.l988;55:887- 98)、合成ポリアミドは TATA結合タンパク質の結合 部位を競合的に占有し、遺伝子転写に干渉する。様々なプロモータで設計したポリ アミドの成功例のうちで、 TATAボックスを標的とするものが常に機能することが知ら れている。 It contains a TATA box binding protein (TBP) that binds specifically to tuss, and employs other transcription factors in the core promoter to form a pre-initiator complex (PIC). PIC initiates gene transcription and interacts with activators or sublessors to regulate gene expression. TBP also binds to the minor groove of the double helix DNA (Lee et al: Cell.l991 Dec 20; 67 (6): 1241-50, Starr et al: Cell.l991; 67: 1231- 40, Courey et al: Cell.l988; 55: 887-98), synthetic polyamides competitively occupy the binding site of the TATA binding protein and interfere with gene transcription. Of the successful examples of polyamides designed with various promoters, those targeting the TATA box are known to always work.
[0028] TATAボックスもイニシエータ一領域(Inr)も含んで!/ヽな 、種類のプロモータもある [0028] There are various types of promoters, including TATA boxes and initiator regions (Inr)!
(Javahery et al:Mol Cell Biol.l994;14:116-27;Lo et al:Gene.l996 Dec 5;182(1- 2):1 3-22;Romeo et al:Gene.l997;189:289- 95.)。高度に発現し特化された遺伝子のプロ モータは TATAボックスを有して!/、る傾向にあるが、ハウスキーピング遺伝子のプロ モータにはそれが欠如している傾向がある。 TATAのないプロモータは、低レベルで 発現される遺伝子や、増殖の間に厳密なダウンレギュレーションを要求する遺伝子に とっては必要力もしれないが、そのメカニズムはなお今後の研究を要する。 hTGF- β 1プロモータはこの種類に属する。これは転写開始部位の上流の様々な領域にい くつもの陽性及び陰性の配列を含んでいる(Kim et al:J Biol Chem.1989;264:402-8. ) o転写開始部位の近傍にはいくつかの SP— 1配列と二つの AP— 1配列が存在す る。様々なウィルス性及び細胞性プロモータが SP— 1タンパク質によって活性ィ匕され るので、プロモータが SP— 1により刺激されるためには単一の SP— 1配列で十分の
ようである(Kadonaga et al:Cell.l987;51:1079- 90, Courey et al:Cell.l988;55:887- 98 )。 AP— 1配列 ίお unホモダイマー又は FosZjunヘテロダイマー複合体の!/、ずれか 力もなる AP—1転写因子に応答する。 AP— 1配列を介して TPA、 V— src遺伝子産 物及び hTGF— β 1自身のようないくつかの物質が hTGF— β 1遺伝子の発現を刺 激する(Kim et al:J Biol Chem.l989;264:7041-5, Kim et al:J Biol Chem.l989;264:19 373-8, Kim et al:Mol Cell Biol.l990;10:1492- 7, BirchenaU- Roberts et al:Mol Cell B iol.l990;10:4978- 83)。 (Javahery et al: Mol Cell Biol.l994; 14: 116-27; Lo et al: Gene.l996 Dec 5; 182 (1-2): 1 3-22; Romeo et al: Gene.l997; 189: 289 -95.). Promoters of highly expressed and specialized genes tend to have a TATA box! /, But promoters of housekeeping genes tend to lack it. Promoters without TATA may not be necessary for genes that are expressed at low levels or require strict down-regulation during growth, but the mechanism still requires further study. The hTGF-β 1 promoter belongs to this class. It contains a number of positive and negative sequences in various regions upstream of the transcription start site (Kim et al: J Biol Chem. 1989; 264: 402-8.) O In the vicinity of the transcription start site There are several SP-1 sequences and two AP-1 sequences. Since various viral and cellular promoters are activated by SP-1 protein, a single SP-1 sequence is sufficient for the promoter to be stimulated by SP-1. (Kadonaga et al: Cell.l987; 51: 1079-90, Courey et al: Cell.l988; 55: 887-98). AP-1 sequence responds to AP-1 transcription factor, which also acts as an unhomodimer or FosZjun heterodimer complex! Several substances such as TPA, V-src gene product and hTGF-β1 itself stimulate the expression of hTGF-β1 gene via the AP-1 sequence (Kim et al: J Biol Chem.l989). ; 264: 7041-5, Kim et al: J Biol Chem.l989; 264: 19 373-8, Kim et al: Mol Cell Biol.l990; 10: 1492- 7, BirchenaU- Roberts et al: Mol Cell B iol l990; 10: 4978-83).
[0029] SP— 1及び Z又は AP— 1配列が hTGF— β 1遺伝子発現の活性化を仲介すると 仮定されている。重要なポリアミドは応答性の転写因子の結合を遮断するために、異 なる AP—1及び SP—1配列に隣接する塩基対を標的とするように設計されている。 しかし、これらのポリアミドが hTGF— β 1プロモータの活性を阻害することができるか 、又は活性ィ匕することができるかを示すに十分なデータはない。これらの結果は、設 計したポリアミドが DNA等の副溝 (マイナーグループ)中で占有する位置が不適切だ つたため力もしれない。本発明者らは標的配列を hTGF— β 1プロモータの上流にま で拡張した。一つのポリアミドは hTGF— β 1プロモータを標的としており、これはイン ビトロでプロモータの活性を阻害し、培養 hVSMCでは hTGF— β 1 mRNAとタン パク質を阻害することが示されている。 TATAボックスを含むコアプロモータからは転 写を抑制する転写リプレッサーは見つかってはいる力 TATAのないプロモータから は見つかつていない(Aso et ahEMBO J.1994;13:435-45, Mack et al:Nature.l993;3 63:281-3, Merino et al:Nature.l993;365:227- 32)。ほとんどの哺乳類遺伝子の発現 はプロモータとェンノヽンサ一配列に結合した莫大な数のタンパク質の作用の組合せ に依存している傾向が高いので、今回の結果を説明する最も簡単なモデルは、本発 明のピロールイミダゾールポリアミドが転写因子— DNA相互作用を遮断し、 CTGF プロモータ活性に対して阻害効果を示すということである。 [0029] It has been postulated that SP-1 and Z or AP-1 sequences mediate activation of hTGF-β1 gene expression. Important polyamides are designed to target base pairs adjacent to different AP-1 and SP-1 sequences to block the binding of responsive transcription factors. However, there are insufficient data to show whether these polyamides can inhibit or activate the hTGF-β1 promoter activity. These results cannot be applied because the position of the designed polyamide in the minor groove such as DNA is inappropriate. We extended the target sequence upstream of the hTGF-β1 promoter. One polyamide targets the hTGF-β1 promoter, which has been shown to inhibit promoter activity in vitro and hTGF-β1 mRNA and protein in cultured hVSMC. Transcriptional repressors that suppress transcription from core promoters containing a TATA box have been found. Forces have not been found from promoters without TATA (Aso et ahEMBO J.1994; 13: 435-45, Mack et al: Nature.l993; 3 63: 281-3, Merino et al: Nature.l993; 365: 227-32). Since the expression of most mammalian genes tends to depend on a combination of the actions of a large number of proteins bound to a promoter and an enzyme sequence, the simplest model to explain this result is the present model. The bright pyrrole-imidazole polyamide blocks transcription factor-DNA interactions and has an inhibitory effect on CTGF promoter activity.
[0030] プロモータ領域における転写因子の調節以外に、他の因子も遺伝子発現に影響を 与えている可能性もある。これらの因子はクロマチンパッキング、ポリアデ-レーシヨン 、スプライシング、 mRNA安定性、翻訳開始等を包含するものである(Berger et al:M ol Cell.2001;5:263-8, McKeown Annu Rev Cell Biol.l992;8:133- 55, Decker et al:Tr
ends Biochem Sci.l994;19:336- 40, Kozak Annu Rev Cell Biol.l992;8: 197- 225)。合 成ポリアミドはヌクレオノームの位置関係から標的部位に接近することができ、特異的 配列を標的とすることによりクロマチンの縮合'脱縮合構造に影響を与えている可能 性がある(Gottesfeld et al:J Mol Biol.2002;321:249-63;Gottesfeld et al:J Mol Biol.20 01 ;309:615-29.)。ピロールイミダゾールポリアミドがヘテロクロマチン褐色サテライトを 開き、 GAFの結合を可能とし、その結果 drosophila melanogasterにおける表現 型の変化を引き起こしているということが証明されている。ピロールイミダゾールポリア ミドは興味のある配列を標的とするように設計することができるので、ゲノムの機能研 究ゃ最終的には CTGF遺伝子阻害や活性ィ匕のような遺伝子治療に有用である。 本発明に係る Py—Imポリアミドは転写開始領域からは遠位の上流において設計 することができ、これが CTGF遺伝子の発現に対する阻害効果を示す。 [0030] In addition to the regulation of transcription factors in the promoter region, other factors may affect gene expression. These factors include chromatin packing, polyaddition, splicing, mRNA stability, translation initiation, etc. (Berger et al: Mol Cell. 2001; 5: 263-8, McKeown Annu Rev Cell Biol. L992 ; 8: 133- 55, Decker et al: Tr ends Biochem Sci.l994; 19: 336-40, Kozak Annu Rev Cell Biol.l992; 8: 197-225). Synthetic polyamides can approach the target site due to the position of the nucleonome, and may influence the condensation / decondensation structure of chromatin by targeting specific sequences (Gottesfeld et al: J Mol Biol. 2002; 321: 249-63; Gottesfeld et al: J Mol Biol.20 01; 309: 615-29.). It has been demonstrated that pyrrole-imidazole polyamides open heterochromatin brown satellites and allow GAF binding, resulting in phenotypic changes in drosophila melanogaster. Because pyrrole-imidazole polyamides can be designed to target sequences of interest, functional genomic studies are ultimately useful for gene therapy such as CTGF gene inhibition and activity. The Py-Im polyamide according to the present invention can be designed upstream from the transcription initiation region, which shows an inhibitory effect on the expression of the CTGF gene.
[0031] CTGFは腎疾患 (IgA腎症、巣状糸球体硬化症、半月体形成性腎炎、巣状硬化型 ループス腎炎、びまん性増殖性ループス腎炎、糖尿病性腎症、高血圧性腎硬化症) において、線維化に深く関与していることが報告されている(Qi W et al: Am J Physio 1 Renal Physiol Nov 9, 2004、 Okada H et al:J Am Soc Nephrol 16(1) 133—43, 2004、 Kanemoto K et al: Lab Invest 83(11) 1615—25, 2003、 Zhou G et al:Am J Pathol 165( 6) 2033-43, 2004、 Crean JK et al: 18(13) 1541-3, 2004) 0これらの事実より、本発明 の CTGF遺伝子発現抑制薬は、上記の各種腎疾患に対する治療薬として有効である と合理的に考えることができる。 [0031] CTGF is a renal disease (IgA nephropathy, focal glomerulosclerosis, crescent nephritis, focal sclerosis lupus nephritis, diffuse proliferative lupus nephritis, diabetic nephropathy, hypertensive nephropathy) Are reported to be deeply involved in fibrosis (Qi W et al: Am J Physio 1 Renal Physiol Nov 9, 2004, Okada H et al: J Am Soc Nephrol 16 (1) 133-43, 2004, Kanemoto K et al: Lab Invest 83 (11) 1615-25, 2003, Zhou G et al: Am J Pathol 165 (6) 2033-43, 2004, Crean JK et al: 18 (13) 1541-3, 2004) 0 From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for the above-mentioned various renal diseases.
[0032] CTGFは血管内皮細胞や血管平滑筋細胞においても発現し、血管増殖性疾患に おいて、アンギオテンシン IIによる血管の細胞増殖、硬化に重要な役割を担っている ことが示されている(Ruperez M et al: Circulation 108(12) 1499-505, 2003、 Kaji T et al: Biochem Biophys Res Commun 322(1) 22-8, 2004、 Chowdhury I et al: Eur J Bio chem 271(22) 4436-50, 2004)。これらの事実より、本発明の CTGF遺伝子発現抑制 薬は、血管増殖性疾患に対する治療薬として有効であると合理的に考えることができ る。 [0032] CTGF is also expressed in vascular endothelial cells and vascular smooth muscle cells, and has been shown to play an important role in angiotensin II vascular cell proliferation and sclerosis in vascular proliferative diseases ( Ruperez M et al: Circulation 108 (12) 1499-505, 2003, Kaji T et al: Biochem Biophys Res Commun 322 (1) 22-8, 2004, Chowdhury I et al: Eur J Bio chem 271 (22) 4436- 50, 2004). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for vascular proliferative diseases.
[0033] CTGFは心疾患においても、心筋の肥大、線維化に重要な役割を担うことが示され ている(Ahmed MS et al:J Mol Cell Cardiol 36(3) 393—404, 2004、 Matsui Y et al: J M
ol Cell Cardiol 37(2) 477-81, 2004)。これらの事実より、本発明の CTGF遺伝子発現 抑制薬は、心筋症に対する治療薬として有効であると合理的に考えることができる。 [0033] CTGF has also been shown to play an important role in myocardial hypertrophy and fibrosis in heart disease (Ahmed MS et al: J Mol Cell Cardiol 36 (3) 393-404, 2004, Matsui Y et al: JM ol Cell Cardiol 37 (2) 477-81, 2004). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for cardiomyopathy.
[0034] 肝臓の線維化の過程で、肝星細胞は細胞外マトリックス産生において重要な役割 を果たしている(Bataller R et al: Gastroenterology 118: 1149, 2000)。 CTGFは星 細胞の活性化や接着に重要な役割を担い(Gao R et al:J Biol Chem 279(10) 8848-5 5)、 CTGFの抑制は肝臓の線維化を抑制することが知られている(Uchio K et al: Wo und Repair Regen 12(1) 60-6)。これらの事実より、本発明の CTGF遺伝子発現抑制 薬は、肝臓の線維増殖性疾患に対する治療薬として有効であると合理的に考えるこ とがでさる。 [0034] During liver fibrosis, hepatic stellate cells play an important role in extracellular matrix production (Bataller R et al: Gastroenterology 118: 1149, 2000). CTGF plays an important role in stellate cell activation and adhesion (Gao R et al: J Biol Chem 279 (10) 8848-5 5), and CTGF suppression is known to suppress liver fibrosis. (Uchio K et al: Wo und Repair Regen 12 (1) 60-6). From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for liver fibroproliferative diseases.
[0035] 現在行われて 、る慢性腎不全に対する治療は大別して血液透析と CAPDとに分 けられる。このうち CAPDは血液透析と異なり、患者が自宅、勤務先などで施行する ため、頻回の通院を必用とせず、患者の社会復帰のために非常に有効な治療法とし て確立されて 、る。し力しながら CAPDを行って 、る患者では腹膜の線維化が進み、 著明な腹膜の硬化をきたし、 CAPDの効率が低下して CAPDの続行が困難となるば 力りでなぐ全身状態の悪ィ匕を招くこともある、被嚢性腹膜硬化症の発症が問題とな つている。この被嚢性腹膜硬化症において CTGFの発現が過剰となり、その発症、 進展に深く関わっていることが報告された。これらの事実より、本発明の CTGF遺伝 子発現抑制薬は、被嚢性腹膜硬化症に対する治療薬として有効であると合理的に 考えることができる。 [0035] Currently, treatments for chronic renal failure are roughly divided into hemodialysis and CAPD. CAPD, unlike hemodialysis, is established as a very effective treatment for rehabilitation of patients without requiring frequent visits because patients are performed at home or work. . If the patient undergoes CAPD, the fibrosis of the peritoneum progresses, and the peritoneal sclerosis develops. If the efficiency of CAPD decreases and it becomes difficult to continue CAPD, The development of encapsulated peritoneal sclerosis, which can lead to bad habits, is a problem. In this encapsulated peritoneal sclerosis, the expression of CTGF was excessive, and it was reported that it was deeply involved in its onset and progression. Based on these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for encapsulating peritoneal sclerosis.
[0036] 肺線維症モデル動物にぉ 、て、 CTGFはその発症、進展に重要な役割を担って!/ヽ ることが報告されている(Xie S et al: Am J Physiol Lung Cell Mol Physiol 288(1) L68 -76, 2004) oまた、気道の細胞における CTGF発現は TGF— βに関連していること も報告されている(Bonniaud P et al: Am J Respir Cell Mol Biol 31(5) 510-6, 2004)。 これらの事実より、本発明の CTGF遺伝子発現抑制薬である本発明は、肺線維症に 対する治療薬として有効であると合理的に考えることができる。 [0036] CTGF has been reported to play an important role in the development and progression of pulmonary fibrosis model animals (Xie S et al: Am J Physiol Lung Cell Mol Physiol 288). (1) L68-76, 2004) o It has also been reported that CTGF expression in airway cells is related to TGF-β (Bonniaud P et al: Am J Respir Cell Mol Biol 31 (5) 510 -6, 2004). From these facts, it can be reasonably considered that the present invention, which is a CTGF gene expression inhibitor of the present invention, is effective as a therapeutic agent for pulmonary fibrosis.
[0037] 強皮症の病因とし TGF— βが提唱されている力 CTGFも本疾患の線維芽細胞に おいて重要な役割を担っていることが報告されている(Leask A: Keio J Med 53(2)74- 7、 Chujo S et al:J Cell Phisiol Dec 16 2004) 0これらの事実より、本発明の CTGF遺
伝子発現抑制薬である本発明は、皮膚線維化疾患に対する治療薬として有効であ ると合理的に考えることができる。 [0037] The force proposed by TGF-β as the etiology of scleroderma CTGF has also been reported to play an important role in the fibroblasts of this disease (Leask A: Keio J Med 53 (2) 74-7, Chujo S et al: J Cell Phisiol Dec 16 2004) 0 The present invention, which is a gene expression inhibitor, can be reasonably considered to be effective as a therapeutic agent for skin fibrosis.
[0038] CTGFは糖尿病性網膜症にぉ ヽて、網膜細胞での分布が変化し、その進展に重 要な役割を担うことが報告されている(Kuiper EJ et al: Br J Ophthalmol 88(8) 1082-7 , 2004) oこれらの事実より、本発明の CTGF遺伝子発現抑制薬は、糖尿病性網膜症 に対する治療薬として有効であると合理的に考えることができる。 [0038] CTGF has been reported to play an important role in the development and progression of diabetic retinopathy (Kuiper EJ et al: Br J Ophthalmol 88 (8 1082-7, 2004) o From these facts, it can be reasonably considered that the CTGF gene expression inhibitor of the present invention is effective as a therapeutic agent for diabetic retinopathy.
実施例 Example
[0039] I.材料及び方法 [0039] I. Materials and Methods
(1) CTGFプロモータに対応する Py—Imポリアミドの設計 (1) Py—Im polyamide design for CTGF promoter
Py—Imポリアミドとして、 CTGFプロモータの 160〜一 155又は 190〜一 184 の塩基対に結合するように、上記のような GBP2101又は GBP2102を設計した。 GBP2101 or GBP2102 as described above was designed to bind to 160-1155 or 190-1184 base pairs of the CTGF promoter as Py-Im polyamide.
[0040] (2) Fmoc法を用いた Py—Imポリアミドのマシンアシスト (機械補助)自動合成 [0040] (2) Machine-assisted (machine-assisted) automatic synthesis of Py—Im polyamide using Fmoc method
ピロールイミダゾールポリアミドのマシンアシスト自動合成を、連続フローペプチド合 成機 Pioneer (商標)(アプライドバイオシステムズ)を用いて 0. lmmolスケール(20 Omgの Fmoc— β—ァラニン一 CLEAR酸レジン、 0. 50meqZg、 Peptide Instit ute, Inc. )で実施した。 自動固相合成は DMF洗浄、 Fmoc基の 20%ピぺリジン Z DMFによる除去、メタノール洗浄、 HATU及び DIEA (それぞれ 4当量)の存在下で のモノマーとの 60分間のカップリング、メタノール洗浄、必要に応じて無水酢酸 Zピリ ジンによる保護、及び最終的な DMF洗浄力もなつている。 Py— Imポリアミドは一般 に中程度の収率(10— 30%)で得られた。 Machine-assisted automated synthesis of pyrrole-imidazole polyamides using a continuous flow peptide synthesizer Pioneer ™ (Applied Biosystems) on a 0.1 mmol scale (20 Omg of Fmoc-β-alanine mono-CLEAR acid resin, 0.50 meqZg, Peptide Institute, Inc.). Automated solid phase synthesis requires DMF wash, removal of Fmoc group with 20% piperidine Z DMF, methanol wash, 60 min coupling with monomer in the presence of HATU and DIEA (each 4 equivalents), methanol wash required Depending on the condition, it is protected by acetic anhydride Z-pyridine and the final DMF detergency. Py—Im polyamides were generally obtained in moderate yields (10-30%).
[0041] FITCカップリング: 4倍過剰のフルォレセイン(0. 40mmol)及び DIEA(HATU なし)を DMFに溶解したものをカラムを通して 60分間フラッシュした。 [0041] FITC coupling: A 4-fold excess of fluorescein (0.40 mmol) and DIEA (without HATU) dissolved in DMF was flushed through the column for 60 minutes.
一般的手順: Fmoc- β—ァラニン—Wang榭脂の Fmoc基を除去した後、榭脂 をメタノールで連続的に洗浄した。カップリング工程を Fmocアミノ酸で実施し、次い でメタノールでの洗浄を行った。これらの工程を全配列が導入されるまで何度も繰返 した。カップリング工程を終えた後、必要に応じて N末端アミノ基を保護するか又は FI TCでカップリングし、 DMFで洗浄し、反応容器を取りはずした。 General procedure: After removing the Fmoc group of Fmoc-β-alanine-Wang resin, the resin was washed successively with methanol. The coupling step was performed with Fmoc amino acid, followed by washing with methanol. These steps were repeated many times until the entire sequence was introduced. After completing the coupling step, the N-terminal amino group was protected as necessary or coupled with FITC, washed with DMF, and the reaction vessel was removed.
[0042] カルボン酸としての分解: 合成ポリアミドを冷ェチルエーテル沈澱により分解工程
(91%TFA—3%ZTIS— 3%DMS— 3%水の混合物5mlZ榭脂0. lmmol)の後 に単離した。 [0042] Decomposition as carboxylic acid: Decomposition process of synthetic polyamide by cold ether precipitation (91% TFA—3% ZTIS—3% DMS—3% water mixture 5 ml Z resin 0.1 mmol).
ァミンとしての分解: 合成ポリアミドを冷ェチルエーテル沈澱により分解工程 (N, N—ジメチルァミノプロピルアミン 5mlZ榭脂 0. lmmol、 50°C、ー晚)の後に単離し た。 Decomposition as amine: The synthetic polyamide was isolated by cold ethyl ether precipitation after the decomposition step (N, N-dimethylaminopropylamine 5 ml Z resin 0.1 mmol, 50 ° C, 晚).
精製: 最終精製は、 lOmlZminの流速の分析用 RP— HPLCで、緩衝液 A (0. 1 %TFAZ水又は 0. 1 %ACOHZ水)中 B (ァセトニトリル)の直線勾配を用いて、 35 Onmの U V検出により行つた。 Purification: Final purification was performed on an analytical RP-HPLC with a flow rate of lOmlZmin using a linear gradient of B (acetonitrile) in buffer A (0.1% TFAZ water or 0.1% ACOHZ water) at 35 Onm. This was done by UV detection.
[0043] (3)ヒトメサンギゥム細胞培養 [0043] (3) Human mesangial cell culture
ヒトメサンギゥム細胞(Clonetics)を 10%仔ゥシ血清(Invitrogen)、 lOOUZmlぺ -シリン、及び lOOmgZmlストレプトマイシンを含む Dulbecco変性 Eagle培地(DM EM)にて培養した。細胞を Ca2+, Mg2+フリーのリン酸緩衝食塩水(PBS)中 0. 05 %トリプシン (Invitrogen)でのトリプシン処理により継代し、 75— cm2組織培養フラス コで培養した。培地は 4〜5日毎に交換し、 5〜10継代の間の細胞について実験を 行った。 Human mesangial cells (Clonetics) were cultured in Dulbecco's modified Eagle medium (DM EM) containing 10% offspring serum (Invitrogen), lOOUZml persilin, and lOOmgZml streptomycin. Cells were passaged by trypsinization with 0.05% trypsin (Invitrogen) in Ca 2+ , Mg 2+ free phosphate buffered saline (PBS) and cultured in 75-cm 2 tissue culture flasks. The medium was changed every 4-5 days and experiments were performed on cells between passages 5-10.
(4)培養ヒトメサンギゥム細胞における FITC—標識ポリアミド類のインキュベーション 継代ヒトメサンギゥム細胞を 105Zcm2の密度で 24時間、 24ゥエルのフラスコで培養 した。 FITC標識ポリアミドを 10_9Mの濃度で培地に直接添加し、 2時間後に洗浄し、 以後、蛍光顕微鏡で 1時間ごとに観察した。 (4) Incubation of FITC-labeled polyamides in cultured human mesangial cells Passage human mesangial cells were cultured in 24-well flasks at a density of 10 5 Zcm 2 for 24 hours. FITC-labeled polyamide was added directly to the medium at a concentration of 10_9 M, washed 2 hours later, and thereafter observed with a fluorescence microscope every hour.
[0044] (5)ゲノレシフトアツセィ [0044] (5) Genore Shift Atssey
オリゴヌクレオチドを合成し、アニーリングして、 CTGFプロモーターの塩基対に対 応する 12種の二本鎖オリゴヌクレオチドとした。二本鎖 DNAを [ γ—32P]—ATPを 用いた T4ポリヌクレオチドキナーゼで標識し、 37°Cで 15分間、結合緩衝液 (40mM Tris, pH7. 9, 250mM NaCl, 25mM EDTA, 25mM DTT, lOOmM KCOligonucleotides were synthesized and annealed into 12 double-stranded oligonucleotides corresponding to the CTGF promoter base pairs. Double-stranded DNA was labeled with T4 polynucleotide kinase using [γ- 32 P] -ATP, and binding buffer (40 mM Tris, pH 7.9, 250 mM NaCl, 25 mM EDTA, 25 mM DTT for 15 minutes at 37 ° C) , lOOmM KC
1)中でポリアミド又はミスマッチポリアミドとともにインキュベートした。得られた複合体 を 20%ポリアクリルアミドゲルにより電気泳動し、オートラジオグラフィ一で可視化した Incubated with polyamide or mismatched polyamide in 1). The resulting complex was electrophoresed on a 20% polyacrylamide gel and visualized by autoradiography.
[0045] (6)RNA抽出及び成長因子 mRNAのための逆転写反応、ポリメラーゼ連鎖反応 (R
T—PCR)アツセィ [0045] (6) RNA extraction and reverse transcription reaction for growth factor mRNA, polymerase chain reaction (R T-PCR)
培養細胞を PBSで洗浄し、 1000 /z Lの Trizol (Invitrogen)に溶解し、 100 /z Lの クロ口ホルムと混合し、遠心分離し、上部水相を等体積のイソプロパノールと混合して RNAを沈澱させた。 RNAペレットを 500 μ Lの 75%エタノールで二回洗浄し、乾燥 後、 10 1の ΤΕ緩衝液に溶力した。 65°Cで 15分間変性させた後、 RNA試料を室温 で 45分間、 0. 5mlの DNァーゼ緩衝液(20mM Tris— HC1 pH 8. 3, 50mM KC1, 2. 5mM MgCl )中、 0. 5U DNァーゼ(Gibco)で処理した。 DNァーゼは The cultured cells are washed with PBS, lysed in 1000 / z L Trizol (Invitrogen), mixed with 100 / z L Kroform form, centrifuged, and the upper aqueous phase is mixed with an equal volume of isopropanol to obtain RNA. Precipitated. The RNA pellet was washed twice with 500 μL of 75% ethanol, dried, and then dissolved in 10 1 buffer solution. After denaturation at 65 ° C for 15 min, the RNA sample is 0.5 U in 0.5 ml DNase buffer (20 mM Tris—HC1 pH 8.3, 50 mM KC1, 2.5 mM MgCl 2) for 45 min at room temperature. Treated with DNase (Gibco). DNase
2 2
0. 5mL 0. 5M EDTAを添カ卩し、 98°Cで 10分間加熱することによって不活化した 等量のRNA(l iu gZ20 iu L)を、 10mM Tris— HCl (pH 8. 3)、 5mM MgCl 、 50mM KC1、 ImM デォキシ NTP類、及び 2. 5 Mランダムへキサマー中、 2Equal volume of RNA (l i u gZ20 i u L) inactivated by adding 0.5 mL 0.5 M EDTA and heating at 98 ° C for 10 min was added to 10 mM Tris—HCl (pH 8.3 ), 5 mM MgCl 2, 50 mM KC1, ImM Deoxy NTPs, and 2.5 M in random hexamers, 2
2 2
. 5U/20 μ Lトリ骨髄芽腫ウィルス逆転写酵素(Takara Biochemicals, Osaka, Japan)を用いて一本鎖 cDNA中に逆転写させた。 2 μ Lの希釈 cDNA生成物を 10 mM Tris— HCl (pH 8. 3)、 50mM KC1、 4mM MgCl , 0. 025U/ μ L Ta 5U / 20 μL avian myeloblastoma virus reverse transcriptase (Takara Biochemicals, Osaka, Japan) was used for reverse transcription into single-stranded cDNA. Add 2 μL of diluted cDNA product to 10 mM Tris—HCl (pH 8.3), 50 mM KC1, 4 mM MgCl 2, 0.025 U / μL Ta
2 2
q DNAポリメラーゼ(Takara Biochemicals, Osaka, Japan)及び上流センスプ ライマー及び下流アンチセンスプライマーの各々 0. 2 Mとともに混合し合計 25 μ L とした。センスプライマー(5,- CCTGGTCCAGACCACAGAGT- 3,)(配列番号 7 )及びアンチセンスプライマー(5, -TGGAGATTTTGGGAGTACGG-3, ) (配列 番号 8)を CTGF mRNAの PCR増幅に使用した。ヒト 18Sリボゾーム RNAについて センスプライマー(5, -TCAAGAACGAAAGTCGGACG - 3 ' ) (配列番号 9)及 びアンチセンスプライマー(5,— GGACATCTAAGGGCATCACA— 3,)(配列 番号 10)を内部対照として使用した。 PCRをサーマルサイクラ一(Perkin Elmer, F oster, CA)で行った。 PCR条件は 94°C2分の初期変性、次いで 30サイクルの変性 94°C1分、アニーリング 58°C1分、伸張 72°C1分を行い、最後に 72°C10分の伸張反 応を行うものであった。 18S rRNAについてのプライマーによる PCRを内部対照とし て各反応中に含ませた。ゲノム DNA力 PCRによって増幅しな 、ことを確認するため に、逆転写酵素なしプライマーセットありの対照 RT— PCR実験を行った。反応のい ずれにおいても生成物は増幅しなかった。 mRNAの半定量的分析のために、 PCR
産物がゲル上で検出可能になったサイクル数を種々の試料間で比較した。連続したq DNA polymerase (Takara Biochemicals, Osaka, Japan) and upstream sense primer and downstream antisense primer were mixed with 0.2 M each to make a total of 25 μL. The sense primer (5, -CCTGGTCCAGACCACAGAGT-3) (SEQ ID NO: 7) and the antisense primer (5, -TGGAGATTTTGGGAGTACGG-3,) (SEQ ID NO: 8) were used for PCR amplification of CTGF mRNA. For human 18S ribosomal RNA Sense primer (5, -TCAAGAACGAAAGTCGGACG-3 ') (SEQ ID NO: 9) and antisense primer (5,-GGACATCTAAGGGCATCACA-3,) (SEQ ID NO: 10) were used as internal controls. PCR was performed on a thermal cycler (Perkin Elmer, Foster, CA). PCR conditions were 94 ° C for 2 min, followed by 30 cycles of denaturation at 94 ° C for 1 min, annealing at 58 ° C for 1 min, extension at 72 ° C for 1 min, and finally an extension reaction at 72 ° C for 10 min. It was. PCR with primers for 18S rRNA was included in each reaction as an internal control. To confirm that genomic DNA was not amplified by PCR, a controlled RT-PCR experiment with a primer set without reverse transcriptase was performed. No product was amplified in any of the reactions. PCR for semi-quantitative analysis of mRNA The number of cycles at which the product was detectable on the gel was compared between the various samples. Consecutive
10倍希釈の cDNA(100、 10及び lng)を増幅した。 PCR産物は cDNAの量を増加 していくとより早いサイクルの段階で検出可能となった。標的 mRNAの各々に対応す る PCR産物の量は 20〜35サイクルで直線的に増加した。 PCR産物の定量は、 BioTen-fold diluted cDNA (100, 10 and lng) was amplified. PCR products became detectable at earlier cycles as the amount of cDNA was increased. The amount of PCR product corresponding to each target mRNA increased linearly over 20-35 cycles. PCR product quantification
Analyzer (Agilent)を用いて行った。 This was performed using Analyzer (Agilent).
[0047] (7)統計解析 [0047] (7) Statistical analysis
結果は平均値士 SEMで表現した。平均値間の差の有意性はスチューデント t検定 により評価した。 0. 05未満の p値を有意であるとした。 The results were expressed in mean valuer SEM. The significance of the difference between the mean values was evaluated by Student's t test. A p value less than 0.05 was considered significant.
[0048] II.結果 [0048] II. Results
(1)合成ポリアミドの二本鎖オリゴヌクレオチドへの結合 (1) Binding of synthetic polyamide to double-stranded oligonucleotide
ゲルシフトアツセィにより GBP2101及び GBP2102の標的配列への結合を検討し た。それぞれのピロールイミダゾールポリアミドの標的配列を含む 50塩基のセンス、 アンチセンスのオリゴヌクレオチド The binding of GBP2101 and GBP2102 to the target sequence was examined by gel shift assay. 50 base sense and antisense oligonucleotides containing the target sequence of each pyrrole-imidazole polyamide
センス ctgtgagctggagtgtgccagctttttcagacggaggaatgctgagtgtc ( 歹 U¾^l 1) GCTCACAG (配列番号 12) Sense ctgtgagctggagtgtgccagctttttcagacggaggaatgctgagtgtc (歹 U¾ ^ l 1) GCTCACAG (SEQ ID NO: 12)
を作成し、これをアニーリングさせて標的部位の二本鎖 DNAを作成し、これとそれぞ れのピロールイミダゾールポリアミドとをインキュベートした。これらをポリアクリルアミド ゲルで電気泳動してピロールイミダゾールと標的配列との結合性を検討した。 GBP2 101及び GBP2102ともに二本鎖 DNA(DS)にピロールイミダゾールポリアミド(Py Im)を加えると、 DSのみのレーンと比べ泳動度が低下し、高分子化したことが示唆 され、 DSと Py—Imとの結合が証明された。結果を図 2に示す。 And was annealed to create double-stranded DNA at the target site and incubated with each pyrrole-imidazole polyamide. These were electrophoresed on a polyacrylamide gel to examine the binding between pyrroleimidazole and the target sequence. When pyrrole-imidazole polyamide (Py Im) was added to double-stranded DNA (DS) for both GBP2 101 and GBP2102, it was suggested that the mobility decreased compared to the lane containing only DS, and that the polymer was polymerized. The bond with was proved. The result is shown in figure 2.
[0049] (2) GBP2101による CTGFメッセンジャー RNAの発現抑制効果 [0049] (2) Inhibition of CTGF messenger RNA expression by GBP2101
腎臓由来の培養ヒトメサンギゥム細胞を培養し、 1χ10_6Μの PMA(12- 0- tetradec anoylpholbol- 13 -acetate)を添カ卩して刺激し、 Py—Im (GBP2101)を加えてその CT GFメッセンジャー RNAの発現抑制効果を検討した。 Culturing the cultured Hitomesangiumu cells derived from kidney, 1χ10 _6 Μ of PMA to (12- 0- tetradec anoylpholbol- 13 -acetate) and stimulated添Ka卩, the CT GF messenger RNA by the addition of Py-Im (GBP2101) The expression suppression effect was examined.
細胞はサブコンフルェントの状態で無血清培地に交換して 24時間培養し、 1x10" 6Mの PMAと各濃度の Py—Imを加えてさらに 12時間無血清で培養した。細胞は gu
anidium thiocyanate法にてメッセンジャ ~~ RNAを分離し、 avian myeloblastoma virus reverse transcriptaseにより逆転写を行い、 PCR法にて増幅した。 PCR産物は Agilen t Bioanalyzerにより定量した。 CTGF遺伝子、 18S rRNAに対する特異的プライマ 一を作成して PCRを行 、、 CTGF遺伝子発現量は 18sにて補正した。 The cells were subconfluent and replaced with serum-free medium and cultured for 24 hours, and 1x10 "6M PMA and various concentrations of Py-Im were added, and the cells were further cultured for 12 hours without serum. Messenger RNA was isolated by the anidium thiocyanate method, reverse-transcribed by avian myeloblastoma virus reverse transcriptase, and amplified by PCR. PCR products were quantified by Agilent Bioanalyzer. A specific primer for the CTGF gene and 18S rRNA was prepared and PCR was performed, and the CTGF gene expression level was corrected at 18 s.
CTGF遺伝子発現量は 1χ10_6Μの PMA刺激により 20%増加し、 GBP2101添 加により 1χ10_6Μで最大 50%以下に抑制された(図 3)。 CTGF gene expression level was increased 20% by PMA stimulation 1χ10 _6 Μ, was inhibited up to 50% or less 1χ10 _6 Μ by GBP2101 added pressure (Fig. 3).
[0050] (3) GBP2101による CTGFタンパク質の発現抑制効果 [0050] (3) Inhibition of CTGF protein expression by GBP2101
腎臓由来の培養ヒトメサンギゥム細胞を培養し、 1χ10_6Μの PMA(12- 0- tetrade canoylpholbol - 13 - acetate)を添カ卩して刺激し、 Py— Im (GBP2101)を加えてその C TGF蛋白の発現抑制効果を検討した。 Culturing the cultured Hitomesangiumu cells derived from kidney, 1χ10 _6 Μ of PMA (12- 0- tetrade canoylpholbol - 13 - acetate) stimulated by添Ka卩a, Py- Im the addition of the C TGF proteins (GBP2101) The expression suppression effect was examined.
細胞はサブコンフルェントの状態で無血清培地に交換して 24時間培養し、 1x10" 6Mの PMAと各濃度の Py— Imを加えてさらに 12時間無血清で培養した。細胞は SD Sにて可溶ィ匕し、ポリアクリルアミドゲルにて電気泳動後-トロセルロース膜へ転写し た。ニトロセルロース膜へ転写された蛋白は一次抗体に抗ヒト CTGF抗体、二次抗体 に抗ャギ IgG抗体を用いて western blotを行った。発色は ECL (Amersham- Pharmacia )を用い、 NIH Imageを用いて定量した。 The cells were subconfluent and replaced with serum-free medium and cultured for 24 hours, and 1x10 "6M PMA and various concentrations of Py-Im were added, and the cells were further cultured for 12 hours without serum. It was dissolved and electrophoresed on a polyacrylamide gel and transferred to a trocellulose membrane.The protein transferred to the nitrocellulose membrane consists of an anti-human CTGF antibody as the primary antibody and an anti-goat IgG antibody as the secondary antibody. Western blot was performed using ECL (Amersham-Pharmacia), and the color was quantified using NIH Image.
CTGF蛋白発現量は 1χ10_6Μの PMA刺激により 20%増加し、 GBP2101添カロ により 1χ10_6Μで最大 50%以下に抑制された(図 4)。 CTGF protein expression level was increased 20% by PMA stimulation 1χ10 _6 Μ, was inhibited up to 50% or less 1χ10 _6 Μ by GBP2101 added Caro (Figure 4).
[0051] (4) GBP2102による CTGFメッセンジャー RNAの発現抑制効果 [0051] (4) Inhibition of CTGF messenger RNA expression by GBP2102
腎臓由来の培養ヒトメサンギゥム細胞を培養し、 1χ10_6Μの TGF— β 1を添カロして 刺激し、 Py-Im(GBP2102)をカ卩えて CTGFメッセンジャー RNAの発現抑制効果 を検討した。 Culturing the cultured Hitomesangiumu cells derived from kidney, were stimulated by added Caro the TGF-beta 1 in 1χ10 _6 Μ, was to examine the inhibition effects on expression of Py-Im (GBP2102) mosquitoes卩Ete CTGF messenger RNA.
細胞はサブコンフルェントの状態で無血清培地に交換して 24時間培養し、 1x10" 6Mの TGF— β 1と各濃度の Py—Imをカ卩えてさらに 12時間無血清で培養した。細胞 ίま guanidium thiocyanate法にてメッセンンヤー RNAを分離し、 avian myeloblastoma v irus reverse transcriptaseにより逆転写を行い、 PCR法にて増幅した。 PCR産物は A gilent Bioanalyzerにより定量した。 CTGF遺伝子、 18S rRNAに対する特異的プラ イマ一を作成して PCRを行 、、 CTGF遺伝子発現量は 18sにて補正した。
CTGF遺伝子発現量は 1χ10_6Μの PMA刺激により 20%増加し、 GBP2102添 加により 1χ10_6Μで最大 50%以下に抑制された(図 5)。 The cells were subconfluent and replaced with serum-free medium for 24 hours, and 1x10 "6M TGF-β1 and each concentration of Py-Im were added and cultured for 12 hours without serum. In addition, messenger RNA was isolated by guanidium thiocyanate method, reverse transcribed by avian myeloblastoma virus reverse transcriptase, and amplified by PCR method.The PCR product was quantified by A gilent Bioanalyzer. An image was prepared and PCR was performed, and the CTGF gene expression level was corrected at 18 s. CTGF gene expression level was increased 20% by PMA stimulation 1χ10 _6 Μ, was inhibited up to 50% or less 1χ10 _6 Μ by GBP2102 added pressure (Figure 5).
[0052] (5) GBP2102による CTGFタンパク質の発現抑制効果 [0052] (5) Inhibition of CTGF protein expression by GBP2102
腎臓由来の培養ヒトメサンギゥム細胞を培養し、 1χ10_6Μの PMA(12- 0- tetradec anoylpholbol- 13 -acetate)を添カ卩して刺激し、 Py— Im (GBP2102)を加えてその CT GF蛋白の発現抑制効果を検討した。 Culturing the cultured Hitomesangiumu cells derived from kidney, 1χ10 _6 Μ of PMA to (12- 0- tetradec anoylpholbol- 13 -acetate) and stimulated添Ka卩, Py- Im the addition of CT GF protein (GBP2102) The expression suppression effect was examined.
細胞はサブコンフルェントの状態で無血清培地に交換して 24時間培養し、 1x10" 6Mの PMAと各濃度の Py— Imを加えてさらに 12時間無血清で培養した。細胞は SD Sにて可溶ィ匕し、ポリアクリルアミドゲルにて電気泳動後-トロセルロース膜へ転写し た。ニトロセルロース膜へ転写された蛋白は一次抗体に抗ヒト CTGF抗体、二次抗体 に抗ャギ IgG抗体を用いて western blotを行った。発色は ECL (Amersham- Pharmacia )を用い、 NIH Imageを用いて定量した。 The cells were subconfluent and replaced with serum-free medium and cultured for 24 hours, and 1x10 "6M PMA and various concentrations of Py-Im were added, and the cells were further cultured for 12 hours without serum. It was dissolved and electrophoresed on a polyacrylamide gel and transferred to a trocellulose membrane.The protein transferred to the nitrocellulose membrane consists of an anti-human CTGF antibody as the primary antibody and an anti-goat IgG antibody as the secondary antibody. Western blot was performed using ECL (Amersham-Pharmacia), and the color was quantified using NIH Image.
CTGF蛋白発現量は 1χ10_6Μの PMA刺激により 20%増加し、 GBP2102添カロ により 1χ10_6Μで最大 50%以下に抑制された(図 6)。 CTGF protein expression level was increased 20% by PMA stimulation 1χ10 _6 Μ, was inhibited up to 50% or less 1χ10 _6 Μ by GBP2102 added Caro (Figure 6).
産業上の利用可能性 Industrial applicability
[0053] 本発明の CTGF遺伝子発現抑制剤は TGF— β、ひいては CTGFの産生が関与 する疾病の治療薬として利用可能である。 [0053] The CTGF gene expression inhibitor of the present invention can be used as a therapeutic agent for diseases associated with the production of TGF-β and thus CTGF.
図面の簡単な説明 Brief Description of Drawings
[0054] [図 1]ヒト CTGF遺伝子の調節領域の塩基配列を示す。 [0054] Fig. 1 shows the base sequence of the regulatory region of the human CTGF gene.
[図 2]Py—Imポリアミド オリゴヌクレオチド錯体のゲルシフトアツセィを示す。 FIG. 2 shows gel shift assembly of Py-Im polyamide oligonucleotide complex.
[図 3]GBP2101による CTGFメッセンジャー RNAの発現抑制効果を示すグラフであ る。 FIG. 3 is a graph showing the inhibitory effect of GBP2101 on the expression of CTGF messenger RNA.
[図 4]GBP2101による CTGFタンパク質の発現抑制効果を示すグラフである。 FIG. 4 is a graph showing the effect of suppressing the expression of CTGF protein by GBP2101.
[図 5]GBP2102による CTGFメッセンジャー RNAの発現抑制効果を示すグラフであ る。 FIG. 5 is a graph showing the effect of suppressing the expression of CTGF messenger RNA by GBP2102.
[図 6]GBP2102による CTGFタンパク質の発現抑制効果を示すグラフである。 FIG. 6 is a graph showing the effect of suppressing the expression of CTGF protein by GBP2102.
配列表フリーテキスト Sequence listing free text
[0055] 配列番号 7 センスプライマー
配列番号 8 アンチセンスプライマー [0055] SEQ ID NO: 7 sense primer SEQ ID NO: 8 antisense primer
配列番号 9 センスプライマー SEQ ID NO: 9 sense primer
配列番号 10 アンチセンスプライマー SEQ ID NO: 10 antisense primer
配列番号 11 ゲルシフトアツセィのセンスオリゴヌクレオチド 配列番号 12 ゲルシフトアツセィのアンチセンスオリゴヌクレオチド
SEQ ID NO: 11 Gel shift assembly antisense oligonucleotide SEQ ID NO: 12 Gel shift assembly antisense oligonucleotide
Claims
[1] N—メチルビロール単位(以下 Pyとも言う)、 N—メチルイミダゾール単位(以下 Imと も言う)及び γ—ァミノ酪酸単位を含むピロールイミダゾールポリアミドであって、結合 組織増殖因子(以下 CTGFとも言う)プロモーターの以下に示す塩基配列 195〜 150 (配列番号 2)の一部又は全部とこれに対する相補鎖を含む二重らせん領域( 以下標的領域と言う)の副溝内において、前記 0 —ァミノ酪酸単位の部位で折りたた まれて U字型のコンフオメーシヨンをとることができ、 C— G塩基対に対しては PyZlm 対力 G— C塩基対に対しては ImZPy対力 A— T塩基対及び T A塩基対に対し ては 、ずれも PyZPy対がそれぞれ対応する、上記ピロールイミダゾールポリアミドを 含んでなる CTGF遺伝子発現抑制剤。 [1] A pyrrole-imidazole polyamide containing an N-methylpyrrole unit (hereinafter also referred to as Py), an N-methylimidazole unit (hereinafter also referred to as Im), and a γ-aminobutyric acid unit, which is also referred to as connective tissue growth factor (hereinafter also referred to as CTGF). ) In the minor groove of a double helix region (hereinafter referred to as a target region) containing part or all of the base sequence 195 to 150 (SEQ ID NO: 2) shown below and the complementary strand thereto, the above 0-aminobutyric acid It can be folded at the unit site to form a U-shaped conformation, PyZlm counterforce for C—G base pairs, ImZPy counterforce A—T base for C—G base pairs A CTGF gene expression inhibitor comprising the pyrrole-imidazole polyamide, wherein the pair and the TA base pair correspond to the PyZPy pair, respectively.
[2] 更に j8—ァラニン単位を含む請求項 1記載の CTGF遺伝子発現抑制剤。 [2] The CTGF gene expression inhibitor according to claim 1, further comprising a j8-alanine unit.
[3] 前記標的領域が CTGFプロモーターの以下に示す塩基配列— 164〜― 150 (配 列番号 3)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である請求 項 1又は 2記載の CTGF遺伝子発現抑制剤。 [3] The target region is a double helix region comprising a part or all of the following base sequence of the CTGF promoter: 164 to 150 (SEQ ID NO: 3) and a complementary strand thereto. CTGF gene expression inhibitor.
[4] 前記標的領域が CTGFプロモーターの以下に示す塩基配列— 160〜― 155 (配 列番号 4)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である請求 項 1又は 2記載の CTGF遺伝子発現抑制剤。 [4] The target region is a double helix region comprising part or all of the base sequence shown below of the CTGF promoter: 160 to 155 (SEQ ID NO: 4) and a complementary strand thereto. CTGF gene expression inhibitor.
[5] 前記標的領域が CTGFプロモーターの以下に示す塩基配列 195〜― 174 (配 列番号 5)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である請求 項 1又は 2記載の CTGF遺伝子発現抑制剤。 [5] The target region according to claim 1 or 2, wherein the target region is a double helix region comprising part or all of the base sequences 195 to 174 (SEQ ID NO: 5) shown below of the CTGF promoter and a complementary strand thereto: CTGF gene expression inhibitor.
[6] 前記標的領域が CTGFプロモーターの以下に示す塩基配列— 190〜― 184 (配 列番号 6)の一部又は全部とこれに対する相補鎖を含む二重らせん領域である請求 項 1又は 2記載の CTGF遺伝子発現抑制剤。 [6] The target region is a double helix region comprising a part or all of the following nucleotide sequence of the CTGF promoter: 190 to 184 (SEQ ID NO: 6) and a complementary strand thereto. CTGF gene expression inhibitor.
[7] 前記ピロールイミダゾールポリアミドの末端のカルボキシル基がアミドを形成して ヽ る請求項 1〜6のいずれか一項記載の CTGF遺伝子発現抑制剤。 7. The CTGF gene expression inhibitor according to any one of claims 1 to 6, wherein a carboxyl group at a terminal of the pyrrole-imidazole polyamide forms an amide.
[8] 前記アミドカ^チルァミノプロピルアミン又は N, N ジメチルァミノプロピルァミンと のアミドである請求項 7記載の CTGF遺伝子発現抑制剤。 [8] The CTGF gene expression inhibitor according to [7], which is an amide with said amidecylaminopropylamine or N, N dimethylaminopropylamine.
[9] 下式で表されるピロールイミダゾールポリアミドを含んでなる CTGF遺伝子発現抑
制剤。 [9] CTGF gene expression suppression comprising pyrrole-imidazole polyamide represented by the following formula: Formulation.
[化 1] [Chemical 1]
下式で表されるピロールイミダゾールポリアミドを含んでなる CTGF遺伝子発現抑 制剤。 A CTGF gene expression inhibitor comprising pyrrole-imidazole polyamide represented by the following formula.
[化 2] [Chemical 2]
Mol. Wt: 1912.00
Mol. Wt: 1912.00
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007536491A JPWO2007034784A1 (en) | 2005-09-20 | 2006-09-19 | CTGF gene expression inhibitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-272137 | 2005-09-20 | ||
JP2005272137 | 2005-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007034784A1 true WO2007034784A1 (en) | 2007-03-29 |
Family
ID=37888827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/318512 WO2007034784A1 (en) | 2005-09-20 | 2006-09-19 | Ctgf gene expression inhibitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007034784A1 (en) |
WO (1) | WO2007034784A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066774A1 (en) * | 2007-11-22 | 2009-05-28 | Nihon University | Selective expression inhibitor for aurora kinase a and aurora kinase b genes |
JP2014505704A (en) * | 2011-02-02 | 2014-03-06 | エクスカリアード・ファーマシューティカルズ,インク | Treatment of keloids or hypertrophic scars using antisense compounds targeting connective tissue growth factor (CTGF) |
JP5685081B2 (en) * | 2008-04-17 | 2015-03-18 | 浩喜 永瀬 | Matrix metalloproteinase 9 gene selective expression inhibitor |
JP5865347B2 (en) * | 2011-03-31 | 2016-02-17 | 隆光 矢野 | Polyamide compound and pharmaceutical composition for treating mitochondrial genetic diseases |
WO2022019303A1 (en) * | 2020-07-20 | 2022-01-27 | 学校法人日本大学 | PYRROLE-IMIDAZOLE POLYAMIDE, TGFβ GENE EXPRESSION INHIBITOR, PHARMACEUTICAL COMPOSITION, AND METHOD FOR PRODUCING PYRROLE-IMIDAZOLE POLYAMIDE |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002515057A (en) * | 1996-08-01 | 2002-05-21 | カリフォルニア・インスティチュート・オブ・テクノロジー | Inhibition of gene expression by polyamide DNA binding ligand |
JP2002515063A (en) * | 1997-04-06 | 2002-05-21 | カリフォルニア・インスティチュート・オブ・テクノロジー | Polyamides that bind to predetermined DNA sequences at sub-nanomolar concentrations |
JP2002515897A (en) * | 1996-02-26 | 2002-05-28 | カリフォルニア・インスティチュート・オブ・テクノロジー | Design, synthesis, and use of specific polyamide DNA-binding ligands |
JP2003505521A (en) * | 1998-09-11 | 2003-02-12 | カリフォルニア・インスティテュート・オブ・テクノロジー | Inhibition of oncogene transcription by synthetic polyamides |
-
2006
- 2006-09-19 JP JP2007536491A patent/JPWO2007034784A1/en active Pending
- 2006-09-19 WO PCT/JP2006/318512 patent/WO2007034784A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002515897A (en) * | 1996-02-26 | 2002-05-28 | カリフォルニア・インスティチュート・オブ・テクノロジー | Design, synthesis, and use of specific polyamide DNA-binding ligands |
JP2002515057A (en) * | 1996-08-01 | 2002-05-21 | カリフォルニア・インスティチュート・オブ・テクノロジー | Inhibition of gene expression by polyamide DNA binding ligand |
JP2002515063A (en) * | 1997-04-06 | 2002-05-21 | カリフォルニア・インスティチュート・オブ・テクノロジー | Polyamides that bind to predetermined DNA sequences at sub-nanomolar concentrations |
JP2003505521A (en) * | 1998-09-11 | 2003-02-12 | カリフォルニア・インスティテュート・オブ・テクノロジー | Inhibition of oncogene transcription by synthetic polyamides |
Non-Patent Citations (2)
Title |
---|
COULL J.J. ET AL.: "Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidazole polyamides", JOURNAL OF VIROLOGY, vol. 76, no. 23, 2002, pages 12349 - 12354, XP003010845 * |
GROTENDORST G.R. ET AL.: "A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene", CELL GROWTH & DIFFERENTIATION, vol. 7, no. 4, 1996, pages 469 - 480, XP000891656 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066774A1 (en) * | 2007-11-22 | 2009-05-28 | Nihon University | Selective expression inhibitor for aurora kinase a and aurora kinase b genes |
JP5685081B2 (en) * | 2008-04-17 | 2015-03-18 | 浩喜 永瀬 | Matrix metalloproteinase 9 gene selective expression inhibitor |
JP2014505704A (en) * | 2011-02-02 | 2014-03-06 | エクスカリアード・ファーマシューティカルズ,インク | Treatment of keloids or hypertrophic scars using antisense compounds targeting connective tissue growth factor (CTGF) |
JP5865347B2 (en) * | 2011-03-31 | 2016-02-17 | 隆光 矢野 | Polyamide compound and pharmaceutical composition for treating mitochondrial genetic diseases |
WO2022019303A1 (en) * | 2020-07-20 | 2022-01-27 | 学校法人日本大学 | PYRROLE-IMIDAZOLE POLYAMIDE, TGFβ GENE EXPRESSION INHIBITOR, PHARMACEUTICAL COMPOSITION, AND METHOD FOR PRODUCING PYRROLE-IMIDAZOLE POLYAMIDE |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007034784A1 (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596032B2 (en) | Oligonucleotide analogues targeting human LMNA | |
US7888516B2 (en) | TGF-β gene expression inhibitor | |
Akhtar et al. | MicroRNA‐27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes | |
CA2917320C (en) | Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, composition containing same for preventing or treating respiratory disease | |
AU2014290206B2 (en) | Specific targeting of RNA expanded repeat sequences | |
Lai et al. | Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-β1 gene | |
WO2007034784A1 (en) | Ctgf gene expression inhibitor | |
WO2020165907A9 (en) | Spt5 inhibitors and uses thereof | |
El Boujnouni et al. | Block or degrade? Balancing on-and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1 | |
JP4682312B2 (en) | TGF-β gene expression inhibitor | |
CN117264948B (en) | RNAi inhibitor for inhibiting expression of angiotensinogen gene and application thereof | |
CN119301253A (en) | New Staple Nucleic Acid | |
JP5685081B2 (en) | Matrix metalloproteinase 9 gene selective expression inhibitor | |
JP2006022063A (en) | LOX-1 gene expression inhibitor | |
JP6044923B2 (en) | New PI polyamide | |
Baba et al. | Development of gene silencer pyrrole-imidazole polyamides targeting GSK3β for treatment of polycystic kidney diseases | |
JP5520931B2 (en) | Sequence-specific expression regulator targeting MYC downstream gene, and method for determining target or target group of MYC downstream gene | |
WO2022047148A1 (en) | Conversion of a biologically silent mirna binding small molecule to an mirna degrader |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007536491 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06810254 Country of ref document: EP Kind code of ref document: A1 |