WO2007026586A1 - Organic thin-film semiconductor device and method for manufacturing same - Google Patents
Organic thin-film semiconductor device and method for manufacturing same Download PDFInfo
- Publication number
- WO2007026586A1 WO2007026586A1 PCT/JP2006/316537 JP2006316537W WO2007026586A1 WO 2007026586 A1 WO2007026586 A1 WO 2007026586A1 JP 2006316537 W JP2006316537 W JP 2006316537W WO 2007026586 A1 WO2007026586 A1 WO 2007026586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- layer
- organic
- organic semiconductor
- thin film
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 170
- 239000010409 thin film Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims abstract description 82
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 12
- 238000007711 solidification Methods 0.000 claims abstract description 10
- 230000008023 solidification Effects 0.000 claims abstract description 10
- 238000002347 injection Methods 0.000 claims description 45
- 239000007924 injection Substances 0.000 claims description 45
- 238000001035 drying Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000005525 hole transport Effects 0.000 claims description 11
- 238000005243 fluidization Methods 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 239000000969 carrier Substances 0.000 claims description 5
- 230000009477 glass transition Effects 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 194
- 238000007740 vapor deposition Methods 0.000 description 21
- 239000010408 film Substances 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 7
- 239000002346 layers by function Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 2
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910002115 bismuth titanate Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- -1 phosphazene compound Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 150000004033 porphyrin derivatives Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- GZSUIHUAFPHZSU-UHFFFAOYSA-N 9-ethyl-2,3-dihydro-1h-carbazol-4-one Chemical compound C12=CC=CC=C2N(CC)C2=C1C(=O)CCC2 GZSUIHUAFPHZSU-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910021523 barium zirconate Inorganic materials 0.000 description 1
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- COQAIRYMVBNUKQ-UHFFFAOYSA-J magnesium;barium(2+);tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Mg+2].[Ba+2] COQAIRYMVBNUKQ-UHFFFAOYSA-J 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000002080 perylenyl group Chemical class C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/30—Organic light-emitting transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
Definitions
- the present invention relates to an organic thin film semiconductor element using a compound having a carrier (hole or electron) transport property and having a semiconductor layer made of such a compound, and a method for producing the same.
- Light emitting devices that emit light by applying an electric field, for example, light emitting devices that utilize electroluminescence (hereinafter simply referred to as EL) due to recombination of carriers (holes or electrons) in a substance are known.
- EL electroluminescence
- an EL display device equipped with a display panel using an injection type organic EL element using an organic compound material has been developed.
- the organic EL element includes a red EL element having a structure emitting red light, a green EL element having a structure emitting green light, and a blue EL element having a structure emitting blue light.
- a color display device can be realized by arranging three organic EL elements that emit red, blue, and green RGB in a single pixel emission unit and arranging multiple pixels in a matrix on the panel.
- a display panel driving method using such a color display device a passive matrix driving type and an active matrix driving type are known.
- the active matrix drive type EL display device has advantages such as lower power consumption and less crosstalk between pixels compared to the passive matrix type display device, especially large screen display devices and high definition display devices.
- Suitable for '' On the display panel of the active matrix drive type EL display device the anode power line, the cathode power line, the scanning line responsible for horizontal scanning, and the data lines arranged across the scanning lines are arranged in a grid pattern. Is formed. RGB subpixels are formed at each RGB intersection of the scan line and data line.
- the scan line is connected to the gate of a field effect transistor (FET) for selecting the scan line
- the data line is connected to the drain
- the source is connected to the source.
- the gate of the light emitting drive FET is connected.
- a drive voltage is applied to the source of the light emission drive F E T through an anode power line, and the anode end of the EL element is connected to the drain D of the light emission drive F E T.
- a capacitor is connected between the gate and source of the light emission drive FET.
- a ground potential is applied to the cathode end of the EL element via the cathode power supply line. .
- organic light-emitting devices represented by organic EL devices
- organic EL devices are basically active devices that exhibit diode characteristics, and most of them are manufactured by passive matrix drive5.
- line-sequential driving requires instantaneously high brightness, and the limit number of scanning lines is limited, so it is difficult to obtain a high-definition display device.
- the auxiliary electrode, the insulating layer ', the anode, the organic functional layer including the light emitting layer, and the cathode are sequentially arranged on the substrate.
- 2002-343578 Proposed in the news In the light emitting device having such a configuration, an auxiliary electrode, an insulating layer, and an anode are sequentially provided on a substrate, an organic functional layer is formed by a vapor deposition method, and a cathode is provided.
- the organic functional layer is formed by the vapor deposition method, the anode is completely covered by the organic functional layer because the vapor deposition material flow is blocked by the anode depending on the angle between the vapor source and the vapor deposition surface.
- An object of the present invention is to provide a means for solving various problems mentioned above as an example.
- the organic thin film semiconductor device includes an auxiliary electrode provided on a substrate, an insulating layer provided on the auxiliary electrode, and an insulating layer provided on the insulating layer.
- the organic semiconductor material is formed by fluidization solidification treatment.
- the method for producing an organic thin film semiconductor device comprises a step of providing an auxiliary electrode on a substrate, a step of providing an insulating layer on the auxiliary electrode, and a first electrode on the insulating layer. And a carrier transporting organic semiconductor material in contact with the first electrode.
- a step of providing an organic semiconductor layer comprising: and a step of forming a second electrode supported by the organic semiconductor layer, wherein the step of providing the organic semiconductor layer comprises using a dry process method.
- the method includes a step of forming a thin film made of an organic semiconductor material, and a fluidization treatment step of the organic semiconductor material of the thin film.
- FIG. 1 is a partial cross-sectional view of an organic EL device according to the present invention.
- FIG. 2 is a partial sectional view of a modification of the organic EL device according to the present invention.
- FIG. 3 is a partial sectional view of a modification of the organic EL device according to the present invention.
- FIG. 4 is a partial sectional view of a modification of the organic EL device according to the present invention.
- FIG. 5 is a conceptual diagram for explaining the energy level of the organic EL device according to the present invention.
- FIG. 6 is a partial plan view of the organic EL device according to the present invention.
- FIG. 7 is an equivalent circuit diagram showing a sub-pixel light emitting part of the organic EL device according to the present invention.
- FIG. 8 is a partial sectional view for explaining a part of the manufacturing process of the organic EL device according to the present invention.
- FIG. 9 is a partial cross-sectional view for explaining the continuation of the step shown in FIG. 8 among the steps of manufacturing the organic EL device according to the present invention.
- FIG. 10 is a partial cross-sectional view for explaining the continuation of the process shown in FIG. 9 in the manufacturing process of the organic EL device according to the present invention.
- FIG. 11 is a partial sectional view of an organic thin film transistor according to the present invention.
- the organic EL element 1 includes five auxiliary electrodes 3 provided on a substrate 2.
- Substrate 2 materials include glass, quartz, polystyrene, etc. 'Not only translucent materials such as tic materials, but also non-transparent materials such as silicone A 1, thermosetting resins such as phenolic resins, thermoplastic resins such as polystrength Ponate, etc. can be used. Absent. '
- An insulating layer 4 is provided on the auxiliary electrode 3. Insulating layer 4, S I_ ⁇ 2, S i 3 N
- the 5 4 may be made of various insulating materials Ru representative of E, especially high have an inorganic oxide film of the dielectric constant is preferable.
- inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, and lead lanthanum titanate.
- Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
- organic compound film 5 polyimide, polyamide, polyester, polyacrylate, photo-radical polymerization system, photo-curing resin of photothion polymerization system, or a copolymer containing acrylonitrile component, polyvinyl phenol, polyvinyl alcohol Nopolac resin and cyanoethyl pullulan, a polymer, a phosphazene compound containing an elastomer, and the like can also be used. .
- An anode 5 is provided on the insulating layer 4, and the anode 5 serves as a first electrode.
- the anode 5 has a smaller area than the cathode 8 described later. That is, the area of the surface of the cathode 5 facing the cathode 8 is smaller than the area of the surface of the cathode 8 facing the anode 5.
- the anode 5 may be formed in a comb shape, a saddle shape, or a lattice shape.
- the anode 5 is in contact with the organic semiconductor layer 6 made of a carrier transporting organic semiconductor material.
- the organic semiconductor layer 6 is composed of a hole injection layer, a hole transport layer, or a combination thereof. '
- the hole injection layer has a function of facilitating the injection of holes from the anode 5.
- a porphyrin derivative typified by copper phthalocyanine (CuP c), polyacene typified by betacene, and a polymer arylamine called burstamine typified by m-TDATA are used. be able to.
- a layer in which the conductivity is increased by mixing a porphyrin derivative, a triphenylamine derivative, or the like with Lewis acid tetrafluorotetracyanoquinodimethane (F4-TCNQ) can be used for the hole injection layer. At this time, the mixing ratio is preferably 5 to 95% by weight.
- polymer materials such as polyaniline (PAN I), polythiophene derivative (PEDOT), and poly (3-hexylthiophene) (P 3HT) can be used.
- the IE hole injection layer may be a mixed layer of these materials or a laminated layer.
- the hole transport rod has a function of stably transporting holes from the anode 5.
- Materials used for the hole transport layer include triphenyldiamine derivatives, styrylamine derivatives, amine derivatives having an aromatic condensed ring, carbazole derivatives, polymer materials such as polyvinyl carbazol and its derivatives, polythiophene, etc. Can be mentioned. Two or more of these compounds may be used in combination. Further, in general, it is preferable to use an organic semiconductor material having a higher ionization potential IP than the hole injection layer for the hole transport layer.
- the organic semiconductor layer 6 made of the material as described above is formed by a fluidization treatment process of the organic semiconductor material.
- fluidized solidification treatment refers to organic semiconductor by heating a thin film made of an organic semiconductor material to a temperature higher than the glass transition temperature of the organic semiconductor material or by exposing the thin film made of an organic semiconductor material to a vapor atmosphere of a solvent.
- Flow material ⁇ To solidify after moving.
- the organic semiconductor material By causing the organic semiconductor material to flow, the anode 5 is completely covered with the organic semiconductor layer 6.
- the step between the -top portion of the anode 5 and the surface of the insulator layer is covered by the organic semiconductor layer 6, and the step coverage characteristic of the organic semiconductor layer 6, so-called step coverage, is good.
- the organic semiconductor layer 6 is composed of a hole injection layer and a hole transport layer
- at least the hole injection layer is solidified after flowing the organic semiconductor material constituting the hole injection layer. Preferably it is formed.
- a light emitting layer 7 is provided above the organic semiconductor layer 6. That is, the light emitting layer 7 is supported by the organic semiconductor layer 6.
- the light emitting layer 7 contains 0 fluorescent material or phosphorescent material which is a compound having a light emitting function.
- fluorescent material include at least one compound selected from compounds such as those disclosed in JP-A 63-264692, such as quinacridone, J levrene, and styryl dyes.
- Examples of phosphorescent substances include App 1. Phy s. Let t., Vol. 5, Volume 5, Item 4, Organic Iridium Complex as in 1 '999, and Organic Platinum Complex. '
- a cathode 8 is provided above the light emitting layer 7, and the cathode 8 serves as a second electrode.
- the cathode 8, the anode 5 and the auxiliary electrode 3 include Ti, Al, Li: A1, Cu, Ni, Ag, Mg: Ag, A, u, Pt, Pd, Ir, Examples include metals such as Cr, Mo, W, and Ta0 or alloys thereof.
- a conductive polymer such as polyaniline or PE DT: PSS can be used.
- the transparent conductive thin film oxides such as tin-doped indium oxide (I TO), zinc oxide doped Injiu beam (I ZO), indium oxide (I n 2 ⁇ 3), zinc oxide (ZnO), tin oxide (S n0 2
- the present invention is not limited to this.
- each electrode is preferably about 30 to 500 nm.
- Cathode 8 and auxiliary In particular, a range of 50 to 300 nm is suitable for the electrode 3.
- a metal having a high work function that can easily inject pores into the organic semiconductor layer 6, such as A u, P t, and P d ⁇ , is preferable.
- the thickness of the cathode 8 is particularly preferably in the range of about 30 to 200 nm.
- These electrodes are preferably produced by vacuum deposition or sputtering.
- the organic semiconductor layer 6 is formed by fluidizing and solidifying the material constituting the layer, whereby the step coverage of the organic semiconductor layer 6 is improved.
- the anode 5 is completely covered by the organic semiconductor layer 6 and the contact area between the organic semiconductor layer 6 and the anode 5 is increased, and carrier injection efficiency from the anode 5 to the organic semiconductor layer 6 is increased. Will improve. That is, the electric field and current injection are dispersed, and the amount of carrier injection increases.
- the organic EL device 1. having the above-described structure is a passive device and can be manufactured without greatly changing the organic EL manufacturing process.
- the organic EL device of the above-described embodiment shown in FIG. 1 has a configuration of auxiliary electrode Z insulating layer / anode / hole injection layer / light emitting layer / cathode, but is not limited to this.
- An electron injection layer, an electron transport layer, or a combination thereof may be arbitrarily used between the light emitting layer and the cathode.
- an electron transport layer 9 and an electron injection layer 10 may be provided between the light emitting layer 7 and the cathode 8.
- 8-quinolinols such as tris (8-quinolinolato) alminium (A l Q 3 ) is used as an organic metal complex having a derivative as a ligand.
- Quinoline derivatives, oxadiazole derivatives, perylene derivatives, Pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like can be used.
- the electron injection layer 10 and / or the electron transport layer 9 may also serve as the light emitting layer 7. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like.
- the first electrode is described as the anode and the second electrode is described as the cathode
- the structure after the insulating layer is reversed that is, the first electrode is the negative electrode, and the second electrode is the second electrode.
- the electrode may be an anode.
- the organic semiconductor layer may be an electron injection layer, an electron transport layer, or a combination thereof.
- auxiliary electrode 3 / insulating layer 4 / cathode 8 electron injection layer 10 Z light emitting layer 7 / anode 5 may be used.
- a hole lock layer and an electron block layer may be arbitrarily used between the first electrode and the second electrode.
- a carrier regulating layer may be provided between the organic semiconductor layer and the anode.
- the organic EL element 1 has a carrier regulating layer BF between the organic semiconductor body layer 6 and the anode 5 and sandwiched between the anode 5 and the cathode 8. Also good.
- the carrier restricting layer BF functions as a barrier for carrier movement from the anode 5 to the organic semiconductor layer 6. By providing the carrier restricting layer BF, it becomes difficult for current to flow through the carrier restricting layer BF.
- the material of the carrier restriction layer BF is selected based on the condition of its ionization potential, that is, the value of the work function (or ionization potential) between the work function of the contact electrode and the ionization potential of the organic semiconductor layer. This is because a larger energy barrier is better to inhibit carrier movement.
- the work function W f 1 3 ⁇ 4 of the anode 5 made of metal and the work function W f 2 of the carrier restriction layer BF are the energy measured from the vacuum level (0 e V) to each Fermi level. is there.
- the insulator affinity Ea is the energy measured from the vacuum level (VACU UM LEVEL) at the reference energy level of 0 eV to the lowest unoccupied molecular orbital (LUMO) level at the bottom of the conduction band.
- the carrier regulation layer BF As a material of the carrier regulation layer BF, specifically, a hole injection material (organic semiconductor layer 6) having an ionization potential I p 1 (e V) and an anode having a work function 1 (e V) are used.
- I p 1 and Wf 2 When 5 and a carrier regulation layer BF having a work function Wf 2 (e V) are laminated, it is preferable that I p 1 and Wf 2 have a relationship of I pl> Wf 2. .
- I p 1 and Wf 1 are preferably I p 1 and Wf 1.
- I p 1 ⁇ Wf 1 is acceptable, and the difference between I p 1 and Wf 1 is within 0.5 eV.
- a metal having a low work function that hardly injects holes into the organic semiconductor layer 6 such as A1, Mg, A′g, Ta, and Cr is preferable as the carrier regulation layer BF.
- the total film thickness of the anode 5 and the carrier regulating layer BF is suitably in the range of about 30 to 200 nm.
- the anode 5 serving as the first electrode has a smaller area than the cathode 8 serving as the second electrode, and defines a pattern for carriers passing through the organic semiconductor layer 6.
- the anode 5 serving as the first electrode and the carrier restricting layer BF have a comb-like shape or a bowl-like shape, and have a smaller area than the cathode 8 serving as the second electrode. It is good also as having.
- the shapes of the anode 5 and the carrier regulation layer BF may be a lattice shape.
- the anode 5 has an area smaller than the anode 8 and passes through the organic semiconductor layer 6.
- a pattern can be defined for the carrier to perform.
- an example of an organic EL element is shown.
- a plurality of organic EL elements may be used for a pixel of a display device.
- the active drive type display device according to the present invention can be realized by manufacturing at least one organic transistor, a necessary element such as a capacitor, and a pixel electrode on a common substrate.
- the structure when applied to a display device will be described below.
- FIG. 7 shows an equivalent circuit diagram showing the light emitting portion of the subpixel of the organic EL display panel.
- Each of the light emitting portions 10 0 1 formed on the substrate is composed of a switching organic TFT element 11 1 of a selection transistor, a capacitor 12 2 for holding a data voltage, and an organic EL element 13. .
- a light emitting portion of the pixel can be realized.
- the effect of omitting the driving transistor can be obtained, but it goes without saying that the present invention can also be applied when two or more driving organic TFT elements are provided. -.
- the gate electrode G of the switching organic TFT element 11 is connected to the scanning line SL to which the address signal is supplied, and the source electrode S ′ of the switching organic TFT element 11 is the data line to which the data signal is supplied. Connected to DL.
- the drain electrode D of the switching organic TFT element 11 is connected to one terminal of the auxiliary electrode 3 of the organic EL element 13 and the capacitor 5 capacitor 12.
- the anode 5 of the organic EL element 13 is connected to the power supply line Vc c L, and the other side of the capacity line 12 is connected to the capacity line V cap.
- the cathode 8 of the organic EL element 13 is connected to the common electrode 14.
- the power supply line Vc c L and the common electrode 14 are respectively connected to voltage sources (not shown) that supply power to each.
- the light emitting units 101 having such a configuration are arranged in a matrix, and an active matrix type organic EL display panel can be formed.
- the organic EL element of the above embodiment can also be applied to a substrate of a passive matrix type panel in which a TFT element or the like is arranged around the panel screen. Next, a method for manufacturing the organic EL element having the above configuration will be described.
- the auxiliary electrode 3 is formed on the substrate 2.
- the auxiliary electrode 3 may be formed by, for example, a film forming method using a dry process and a patterning process using a photoresist. More specifically, for example, after forming a thin film made of ITO by sputtering, a photoresist is applied by a spin coat. This photoresist is patterned by exposure and development using an optical mask, and the ITO film without the photoresist pattern is removed from the photoresist by milling, and finally the photoresist is dissolved using a stripping solution.
- the auxiliary electrode 3 may be formed by such a procedure.
- an insulating layer 4 is formed on the auxiliary electrode 3.
- a film forming method by a dry process or a film forming method by a Wetz process can be used.
- the insulating layer 4 is made of an organic compound film, 'A deposition process by wet process may be used.
- the insulating layer 4 can be formed by a spin coating method using a polyvinyl phenol polymer 1 O wt% propylene glycol monomethyl ether acetate (PGMEA) solution.
- PMEA polyvinyl phenol polymer 1 O wt% propylene glycol monomethyl ether acetate
- anode 5 serving as a first electrode is formed as shown in FIG.
- the anode 5 may be formed using a dry process such as a vapor deposition method.
- the anode 5 may be formed by depositing gold by a vacuum deposition method using a metal mask.
- an organic semiconductor layer made of a carrier transporting organic semiconductor material is formed so as to be in contact with the anode 5.
- a deposition method such as a vapor deposition method, a sputtering method, or a CVD method can be used.
- the thin film 6 a made of organic semiconductor material has an uncovered area or a thin part (Fig. 9 (a)) in the stepped part such as the side of the 5 anode 5 Is done.
- the anode 5 serves as a shielding portion 0 for the material flow depending on the incident angle of the material flow of the vapor deposition material from the vapor deposition material source toward the vapor deposition surface.
- the end of the anode 5 is substantially parallel to the vapor deposition material flow, it is considered that the vapor deposition material is difficult to adhere to the end.
- the organic semiconductor material of the thin film is fluidized and solidified to produce the organic semiconductor layer 6.
- the flow of the organic semiconductor material of the thin film is performed, for example, by heating the thin film above the glass transition temperature of the organic semiconductor material. -. By heating above the glass transition temperature, the thin film transitions from a crystalline state to an amorphous state and becomes fluid. Fluidized organic semiconductor • Material can move to the stepped part of the anode 5 by gravity and surface tension. The heating is performed using a heating means such as a hot plate or a halide lamp. It is also possible to completely melt the organic semiconductor material by setting the heating temperature to a temperature higher than the melting point.
- the method of causing the organic semiconductor material of the thin film formed by the dry process to flow is not limited to heating, for example, by exposing the thin film to a vapor of a solvent in which the organic semiconductor material is soluble. Done.
- the exposure to solvent vapor may be performed, for example, by inserting the entire substrate into a chamber full of solvent vapor.
- the solvent vapor can be obtained by heating the solvent to volatilize it or by using a spraying device.
- the thin film is placed in a solvent vapor atmosphere and fluidized, and then solidified by removing from the atmosphere. In some cases, it is preferable to remove the solvent contained in the organic semiconductor layer 6 by heating in order to volatilize it.
- the organic semiconductor layer 6 is a single layer including only a hole injection layer or a hole transport layer, a thin film of an organic semiconductor material constituting the hole injection layer or the hole transport layer is formed by a dry film formation method. Then, the organic semiconductor layer 6 is formed by heating or using solvent vapor to cause the organic semiconductor material to flow and solidify. In the case where the organic semiconductor layer 6 is composed of a plurality of layers of a hole injection layer and a hole transport layer, at least the hole injection layer is formed by fluidized solidification processing of the organic semiconductor material constituting the hole injection layer. Is preferred. In such a case, the organic semiconductor layer 6 is obtained by fluidizing and solidifying a thin film made of an organic semiconductor material in which the 5 hole injection layer has hole injection properties.
- the hole transport layer is formed by fluid solidification treatment of a thin film made of an organic semiconductor material having hole transportability.
- the light emitting layer 7 is formed by using a dry process such as a vapor deposition method as shown in FIG.
- the cathode 8 is formed as shown in FIG. 10 (b).
- a dry process such as vapor deposition is used to form the cathode 8.
- the cathode 8 is formed, and the organic EL element 1 is formed.
- the organic semiconductor layer 6 after forming a thin film made of the organic semiconductor material, it is subjected to 0 heat treatment or solvent vapor at a temperature equal to or higher than the glass transition temperature (T. g) of the organic semiconductor material.
- T. g glass transition temperature
- the contact between the anode 5 and the organic semiconductor layer 6 in the portion of the anode 5 that does not face the cathode 8 of the anode 5 such as the side portion of the anode 5 is good, an element that injects current from that portion.
- the carrier injection efficiency can be increased.
- the step coverage of the organic semiconductor layer 6 is improved.
- the carrier injection efficiency from the anode 5 to the organic semiconductor layer 6 is improved.
- a film forming method such as a vapor deposition method after the light emitting layer 7 is formed.
- a thin film forming step of providing the electron transport layer 9 and Z or the electron injection layer 10 using the above may be performed.
- the organic EL device having the structure shown in FIG. 3, that is, the first electrode is the 'cathode 8', the second electrode is the anode 5, and the organic semiconductor layer 6 is the electron injection layer 10 and the electron transport layer 9 or
- the cathode 8 is formed using a dry process such as a vacuum deposition method using a metal mask.
- an organic semiconductor layer 6 made of a carrier transporting organic semiconductor material is formed in contact with the cathode 8.
- the organic semiconductor layer 6 is formed by forming a thin film made of an organic semiconductor material using a film forming method using a dry process such as an evaporation method, and subjecting the thin film organic semiconductor material to fluidization solidification treatment. Done. As described above, the organic semiconductor material is flowed and solidified by heating or using vapor. After the organic semiconductor layer 6 is formed, the light emitting layer 7 and the anode 5 are sequentially formed. Both layers are formed using a dry process such as vapor deposition. If necessary, a thin film forming step using a film forming method such as a vapor deposition method is performed to provide a hole transport layer and / or a hole injection layer between the light emitting layer 7 and the anode 5. Also good.
- a dry process such as an evaporation method
- the carrier regulating layer BF is provided between the first electrode and the organic semiconductor layer 6 as in the organic EL element shown in Fig. 4, the organic semiconductor layer 6 is formed after the first electrode is formed.
- the carrier regulating layer BF is formed using a dry process such as a vapor deposition method.
- the first electrode is the anode 5 and made of gold
- an aluminum film is formed by vacuum deposition using a metal mask having the same opening pattern as the mask used when the anode 5 is manufactured.
- the regulation layer BF may be produced.
- the organic EL element in which the light emitting layer is provided between the first electrode and the second electrode is described.
- the organic thin film semiconductor element of the present invention is It is not limited to a light emitting device, but may be an organic thin film transistor having a vertical MQS structure.
- the organic thin film transistor has substantially the same configuration as the organic EL element described above except that a light emitting layer is not provided between the first electrode and the second electrode.
- the organic thin film transistor 15 includes an auxiliary electrode provided on the substrate and serving as the gate electrode 1 ′ 6, and an insulating layer 4 provided on the gate electrode 16.
- a first electrode which is provided on the insulating layer 4 and serves as the source electrode 17; an organic semiconductor layer 6 which is in contact with the source electrode 17 and is made of a carrier-transporting organic semiconductor material; and an organic semiconductor layer A second electrode provided on 6 and serving as a drain electrode 18.
- the organic semiconductor layer 6 is formed by fluidizing and solidifying the organic semiconductor material.
- an organic semiconductor material for example, 4,4′bis [N— (1 naphthyl) 1 N-phenylamino] —biphenyl (so-called N P B) can be used.
- An organic semiconductor layer made of the organic semiconductor material, and a second electrode supported by the organic semiconductor layer, and the organic semiconductor layer is formed by fluidizing and solidifying the organic semiconductor material.
- the first electrode is completely covered with the organic semiconductor layer, and no defects such as pinholes are generated in the organic semiconductor layer. Occurrence can be prevented.
- the method includes a step of forming a thin film made of the organic semiconductor material using a process method and a fluidization treatment step of the organic semiconductor material of the thin film.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
明細書 ' Specification '
'有機薄膜半導体素子およびその製造方法 'Organic thin film semiconductor device and manufacturing method thereof
発明の背景 Background of the Invention
1. 発明の分野 . 1. Field of Invention.
本発明は、 キャリア (正孔又は電子)輸送性を有する化合物を利用し、 かかる 化合物からなる半導体層を備えた有機薄膜半導体素子およびその製造方法に関 する。 2. 関連技術の説明 The present invention relates to an organic thin film semiconductor element using a compound having a carrier (hole or electron) transport property and having a semiconductor layer made of such a compound, and a method for producing the same. 2. Explanation of related technology
.電界を印加して発光させる発光素子、例えば物質におけるキャリア(正孔又は 電子)の再結合によるエレクトロルミネセンス(以下、単に E Lという)を利用し ている発光素子が知られている。.例えば、有機化合物材料を用いた注入型の有櫸 E L素子による表示パネルを搭載した E L表示 g置が開発されている。有機 E L 素子には、赤色で発光する構造を有する赤色 E L素子、緑色で発光する構造を有 する緑色 E L素子、及び青色で発光する構造を有する青色 E L素子がある。 これ ら赤、青、緑 R G Bでそれぞれ発光する 3つの有機 E L素子を 1画素発光ュニッ トとして、複数画素をパネル部上にマ卜リクス状に配列すればカラ一表示装置を 実現することができる。かかるカラ一表示装置による表示パネルの駆動方式とし て、 パッシブマトリクス駆動型と、 アクティブマトリクス駆動型 、 が知られて いる。 ァクテ 2. Description of the Related Art Light emitting devices that emit light by applying an electric field, for example, light emitting devices that utilize electroluminescence (hereinafter simply referred to as EL) due to recombination of carriers (holes or electrons) in a substance are known. For example, an EL display device equipped with a display panel using an injection type organic EL element using an organic compound material has been developed. The organic EL element includes a red EL element having a structure emitting red light, a green EL element having a structure emitting green light, and a blue EL element having a structure emitting blue light. A color display device can be realized by arranging three organic EL elements that emit red, blue, and green RGB in a single pixel emission unit and arranging multiple pixels in a matrix on the panel. . As a display panel driving method using such a color display device, a passive matrix driving type and an active matrix driving type are known. ACT
ィブマトリクス駆動型の E L表示装置は、パッシブマトリクス型のものに比べて、 低消費電力であり、 また画素間のクロストークが少ないなどの利点を有し、特に 大画面表示装置や高精細度表示装置に適している。 ' ァクティブマトリクス駆動型の E L表示装置の表示パネルには、陽極電源ライ ン、陰極電源ライン、水平走査を担う走査ライン及び各走査ラインに交叉して配 ' 列されたデータラインが格子状に形成されている。走査ライン及びデータライン の各 RGB交差部に RGBサブピクセルが形成されている。 The active matrix drive type EL display device has advantages such as lower power consumption and less crosstalk between pixels compared to the passive matrix type display device, especially large screen display devices and high definition display devices. Suitable for '' On the display panel of the active matrix drive type EL display device, the anode power line, the cathode power line, the scanning line responsible for horizontal scanning, and the data lines arranged across the scanning lines are arranged in a grid pattern. Is formed. RGB subpixels are formed at each RGB intersection of the scan line and data line.
5 サブピクセル毎に、走査ライン選択用の電界効果トランジスタ (FET: F i e l d E f f e c t Tr an s i s t o r)のゲートには走査ラインが接続 され、そのドレインにはデータラインが接続されて、そのソースには発光駆動用 の F E Tのゲートが接続されている。発光駆動 F E Tのソースには陽極電源ラィ ンを介して駆動電圧が印加され、そのドレイン Dには E L素子の陽極端が接続さ0 れている。発光駆動 F ETのゲ一ト及びソース間にはキャパシタが接続されてい る。更に、 EL素子の陰極端には、 陰極電源ラインを介して接地電位が印加され る。 . . For each subpixel, the scan line is connected to the gate of a field effect transistor (FET) for selecting the scan line, the data line is connected to the drain, and the source is connected to the source. The gate of the light emitting drive FET is connected. A drive voltage is applied to the source of the light emission drive F E T through an anode power line, and the anode end of the EL element is connected to the drain D of the light emission drive F E T. A capacitor is connected between the gate and source of the light emission drive FET. Furthermore, a ground potential is applied to the cathode end of the EL element via the cathode power supply line. .
有機 E L素子に代表される従来 φ有機発光素子は基本的にダイォ一ド特性を, 示す能動素子であり、製品化されているものはほとんどパッシブマトリクス駆動5 によるものである。パッシブマトリクス駆動法では、線順次駆動を行うため瞬時 的に高い輝度を必要とし、走査線数の限界数が限られてしまうため高精細な表示 装置を得ることが難しかった。 Conventional φ organic light-emitting devices, represented by organic EL devices, are basically active devices that exhibit diode characteristics, and most of them are manufactured by passive matrix drive5. In the passive matrix driving method, line-sequential driving requires instantaneously high brightness, and the limit number of scanning lines is limited, so it is difficult to obtain a high-definition display device.
ポリシリコンなどを用いた T FTを用いた有機 EL表示装置が検討されてい. るが、 プロセス温度が高い、単位面積あたりの製造コストが高く大画面化に向か0 ない、 1画素内に 2つ以上のトランジスタとコンデンサを配置しなければならな いため開口率が下がり有機 ELを高い輝度で発光させなければならないなどの 欠点があった。 Organic EL display devices using TFTs using polysilicon, etc. are being studied. However, the process temperature is high, the manufacturing cost per unit area is high, and it is not suitable for large screens. There were disadvantages such as the aperture ratio was lowered and the organic EL had to emit light with high brightness because it was necessary to arrange two or more transistors and capacitors.
そこで、 基板上に、 補助電極、 絶縁層'、 陽極、 発光層を含む有機機能層および 陰極を順に配置して形成されている発光素子力持開 2002— 343578公 報において提案されている。かかる構成の発 素子は、基板上に補助電極、 絶縁 層、 陽極を順に設けた後、 有機機能層を蒸着法で形成し、 陰極を設けている。 ところが、有機機能層を蒸着法によって形成した場合、蒸着材枓源と蒸着面と の間における角度に応じて蒸着材料流が陽極によって遮断されるなどの理由に より、陽極が有機機能層によって完全に覆われていない部分若しくは有機機能層 の膜厚が薄い部分が形成されるおそれがある。 かかる部分が形成されると、当該部分に電界と電流注入とが集中し、 ショート および電流のリークが発生して、当該発光素子が破壊されるもしくは発光不良を 生じさせる。また、陽極から有機機能層への正孔め注入効率が低下するなどの問 題がある。 Therefore, the auxiliary electrode, the insulating layer ', the anode, the organic functional layer including the light emitting layer, and the cathode are sequentially arranged on the substrate. 2002-343578 Proposed in the news. In the light emitting device having such a configuration, an auxiliary electrode, an insulating layer, and an anode are sequentially provided on a substrate, an organic functional layer is formed by a vapor deposition method, and a cathode is provided. However, when the organic functional layer is formed by the vapor deposition method, the anode is completely covered by the organic functional layer because the vapor deposition material flow is blocked by the anode depending on the angle between the vapor source and the vapor deposition surface. There is a possibility that a portion not covered with the coating or a portion where the organic functional layer is thin is formed. When such a portion is formed, an electric field and current injection are concentrated on the portion, and a short circuit and a current leakage occur, thereby destroying the light emitting element or causing a light emitting failure. In addition, there is a problem that the hole injection efficiency from the anode to the organic functional layer is lowered.
また、有機機能層に発光層が設けられておらず、上記した素子構造に類似して いる有機薄膜トランジスタの場合においても、電界の均一性、 リーク電流などが 問題となりうる。 , 発明の概要 ' . Further, even in the case of an organic thin film transistor having no light emitting layer in the organic functional layer and similar to the above-described element structure, the uniformity of the electric field, the leakage current, and the like can be problems. , Summary of Invention '.
·本発明は、上記した問題が 1例として挙げられる諸問題を解決する手段を提供 することを目的とする。 · An object of the present invention is to provide a means for solving various problems mentioned above as an example.
' 本発明の第 1ァスぺクトによる有機薄膜半導体素子は、基板上に設けられてい る補助電極と、該補助電極上に設けられている絶縁層と、該絶縁層上に設けられ ている第 1電極と、該第 1電極に接していてキヤリァ輸送性の有機半導体材料か らなる有機半導体層と、 該有機半導体層に支持されている第 2電極と、 を含み、 該有機半導体層は該有機半導体材料の流動固化処理によって形成されている、こ とを特徴とする。 '' The organic thin film semiconductor device according to the first aspect of the present invention includes an auxiliary electrode provided on a substrate, an insulating layer provided on the auxiliary electrode, and an insulating layer provided on the insulating layer. A first electrode; an organic semiconductor layer made of a carrier-transporting organic semiconductor material in contact with the first electrode; and a second electrode supported by the organic semiconductor layer, the organic semiconductor layer comprising: The organic semiconductor material is formed by fluidization solidification treatment.
本発明の第 2ァスぺクトによる有機薄膜半導体素子の製造方法は、基板上に補 助電極を設ける工程と、該補助電極上に絶縁層を設ける工程と、該絶縁層上に第 1電極を設ける工程と、該第 1電極に接するキヤリァ輸送性の有機半導体材料か ■ , らなる有機半導体層を設ける工程と、該有機半導体層によって支持される第 2電 極を形成する工程と、 を含み、該有機半導体層を設ける工程はドライプロセス法 . · を用いて該有機半導体材料からなる薄膜を形成する工程と該薄膜の該有機半導 体材料の流動固化処理工程 を含むことを特徴とする。 The method for producing an organic thin film semiconductor device according to the second aspect of the present invention comprises a step of providing an auxiliary electrode on a substrate, a step of providing an insulating layer on the auxiliary electrode, and a first electrode on the insulating layer. And a carrier transporting organic semiconductor material in contact with the first electrode. A step of providing an organic semiconductor layer comprising: and a step of forming a second electrode supported by the organic semiconductor layer, wherein the step of providing the organic semiconductor layer comprises using a dry process method. The method includes a step of forming a thin film made of an organic semiconductor material, and a fluidization treatment step of the organic semiconductor material of the thin film.
5 図面の簡単な説明 5 Brief description of the drawings
図 1は、 本発明による有機 E L素子の部分断面図であり、 FIG. 1 is a partial cross-sectional view of an organic EL device according to the present invention.
図 2は、 本発明による有機 E L素子の変形例の部分断面図であり、 FIG. 2 is a partial sectional view of a modification of the organic EL device according to the present invention.
図 3は、 本発明による有機 E L素子の変形例の部分断面図であり、 FIG. 3 is a partial sectional view of a modification of the organic EL device according to the present invention.
図 4は、 本発明による有機 E L素子の変形例の部分断面図であり、 FIG. 4 is a partial sectional view of a modification of the organic EL device according to the present invention.
0 図 5は、本発明による有機 E L素子のエネルギー準位を説明する概念図であり、 図 6は、 本発明による有機 E L素子の部分平面図であり、 FIG. 5 is a conceptual diagram for explaining the energy level of the organic EL device according to the present invention. FIG. 6 is a partial plan view of the organic EL device according to the present invention.
図 7は、本発明による有機 E L素子のサブピクセル発光部を示す等価回路図で あり、 , 図 8は、本発明による有機 E L素子の製造工程の一部を説明する部分断面図で5 あり、 ' FIG. 7 is an equivalent circuit diagram showing a sub-pixel light emitting part of the organic EL device according to the present invention. FIG. 8 is a partial sectional view for explaining a part of the manufacturing process of the organic EL device according to the present invention. '
図 9は、本発明による有機 E L素子の製造工程のうち図 8に示す工程の続きを 説明する部分断面図であり、 FIG. 9 is a partial cross-sectional view for explaining the continuation of the step shown in FIG. 8 among the steps of manufacturing the organic EL device according to the present invention.
図 1 0は、本発明による有機 E L素子の製造工程のうち図 9に示す工程の続き を説明する部分断面図であり、 ' . FIG. 10 is a partial cross-sectional view for explaining the continuation of the process shown in FIG. 9 in the manufacturing process of the organic EL device according to the present invention.
0 図 1 1は、 本発明による有機薄膜トランジスタの部分断面図である。 FIG. 11 is a partial sectional view of an organic thin film transistor according to the present invention.
発明の詳細な説明 Detailed Description of the Invention
以下、本発明による有機薄膜半導体素子の一例として、発光層を含む有機 E L 素子について、 添付図面を参照しつつ詳細に説明する。 Hereinafter, as an example of the organic thin film semiconductor device according to the present invention, an organic EL device including a light emitting layer will be described in detail with reference to the accompanying drawings.
図 1に示す如く、有機 E L素子 1は、基板 2上に設けられている補助電極 3を5 含んでいる。基板 2の材料としては、 ガラス、 石英、 ポリスチレンなどのプラス ' チック材料といった半透明材料に限らず、 シリコンゃ A 1などの不透明な材料、 フエノール樹脂などの熱硬化性樹脂、ポリ力一ポネートなどの熱可塑性樹脂など ' を用いることができるがこれに限らない。 ' As shown in FIG. 1, the organic EL element 1 includes five auxiliary electrodes 3 provided on a substrate 2. Substrate 2 materials include glass, quartz, polystyrene, etc. 'Not only translucent materials such as tic materials, but also non-transparent materials such as silicone A 1, thermosetting resins such as phenolic resins, thermoplastic resins such as polystrength Ponate, etc. can be used. Absent. '
補助電極 3上には絶縁層 4が設けられている。 絶縁層 4は、 S i〇2、 S i 3NAn insulating layer 4 is provided on the auxiliary electrode 3. Insulating layer 4, S I_〇 2, S i 3 N
5 4に代表さ ήる種々の絶縁材料からなることができるものの、 特に比誘電率の高 い無機酸化物皮膜が好ましい。無機酸化物としては、酸化ケィ素、酸化アルミ二 ゥム、 酸化タンタル、 酸化チタン、 酸化スズ、 酸化バナジウム、 チタン酸バリウ ムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸 鉛、 チタン酸鉛ランタン、 チタン酸ストロンチウム、 チタン酸バリウム、 フッ化0 バリウムマグネシウム、 チタン酸ビスマス、 チタン酸ストロンチウムビスマス、 タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、 トリオキサ イドイットリウムなどが挙げられる。 それらのうち好ましいのは、 酸化ゲイ素、 酸化アルミニウム、 酸化タンタル、.,酸化チタンである。 窒化ケィ素、 窒化アルミ ニゥムなどの無機窒化物も好適に用いることができる。また有機化合物皮膜とし5 ては、 ポリイミド、 ポリアミド、 ポリエステル、 ポリアクリレート、 光ラジカル 重合系、光力チオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含 有する共重合体、 ポリビニルフエノール、 ポリビエルアルコール、 ノポラック樹 脂、及びシァノエチルプルラン、 ポリマー体、 エラストマ一体を含むホスファゼ ン化合物、 などを用いることもできる。 .Although the 5 4 may be made of various insulating materials Ru representative of E, especially high have an inorganic oxide film of the dielectric constant is preferable. Examples of inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, and lead lanthanum titanate. Strontium titanate, barium titanate, magnesium barium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate, yttrium trioxide, and the like. Among them, preferred are silicon oxide, aluminum oxide, tantalum oxide, and titanium oxide. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used. As the organic compound film 5, polyimide, polyamide, polyester, polyacrylate, photo-radical polymerization system, photo-curing resin of photothion polymerization system, or a copolymer containing acrylonitrile component, polyvinyl phenol, polyvinyl alcohol Nopolac resin and cyanoethyl pullulan, a polymer, a phosphazene compound containing an elastomer, and the like can also be used. .
0 絶縁層 4上には陽極 5が設けられており、かかる陽極 5が第 1電極となってい る。 陽極 5は、 後述する陰極 8に比べて小なる面積を有している。すなわち、 陽 極 5における陰極 8と対向している面の面積は陰極 8における陽極 5と対向し ている面の面積よりも小となっている。 また、 陽極 5は、 櫛状、 簾状又は格子状 の形状に形成されていても良い。 陽極 5は、キヤリァ輸送性の有機半導体材料からなる有機半導体層 6に接して いる。有機半導体層 6は、正孔注入層、正孔輸送層またはこれらの組み合わせか らなる。 ' 0 An anode 5 is provided on the insulating layer 4, and the anode 5 serves as a first electrode. The anode 5 has a smaller area than the cathode 8 described later. That is, the area of the surface of the cathode 5 facing the cathode 8 is smaller than the area of the surface of the cathode 8 facing the anode 5. In addition, the anode 5 may be formed in a comb shape, a saddle shape, or a lattice shape. The anode 5 is in contact with the organic semiconductor layer 6 made of a carrier transporting organic semiconductor material. The organic semiconductor layer 6 is composed of a hole injection layer, a hole transport layer, or a combination thereof. '
正孔注入層は、陽極 5からの正孔の注入を容易にする機能を有している。正孔 注入層に用いられる材料として、銅フタロシアニン(CuP c) に代表されるポ ルフィリン誘導体、ベタセンに代表されるポリアセン、 m— TDATAに代表さ れるス夕一バーストァミンと呼ばれる高分子ァリールアミンを使用することが できる。また、ポルフィリン誘導体やトリフエニルァミン誘導体などにルイス酸 ゃ四フッ化テトラシァノキノジメタン(F4— TCNQ)などを混合し導電性を 高くした層を正孔注入層に用いることもできる。 この時、混合比率は重量比率で 5〜95%の割合で混合されていることが好ましい。また、高分子系ではポリア 二リン (PAN I) 、 ポリチォフェン誘導体 (PEDOT) 、 ポリ (3—へキシ ルチオフェン) (P 3HT) などの高分子材料を用いることができる。 また、 IE 孔注入層はこれらの材料の混合層、 もしくは積層したものでもよい。 、 正孔輸送餍は、陽極 5からの正孔を安定に輸送する機能を有している。正孔輸 送層に使用される材料としては、 トリフエ二ルジァミン誘導体、スチリルァミン 誘導体、芳香族縮合環を有するァミン誘導体、 カルバゾ ル誘導体、 高分子材料 としてはポリビニルカルバゾ一ル及びその誘導体、ポリチォフェンなどが挙げら れる。 これらの化合物は 2種以上を併用してもよい。 さらに、 一般的に、 正孔輸 送層は正孔注入層よりもイオン化ポテンシャル I Pが大きい有機半導体材料を 用いた方が好ましい。 The hole injection layer has a function of facilitating the injection of holes from the anode 5. As a material used for the hole injection layer, a porphyrin derivative typified by copper phthalocyanine (CuP c), polyacene typified by betacene, and a polymer arylamine called burstamine typified by m-TDATA are used. be able to. In addition, a layer in which the conductivity is increased by mixing a porphyrin derivative, a triphenylamine derivative, or the like with Lewis acid tetrafluorotetracyanoquinodimethane (F4-TCNQ) can be used for the hole injection layer. At this time, the mixing ratio is preferably 5 to 95% by weight. In the polymer system, polymer materials such as polyaniline (PAN I), polythiophene derivative (PEDOT), and poly (3-hexylthiophene) (P 3HT) can be used. The IE hole injection layer may be a mixed layer of these materials or a laminated layer. The hole transport rod has a function of stably transporting holes from the anode 5. Materials used for the hole transport layer include triphenyldiamine derivatives, styrylamine derivatives, amine derivatives having an aromatic condensed ring, carbazole derivatives, polymer materials such as polyvinyl carbazol and its derivatives, polythiophene, etc. Can be mentioned. Two or more of these compounds may be used in combination. Further, in general, it is preferable to use an organic semiconductor material having a higher ionization potential IP than the hole injection layer for the hole transport layer.
上記の如き材料からなる有機半導体層 6は、有機半導体材料の流動固化処理ェ 程によって形成されている。 ここで、流動固化処理とは、有機半導体材料からな る薄膜を有機半導体材料のガラス転移温度以上に加熱するまたは有機半導体材 料からなる薄膜を溶剤の蒸気雰囲気下に晒すことによつて有機半導体材料を流 ■ 動せしめたあとに固化することをいう。有機半導体材料を流動状態にさせること によって、陽極 5は有機半導体層 6に完全に覆われるようになる。特に陽極 5の - 頂部と絶縁体層の表面との間の段差が有機半導体層 6によって覆われて、有機半 導体層 6の段差被覆特性、 いわゆるステップカバレツジが良好となっている。 The organic semiconductor layer 6 made of the material as described above is formed by a fluidization treatment process of the organic semiconductor material. Here, fluidized solidification treatment refers to organic semiconductor by heating a thin film made of an organic semiconductor material to a temperature higher than the glass transition temperature of the organic semiconductor material or by exposing the thin film made of an organic semiconductor material to a vapor atmosphere of a solvent. Flow material ■ To solidify after moving. By causing the organic semiconductor material to flow, the anode 5 is completely covered with the organic semiconductor layer 6. In particular, the step between the -top portion of the anode 5 and the surface of the insulator layer is covered by the organic semiconductor layer 6, and the step coverage characteristic of the organic semiconductor layer 6, so-called step coverage, is good.
5 なお、有機半導体層 6が正孔注入層および正孔輸送層からなる場合、少なくと も正孔注入層は該正孔注入層を構成する有機半導体材料を流動せしめた後に固 化することによって形成されることが好ましい。 5 In the case where the organic semiconductor layer 6 is composed of a hole injection layer and a hole transport layer, at least the hole injection layer is solidified after flowing the organic semiconductor material constituting the hole injection layer. Preferably it is formed.
有機半導体層 6の上方には発光層 7が設けられている。すなわち、発光層 7は 有機半導体層 6に支持されている。発光層 7は、発光機能を有する化合物である0 蛍光物質もしくは燐光物質を含有している。 このような蛍光性物質としては、例 えば特開 63— 264692号公報に開示されているような化合物、例えばキナ クリドン、 Jレブレン、スチリル系色素などの化合物から選択される少なくとも 1 種が挙げられる。燐光性物質としては A p p 1. Phy s. Le t t. , 7 5巻、 4項、 1' 999年にあるような有機イリジウム錯体、有機プラチナ錯体な5 どが挙げられる。 ' A light emitting layer 7 is provided above the organic semiconductor layer 6. That is, the light emitting layer 7 is supported by the organic semiconductor layer 6. The light emitting layer 7 contains 0 fluorescent material or phosphorescent material which is a compound having a light emitting function. Examples of such a fluorescent substance include at least one compound selected from compounds such as those disclosed in JP-A 63-264692, such as quinacridone, J levrene, and styryl dyes. . Examples of phosphorescent substances include App 1. Phy s. Let t., Vol. 5, Volume 5, Item 4, Organic Iridium Complex as in 1 '999, and Organic Platinum Complex. '
発光層 7の上方には陰極 8が設けられており、かかる陰極 8が第 2電極となつ ている。 A cathode 8 is provided above the light emitting layer 7, and the cathode 8 serves as a second electrode.
なお、 陰極 8、 陽極 5及び補助電極 3としては、 T i、 A l、 L i : A l、 C u、 N i、 Ag、 Mg : Ag、 A,u、 P t、 Pd、 I r、 C r、 Mo、 W、 T a0 などの金属あるいは れらの合金が挙げられる。あるいは、ポリア二リンや PE DT: P S Sなどの導電性高分子を用いることができる。 あるいは、酸化物透明 導電薄膜、 例えば錫ドープ酸化インジウム (I TO) 、 亜鉛ドープ酸化インジゥ ム (I ZO) 、 酸化インジウム (I n2〇3) 、 酸化亜鉛 (ZnO) 、 酸化錫 (S n02) のいずれかを主組成としたものを用いることができるが、 これに限定さ5 れない。 また、 各電極の厚さは 30〜500 nm程度が好ましい。陰極 8と補助 ' . 電極 3には特に 5 0〜3 0 0 n mの範囲が適レている。陽極 には、有機半導体 層 6に疋孔を注入することが容易な高仕事関数の金属、 例えば A u、 P t、 P d - 等が好ましい。 陰極 8の厚さは特に 3 0〜2 0 0 n m程度の範囲が適している。 The cathode 8, the anode 5 and the auxiliary electrode 3 include Ti, Al, Li: A1, Cu, Ni, Ag, Mg: Ag, A, u, Pt, Pd, Ir, Examples include metals such as Cr, Mo, W, and Ta0 or alloys thereof. Alternatively, a conductive polymer such as polyaniline or PE DT: PSS can be used. Alternatively, the transparent conductive thin film oxides, such as tin-doped indium oxide (I TO), zinc oxide doped Injiu beam (I ZO), indium oxide (I n 2 〇 3), zinc oxide (ZnO), tin oxide (S n0 2 However, the present invention is not limited to this. The thickness of each electrode is preferably about 30 to 500 nm. Cathode 8 and auxiliary In particular, a range of 50 to 300 nm is suitable for the electrode 3. For the anode, a metal having a high work function that can easily inject pores into the organic semiconductor layer 6, such as A u, P t, and P d −, is preferable. The thickness of the cathode 8 is particularly preferably in the range of about 30 to 200 nm.
これらの電極は真空蒸着法、 スパッタ法で作製されたものが好ましい。 These electrodes are preferably produced by vacuum deposition or sputtering.
5 上記の如き構成の有機 E L素子 1において、陽極 5と陰極 8との間に印加する 電圧方向と同一方向になるように、補助電極' 3ど陰極 8との間に電圧が印加され るときに、発光層 7'が発光する。かかる構成の有機 E L素子 1において、 有機半 導体層 6が当該層を構成する材料の流動固化処理によって形成されることによ り、有機半導体層 6のステップカバレッジが良好となる。その結果、陽極 5が有0 機半導体層 6によって完全に覆われて有機半導体層 6と陽極 5との接触面積が 増加し、陽極 5から有機半導体層 6へのキヤリァ(正孔)の注入効率が向上する。 すなわち、 電界と電流注入が分散してキヤリァの注入量が増大する。 5 When a voltage is applied between the auxiliary electrode 3 and the cathode 8 in the organic EL device 1 having the above-described configuration so that the voltage is applied in the same direction as the voltage applied between the anode 5 and the cathode 8. In addition, the light emitting layer 7 'emits light. In the organic EL element 1 having such a configuration, the organic semiconductor layer 6 is formed by fluidizing and solidifying the material constituting the layer, whereby the step coverage of the organic semiconductor layer 6 is improved. As a result, the anode 5 is completely covered by the organic semiconductor layer 6 and the contact area between the organic semiconductor layer 6 and the anode 5 is increased, and carrier injection efficiency from the anode 5 to the organic semiconductor layer 6 is increased. Will improve. That is, the electric field and current injection are dispersed, and the amount of carrier injection increases.
また、蒸着法によって作製された有機半導体材料の薄膜にあるピンホールが 該材料の流動固化処理よつて埋められて、 リークおよびショートが減少する。さ5 らに、 上記の如き構成の有機 E L素子 1.は、受動型素子であり、 かつ有機 E L作 製プロセスを大きく変更することなく、作製することが可能であるという特徴が ある。 Also, pinholes in the thin film of the organic semiconductor material produced by the vapor deposition method are filled by the fluidized solidification treatment of the material, thereby reducing leakage and short circuit. In addition, the organic EL device 1. having the above-described structure is a passive device and can be manufactured without greatly changing the organic EL manufacturing process.
なお、図 1に示して説明した上記実施例の有機 E L素子は、補助電極 Z絶縁層 /陽極/正孔注入層/発光層/陰極という構成をとつているものの、これに限定0 されず、発光層と陰極との間に電子注入層、電子輸送層またはこれらの組み合わ せが任意に用いられても良い。例えば図 2に示す如く、発光層 7と陰極 8との間 に電子輸送層 9と電子注入層 1 0が設けられていることとしても良.い。 The organic EL device of the above-described embodiment shown in FIG. 1 has a configuration of auxiliary electrode Z insulating layer / anode / hole injection layer / light emitting layer / cathode, but is not limited to this. An electron injection layer, an electron transport layer, or a combination thereof may be arbitrarily used between the light emitting layer and the cathode. For example, as shown in FIG. 2, an electron transport layer 9 and an electron injection layer 10 may be provided between the light emitting layer 7 and the cathode 8.
電子注入層 1 0及び又は電子輸送層 9には、 トリス ( 8 —キノリノラト) アル ミニゥム (A l Q 3) などの 8—キノリノールスはその誘導体を配位子とする有5 機金属錯体などのキノリン誘導体、 ォキサジァゾール誘導体、 ペリレン誘導体、 ピリジン誘導体、 ピリミジン誘導体、 キノキサリン誘導体、 ジフエ二ルキノン誘 導体、ニトロ置換フルオレン誘導体などを用いることができる。電子注入層 1 0 及び又は電子輸送層 9は発光層 7を兼ねたものであってもよく、 かる場合には トリス (8—キノリノラト) アルミニウムなどを使用することが好ましい。電子 注入層 1 0と電子輸送層 9を作製するときには、陰極 8側に電子親和力の値の大 きい化合物が配置されるように成膜することが好ましい。 In the electron injection layer 10 and / or the electron transport layer 9, 8-quinolinols such as tris (8-quinolinolato) alminium (A l Q 3 ) is used as an organic metal complex having a derivative as a ligand. Quinoline derivatives, oxadiazole derivatives, perylene derivatives, Pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like can be used. The electron injection layer 10 and / or the electron transport layer 9 may also serve as the light emitting layer 7. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like. When the electron injection layer 10 and the electron transport layer 9 are produced, it is preferable to form a film so that a compound having a large electron affinity value is disposed on the cathode 8 side.
また、 上記実施例において、 第 1電極を陽極とし、第 2電極を陰極として記載 しているものの、絶縁層以降の構造を逆転している構成、すなわち第 1電極が陰 極であり、第 2電極が陽極である構成としても良い。かかる構成において、有機 半導体層は、電子注入層、電子輸送層またはこれらの組み合わせであることとし ても良い。例えば、 図 3に示す如く、補助電極 3 /絶縁層 4 /陰極 8 電子注入 層 1 0 Z発光層 7 /陽極 5という構成が用いられても良い。 In the above embodiment, although the first electrode is described as the anode and the second electrode is described as the cathode, the structure after the insulating layer is reversed, that is, the first electrode is the negative electrode, and the second electrode is the second electrode. The electrode may be an anode. In such a configuration, the organic semiconductor layer may be an electron injection layer, an electron transport layer, or a combination thereof. For example, as shown in FIG. 3, a configuration of auxiliary electrode 3 / insulating layer 4 / cathode 8 electron injection layer 10 Z light emitting layer 7 / anode 5 may be used.
なお、 図示はしないものの、 第 1電極と第 2電極との間には、 その他、 正孔 ロック層、 電子ブロック層が任意に用いられても良い。 、 ·有機 E L素子には、有機半導体層と陽極との間にキヤリア規制層が設けられて いることとしても良い。例えば、 図 4に示す如く、 有機 E L素子 1は、 有機半導 ■体層 6と陽極 5との間にありかつ陽極 5と陰極 8とによって狭持されるキヤリ ァ規制層 B Fを有することとしても良い。キヤリァ規制層 B Fは陽極 5から有機 半導体層 6へのキヤリァ移動の障壁としての機能を有しており、キヤリァ規制層 B Fを設けることによって、 キヤリァ規制層 B Fを介した電流が流れ難くなる。 キャリア規制層 B Fの材料は、そのイオン化ポテンシャルの条件すなわち、接 触電極の仕事関数と有機半導体層のイオン化ポテンシャルとの間の仕事関数 (又 はイオン化ポテンシャル)の値に基づいて選択される。キャリアの移動を阻害す るにはエネルギー障壁が大であるほうがよいからである。 図 5に示すように、金属からなる陽極 5の 事関数 W f 1 ¾びキヤリァ規制層 BFの仕事関数 Wf 2は真空準位(0 e V)から各フェルミ準位へと測定したェ ネルギーである。有機半導体層 6のイオン化ポテンシャル I p 1ほ真空準位から 価電子帯上端の最高被占分子軌道 (HOMO)準位へと測定したエネルギーであ る。 なお、 畲子親和力 E aは 0 eVの基準エネルギー準位の真空準位(VACU UM LEVEL) から伝導帯下端の最低空分子軌道(LUMO)準位へと測定 したエネルギーである。 : Although not shown, a hole lock layer and an electron block layer may be arbitrarily used between the first electrode and the second electrode. In the organic EL element, a carrier regulating layer may be provided between the organic semiconductor layer and the anode. For example, as shown in FIG. 4, the organic EL element 1 has a carrier regulating layer BF between the organic semiconductor body layer 6 and the anode 5 and sandwiched between the anode 5 and the cathode 8. Also good. The carrier restricting layer BF functions as a barrier for carrier movement from the anode 5 to the organic semiconductor layer 6. By providing the carrier restricting layer BF, it becomes difficult for current to flow through the carrier restricting layer BF. The material of the carrier restriction layer BF is selected based on the condition of its ionization potential, that is, the value of the work function (or ionization potential) between the work function of the contact electrode and the ionization potential of the organic semiconductor layer. This is because a larger energy barrier is better to inhibit carrier movement. As shown in Fig. 5, the work function W f 1 ¾ of the anode 5 made of metal and the work function W f 2 of the carrier restriction layer BF are the energy measured from the vacuum level (0 e V) to each Fermi level. is there. The energy measured from the vacuum level of the organic semiconductor layer 6 to the highest occupied molecular orbital (HOMO) level at the top of the valence band. The insulator affinity Ea is the energy measured from the vacuum level (VACU UM LEVEL) at the reference energy level of 0 eV to the lowest unoccupied molecular orbital (LUMO) level at the bottom of the conduction band. :
従って、 キャリア規制層 BFの材料としては、具体的には、イオン化ポテンシ ャル I p 1 (e V) を有する正孔注入材料 (有機半導体層 6)と仕事関数 1 (e V) を有する陽極 5と、 仕事関数 Wf 2 (e V) を有するキャリア規制層 B Fとを積層したとき、 I p 1と Wf 2は I p l>Wf 2という関係を有すること が好ましい。 . . Therefore, as a material of the carrier regulation layer BF, specifically, a hole injection material (organic semiconductor layer 6) having an ionization potential I p 1 (e V) and an anode having a work function 1 (e V) are used. When 5 and a carrier regulation layer BF having a work function Wf 2 (e V) are laminated, it is preferable that I p 1 and Wf 2 have a relationship of I pl> Wf 2. .
また、 この時、 I p 1と Wf 1は I p 1く Wf 1であることが望ましいが、 I p 1≥Wf 1としてもよく、 I p 1と Wf 1の差は 0.5 eV以内であればよい。 例えば A 1、 Mg、 A'g、 Ta、 C r等の有機半導体層 6に正孔を注入し難い 低仕事関数の金属がキャリア規制層 BFとして好ましい。なお、陽極 5とキヤリ ァ規制層 BFとの合計膜厚は、 30〜200 nm程度の範囲が適している。 かかるキヤリァ規制層 B Fを設けることによって、正孔注入層などの有機半導 体層 6に注入されるキヤリァの経路が規定される。 図 4に示す如き構成の場合、 すなわちキヤリァ規制層 B Fが陽極 5と陰極 8とによって狭持されるように配 置されている場合、 キャリア (正孔) はキャリア規制層 BFに覆われていない部 分(陽極 5の側部) から注入されることとなる。 ここで、 陽極 5の側部は有機半 導体層 6によって完全に覆われているため、キャリアの注入効率が向上する。ま た、有機半導体層 6のステップカバレッジも良好になっており、電界が集中しや すい有機半導体層 6の膜厚の薄い部分が陽極, 5の側面から注入されるキヤリァ の通路において形成されないことから、 キャリアの大量注入が実現できる。 ' なお、第 1電極となっている陽極 5は、第 2電極となっている陰極 8よりも小 なる面積を有しており、有機半導体層 6を通過するキャリアのためのパターンを 画定している。例えば、 図 6に示す如く、第 1電極となっている陽極 5及びキヤ リァ規制層 B Fは櫛^又は簾状の形状を有し、第 2電極となっている陰極 8より も小なる面積を有していることとしても良い。なお、陽極 5及びキャリア規制層 B Fの形状は、格子状であることとしても良い。 また、 陽極 5及びキャリア規制 層 B Fの少なくとも一方を格子状、櫛状又ほ簾状の形状とすれば、 陽極 5を、 陰 極 8よりも小なる面積を有しかつ有機半導体層 6を通過するキヤリァのための パターンを画定することができる。 At this time, I p 1 and Wf 1 are preferably I p 1 and Wf 1. However, I p 1 ≥ Wf 1 is acceptable, and the difference between I p 1 and Wf 1 is within 0.5 eV. Good. For example, a metal having a low work function that hardly injects holes into the organic semiconductor layer 6 such as A1, Mg, A′g, Ta, and Cr is preferable as the carrier regulation layer BF. The total film thickness of the anode 5 and the carrier regulating layer BF is suitably in the range of about 30 to 200 nm. By providing such a carrier regulating layer BF, a carrier path to be injected into the organic semiconductor layer 6 such as a hole injection layer is defined. In the case of the configuration shown in FIG. 4, that is, when the carrier restricting layer BF is sandwiched between the anode 5 and the cathode 8, carriers (holes) are not covered by the carrier restricting layer BF. It is injected from the part (side of anode 5). Here, since the side portion of the anode 5 is completely covered by the organic semiconductor layer 6, the carrier injection efficiency is improved. In addition, the organic semiconductor layer 6 has good step coverage, and the electric field is concentrated. Since the thin portion of the organic semiconductor layer 6 is not formed in the carrier passage injected from the side surface of the anode 5, mass injection of carriers can be realized. 'Note that the anode 5 serving as the first electrode has a smaller area than the cathode 8 serving as the second electrode, and defines a pattern for carriers passing through the organic semiconductor layer 6. Yes. For example, as shown in FIG. 6, the anode 5 serving as the first electrode and the carrier restricting layer BF have a comb-like shape or a bowl-like shape, and have a smaller area than the cathode 8 serving as the second electrode. It is good also as having. The shapes of the anode 5 and the carrier regulation layer BF may be a lattice shape. Further, if at least one of the anode 5 and the carrier regulation layer BF has a lattice shape, a comb shape, or a comb shape, the anode 5 has an area smaller than the anode 8 and passes through the organic semiconductor layer 6. A pattern can be defined for the carrier to perform.
•上記実施例では有機 E L素子の実施例を示したが、当該有機 E L素子の複数を 表示装置の画素に用いることもで考る。具体的には、少なくとも有機トランジ 夕を 1つ、コンデンサなど必要な素子、画素電極などを共通の基板上に作製すれ ば、本発明によるアクティブ駆動型の表示装置を実現できる。例として、 以下に 表示装置に適用した場合の構造を説明する。 • In the above embodiment, an example of an organic EL element is shown. However, a plurality of organic EL elements may be used for a pixel of a display device. Specifically, the active drive type display device according to the present invention can be realized by manufacturing at least one organic transistor, a necessary element such as a capacitor, and a pixel electrode on a common substrate. As an example, the structure when applied to a display device will be described below.
図 7は有機 E L表示パネルのサブピクセルの発光部を示す等価回路図を示す。 基板上に形成された発光部 1 0 1の各々は、選択用トランジスタのスイッチング 有機 T F T素子 1 1と、データ電圧の保持用のキャパシタ 1 2と、有機 E L素子 1 3と、から構成されている。 この構成を走査ライン S L及び電源ライン V c c L、並びにデータライン D Lの各交点近傍に、配置することで画素の発光部を実 現することができる。本実施形態では駆動用トランジス夕を省略する効果が得ら れるが、駆動有機 T F T素子を 2以上設けた場合にも適用できることはいうまで もない。 -. スイッチング有機 TFT素子 11のゲ一ト霉極 Gは、アドレス信号が供給され る走査ライン SLに接続され、スイッチング有機 T FT素子 1 1のソース電極 S ' はデータ信号が供給されるデータライン D Lに接続されている。スィツチング有 機 TFT素子 11のドレイン電極 Dは有機 EL素子 13の補助電極 3及びキヤ 5 パシタ 12の一方の端子に接続されている。有機 EL素子 13の陽極 5は電源ラ イン Vc c Lに接続されており、キャパシ夕 12の他方はキャパシ夕ライン V c a pに接続されている。有機 EL素子 13の陰極 8は共通電極 14に接続されて いる。電源ライン Vc c L及び共通電極 14は、それぞれに電力を供給する電圧 源 (図示せず) にそれぞれ接続されている。FIG. 7 shows an equivalent circuit diagram showing the light emitting portion of the subpixel of the organic EL display panel. Each of the light emitting portions 10 0 1 formed on the substrate is composed of a switching organic TFT element 11 1 of a selection transistor, a capacitor 12 2 for holding a data voltage, and an organic EL element 13. . By arranging this configuration in the vicinity of each intersection of the scanning line SL, the power supply line Vcc L, and the data line DL, a light emitting portion of the pixel can be realized. In this embodiment, the effect of omitting the driving transistor can be obtained, but it goes without saying that the present invention can also be applied when two or more driving organic TFT elements are provided. -. The gate electrode G of the switching organic TFT element 11 is connected to the scanning line SL to which the address signal is supplied, and the source electrode S ′ of the switching organic TFT element 11 is the data line to which the data signal is supplied. Connected to DL. The drain electrode D of the switching organic TFT element 11 is connected to one terminal of the auxiliary electrode 3 of the organic EL element 13 and the capacitor 5 capacitor 12. The anode 5 of the organic EL element 13 is connected to the power supply line Vc c L, and the other side of the capacity line 12 is connected to the capacity line V cap. The cathode 8 of the organic EL element 13 is connected to the common electrode 14. The power supply line Vc c L and the common electrode 14 are respectively connected to voltage sources (not shown) that supply power to each.
0 かかる構成の発光部 101がマトリクス状に配置されて、ァクティブマトリク ス タイプの有機 EL表示パネルが形成できる。なお、上記実施例の有機 EL 素子は、 T FT素子などをパネルの画面周囲に配置したパッシブマトリクス タイプのパネルの基板にも応用で る。 , 次に、 上記の如き構成の有機 EL素子の製造方法について説明する。The light emitting units 101 having such a configuration are arranged in a matrix, and an active matrix type organic EL display panel can be formed. The organic EL element of the above embodiment can also be applied to a substrate of a passive matrix type panel in which a TFT element or the like is arranged around the panel screen. Next, a method for manufacturing the organic EL element having the above configuration will be described.
5 '図 8 (a) に示す如く、 まず基板 2上に補助電極 3が形成される。補助電極 3 の形成は、例えばドライプロセスによる成膜方法とフォトレジストを用いたパタ 一二ング工程 を用いることとしても良い。 より具体的には、 例えば、 I TOか らなる薄膜をスパッタリング法により形成した後に、フォトレジストをスビンコ —トにより塗布する。光学マスクを用いた露光と現像によりかかるフォトレジス0 トをパターン化し、その上からミリングによりフォトレジストパターンの無い部 分の I TO膜を取り除き、 最後に剥離液を用いてフォトレジストを溶解させる。 かかる手順によって、 補助電極 3を形成することとしても良い。 5 ′ As shown in FIG. 8 (a), first, the auxiliary electrode 3 is formed on the substrate 2. The auxiliary electrode 3 may be formed by, for example, a film forming method using a dry process and a patterning process using a photoresist. More specifically, for example, after forming a thin film made of ITO by sputtering, a photoresist is applied by a spin coat. This photoresist is patterned by exposure and development using an optical mask, and the ITO film without the photoresist pattern is removed from the photoresist by milling, and finally the photoresist is dissolved using a stripping solution. The auxiliary electrode 3 may be formed by such a procedure.
次に、 図 8 (b) に示す如く、 かかる補助電極 3上に絶縁層 4が形成される。 絶縁層 4の形成 ] は、ドライプロセスによる成膜方法またはゥエツ卜プロセスに5 よる成膜方法を使用することができる。絶縁層 4が有機化合物皮膜からなる場合、 ' ゥエツトプロセスによる成膜方法が使用されても良い。例え 、 絶縁層 4は、 ポ リビニルフエノ一ル系高分子 1 O w t %プロピレングリコールモノメチルエー ' テルアセテート (P GM E A)溶液を用いてスピンコート法によ 形成すること ができる。 この場合において、当該高分子膜のうち補助電極 3上の端部などの絶 5 縁が不要な部分が P G M E Aを含ませたコットンにより拭き取られるなどして 除去された後、 ホットプレ一卜等の加熱手段を用いてベーキングが行われる。 絶縁層 4の上には、図 8 ( c )に示す如く第 1電極どなる陽極 5が形成される。 陽極 5は、蒸着法などのドライプロセスを用いて形成することとしても良い。例 えば、陽極 5は、 メタルマスクを用いた真空蒸着法により金を成膜して形成され0 ても良い。 Next, as shown in FIG. 8B, an insulating layer 4 is formed on the auxiliary electrode 3. For the formation of the insulating layer 4, a film forming method by a dry process or a film forming method by a Wetz process can be used. When the insulating layer 4 is made of an organic compound film, 'A deposition process by wet process may be used. For example, the insulating layer 4 can be formed by a spin coating method using a polyvinyl phenol polymer 1 O wt% propylene glycol monomethyl ether acetate (PGMEA) solution. In this case, after removing a portion of the polymer film that does not require an edge, such as an end on the auxiliary electrode 3, by wiping it with cotton containing PGMEA, Baking is performed using heating means. On the insulating layer 4, an anode 5 serving as a first electrode is formed as shown in FIG. The anode 5 may be formed using a dry process such as a vapor deposition method. For example, the anode 5 may be formed by depositing gold by a vacuum deposition method using a metal mask.
陽極 5が形成された後に、陽極 5と接するようにキャリア輸送性の有機半導体 材料からなる有機半導体層が形成される。有機半導体層の形成には、 蒸着法、 ス パッ夕法、 C V D法などのドライ ロセスによる成膜方法が使用できる。 ドライ プロセスによる成膜方法を使用した場合、 有機半導体材料による薄膜 6 aには、5 陽極 5の側部などの段差部において非被覆領域若しくは膜厚の薄い部分 (図 9 ( a ) ) が形成される。 これは、 蒸着材料源と蒸着面との間における角度に応じ て蒸着材料流が陽極 5によって遮断されるなどして、有機半導体材料が付着でき ない部分が形成されることによると考えられる。換言すれば、蒸着材料源から蒸 着面へ向かう蒸着材料の材料流の入射角度によつて、陽極 5が該材料流の遮蔽部0 となることによるものと考えられる。また、陽極 5の端部が蒸着材料流にほぼ平 行である場合、かかる端部に蒸着材料が付着しに.くいことにも起因しているもの と考えられる。 After the anode 5 is formed, an organic semiconductor layer made of a carrier transporting organic semiconductor material is formed so as to be in contact with the anode 5. For the formation of the organic semiconductor layer, a deposition method such as a vapor deposition method, a sputtering method, or a CVD method can be used. When the film formation method by the dry process is used, the thin film 6 a made of organic semiconductor material has an uncovered area or a thin part (Fig. 9 (a)) in the stepped part such as the side of the 5 anode 5 Is done. This is considered to be due to the formation of a portion where the organic semiconductor material cannot be adhered, for example, by the vapor deposition material flow being blocked by the anode 5 according to the angle between the vapor deposition material source and the vapor deposition surface. In other words, it is considered that the anode 5 serves as a shielding portion 0 for the material flow depending on the incident angle of the material flow of the vapor deposition material from the vapor deposition material source toward the vapor deposition surface. In addition, when the end of the anode 5 is substantially parallel to the vapor deposition material flow, it is considered that the vapor deposition material is difficult to adhere to the end.
薄膜 6 aが作製された後、 図 9 ( b ) に示す如く、 該薄膜の有機半導体材料を 流動固化処理して、有機半導体層 6を作製する。薄膜の有機半導体材料の流動は、5 例えば、有機半導体材料のガラス転移温度以上に薄膜を加熱することによって行 - . われる。ガラス転移温度以上に加熱することによって、当該薄膜は結晶状態から 非晶質状態に転移して、流動性を帯びるようになる。流動性を帯びた有機半導体 • 材料は、重力および表面張力によって陽極 5の段差部などに移動できるようにな る。 当該加熱は、 ホットプレート、ハラィドランプ等の加熱手段を用いて行われ 5 る。 なお、力 'Π熱温度を融点以上の高い温度に設定して、有機半導体材料を完全に 溶融させることとしても良い。有機半導体材料を流動せしめた後、冷却して固化 する。 その結果、 図 9 ( b ) に示す如く、 段差部分が有機半導体材料によって 覆われるとともに、 当該薄膜に存在するピンホール等の欠陥が埋められる。 なお、ドライプロセス法によって形成された薄膜の有機半導体材料を流動せし0 める方法は加熱に限定されず、例えば有機半導体材料が可溶な溶剤の蒸気に当該 薄膜を曝すことによつても行われる。溶剤の蒸気への曝露は、例えば、溶剤の蒸 気が充満しているチャンバに基板ごと挿入することによって行われても良い。な お、溶剤の蒸気は、 溶剤を加熱して,揮発せしめる、 又は噴霧装置を用いること よって得ることができる。 薄膜を溶剤の蒸気の雰囲気下に置いて流動させた後、5 かかる雰囲気から取り出すことによって固化する。 また、 場合によっては、有機 半導体層 6に含まれる溶剤を揮発させるために加熱させて除去することが好ま しい。 After the thin film 6a is produced, as shown in FIG. 9 (b), the organic semiconductor material of the thin film is fluidized and solidified to produce the organic semiconductor layer 6. The flow of the organic semiconductor material of the thin film is performed, for example, by heating the thin film above the glass transition temperature of the organic semiconductor material. -. By heating above the glass transition temperature, the thin film transitions from a crystalline state to an amorphous state and becomes fluid. Fluidized organic semiconductor • Material can move to the stepped part of the anode 5 by gravity and surface tension. The heating is performed using a heating means such as a hot plate or a halide lamp. It is also possible to completely melt the organic semiconductor material by setting the heating temperature to a temperature higher than the melting point. After flowing the organic semiconductor material, it cools and solidifies. As a result, as shown in FIG. 9B, the stepped portion is covered with the organic semiconductor material, and defects such as pinholes existing in the thin film are filled. Note that the method of causing the organic semiconductor material of the thin film formed by the dry process to flow is not limited to heating, for example, by exposing the thin film to a vapor of a solvent in which the organic semiconductor material is soluble. Done. The exposure to solvent vapor may be performed, for example, by inserting the entire substrate into a chamber full of solvent vapor. The solvent vapor can be obtained by heating the solvent to volatilize it or by using a spraying device. The thin film is placed in a solvent vapor atmosphere and fluidized, and then solidified by removing from the atmosphere. In some cases, it is preferable to remove the solvent contained in the organic semiconductor layer 6 by heating in order to volatilize it.
.有機半導体層 6が正孔注入層又は正孔輸送層のみの単層である場合、正孔注入 層又は正孔輸送層を構成する有機半導体材料の薄膜をドライプロセスによる成0 膜方法を用いて形成した後、加熱して若しくは溶剤蒸気を用いて当該有機半導体 材料を流動せしめて固化することによって、 有機半導体層 6が形成される。 なお、 有機半導体層 6が正孔注入層および正孔輸送層の複数層からなる場合、 少なくとも正孔注入層は該正孔注入層を構成する有機半導体材料の流動固化処 理によって形成されることが好ましい。かかる場合において、有機半導体層 6は、5 正孔注入層が正孔注入性を有する有機半導体材料からなる薄膜の流動固化処理 ' ' によって形成されており、さらに正孔輸送層が正孔輸送性を有する有機半導体材 料からなる薄膜の流動固化処理によって形成されていることが最も好ましい。 ' 有機半導体層 6が作製された後、 図 1 0 ( a ) に示す如く、 蒸着法等のドライ プロセスを用いて発光層 7が形成される。 When the organic semiconductor layer 6 is a single layer including only a hole injection layer or a hole transport layer, a thin film of an organic semiconductor material constituting the hole injection layer or the hole transport layer is formed by a dry film formation method. Then, the organic semiconductor layer 6 is formed by heating or using solvent vapor to cause the organic semiconductor material to flow and solidify. In the case where the organic semiconductor layer 6 is composed of a plurality of layers of a hole injection layer and a hole transport layer, at least the hole injection layer is formed by fluidized solidification processing of the organic semiconductor material constituting the hole injection layer. Is preferred. In such a case, the organic semiconductor layer 6 is obtained by fluidizing and solidifying a thin film made of an organic semiconductor material in which the 5 hole injection layer has hole injection properties. It is most preferable that the hole transport layer is formed by fluid solidification treatment of a thin film made of an organic semiconductor material having hole transportability. 'After the organic semiconductor layer 6 is fabricated, the light emitting layer 7 is formed by using a dry process such as a vapor deposition method as shown in FIG.
5 発光層 7 'の上に、 図 1 0 ( b ) に示す如く、 陰極 8が形成される。 陰極 8の形 成には、蒸着法等のドライプロセスが用いられる。 陰極 8が形成されて、有機 E L素子 1が形成される。 5 On the light emitting layer 7 ′, the cathode 8 is formed as shown in FIG. 10 (b). A dry process such as vapor deposition is used to form the cathode 8. The cathode 8 is formed, and the organic EL element 1 is formed.
上記の如く、有機半導体層 6を形成する工程において、有機半導体材料からな ' る薄膜を形成した後に、有機半導体材料のガラス転移温度(T. g )以上の温度で 0 加熱処理する若しくは溶剤蒸気の雰囲気で有機半導体材料を溶解せしめること で、 第 1電極である陽極 5と有機半導体層 6との接触が良好になる。 すなわち、 陽極 5と有機半導体層 6との接触面積が増加して、良好な陽極 -有機半導体層界 面を形成することができる。 As described above, in the step of forming the organic semiconductor layer 6, after forming a thin film made of the organic semiconductor material, it is subjected to 0 heat treatment or solvent vapor at a temperature equal to or higher than the glass transition temperature (T. g) of the organic semiconductor material. By dissolving the organic semiconductor material in this atmosphere, the contact between the anode 5 as the first electrode and the organic semiconductor layer 6 becomes good. That is, the contact area between the anode 5 and the organic semiconductor layer 6 is increased, and a good anode-organic semiconductor layer interface can be formed.
特に、陽極 5の側部などの ^陽極 5のうち 陰極 8と対面していない部分にお 5 ける陽極 5と有機半導体層 6との接触が良好となることから、当該部分から電流 注入する素子において、 キャリア注入効率を高めることができる。 In particular, since the contact between the anode 5 and the organic semiconductor layer 6 in the portion of the anode 5 that does not face the cathode 8 of the anode 5 such as the side portion of the anode 5 is good, an element that injects current from that portion. The carrier injection efficiency can be increased.
また、有機半導体層 6のステップカバレッジも良好となる。その結果、 陽極 5 から有機半導体層 6へのキヤリァの注入効率が向上する。 Also, the step coverage of the organic semiconductor layer 6 is improved. As a result, the carrier injection efficiency from the anode 5 to the organic semiconductor layer 6 is improved.
なお、有機半導体材料の薄膜を C V D法およびスパッ夕法を用いて形成した場0 合、 蒸着法に比べて成膜されない部分もしくは膜厚が薄い部分が形成され難く、 ショートやリークが発生し難い。 し力、し、有機半導体材料の流動固化処理によつ て、有機半導体層 6のステップカバレッジが良好となる故、キャリアの注入効率 が向上する。 In addition, when a thin film of organic semiconductor material is formed using the CVD method and sputtering method, it is difficult to form a portion that is not formed or a portion that is thin compared to the evaporation method, and it is difficult for short circuits and leaks to occur. . As a result of the solidification treatment of the organic semiconductor material, the step coverage of the organic semiconductor layer 6 is improved, so that the carrier injection efficiency is improved.
なお、必要に応じて、発光層 7と陰極 8との間に電子輸送層 9および または5 電子注入層 1 0を設けるために、発光層 7を形成した後に蒸着法などの成膜方法 を用いて電子輸送層 9および Zまたは電子注入層 1 0を設ける薄膜形成工程が 実施されても良い。 In order to provide the electron transport layer 9 and / or the 5 electron injection layer 10 between the light emitting layer 7 and the cathode 8, if necessary, a film forming method such as a vapor deposition method after the light emitting layer 7 is formed. A thin film forming step of providing the electron transport layer 9 and Z or the electron injection layer 10 using the above may be performed.
なお、図 3に示す如き構成の有機 E L素子、すなわち第 1電極が'陰極 8であり、 第 2電極が陽極 5であり、有機半導体層 6が電子注入層 1 0、電子輸送層 9また はこれらの'組み合わせである有機 E L素子を製造する場合、上記した製造方法の うち、 絶縁体層を作^する工程まではほぼ同一の工程を採用することができる。 絶縁層 4を作製した後、メタルマスクを用いた真空蒸着法などのドライプロセ スを用いて、 陰極 8が形成される。 陰極 8が形成された後、 陰極 8と接するよう に、キヤリァ輸送性の有機半導体材料からなる有機半導体層 6が形成される。有 機半導体層 6の形成は、蒸着法などのドライプロセスによる成膜方法を使用して 有機半導体材料からなる薄膜を成膜し、かかる薄膜の有機半導体材料の流動固化 処理を行うことによつて行われる。 なお、 有機半導体材料の流動および固化は、 上記したように、 加熱若しくは溶 蒸気を用いることによって行われる。 , 有機半導体層 6が成膜された後は、発光層 7と陽極 5とが順に成膜される。 .い ずれの層も蒸着法等のドライプロセスを用いて形成される。なお、必要に応じて、 発光層 7と陽極 5との間に正孔輸送層および/または正孔注入層を設けるため に、 蒸着法などの成膜方法を用いた薄膜形成工程が実施されても良い。 In addition, the organic EL device having the structure shown in FIG. 3, that is, the first electrode is the 'cathode 8', the second electrode is the anode 5, and the organic semiconductor layer 6 is the electron injection layer 10 and the electron transport layer 9 or In the case of manufacturing an organic EL element that is a combination of these, among the above-described manufacturing methods, almost the same process can be adopted up to the process of forming the insulator layer. After the insulating layer 4 is fabricated, the cathode 8 is formed using a dry process such as a vacuum deposition method using a metal mask. After the cathode 8 is formed, an organic semiconductor layer 6 made of a carrier transporting organic semiconductor material is formed in contact with the cathode 8. The organic semiconductor layer 6 is formed by forming a thin film made of an organic semiconductor material using a film forming method using a dry process such as an evaporation method, and subjecting the thin film organic semiconductor material to fluidization solidification treatment. Done. As described above, the organic semiconductor material is flowed and solidified by heating or using vapor. After the organic semiconductor layer 6 is formed, the light emitting layer 7 and the anode 5 are sequentially formed. Both layers are formed using a dry process such as vapor deposition. If necessary, a thin film forming step using a film forming method such as a vapor deposition method is performed to provide a hole transport layer and / or a hole injection layer between the light emitting layer 7 and the anode 5. Also good.
.図 4に示す有機 E L素子のように、第 1電極と有機半導体層 6との間にキヤリ ァ規制層 B Fを設ける場合、第 1電極が作製された後であり有機半導体層 6が成 膜される前に、蒸着法などのドライプロセスを用いてキャリア規制層 B Fが形成 される。第 1電極が陽極 5でありかつ金からなる場合、陽極 5を作製した場合に 用いたマスクと同一の開口パターンを有するメタルマスクを用いて、アルミニゥ ムを真空蒸着法により成膜して、キヤリア規制層 B Fを作製することしても良い。 なお、上記実施例において、第 1電極と第 2電極との間に発光層が設けられて いる有機 E L素子について説明しているものの、本発明の有機薄膜半導体素子は 発光素子に限定されるものではなく、縦型 MQ S構造の有機薄膜トランジス夕で あっても良い。有機薄膜トランジスタは、第 1電極と第 2電極との間に発光層が 設けられていない点を除いて、上記した有機 E L素子とほぼ同一め構成を有して いる。 When the carrier regulating layer BF is provided between the first electrode and the organic semiconductor layer 6 as in the organic EL element shown in Fig. 4, the organic semiconductor layer 6 is formed after the first electrode is formed. Before being formed, the carrier regulating layer BF is formed using a dry process such as a vapor deposition method. When the first electrode is the anode 5 and made of gold, an aluminum film is formed by vacuum deposition using a metal mask having the same opening pattern as the mask used when the anode 5 is manufactured. The regulation layer BF may be produced. In the above embodiment, the organic EL element in which the light emitting layer is provided between the first electrode and the second electrode is described. However, the organic thin film semiconductor element of the present invention is It is not limited to a light emitting device, but may be an organic thin film transistor having a vertical MQS structure. The organic thin film transistor has substantially the same configuration as the organic EL element described above except that a light emitting layer is not provided between the first electrode and the second electrode.
例えば、 0 1 1に示す如く、有機薄膜トランジスタ 1 5は、基板上に設けられ ていてゲート電極 1 '6となる補助電極と、ゲ一ト電極 1 6上に設けられている絶 縁層 4と、絶縁層 4上に設けられていてソース電極 1 7となっている第 1電極と、 ソース電極 1 7に接していてキヤリァ輸送性の有機半導体材料からなる有機半 導体層 6と、有機半導体層 6上に設けられていてドレイン電極 1 8となっている 第 2電極と、 を含んでいる。有機半導体層 6は該有機半導体材料の流動固化処理 によって形成されている。かかる有機半導体材料としては、 たとえば 4, 4 ' ビ ス [N— ( 1 ナフチル) 一 N—フエニルァミノ] —ビフエニル (いわゆる、 N P B ) が使用できる。 , 基板上に設けられている補助電極と、該補助電極上に設けられている絶縁層と、 該絶縁層上に設けられでいる第 1電極と、該第 1電極に接していてキヤリァ輸送 性の有機半導体材料からなる有機半導体層と、該有機半導体層に支持されている 第 2電極と、 を含み、該有機半導体層は該有機半導体材料の流動固化処理によつ て形成されている、 ことを特徴とする本発明の有機薄膜半導体素子によれば、第 1電極が有機半導体層によって完全に覆われ、さらに有機半導体層にピンホール 等の欠陥が発生しない'ことから、ショートおよびリークの発生を防ぐことができ る。 For example, as shown in 0 1 1, the organic thin film transistor 15 includes an auxiliary electrode provided on the substrate and serving as the gate electrode 1 ′ 6, and an insulating layer 4 provided on the gate electrode 16. A first electrode which is provided on the insulating layer 4 and serves as the source electrode 17; an organic semiconductor layer 6 which is in contact with the source electrode 17 and is made of a carrier-transporting organic semiconductor material; and an organic semiconductor layer A second electrode provided on 6 and serving as a drain electrode 18. The organic semiconductor layer 6 is formed by fluidizing and solidifying the organic semiconductor material. As such an organic semiconductor material, for example, 4,4′bis [N— (1 naphthyl) 1 N-phenylamino] —biphenyl (so-called N P B) can be used. , An auxiliary electrode provided on the substrate, an insulating layer provided on the auxiliary electrode, a first electrode provided on the insulating layer, and a carrier transport property in contact with the first electrode An organic semiconductor layer made of the organic semiconductor material, and a second electrode supported by the organic semiconductor layer, and the organic semiconductor layer is formed by fluidizing and solidifying the organic semiconductor material. According to the organic thin film semiconductor device of the present invention, the first electrode is completely covered with the organic semiconductor layer, and no defects such as pinholes are generated in the organic semiconductor layer. Occurrence can be prevented.
基板上に補助電極を設ける工程と、該補助電極 に絶縁層を設ける工程と、該 絶縁層上に第 1電極を設ける工程と、該第 1電極に接するキヤリァ輸送性の有機 半導体材料からなる有機半導体層を設ける工程と、該有機半導体層によって支持 される第 2電極を形成する工程と、 を含み、該有機半導体層を設ける工程はドラ ィプロセス法を用いて該有機半導体材料からなる薄膜を形成する工程と該薄膜 の該有機半導体材料の流動固化処理工程を含むことを特徴とする本発明の有機 薄膜半導体素子の製造方法によれば、第 1電極が有機半導体層によって完全に覆 われて有機半導体層と第 1電極との接触面積が増加し、第 1電極から有機半導体 層へのキャリアの注入効率を向上させることができる。 本出願は、日本国特許出願第 2005— 251409号公報に基づくものであ り、 当該公報を援用することにより当該公報の開示内容を含むものである。 A step of providing an auxiliary electrode on the substrate; a step of providing an insulating layer on the auxiliary electrode; a step of providing a first electrode on the insulating layer; an organic material comprising a carrier transporting organic semiconductor material in contact with the first electrode; A step of providing a semiconductor layer and a step of forming a second electrode supported by the organic semiconductor layer. According to the method for producing an organic thin film semiconductor element of the present invention, the method includes a step of forming a thin film made of the organic semiconductor material using a process method and a fluidization treatment step of the organic semiconductor material of the thin film. Since the first electrode is completely covered with the organic semiconductor layer, the contact area between the organic semiconductor layer and the first electrode is increased, and the efficiency of carrier injection from the first electrode to the organic semiconductor layer can be improved. This application is based on Japanese Patent Application No. 2005-251409, and includes the disclosure content of the publication by using the publication.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005251409 | 2005-08-31 | ||
JP2005-251409 | 2005-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007026586A1 true WO2007026586A1 (en) | 2007-03-08 |
Family
ID=37808683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/316537 WO2007026586A1 (en) | 2005-08-31 | 2006-08-17 | Organic thin-film semiconductor device and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200715628A (en) |
WO (1) | WO2007026586A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049085A (en) * | 2010-08-30 | 2012-03-08 | Nec Lighting Ltd | Organic electroluminescent element manufacturing method, organic electroluminescent element, and organic electroluminescent element lighting apparatus |
US20220115543A1 (en) * | 2020-10-14 | 2022-04-14 | Korea Advanced Institute Of Science And Technology | Charge trapping non-volatile organic memory device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182764A (en) * | 1992-01-08 | 1993-07-23 | Sekisui Chem Co Ltd | Organic electroluminescent element and its manufacture |
JPH10294181A (en) * | 1997-02-24 | 1998-11-04 | Toray Ind Inc | Organic electroluminescence element and manufacture thereof |
JP2001250682A (en) * | 2000-03-03 | 2001-09-14 | Victor Co Of Japan Ltd | Manufacturing method of organic electroluminescence element |
JP2002343578A (en) * | 2001-05-10 | 2002-11-29 | Nec Corp | Light-emitting body, light-emitting element, and light-emitting display device |
JP2004247161A (en) * | 2003-02-13 | 2004-09-02 | Morio Taniguchi | Manufacturing method of organic electroluminescent element |
JP2004281251A (en) * | 2003-03-17 | 2004-10-07 | Sharp Corp | Organic el device and its manufacturing method |
JP2005005149A (en) * | 2003-06-12 | 2005-01-06 | Tohoku Pioneer Corp | Organic EL device and manufacturing method thereof |
JP2005174921A (en) * | 2003-11-18 | 2005-06-30 | Fuji Xerox Co Ltd | Manufacturing method of organic electroluminescent element and organic electroluminescent element |
-
2006
- 2006-08-17 WO PCT/JP2006/316537 patent/WO2007026586A1/en active Application Filing
- 2006-08-21 TW TW095130632A patent/TW200715628A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182764A (en) * | 1992-01-08 | 1993-07-23 | Sekisui Chem Co Ltd | Organic electroluminescent element and its manufacture |
JPH10294181A (en) * | 1997-02-24 | 1998-11-04 | Toray Ind Inc | Organic electroluminescence element and manufacture thereof |
JP2001250682A (en) * | 2000-03-03 | 2001-09-14 | Victor Co Of Japan Ltd | Manufacturing method of organic electroluminescence element |
JP2002343578A (en) * | 2001-05-10 | 2002-11-29 | Nec Corp | Light-emitting body, light-emitting element, and light-emitting display device |
JP2004247161A (en) * | 2003-02-13 | 2004-09-02 | Morio Taniguchi | Manufacturing method of organic electroluminescent element |
JP2004281251A (en) * | 2003-03-17 | 2004-10-07 | Sharp Corp | Organic el device and its manufacturing method |
JP2005005149A (en) * | 2003-06-12 | 2005-01-06 | Tohoku Pioneer Corp | Organic EL device and manufacturing method thereof |
JP2005174921A (en) * | 2003-11-18 | 2005-06-30 | Fuji Xerox Co Ltd | Manufacturing method of organic electroluminescent element and organic electroluminescent element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049085A (en) * | 2010-08-30 | 2012-03-08 | Nec Lighting Ltd | Organic electroluminescent element manufacturing method, organic electroluminescent element, and organic electroluminescent element lighting apparatus |
US20220115543A1 (en) * | 2020-10-14 | 2022-04-14 | Korea Advanced Institute Of Science And Technology | Charge trapping non-volatile organic memory device |
US11984513B2 (en) * | 2020-10-14 | 2024-05-14 | Korea Advanced Institute Of Science And Technology | Charge trapping non-volatile organic memory device |
Also Published As
Publication number | Publication date |
---|---|
TW200715628A (en) | 2007-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090135105A1 (en) | Light-emitting element and display apparatus using the same | |
JP4934774B2 (en) | Organic light emitting transistor and display device | |
JP4310984B2 (en) | Organic light emitting display | |
US8094096B2 (en) | Organic electroluminescence display device and manufacturing method thereof | |
KR100597698B1 (en) | Display elements | |
US6316786B1 (en) | Organic opto-electronic devices | |
WO2007043704A1 (en) | Light-emitting device and display | |
JP3614335B2 (en) | Organic EL display device and manufacturing method thereof | |
JP4381206B2 (en) | Light emitting transistor | |
US6524884B1 (en) | Method for fabricating an organic electroluminescene device having organic field effect transistor and organic eloectroluminescence diode | |
JP2004296154A (en) | Electrode, its manufacturing method, and organic electroluminescent element | |
JP2002289355A (en) | Organic semiconductor diode and organic electroluminescent element display | |
US20090218941A1 (en) | Organic semiconductor light-emitting device and display device | |
JP2007027763A (en) | Organic light emitting diode device having multiple stacked layers, and organic light emitting diode device | |
WO2007043696A9 (en) | Thin film semiconductor device and display | |
CN1731904B (en) | Thin film transistor and flat panel display device comprising same | |
WO2006098420A1 (en) | Light-emitting device and display | |
JP2007109564A (en) | Light emitting element and display device | |
WO2007026586A1 (en) | Organic thin-film semiconductor device and method for manufacturing same | |
KR20160094567A (en) | Top emission organic light emitting diode, manufacturing method thereof and display device comprising the same | |
JP2004152595A (en) | Display apparatus | |
JP4444267B2 (en) | Manufacturing method of display device | |
US20070278477A1 (en) | Organic Semiconductor Light-Emitting Device | |
Destruel et al. | OLEDs: a new technology for lighting and displays. | |
KR20070037851A (en) | Display device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06796700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |