[go: up one dir, main page]

WO2007023944A1 - 複合樹脂成形体、積層体、多層回路基板および電子機器 - Google Patents

複合樹脂成形体、積層体、多層回路基板および電子機器 Download PDF

Info

Publication number
WO2007023944A1
WO2007023944A1 PCT/JP2006/316727 JP2006316727W WO2007023944A1 WO 2007023944 A1 WO2007023944 A1 WO 2007023944A1 JP 2006316727 W JP2006316727 W JP 2006316727W WO 2007023944 A1 WO2007023944 A1 WO 2007023944A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
circuit board
composite resin
resin molded
insulating layer
Prior art date
Application number
PCT/JP2006/316727
Other languages
English (en)
French (fr)
Inventor
Makoto Fujimura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to US11/990,912 priority Critical patent/US20090151984A1/en
Priority to JP2007532199A priority patent/JPWO2007023944A1/ja
Publication of WO2007023944A1 publication Critical patent/WO2007023944A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention is excellent in flame retardancy, electrical insulation and crack resistance, and does not easily generate harmful substances during incineration! /, A composite resin molded article, a method for producing the same, and the above resin molding A cured product obtained by curing the body, a laminate obtained by laminating a substrate and an electrical insulating layer made of the cured product, a method for producing the same, and a conductor layer formed on the electrical insulating layer of the laminate.
  • the present invention relates to a multilayer circuit board, a manufacturing method thereof, and an electronic apparatus having the multilayer board.
  • a multilayer circuit board is formed by laminating an electric insulation layer on an inner substrate composed of an electric insulation layer and a conductor layer formed on the surface, and placing the conductor layer on the electric insulation layer. Obtained by forming.
  • the electrical insulating layer and the conductor layer can be laminated in several stages as required.
  • Patent Document 1 a method of blending a flame retardant such as a halogen-based flame retardant into the electrical insulating layer is known.
  • an electrical insulating layer containing a flame retardant has problems of insufficient strength and cracking or deterioration of electrical characteristics due to impact and thermal history.
  • a method of increasing the strength of the electrical insulation layer a method of reinforcing with a glass cloth is known. However, this method further deteriorates the electrical characteristics, and the flame retardant spreads uniformly throughout the electrical insulation layer. In some cases, the flame retardancy was insufficient.
  • Patent Document 2 a non-woven fabric made of a liquid crystal polyester card is impregnated with an epoxy resin having a biphenyl and novolak structure, an acrylonitrile butadiene rubber, and a thermosetting agent as essential components. After that, a method of making a semi-cured state through a drying process has been proposed.
  • the electrical insulating layer formed using the multilayer wiring board adhesive sheet obtained by this method has insufficient electrical properties such as dielectric constant and dielectric loss tangent, and thus the formed electrical insulation layer. It was difficult to form high-density and fine wiring on the edge layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-255848
  • Patent Document 2 JP 2005-175265 A
  • the present invention has been made in view of such a state of the art, and is excellent in flame retardancy, electrical insulation and crack resistance, and is a composite resin that hardly generates harmful substances during incineration.
  • a molded body, a cured product obtained by curing the molded body, a laminate formed by laminating a substrate and an electrical insulating layer made of the cured product, a manufacturing method thereof, and a conductor layer on the electrical insulating layer of the laminated body It is an object of the present invention to provide a multilayer circuit board formed by forming a multilayer circuit board, a method for manufacturing the same, and an electronic apparatus having the multilayer board.
  • a polymer having a specific molecular weight and a carboxyl group or carboxylic anhydride group content and a curable resin containing a curing agent.
  • the cured product of the composite resin molded body in which the composition is impregnated into a cloth made of a liquid crystal polymer long fiber is excellent in flame retardancy, electrical insulation and crack resistance, and generates harmful substances during incineration. And found that the present invention was completed based on this finding.
  • the weight average molecular weight is 10,000 to 250, 000, and has a carboxyl group or a carboxylic acid anhydride group, and the carboxyl group or the carboxylic acid anhydride group.
  • Curing containing a polymer (A) having a content of 5 to 60 mol% and a curing agent (B) There is provided a composite resin molded article obtained by impregnating a cloth made of a long fiber fiber of a liquid crystal polymer with a functional resin composition.
  • the polymer (A) is an alicyclic polyolefin polymer. It is preferable that the unit area of the cloth also has a long fiber strength of the liquid crystal polymer. it preferably has a weight per can is preferred instrument wherein the liquid crystal polymer that is 3 ⁇ 55GZm 2 is a wholly aromatic polyester Le.
  • the weight average molecular weight is 10,000 to 250,000
  • the carboxyl group or the carboxylic acid anhydride group is contained, and the content of the carboxyl group or the carboxylic acid anhydride group is It is characterized by impregnating a curable resin varnish containing 5 to 60 mol% of the polymer (A), the curing agent (B), and an organic solvent into a cloth having a long fiber strength of a liquid crystal polymer and drying.
  • a method for producing a composite resin molded product is provided.
  • a cured product obtained by curing the composite resin molded article of the present invention.
  • a laminate comprising a substrate having a conductor layer (I) on the surface and an electrical insulating layer made of the cured product of the present invention.
  • the composite resin molded body of the present invention is heat-pressed and cured to form an electrical insulating layer.
  • the manufacturing method of the laminated body of this invention is provided.
  • a multilayer circuit board in which a conductor layer (II) is further formed on the electrically insulating layer of the laminate of the present invention.
  • a method for producing a multilayer circuit board according to the present invention which comprises a step of forming a conductor layer ( ⁇ ) by plating on the electrical insulating layer of the laminate according to the present invention.
  • an electronic apparatus including the multilayer circuit board according to the present invention.
  • the composite resin molded article of the present invention has a weight average molecular weight of 10,000 to 250,000 and has a carboxyl group or a carboxylic acid anhydride group (hereinafter, both may be collectively referred to as “carboxyl group etc.”). And the content of the carboxyl group or carboxylic acid anhydride group is 5 It is obtained by impregnating a cloth having a long fiber strength of a liquid crystal polymer with a curable resin composition containing the polymer (A) and the curing agent (B) of ⁇ 60 mol%.
  • the polymer (A) used in the present invention has a weight average molecular weight of 10,000 to 250,000, has a carboxyl group, etc., and a content of the carboxyl group etc. is 5 to 60 mol% If so, the polymer forming the skeleton (that is, a polymer having a structure in which a carboxyl group or the like is substituted with hydrogen, or a polymer having a structure in which a carboxyl group or the like is removed) is not particularly limited.
  • polymer (A) for example, epoxy resin, maleimide resin, acrylic resin, methanol resin, diallyl phthalate resin, triazine resin, alicyclic olefin polymer, aromatic Examples thereof include polyether polymers, benzocyclobutene polymers, cyanate ester polymers, polyimide resins. These polymers can be used alone or in combination of two or more.
  • alicyclic olefin polymer aromatic polyether polymer, benzocyclobutene polymer, cyanate ester polymer and polyimide resin.
  • the alicyclic olefin polymer is a homopolymer or copolymer of an alicyclic compound having a carbon-carbon unsaturated bond (referred to as alicyclic olefin), and derivatives thereof (hydrogenation). This is a general term for things, etc.).
  • the polymerization mode may be addition polymerization or ring-opening polymerization.
  • alicyclic olefin polymer examples include a ring-opening polymer of a norbornene monomer and a hydrogenated product thereof, an addition polymer of a norbornene monomer, a norbornene monomer and a vinyl compound, Addition polymers, monocyclic cycloalkene addition polymers, alicyclic conjugated gen polymers, vinyl alicyclic hydrocarbon polymers and hydrogenated products thereof, aromatic hydrogenated aromatic olefin polymers, etc.
  • examples thereof include a polymer in which an alicyclic structure is formed by hydrogenation after polymerization and has a structure equivalent to that of an alicyclic olefin polymer.
  • ring-opening polymers of norbornene monomers and their hydrogenated products addition polymers of norbornene monomers, addition polymers of norbornene monomers and vinyl compounds, aromatic olefins
  • the polymer (A) is an alicyclic olefin polymer
  • a carboxyl group or the like may be directly bonded to a carbon atom forming the alicyclic structure, but may be a methylene group, an oxy group, an oxycarbo- Bonded via other divalent groups such as a ruoxyalkylene group and a phenylene group! /, Or even! / ⁇ ⁇
  • the polymer (A) used in the present invention has a weight average molecular weight (Mw) of 1S, usually 10,000 to 250,000, preferably ⁇ 15,000 to 150,000, more preferably ⁇ It is from 20, 000 to 100,000.
  • Mw weight average molecular weight
  • the strength of the obtained electrical insulating layer may be insufficient, and the electrical insulating property may be lowered.
  • Mw is too large, the compatibility between the polymer (A) and the curing agent (B) decreases, the surface roughness of the electrical insulating layer increases, and the accuracy of the wiring pattern may decrease.
  • the Mw of the polymer (A) can be measured by gel 'permeation' chromatography (GPC) and obtained as a polystyrene equivalent value.
  • a method for adjusting the Mw of the polymer (A) to the above range may be in accordance with a conventional method.
  • a molecular weight modifier such as a compound or a gen compound is added in an amount of about 0.1 to L0 mol% with respect to the total amount of monomers.
  • molecular weight regulators that can be used include vinyl compounds such as 1-butene, 1-pentene, 1-hexene, 1-octene and other ⁇ -olefin compounds; styrene and butyltoluene and other styrene compounds; Ether compounds such as ethyl vinyl ether, isobutyl vinyl ether and allyl glycidyl ether; halogen-containing butyl compounds such as allyl chloride; and other vinyl compounds such as allyl acetate, allyl alcohol, glycidyl methacrylate and acrylamide; Etc.
  • vinyl compounds such as 1-butene, 1-pentene, 1-hexene, 1-octene and other ⁇ -olefin compounds
  • styrene and butyltoluene and other styrene compounds Ether compounds such as ethyl vinyl ether, isobutyl vinyl ether and allyl glycidy
  • Gen compounds include 1,4 pentagen, 1,5 hexagen, 1,6 butadiene, 2-methyl-1,4 pentagen, 2,5 dimethyl-1,5 hexagen, etc. 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentagen, 1,3-hexagen, etc. Conjugated compounds such as Can be mentioned.
  • polymer (A) used in the present invention Mw is intended within the above range, and content of 5 to 60 moles of a carboxyl group 0/0, preferably from 10 to 50 mole 0/0, More preferably, it is 15 to 40 mol%.
  • the content of carboxyl groups and the like refers to the ratio of the number of moles of carboxyl groups to the total number of monomer units in the polymer.
  • the content of the carboxyl group or the like of the polymer (A) is too small, the adhesion and heat resistance may be lowered, and if the content is too large, the electrical insulation may be lowered.
  • the carboxyl group content and the like can be determined by measuring the 1 H-NMR spectrum of the polymer (A).
  • the acid value of the polymer (A) used in the present invention is usually 10 to 400 mgKOHZg, preferably 50 to 400 mgKOH / g.
  • the acid value is generally the number of mg of potassium hydroxide required to neutralize the carboxyl group and the like contained in the sample lg.
  • the adhesion and heat resistance may be lowered, and if the acid value is too large, the electrical insulation property may be lowered.
  • the acid value of the polymer (A) can be measured and determined by a method according to JIS K 0070. That is, the acid value of the polymer (A) is determined by dissolving the polymer (A) in tetrahydrofuran (THF), and then adding a solution of tetra n-butyl ammonium hydroxide ((n—C H) N + OPT) at a predetermined concentration.
  • THF tetrahydrofuran
  • OPT tetra n-butyl ammonium hydroxide
  • the method of setting the content (or acid value) of the carboxyl group or the like of the polymer (A) in the above range is not particularly limited.
  • an alicyclic olefin monomer containing a carboxyl group or the like A method of copolymerizing with a monomer (ethylene, 1-hexene, 1, 4 1-hexagen, etc.) that can be homopolymerized or copolymerized therewith;
  • a method of polymerizing a norbornene-based monomer having a carboxyl group precursor and then converting the precursor group to a carboxyl group by hydrolysis or the like a method of polymerizing a norbornene-based monomer having a carboxyl group precursor and then converting the precursor
  • the carboxyl group-containing alicyclic olefin monomer used in the method (i) includes 8 hydroxycarbo-tetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] , 5 Hydroxy carbobicyclo [2. 2. 1] Hepto-2, 5-methyl-5 hydroxy carbobicyclo [2. 2. 1] Hepto-2, 5 carboxymethyl-5 Hydroxy carbobicyclo [ 2. 2. 1] Hepto-2, 8-methyl-8 hydroxycarbonyltetracyclo [4. 4. 0. I 2 ' 5.
  • the carboxylic acid anhydride group-containing alicyclic olefin monomer used in the method (i) includes bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic anhydride, tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] dodecane force one 3 E down one 8, 9-dicarboxylic acid anhydride, to Kisashikuro [6. 6. 1. I 3 '6 . I 10 '13 0 2.' 7 0 9 '14] heptadecyl force -. 4 E down - 11, 12-dicarboxylic anhydride, and the like.
  • bicyclo [2.2.1] heptoe-2-ene (Common name: norbornene), 5-ethyl bicyclo [2.2.1] hepto-2, 5-butyl bibicyclo [2.2.1] hepto-2en, 5-ethylidenebicyclo [2. 2. 1] Hepto-2, 5-methylidene-bicyclo [2. 2. 1] Hepto-2, 5-bulu-bicyclo [2. 2. 1] Hepto-2, tricyclo [4. 3.
  • Pentade Rikiichi 4 11—Gen, Cyclopente , Cyclopentadiene, 1,4-methanoyl 1, 4, 4a, 5, 10, 10a-hexahydroanthracene, 8 phenyl tetracyclo [4. 4. 0. I 2 ' 5. I 7 '10] de de force one 3 E down, and the like.
  • the carbon-carbon unsaturated bond-containing compound having a carboxyl group or the like used in the method (ii) includes acrylic acid, methacrylic acid, a-ethylacrylic acid, 2-hydroxyethylacrylic acid, 2-hydroxyethylmethacrylic acid.
  • Norbornene-based monomers containing a carboxyl group precursor used in the method (iii) include 8-methyl 8-methoxycarbo-tetracyclo [4. 4. 0. I 2 ' 5 . I 7 ' 1 . ] Dode force 1, 5-methoxycarbo-rubicyclo [2.2.1] hept-2, 5-methyl-5-methoxy carbo-rubicyclo [2.2.1] hept-2, etc. It is.
  • the polymer (A) may have a functional group other than a carboxyl group (hereinafter, “other functional group” t may be present).
  • other functional groups include an alkoxycarbo group, a cyano group, a hydroxyl group, an epoxy group, an alkoxyl group, an amino group, an amide group, and an imide group.
  • the amount of these other functional groups is preferably 30 mol% or less with respect to the carboxyl group or the like. It is more preferably 10 mol% or less, and particularly preferably 1 mol% or less.
  • the glass transition temperature (Tg) of the polymer (A) used in the present invention is not particularly limited, but is preferably 120 to 300 ° C. If the Tg is too low, the resulting electrical insulation layer cannot maintain sufficient electrical insulation at high temperatures. If the Tg is too high, a crack is generated when the multilayer wiring board receives a strong impact, resulting in a conductor layer. May be damaged.
  • the polymer (A) used in the present invention is electrically insulating.
  • the volume resistivity according to ASTM D257 of the polymer (A) is preferably 1 X 10 12 ⁇ 'cm or more 1 ⁇ 10 13 ⁇ ⁇ « ⁇ or more is more preferable 1 ⁇ 10 14 It is particularly preferable that ⁇ ⁇ « ⁇ or more.
  • the curing agent ( ⁇ ) used in the present invention is not limited as long as it can crosslink the polymer ( ⁇ ) by heating. Of these, compounds capable of forming a crosslinked structure by reacting with the carboxyl group of the polymer ( ⁇ ) are preferred.
  • Examples of powerful crosslinking agents include polyvalent epoxy compounds, polyvalent isocyanate compounds, polyvalent amine compounds, polyvalent hydrazide compounds, aziridine compounds, basic metal oxides, and organic metal halides. Examples include porridges. These curing agents can be used alone or in combination of two or more. Peroxides can also be used as curing agents.
  • Examples of the polyvalent epoxy compound include a phenol novolak type epoxy compound, a cresol novolac type epoxy compound, a talesol type epoxy compound, a bisphenol type epoxy compound, a bisphenol F type epoxy compound, and a brominated bisphenol A type.
  • Examples thereof include compounds having two or more epoxy groups in the molecule, such as a polyvalent epoxy compound such as a min type epoxy compound and an isocyanurate type epoxy compound.
  • the polyisocyanate toy compound includes diisocyanates and triy having 6 to 24 carbon atoms. Sosocyanates are preferred. Examples of diisocyanates include 2,4 tolylene diisocyanate, 2,6 tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, p-phenolic diisocyanate. And so on. Examples of triisocyanates include 1, 3, 6 hexamethylene triisocyanate, 1, 6, 11-undecane triisocyanate, bicycloheptane triisocyanate, and the like.
  • polyvalent amine compounds examples include aliphatic polyvalent amine compounds having 2 or more amino groups and 4 to 30 carbon atoms, aromatic polyvalent amine compounds, and the like. Guadine compounds Such as those having non-conjugated nitrogen-carbon double bonds are not included.
  • Examples of the aliphatic polyvalent amine compound include hexamethylenediamine, N, N'-dicinnamylidene 1,6hexanediamine, and the like.
  • Aromatic polyvalent amine compounds include 4,4-methylene diamine, m-phenylenediamine, 4,4,1 diaminodiphenyl ether, 4,-(m-phenylene isopropylidene) diamine, 4, 4,-(p-Phenylenediisopropylidene) diline, 2, 2, monobis [4- (4 aminophenoxy) phenol] propane, 1, 3, 5 benzenetriamine, etc. .
  • polyhydric hydrazide compounds include isophthalic acid dihydrazide, terephthalic acid dihydrazide, 2, 6 naphthalenedicarboxylic acid dihydrazide, maleic acid dihydrazide, itaconic acid dihydrazide, trimellitic acid dihydrazide, 1, 3, 5 benzenetricarboxylic acid Examples include dihydrazide and pyromellitic acid dihydrazide.
  • aziridine compounds include tris-2,4,6- (1 aziridyl) 1,3,5 triazine, tris [1- (2-methyl) azilidyl] phosphinoxide, hex [1- ( 2-methyl) aziridinyl] triphosphatriazine and the like.
  • peroxides examples include known organic peroxides such as ketone peroxides, peroxyketals, hydride peroxides, diallyl peroxides, disilver oxides, peroxyesters, and baroxydicarbonates. Examples include acid compounds.
  • the reactivity with the polymer (A) is moderate, and the resulting composite resin molded article can be easily melted, processed, and laminated.
  • Bisphenol A bis (propylene glycol glycidyl ether) ether and other bis Phenol type A epoxy compound is more preferred!
  • the amount of the curing agent (B) used is usually 1 to: LOO parts by weight, preferably 5 to 80 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the polymer (A). It is a range.
  • the curable resin composition used in the present invention preferably further contains a curing accelerator from the viewpoint of easily obtaining a highly heat-resistant cured product.
  • a curing accelerator such as a tertiary amine compound or a boron trifluoride complex compound is preferably used.
  • the use of a tertiary ammine compound is preferred because it improves the stackability, insulation resistance, heat resistance, chemical resistance, etc. for fine wiring.
  • tertiary amine compounds include chain tertiary amine compounds such as benzylmethylamine, triethanolamine, triethylamine, tributylamine, tribenzylamine, dimethylformamide; pyrazoles, pyridines, And nitrogen-containing heterocyclic compounds such as pyrazines, pyrimidines, indazoles, quinolins, isoquinolines, imidazoles, and triazoles.
  • imidazoles, particularly substituted midazole compounds having a substituent are preferable.
  • imidazole compound examples include 2-ethylimidazole, 2-ethyl-4-methylimidazole, bis-2-ethyl-4-methylimidazole, 1-methyl-2-ethylimidazole, 2-isopropylimidazole, 2,4-dimethylimidazole, and 2-heptadecylimidazole.
  • Alkyl substituted imidazole compounds 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1 benzyl-2-ethylimidazole, benzimidazole, 2 ethyl-4-methyl-1 (2 'cyanoethyl) imidazole, 2 — ethyl It has a ring structure such as 4-methyl-1-1- [2,-(3 ", 5" -daminotriazyl) ethyl] imidazole, 1-benzyl-2-aryl-imidazole, etc. Imidazole compounds substituted with a hydrocarbon group; and the like. These curing accelerators can be used singly or in combination of two or more.
  • the blending amount of the curing accelerator is appropriately set according to the purpose of use, but is usually 0.001 to 30 parts by weight, preferably 0.01 to 100 parts by weight based on 100 parts by weight of the polymer (A). LO parts by weight, more preferably 0.03 to 5 parts by weight.
  • the cloth having a long fiber strength of the liquid crystal polymer used in the present invention is a woven fabric or a nonwoven fabric using a liquid crystalline polyester long fiber.
  • the liquid crystalline polyester long fiber here is
  • a continuous filament obtained by spinning a polymer having an ester bond and showing a liquid crystal state (hereinafter sometimes referred to as “liquid crystal polymer”) by melt extrusion or the like.
  • liquid crystal polymers examples include the compounds (a) to (d) exemplified below, and known liquid crystal polyesters and liquid crystal polyesters obtained by copolymerizing these compounds in appropriate combinations. Amides are mentioned.
  • Aromatic diamine, aromatic hydroxylamine or aromatic aminocarboxylic acid Among these, as the liquid crystal polymer, a wholly aromatic polyester having substantially no aliphatic hydrocarbon in the main chain is preferred. .
  • the wholly aromatic polyester is synthesized by combining monomers such as aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid, and changing the composition ratio.
  • monomers such as aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid, and changing the composition ratio.
  • a copolymer of P-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid, a copolymer of p-hydroxybenzoic acid or terephthalic acid and 4,4′-dihydroxybiphenyl, and the like can be mentioned.
  • Examples of the form of the cloth made of liquid crystal polymer long fiber include woven or non-woven cloth such as roving cloth, chopped mat, and surfing mat.
  • nonwoven fabric is preferred from the viewpoint of workability, which is preferred from the viewpoint of dimensional stability.
  • what compressed these woven fabrics or nonwoven fabrics with the hot roll etc. is also preferable.
  • a woven fabric and a non-woven fabric are laminated in order to combine the features of both. May be used. Further, a cloth having a long fiber strength of a liquid crystal polymer may be used by mixing glass, aramid, polybenzoxazole, and a natural cellulosic fiber cloth or microfibril.
  • the cloth having long fiber strength of the liquid crystal polymer used in the present invention can arbitrarily change the thickness of the obtained insulating resin layer depending on the weight per unit area.
  • the weight per unit area of the cloth, which also has the long fiber strength of the liquid crystal polymer is preferably 3 to 55 g / m 2 , more preferably 6 to 45 g Zm 2 .
  • the weight per unit area is too small, the strength of the cloth may be insufficient and coating may be difficult. If it is too large, it will be difficult to reduce the thickness of the resulting insulating resin layer. There may be a problem that it is difficult to control the thickness of the time.
  • Examples of the cloth that also has a long fiber strength of the liquid crystal polymer suitably used in the present invention include a nonwoven fabric composed of fibers obtained by highly orienting a wholly aromatic polyester by the melt blow method. Specifically, Veculus and Vectran (both are trade names of Kuraray) can be used.
  • the composite resin composition of the present invention is obtained by impregnating the above-mentioned curable resin composition with a cloth having a long fiber strength of a liquid crystal polymer.
  • the composite resin molded article of the present invention may be uncured or semi-cured.
  • uncured is a state in which the entire polymer (A) is substantially dissolved in a solvent capable of dissolving the polymer (A).
  • Semi-cured is a state in which the polymer (A) is partially cured to such an extent that it can be further cured by heating, and preferably a part of the polymer (A) (specifically, in a solvent capable of dissolving the polymer (A)). 7% by weight or more) or a swelling rate when the composite resin molded article is immersed in a solvent for 24 hours is 200% or more of the volume before immersion.
  • the content ratio of the cloth having long fiber strength of the liquid crystal polymer in the composite resin molded article of the present invention is usually 20 to 90% by weight, preferably 30 to 85% by weight. If the content ratio of the cloth, which is the long fiber strength of the liquid crystal polymer, is too small, the flame retardancy may decrease, and if it is too large, it may be difficult to control the thickness during lamination.
  • the content ratio of the cloth which is the long fiber strength of the liquid crystal polymer, is, for example, that the polymer (A) is uncured.
  • the insoluble component force obtained by dissolving the composite resin molded article in a solvent that can dissolve the polymer (A) but not the liquid crystal polymer can also be measured.
  • the weight force per unit area of the cloth, which also has the long fiber force of the liquid crystal polymer used, can be obtained by calculation.
  • the method of impregnating the curable resin composition with the long fiber strength of the liquid crystal polymer is not particularly limited, but a varnish (curable resin) in which the curable resin composition is dissolved or dispersed in an organic solvent is not particularly limited. A method of impregnating this with a cloth having a long fiber strength of a liquid crystal polymer and drying it is preferable.
  • the curable resin composition is used as a varnish, the polymer (A) is preferably soluble in an organic solvent to be used at room temperature.
  • the organic solvent used for the preparation of the varnish preferably has a boiling point of 30 to 250 ° C, more preferably 50 to 200 ° C. When an organic solvent having a boiling point in such a range is used, it is suitable for heating and volatilizing and drying later.
  • strong organic solvents include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene, and trimethylbenzene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and n-heptane.
  • Alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane
  • Halogenated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • the amount of the organic solvent used is appropriately selected depending on the desired thickness and surface flatness of the composite resin molded article, but the solid content concentration of the varnish is usually 5 to 70% by weight, preferably 10 to The range is 65% by weight, more preferably 20 to 60% by weight.
  • the method for preparing the varnish there are no particular restrictions on the method for preparing the varnish.
  • the polymer (A), the curing agent (B), the organic solvent, and optional components blended as necessary may be mixed according to a conventional method.
  • Examples of the mixer used for mixing include a magnetic stirrer, a high-speed homogenizer, a disperser, a planetary stirrer, a twin-screw stirrer, a ball mill, and a three roll.
  • the mixing temperature is preferably within the range where no curing reaction is caused by the curing agent (B) and below the boiling point of the organic solvent.
  • the method for impregnating the varnish into the cloth having a long fiber strength of the liquid crystal polymer is not particularly limited.
  • dip coating method, roll coating method, curtain coating method, die coating method there is a method in which varnish is applied to a cloth having a long fiber strength of a liquid crystal polymer by a known coating method such as a slit coating method or a gravure coating method.
  • a cloth having a long fiber strength of a liquid crystal polymer may be set on the support in advance, and the varnish may be applied thereto.
  • Examples of the support used include a resin film and a metal foil.
  • the resin film examples include polyethylene terephthalate film, polypropylene film, polyethylene film, polycarbonate film, polyethylene naphthalate film, polyarylate film, and nylon film. Of these films, polyethylene terephthalate film and polyethylene naphthalate film are preferred from the viewpoint of heat resistance, chemical resistance, peelability, and the like.
  • metal foil examples include copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil.
  • the thickness of the support is not limited, but from the viewpoint of workability and the like, it is usually 1 to 150 / zm, preferably 2 to: ⁇ / ⁇ ⁇ , more preferably 5 to 80 / ⁇ ⁇ . is there.
  • the surface average roughness Ra of the support is usually 300 nm or less, preferably 150 nm or less, more preferably lOOnm or less. If the surface average roughness Ra of the support is too large, the surface average roughness Ra of the electrically insulating layer formed by curing the resulting composite molded body increases, and a fine wiring pattern can be formed as a conductor layer. It becomes difficult.
  • the composite resin molded article of the present invention By drying the cloth having a long fiber strength of the liquid crystal polymer coated with the varnish, the composite resin molded article of the present invention can be obtained.
  • the drying conditions for the cloth made of the long fiber of the liquid crystal polymer coated with the varnish are appropriately selected depending on the type of the organic solvent. Specifically, the drying temperature is usually 20 to 300 ° C, preferably 30 to 200 ° C. If the drying temperature is too high, the curing reaction proceeds and the resulting composite resin molded article may not be in an uncured or semi-cured state.
  • the drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.
  • the composite resin molding of the present invention has high flame retardancy, but the purpose is to improve flame retardancy In addition, it may contain a flame retardant.
  • the flame retardant used is preferably a halogen-free flame retardant that generates little harmful substances during incineration.
  • halogen-free flame retardants include antimony compounds such as antimony trioxide, antimony pentoxide, and sodium antimonate; aluminum hydroxide, magnesium hydroxide, zinc borate, guanidine sulfamate, and zirconium compounds.
  • Inorganic flame retardants such as molybdenum compounds, aluminum borates, tin compounds, organometallic compounds such as fuescene, phosphate esters, aromatic condensed phosphate esters, phosphazene compounds, phosphorus-containing epoxy Compound, reactive phosphorus compound, ammonium polyphosphate, melamine phosphate, melamine polyphosphate, melam salt polyphosphate, melem salt polyphosphate, melamine polymelamine 'melam' melem double salt, red phosphorus, Phosphorus-based flame retardants such as phosphazene compounds; and the like.
  • magnesium hydroxide, aluminum hydroxide, phosphazene compounds, melamine phosphate, melamine polyphosphate, melam salt polyphosphate, and melem salt polyphosphate are particularly preferred for heat resistance, moisture resistance and flame retardancy.
  • magnesium hydroxide and melamine polyphosphate 'melam' melem double salt are preferable.
  • the composite resin molded article of the present invention may further contain a range of amounts of fillers and additives without impairing the original properties for the purpose of imparting desired performance depending on the application. .
  • Examples of the filler used include carbon black, silica, alumina, barium titanate, talc, mica, glass beads, and glass hollow spheres.
  • additives include soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, pigments,
  • additives include soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, pigments,
  • examples include natural oils, synthetic oils, waxes, emulsions, magnetic materials, dielectric property modifiers, toughening agents, and laser processability improvers.
  • the method of blending optional components such as the above-mentioned flame retardant, filler and additive is not particularly limited, but is usually used by blending with the curable resin composition, preferably the soot base.
  • the curable resin composition preferably the soot base.
  • the shape of the composite resin molded article of the present invention is not particularly limited, but may be a film or a sheet. Preferably there is.
  • the thickness of the film or sheet is usually 1 to 150 m, preferably 3
  • LOO ⁇ m More preferably 5 to 80 ⁇ m.
  • the composite resin molded article of the present invention is excellent in flame retardancy, electrical insulation and crack resistance, and
  • the cured product of the present invention is obtained by curing the above-described composite resin molded article of the present invention.
  • the composite resin molded body is usually cured by heating the composite resin molded body.
  • Curing conditions are appropriately selected according to the type of curing agent. Curing temperature is usually 30-400
  • Curing time is from 0.1 to
  • the heating method is not particularly limited.
  • an electric oven can be used!
  • the compound having a metal coordination ability Prior to curing, the compound having a metal coordination ability is brought into contact with the composite resin molded body.
  • the surface of the composite resin molded article can be smoothed, and the adhesiveness with the metal thin film coated in the subsequent step can be improved.
  • Examples of the compound having metal coordination ability include imidazoles such as 1 (2 aminoethyl) 2-methylimidazole; pyrazoles; triazoles; triazines; and the like.
  • the cured product of the present invention is obtained by curing the composite resin molding of the present invention, and is excellent in flame retardancy, electrical insulation and crack resistance, and generates harmful substances during incineration. It is difficult to do. Therefore, it is suitable as an electrical insulating layer of the laminate and the multilayer circuit board of the present invention.
  • the laminate of the present invention is formed by laminating a substrate having a conductor layer (I) on the surface and an electrically insulating layer made of the cured product of the present invention.
  • the substrate used in the present invention has a conductor layer (I) on the surface of an electrically insulating substrate.
  • the electrically insulating substrate is a known electrically insulating material (for example, alicyclic olefin polymer, epoxy resin, maleimide resin, acrylic resin, methallyl resin, diallyl phthalate resin, triazine resin, It is formed by curing a curable resin composition containing polyphenyl ether, glass, etc.).
  • the conductor layer (I) is not particularly limited, but is usually a layer including wiring formed of a conductor such as a conductive metal, and may further include various circuits. Further, the configuration and thickness of the wiring and circuit are not particularly limited.
  • the substrate having the conductor layer (I) on the surface include a printed wiring board and a silicon wafer substrate.
  • the thickness of the substrate having the conductor layer (I) on the surface is usually 10 ⁇ m to 10 mm, preferably 20 ⁇ m to 5 mm, more preferably 30 ⁇ m to 2 mm.
  • the substrate having the conductor layer (I) on the surface used in the present invention is preferably pretreated on the surface of the conductor layer (I) in order to improve adhesion to the electrical insulating layer.
  • a known technique is not particularly limited and can be used.
  • the conductor layer (I) is made of copper
  • a strong alkaline acid solution is brought into contact with the surface of the conductor layer (I)
  • a copper oxide layer is formed on the surface of the conductor layer (I).
  • Oxidation method to form and roughen Conductor layer (I) Method of reducing surface with sodium borohydride, formalin, etc.
  • a method of roughening the conductor layer (I) by bringing an organic acid into contact with the conductor layer (I) to elute the copper grain boundaries and roughening the conductor layer (I), a thiol compound or a silane compound, etc.
  • a method of forming a primer layer is not particularly limited and can be used.
  • a method of bringing an organic acid into contact with the conductor layer (I) to elute and roughen the copper grain boundaries, and a thiol compound A method of forming a primer layer with a nylon compound or the like is preferable.
  • the laminate of the present invention can be produced by heat-pressing the composite resin molded body of the present invention on a substrate having a conductor layer (I) on the surface and curing to form an electrical insulating layer.
  • thermocompression bonding a composite resin molded body with a support is formed on the substrate. Laminate the conductor layer (I) so that it is in contact with the conductor layer (I), and heat-press (laminate) it using a pressure laminator, press, vacuum laminator, vacuum press, roll laminator, etc. on the conductor layer (I).
  • the method of forming a composite resin-molded body layer is mentioned. By heating and pressurizing, bonding can be performed so that voids do not substantially exist at the interface between the conductor layer (I) on the surface of the substrate and the composite resin molded body layer.
  • the adhesion between the composite resin molded article layer and the metal foil is also improved, so that the metal foil is used as it is as a conductor layer (II) of a multilayer circuit board described later. be able to.
  • the temperature of the thermocompression bonding operation is usually 30 to 250 ° C, preferably 70 to 200 ° C, and the applied pressure is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa.
  • the thermocompression bonding time is usually 30 seconds to 5 hours, preferably 1 minute to 3 hours.
  • thermocompression bonding is preferably performed under reduced pressure in order to improve the embedding property of the wiring pattern and suppress the generation of bubbles.
  • the pressure of the atmosphere for thermocompression bonding is usually 100 kPa to lPa, preferably 40 kPa to 10 Pa.
  • the composite resin molded body is usually cured by heating the entire substrate on which the composite resin molded body is formed on the conductor layer (I). Curing can be performed simultaneously with the thermocompression bonding operation. Further, first, the thermocompression may be performed after the thermocompression operation is performed under conditions where curing does not occur, that is, at a relatively low temperature and in a short time.
  • two or more composite resin-molded bodies are in contact with and bonded to the conductor layer (I) of the substrate. Laminate.
  • the multilayer circuit board of the present invention is formed by forming a conductor layer (I I) on the above-described electrically insulating layer of the laminate of the present invention.
  • the multilayer circuit board of the present invention when a resin film is used as a support of a composite resin molded article, is peeled off and then plated on the electric insulating layer. Can be produced by forming a conductor layer ( ⁇ ). Further, when a metal foil is used as a support for the composite resin molded body, the metal foil is patterned by a known etching method. It can be manufactured by etching to form a conductor layer ( ⁇ ⁇ ). In the present invention, the former method is preferred.
  • the via hole can be formed by a chemical process such as a photolithography method, or by a physical process such as drilling, laser beam, or plasma etching.
  • the laser method carbon dioxide laser, excimer laser, UV-YAG laser, etc.
  • a finer via hole can be formed without degrading the characteristics of the electrical insulating layer.
  • the surface of the electrical insulating layer is oxidized and roughened, and adjusted to a desired surface average roughness.
  • the surface average roughness Ra of the electrical insulating layer is 0.05 ⁇ m or more and less than 0.3 ⁇ m, preferably 0.06 ⁇ mJ3 ⁇ 4_hO.
  • the surface ten-point average roughness Rzjis is It is not less than 0.3 ⁇ m and less than 4 ⁇ m, preferably not less than 0.5 ⁇ m and not more than 2 ⁇ m.
  • Ra ⁇ O IS B0601-2001 is the centerline average roughness
  • Rzjis is the 10-point average roughness shown in Appendix 1 of JIS B0601-2001.
  • the surface of the electrical insulating layer can be oxidized.
  • Examples of the acid / acid compound used include known compounds having an acid / acid ability such as inorganic peroxides and organic peroxides; gas; In view of the ease of controlling the average surface roughness of the electrical insulating layer, it is particularly preferable to use inorganic peroxides or organic peroxides.
  • inorganic peracids include permanganate, chromic anhydride, dichromate, chromate, persulfate, activated manganese dioxide, osmium tetroxide, hydrogen peroxide, Periodate, ozone and the like.
  • organic peracid compound examples include dicumyl peroxide, otatanyl peroxide, m-chloroperbenzoic acid, and peracetic acid.
  • the method of acidifying the surface of the electrical insulating layer using inorganic peroxides or organic peroxides there is a method in which an acid compound solution prepared by dissolving the acid compound in a solvent that can be dissolved is brought into contact with the surface of the electrical insulating layer.
  • the temperature and time for bringing these inorganic peroxides and organic peroxides into contact with the surface of the electrical insulating layer may be arbitrarily set in consideration of the concentration and type of peroxide, the contact method, and the like. .
  • the temperature is usually 10 to 250 ° C., preferably 20 to 180 ° C., and the time is usually 0.5 to 60 minutes, preferably 1 to 30 minutes.
  • Examples of the method of oxidizing using a gas include plasma treatment in which gas is radicalized or ionized, such as reverse sputtering or corona discharge.
  • Examples of the gas include air, oxygen, nitrogen, argon, water, carbon disulfide and tetrasalt carbon.
  • the gas for oxidation treatment is a liquid at the treatment temperature but becomes a gas under reduced pressure
  • the oxidation treatment is performed under reduced pressure.
  • the gas for oxidation treatment is a gas at the treatment temperature and pressure
  • the oxidation treatment is performed after pressurizing to a pressure capable of radicalization or ionization.
  • the temperature and time for bringing the plasma into contact with the surface of the electrical insulating layer may be set in consideration of the type and flow rate of the gas.
  • the contact temperature is usually 10 to 250 ° C., preferably 20 to 180 ° C., and the contact time is usually 0.5 to 60 minutes, preferably 1 to 30 minutes.
  • the surface of the electrical insulating layer is oxidized using a solution of an oxidizing compound, a polymer soluble in the solution of the oxidizing compound or a non-soluble polymer in the curable resin composition constituting the electrical insulating layer. It is preferable to include a machine filler. Since the inorganic filler and the polymer (A) are selectively dissolved after forming a fine sea-island structure, it is easy to control the surface roughness of the insulating layer within the above-described range.
  • Examples of the polymer soluble in the solution of the acidic compound include liquid epoxy resin, polyester Rubber, bismaleimide-triazine resin, silicone resin, polymethylmethacrylate resin, natural rubber, styrene rubber, isoprene rubber, butadiene rubber, -tolyl rubber, ethylene rubber, propylene rubber, Examples thereof include urethane rubber, butinole rubber, silicone rubber, fluorine rubber, norbornene rubber, and ether rubber.
  • the amount of the polymer soluble in the solution of the acidic compound is not particularly limited (A) 100 parts by weight with respect to 100 parts by weight, usually 1 to 30 parts by weight, preferably 3 -25 parts by weight, more preferably 5-20 parts by weight.
  • Examples of the inorganic filler soluble in the solution of the acidic compound include calcium carbonate, magnesium carbonate, barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, and key.
  • Calcium acid, zirconium silicate, hydrated alumina, magnesium hydroxide, aluminum hydroxide, barium sulfate, silica, talc, clay and the like can be mentioned.
  • it is suitable for obtaining a fine rough surface shape as soon as fine particles of calcium carbonate and silica are obtained and as soon as they are eluted with a filler-soluble aqueous solution.
  • These inorganic fillers may be treated with a silane coupling agent or an organic acid such as stearic acid.
  • the inorganic filler to be added is preferably a non-conductive one that does not deteriorate the dielectric properties of the electrical insulating layer.
  • the shape of the added inorganic filler is not particularly limited, and may be spherical, fibrous, plate-like, etc., but in order to obtain a fine rough surface shape, it may be a fine powder. preferable.
  • the average particle size of the inorganic filler used is usually 0.008 m or more and less than 2 m, preferably 0.01 ⁇ m or more and less than 1.5 ⁇ m, particularly preferably ⁇ or 0.02 ⁇ m or more and 1 ⁇ m. less than m. If the average particle size is too small, uniform adhesion may not be obtained on a large substrate. Conversely, if the average particle size is too large, a large rough surface is generated in the electrical insulating layer, and a high-density wiring pattern may not be obtained. There is a potential.
  • the amount of the inorganic filler soluble in the solution of the oxidizing compound is appropriately selected according to the required degree of adhesion, but with respect to 100 parts by weight of the polymer (A), Usually 1 to 80 parts by weight, preferably 3 to 60 parts by weight, more preferably 5 to 40 parts by weight.
  • Such a polymer or inorganic filler soluble in the solution of the acidic compound is used in the present invention. It may be a part of a flame retardant aid, a heat stabilizer, a dielectric property modifier, or a toughening agent optionally added to the curable resin composition.
  • the surface of the electrical insulating layer is usually washed with water in order to remove the acidic compound. If a substance that cannot be washed with water is attached, the substance is further washed with a cleaning solution that can be dissolved, or brought into contact with other compounds to make the substance soluble in water. Wash with water.
  • a cleaning solution that can be dissolved, or brought into contact with other compounds to make the substance soluble in water. Wash with water.
  • an alkaline aqueous solution such as an aqueous potassium permanganate solution or an aqueous sodium permanganate solution
  • hydroxyamine sulfate and sulfuric acid are used for the purpose of removing the generated film of manganese dioxide. It can be washed with water after neutralizing and reducing with an acidic aqueous solution such as a mixed solution.
  • a conductor layer (II) is formed on the surface of the electrical insulating layer of the laminate and the inner wall surface of the via hole.
  • the method for forming the conductor layer (II) is not particularly limited, but a plating method is preferred from the viewpoint of forming the conductor layer (II) having excellent adhesion.
  • the method of forming the conductor layer ( ⁇ ) by the plating method for example, a metal thin film is formed on the electrical insulating layer by plating or the like, and then the metal layer is grown by thick plating. The method is taken.
  • a catalyst nucleus such as silver, rhodium, zinc, cobalt or the like is attached on the electric insulating layer before the metal thin film is formed on the surface of the electric insulating layer. It is common to wear it.
  • the method for attaching the catalyst nucleus to the electrical insulating layer is not particularly limited.
  • a metal compound such as silver, palladium, zinc, or cobalt, or a salt complex thereof is mixed with water, alcohol, or organic such as black mouth form.
  • a method of reducing metal after immersion in a solvent dissolved in a solvent in a concentration of 0.001% by weight may contain acid, alkali, complexing agent, reducing agent, etc. if necessary). Etc.
  • the electroless plating solution used in the electroless plating method a known autocatalytic electroless plating solution may be used.
  • the metal species, reducing agent species, and complexing agent contained in the plating solution may be used.
  • Species, hydrogen ion concentration, dissolved oxygen concentration, etc. are not particularly limited.
  • Electroless copper plating solution using formalin, etc. as a reducing agent Electroless nickel monophosphate plating solution using sodium hypophosphite as a reducing agent; Electroless-Keke Rouhou using dimethylamine borane as a reducing agent Electroless palladium plating solution; Electroless palladium-phosphorous plating solution with sodium hypophosphite as reducing agent; Electroless gold plating solution; Electroless silver plating solution; Sodium hypophosphite
  • An electroless plating solution such as an electroless nickel-cobalt-phosphorous plating solution used as a reducing agent can be used.
  • the substrate surface can be contacted with an antifungal agent to carry out antifouling treatment.
  • the metal thin film can be heated in order to improve adhesion.
  • the heating temperature is usually 50 to 350 ° C, preferably 80 to 250 ° C.
  • Heating may be performed under pressurized conditions.
  • Examples of the pressurization method at this time include a method using physical pressurizing means such as a heat press machine and a pressurizing and heating roll machine.
  • the applied pressure is usually 0.1 to 20 MPa, preferably 0.5 to 10 MPa. Within this range, high adhesion between the metal thin film and the electrical insulating layer can be secured.
  • a plating resist pattern is formed on the metal thin film formed in this manner, and further, a wet pattern such as electrolytic plating is grown thereon (thick adhesion), and then the resist is removed. Further, the metal thin film is etched into a pattern by etching to form the conductor layer (II). Accordingly, the conductor layer (II) formed by this method is usually composed of a patterned metal thin film and a plating grown thereon.
  • the multilayer circuit board of the present invention is excellent in adhesion between the electrical insulating layer and the conductor layer (II).
  • the peel strength measured according to JIS C6481 between the conductor layer (II) and the electrical insulating layer in the multilayer circuit board of the present invention is usually 6 NZcm or more, preferably 8 NZcm or more.
  • the multilayer circuit board of the present invention is excellent in crack resistance.
  • the distance (Erichsen value) that the punch tip moved when the crack occurred on the surface of the board was the usual (Ericsen value). 4 mm or more, preferably 5 mm or more.
  • the electronic device of the present invention has the multilayer circuit board of the present invention described above.
  • the electronic device of the present invention includes a mobile phone, a PHS, a notebook personal computer, a PDA (portable information terminal), and a mobile video phone.
  • Personal computers supercomputers, servers, routers, LCD projectors, engineering workstations (EWS), pagers, word processors, TVs, viewfinder or monitor direct-view video tape recorders, electronic notebooks, electronic desk calculators, car navigation systems Examples include gating devices, POS terminals, and devices with touch panels.
  • the electronic device of the present invention includes the multilayer circuit board of the present invention, the electronic device is a high-performance and high-quality electronic device.
  • the hydrogenation rate is the ratio of the number of moles of unsaturated bonds hydrogenated to the number of moles of unsaturated bonds in the polymer before hydrogenation. It was determined by NMR ⁇ vector measurement.
  • the acid value of the polymer (A) was measured and determined by a method according to JIS K 0070. That is, the acid value of the polymer (A) is determined by dissolving the polymer (A) in THF and using a tetra n-butyl methyl hydroxide ((n—CH 2) N + OH—) solution at a predetermined concentration.
  • the temperature was measured at 10 ° CZ by the differential scanning calorimetry (DSC method).
  • the average roughness Ra and the surface ten-point average roughness Rzjis on the surface of the electrical insulating layer or conductor layer ( ⁇ ) are both non-contact type optical surface profile measuring devices (Keyence color laser microscope, product name) "VK-8500"), based on the measured values at 5 locations for a rectangular area of 20 / zm X 20 / zm, centerline average roughness Ra shown in JIS B0601-2001, and JIS B0601- 2001 Ten-point average roughness Rzjis shown in Appendix 1 was obtained.
  • a part of the composite resin molded body was cut out, laminated on one side of a 75 m thick rolled copper foil, and the polyethylene terephthalate film as a support was peeled off, and then heated at 60 ° C for 30 minutes in a nitrogen atmosphere.
  • the composite resin molded body was cured by heating at 170 ° C. for 60 minutes.
  • the rolled copper foil was all removed by etching with a salty cupric Z-hydrochloric acid mixed solution to obtain a sheet-like molded body.
  • thermogravimetric Z differential heat was simultaneously measured under the conditions of a distance between fulcrums of 10 mm and a heating rate of 10 ° C Measurements were made with a measuring device (TMAZSDTA840: manufactured by METTLER TOLEDO) and judged according to the following criteria.
  • Dielectric loss tangent is less than 0.01 and relative dielectric constant is less than 2.8
  • Dielectric loss tangent is less than 0.01 and relative permittivity is 2.8 or more
  • Dielectric loss tangent is 0.01 or more
  • the average peel strength is over 6NZcm and less than 8NZcm
  • Example 1 As the inner layer substrate, the core material used in Example 1 (copper is attached to the surface! / ,!), composite resin molding with a support obtained in this and the examples and comparative examples Using this body, an inner layer substrate having a composite resin molded body layer was produced in the same manner as in Example 1.
  • the inner layer substrate having the composite resin molded body layer is formed into a strip shape having a width of 13 mm and a length of 100 mm.
  • the test piece was produced by cutting. Using this specimen, a Bunsen burner flame was contacted according to the UL94V vertical flammability test method. The flame was removed immediately after the test piece ignited, and the time during which the test piece was burning was measured. As soon as the specimen was extinguished, the flame was contacted until the specimen ignited again. After the second ignition, the flame was immediately removed and the time during which the test piece was burning was measured. Based on the result, the following criteria were used.
  • The total of the first burning time and the second burning time is within 20 seconds
  • ETD ethyl monotetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] dode force 3 ene (hereinafter abbreviated as “ETD”) and 1-butene as a molecular weight regulator. Ring-opening polymerization, followed by hydrogenation reaction to obtain an ETD hydrogenated ring-opening polymer.
  • the obtained ETD hydrogenated ring-opening polymer had Mn of 31,200, Mw of 55,800, and Tg of 140 ° C. The hydrogen concentration was 99% or more.
  • An ETD hydrogenated ring-opened polymer having Mn of 123,300, Mw of 320,000, and Tg of 149 ° C. was obtained except that 1-butene was not added.
  • the hydrogenation rate of this hydrogenated ring-opening polymer was 99% or more.
  • 100 parts of the ETD hydrogenated ring-opening polymer, 45 parts of maleic anhydride and 7 parts of dicumyl peroxide were dissolved in 500 parts of t-butylbenzene, and a graft bonding reaction was performed at 140 ° C. for 6 hours. .
  • a modified hydrogenated ring-opening polymer c was obtained in the same manner as in Example 1. Table 1 shows the measurement results of the properties of the modified hydrogenated ring-opening polymer c.
  • An ETD hydrogenated ring-opened polymer having Mn of 3,900, Mw of 5,700, and Tg of 107 ° C. was obtained in the same manner as in Polymer Production Example 1, except that the amount of 1-butene was increased. The hydrogenation rate of this hydrogenated ring-opening polymer was 99% or more.
  • a graft bond reaction was carried out in the same manner as in Production Example 1 to obtain a modified hydrogenated ring-opened polymer d.
  • Table 1 shows the measurement results of the properties of the modified hydrogenated ring-opening polymer d.
  • An ETD hydrogenated ring-opened polymer having Mn of 15,600, Mw of 25,300, and Tg of 125 ° C. was obtained in the same manner as in Polymer Production Example 1 except that the amount of 1-butene was increased. The hydrogenation rate of this hydrogenated ring-opening polymer was 99% or more.
  • the graft bonding reaction was carried out in the same manner as in Production Example 1 except that the amount of maleic anhydride used was 240 parts and the amount of dicumyl peroxide was 12 parts.
  • the modified hydrogenated ring-opening polymer e was obtained. Table 1 shows the measurement results of the properties of the modified hydrogenated ring-opening polymer e.
  • Modified hydrogenated ring-opening polymers f, g, and h were obtained in the same manner as in Production Example 1, except that the amounts of maleic anhydride used in the graft-bonding reaction were 27 parts, 51 parts, and 2 parts, respectively.
  • Table 1 shows the measurement results of the properties of the modified hydrogenated ring-opening polymers f, g, and h.
  • Melam polyphosphate 'melamine double salt (flame retardant filler) (PMP-200, weight average particle size 3.2 / zm, manufactured by Nissan Chemical Industries) at 120 ° C for 6 hours in a vacuum dryer did.
  • a mixed dispersion medium consisting of 25 parts of melamic polyphosphate melamine double salt thus dried and 42.6 parts of dry xylene and 10.7 parts of dry cyclopentanone as an organic dispersion medium was mixed with a zirconia having a diameter of 0.3 mm.
  • a soluble polymer 10 parts of liquid polybutadiene (Nisseki polybutadiene ⁇ -1000: manufactured by Nippon Petrochemical Co., Ltd.) is dissolved in a mixed solvent of 215 parts of xylene and 54 parts of cyclopentanone to obtain a curable rosin varnish. It was.
  • Copper having a thickness of 18 ⁇ m was applied to the surface of a core material obtained by impregnating glass fiber with a varnish containing glass filler and halogen-free epoxy resin.
  • the surface of the double-sided copper-clad board with a length of 150mm x width 150mm was microetched by contact with an organic acid with a wiring width and distance between wirings of 50 m and a thickness of 18 m.
  • the conductor layer (I) was formed to obtain an inner layer substrate that is a substrate having the conductor layer (I) on the surface.
  • the composite resin molded body obtained above was cut into a size of 150 mm in length and 150 mm in width, and superimposed on both surfaces of the inner layer substrate so that the surface of the composite resin molded body was on the inside and the support was on the outside.
  • This inner layer substrate was immersed in a 1.0% aqueous solution of 1 (2-aminoethyl) 2-methylimidazole at 30 ° C for 10 minutes, then immersed in water at 25 ° C for 1 minute, and then air Excess solution was removed with a knife. This was left under a nitrogen atmosphere at 170 ° C. for 60 minutes to cure the resin layer and form an electrical insulating layer on the inner substrate.
  • a via hole with an interlayer connection of 30 m in diameter was formed using the third harmonic of a UV-YAG laser, and a multilayer circuit board with a via hole was obtained.
  • the obtained multilayer circuit board with via holes was rock-immersed for 10 minutes in a 70 ° C aqueous solution adjusted to a permanganate concentration of 60 gZ liter and a sodium hydroxide concentration of 28 gZ liter.
  • the multilayer circuit board was washed by immersing in a water tank for 1 minute and further immersed in another water tank for 1 minute.
  • the multilayer circuit board was immersed for 5 minutes in a 25 ° C aqueous solution adjusted to a hydroxylamine sulfate concentration of 170 gZ liters and sulfuric acid 80 gZ liters, neutralized and reduced, and then washed with water.
  • the multilayer circuit board after the above water washing was prepared by using Alkatsu activator MAT 1 A (manufactured by Uemura Kogyo Co., Ltd.) force S200mlZ liter, Alkap activator MAT — 1— B (manufactured by Uemura Kogyo Co., Ltd.) It was immersed for 5 minutes in a 60 ° C Pd salt-containing catalyzed aqueous catalyst solution adjusted to 30 mlZ liters and sodium hydroxide at 0.35 g / liter. This multilayer circuit board is rubbed with water for 1 minute, and then washed with another water rub for 1 minute.
  • Alkatsu activator MAT 1 A manufactured by Uemura Kogyo Co., Ltd.
  • Alkap activator MAT — 1— B manufactured by Uemura Kogyo Co., Ltd.
  • Alcup Reducer MAB— 4—A (manufactured by Uemura Kogyo Co., Ltd.) was immersed in a solution adjusted to 20 mlZ liter and Alcup Reducer MAB-4B (manufactured by Uemura Kogyo Co., Ltd.) to 200 mlZ liter at 35 ° C. for 3 minutes to reduce the plating catalyst. in this way Then, the catalyst for the plating was adsorbed to obtain a multilayer circuit board subjected to the plating pretreatment.
  • the obtained multilayer circuit board was measured for surface average roughness Ra, surface ten-point average roughness Rzjis, and crack resistance of the outermost electrical insulating layer surface.
  • the evaluation results are shown in Table 2.
  • the pre-plating multi-layer circuit board is made up of Sulcup PSY-1A (manufactured by Uemura Kogyo) 1 OOmlZ liter, Sulcup PSY-1B (manufactured by Uemura Kogyo) 40mlZ liter, formalin 0.2 mol Z liter An electroless copper plating process was performed by dipping for 5 minutes at a temperature of 36 ° C. while blowing air into the aqueous solution adjusted to be.
  • the multilayer circuit board on which the metal thin film layer is formed by the electroless plating process is further immersed in a water bath for 1 minute, and further washed with water by another water rubbed for 1 minute and then dried. Then, a multilayer circuit board on which an anti-electrolytic adhesive film was formed was obtained.
  • a dry film of a commercially available photosensitive resist is attached by thermocompression bonding to the surface of the multilayer circuit board that has been subjected to the antifouling treatment, and a pattern corresponding to the adhesion evaluation pattern is formed on the dry film.
  • the mask was brought into close contact and exposed, and then developed to obtain a resist pattern.
  • the antifungal agent was removed by immersion in an aqueous solution of lOOgZ liter of sulfuric acid at 25 ° C for 1 minute, and electrolytic copper plating was applied to the non-resist forming part to form an electrolytic copper plating film with a thickness of 18 ⁇ m. .
  • the resist pattern is stripped and removed with a stripping solution, and an etching process is performed with a mixed aqueous solution of cupric chloride and hydrochloric acid to form a wiring pattern composed of the metal thin film and the electrolytic copper plating film.
  • a multilayer circuit board with a wiring pattern of layers was obtained.
  • annealing was performed at 170 ° C. for 30 minutes to obtain a multilayer printed wiring board.
  • the obtained multilayer circuit board was evaluated for circuit patterning, insulation at high temperature and high humidity, and crack resistance. The evaluation results are shown in Table 2.
  • a multilayer circuit board was obtained in the same manner as in Example 1 except that the modified hydrogenated ring-opening polymer b was used in place of the modified hydrogenated ring-opening polymer a.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 instead of the modified hydrogenated ring-opening polymer a, a modified hydrogenated ring-opening polymer f was used. In the same manner as in Example 1 except that the amount of bisphenol A bis (propylene glycol glycidyl ether) etherol was changed to 27 parts to make the ratio of carboxylic anhydride equivalent to epoxy equivalent as in Example 1. A multilayer circuit board was obtained.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 instead of the modified hydrogenated ring-opened polymer a, the modified hydrogenated ring-opened polymer g was used, and the ratio of the carboxylic acid anhydride equivalent to the epoxy equivalent was the same as in Example 1.
  • Bisphenol A A multilayer circuit board was obtained in the same manner as in Example 1 except that the amount of A bis (propylene glycol glycidyl ether) etherol was changed to 51 parts.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 a liquid crystal polymer non-woven fabric (weight per unit area) of a liquid crystal polymer non-woven fabric of wholly aromatic polyester (Veculus MBBK 14FXSP, manufactured by Kuraren) was compressed by heating and pressing.
  • a multilayer circuit board was obtained in the same manner as in Example 1 except that it was changed to 22 g / m 2 , Vecurs MBBK22CXSP (manufactured by Kuraray Co., Ltd.).
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 instead of the modified hydrogenated ring-opening polymer a, a hydrogenated ring-opening copolymer i was used, and 1 part benzil 2-phenolimidazole 0.3 part, carboxylic anhydride equivalent A multilayer circuit board was obtained in the same manner as in Example 1 except that the amount of bisphenol A bis (propylene glycol glycidyl ether) ether was changed to 37 parts in order to make the ratio of epoxy equivalents as in Example 1. .
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 7 In Example 1, 20 parts of a condensed phosphate ester PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.) as a flame retardant and 63 parts of a flame retardant slurry prepared in Production Example 10 were used as a flame retardant.
  • a multilayer circuit board was prepared in the same manner as in Example 1 except that 3 parts of FP-2200 (Asahi Denki Kogyo Co., Ltd.) and 30 parts of Admafine Silica SO-E5 (Admatechs) were added as fillers. Obtained.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • a multilayer circuit board was obtained in the same manner as in Example 1 except that the modified hydrogenated ring-opening polymers c and d were used in place of the modified hydrogenated ring-opening polymer a.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for each of the obtained multilayer circuit boards.
  • Example 1 instead of the modified hydrogenated ring-opened polymer a, the modified hydrogenated ring-opened polymer h was used, and the ratio of the carboxylic acid anhydride equivalent to the epoxy equivalent was the same as in Example 1.
  • Bisphenol A A multilayer circuit board was obtained in the same manner as in Example 1 except that the amount of A bis (propylene glycol glycidyl ether) etherol was changed to 2 parts.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 instead of the modified hydrogenated ring-opened polymer a, the modified hydrogenated ring-opened polymer e was used, and the ratio of the carboxylic anhydride equivalent to the epoxy equivalent was the same as in Example 1.
  • Bisphenol A A multilayer circuit board was obtained in the same manner as in Example 1 except that the amount of A bis (propylene glycol glycidyl ether) etherole was 144 parts.
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • Example 1 instead of the modified hydrogenated ring-opening polymer a, it does not have a carboxyl group A composite resin as in Example 1, except that 100 parts of an epoxy resin (Epicoat 1000, manufactured by Yuka Shell Epoxy Co., Ltd., Mw is 1,300) and 100 parts of dicyandiamide were used. An inner layer substrate having a molded body and a composite resin molded body layer was obtained. A multilayer circuit board was obtained in the same manner as in Example 1 except that this inner layer substrate having the composite resin molding layer was not immersed in an aqueous solution of 1- (2-aminoethyl) 2-methylimidazole.
  • an epoxy resin Epicoat 1000, manufactured by Yuka Shell Epoxy Co., Ltd., Mw is 1,300
  • An inner layer substrate having a molded body and a composite resin molded body layer was obtained.
  • a multilayer circuit board was obtained in the same manner as in Example 1 except that this inner layer substrate having the composite resin molding layer was not immersed in an aqueous solution
  • Table 2 shows the results of testing and evaluating the same items as in Example 1 for the obtained multilayer circuit board.
  • the surface average roughness Ra and the surface 10-point average roughness Rzjis of the electrically insulating layer subjected to the plating pretreatment were small and excellent in smoothness (Examples 1 to 7).
  • the composite resin molded article and cured product of the present invention are excellent in flame retardancy, electrical insulation and crack resistance, and are less likely to generate harmful substances during incineration.
  • the laminated body and multilayer circuit board of the present invention are characterized by low thermal expansion and high elastic modulus, and have high adhesion even when a conductor layer is formed on a smooth electrical insulating layer by a staking method. , High reliability.
  • the multilayer circuit board of the present invention has excellent electrical characteristics, it can be suitably used as a substrate for semiconductor elements such as CPU and memory and other mounting parts in electronic devices such as computers and mobile phones.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 本発明は、重量平均分子量が10,000~250,000で、カルボキシル基又はカルボン酸無水物基を有し、該カルボキシル基又はカルボン酸無水物基の含有率が5~60モル%である重合体(A)、及び硬化剤(B)を含有する硬化性樹脂組成物を、液晶ポリマーの長繊維からなるクロスに含浸して得られる複合樹脂成形体及びその製造方法、前記複合樹脂成形体を硬化してなる硬化物、表面に導体層(I)を有する基板と、本発明の硬化物からなる電気絶縁層とを積層してなる積層体及びその製造方法、前記積層体の電気絶縁層上に導体層(II)を形成してなる多層回路基板及びその製造方法、並びに前記多層回路基板を備える電子機器である。本発明の複合樹脂成形体及び硬化物は、難燃性、電気絶縁性及び耐クラック性に優れ、焼却時に有害物質が発生しにくい。本発明の積層体及び多層回路基板は、低熱膨張、高弾性率であることを特徴とし、平滑な電気絶縁層上に導体層(II)をめっき法で形成しても高い密着性を有し、高い信頼性を有する。本発明の多層回路基板は、優れた電気特性を有しているので、電子機器における、CPUやメモリ等の半導体素子、その他の実装部品用基板として好適に使用できる。

Description

明 細 書
複合樹脂成形体、積層体、多層回路基板および電子機器
技術分野
[0001] 本発明は、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、焼却時に有害物 質が発生しにく!/、複合榭脂成形体及びその製造方法、前記榭脂成形体を硬化して なる硬化物、基板と前記硬化物からなる電気絶縁層とを積層してなる積層体及びそ の製造方法、前記積層体の電気絶縁層上〖こさらに導体層を形成してなる多層回路 基板及びその製造方法、並びにこの多層基板を有する電子機器に関する。
背景技術
[0002] 近年における電子機器の小型化、多機能化、高速通信化等に伴い、電子機器に 用いられる回路基板には、より高密度化、高精度化が要求されている。そして、これら の要求を満足させるため、多層回路基板の採用が急増して 、る。
[0003] 多層回路基板は、通常、電気絶縁層と、その表面に形成された導体層とからなる内 層基板の上に、電気絶縁層を積層し、この電気絶縁層の上に導体層を形成すること によって得られる。電気絶縁層と導体層とは、必要に応じて、数段積層することもでき る。
[0004] ところで、このような多層回路基板の導体層が高密度のパターンである場合、導体 層や基板の発熱が大きくなるため、電気絶縁層の難燃性向上が求められている。
[0005] 従来、電気絶縁層の難燃性を向上させる手段としては、電気絶縁層にハロゲン系 難燃剤等の難燃剤を配合する方法が知られて ヽる (特許文献 1)。
[0006] し力しながら、使用済みの多層回路基板の焼却時に、電気絶縁層に配合されてい るハロゲン系難燃剤が熱分解して、ハロゲン系有害物質が発生するという問題があつ た。また、難燃剤を配合した電気絶縁層は、強度が不十分で衝撃や熱履歴を受ける ことにより、クラックが入ったり、電気特性が低下したりするという問題もあった。電気絶 縁層の強度を高める方法としては、ガラスクロスで補強する方法が知られているが、こ の方法では電気特性がさらに低下し、また、難燃剤が電気絶縁層全体に均一に行き 渡らずに難燃性が不十分となる場合があった。 [0007] 一方、電気絶縁層を形成する方法として、多層配線板用接着シートを用いる方法 が知られている。例えば、特許文献 2には、ビフエ-ル及びノボラック構造を有するェ ポキシ榭脂、アクリロニトリルブタジエンゴム及び熱硬化剤を必須成分とする榭脂組 成物を、液晶ポリエステルカゝらなる不織布に含浸させた後、乾燥させる工程を経て半 硬化状態にする方法が提案されている。
[0008] しカゝしながら、この方法で得られる多層配線板用接着シートを用いて形成した電気 絶縁層は、その誘電率や誘電正接等の電気特性が不十分であり、形成した電気絶 縁層上に高密度で微細な配線を形成することが困難であった。
[0009] 特許文献 1 :特開平 2— 255848号公報
特許文献 2 :特開 2005— 175265号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、このような従来技術の実情に鑑みてなされたものであり、難燃性、電気 絶縁性及び耐クラック性に優れ、かつ、焼却時に有害物質が発生しにくい複合榭脂 成形体、この成形体を硬化してなる硬化物、基板と前記硬化物からなる電気絶縁層 とを積層してなる積層体及びその製造方法、前記積層体の電気絶縁層上にさらに導 体層を形成してなる多層回路基板及びその製造方法、並びにこの多層基板を有す る電子機器を提供することを課題とする。
課題を解決するための手段
[0011] 本発明者らは上記課題を解決すべく鋭意検討した結果、特定の分子量とカルボキ シル基又はカルボン酸無水物基の含有率を有する重合体、及び硬化剤を含有する 硬化性榭脂組成物を、液晶ポリマーの長繊維カゝらなるクロスに含浸させた複合榭脂 成形体の硬化物は、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、焼却時に 有害物質が発生しにくいことを見出し、この知見に基づき本発明を完成するに至った
[0012] 力べして本発明の第 1によれば、重量平均分子量が 10, 000-250, 000で、カル ボキシル基又はカルボン酸無水物基を有し、該カルボキシル基又はカルボン酸無水 物基の含有率が 5〜60モル%である重合体 (A)、及び硬化剤 (B)を含有する硬化 性榭脂組成物を、液晶ポリマーの長繊維カゝらなるクロスに含浸して得られる複合榭脂 成形体が提供される。
[0013] 本発明の複合榭脂成形体にお!、ては、前記重合体 (A)が脂環式ォレフイン重合体 であることが好ましぐ前記液晶ポリマーの長繊維力もなるクロスの単位面積当たりの 重量が 3〜55gZm2であることが好ましぐ前記液晶ポリマーが全芳香族ポリエステ ルであることが好ましい。
[0014] 本発明の第 2によれば、重量平均分子量が 10, 000〜250, 000で、カルボキシル 基又はカルボン酸無水物基を有し、該カルボキシル基又はカルボン酸無水物基の 含有率が 5〜60モル%である重合体 (A)、硬化剤 (B)、及び有機溶剤を含有する硬 化性榭脂ワニスを、液晶ポリマーの長繊維力もなるクロスに含浸し、乾燥することを特 徴とする複合樹脂成形体の製造方法が提供される。
[0015] 本発明の第 3によれば、本発明の複合榭脂成形体を硬化してなる硬化物が提供さ れる。
本発明の第 4によれば、表面に導体層(I)を有する基板と、本発明の硬化物からな る電気絶縁層とを、積層してなる積層体が提供される。
本発明の第 5によれば、表面に導体層(I)を有する基板上に、本発明の複合榭脂 成形体を加熱圧着し、硬化して電気絶縁層を形成することを特徴とする、本発明の 積層体の製造方法が提供される。
[0016] 本発明の第 6によれば、本発明の積層体の電気絶縁層上に、さらに導体層 (II)を 形成してなる多層回路基板が提供される。
本発明の第 7によれば、本発明の積層体の電気絶縁層上に、めっき法により導体 層(Π)を形成する工程を有する本発明の多層回路基板の製造方法が提供される。 本発明の第 8によれば、本発明の多層回路基板を備える電子機器が提供される。 発明を実施するための最良の形態
[0017] 1)複合榭脂成形体及びその製造方法
本発明の複合榭脂成形体は、重量平均分子量が 10, 000-250, 000で、カルボ キシル基又はカルボン酸無水物基(以下、この両者をまとめて「カルボキシル基等」と 記すことがある。)を有し、該カルボキシル基又はカルボン酸無水物基の含有率が 5 〜60モル%である重合体 (A)、及び硬化剤 (B)を含有する硬化性榭脂組成物を、 液晶ポリマーの長繊維力もなるクロスに含浸して得られるものである。
[0018] (1)重合体 (A)
本発明に用いる重合体 (A)は、重量平均分子量が 10, 000-250, 000であって 、カルボキシル基等を有し、かつ、該カルボキシル基等の含有率が 5〜60モル%の ものであれば、その骨格をなす重合体 (即ち、カルボキシル基等を水素で置換した構 造の重合体、ないし、カルボキシル基等を除去した構造の重合体)は、特に限定され ない。
[0019] 重合体 (A)としては、例えば、エポキシ榭脂、マレイミド榭脂、アクリル榭脂、メタタリ ル榭脂、ジァリルフタレート榭脂、トリアジン榭脂、脂環式ォレフイン重合体、芳香族 ポリエーテル重合体、ベンゾシクロブテン重合体、シァネートエステル重合体、ポリイ ミド榭脂等が挙げられる。これらの重合体は 1種単独で、あるいは二種以上を組み合 わせて用いることができる。
これらの中でも、誘電率や誘電正接等の電気特性が優れていることから、脂環式ォ レフイン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シァネート エステル重合体及びポリイミド榭脂から選ばれる少なくとも一種が好ましぐ脂環式ォ レフイン重合体及び芳香族ポリエーテル重合体がより好ましく、脂環式ォレフイン重 合体が特に好ましい。
[0020] 本発明において、脂環式ォレフイン重合体は、炭素 炭素不飽和結合を有する脂 環式化合物 (脂環式ォレフインという。)の単独重合体及び共重合体、並びにこれら の誘導体 (水素添加物等)の総称である。また、重合の様式は、付加重合であっても 開環重合であってもよい。
[0021] 脂環式ォレフイン重合体の具体例としては、ノルボルネン系単量体の開環重合体 及びその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体 とビニル化合物との付加重合体、単環シクロアルケン付加重合体、脂環式共役ジェ ン重合体、ビニル系脂環式炭化水素重合体及びその水素添加物、芳香族ォレフイン 重合体の芳香環水素添加物等の、重合後の水素化によって脂環構造が形成されて 、脂環式ォレフイン重合体と同等の構造を有するに至った重合体、等が挙げられる。 これらの中でも、ノルボルネン系単量体の開環重合体及びその水素添加物、ノルボ ルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付カ卩重合 体、芳香族ォレフイン重合体の芳香環水素添加物が好ましぐノルボルネン系単量 体の開環重合体の水素添加物が特に好ましい。
[0022] また、重合体 (A)が脂環式ォレフイン重合体の場合、カルボキシル基等は、脂環構 造を形成する炭素原子に直接結合していても、メチレン基、ォキシ基、ォキシカルボ -ルォキシアルキレン基、フエ-レン基等他の二価の基を介して結合して!/、てもよ!/ヽ
[0023] 本発明に用いる重合体 (A)は、重量平均分子量 (Mw) 1S 通常、 10, 000-250 , 000、好まし <は 15, 000〜150, 000であり、より好まし <は 20, 000〜100, 000 のものである。
[0024] 重合体 (A)の Mwが小さすぎると、得られる電気絶縁層の強度が不十分になり、ま た、電気絶縁性が低下するおそれがある。一方、 Mwが大きすぎると、重合体 (A)と 硬化剤 (B)との相溶性が低下して電気絶縁層の表面粗度が大きくなり、配線パター ンの精度が低下するおそれがある。
[0025] 重合体 (A)の Mwは、ゲル'パーミエーシヨン'クロマトグラフィー(GPC)により測定 し、ポリスチレン換算値として求めることができる。
[0026] 重合体 (A)の Mwを上記範囲に調整する方法は常法に従えばよぐ例えば、チタン 系又はタングステン系触媒を用いて脂環式ォレフインの開環重合を行うに際して、ビ ニル化合物、ジェン化合物等の分子量調整剤を、単量体全量に対して 0. 1〜: L0モ ル%程度添加する方法が挙げられる。カゝかる分子量調整剤の具体例は、ビニル化合 物としては、 1—ブテン、 1—ペンテン、 1—へキセン、 1—オタテン等の α—ォレフィ ン化合物;スチレン、ビュルトルエン等のスチレン化合物;ェチルビ-ルエーテル、ィ ソブチルビ-ルエーテル、ァリルグリシジルエーテル等のエーテル化合物;ァリルクロ ライド等のハロゲン含有ビュル化合物;酢酸ァリル、ァリルアルコール、グリシジルメタ タリレート、アクリルアミド等のその他のビ-ルイ匕合物;等が挙げられる。また、ジェン 化合物としては、 1, 4 ペンタジェン、 1, 5 へキサジェン、 1, 6 へブタジエン、 2 —メチルー 1, 4 ペンタジェン、 2, 5 ジメチルー 1, 5 へキサジェン等の非共役 ジェン化合物; 1, 3—ブタジエン、 2—メチルー 1, 3—ブタジエン、 2, 3—ジメチルー 1, 3—ブタジエン、 1, 3—ペンタジェン、 1, 3—へキサジェン等の共役ジェン化合 物;等が挙げられる。
[0027] 本発明に用いる重合体 (A)は、 Mwが上記範囲のものであり、かつ、カルボキシル 基等の含有率が 5〜60モル0 /0、好ましくは 10〜50モル0 /0、より好ましくは 15〜40モ ル%であるものである。ここで、カルボキシル基等の含有率とは、重合体中の総単量 体単位数に対するカルボキシル基等のモル数の割合をいう。
重合体 (A)のカルボキシル基等の含有率が小さすぎるとめつき密着性や耐熱性が 低下するおそれがあり、含有率が大きすぎると電気絶縁性が低下する可能性がある 重合体 (A)のカルボキシル基等の含有率は、重合体 (A)の1 H— NMRスペクトル 測定により求めることができる。
[0028] また、本発明に用いる重合体 (A)の酸価は、通常、 10〜400mgKOHZg、好まし くは 50〜400mgKOH/gである。ここで、酸価とは、一般的には試料 lg中に含まれ るカルボキシル基等を中和するのに必要とする水酸ィ匕カリウムの mg数である。
重合体 (A)の酸価が小さすぎるとめつき密着性や耐熱性が低下するおそれがあり、 酸価が大きすぎると電気絶縁性が低下する可能性がある。
[0029] 重合体 (A)の酸価は、 JIS K 0070に準じた方法により測定し求めることができる 。すなわち、重合体 (A)の酸価は、重合体 (A)をテトラヒドロフラン (THF)に溶解し、 所定濃度のテトラ n—プチルアンモ-ゥムヒドロキシド((n—C H ) N+OPT)溶液を
4 9 4
使用し、 JIS K 8001の 4. 3に規定するフ ノールフタレインを指示薬として滴定を 行い、その結果力 試料 lg中に含まれるカルボキシル基等を中和するのに必要とす る水酸ィ匕カリウムの mg数を算出することができる。
[0030] 重合体 (A)のカルボキシル基等の含有率と酸価との間には相関関係があり、一般 的に、カルボキシル基等の含有率が高くなると酸価は大きくなり、カルボキシル基等 の含有率が小さくなると酸価も小さくなる傾向にある。
[0031] 重合体 (A)のカルボキシル基等の含有率 (又は酸価)を上記範囲とする方法は、特 に限定されない。例えば、(i)カルボキシル基等を含有する脂環式ォレフイン単量体 を単独重合し、又は、これと共重合可能な単量体 (エチレン、 1一へキセン、 1, 4一へ キサジェン等)と共重合する方法;(ii)カルボキシル基等を含有しない脂環式ォレフィ ン重合体に、カルボキシル基等を有する炭素 炭素不飽和結合含有化合物を、例 えばラジカル開始剤存在下で、グラフト結合させることによりカルボキシル基等を導入 する方法;(iii)カルボン酸エステル基等の、カルボキシル基の前駆体となる基を有す るノルボルネン系単量体を重合した後、加水分解等によって前駆体基をカルボキシ ル基へ変換させる方法;等がある。
[0032] (i)の方法に用いるカルボキシル基含有脂環式ォレフイン単量体としては、 8 ヒド ロキシカルボ-ルテトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 5 ヒドロキシ カルボ二ルビシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチルー 5 ヒドロキシカルボ二 ルビシクロ [2. 2. 1]ヘプトー 2 ェン、 5 カルボキシメチルー 5 ヒドロキシカルボ 二ルビシクロ [2. 2. 1]ヘプトー 2 ェン、 8—メチルー 8 ヒドロキシカルボニルテトラ シクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 8—カルボキシメチル一 8 ヒドロキシ カルボ-ルテトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 5 ェキソ 6 ェ ンドージヒドロキシカルボ二ルビシクロ [2. 2. 1]ヘプトー 2 ェン、 8 ェキソ 9 ェ ンド一ジヒドロキシカルボ-ルテトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン等 が挙げられる。
[0033] また、(i)の方法に用いるカルボン酸無水物基含有脂環式ォレフイン単量体として は、ビシクロ [2. 2. 1]ヘプト一 2 ェン一 5, 6 ジカルボン酸無水物、テトラシクロ [ 4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン一 8, 9 ジカルボン酸無水物、へキサシクロ [ 6. 6. 1. I3' 6. I10' 13. 02' 7. 09' 14]ヘプタデ力— 4 ェン— 11, 12 ジカルボン酸 無水物等が挙げられる。
[0034] (ii)の方法に用いるカルボキシル基等を有さな 、脂環式ォレフイン重合体を得るた めの単量体の具体例としては、ビシクロ [2. 2. 1]ヘプトー 2—ェン(慣用名:ノルボル ネン)、 5 ェチル一ビシクロ [2. 2. 1]ヘプトー 2 ェン、 5 ブチル一ビシクロ [2. 2 . 1]ヘプトー 2 ェン、 5 ェチリデンービシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチ リデン一ビシクロ [2. 2. 1]ヘプトー 2 ェン、 5 ビュル一ビシクロ [2. 2. 1]ヘプトー 2 ェン、トリシクロ [4. 3. 0. I2' 5]デカー 3, 7 ジェン(慣用名:ジシクロペンタジェ ン)、テトラシクロ [8. 4. 0. I11' 14. 02' 8]テトラデカー 3, 5, 7, 12, 11ーテトラェン、 テトラシクロ [4. 4. 0. I2' 5. I7' 10]デカ一 3 ェン (慣用名:テトラシクロドデセン)、 8 —メチル一テトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 8 ェチル一テトラ シクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 8—メチリデン一テトラシクロ [4. 4. 0 . I2' 5. 17' 10]ドデ力— 3 ェン、 8 ェチリデン—テトラシクロ [4. 4. 0. I2' 5. I7' 10] ドデ力一 3 ェン、 8 ビュル一テトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、 8—プロべ-ル一テトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン、ペンタシクロ [ 6. 5. 1. I3' 6. 02' 7. 09' 13]ペンタデ力一 3, 10 ジェン、ペンタシクロ [7. 4. 0. I3' 6 . I10' 13. 02' 7]ペンタデ力一 4, 11—ジェン、シクロペンテン、シクロペンタジェン、 1, 4—メタノ一 1, 4, 4a, 5, 10, 10a—へキサヒドロアントラセン、 8 フエ二ノレ一テトラ シクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン等が挙げられる。
[0035] また、(ii)の方法に用いるカルボキシル基等を有する炭素 炭素不飽和結合含有 化合物としては、アクリル酸、メタクリル酸、 a ェチルアクリル酸、 2—ヒドロキシェチ ルアクリル酸、 2—ヒドロキシェチルメタクリル酸、マレイン酸、フマール酸、ィタコン酸 、エンドシス一ビシクロ [2. 2. 1]ヘプトー 5 ェン一 2, 3 ジカルボン酸、メチルー エンドシスービシクロ [2. 2. 1]ヘプトー 5 ェン—2, 3 ジカルボン酸等の不飽和力 ルボン酸化合物;無水マレイン酸、クロ口無水マレイン酸、ブテュル無水コハク酸、テ トラヒドロ無水フタル酸、無水シトラコン酸等の不飽和カルボン酸無水物;等が挙げら れる。
[0036] (iii)の方法に用いるカルボキシル基の前駆体となる基を含有するノルボルネン系 単量体としては、 8—メチル 8—メトキシカルボ-ルテトラシクロ [4. 4. 0. I2' 5. I7' 1 。]ドデ力一 3 ェン、 5—メトキシカルボ-ルービシクロ [2. 2. 1]ヘプトー 2 ェン、 5 ーメチルー 5—メトキシカルボ-ルービシクロ [2. 2. 1]ヘプトー 2 ェン等が挙げら れる。
[0037] 重合体 (A)は、カルボキシル基等以外の官能基 (以下、「他の官能基」 t 、うことが ある。)を有していてもよい。他の官能基としては、アルコキシカルボ-ル基、シァノ基 、水酸基、エポキシ基、アルコキシル基、アミノ基、アミド基、イミド基等が挙げられる。 これら他の官能基の量は、カルボキシル基等に対して 30モル%以下であることが好 ましぐ 10モル%以下であることがより好ましぐ 1モル%以下であることが特に好まし い。
[0038] 本発明に用いる重合体 (A)のガラス転移温度 (Tg)は、特に限定されな 、が、 120 〜300°Cであることが好ましい。 Tgが低すぎると、得られる電気絶縁層が高温下にお いて十分な電気絶縁性を維持できず、 Tgが高すぎると、多層配線板が強い衝撃を 受けた際にクラックを生じて導体層が破損する可能性がある。
[0039] 本発明に用いる重合体 (A)は、電気絶縁性のものである。
重合体 (A)の ASTM D257による体積固有抵抗は、 1 X 1012 Ω 'cm以上である ことが好ましぐ 1 Χ 1013 Ω ·«η以上であることがより好ましぐ 1 Χ 1014 Ω ·«η以上で あることが特に好ましい。
[0040] (2)硬化剤(Β)
本発明で用いる硬化剤 (Β)は、加熱により重合体 (Α)を架橋し得るものであれば限 定されない。なかでも、重合体 (Α)のカルボキシル基等と反応して架橋構造を形成し 得る化合物が好ましい。
[0041] 力かる架橋剤としては、多価エポキシィ匕合物、多価イソシアナ一トイ匕合物、多価アミ ン化合物、多価ヒドラジド化合物、アジリジン化合物、塩基性金属酸化物、及び有機 金属ハロゲンィ匕物等が挙げられる。これらの硬化剤は一種単独で、あるいは二種以 上を組み合わせて用いることができる。また、過酸化物も硬化剤として用いることがで きる。
[0042] 多価エポキシ化合物としては、例えば、フエノールノボラック型エポキシ化合物、ク レゾールノボラック型エポキシ化合物、タレゾール型エポキシ化合物、ビスフエノール Α型エポキシ化合物、ビスフエノール F型エポキシ化合物、臭素化ビスフエノール A型 エポキシィ匕合物、臭素化ビスフエノール F型エポキシィ匕合物、水素添加ビスフエノー ル A型エポキシィ匕合物等のグリシジルエーテル型エポキシィ匕合物;脂環式エポキシ 化合物、グリシジルエステル型エポキシ化合物、グリシジルァミン型エポキシ化合物、 イソシァヌレート型エポキシ化合物等の多価エポキシィ匕合物;等の分子内に 2以上の エポキシ基を有する化合物が挙げられる。
[0043] 多価イソシアナ一トイ匕合物としては、炭素数 6〜24の、ジイソシアナ一ト類及びトリイ ソシアナート類が好ましい。ジイソシアナート類の例としては、 2, 4 トリレンジイソシ アナート、 2, 6 トリレンジイソシアナート、 4, 4'ージフエ-ルメタンジイソシアナート 、へキサメチレンジイソシアナート、 p—フエ-レンジイソシアナ一ト等が挙げられる。ト リイソシアナート類の例としては、 1, 3, 6 へキサメチレントリイソシアナート、 1, 6, 1 1—ゥンデカントリイソシアナート、ビシクロヘプタントリイソシアナート等が挙げられる。
[0044] 多価アミンィ匕合物としては、 2個以上のアミノ基を有する炭素数 4〜30の脂肪族多 価ァミン化合物、芳香族多価アミンィ匕合物等が挙げられ、グァ-ジン化合物のように 非共役の窒素 炭素二重結合を有するものは含まれない。
[0045] 脂肪族多価アミンィ匕合物としては、へキサメチレンジァミン、 N, N'—ジシンナミリデ ン 1, 6 へキサンジァミン等が挙げられる。
芳香族多価アミン化合物としては、 4, 4,ーメチレンジァ-リン、 m—フエ-レンジァ ミン、 4, 4,一ジアミノジフエ-ルエーテル、 4, - (m—フエ-レンジイソプロピリデン) ジァ-リン、 4, 4, - (p フエ-レンジイソプロピリデン)ジァ-リン、 2, 2,一ビス〔4— (4 アミノフエノキシ)フエ-ル〕プロパン、 1, 3, 5 ベンゼントリァミン等が挙げられ る。
[0046] 多価ヒドラジド化合物の例としては、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラ ジド、 2, 6 ナフタレンジカルボン酸ジヒドラジド、マレイン酸ジヒドラジド、ィタコン酸 ジヒドラジド、トリメリット酸ジヒドラジド、 1, 3, 5 ベンゼントリカルボン酸ジヒドラジド、 ピロメリット酸ジヒドラジド等が挙げられる。
[0047] アジリジン化合物としては、トリスー 2, 4, 6—(1 アジリジ -ル) 1, 3, 5 トリア ジン、トリス〔1— (2—メチル)アジリジ -ル〕ホスフイノキシド、へキサ〔1— (2—メチル) アジリジニル〕トリホスファトリアジン等が挙げられる。
[0048] 過酸化物としては、ケトンパーオキサイド、パーォキシケタール、ハイド口パーォキサ イド、ジァリルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、バーオ キシジカーボネート等の、公知の有機過酸ィ匕物が挙げられる。
[0049] これらの硬化剤の中でも、重合体 (A)との反応性が緩やかであり、得られる複合榭 脂成形体の溶融、加工、積層が容易であることから、多価エポキシィ匕合物が好ましく 、ビスフエノール Aビス(プロピレングリコールグリシジルエーテル)エーテル等のビス フエノール A型エポキシ化合物がより好まし!/、。
[0050] 硬化剤(B)の使用量は、重合体 (A) 100重量部に対して、通常 1〜: LOO重量部、 好ましくは 5〜80重量部、より好ましくは 10〜50重量部の範囲である。
[0051] (3)硬化促進剤
本発明に用いる硬化性榭脂組成物は、耐熱性の高!ヽ硬化物を容易に得ることがで きる観点から、硬化促進剤をさらに含有することが好ましい。例えば、硬化剤 (B)とし て多価エポキシィ匕合物を用いる場合には、第 3級ァミン化合物や三弗化ホウ素錯ィ匕 合物等の硬化促進剤が好適に用いられる。なかでも、第 3級ァミン化合物を使用する と、微細配線に対する積層性、絶縁抵抗性、耐熱性、耐薬品性等が向上するので好 ましい。
[0052] 第 3級ァミン化合物としては、ベンジルメチルァミン、トリエタノールァミン、トリェチル ァミン、トリブチルァミン、トリベンジルァミン、ジメチルホルムアミド等の鎖状 3級ァミン 化合物;ピラゾール類、ピリジン類、ピラジン類、ピリミジン類、インダゾール類、キノリ ン類、イソキノリン類、イミダゾール類、トリァゾール類等の含窒素へテロ環化合物;等 が挙げられる。これらの中で、イミダゾール類、特に置換基を有する置^ミダゾール 化合物が好ましい。
[0053] 置^ミダゾール化合物としては、 2 ェチルイミダゾール、 2 ェチルー 4 メチル イミダゾール、ビス 2 ェチル 4 メチルイミダゾール、 1 メチル 2 ェチルイ ミダゾール、 2 イソプロピルイミダゾール、 2, 4 ジメチルイミダゾール、 2 へプタ デシルイミダゾール等のアルキル置換イミダゾール化合物; 2—フエ-ルイミダゾール 、 1 -ベンジル - 2-メチルイミダゾール、 1 ベンジル - 2-ェチルイミダゾール、ベ ンズイミダゾール、 2 ェチルー 4ーメチルー 1 (2' シァノエチル)イミダゾール、 2 —ェチルー 4—メチル—1— [2, - (3" , 5"—ジァミノトリアジ-ル)ェチル]イミダゾ ール、 1一べンジルー 2—フエ-ルイミダゾール等のァリール基ゃァラルキル基等の 環構造を有する炭化水素基で置換されたイミダゾールイ匕合物;等が挙げられる。これ らの硬化促進剤は、一種単独で、あるいは二種以上を組み合わせて用いることがで きる。これらの中でも、環構造を有する炭化水素基で置換されたイミダゾール化合物 が好ましぐ 1一べンジルー 2—フエ-ルイミダゾールが特に好まし!/、。 [0054] 硬化促進剤の配合量は使用目的に応じて適宜設定されるが、重合体 (A) 100重 量部に対して、通常 0. 001〜30重量部、好ましくは 0. 01〜: LO重量部、より好ましく は 0. 03〜5重量部である。
[0055] (4)液晶ポリマーの長繊維からなるクロス
本発明に用いる液晶ポリマーの長繊維力 なるクロスは、液晶性ポリエステル長繊 維を使用した織布又は不織布である。また、ここでいう液晶性ポリエステル長繊維は
、エステル結合を有し、液晶状態を示すポリマー(以下「液晶ポリマー」ということがあ る)を溶融押し出し等で紡糸した連続したフィラメントである。
[0056] このような液晶ポリマーとしては、以下に例示する(a)〜(d)の化合物、並びにこれ らの化合物を適宜組み合わせて共重合させることより得られる、公知の液晶ポリエス テル及び液晶ポリエステルアミドが挙げられる。
[0057] (a)芳香族又は脂肪族のジヒドロキシ化合物
(b)芳香族又は脂肪族のジカルボン酸
(c)芳香族ヒドロキシカルボン酸
(d)芳香族ジァミン、芳香族ヒドロキシルァミン又は芳香族ァミノカルボン酸 これらの中でも、液晶ポリマーとしては、主鎖中に脂肪族炭化水素を実質的に有し な 、全芳香族ポリエステルが好まし 、。
[0058] 全芳香族ポリエステルは、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキ シカルボン酸等のモノマーを組み合わせ、組成比を変えて合成される。例えば、 P- ヒドロキシ安息香酸と 2 ヒドロキシ 6 ナフトェ酸との共重合体、 p ヒドロキシ安 息香酸又はテレフタル酸と 4, 4'ージヒドロキシビフエニルとの共重合体等が挙げら れる。
[0059] 液晶ポリマーの長繊維からなるクロスの形態の例としては、ロービングクロス、チヨッ プドマット、サーフエシングマット等の織布又は不織布が挙げられる。これらの形態の 中では、寸法安定性の観点からは織布が好ましぐ加工性の観点からは不織布が好 ましい。また、これらの織布または不織布を、熱ロールなどで圧縮したものも好ましい
[0060] 本発明においては、これら両者の特長を兼備させるために織布と不織布とを積層し て用いても良い。また、液晶ポリマーの長繊維力もなるクロスに、ガラス、ァラミド、ポリ ベンゾォキサゾール及び天然セルロース系繊維のクロス又はミクロフイブリルを混抄し て用いても良い。
[0061] 本発明に用いる液晶ポリマーの長繊維力もなるクロスは、その単位面積当たりの重 量によって、得られる絶縁榭脂層の厚みを任意に変えることができる。液晶ポリマー の長繊維力もなるクロスの単位面積当たりの重量は、好ましくは 3〜55g/m2、より好 ましくは 6〜45gZm2である。
単位面積当たりの重量が小さすぎると、クロスの強度が不十分で塗工が困難になる 場合があり、また大きすぎると得られる絶縁榭脂層の厚みを小さくすることが困難にな り、積層時の厚みの制御が困難になるという問題が生じ得る。
[0062] 本発明に好適に用いる液晶ポリマーの長繊維力もなるクロスとしては、全芳香族ポ リエステルをメルトブロー法により、紡糸時に高配向させた繊維から構成される不織 布が挙げられる。具体的にはべクルス及びべクトラン (いずれもクラレ社の商品名)等 を使用できる。
[0063] (5)複合榭脂成形体
本発明の複合榭脂成形体は、上記の硬化性榭脂組成物を液晶ポリマーの長繊維 力もなるクロスに含浸してなるものである。
[0064] 本発明の複合榭脂成形体は、未硬化であっても半硬化であってもよ ヽ。ここで未硬 化とは、重合体 (A)を溶解可能な溶剤に、実質的に重合体 (A)全部が溶解する状 態である。半硬化とは、加熱すれば更に硬化しうる程度に途中まで硬化された状態 であり、好ましくは、重合体 (A)を溶解可能な溶剤に重合体 (A)の一部 (具体的には 7重量%以上)が溶解する状態であるか、溶剤中に複合榭脂成形体を 24時間浸漬し たときの膨潤率が、浸漬前の体積の 200%以上である状態をいう。
[0065] 本発明の複合榭脂成形体中の、液晶ポリマーの長繊維力 なるクロスの含有割合 は、通常 20〜90重量%、好ましくは 30〜85重量%である。液晶ポリマーの長繊維 力 なるクロスの含有割合が小さすぎると難燃性が低下する場合があり、また大きす ぎると積層時の厚みの制御が困難になる場合がある。
[0066] 液晶ポリマーの長繊維力 なるクロスの含有割合は、例えば重合体 (A)が未硬化 の場合には、重合体 (A)を溶解可能で液晶ポリマーを溶解しない溶剤に複合榭脂 成形体を溶解させて得られる不溶分力も測定できる。また、用いた液晶ポリマーの長 繊維力もなるクロスの単位面積当たりの重量力も計算で求めることもできる。
[0067] 硬化性榭脂組成物を液晶ポリマーの長繊維力 なるクロスに含浸させる方法は特 に限定されないが、硬化性榭脂組成物を有機溶剤に溶解又は分散させたワニス (硬 化性榭脂ワニス)とし、これを液晶ポリマーの長繊維力もなるクロスに含浸させ、乾燥 する方法が好ましい。硬化性榭脂組成物をワニスとして使用する場合は、上記重合 体 (A)は、用いる有機溶剤に常温で可溶であることが好ましい。
[0068] ワニスの調製に用いる有機溶剤としては、沸点が 30〜250°Cのものが好ましぐ 50 〜200°Cのものがより好ましい。このような範囲の沸点を有する有機溶剤を使用する と、後に加熱して揮散させ、乾燥するのに好適である。
[0069] 力かる有機溶剤の具体例としては、トルエン、キシレン、ェチルベンゼン、トリメチル ベンゼン等の芳香族炭化水素系溶剤; n—ペンタン、 n—へキサン、 n—ヘプタン等 の脂肪族炭化水素系溶剤;シクロペンタン、シクロへキサン等の脂環式炭化水素系 溶剤;クロ口ベンゼン、ジクロロベンゼン、トリクロ口ベンゼン等のハロゲン化炭化水素 系溶剤;メチルェチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロへキサ ノン等のケトン系溶剤;等が挙げられる。
[0070] 有機溶剤の使用量は、所望の複合榭脂成形体の厚みや表面平坦度に応じて適宜 選択されるが、ワニスの固形分濃度力 通常、 5〜70重量%、好ましくは 10〜65重 量%、より好ましくは 20〜60重量%になる範囲である。
[0071] ワニスの調製法に格別な制限はなぐ例えば、重合体 (A)、硬化剤 (B)、有機溶剤 及び必要に応じ配合される任意成分を常法に従って混合すればよい。
[0072] 混合に用いる混合機としては、マグネチックスターラー、高速ホモジナイザー、ディ スパー、遊星攪拌機、二軸攪拌機、ボールミル、三本ロール等が挙げられる。
混合温度は、硬化剤 (B)による硬化反応を起こさない範囲で、かつ有機溶剤の沸 点以下が好ましい。
[0073] ワニスを液晶ポリマーの長繊維力 なるクロスに含浸させる方法としては、特に限定 されない。例えば、ディップコート法、ロールコート法、カーテンコート法、ダイコート法 、スリットコート法、グラビアコート法等の公知の塗工法により、ワニスを液晶ポリマー の長繊維力 なるクロスに塗布する方法が挙げられる。
[0074] また、ワニスを塗布する際においては、予め液晶ポリマーの長繊維力もなるクロスを 支持体上に設置しておき、ここに上記ワニスを塗布するようにしてもょ 、。
[0075] 用いる支持体としては、榭脂フィルムや金属箔等が挙げられる。
榭脂フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、 ポリエチレンフィルム、ポリカーボネートフィルム、ポリエチレンナフタレートフィルム、 ポリアリレートフイルム、ナイロンフィルム等が挙げられる。これらのフィルムのうち、耐 熱性、耐薬品性、剥離性等の観点から、ポリエチレンテレフタレートフィルム及びポリ エチレンナフタレートフィルムが好まし 、。
金属箔としては、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、銀箔等が挙げられる 。中でも、導電性が良好である点から、銅箔、特に電解銅箔や圧延銅箔が好適であ る。
[0076] 支持体の厚みに制限はないが、作業性等の観点から、通常、 l〜150 /z m、好まし くは 2〜: ίΟΟ /ζ πι、より好ましくは 5〜80 /ζ πιである。
[0077] また、支持体の表面平均粗さ Raは、通常、 300nm以下、好ましくは 150nm以下、 より好ましくは lOOnm以下である。支持体の表面平均粗さ Raが大きすぎると、得られ る複合成形体を硬化して形成される電気絶縁層の表面平均粗さ Raが大きくなり、導 体層として微細な配線パターンの形成が困難になる。
[0078] ワニスを塗布した液晶ポリマーの長繊維力もなるクロスを乾燥することにより、本発 明の複合榭脂成形体を得ることができる。
[0079] ワニスを塗布した液晶ポリマーの長繊維カゝらなるクロスの乾燥条件は、有機溶剤の 種類により適宜選択される。具体的には、乾燥温度は通常 20〜300°C、好ましくは 3 0〜200°Cである。乾燥温度が高すぎると、硬化反応が進行して、得られる複合榭脂 成形体が未硬化又は半硬化の状態とならなくなるおそれがある。また、乾燥時間は、 通常 30秒〜 1時間、好ましくは 1分〜 30分である。
[0080] (6)難燃剤
本発明の複合榭脂成形体は高い難燃性を有しているが、難燃性を向上させる目的 でさらに難燃剤を含有して 、てもよ 、。
[0081] 用いる難燃剤としては、焼却時に有害物質の発生の少ないハロゲン不含難燃剤が 好ましい。ハロゲン不含難燃剤の具体例としては、三酸ィ匕アンチモン、五酸化アンチ モン、アンチモン酸ソーダ等のアンチモン化合物;水酸化アルミニウム、水酸化マグ ネシゥム、硼酸亜鉛、スルファミン酸グァ-ジン、ジルコニウム化合物、モリブデンィ匕 合物、硼酸アルミニウム、スズィ匕合物等の無機難燃剤;フエ口セン等の有機金属化合 物;リン酸エステル、芳香族縮合リン酸エステル、フォスファゼン化合物、リン含有ェポ キシィ匕合物、反応型リン化合物、ポリリン酸アンモ-ゥム、メラミンリン酸塩、ポリりん酸 メラミン塩、ポリりん酸メラム塩、ポリリン酸メレム塩、ポリリン酸メラミン'メラム'メレム複 塩、赤燐、フォスファゼンィ匕合物等のリン系難燃剤;等が挙げられる。これらのうち、水 酸化マグネシウム、水酸ィ匕アルミニウム、フォスファゼン化合物、メラミンリン酸塩、ポリ リン酸メラミン塩、ポリリン酸メラム塩、ポリリン酸メレム塩が好ましぐ特に耐熱性、耐湿 性及び難燃性の向上に優れる点力も水酸ィ匕マグネシウム、ポリリン酸メラミン'メラム' メレム複塩が好ましい。
[0082] (7)充填剤、添加剤
本発明の複合榭脂成形体は、さらにその用途に応じて所望の性能を付与する目的 で、本来の性質を損なわな 、範囲の量の充填剤や添加剤を含有して 、てもよ 、。
[0083] 用いる充填剤としては、カーボンブラック、シリカ、アルミナ、チタン酸バリウム、タル ク、雲母、ガラスビーズ、ガラス中空球等が挙げられる。
[0084] 添加剤としては、軟質重合体、耐熱安定剤、耐候安定剤、老化防止剤、レべリング 剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天 然油、合成油、ワックス、乳剤、磁性体、誘電特性調整剤、靭性剤、レーザー加工性 向上剤等が挙げられる。
[0085] 上記の難燃剤、充填剤及び添加剤等の任意成分を配合する方法は特に限定され ないが、通常は前記硬化性榭脂組成物に配合させて用いられ、好ましくは前記ヮ- スの調製にお!ヽて重合体 (A)、硬化剤 (B)及び有機溶剤と共に混合して用いられる
[0086] 本発明の複合榭脂成形体の形状は、特に限定されないが、フィルム又はシートで あることが好ましい。フィルム又はシートの厚みは、通常、 1〜150 m、好ましくは 3
〜: LOO μ m、より好ましくは 5〜80 μ mである。
[0087] 本発明の複合榭脂成形体は、難燃性、電気絶縁性及び耐クラック性に優れ、かつ
、焼却時に有害物質が発生しにくいものである。従って、本発明の積層体及び多層 回路基板の電気絶縁層の形成材料として好適である。
[0088] 2)硬化物
本発明の硬化物は、上述した本発明の複合榭脂成形体を硬化して得られるもので ある。
複合榭脂成形体の硬化は、通常、複合榭脂成形体を加熱することにより行う。
[0089] 硬化条件は硬化剤の種類に応じて適宜選択される。硬化温度は、通常 30〜400
。C、好ましくは 70〜300°C、より好ましくは 100〜200°Cである。硬化時間は、 0. 1〜
5時間、好ましくは 0. 5〜3時間である。加熱の方法は特に制限されず、例えば電気 オーブンを用 、て行えばよ!/、。
[0090] なお、硬化に先立って、複合榭脂成形体に金属配位能を有する化合物を接触させ
、次いで、水等の、これらの化合物の良溶剤で洗浄する工程を設けることが好ましい
。この工程により、複合榭脂成形体の表面の平滑化を図り、この上に後工程で被覆さ れる金属薄膜との密着性を向上させることができる。
[0091] 用いる金属配位能を有する化合物としては、 1一(2 アミノエチル) 2—メチルイ ミダゾール等のイミダゾール類;ピラゾール類;トリァゾール類;トリアジン類;等が挙げ られる。
[0092] 本発明の硬化物は、本発明の複合榭脂成形体を硬化して得られるものであり、難 燃性、電気絶縁性及び耐クラック性に優れ、かつ、焼却時に有害物質が発生しにく いものである。従って、本発明の積層体及び多層回路基板の電気絶縁層として好適 である。
[0093] 3)積層体
本発明の積層体は、表面に導体層 (I)を有する基板と前記本発明の硬化物からな る電気絶縁層とを積層してなる。
[0094] ( 1)基板 本発明に用いる基板は、電気絶縁性基板の表面に導体層(I)を有するものである。 電気絶縁性基板は、公知の電気絶縁材料 (例えば、脂環式ォレフイン重合体、ェ ポキシ榭脂、マレイミド榭脂、アクリル榭脂、メタタリル榭脂、ジァリルフタレート榭脂、ト リアジン榭脂、ポリフエニルエーテル、ガラス等)を含有する硬化性榭脂組成物を硬 化して形成されたものである。
[0095] (2)導体層 (I)
導体層 (I)は、特に限定されないが、通常、導電性金属等の導電体により形成され た配線を含む層であって、更に各種の回路を含んでいてもよい。また、配線や回路 の構成、厚み等は、特に限定されない。
[0096] 表面に導体層 (I)を有する基板の具体例としては、プリント配線基板、シリコンゥェ ーハ基板等を挙げることができる。表面に導体層(I)を有する基板の厚みは、通常、 10 μ m〜10mm、好ましくは 20 μ m〜5mm、より好ましくは 30 μ m〜 2mmである。
[0097] 本発明に用いる表面に導体層(I)を有する基板は、電気絶縁層との密着性を向上 させるために、導体層(I)表面に前処理が施されていることが好ましい。
[0098] 前処理の方法としては、公知の技術が特に限定されず使用できる。例えば、導体 層(I)が銅カゝらなるものであれば、強アルカリ酸ィ匕性溶液を導体層(I)表面に接触さ せて、導体層 (I)表面に酸化銅の層を形成して粗化する酸化処理方法、導体層 (I) 表面を先の方法で酸ィ匕した後に水素化ホウ素ナトリウム、ホルマリン等で還元する方 法、導体層 (I)にめつきを析出させて粗ィヒする方法、導体層 (I)に有機酸を接触させ て銅の粒界を溶出して粗ィ匕する方法、及び導体層 (I)にチオールィ匕合物ゃシランィ匕 合物等によりプライマー層を形成する方法等が挙げられる。
[0099] これらのうち、微細な配線パターンの形状維持の容易性の観点から、導体層 (I)に 有機酸を接触させて銅の粒界を溶出して粗化する方法、及び、チオール化合物ゃシ ランィ匕合物等によりプライマー層を形成する方法が好ましい。
[0100] (3)積層体の製造
本発明の積層体は、表面に導体層 (I)を有する基板上に、前記本発明の複合榭脂 成形体を加熱圧着し、硬化して電気絶縁層を形成することにより製造できる。
[0101] 加熱圧着の方法の具体例としては、支持体付きの複合榭脂成形体を、前記基板の 導体層 (I)に接するように重ね合わせ、加圧ラミネータ、プレス、真空ラミネータ、真空 プレス、ロールラミネータ等の加圧機を使用して加熱圧着 (ラミネーシヨン)して、導体 層(I)上に複合榭脂成形体層を形成する方法が挙げられる。加熱加圧することにより 、前記基板表面の導体層 (I)と複合榭脂成形体層との界面に空隙が実質的に存在し ないように結合させることができる。また、前記支持体として金属箔を用いた場合は、 複合榭脂成形体層と金属箔との密着性も向上するので、該金属箔をそのまま後述の 多層回路基板の導体層 (II)として用いることができる。
[0102] 加熱圧着操作の温度は、通常 30〜250°C、好ましくは 70〜200°Cであり、加える 圧力は、通常 10kPa〜20MPa、好ましくは 100kPa〜10MPaである。 加熱圧着 時間は、通常 30秒から 5時間、好ましくは 1分から 3時間である。
[0103] また、加熱圧着は、配線パターンの埋め込み性を向上させ、気泡の発生を抑えるた めに減圧下で行うのが好ま U、。
加熱圧着を行う雰囲気の圧力は、通常 100kPa〜lPa、好ましくは 40kPa〜10Pa である。
[0104] 複合榭脂成形体の硬化は、通常、導体層 (I)上に複合榭脂成形体が形成された基 板全体を加熱することにより行う。硬化は、前記加熱圧着操作と同時に行うことができ る。また、先ず加熱圧着操作を硬化の起こらない条件、すなわち比較的低温、短時 間で行った後、硬化を行ってもよい。
[0105] また、電気絶縁層の平坦性を向上させる目的や、電気絶縁層の厚みを増す目的で 、前記基板の導体層 (I)上に複合榭脂成形体を 2以上接して貼り合わせて積層して ちょい。
[0106] 4)多層回路基板及びその製造方法
本発明の多層回路基板は、上述した本発明の積層体の電気絶縁層上に導体層 (I I)を形成してなる。
[0107] 本発明の多層回路基板は、前記積層体の製造において、複合榭脂成形体の支持 体として榭脂フィルムを用いた場合は、これを剥離した後に、電気絶縁層上にめっき 法等により導体層 (Π)を形成することにより製造できる。また、複合榭脂成形体の支 持体として金属箔を用いた場合は、公知のエッチング法により該金属箔をパターン状 にエッチングして導体層(Π)を形成することにより製造することができる。本発明にお いては、前者の方法が好ましい。
[0108] 以下に、電気絶縁層上にめっき法により導体層(II)を形成して本発明の多層回路 基板を製造する方法について具体的に説明する。
[0109] まず、多層回路基板の製造に際し、通常、導体層 (Π)を形成する前に、多層回路 基板中の各導体層を連結するために、積層体を貫通するビアホールを形成する。
[0110] ビアホールは、フォトリソグラフィ法のような化学的処理により、又は、ドリル、レーザ 一、プラズマエッチング等の物理的処理等により形成することができる。これらの方法 の中でもレーザーによる方法(炭酸ガスレーザー、エキシマレーザー、 UV— YAGレ 一ザ一等)によれば、より微細なビアホールを電気絶縁層の特性を低下させずに形 成できるので好ましい。
[0111] 次に、導体層 (II)との接着性を高めるために、電気絶縁層の表面を酸化して粗ィ匕 し、所望の表面平均粗さに調整する。
[0112] 本発明において電気絶縁層の表面平均粗さ Raは 0. 05 μ m以上 0. 3 μ m未満、 好ましくは 0. 06 μ mJ¾_hO. 以下であり、かつ表面十点平均粗さ Rzjisは 0. 3 μ m以上 4 μ m未満、好ましくは 0. 5 μ m以上 2 μ m以下である。
ここで、 Ra〖お IS B0601— 2001〖こ示される中心線平均粗さであり、表面十点平 均粗さ Rzjisは、 JIS B0601 - 2001付属書 1に示される十点平均粗さである。
[0113] 電気絶縁層表面と酸化性化合物とを接触させることにより、電気絶縁層表面を酸化 することができる。
用いる酸ィ匕性ィ匕合物としては、無機過酸ィ匕物や有機過酸ィ匕物;気体;等酸ィ匕能を 有する公知の化合物が挙げられる。電気絶縁層の表面平均粗さの制御の容易さから 、無機過酸ィ匕物や有機過酸ィ匕物を用いるのが特に好まし ヽ。
[0114] 無機過酸ィ匕物の具体例としては、過マンガン酸塩、無水クロム酸、重クロム酸塩、ク ロム酸塩、過硫酸塩、活性二酸化マンガン、四酸化オスミウム、過酸化水素、過よう 素酸塩、オゾン等が挙げられる。
有機過酸ィ匕物の具体例としてはジクミルパーオキサイド、オタタノィルパーォキサイ ド、 m—クロ口過安息香酸、過酢酸等が挙げられる。 [0115] 無機過酸ィ匕物や有機過酸ィ匕物を用いて電気絶縁層表面を酸ィ匕する方法に格別な 制限はない。例えば、上記酸ィ匕性ィ匕合物を溶解可能な溶媒に溶解して調製した酸 化性化合物溶液を電気絶縁層表面に接触させる方法が挙げられる。
[0116] 無機過酸化物や有機過酸化物又はこれらの溶液を電気絶縁層表面に接触させる 方法に格別な制限はなぐ例えば、電気絶縁層を酸化性化合物の溶液に浸漬する ディップ法、酸化性化合物溶液を表面張力の利用で電気絶縁層に載せる液盛り法、 酸ィ匕性ィ匕合物の溶液を基材に噴霧するスプレー法、等 、かなる方法であっても良 ヽ
[0117] これらの無機過酸化物や有機過酸化物を電気絶縁層表面に接触させる温度や時 間は、過酸化物の濃度や種類、接触方法等を考慮して、任意に設定すれば良い。 前記温度は通常 10〜250°C、好ましくは 20〜180°Cであり、前記時間は通常 0. 5 〜60分、好ましくは 1〜30分である。
[0118] 気体を用いて酸化処理する方法としては、逆スパッタリングやコロナ放電等気体を ラジカルやイオンィ匕させるプラズマ処理が挙げられる。気体としては大気、酸素、窒 素、アルゴン、水、二硫化炭素、四塩ィ匕炭素等が例示される。
[0119] 酸化処理用の気体が処理温度では液体であるが減圧下で気体になる場合は、減 圧下で酸化処理を行う。
また、酸化処理用の気体が処理温度、圧力において気体の場合は、ラジカル化や イオン化が可能な圧力に加圧した後、酸化処理を行う。
[0120] プラズマを電気絶縁層表面に接触させる温度や時間は、ガスの種類や流量等を考 慮して設定すれば良い。接触させる温度は通常 10〜250°C、好ましくは 20〜180°C であり、接触させる時間は通常 0. 5〜60分、好ましくは 1〜30分である。
[0121] また、酸化性化合物の溶液を用いて電気絶縁層表面を酸化する場合、電気絶縁 層を構成する硬化性榭脂組成物中に、酸化性化合物の溶液に可溶な重合体や無 機充填剤を含ませておくことが好ましい。無機充填剤や重合体 (A)が微細な海島構 造を形成した上で選択的に溶解するので、前記絶縁層の表面粗さを上述した範囲 に制御することが容易となる。
[0122] 酸ィ匕性ィ匕合物の溶液に可溶な重合体の例としては、液状エポキシ榭脂、ポリエステ ル榭脂、ビスマレイミド—トリアジン榭脂、シリコーン榭脂、ポリメチルメタクリル榭脂、 天然ゴム、スチレン系ゴム、イソプレン系ゴム、ブタジエン系ゴム、 -トリル系ゴム、ェ チレン系ゴム、プロピレン系ゴム、ウレタンゴム、ブチノレゴム、シリコーンゴム、フッ素ゴ ム、ノルボルネンゴム、エーテル系ゴム等が挙げられる。
[0123] 酸ィ匕性ィ匕合物の溶液に可溶な重合体の配合割合に格別の制限はなぐ重合体 (A ) 100重量部に対して、通常 1〜30重量部、好ましくは 3〜25重量部、より好ましくは 5〜20重量部である。
[0124] 酸ィ匕性ィ匕合物の溶液に可溶な無機充填剤の例としては、炭酸カルシウム、炭酸マ グネシゥム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケィ酸マグネ シゥム、ケィ酸カルシウム、ケィ酸ジルコニウム、水和アルミナ、水酸化マグネシウム、 水酸ィ匕アルミニウム、硫酸バリウム、シリカ、タルク、クレー等を挙げることができる。こ れらの中でも、炭酸カルシウム及びシリカ力 微細な粒子が得やすぐかつ、充填剤 可溶性水溶液で溶出されやすぐ微細な粗面形状を得るのに好適である。これらの 無機充填剤は、シランカップリング剤処理ゃステアリン酸等の有機酸処理をしたもの であってもよい。
[0125] 添加される無機充填剤は、電気絶縁層の誘電特性を低下させない非導電性のもの であることが好ましい。
また、添加される無機充填剤の形状は、特に限定されず、球状、繊維状、板状等で あってもよいが、微細な粗面形状を得るために、微細な粉末状であることが好ましい。
[0126] 用いる無機充填剤の平均粒径は、通常、 0. 008 m以上 2 m未満、好ましくは 0 . 01 μ m以上 1. 5 μ未満、特に好ましく ίま 0. 02 μ m以上 1 μ m未満である。平均粒 径が小さすぎると、大型基板で均一な密着性が得られないおそれがあり、逆に、大き すぎると電気絶縁層に大きな粗面が発生し、高密度の配線パターンが得られない可 能性がある。
[0127] 酸化性化合物の溶液に可溶な無機充填剤の配合量は、必要とされる密着性の程 度に応じて適宜選択されるが、重合体 (A) 100重量部に対して、通常 1〜80重量部 、好ましくは 3〜60重量部、より好ましくは 5〜40重量部である。
[0128] このような酸ィ匕性ィ匕合物の溶液に可溶な重合体や無機充填剤は、本発明に用いる 硬化性榭脂組成物に任意に添加される難燃助剤、耐熱安定剤、誘電特性調整剤、 靭性剤の一部であってもよ ヽ。
[0129] 電気絶縁層の酸化処理後は、酸ィ匕性ィ匕合物を除去するため、通常、電気絶縁層 表面を水で洗浄する。水だけでは洗浄しきれない物質が付着している場合には、そ の物質を溶解可能な洗浄液で更に洗浄したり、他の化合物と接触させることにより水 に可溶な物質にしてカゝら水で洗浄する。例えば、過マンガン酸カリウム水溶液や過マ ンガン酸ナトリウム水溶液等のアルカリ性水溶液を電気絶縁層と接触させた場合は、 発生した二酸ィ匕マンガンの皮膜を除去する目的で、硫酸ヒドロキシァミンと硫酸との 混合液等の酸性水溶液により中和還元処理した後に水で洗浄することができる。
[0130] 電気絶縁層を酸化して表面平均粗さを調整した後、積層体の電気絶縁層表面とビ ァホール内壁面に導体層 (II)を形成する。
導体層 (II)の形成方法としては、特に限定されないが、密着性に優れる導体層 (II) を形成する観点からめっき法が好まし 、。
[0131] 導体層(Π)をめつき法により形成する方法に格別制限はないが、例えば電気絶縁 層上にめっき等により金属薄膜を形成し、次いで厚付けめつきにより金属層を成長さ せる方法が採られる。
[0132] 金属薄膜の形成を無電解めつきにより行う場合、金属薄膜を電気絶縁層の表面に 形成させる前に、電気絶縁層上に、銀、ノ ジウム、亜鉛、コバルト等の触媒核を付 着させるのが一般的である。
[0133] 触媒核を電気絶縁層に付着させる方法は特に制限されず、例えば、銀、パラジウム 、亜鉛、コバルト等の金属化合物やこれらの塩ゃ錯体を、水又はアルコール若しくは クロ口ホルム等の有機溶剤に 0. 001〜: LO重量%の濃度で溶解した液 (必要に応じ て酸、アルカリ、錯化剤、還元剤等を含有していてもよい)に浸漬した後、金属を還元 する方法等が挙げられる。
[0134] 無電解めつき法に用いる無電解めつき液としては、公知の自己触媒型の無電解め つき液を用いればよぐめっき液中に含まれる金属種、還元剤種、錯化剤種、水素ィ オン濃度、溶存酸素濃度等は特に限定されない。
[0135] 例えば、次亜リン酸アンモニゥム、次亜リン酸、水素化硼素アンモニゥム、ヒドラジン 、ホルマリン等を還元剤とする無電解銅めつき液;次亜リン酸ナトリウムを還元剤とす る無電解ニッケル一リンめつき液;ジメチルァミンボランを還元剤とする無電解-ッケ ルーホウ素めつき液;無電解パラジウムめっき液;次亜リン酸ナトリウムを還元剤とする 無電解パラジウム—リンめつき液;無電解金めつき液;無電解銀めつき液;次亜リン酸 ナトリウムを還元剤とする無電解ニッケル—コバルト—リンめつき液等の無電解めつき 液を用いることができる。
[0136] 金属薄膜を形成した後、基板表面を防鲭剤と接触させて防鲭処理を施すことがで きる。また、金属薄膜を形成した後、密着性向上等のため、金属薄膜を加熱すること もできる。加熱温度は、通常、 50〜350°C、好ましくは 80〜250°Cである。
[0137] 加熱は加圧条件下で実施してもよい。このときの加圧方法としては、例えば、熱プレ ス機、加圧加熱ロール機等の物理的加圧手段を用いる方法が挙げられる。加える圧 力は、通常、 0. l〜20MPa、好ましくは 0. 5〜10MPaである。この範囲であれば、 金属薄膜と電気絶縁層との高い密着性が確保できる。
[0138] こうして形成された金属薄膜上にめっき用レジストパターンを形成し、更にその上に 電解めつき等の湿式めつきによりめつきを成長させ (厚付けめつき)、次いで、レジスト を除去し、更にエッチングにより金属薄膜をパターン状にエッチングして導体層 (II) を形成する。従って、この方法により形成される導体層 (II)は、通常、パターン状の金 属薄膜と、その上に成長させためっきとからなる。
[0139] 以上のようにして得られた多層回路基板を新たな積層体として用いて、上述の電気 絶縁層形成と導体層(Π)形成の工程を繰り返すことにより、更なる多層化を行うことが でき、これにより所望の多層回路基板を得ることができる。
[0140] 本発明の多層回路基板は電気絶縁層と導体層 (II)との密着性に優れる。本発明 の多層回路基板における導体層 (II)と電気絶縁層との間の、 JIS C6481に準拠し て測定した引き剥がし強さは、通常 6NZcm以上、好ましくは 8NZcm以上である。
[0141] 本発明の多層回路基板は耐クラック性に優れる。本発明の多層回路基板を、 JIS Z2247 エリクセン試験 A方法に従って試験を行った場合において、基板の表面に 割れを生じた時点の、ポンチ先端がしわ押さえ面力 移動した距離 (エリクセン値)は 、通常 4mm以上、好ましくは 5mm以上である。 [0142] 本発明の多層回路基板は優れた電気特性を有しているので、後述するように、コン ピューターや携帯電話等の電子機器における、 CPUやメモリ等の半導体素子、その 他の実装部品用基板として好適に使用できる。
[0143] 5)電子機器
本発明の電子機器は、上述した本発明の多層回路基板を有することを特徴とする 本発明の電子機器としては、携帯電話機、 PHS、ノート型パソコン、 PDA (携帯情 報端末)、携帯テレビ電話機、パーソナルコンピューター、スーパーコンピューター、 サーバー、ルーター、液晶プロジェクタ、エンジニアリング 'ワークステーション(EWS )、ページャ、ワードプロセッサ、テレビ、ビューファインダ型またはモニタ直視型のビ デォテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーシヨン装置、 POS 端末、タツチパネルを備えた装置等が挙げられる。
本発明の電子機器は、本発明の多層回路基板を備えているので、高性能で高品 質な電子機器となって 、る。
実施例
[0144] 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこ れらの実施例に限定されるものではない。なお、実施例及び比較例における部及び %は、特に断りのない限り重量基準である。
[0145] 各特性の定義及び評価方法は、以下のとおりである。
(1)重合体の数平均分子量 (Mn)、重量平均分子量 (Mw)
トルエンまたはテトラヒドロフランを展開溶媒として、ゲル.パーミエーシヨン.クロマト グラフィー(GPC)により測定し、ポリスチレン換算値として求めた。
(2)重合体の水素化率
水素化率は、水素化前の重合体中の不飽和結合のモル数に対する水素添加され た不飽和結合のモル数の比率をいい、ェ!! NMR ^ベクトル測定により求めた。
(3)重合体のカルボキシル基等の含有率
重合体中の総単量体単位数に対するカルボキシル基等のモル数の割合を 、い、1 H— NMRスペクトル測定により求めた。 [0146] (4)重合体の酸価
重合体 (A)の酸価は、 JIS K 0070に準じた方法により測定し求めた。すなわち、 重合体 (A)の酸価は、重合体 (A)を THFに溶解し、所定濃度のテトラ n—プチルァ ンモ-ゥムヒドロキシド((n— C H ) N+OH—)溶液を使用し、 JIS K 8001の 4. 3
4 9 4
に規定するフ ノールフタレインを指示薬として滴定を行い、その結果から試料 lg中 に含まれるカルボキシル基等を中和するのに必要とする水酸ィ匕カリウムの mg数を算 出した。
[0147] (5)重合体のガラス移転温度 (Tg)
示差走査熱量法 (DSC法)により昇温速度 10°CZ分で測定した。
(6)重合体の体積固有抵抗
ASTM D257に基づき測定した。
[0148] (7)表面平均粗さ Ra及び表面十点平均粗さ Rzjis
電気絶縁層又は導体層(Π)表面の、平均粗さ Raと表面十点平均粗さ Rzjisは、共 に非接触式である光学式表面形状測定装置 (キーエンス社製カラーレーザー顕微 鏡、商品名「VK—8500」)を用いて、 20 /z m X 20 /z mの矩形領域について行った 5箇所の測定値に基づき、 JIS B0601— 2001に示される中心線平均粗さ Ra、及び 、JIS B0601— 2001付属書 1に示される十点平均粗さ Rzjisを求めた。
[0149] (8)複合榭脂成形体の線膨張係数
複合榭脂成形体の一部を切り取り、厚み 75 mの圧延銅箔の片面に積層し、支持 体であるポリエチレンテレフタレートフィルムを剥がした後、窒素雰囲気下で、 60°C、 30分間加熱し、次いで 170°C、 60分間加熱して複合榭脂成形体を硬化させた。続 いて塩ィ匕第二銅 Z塩酸混合溶液により圧延銅箔を全てエッチング除去処理してシー ト状成形体を得た。得られたシート状成形体から幅 5. 95mm,長さ 15. 4mm,厚み 30 mの試験片を切り出し、支点間距離 10mm、昇温速度 10°CZ分の条件で、熱 重量 Z示差熱同時測定装置 (TMAZSDTA840:メトラー ·トレド社製)により測定し 、下記の基準で判定した。
〇:線膨張係数の値が、 25ppmZ°C未満のもの
△:線膨張係数の値が、 25ppmZ°C以上 40ppmZ°C未満のもの X:線膨張係数の値が、 40ppmZ°C以上のもの
[0150] (9)複合榭脂成形体の電気特性
上記(8)と同様にして得られた成形体から幅 2. 6mm、長さ 80mm、厚み 30 μ mの 試験片を切り出し、空洞共振器摂動法誘電率測定装置を用いて 10GHzにおける比 誘電率及び誘電正接の測定を行!ヽ、下記の基準で判定した。
〇:誘電正接が 0. 01未満で比誘電率が 2. 8未満のもの
△:誘電正接が 0. 01未満で比誘電率が 2. 8以上のもの
X:誘電正接が 0. 01以上のもの
[0151] (10)導体層 (Π)の密着性
導体層 (II)と電気絶縁層との間の引き剥がし強さを JIS C6481に準拠して測定し
、その結果に基づいて下記の基準で判定した。
◎:引き剥がし強さの平均が 8NZcmを超えるもの
〇:引き剥がし強さの平均が 6NZcmを超え 8NZcm以下のもの
△:引き剥がし強さの平均力 NZcmを超え 6NZcm以下のもの
X:引き剥がし強さの平均が 4NZcm未満のもの
[0152] (11)耐クラック性
JIS Z2247 エリクセン試験 A方法に従い、めっき前処理後の多層回路基板につ いて、 2号試験片を用いて試験を行い、基板の表面に割れを生じた時点の、ポンチ 先端がしわ押さえ面力 移動した距離 (エリクセン値)を測定し、その結果に基づいて 下記の基準で判定した。
〇:エリクセン値が 5mm以上のもの
△:エリクセン値が 4mm以上 5mm未満のもの
X:エリクセン値が 4mm未満のもの
[0153] (12)難燃性
内層基板として、実施例 1で用いられるコア材 (表面に銅が貼られて!/、な!、もの)を 用い、これと実施例及び比較例で得られた支持体付きの複合榭脂成形体を用いて、 実施例 1と同様にして複合榭脂成形体層を有する内層基板を作製した。
[0154] この複合榭脂成形体層を有する内層基板を、幅 13mm、長さ 100mmの短冊状に 切断して試験片を作製した。この試験片を用いて UL94V垂直燃焼性試験方法に準 じてブンゼンバーナーの炎を接炎させた。試験片に着火後直ちに炎を外し、試験片 が燃焼している時間を計測した。試験片が消炎したら直ちに再度試験片に着火する まで接炎した。二度目の着火後も直ちに炎を外し、試験片が燃焼している時間を計 測し、その結果に基づいて下記の基準で判定した。
〇:一度目の燃焼時間と二度目の燃焼時間の合計が 20秒以内のもの
△:一度目の燃焼時間と二度目の燃焼時間の合計が 20秒を超え 30秒以下のもの X:—度目の燃焼時間と二度目の燃焼時間の合計が 30秒を超えるもの、及び試験 片上部まで燃焼域が達するもの
[0155] (製造例 1)
8 ェチル一テトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン(以下、「ETD」と 略記する。)を、 1ーブテンを分子量調整剤として添加して開環重合し、次いで水素 添加反応を行って ETD水素化開環重合体を得た。得られた ETD水素化開環重合 体の Mnは 31, 200、 Mwは 55, 800、 Tgは 140°Cであった。また、水素ィ匕率は 99 %以上であった。次いで、該 ETD水素化開環重合体 100部、無水マレイン酸 40部 及びジクミルパーォキシド 5部を t ブチルベンゼン 250部に溶解し、 140°Cで 6時間 グラフト結合反応を行った。反応液を 1, 000部のイソプロピルアルコール中に注いで 反応生成物を析出させた後、析出物をろ取した。 100°Cで 20時間真空乾燥して無 水マレイン酸で変性された変性水素化開環重合体 aを得た。変性水素化開環重合体 aの Mnは 33, 200、 Mwは 68, 300、 Tgは 170。Cであり、カルボキシル基等の含有 率は 25モル%であった。また、酸価は 132mgKOHZgであり、体積固有抵抗は I X 1014 Ω 'cm以上であった。結果を第 1表に示す。
[0156] (製造例 2)
1—ブテンの添力卩量を減らした他は製造例 1と同様にして、 Mn力 3, 100、 Mwが 95, 000、Tgが 140°Cの ETD水素化開環重合体を得た。この水素化開環重合体の 水素化率は 99%以上であった。得られた ETD水素化開環重合体を用いて製造例 1 と同様にしてグラフト結合反応を行い、変性水素化開環重合体 bを得た。変性水素化 開環重合体 bの各特性を測定した結果を第 1表に示す。 [0157] (製造例 3)
1ーブテンを添カ卩しなかった他は製造例 1と同様にして、 Mnが 123, 300、 Mwが 3 20, 000、Tgが 149°Cの ETD水素化開環重合体を得た。この水素化開環重合体の 水素化率は 99%以上であった。次いで、該 ETD水素化開環重合体 100部、無水マ レイン酸 45部及びジクミルパーォキシド 7部を t ブチルベンゼン 500部に溶解し、 1 40°Cで 6時間グラフト結合反応を行った。次 、で実施例 1と同様にして変性水素化 開環重合体 cを得た。変性水素化開環重合体 cの各特性を測定した結果を第 1表に 示す。
[0158] (製造例 4)
1—ブテンの添加量を増やした他は重合体製造例 1と同様にして、 Mnが 3, 900、 Mwが 5, 700、 Tgが 107°Cの ETD水素化開環重合体を得た。この水素化開環重合 体の水素化率は 99%以上であった。得られた ETD水素化開環重合体を用いて製 造例 1と同様にしてグラフト結合反応を行い、変性水素化開環重合体 dを得た。変性 水素化開環重合体 dの各特性を測定した結果を第 1表に示す。
[0159] (製造例 5)
1—ブテンの添加量を増やした他は重合体製造例 1と同様にして、 Mnが 15, 600 、 Mwが 25, 300、Tgが 125°Cの ETD水素化開環重合体を得た。この水素化開環 重合体の水素化率は 99%以上であった。得られた ETD水素化開環重合体を用い て、無水マレイン酸の使用量を 240部、ジクミルパーォキシドの量を 12部とした以外 は、製造例 1と同様にしてグラフト結合反応を行い、変性水素化開環重合体 eを得た 。変性水素化開環重合体 eの各特性を測定した結果を第 1表に示す。
[0160] (製造例 6〜8)
グラフト結合反応における無水マレイン酸の使用量をそれぞれ 27部、 51部、 2部と した他は製造例 1と同様にして変性水素化開環重合体 f, g, hをそれぞれ得た。変性 水素化開環重合体 f, g, hの各特性を測定した結果を第 1表に示す。
[0161] (製造例 9)
ETD77. 3部、テトラシクロ [4. 4. 0. I2' 5. I7' 10]— 8 ドデセン一 3, 4 ジカルボ ン酸無水物 22. 7部、 1, 5 へキサジェン 1. 0部、 1, 3 ジメチルイミダゾリジン一 2 —イリデン(トリシクロへキシルホスフィン)ベンジリデンルテニウムジクロリド 0. 05部、 及びテトラヒドロフラン 400部を、窒素置換したガラス製耐圧反応器に仕込み、撹拌し つつ 60°Cにて 2時間反応させて、開環共重合体溶液(固形分濃度:約 20%)を得た 。この溶液中の開環共重合体のポリスチレン換算の Mwは 28, 000であり、 Mnは 14 , 000であった。
[0162] この開環共重合体溶液の一部を撹拌機付きオートクレープに移し、温度 120°Cに て水素を圧力 4MPaで溶存させて 5時間反応させ、水素化された共重合体 (水素化 率 100%)を含む溶液(固形分濃度 =約 20%)を得た。 100部の該溶液に、 1部の活 性炭粉末を添加した耐熱容器をオートクレープに入れ、撹拌しつつ 190°Cにて水素 を 4MPaの圧力で 3時間溶存させた。次いで、溶液を取り出して孔径 0. 2 mのフッ 素榭脂製フィルタでろ過して活性炭を分離して水素化開環共重合体溶液を得た。ろ 過は滞りなく行えた。該溶液をイソプロピルアルコール中に注いで凝固させ、生成し たクラムを乾燥して水素化開環共重合体 iを得た。水素化開環共重合体 iの各特性を 測定した結果を第 1表に示す。
[0163] [表 1]
第 1表
Figure imgf000033_0001
[0164] (製造例 10)
ポリリン酸メラム'メラミン複塩 (難燃性フイラ一)(PMP— 200、重量平均粒子径 3. 2 /z m、 日産化学工業社製)を、 120°Cで 6時間、真空乾燥器にて乾燥した。こうして乾 燥されたポリリン酸メラム'メラミン複塩 25部、及び有機分散媒として乾燥キシレン 42 . 6部と乾燥シクロペンタノン 10. 7部とからなる混合分散媒を、直径 0. 3mmのジル コ-ァビーズ 360部を 250容量部のジルコユアポットに充填し、遊星ボールミル(P— 5、フリッチュ社製)で、遠心加速度 = 15. 9G (ディスク回転数 (公転速度) = 360rp m、ポット回転数 (自転速度) = 780rpm)にて 1時間粉砕を行 ヽ、難燃剤スラリー(重 量平均粒径 0. 51 ^ m)を得た。
[0165] (実施例 1)
重合体 (A)成分として変性水素化開環重合体 alOO部、硬化剤 (B)成分としてビス フエノール Aビス(プロピレングリコールグリシジルエーテル)エーテル 40部、レーザカロ ェ性向上剤として 2— [2—ヒドロキシ一 3, 5—ビス(α , α—ジメチルベンジル)フエ -ル]ベンゾトリアゾール 5部、硬化促進剤として 1 -ベンジル— 2 -フエ-ルイミダゾ ール 0. 1部、及び酸ィ匕処理液に可溶性の重合体として液状ポリブタジエン(日石ポリ ブタジエン Β— 1000 :日本石油化学社製) 10部を、キシレン 215部及びシクロペン タノン 54部力もなる混合溶剤に溶解させて、硬化性榭脂ワニスを得た。
[0166] 縦 300mm X横 300mmの大きさで厚さ力 0 μ m、表面平均粗さ Raが 0. 08 ^ m のポリエチレンナフタレートフィルム(支持体)上に、縦 250mm X横 250mmの大きさ で厚みが 20 m、単位面積当たりの重量が 14g/m2の、全芳香族ポリエステルの液 晶ポリマー不織布(ベクルス MBBK14FXSP:クラレネ土製)を設置し、次 ヽで上記で 得られたワニスを、ダイコーターを用いて液晶ポリマー不織布に塗工し、含浸させた。 次いで、窒素雰囲気下、 80°Cで 10分間乾燥し、厚みが 32 m、液晶ポリマー含有 量が 55%である支持体付きの複合榭脂成形体を得た。
[0167] ガラスフィラー及びハロゲン不含エポキシ榭脂を含有するワニスをガラス繊維に含 浸させて得られたコア材の表面に、厚みが 18 μ mの銅が貼られた、厚み 0. 8mm、 縦 150mm X横 150mmの両面銅張り基板表面に、配線幅及び配線間距離が 50 m、厚みが 18 mで、表面が有機酸との接触によってマイクロエッチング処理された 導体層 (I)を形成して、表面に導体層 (I)を有する基板である内層基板を得た。上記 で得た複合榭脂成形体を縦 150mm X横 150mmの大きさに切断し、複合榭脂成形 体面が内側、支持体が外側となるようにして、この内層基板の両面に重ね合わせた。
[0168] これを、耐熱ゴム製プレス板を上下に備えた真空ラミネータを用いて、 200Paに減 圧して、温度 110°C、圧力 1. OMPaで 300秒間加熱圧着した(一次プレス)。さらに、 金属製プレス板で覆われた耐熱ゴム製プレス板を上下に備えた真空ラミネータを用 いて、 200Paに減圧して、温度 140°C、 1. OMPaで 300秒間、加熱圧着した(二次 プレス)。次いで支持体を剥がして、複合榭脂成形体層を有する内層基板を得た。
[0169] この内層基板を、 1一(2 アミノエチル) 2—メチルイミダゾールの 1. 0%水溶液 に 30°Cにて 10分間浸漬し、次いで 25°Cの水に 1分間浸漬した後、エアーナイフに て余分な溶液を除去した。これを窒素雰囲気下、 170°Cで 60分間放置し、榭脂層を 硬化させて内層基板上に電気絶縁層を形成した。この電気絶縁層に、 UV— YAGレ 一ザ第 3高調波を用いて直径 30 mの層間接続のビアホールを形成し、ビアホール つき多層回路基板を得た。
[0170] 得られたビアホールつき多層回路基板を、過マンガン酸濃度 60gZリットル、水酸 化ナトリウム濃度 28gZリットルになるように調整した 70°Cの水溶液に 10分間揺動浸 漬した。次いで、この多層回路基板を水槽に 1分間揺動浸漬し、更に別の水槽に 1分 間揺動浸漬することにより水洗した。続いて硫酸ヒドロキシルァミン濃度 170gZリット ル、硫酸 80gZリットルになるように調整した 25°Cの水溶液に、多層回路基板を 5分 間浸漬し、中和還元処理をした後、水洗した。
[0171] 次いで、めっき前処理として、上記水洗後の多層回路基板をアルカツプアクチべ一 タ MAT 1 A (上村工業社製)力 S200mlZリットル、アルカツプアクチベータ MAT — 1— B (上村工業社製)が 30mlZリットル、水酸ィ匕ナトリウムが 0. 35g/リットルにな るように調整した 60°Cの Pd塩含有めつき触媒水溶液に 5分間浸漬した。この多層回 路基板を水擦こ 1分間揺動浸漬し、更に別の水擦こ 1分間揺動浸漬することにより水 洗した後、アルカップレデューサ— MAB— 4— A (上村工業社製)が 20mlZリットル 、アルカップレデューサ MAB—4 B (上村工業社製)が 200mlZリットルになる ように調整した溶液に 35°Cで、 3分間浸漬し、めっき触媒を還元処理した。このように してめつき触媒を吸着させ、めっき前処理を施した多層回路基板を得た。
得られた多層回路基板につ!、て、最外電気絶縁層表面の表面平均粗さ Ra及び表 面十点平均粗さ Rzjis、並びに耐クラック性の測定を行った。評価結果を第 2表に示 す。
[0172] 次に、めっき前処理後の多層回路基板を、スルカップ PSY— 1A (上村工業社製) 1 OOmlZリットル、スルカップ PSY— 1B (上村工業社製) 40mlZリットル、ホルマリン 0 .2モル Zリットルとなるように調整した水溶液に空気を吹き込みながら、温度 36°C、 5 分間浸漬して無電解銅めつき処理を行った。
[0173] 無電解めつき処理により金属薄膜層が形成された多層回路基板を、更に水槽に 1 分間揺動浸漬し、更に別の水擦こ 1分間揺動浸漬することにより水洗した後、乾燥し 、防鲭処理を施し、無電解めつき皮膜が形成された多層回路基板を得た。
[0174] この防鲭処理が施された多層回路基板表面に、市販の感光性レジストのドライフィ ルムを熱圧着して貼り付け、さらに、このドライフィルム上に密着性評価用パターンに 対応するパターンのマスクを密着させ露光した後、現像してレジストパターンを得た。 次に硫酸 lOOgZリットルの水溶液に 25°Cで 1分間浸漬させ防鲭剤を除去し、レジス ト非形成部分に電解銅めつきを施し厚さ 18 μ mの電解銅めつき膜を形成させた。次 いで、レジストパターンを剥離液にて剥離除去し、塩化第二銅と塩酸の混合水溶液 によりエッチング処理を行うことにより、前記金属薄膜及び電解銅めつき膜からなる配 線パターンを形成し両面 2層の配線パターン付き多層回路基板を得た。最後に、 17 0°Cで 30分間ァニール処理をして多層プリント配線板を得た。
得られた多層回路基板について、回路パターユング性、高温高湿下における絶縁 性及び耐クラック性の評価を行った。評価結果を第 2表に示す。
[0175] (実施例 2)
実施例 1において、変性水素化開環重合体 aに代えて変性水素化開環重合体 bを 用いた以外は実施例 1と同様に行って多層回路基板を得た。得られた多層回路基板 について、実施例 1と同様の項目について試験、評価を行った結果を第 2表に示す。
[0176] (実施例 3)
実施例 1において、変性水素化開環重合体 aに代えて変性水素化開環重合体 fを 用い、かつ、カルボン酸無水物当量とエポキシ当量の比を実施例 1と同様にするため に、ビスフエノーノレ Aビス(プロピレングリコールグリシジルエーテル)エーテノレの量を 27部とした以外は実施例 1と同様に行って多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0177] (実施例 4)
実施例 1において、変性水素化開環重合体 aに代えて変性水素化開環重合体 gを 用い、かつ、カルボン酸無水物当量とエポキシ当量の比を実施例 1と同様にするため に、ビスフエノーノレ Aビス(プロピレングリコールグリシジルエーテル)エーテノレの量を 51部とした以外は実施例 1と同様に行って多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0178] (実施例 5)
実施例 1にお 、て、全芳香族ポリエステルの液晶ポリマー不織布(ベクルス MBBK 14FXSP、クラレネ土製)を、加熱加圧処理して圧縮された全芳香族ポリエステルの液 晶ポリマー不織布(単位面積当たりの重量 22g/m2、ベクルス MBBK22CXSP、ク ラレ社製)とした以外は実施例 1と同様に行って多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0179] (実施例 6)
実施例 1において、変性水素化開環重合体 aに代えて、水素化開環共重合体 iを用 い、 1一べンジルー 2—フエ-ルイミダゾール 0. 3部、カルボン酸無水物当量とェポキ シ当量の比を実施例 1と同様にするために、ビスフエノール Aビス(プロピレングリコー ルグリシジルエーテル)エーテルの量を 37部とした以外は実施例 1と同様にして多層 回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0180] (実施例 7) 実施例 1において、硬化性榭脂ワニスに、難燃剤として、縮合リン酸エステル PX— 200 (大八化学工業社製)を 20部、製造例 10で調整した難燃剤スラリーを 63部、ァ デカスタブ FP— 2200 (旭電ィ匕工業社製)を 3部、充填剤として、アドマファインシリカ SO-E5 (アドマテックス社製)を 30部加えた以外は実施例 1と同様にして多層回路 基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0181] (比較例 1, 2)
実施例 1において、変性水素化開環重合体 aに代えて、それぞれ変性水素化開環 重合体 c, dを用いた以外は実施例 1と同様に行って多層回路基板をそれぞれ得た。 得られた多層回路基板のそれぞれについて、実施例 1と同様の項目について試験 、評価を行った結果を第 2表に示す。
[0182] (比較例 3)
実施例 1において、変性水素化開環重合体 aに代えて変性水素化開環重合体 hを 用い、かつ、カルボン酸無水物当量とエポキシ当量の比を実施例 1と同様にするため に、ビスフエノーノレ Aビス(プロピレングリコールグリシジルエーテル)エーテノレの量を 2部とした以外は実施例 1と同様に行って多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0183] (比較例 4)
実施例 1において、変性水素化開環重合体 aに代えて変性水素化開環重合体 eを 用い、かつ、カルボン酸無水物当量とエポキシ当量の比を実施例 1と同様にするため に、ビスフエノーノレ Aビス(プロピレングリコールグリシジルエーテル)エーテノレの量を 144部とした以外は実施例 1と同様に行って多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[0184] (比較例 5)
実施例 1において、変性水素化開環重合体 aに代えて、カルボキシル基を有さない 重合体であるエポキシ榭脂(ェピコート 1000、油化シェルエポキシ社製、 Mwは 1, 3 00) 100部を用い、ジシアンジアミド 5部をカ卩えた他は、実施例 1と同様にして複合榭 脂成形体、及び複合榭脂成形体層を有する内層基板を得た。この複合榭脂成形体 層を有する内層基板を用い、 1一(2—アミノエチル) 2—メチルイミダゾールの水溶 液に浸漬しないこと以外は実施例 1と同様にして多層回路基板を得た。
得られた多層回路基板について、実施例 1と同様の項目について試験、評価を行 つた結果を第 2表に示す。
[表 2]
^ 2 表
Figure imgf000040_0001
a~h: 変性水素化開環重合体 a h
i:水素化開環共重合体 i
A:べク レス MBBK14FXSP
B:ベクルス MBBK22CXSP
[0186] 第 2表に示すように、本発明の複合榭脂成形体を用いることにより、導体層 (II)との 高い密着性及び低線膨張係数を示し、難燃性、電気特性、及び耐クラック性に優れ 、高密度の配線パターンが良好に形成された多層回路基板が得られた。
また、めっき前処理を施した電気絶縁層の表面平均粗さ Ra及び表面十点平均粗さ Rzjisが小さぐ平滑性に優れるものであった (実施例 1〜7)。
[0187] 一方、重量平均分子量が大きすぎる重合体 (重合体 c)を使用した複合榭脂成形体 を用いると、めっき前処理を施した電気絶縁層の表面粗度が過大になり、得られた多 層回路基板は、難燃性は良好であつたが、導体層 (II)との密着性が低く配線パター ンに欠損が生じ、かつ耐クラック性も不良であった (比較例 1)。
[0188] 重量平均分子量が小さすぎる重合体 (重合体 d)を使用した複合榭脂成形体を用 いると、めっき前処理を施した電気絶縁層の表面粗度は良好に制御できたが、導体 層(Π)との密着性が低ぐ配線パターンに欠損が生じ、かつ、大きなクラックが生じた (比較例 2)。
[0189] また、カルボキシル基等の含有率が小さすぎる重合体 (重合体 h)を使用した複合 榭脂成形体を用いると、パターユング性が良好であつたが、導体層 (II)との密着性、 耐クラック性及び難燃性が不良であった (比較例 3)。
[0190] 一方、カルボキシル基等の含有率が大きすぎる重合体 (重合体 e)を使用した複合 榭脂成形体を用いると、パターユング性は良好であつたが、表面粗度が大きすぎ、電 気特性及び耐クラック性は劣悪であった (比較例 4)。
[0191] また、カルボキシル基又はカルボン酸無水物基を有しないエポキシ榭脂を使用した 硬化性榭脂組成物を用いると、めっき前処理を施した電気絶縁層の表面粗度が過 大になり、難燃性、電気特性、耐クラック性、パターユング性のいずれも劣るものであ つた (比較例 5)。
産業上の利用可能性
[0192] 本発明の複合榭脂成形体及び硬化物は、難燃性、電気絶縁性及び耐クラック性に 優れ、かつ、焼却時に有害物質が発生しにくいものである。
本発明の積層体及び多層回路基板は、低熱膨張、高弾性率であることを特徴とし 、平滑な電気絶縁層上に導体層をめつき法で形成しても高い密着性を有しており、 高い信頼性を有している。
本発明の多層回路基板は、優れた電気特性を有しているので、コンピューターや 携帯電話等の電子機器における、 CPUやメモリ等の半導体素子、その他の実装部 品用基板として好適に使用できる。

Claims

請求の範囲
[1] 重量平均分子量が 10, 000〜250, 000であり、カルボキシル基またはカルボン酸 無水物基を有し、該カルボキシル基またはカルボン酸無水物基の含有率が 5〜60モ ル%である重合体 (A)、
および硬化剤 (B)を含有する硬化性榭脂組成物を、
液晶ポリマーの長繊維力 なるクロスに含浸してなる複合榭脂成形体。
[2] 前記重合体 (A)が脂環式ォレフイン重合体である請求項 1記載の複合榭脂成形体
[3] 前記液晶ポリマーの長繊維からなるクロスの単位面積当たりの重量が 3〜55gZm2 である請求項 1または 2に記載の複合榭脂成形体。
[4] 前記液晶ポリマーが、全芳香族ポリエステルである請求項 1〜3のいずれか〖こ記載 の複合榭脂成形体。
[5] 重量平均分子量が 10, 000〜250, 000であり、カルボキシル基またはカルボン酸 無水物基を有し、該カルボキシル基またはカルボン酸無水物基の含有率が 5〜60モ ル%である重合体 (A)、
硬化剤 (B)、
および有機溶剤を含有する硬化性榭脂ワニスを、
液晶ポリマーの長繊維からなるクロスに含浸し、
乾燥することを特徴とする複合樹脂成形体の製造方法。
[6] 請求項 1〜4の!ヽずれかに記載の複合榭脂成形体を硬化してなる硬化物。
[7] 表面に導体層 (I)を有する基板と、請求項 6記載の硬化物からなる電気絶縁層とを
、積層してなる積層体。
[8] 表面に導体層 (I)を有する基板上に、
請求項 1〜4の!、ずれかに記載の複合榭脂成形体を加熱圧着し、硬化して電気絶縁 層を形成することを特徴とする請求項 7記載の積層体の製造方法。
[9] 請求項 7記載の積層体の電気絶縁層上に、さらに導体層 (II)を形成してなる多層 回路基板。
[10] 請求項 7記載の積層体の電気絶縁層上に、めっき法により導体層 (II)を形成する 工程を有する請求項 9に記載の多層回路基板の製造方法。 請求項 9記載の多層回路基板を備える電子機器。
PCT/JP2006/316727 2005-08-26 2006-08-25 複合樹脂成形体、積層体、多層回路基板および電子機器 WO2007023944A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/990,912 US20090151984A1 (en) 2005-08-26 2006-08-25 Composite resin molded article, laminate, multi-layer circuit board, and electronic device
JP2007532199A JPWO2007023944A1 (ja) 2005-08-26 2006-08-25 複合樹脂成形体、積層体、多層回路基板および電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-245720 2005-08-26
JP2005245720 2005-08-26

Publications (1)

Publication Number Publication Date
WO2007023944A1 true WO2007023944A1 (ja) 2007-03-01

Family

ID=37771682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316727 WO2007023944A1 (ja) 2005-08-26 2006-08-25 複合樹脂成形体、積層体、多層回路基板および電子機器

Country Status (4)

Country Link
US (1) US20090151984A1 (ja)
JP (1) JPWO2007023944A1 (ja)
CN (1) CN101296977A (ja)
WO (1) WO2007023944A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114674A1 (ja) * 2007-03-14 2008-09-25 Zeon Corporation 絶縁性複合体、その製造方法、および絶縁性複合体の利用
JP2009006698A (ja) * 2007-03-30 2009-01-15 Fujifilm Corp 両面金属膜付きフィルムの製造方法、及び両面金属膜付きフィルム
JP2009242531A (ja) * 2008-03-31 2009-10-22 Nippon Zeon Co Ltd 複合樹脂成形体、積層体及び多層回路基板
JP2011517112A (ja) * 2008-04-10 2011-05-26 ワールド・プロパティーズ・インコーポレイテッド 結合性が改良された回路材料およびその製造方法と製造物品
JP2016107505A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 片面金属張積層板およびその製造方法
CN111512430A (zh) * 2017-12-22 2020-08-07 应用材料公司 在导电表面上沉积阻挡层的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455917B (en) 2006-08-08 2011-08-17 World Properties Inc Circuit materials with improved bond, method of manufacture thereof, and articles formed therefrom
KR101056898B1 (ko) * 2008-09-11 2011-08-12 주식회사 두산 다층 인쇄회로기판 및 그 제조방법
WO2010144792A1 (en) * 2009-06-11 2010-12-16 Rogers Corporation Dielectric materials, methods of forming subassemblies therefrom, and the subassemblies formed therewith
US8871843B2 (en) * 2009-12-15 2014-10-28 Apple Inc. Halogen-free flame retardant material
US9615465B2 (en) * 2010-09-30 2017-04-04 Zeon Corporation Method of production of multilayer circuit board
JP5751257B2 (ja) * 2010-12-27 2015-07-22 日本ゼオン株式会社 硬化性樹脂組成物、硬化物、表面処理硬化物、及び積層体
JP5729280B2 (ja) * 2011-11-30 2015-06-03 ヤマハ株式会社 静電型スピーカ
JP5941847B2 (ja) * 2013-01-17 2016-06-29 信越化学工業株式会社 シリコーン・有機樹脂複合積層板及びその製造方法、並びにこれを使用した発光半導体装置
US10119214B2 (en) 2013-07-17 2018-11-06 Sabic Global Technologies B.V. Force spun sub-micron fiber and applications
US20150024186A1 (en) * 2013-07-17 2015-01-22 Sabic Global Technologies B.V. Force spun sub-micron fiber and applications
US9526185B2 (en) * 2014-04-08 2016-12-20 Finisar Corporation Hybrid PCB with multi-unreinforced laminate
TWI526129B (zh) * 2014-11-05 2016-03-11 Elite Material Co Ltd Multilayer printed circuit boards with dimensional stability
KR20160093403A (ko) * 2015-01-29 2016-08-08 엘지이노텍 주식회사 전자파차폐구조물
TWI705898B (zh) * 2015-12-22 2020-10-01 美商英特爾股份有限公司 層積體之製造方法
US11044802B2 (en) * 2017-02-16 2021-06-22 Azotek Co., Ltd. Circuit board
US11225563B2 (en) 2017-02-16 2022-01-18 Azotek Co., Ltd. Circuit board structure and composite for forming insulating substrates
WO2021046722A1 (zh) * 2019-09-10 2021-03-18 中国科学院深圳先进技术研究院 一种高温绝缘胶膜材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015595A1 (fr) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Composition a base d'un polymere de norbornene
JP2002249606A (ja) * 2001-02-23 2002-09-06 Nippon Zeon Co Ltd プリプレグ
JP2003082291A (ja) * 2001-06-28 2003-03-19 Nippon Zeon Co Ltd ワニス及びその利用
JP2004039273A (ja) * 2002-06-28 2004-02-05 Nippon Zeon Co Ltd ワニス及びその利用
WO2004029153A1 (ja) * 2002-09-27 2004-04-08 Zeon Corporation 熱硬化性磁性スラリー及びその利用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071678A (ja) * 1996-07-03 1998-03-17 Hitachi Chem Co Ltd 積層板
JPH10251421A (ja) * 1997-03-07 1998-09-22 Hitachi Chem Co Ltd プリプレグ、積層板及び多層プリント配線板
JP3442631B2 (ja) * 1997-11-05 2003-09-02 丸正株式会社 絶縁シ−ト
JP2000336188A (ja) * 1999-03-23 2000-12-05 Hitachi Chem Co Ltd プリプレグ及び積層板
JP4231976B2 (ja) * 2000-03-30 2009-03-04 日本ゼオン株式会社 硬化性組成物及び多層回路基板
JP4300382B2 (ja) * 2000-03-30 2009-07-22 日本ゼオン株式会社 絶縁材料、絶縁材料の製造方法および多層回路基板の製造方法
JP2002026522A (ja) * 2000-07-07 2002-01-25 Mitsubishi Electric Corp 多層プリント配線板の製造方法
TW521548B (en) * 2000-10-13 2003-02-21 Zeon Corp Curable composition, molded article, multi-layer wiring substrate, particle and its manufacturing process, varnish and its manufacturing process, laminate, and flame retardant slurry
JP2002146060A (ja) * 2000-11-07 2002-05-22 Hitachi Chem Co Ltd プリプレグ及び積層板
JP2002329967A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp 多層プリント配線板の製造方法
CN100339446C (zh) * 2002-04-15 2007-09-26 日本瑞翁株式会社 清漆、成型物、电绝缘膜、层压物、阻燃剂淤浆以及阻燃剂粒子和清漆的制造方法
JP2004002653A (ja) * 2002-04-22 2004-01-08 Shin Kobe Electric Mach Co Ltd プリント基板用プリプレグ及びその製造法とプリント基板
JP2004241647A (ja) * 2003-02-06 2004-08-26 Shin Kobe Electric Mach Co Ltd プリント配線板用長尺積層体及びその製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015595A1 (fr) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Composition a base d'un polymere de norbornene
JP2002249606A (ja) * 2001-02-23 2002-09-06 Nippon Zeon Co Ltd プリプレグ
JP2003082291A (ja) * 2001-06-28 2003-03-19 Nippon Zeon Co Ltd ワニス及びその利用
JP2004039273A (ja) * 2002-06-28 2004-02-05 Nippon Zeon Co Ltd ワニス及びその利用
WO2004029153A1 (ja) * 2002-09-27 2004-04-08 Zeon Corporation 熱硬化性磁性スラリー及びその利用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114674A1 (ja) * 2007-03-14 2008-09-25 Zeon Corporation 絶縁性複合体、その製造方法、および絶縁性複合体の利用
JP5267453B2 (ja) * 2007-03-14 2013-08-21 日本ゼオン株式会社 絶縁性複合体、その製造方法、および絶縁性複合体の利用
JP2009006698A (ja) * 2007-03-30 2009-01-15 Fujifilm Corp 両面金属膜付きフィルムの製造方法、及び両面金属膜付きフィルム
JP2009242531A (ja) * 2008-03-31 2009-10-22 Nippon Zeon Co Ltd 複合樹脂成形体、積層体及び多層回路基板
JP2011517112A (ja) * 2008-04-10 2011-05-26 ワールド・プロパティーズ・インコーポレイテッド 結合性が改良された回路材料およびその製造方法と製造物品
JP2016107505A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 片面金属張積層板およびその製造方法
CN111512430A (zh) * 2017-12-22 2020-08-07 应用材料公司 在导电表面上沉积阻挡层的方法
CN111512430B (zh) * 2017-12-22 2023-09-26 应用材料公司 在导电表面上沉积阻挡层的方法

Also Published As

Publication number Publication date
CN101296977A (zh) 2008-10-29
US20090151984A1 (en) 2009-06-18
JPWO2007023944A1 (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2007023944A1 (ja) 複合樹脂成形体、積層体、多層回路基板および電子機器
JPWO2008047583A1 (ja) 硬化性樹脂組成物、複合体、成形体、積層体および多層回路基板
JP4411544B2 (ja) 多層プリント配線板の製造方法および多層プリント配線板
JP6056760B2 (ja) 絶縁性接着フィルム、積層体、硬化物、及び複合体
JPWO2009038177A1 (ja) 硬化性樹脂組成物およびその用途
JP6357697B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2014133877A (ja) 硬化性樹脂組成物及び硬化物
WO2014091750A1 (ja) 硬化性樹脂組成物、絶縁フィルム、プリプレグ、硬化物、複合体、及び、電子材料用基板
WO2015133513A1 (ja) 多層硬化性樹脂フィルム、プリプレグ、積層体、硬化物、複合体及び多層回路基板
JP5505778B2 (ja) 多層プリント回路基板用フィルム
JP5691977B2 (ja) 絶縁性接着フィルム、プリプレグ、積層体、硬化物、及び複合体
JP5630262B2 (ja) 硬化性樹脂組成物、硬化物、積層体、多層回路基板、及び電子機器
JP5256819B2 (ja) 複合樹脂成形体、積層体及び多層回路基板
JP5267453B2 (ja) 絶縁性複合体、その製造方法、および絶縁性複合体の利用
JP6458921B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2010084026A (ja) 硬化性樹脂組成物
JP2005248069A (ja) 硬化性樹脂組成物及びその成形体
JP2014117823A (ja) 絶縁フィルム、プリプレグ、及び、硬化物
JP6432604B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2014198746A (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2010082858A (ja) 多層プリント回路基板用フィルムおよび多層プリント回路基板
JPWO2015016165A1 (ja) 電子材料用基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040286.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007532199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11990912

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06796800

Country of ref document: EP

Kind code of ref document: A1