WO2007007478A1 - Polycrystalline silicon substrate, polycrystalline silicon ingot, and production process - Google Patents
Polycrystalline silicon substrate, polycrystalline silicon ingot, and production process Download PDFInfo
- Publication number
- WO2007007478A1 WO2007007478A1 PCT/JP2006/310792 JP2006310792W WO2007007478A1 WO 2007007478 A1 WO2007007478 A1 WO 2007007478A1 JP 2006310792 W JP2006310792 W JP 2006310792W WO 2007007478 A1 WO2007007478 A1 WO 2007007478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycrystalline silicon
- substrate
- condition
- ingot
- silicon substrate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1221—The active layers comprising only Group IV materials comprising polycrystalline silicon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Polycrystalline silicon substrate, polycrystalline silicon ingot, and manufacturing method are Polycrystalline silicon substrate, polycrystalline silicon ingot, and manufacturing method
- the present invention relates to a polycrystalline silicon substrate, a polycrystalline silicon ingot, and a manufacturing method thereof for realizing a polycrystalline silicon solar cell or the like having high photoelectric conversion efficiency.
- a photoelectric conversion element or a photoelectric conversion module in which these are arranged can be manufactured.
- aEn represents a X 10 n . “” Represents a power.
- the mainstream solar cell product is a Balta type crystalline Si solar cell using a crystalline silicon substrate.
- Patent Document 1 shows high energy conversion efficiency in consideration of the concentration relationship among light element impurities such as C, O, B, and P when manufacturing a polycrystalline silicon ingot from which a polycrystalline Si substrate is cut out. The results of examining the manufacturing conditions of the polycrystalline silicon ingot to obtain are shown.
- Patent Document 2 describes a purification method for removing C and O at the stage of molten silicon in the production of silicon for solar cells.
- Patent Document 3 describes a purification method for removing C and O at the molten silicon stage in the production of a solar cell silicon ingot, respectively.
- Patent Document 4 shows a production method in which the ratio of O and C content is optimized in the production of silicon ingots for solar cells.
- Patent Document 1 Japanese Patent Laid-Open No. 10-251010
- Patent Document 2 Japanese Patent Laid-Open No. 10-265213
- Patent Document 3 Japanese Patent Laid-Open No. 10-182134
- Patent Document 4 JP-A-2-38305
- High efficiency (high performance) is very important for low cost (Solar cell market price and manufacturing cost are generally expressed in unit price per watt [yen / W]. Higher efficiency increases the output (W) of the denominator, which has the effect of reducing market prices and manufacturing costs).
- the minority carrier lifetime ⁇ by the PCD method microwave photoelectric attenuation method
- the minority carrier diffusion length L by the SPV method surface photovoltaic method
- quality factors that are the origin of these quality indices include (1) intrinsic defects inherent in polycrystalline silicon such as grain boundaries, dislocations, or vacancy and interstitial Si, and ( 2) There are extrinsic defects due to metal impurities, light element impurities, and precipitates from various compounds.
- the lifetime and diffusion length L are used as the standard indicators of substrate quality, and in the direction of increasing these (in order to achieve high ⁇ or high L substrates, aiming for high efficiency and high yield. Efforts have been made to improve board quality.
- the quality of the polycrystalline silicon substrate changes after the device fabrication process for manufacturing the solar cell, it was measured by, for example, the lifetime ⁇ measured by the ⁇ PCD method or the SPV method. Even substrates with low diffusion quality, such as diffusion length L, are not necessarily manufactured The efficiency of the pond was low, but it was limited.
- the present invention is based on knowledge of a new substrate quality index that is directly related to device characteristics and knowledge of high-quality conditions of a polycrystalline silicon ingot and a substrate, and a high-quality polycrystalline silicon substrate, polycrystalline It is an object of the present invention to provide a silicon ingot and a method for manufacturing the silicon substrate.
- Another object of the present invention is to provide a highly efficient photoelectric conversion element and photoelectric conversion module using the polycrystalline silicon substrate.
- the polycrystalline silicon substrate for photoelectric conversion elements of the present invention (hereinafter referred to as “polycrystalline silicon substrate”) is a cleavage plane of the substrate by an ESR (electron spin resonance) method with respect to the impurity concentration in the polycrystalline silicon substrate.
- ESR electron spin resonance
- a polycrystalline silicon substrate of the present invention in addition to the condition, the interstitial oxygen concentration measured by Fourier transform infrared spectroscopy [Oi] [a tom S / C m 3], the substitution position carbon
- the concentration is [Cs] [atom s / cm 3 ]
- [Oi] X [Cs] ⁇ ⁇ 4E86 (Condition 2; represents power)
- interstitial oxygen concentration [Oi] represents the concentration of oxygen located between the lattice points of the silicon crystal
- substitutional position carbon concentration [Cs] It represents the concentration of carbon substituted for lattice points.
- the polycrystalline silicon substrate of the present invention has a nitrogen concentration measured by Fourier transform infrared spectroscopy or secondary ion mass spectrometry as [N] [ a tom S / C m 3 ].
- a polycrystalline silicon substrate that satisfies this condition 1 has a low recombination level density because its electron spin density is lower than the threshold value 3.5E14. Therefore, it becomes a board
- the “condition 2” is a necessary condition for realizing the “condition 1”.
- the “Condition 3” is a more preferable condition for obtaining a higher quality substrate.
- the polycrystalline silicon substrate may be cut from an ingot.
- the polycrystalline silicon substrate satisfies the above conditions in at least a part of the region excluding the substrate end lcm width region. Further, the solidification rate of the ingot is 15 to 80%. It is preferred that the above conditions are satisfied!
- the substrate edge region includes a solidified region in the initial stage of solidification, and the influence of solid-phase diffusion of impurities (thermal diffusion after solidification) of the vertical inner wall force Therefore, the influence of factors other than the quality degradation factor that is the subject of the present invention is large, and this is a force that may not be appropriate as the target region where the effect of the present invention is expected. Therefore, if the substrate quality is evaluated by excluding the lcm width region at the edge of the substrate, these factors outside of symmetry are almost eliminated. Since the influence can be ignored, it is suitable for correctly evaluating the effect of the present invention.
- the polycrystalline silicon ingot of the present invention is an ingot that satisfies the above "condition 1" with respect to the impurity concentration in the polycrystalline silicon substrate.
- polycrystalline silicon ingot of the present invention may be such that the “condition 2” or the “condition 3” is further satisfied in addition to the “condition 1”.
- silicon is poured into a crucible, and silicon is melted while flowing Ar at a flow rate such that the gas residence time in the crucible is 25 sec or less.
- the molten silicon is transferred to a mold, the silicon is solidified and cooled to produce an ingot, and the produced ingot is cut out to obtain a polycrystalline silicon substrate.
- Ar is flowed at a flow rate such that the gas residence time in the crucible is 19 sec or less.
- the upper limit of the gas residence time ⁇ gas is actually limited by increasing the Ar gas cost by increasing ⁇ gas, generating dust in the furnace, and the like.
- the present invention can also be applied to the in-mold melting and solidification method in which the silicon is melted in the above-mentioned mold without using a crucible and then solidified and cooled.
- [0021] By the above method, [C] which degrades the substrate quality can be sufficiently reduced. [N] can also be controlled below a predetermined value. In addition, the device efficiency can be improved at the same time.
- the photoelectric conversion element of the present invention is a photoelectric conversion element using the polycrystalline silicon substrate of the present invention. This photoelectric conversion element can be expected to be thinner and have higher element efficiency than conventional photoelectric conversion elements.
- the photoelectric conversion module of the present invention is formed by electrically connecting the plurality of photoelectric conversion elements of the present invention in series or in parallel. Therefore, the photoelectric conversion module of the present invention is low in cost and has high characteristics. Become.
- FIG. 1 is a cross-sectional view showing an example of the structure of a solar cell element 11 using a polycrystalline silicon substrate according to the present invention.
- FIG. 2 is a top view showing an example of an electrode shape viewed from the light receiving surface side of solar cell element 11.
- FIG. 3 is a top view showing an example of an electrode shape as seen from the non-light-receiving surface side force of solar cell element 11.
- FIGS. 4 (a) to 4 (d) are process diagrams for explaining the process from the start of the dissolution of silicon in the crucible to the transfer of the melt into a bowl.
- FIG. 5 is a cross-sectional view showing the structure of a solar cell module.
- FIG. 6 is a top view of the solar cell module viewed from the light receiving surface side.
- FIG. 1 is a cross-sectional view showing an example of the structure of a solar cell element 11 using a polycrystalline silicon substrate according to the present invention.
- 2 and 3 are diagrams showing an example of the electrode shape of the solar cell element 11.
- FIG. 2 is a top view when FIG. 1 is viewed from the light receiving surface side
- FIG. 3 is the non-light receiving surface side of FIG. It is a bottom view of power.
- the structure of the solar cell element 11 will be briefly described.
- the p-type silicon substrate has a thin plate shape with a thickness of 350 m or less, and includes a p-type bulk region 5 as shown in FIG.
- P (phosphorus) atoms and the like are diffused at a high concentration to form an n-type reverse conductivity type region 4, and a pn junction between the p-type silicon region Is formed.
- the thickness of the reverse conductivity type region 4 is usually about 0.2 to 0.5 m.
- a powerful antireflection film 6 such as a silicon nitride film or an oxide silicon film is provided on the semiconductor on the light incident surface side.
- a P + type region 7 containing a large amount of p-type semiconductor impurities such as aluminum is provided on the other side of the light incident surface.
- This p + type region 7 is also called a BSF (Back Surface Field) region and plays a role in reducing the rate at which photogenerated electron carriers reach the back collector 8 and lose recombination. Thereby, the photocurrent 3 ⁇ 4sc is improved.
- the diode current amount (dark current amount) in the region in contact with the P + type region 7 and the back collector electrode 8 is reduced.
- the open circuit voltage Voc is improved.
- a surface collecting electrode 1 whose main component is a metal material such as silver is provided.
- a back side collecting electrode 8 mainly composed of aluminum or the like is provided. Further, a back surface output electrode 9 for collecting current from the back surface collecting electrode 8 is provided.
- the front electrode 1 generally has a finger electrode lb (branch electrode) having a narrow line width and a bus bar electrode la (having a large line width to which at least one end of the finger electrode lb is connected. Stem electrode).
- a metal material is used for the collector electrode 1. It is desirable to use Ag paste based on silver (Ag), which has a low resistivity, as the metal. Usually, it is applied and fired by screen printing to form an electrode.
- 4 (a) to 4 (d) are schematic process diagrams for explaining the process from the start of the dissolution of silicon in the crucible to the transfer of the melt into a bowl.
- a silicon raw material is prepared. It is desirable to use a polysilicon material with a low impurity concentration as the silicon material, but in addition to this, for example, off-grade silicon called top and tail, which is generated during the production of CZ single crystal silicon ingots, or Residual silicon remaining in the crucible can also be used. However, if there is a problem of impurity contamination when off-grade silicon or residual silicon is used alone, an appropriate amount of polysilicon raw material is blended.
- Fig. 4 (a) shows a state in which the silicon raw material is put in the crucible 12.
- a quartz crucible generally used in the CZ method can be used.
- FIG. 4 (b) shows a state in which the raw silicon in the crucible 12 is melted by heating in a melting furnace.
- the inside of the furnace is Ar gas atmosphere, Ar flow rate is adjusted in the range of 10 ⁇ : LOOLZmin, Ar gas pressure is in the range of lkPa ⁇ : LOOkPa (atmospheric pressure).
- the oxygen concentration in the Si melt at the main melting stage is an extremely high value of about lE18 to 2E18 [atoms / cm 3 ] which is close to the saturation solubility value. ing. If the inner wall of the quartz crucible is coated with a non-acidic material such as SiN, the oxygen concentration in the Si melt will be smaller than this.
- SiC crystallizes in the melt, and if this is incorporated into the crystal during Si solidification, it acts as a structural defect, so the substrate Si quality is improved. Reduce.
- part of the c element taken into the crystalline Si without crystallizing is precipitated as SiC in the crystalline Si due to a decrease in the solid solubility in the crystalline Si accompanying cooling of the crystalline Si ingot. In this case as well, the crystalline Si quality is similarly reduced.
- SiC or solid-solution C also acts as oxygen precipitation nuclei, so that promoting the oxygen precipitation may also reduce the crystalline Si quality.
- the reduction of the CO partial pressure in (1) can be realized by increasing the flow rate of Ar, which is the atmosphere, by increasing the gas exhaust speed in the furnace.
- Ar which is the atmosphere
- the lid 13 of the closed crucible in Fig. 4 (b) is actually provided with a small hole for flowing Ar gas into the crucible. There is also a gap between the crucible 12 and the lid 13 for flowing Ar gas.
- the Ar flow rate is increased, it is of course important to sufficiently prepare the general conditions for reducing the partial pressure of CO gas, on the premise of obtaining a CO gas contamination reduction effect using a sealed crucible. That is, reducing the amount of residual gas (adsorbed gas) in the furnace, reducing the amount of air leakage into the furnace, reducing the amount of CO gas generated in the furnace, increasing the gas exhaust speed in the furnace, and optimizing the Ar gas flow path in the furnace It is important to take comprehensive measures such as optimization, optimization of the placement of carbon material heaters and insulation materials.
- Examples of the in-furnace CO gas generation source include a mechanism in which CO gas is generated when a heater or a heat insulating member made of a carbon material reacts with an oxygen-based gas.
- a mechanism in which CO gas is generated when a heater or a heat insulating member made of a carbon material reacts with an oxygen-based gas include a mechanism in which CO gas is generated when a heater or a heat insulating member made of a carbon material reacts with an oxygen-based gas.
- the latter is generated during melting and is generated by a large amount of SiO gas, and is an unavoidable reaction in a melting process using a quartz crucible.
- SiC coating on the carbon material surface may be effective (T. Fukuda et al: J. Electrochem. Soc, vol.141, No. .8, Augus t 1994, p.2216) 0
- the number of mols of Ar gas in the furnace is proportional to (effective volume in the furnace x Ar gas density in the furnace)).
- ⁇ gas required to effectively reduce CO gas contamination is maximum 25 sec or less, preferably 19 sec or less, based on past experience. More desirably, it is 15 sec or less.
- the Ar gas flow path is also a very important design element. Basically, fresh Ar gas is sprayed on the surface of the Si melt, and there is no component that flows back, so that an L gas flow portion is formed in a laminar flow in which the Ar gas flow is aligned in one direction. Design the internal structure of the furnace so that it leads to the exhaust port.
- measures such as increasing the output of the heater for melting, optimizing the heater arrangement, optimizing the arrangement of the heat insulating material in the furnace, and preheating the members in the melting furnace if necessary.
- measures such as increasing the output of the heater for melting, optimizing the heater arrangement, optimizing the arrangement of the heat insulating material in the furnace, and preheating the members in the melting furnace if necessary.
- complete dissolution can usually be achieved with a heating time of about 2 to 4 hours.
- the dopant material (3) is introduced into the melt as much as possible in the final stage of the melting process (immediately before the pouring process).
- the C contamination of the melt tends to be reduced by delaying the introduction of the dopant material as much as possible.
- the number of minutes before the pouring of the dopant is specifically determined in consideration of the reference time T during which the dopant is sufficiently distributed inside the molten silicon.
- This reference time T can be determined as follows based on the amount of silicon and the convection velocity of the silicon melt.
- the reference time T is obtained by dividing the third root of the weight (volume X density) of silicon by the convection velocity for the following reason.
- the convection velocity of the silicon melt is about lcmZs to lmmZs.
- V L 3
- M p ⁇ V; is the density of Si.
- T time (minutes)
- M silicon content (kg)
- coefficient a 0.35 to 3.5
- the doping amount is adjusted so that the doping element concentration in the solidified ingot is about IE 16 to IE 17 [atoms / cm 3 ] so as to maximize the solar cell characteristics described later (in this case,
- the specific resistance of the substrate obtained is about 0.2 to 2 ⁇ 'cm).
- the silicon melt that has been completely melted in the melting process is poured as quickly as possible into a vertical mold installed in the solidification furnace to solidify the silicon melt. (Cast method).
- the inside of the furnace should be in an Ar gas atmosphere, the Ar flow rate should be adjusted in the range of 10 to: L00LZmin, and the Ar gas pressure in the range of lkPa to 100kPa (atmospheric pressure).
- the mold 21 can be made of a carbon-based material such as a graphite material or a carbon material, or can be made of a material such as quartz, quartz glass, or ceramic.
- a mold release material is applied in advance to the inner wall of the mold 21 so that the ingot can be easily removed from the mold after solidification and cooling. At this time, the release material also serves to prevent contact reaction between the cage material and the silicon melt, and prevents impurities in the cage material from being mixed into the silicon melt.
- SiN powder can be used as the mold release material.
- the release material is applied to the vertical inner wall by mixing the release material powder raw material and an organic material such as PVA at an appropriate mixing ratio to make it viscous. Line in state! ⁇ After application, heat treatment is performed to remove organic material components.
- the silicon melt is solidified.
- the solidification is performed so that the bottom force of the bowl 21 is solidified upward and in one direction (in order to enhance the one-directional solidification property).
- the heat flow balance of the entire vertical silicon should be adjusted. Specifically, solidification from the bottom of the bowl
- the cooling plate 24 is promoted by bringing it into contact with the bottom of the vertical mold, and heat removal from the silicon melt head due to thermal radiation is suppressed. Suppression of heat removal from the latter head can be adjusted by improving the heat insulation in the furnace at the top of the silicon melt, or by applying heat with a heater if necessary.
- the shortening of the solidification time in this saddle type (the amount of carbon contamination is reduced if the time in which the melt exists is short as in the case of melting, it is desirable to solidify as short as possible)
- the contact area of the cold plate Z-type is increased (for example, the contact surface has a concave and convex shape), and the thickness of the cooling plate is reduced. Measures such as increasing the coolant flow rate, thinning the bottom material of the saddle and increasing the thermal conductivity (using high-density graphite, etc.) and, in some cases, improving the heat removal capability even if the unidirectional solidification is impaired.
- Heat removal from the vertical side wall is effective when there is a lot of impurity contamination from the vertical mold through the mold release material or the mold release material.
- the side wall force is intentionally removed to forcibly solidify the Si melt in the region in contact with the vertical side wall and solidify in contact with the inner surface of the vertical side wall.
- the silicon layer can function as a blocking layer for impurity diffusion with a release material force.
- the heat removal of the saddle type side wall force is performed in anticipation that the crystalline silicon layer in the region in contact with the inside surface of the saddle type side wall is cut and removed as an end material during the subsequent ingot cutting.
- the Si melt mainly using SiN mold release material
- the increase in the concentration of nitrogen (N) impurities in the silicon ingot due to the elution of nitrogen (N) into the inside can be effectively suppressed.
- elution of other impurities (such as iron (Fe), etc.) in the release material into the melt can be effectively suppressed.
- the improvement in heat removal from the vertical side wall can be achieved by weakening the output of the side heater HI (see Fig. 4 (d)) or by improving the vertical side wall of the vertical wall (for example, carbon-based material). This can be achieved by selecting so-called CCM materials or graphite materials.
- the problem in the solidification process is the carbon contamination of the Si melt due to the CO gas in the furnace described in the melting stage.
- it is important to increase the gas exhaust speed to reduce the CO partial pressure in the furnace as much as possible and to complete the solidification in as short a time as possible, as described in the melting process. is there.
- it is also necessary to prepare the general conditions for reducing the partial pressure of CO gas described in the melting process.
- a closed saddle type that can effectively reduce and block the contact between the CO gas and the Si melt. Use it! / ⁇ . If silicon is solidified using this closed saddle type, the effect of reducing the CO partial pressure in the crucible can be obtained, so contact between the melt and CO gas can be reduced without increasing the Ar flow rate unnecessarily. wear. Therefore, carbon contamination can be reduced efficiently and extremely with a small Ar flow rate.
- oxygen can be controlled to a certain value. This is because if the oxygen concentration is too high, the amount of oxygen precipitates generated will increase the crystal quality, while if the oxygen concentration is too low, the crystal strength (the yield stress value at which dislocations will occur) will decrease. Dislocations are likely to occur due to the thermal stress that occurs during the solidification process, and as a result, subgrain boundaries (subgrain boundaries) are frequently generated, which is also a force that degrades the crystal quality. In practice, it is difficult to control the oxygen concentration to an appropriate value unless a special method is taken. Normally, due to the phenomenon described below, the oxygen concentration is unilaterally (indexed) from the bottom of the ingot to the head. Shows a decreasing concentration profile (in a functionally close fashion).
- the oxygen concentration in the melt is about lE18 to 2E18 [atoms / cm 3 ] close to the saturation value.
- the silicon melt that is in the solidification process after being poured into the bowl is applied to the inner wall of the bowl. It is in contact with the clothed SiN release material.
- the Si melt in the solidification process is substantially not supplied with oxygen even by the mold release material. In other words, the supply of oxygen to the S job fluid is almost cut off.
- SiO gas evaporates from the surface of silicon melt very rapidly. For this reason, in the solidification stage, the oxygen concentration of the Si melt decreases exponentially with time.
- the Si melt 80kg in about 8 hours was present at a concentration of about the initial silicon melt 1E18 / C m 3 [a tom S / C m 3] immediately after tapping
- the concentration of oxygen decreases as early as 2 to 4E17 / cm 3 [atoms / cm 3 ] at a solidification rate of about 20%, and 4 to 8E 16 / cm 3 [atoms / cm at a solidification rate of about 40%. 3 ]
- an area having a solidification rate of 15 to 80% may be an object of the present invention.
- silicon is completely solidified, and after a necessary cooling process, the mold is removed and the ingot is taken out.
- a polycrystalline silicon substrate is prepared by slicing a p-type polycrystalline silicon ingot doped with B by about lE16 to lE17 [atoms / cm 3 ] in the polycrystalline silicon fabrication process.
- the substrate thickness should be 300 / zm or less, more preferably 2 50 ⁇ m or less, more preferably 150 ⁇ m or less.
- the surface layer portions on the front surface side and the back surface side of this substrate are made of NaOH, KOH, or hydrofluoric acid and nitric acid. Etch about 10-20 m each with a mixed solution, and then clean with pure water.
- an uneven (roughened) structure having a light reflectance reduction function is formed on the surface side of the substrate that becomes the light incident surface (not shown).
- an anisotropic wet etching method using an alkaline solution such as NaOH used for removing the substrate surface layer portion described above can be applied.
- the crystal plane orientation in the substrate plane varies randomly from crystal grain to crystal grain, so that a good concavo-convex structure that effectively reduces the light reflectivity over the entire substrate area must be uniformly formed. It is difficult.
- RIE Reactive Ion Etching
- an n-type reverse conductivity type region 4 is formed. It is desirable to use P (phosphorus) as the n-type doping element.
- the doping concentration is about lE18 to 5E21 [atoms / cm 3 ], and n + type with a sheet resistance of about 30 to 300 ⁇ .
- a pn junction is formed between the p-type butter region described above.
- the pn junction is composed of a depletion region extending toward the p-type butter region and a depletion region extending toward the reverse conductivity region 4.
- POC1 phosphorus oxychloride
- the doping element (P) is diffused in the surface layer portion of the p-type silicon substrate at a temperature of about 700 to L000 ° C.
- the thickness of the diffusion layer is about 0.2 to 0.5 m, and this can be realized by forming a desired doping profile file by adjusting the diffusion temperature and diffusion time.
- the sheet resistance value is preferably about 45 to about L00 ⁇ , more preferably about 65 to 90 ⁇ .
- a diffusion region is also formed on the surface opposite to the target surface, but this portion is etched away later. I hope.
- the reverse conductivity type region 4 other than the surface side of the substrate is removed by applying a resist film on the surface side of the silicon substrate, etching away using a mixed solution of hydrofluoric acid and nitric acid, and then resist film. By removing.
- the P + type region 7 (BSF region) on the back surface is formed with aluminum paste, the p-type dopant aluminum can be diffused to a sufficient depth at a sufficient concentration. The influence of the already diffused shallow n-type diffusion layer can be neglected, and it is not necessary to remove the n-type diffusion layer formed on the back side.
- the method of forming the reverse conductivity type region 4 is not limited to the thermal diffusion method.
- a crystalline silicon film including a hydrogenated amorphous silicon film or a microcrystalline silicon film is used. Or the like may be formed at a substrate temperature of about 400 ° C. or lower.
- the formation order is determined so that the process temperature is lower and the process temperature is lower in consideration of the temperature of each process described below. It is necessary to
- the thickness is 50 nm or less, preferably 20 nm or less, and when it is formed using a crystalline silicon film, the thickness is 500 nm or less, preferably 200 nm or less.
- an i type silicon region (not shown) is formed with a thickness of 20 nm or less between the p type butter region and the reverse conductivity type region 4, the characteristics are improved. It is effective for.
- the antireflection film 6 is formed.
- Anti-reflective coating 6 materials include Si N film, TiO film, S
- An iO film, MgO film, ITO film, SnO film, ZnO film, or the like can be used. Its thickness is
- the film thickness should be about 75nm.
- the antireflection film 6 is manufactured by PECVD, vapor deposition, sputtering, etc., and when the pn junction is formed by thermal diffusion, the temperature is about 400-500 ° C, and it is formed by thin film technology. In this case, it is formed at a temperature of 400 ° C or less.
- the antireflection film 6 is patterned with a predetermined pattern in order to form the surface collecting electrode 1 when the surface collecting electrode 1 is not formed by the fire through method described later.
- an etching method (wet or dry) used for a mask such as a resist, or a method in which a mask is formed in advance when the antireflection film 6 is formed and then removed after the formation of the antireflection film 6 is used.
- a mask such as a resist
- a method in which a mask is formed in advance when the antireflection film 6 is formed and then removed after the formation of the antireflection film 6 is used.
- a fire-through method when the so-called fire-through method is used in which the electrode material of the collector electrode 1 is directly applied and baked on the antireflection film 6 to electrically contact the collector electrode 1 and the reverse conductivity type region 4 There is no need for Jung.
- This Si N film is surface passivated during formation.
- the Yon effect and the subsequent heat treatment have a Balta passivation effect and, together with an antireflection function, have the effect of improving the electrical characteristics of the solar cell element.
- a p + type region (BSF region) is formed.
- an aluminum paste in which aluminum powder, organic vehicle, and glass frit are added in a paste form by adding 10 to 30 parts by weight and 0.1 to 5 parts by weight with respect to 100 parts by weight of aluminum, for example, Print by screen printing, and after drying, heat-treat at 600-850 ° C for several seconds to several tens of minutes.
- the aluminum dopant concentration in p + type region 7 is lE18 ⁇ 5E21 [at. ms / cm 3 ].
- an alternative electrode material may be formed when it is removed.
- this alternative electrode material it is desirable to use a silver paste that will be the back collector 8 described later in order to increase the reflectance of long wavelength light reaching the back.
- B (polon) can also be used as the p-type doping element.
- n is formed on the back surface side of the substrate simultaneously with the formation of the reverse conductivity type region 4 on the substrate surface side. There is no need to remove the mold area.
- the p + -type region 7 (back surface side) can be formed by a thermal diffusion method using a gas instead of the printing and baking method.
- temperature 800 ⁇ L 100 ° C
- the reverse conductivity type region 4 surface side
- this step can be performed before the antireflection film 6 formation step.
- the doping element concentration is about lE18 to 5E21 [atoms / cm 3 ]. As a result, a low-high junction can be formed between the p-type Balta region and the P + type region.
- a hydrogenated amorphous silicon film using a thin film technique includes a microcrystalline silicon phase.
- a crystalline silicon film or the like may be formed at a substrate temperature of about 400 ° C. or lower.
- the P + region is also formed using thin film technology.
- the film thickness is about 10 to 200 nm.
- an i-type silicon region (not shown) having a thickness of 20 nm or less is formed between the p + type region and the p-type bulk region, it is effective for improving the characteristics.
- it is desirable to determine the order of formation so that the temperature of each subsequent process is lower and the process temperature is lower in consideration of the temperature of each process described below.
- a surface paste electrode 1 and a back surface output electrode 9 are formed by applying and baking a silver paste on the front surface and the back surface of the substrate.
- These are pastes of silver powder, organic vehicle and glass frit added to 10 to 30 parts by weight and 0.1 to 5 parts by weight, respectively, with respect to 100 parts by weight of silver.
- the silver paste thus formed is printed on the printed surface by, for example, printing by screen printing and drying, followed by baking at 600 to 800 ° C. for several seconds to several minutes.
- the collector electrode 1 and the back surface output electrode 9 are fired in two times, particularly because of the electrode strength characteristics of the back surface electrode. In some cases, it may be better (for example, the surface electrode 1 is first printed and fired, and then the back surface output electrode 9 is printed and fired).
- the manufacturing method can use vacuum film forming methods such as sputtering and vapor deposition.
- the antireflection film 6 is formed by the so-called fire through method.
- the metal-containing paste that will become the collector electrode 1 is printed directly on the antireflection film 6 and fired to make electrical contact between the collector electrode 1 and the reverse conductivity type region 4. It is very effective in reducing manufacturing costs.
- the surface collection electrode 1 may be formed prior to the formation of the P + type region 7 on the back surface side.
- the paste printing method includes a slight amount of oxidic acid components such as TiO in the paste, and a vacuum film forming method.
- the back collector 8 be formed on the entire back surface of the substrate in order to increase the reflectance of long-wavelength light reaching the back surface.
- the back collector electrode 8 and the back output electrode 9 overlap with each other and become thick, cracks and peels are not easily generated. Therefore, after forming the back output electrode 9 for output extraction, the back collector electrode 8 It is desirable to form the electrode 9 in such a state that it can conduct electricity so as not to cover as much as possible. Further, the order of forming the back surface output electrode 9 and the back surface collecting electrode 8 may be reversed. Further, the back side electrode may not have the above-described structure, and may have a structure composed of a bus bar portion and a finger portion having silver as a main component, similar to the surface collection electrode 1.
- the front collector electrode 1, the back collector electrode 8, and the back output electrode 9 are formed by a printing method, a sputtering method, Force that can be formed using vapor deposition, etc.Process temperature should be 400 ° C or less in consideration of damage to the thin film layer. To do.
- solder region is formed on the front electrode 1 and the back electrode by solder dipping as necessary (not shown). Note that the solder dipping process is omitted when using a solderless electrode that does not use solder material.
- the high-quality polycrystalline silicon substrate of the present invention can be realized, and further, a high-performance solar cell element and solar cell module using the same can be realized.
- a solar cell element which is a photoelectric conversion element formed in this way, generally has a small electrical output generated by one solar cell element. Therefore, a solar cell in which a plurality of solar cell elements are generally connected in series. Used as a battery module. Further, by combining a plurality of solar cell modules, a practical electric output can be obtained.
- FIG. 5 is a cross-sectional view showing the structure of a general solar cell module
- FIG. 6 is a top view of the light receiving surface side of the solar cell module.
- FIG. 11 is a solar cell element, 41 is a wiring member that electrically connects the solar cell elements, 42 is a transparent member such as glass, and 43 is polyethylene terephthalate (PET) or metal foil made of poly (fluorinated fluorinated resin) (PVF).
- EVA transparent ethylene butyl acetate copolymer
- EVA transparent ethylene butyl acetate copolymer
- 46 is output lead wiring
- 47 is a terminal box
- Reference numeral 48 denotes a frame of the solar cell module.
- a transparent ethylene butylacetate copolymer is formed on the transparent member 42.
- EVA EVA
- other front-side fillers 44 a plurality of solar cell elements 11 in which the front and back electrodes of adjacent solar cell elements are alternately connected by wiring members 41, and back-side fillers made of EVA, etc. 45
- PET polyethylene terephthalate
- PVF polyvinyl fluoride
- a frame 48 of aluminum or the like is fitted around the periphery. Further connected in series One end of the electrodes of the first element and the last element of the plurality of elements is connected to an terminal box 47 which is an output extraction portion by an output extraction wiring 46.
- a copper foil having a thickness of about 0.1 to 0.2 mm and a width of about 2 mm is generally coated with a solder material to a predetermined length. Cut and solder on the electrode of the solar cell element.
- the present invention is not limited to this. That is, in-mold melting and solidification method in which the raw material is melted and solidified as it is in the vertical mold, molten silicon is introduced into a sheet shape on, for example, a graphite material, solidified and solidified, or molten silicon force silicon is sheared.
- the present invention can also be applied to a ribbon method that solidifies and solidifies while being drawn out.
- the present invention can be applied to a multi-junction type in which a thin film junction layer such as a semiconductor multilayer film is laminated on a junction element using a Balta substrate. can do.
- the Balta type silicon solar cell is taken as an example, but the present invention is not limited thereto, and can be in any form as long as it does not deviate from the principle of the invention. . That is, a photoelectric conversion element including a pn junction having a crystalline silicon having a light incident surface as a constituent element, and a solar cell that collects photogenerated carriers generated in the semiconductor region by light irradiation on the light incident surface as a current Applicable to general photoelectric conversion elements such as photosensors other than batteries.
- the silicon raw material was 80 kg
- the Ar gas pressure in the furnace was adjusted to lOkPa.
- Forging was carried out using the Ar gas flow rate during the melting and solidification process and the heat removal performance of the vertical side force at the initial stage of solidification (whether or not the side wall of the vertical inner wall was forcedly solidified) as parameters.
- an increase in the Ar flow rate means an increase in the gas displacement.
- the forged ingot is as follows.
- Ingot No.1 Ar gas flow rate of 40L / min, no vertical side heat removal acceleration (forced solidification) in the initial stage of solidification
- Ingot No.2 Ar gas flow rate 80L / min, no vertical side heat removal acceleration (forced solidification) at the initial stage of solidification
- Ingot No.3 Ar gas flow rate 80L / min, vertical side heat removal promotion (forced solidification) in the initial stage of solidification
- Ingot No. 1 was manufactured by a conventional method
- Ingot No. 2 was obtained by increasing the Ar gas flow rate compared to the conventional method
- Ingot No. 3 increased the Ar gas flow rate and the vertical side in the initial stage of solidification.
- the output of the side heater HI may be reduced.
- the output of the conventional side heater is about 10 to 20 when the upper heater output is 100 (relative value).
- the output of this side heater HI should be reduced to about 0-10.
- forced solidification can also be realized by using a carbon-based material as the side saddle material.
- the fabricated ingot was cured by a cutting and slicing process, and was about 250 ⁇ m thick.
- Impurity concentration analysis of oxygen, carbon, and nitrogen on the substrate is performed using FTIR (Fourier Transform Infrared Spectrometer tens; Fourier Transform Infra Red spectrometer). It does not matter.)
- the analysis positions were four points arranged almost evenly in the substrate excluding the substrate edge lcm width, and the average impurity concentration at these four points was taken as the impurity concentration of the substrate.
- the distribution width of the impurity concentration within the substrate surface excluding the lcm width at the edge of the substrate is about ⁇ 10%, and the past experience has already become sufficiently clear, especially in the ingots in question. If there is no reason to suspect this, the measured value at one point in the board, excluding the width at the edge of the board, should be represented by the average value of the measured values at multiple points (2 or 3 points). You can also.
- the defect level (spin density) at the cleavage plane of the substrate was examined using the ESR method. After removing the slice damage layer from the ingot from the ingot by the method described above, that is, by etching with NaOH, KOH, or a mixed solution of hydrofluoric acid and nitric acid for about 10 to 20 m. Mirror etching treatment with mixed acid so that the substrate thickness is about 200 m, followed by cleavage treatment (separation and division treatment using the ease of cracking on specific crystal planes due to the unique structure of the crystal). Eight pieces divided into small pieces were prepared and used as measurement samples.
- the cleavage treatment can be easily performed by slightly scratching the end portion of the substrate with a diamond cutter or the like and dividing it with the base point. As a result, a cleavage plane is obtained.
- the present invention is based on the knowledge that there is a correlation between the dangling bond appearing on the cleavage plane and the solar cell characteristics and impurity concentration, when performing ESR measurement related to the present invention, It is important not to perform acid treatment after cleaving (do not etch the cleaved surface).
- the spin density considered to be based on dangling bonds existing on the cleavage plane was measured.
- this ESR analysis is preferably performed by four points arranged almost evenly on the substrate surface except for the lcm width of the substrate edge. For the same reason, it can be represented by the average of the measured values of one point or the measured values of multiple points (2 or 3 points).
- the reverse conductivity type region 4 has a POC1 of POC1 with the aim of having a sheet resistance of 65 ⁇ .
- the surface electrode 1 was formed by printing and baking using an Ag paste mainly composed of silver.
- the front electrode 1 has two 2 mm wide bus bar electrodes la parallel to the edge of the 155 mm substrate and 63 ⁇ m wide finger electrodes lb parallel to the edge of the 150 mm substrate. This pattern was used.
- the number of fabricated elements was 10 samples from the solidification rate position for each experimental condition, and the average characteristic was defined as the element characteristic at the solidification ratio position.
- the ESR (Electron Spin Resonance) method solves the degeneracy of the spin state of an electron by applying an appropriate magnetic field (causing an energy level difference), and absorbs microwaves according to the magnetic field strength.
- This is a measurement method that measures the density of electron spins by examining.
- the g value corresponding to the bond is about 2.005-2.006.
- the measurement conditions this time are as follows.
- the measurement temperature of 10K is a temperature achieved using He gas.
- the force at which the measurement temperature is 10K does not necessarily have to be set strictly at 10K.
- measurement is performed in the range of about 10K to about 20K, it is considered that a measurement result almost the same as that measured at 10K (even if there is a difference, it falls within the error range) can be obtained.
- the FTIR includes a light source unit, an interferometer, a sample unit, a detection unit, and a data processing unit.
- the light emitted from the light source unit enters the interferometer and passes through the sample as an interference wave. At that time, light having a specific frequency corresponding to the vibration energy of atoms or atomic groups in the molecules constituting the sample is absorbed.
- the signal obtained by the detector is Fourier transformed to obtain an infrared vector specific to the element. Oxygen in interstitial silicon carbon of 1106cm substitution lattice positions peak appears at 607cm 1. The absolute concentration is measured by comparing this peak with a standard sample.
- SIMS Secondary Ion Mass Spectrometry
- a primary ion beam oxygen, cesium, etc.
- secondary ions are extracted with an electric field and mass analysis is performed.
- the absolute concentration is converted by comparison with a standard sample. The measurement conditions this time are as follows.
- Table 1 shows the experimental results.
- the numerical values in Table 1 are the average values of the measured values for the four points that are arranged almost evenly in the board surface excluding the lcm width at the edge of the board.
- the substrates with rates of 20%, 40%, 60%, and 80% are all in excess of 3.5E14 (spins / cm 3 ) and are therefore out of the scope of the present invention.
- the spin density Nspin is 3.5E14 (spins / cm 3 ) only for a substrate with a solidification rate of 15%, which is within the scope of the present invention.
- the spin density Nspin is 3.5E14 (spins / cm 3 ) or less for all substrates with solidification rates of 15%, 20%, 40%, 60%, and 80%.
- the spin density Nspin is getting smaller especially on substrates with a high solidification rate.
- X [Csr4 is also below 4E86.
- the nitrogen concentration [N] is also all below 4 E15 (atoms / cm 3 ).
- the average element efficiency of the solar cell element was 16.28% for the substrate element taken from Ingot No. 1, and 16.46% for the board element taken from Ingot No. 2. Yes. From this, it can be estimated that an increase in Ar flow rate leads to an increase in element efficiency. In addition, the average value of the element efficiency of the substrate element taken from Ingot No. 2 is 16.46%, while that of the board element taken from Ingot No. 3 is 16.52%. Yes. From this, it can be presumed that heat removal from the vertical side surface in the initial stage of solidification leads to an increase in element efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
明 細 書 Specification
多結晶シリコン基板、多結晶シリコンインゴット、及び製造方法 Polycrystalline silicon substrate, polycrystalline silicon ingot, and manufacturing method
技術分野 Technical field
[0001] 本発明は、光電変換効率が高い多結晶シリコン太陽電池等を実現するための、多 結晶シリコン基板、多結晶シリコンインゴット、及びその製造方法に関するものである 。この多結晶シリコン基板を用いて、例えば、光電変換素子や、これらを配列した光 電変換モジュールを製造することができる。 TECHNICAL FIELD [0001] The present invention relates to a polycrystalline silicon substrate, a polycrystalline silicon ingot, and a manufacturing method thereof for realizing a polycrystalline silicon solar cell or the like having high photoelectric conversion efficiency. By using this polycrystalline silicon substrate, for example, a photoelectric conversion element or a photoelectric conversion module in which these are arranged can be manufactured.
この明細書において、 aEnという表記は、 a X 10nを表すものとする。「 」は、べき乗 を表す。 In this specification, the notation aEn represents a X 10 n . “” Represents a power.
背景技術 Background art
[0002] 現在、太陽電池の主流製品は結晶シリコン基板を用いたバルタ型結晶 Si太陽電池 である。 [0002] Currently, the mainstream solar cell product is a Balta type crystalline Si solar cell using a crystalline silicon substrate.
特に多結晶シリコン基板を用いたタイプは、高効率と低コストを両立できるため、生 産規模は最大となっており、今後もさらに生産量が伸びていくものと期待されている。 下記特許文献 1は、多結晶 Si基板を切り出す元となる多結晶シリコンインゴットの製 造にあたって、 C, O, B, Pなど軽元素不純物相互の濃度関係を考慮した上で、高い エネルギー変換効率を得るための多結晶シリコンインゴットの製造条件を調べた結果 を示している。 In particular, the type using a polycrystalline silicon substrate has both maximum efficiency and low cost, and therefore has the largest production scale, and it is expected that the production volume will further increase in the future. Patent Document 1 below shows high energy conversion efficiency in consideration of the concentration relationship among light element impurities such as C, O, B, and P when manufacturing a polycrystalline silicon ingot from which a polycrystalline Si substrate is cut out. The results of examining the manufacturing conditions of the polycrystalline silicon ingot to obtain are shown.
[0003] 下記特許文献 2は、太陽電池用シリコンの製造において、溶融シリコンの段階で、 Cや Oをそれぞれ除去するための精製方法を述べて 、る。 [0003] Patent Document 2 below describes a purification method for removing C and O at the stage of molten silicon in the production of silicon for solar cells.
下記特許文献 3は、太陽電池用シリコンインゴットの製造において、溶融シリコンの 段階で、 Cや Oをそれぞれ除去するための精製方法を述べて 、る。 Patent Document 3 below describes a purification method for removing C and O at the molten silicon stage in the production of a solar cell silicon ingot, respectively.
下記特許文献 4は、太陽電池用シリコンインゴットの製造において、 O, Cの含有率 の比率が最適になるような製造方法を示している。 Patent Document 4 below shows a production method in which the ratio of O and C content is optimized in the production of silicon ingots for solar cells.
特許文献 1:特開平 10— 251010号公報 Patent Document 1: Japanese Patent Laid-Open No. 10-251010
特許文献 2:特開平 10— 265213号公報 Patent Document 2: Japanese Patent Laid-Open No. 10-265213
特許文献 3 :特開平 10— 182134号公報 特許文献 4:特開平 2— 38305号公報 Patent Document 3: Japanese Patent Laid-Open No. 10-182134 Patent Document 4: JP-A-2-38305
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] 上述のように、現在主流の太陽電池は、多結晶シリコン基板を用いたバルタ型多結 晶シリコン太陽電池(以下単に「多結晶シリコン太陽電池」あるいは「多結晶シリコン 素子」と称する)である力 今後さらに普及させていくためには、その低コストィ匕が不可 欠である。 [0004] As described above, currently mainstream solar cells are Balta type polycrystalline silicon solar cells using a polycrystalline silicon substrate (hereinafter simply referred to as "polycrystalline silicon solar cells" or "polycrystalline silicon elements"). The low cost is indispensable for further dissemination in the future.
低コストィ匕のためにはその高効率化 (高特性化)が非常に重要である (太陽電池の 市場価格や製造コストは、一般に、ワット当たり単価 [円/ W]で表示される。つまり、高 効率化は、分母の出力 (W)を上げることになるので、市場価格や製造コストを低減す る効果を有する)。 High efficiency (high performance) is very important for low cost (Solar cell market price and manufacturing cost are generally expressed in unit price per watt [yen / W]. Higher efficiency increases the output (W) of the denominator, which has the effect of reducing market prices and manufacturing costs).
[0005] 多結晶シリコン太陽電池の高効率ィ匕には、さまざまな技術要素が関係するが、中で も、多結晶シリコン基板の高品質ィ匕は最も重要なものである。 [0005] Various technical elements are related to the high efficiency of the polycrystalline silicon solar cell. Among them, the high quality of the polycrystalline silicon substrate is the most important.
多結晶シリコン基板の品質については、様々な評価法による品質指標があり、また 様々な品質要因がある。 Regarding the quality of a polycrystalline silicon substrate, there are quality indexes based on various evaluation methods and various quality factors.
例えば、代表的な品質評価法及び品質指標としては、 PCD法 (マイクロ波光導 電率減衰法)による少数キャリアライフタイム τや、 SPV法 (表面光起電力法)による 少数キャリア拡散長 Lが知られて 、る。 For example, as representative quality evaluation methods and quality indicators, the minority carrier lifetime τ by the PCD method (microwave photoelectric attenuation method) and the minority carrier diffusion length L by the SPV method (surface photovoltaic method) are known. And
[0006] また、これらの品質指標の起源となる品質要因としては、(1)結晶粒界や転位ある いは空孔ゃ格子間 Siなどの、多結晶シリコン固有の内因性の欠陥や、(2)金属不純 物、あるいは軽元素不純物、さらには様々な化合物による析出物などに起因した外 因'性の欠陥がある。 [0006] In addition, quality factors that are the origin of these quality indices include (1) intrinsic defects inherent in polycrystalline silicon such as grain boundaries, dislocations, or vacancy and interstitial Si, and ( 2) There are extrinsic defects due to metal impurities, light element impurities, and precipitates from various compounds.
従来は、前記ライフタイムてや拡散長 Lを基板品質の基準指標とし、これらを高くす る方向で (高 τあるいは高 Lの基板を実現することで、高効率ィ匕あるいは高歩留まり 化を目指して)、基板品質改善努力が進められてきた。 Conventionally, the lifetime and diffusion length L are used as the standard indicators of substrate quality, and in the direction of increasing these (in order to achieve high τ or high L substrates, aiming for high efficiency and high yield. Efforts have been made to improve board quality.
[0007] し力しながら、多結晶シリコン基板品質は、太陽電池を製造するための素子化工程 を経ると変化するため、例えば、 μ PCD法で測定したライフタイム τや SPV法で測 定した拡散長 Lなどで低 ヽ品質を示した基板であっても、必ずしも製造された太陽電 池の効率が低くなるとは限らな力つた。 [0007] However, since the quality of the polycrystalline silicon substrate changes after the device fabrication process for manufacturing the solar cell, it was measured by, for example, the lifetime τ measured by the μ PCD method or the SPV method. Even substrates with low diffusion quality, such as diffusion length L, are not necessarily manufactured The efficiency of the pond was low, but it was limited.
そこで現在、素子特性に直結する新たな基板品質指標が求められている。すなわ ち、素子化する前の基板状態で予め素子特性が予測できれば、素子化するにあたつ てその基板品質に応じたランク分けが可能となり、より効率的な製造 (基板品質に応 じたプロセス分けなど)が行えるようになるからである。 Therefore, a new substrate quality index that is directly related to device characteristics is currently being demanded. In other words, if the device characteristics can be predicted in advance in the state of the substrate before the device is made, it will be possible to rank the device according to the quality of the substrate, and more efficient manufacturing (depending on the substrate quality) This is because processes can be performed).
[0008] また、従来、多結晶シリコン基板中の酸素 0、炭素 C、窒素 Nといった軽元素濃度の 制御'管理が不充分であった。このため、太陽電池効率を充分高くすることが困難で めつに。 [0008] Further, conventionally, control and management of light element concentrations such as oxygen 0, carbon C, and nitrogen N in a polycrystalline silicon substrate have been insufficient. For this reason, it is difficult to increase the solar cell efficiency sufficiently.
すなわち、 Oや Cや Nが、基板品質や太陽電池効率に少な力 ず影響していること は既にある程度は知られていた力 その濃度をそれぞれどの程度にすべきか、という 具体的条件は必ずしも明確ではな力つた。また、目標とすべき濃度条件が明確にで きたとしても、現状ではそれを実現する充分な制御技術が確立されて!、なかった。 In other words, it is already known that O, C, and N have little influence on substrate quality and solar cell efficiency. The specific conditions for how much the concentration should be set are not necessarily clear. Then I helped. Even if the concentration conditions to be targeted are clear, no sufficient control technology has been established to achieve this.
[0009] そこで本発明は、素子特性に直結する新たな基板品質指標の知見、及び多結晶 シリコンインゴット及び基板の高品質ィ匕条件の知見に基づき、高品質な多結晶シリコ ン基板、多結晶シリコンインゴット、及びそのシリコン基板の製造方法を提供すること を目的とする。 [0009] Therefore, the present invention is based on knowledge of a new substrate quality index that is directly related to device characteristics and knowledge of high-quality conditions of a polycrystalline silicon ingot and a substrate, and a high-quality polycrystalline silicon substrate, polycrystalline It is an object of the present invention to provide a silicon ingot and a method for manufacturing the silicon substrate.
また、本発明は、その多結晶シリコン基板を用いた、高効率な光電変換素子及び 光電変換モジュールを提供することを目的とする。 Another object of the present invention is to provide a highly efficient photoelectric conversion element and photoelectric conversion module using the polycrystalline silicon substrate.
課題を解決するための手段 Means for solving the problem
[0010] 本発明の光電変換素子用多結晶シリコン基板 (以下「多結晶シリコン基板」という) は、多結晶シリコン基板中の不純物濃度に関して、 ESR (電子スピン共鳴)法で、基 板のへき開面を、温度約 10Kで測定したときの g値 =2.005〜2.006におけるスピン密 度を Nspin (ただし、スピン密度単位は [spins/cm3])としたとき、 The polycrystalline silicon substrate for photoelectric conversion elements of the present invention (hereinafter referred to as “polycrystalline silicon substrate”) is a cleavage plane of the substrate by an ESR (electron spin resonance) method with respect to the impurity concentration in the polycrystalline silicon substrate. , When the spin density at g value = 2.005 to 2.006 measured at a temperature of about 10 K is Nspin (where the spin density unit is [spins / cm 3 ]),
Nspin ≤ 3. 5E14 (条件 1) Nspin ≤ 3.5E14 (Condition 1)
を満たす領域が基板中に存在するものである。 A region that satisfies the above condition exists in the substrate.
[0011] また、本発明の多結晶シリコン基板は、前記条件に加えて、フーリエ変換赤外分光 法で計測した格子間酸素濃度を [Oi] [atomS/Cm3]、置換位置炭素濃度を [Cs] [atom s/cm3]としたとき、 [Oi] X [Cs]^ ≤ 4E86 (条件 2; はべき乗を表す) [0011] Further, a polycrystalline silicon substrate of the present invention, in addition to the condition, the interstitial oxygen concentration measured by Fourier transform infrared spectroscopy [Oi] [a tom S / C m 3], the substitution position carbon When the concentration is [Cs] [atom s / cm 3 ], [Oi] X [Cs] ^ ≤ 4E86 (Condition 2; represents power)
を満たす領域が基板中に存在するものである。 A region that satisfies the above condition exists in the substrate.
[0012] ここで、格子間酸素濃度 [Oi]とは、シリコン結晶の格子点と格子点との間に位置す る酸素の濃度を表し、置換位置炭素濃度 [Cs]とは、シリコン結晶の格子点に置換され た炭素の濃度を表す。 Here, the interstitial oxygen concentration [Oi] represents the concentration of oxygen located between the lattice points of the silicon crystal, and the substitutional position carbon concentration [Cs] It represents the concentration of carbon substituted for lattice points.
また、本発明の多結晶シリコン基板は、前記条件に加えて、フーリエ変換赤外分光 法又は二次イオン質量分析法で計測した窒素濃度を [N] [atomS/Cm3]としたとき、 In addition to the above conditions, the polycrystalline silicon substrate of the present invention has a nitrogen concentration measured by Fourier transform infrared spectroscopy or secondary ion mass spectrometry as [N] [ a tom S / C m 3 ]. When
[N] ≤ 4E15 (条件 3) [N] ≤ 4E15 (Condition 3)
を満たす領域が基板中に存在するものである。 A region that satisfies the above condition exists in the substrate.
[0013] 前記「条件 1」は、発明者が、基板のへき開面に現れるダングリングボンドと太陽電 池特性および不純物濃度との間に相関関係があることを知見したことに基づくもので ある。すなわち、基板のへき開面に現れるダングリングボンドのスピン量子数 s=iZ[0013] The "condition 1" is based on the fact that the inventor has found that there is a correlation between dangling bonds appearing on the cleavage plane of the substrate, solar cell characteristics, and impurity concentration. That is, the spin quantum number of dangling bonds appearing on the cleavage plane of the substrate s = iZ
2の状態にある電子スピン密度 Nspinの範囲を規定する。この条件 1を満たす多結晶 シリコン基板は、電子スピン密度がしきい値 3. 5E14よりも少ないため、再結合準位 の密度が小さい。したがって、基板の品質がよぐ光電変換効率が高い基板となる。 これによつて、低コスト、省資源かつ高効率な多結晶シリコン太陽電池を製造すること ができる。 Specifies the range of electron spin density Nspin in state 2. A polycrystalline silicon substrate that satisfies this condition 1 has a low recombination level density because its electron spin density is lower than the threshold value 3.5E14. Therefore, it becomes a board | substrate with high photoelectric conversion efficiency with the quality of a board | substrate. As a result, a low-cost, resource-saving and highly efficient polycrystalline silicon solar cell can be manufactured.
[0014] 前記「条件 2」は、前記「条件 1」を実現するための必要条件になる。 The “condition 2” is a necessary condition for realizing the “condition 1”.
前記「条件 3」は、さらに品質のよい基板を得るためのより好ましい条件となる。 前記多結晶シリコン基板は、インゴットから切り出されたものであってもよい。 The “Condition 3” is a more preferable condition for obtaining a higher quality substrate. The polycrystalline silicon substrate may be cut from an ingot.
この場合、前記多結晶シリコン基板は、基板端部 lcm幅領域を除いた領域の少な くとも一部において、前記条件が満たされていることが好ましぐさらに、インゴットの 固化率 15〜80%の領域にぉ 、て、前記条件が満たされて!/、ることが好ま 、。 In this case, it is preferable that the polycrystalline silicon substrate satisfies the above conditions in at least a part of the region excluding the substrate end lcm width region. Further, the solidification rate of the ingot is 15 to 80%. It is preferred that the above conditions are satisfied!
[0015] 基板端部 lcm幅領域を除くのは、基板端部領域は、凝固初期段階での固化領域 を含み、また铸型内壁力 の不純物の固相拡散 (凝固後の熱拡散)の影響等を受け ているため、本発明が対象とする品質低下要因以外の要因の影響が大きいため、本 発明の効果を期待する対象領域としては適切でない場合がある力 である。そこで、 基板端部 lcm幅領域を除 、て基板品質を評価すれば、ほぼこれらの対称外要因の 影響は無視しうるので、本発明の効果を正しく評価するのに適当である。 [0015] Excluding the substrate edge lcm width region, the substrate edge region includes a solidified region in the initial stage of solidification, and the influence of solid-phase diffusion of impurities (thermal diffusion after solidification) of the vertical inner wall force Therefore, the influence of factors other than the quality degradation factor that is the subject of the present invention is large, and this is a force that may not be appropriate as the target region where the effect of the present invention is expected. Therefore, if the substrate quality is evaluated by excluding the lcm width region at the edge of the substrate, these factors outside of symmetry are almost eliminated. Since the influence can be ignored, it is suitable for correctly evaluating the effect of the present invention.
[0016] また、インゴットの固化率 15%未満の領域は、酸素析出物の発生量が多ぐまた铸 型底部からの不純物拡散の影響もあって結晶品質は非常に低い。固化率 80%を超 えると、各種不純物の偏祈の影響が急激に大きくなつてくるためやはり結晶品質は極 度に低下する。したがって、インゴットの固化率 15〜80%の領域で、本発明の効果 を正しく評価するのに適当である。 [0016] In addition, in the region where the solidification rate of the ingot is less than 15%, the crystal quality is very low due to the large amount of oxygen precipitates generated and the influence of impurity diffusion from the bottom of the vertical mold. If the solidification rate exceeds 80%, the influence of the prayers of various impurities will increase rapidly, and the crystal quality will be extremely lowered. Therefore, it is suitable for correctly evaluating the effect of the present invention in a region where the solidification rate of the ingot is 15 to 80%.
[0017] また、本発明の多結晶シリコンインゴットは、多結晶シリコン基板中の不純物濃度に 関して、前記「条件 1」が満たされて 、るインゴットである。 [0017] The polycrystalline silicon ingot of the present invention is an ingot that satisfies the above "condition 1" with respect to the impurity concentration in the polycrystalline silicon substrate.
さらに本発明の多結晶シリコンインゴットは、前記「条件 1」に加えて、前記「条件 2」 又は前記「条件 3」がさらに満たされて 、るものであってもよ 、。 Furthermore, the polycrystalline silicon ingot of the present invention may be such that the “condition 2” or the “condition 3” is further satisfied in addition to the “condition 1”.
また、本発明の多結晶シリコン基板の製造方法は、坩堝にシリコンを投入し、前記 坩堝内のガス滞留時間て gasが 25sec以下になるような流量で Arを流しながら、シリコ ンの溶融を行い、溶融されたシリコンを铸型に移して、シリコンの凝固'冷却を行って インゴットを铸造し、この铸造されたインゴットを切り出して多結晶シリコン基板を得る 方法である。 In the method for producing a polycrystalline silicon substrate of the present invention, silicon is poured into a crucible, and silicon is melted while flowing Ar at a flow rate such that the gas residence time in the crucible is 25 sec or less. In this method, the molten silicon is transferred to a mold, the silicon is solidified and cooled to produce an ingot, and the produced ingot is cut out to obtain a polycrystalline silicon substrate.
[0018] 前記坩堝内のガス滞留時間て gasが 19sec以下になるような流量で Arを流すことと すれば、さらに好ましい。 [0018] More preferably, Ar is flowed at a flow rate such that the gas residence time in the crucible is 19 sec or less.
ガス滞留時間 τ gasの上限については、現実的には、 τ gasを長くすることによる Ar ガスコストの増カロ、炉内粉塵発生、などによって制限される。 The upper limit of the gas residence time τ gas is actually limited by increasing the Ar gas cost by increasing τ gas, generating dust in the furnace, and the like.
さらに、坩堝を用いないで、前記铸型内でシリコンの溶融を行い、引き続き凝固'冷 却を行う铸型内溶解凝固法においても、本発明が適用できる。 Furthermore, the present invention can also be applied to the in-mold melting and solidification method in which the silicon is melted in the above-mentioned mold without using a crucible and then solidified and cooled.
[0019] ガス滞留時間て gasが 25sec以下となるような条件で Arを流すことにより、次のような 作用効果が得られる。従来の多結晶シリコン铸造法では、 Si融液量に対する炉内雰 囲気の接触面積の割合が大きいため、 COガス汚染が起こりやすくなつている。そこ で、前記坩堝内のガス滞留時間て gasが 25sec以下になるような流量で Arを流しなが ら、前記シリコンの溶融を行う。これにより、铸造時 Arの圧力で炉内に存在する COガ スが溶融シリコンに接触するのを排除でき、シリコンが炭素汚染されることを低減する こととなる。したがって、前記「条件 1」を満たす多結晶シリコン基板を容易に得るため の必要条件を実現することができる。 [0019] By flowing Ar under such conditions that the gas residence time is 25 sec or less, the following effects can be obtained. In conventional polycrystalline silicon fabrication methods, the ratio of the contact area of the furnace atmosphere to the amount of Si melt is large, so CO gas contamination is likely to occur. Therefore, the silicon is melted while flowing Ar at a flow rate such that the gas residence time in the crucible is 25 sec or less. As a result, it is possible to eliminate the contact of the CO gas existing in the furnace with the molten silicon at the Ar pressure during fabrication, and to reduce the carbon contamination of the silicon. Therefore, in order to easily obtain a polycrystalline silicon substrate that satisfies the above "condition 1" The necessary conditions can be realized.
[0020] 前記シリコンの凝固 ·冷却時において、凝固初期に铸型側面からの抜熱性を高め て、側面力 の凝固を強制的に行うことが好ま 、。側面からの凝固を強制的に行う こととすれば、凝固プロセスの初期段階で铸型内壁側面に薄い初期凝固層を優先的 に成長させることができる。この初期凝固層が、溶融シリコンに SiNの Nが溶け込むの を食い止める障壁になり、シリコンインゴット中の窒素の過剰ドープを抑制することが できる。基板をインゴットから切り出す際には、铸型内壁面に接していたインゴット外 周部 (初期凝固部)を端材としてカットするとよ 、。 [0020] At the time of solidification / cooling of the silicon, it is preferable to forcibly solidify the side force by increasing heat removal from the side surface of the mold at the initial stage of solidification. If solidification from the side is forcibly performed, a thin initial solidified layer can be preferentially grown on the side surface of the vertical inner wall at the initial stage of the solidification process. This initial solidified layer acts as a barrier to prevent SiN from dissolving into the molten silicon, and can suppress excessive doping of nitrogen in the silicon ingot. When cutting the substrate from the ingot, the outer periphery of the ingot (the initial solidification part) that was in contact with the inner wall surface of the saddle must be cut as the end material.
[0021] 前記方法により、基板品質を劣化させる [C]を充分に低減することができる。また、 [ N]も所定値以下に制御できる。また、素子効率の向上も同時に実現できる。 [0021] By the above method, [C] which degrades the substrate quality can be sufficiently reduced. [N] can also be controlled below a predetermined value. In addition, the device efficiency can be improved at the same time.
また、本発明の光電変換素子は、前記本発明の多結晶シリコン基板を用いた光電 変換素子である。この光電変換素子は、従来の光電変換素子と比べて、薄型化と、 素子効率の向上が期待できる。 The photoelectric conversion element of the present invention is a photoelectric conversion element using the polycrystalline silicon substrate of the present invention. This photoelectric conversion element can be expected to be thinner and have higher element efficiency than conventional photoelectric conversion elements.
[0022] また、本発明の光電変換モジュールは、前記本発明の複数の光電変換素子を直 列あるいは並列に電気接続して形成されているので、低コストで、高い特性の光電変 換モジュールとなる。 In addition, the photoelectric conversion module of the present invention is formed by electrically connecting the plurality of photoelectric conversion elements of the present invention in series or in parallel. Therefore, the photoelectric conversion module of the present invention is low in cost and has high characteristics. Become.
本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照 して次に述べる実施形態の説明により明らかにされる。 The above-described or other advantages, features, and effects of the present invention will be made clear by the following description of embodiments with reference to the accompanying drawings.
図面の簡単な説明 Brief Description of Drawings
[0023] [図 1]図 1は、本発明に係る多結晶シリコン基板を用いた太陽電池素子 11の構造の 一例を示す断面図である。 FIG. 1 is a cross-sectional view showing an example of the structure of a solar cell element 11 using a polycrystalline silicon substrate according to the present invention.
[図 2]図 2は、太陽電池素子 11の受光面側から見た電極形状の一例を示す上視図 である。 FIG. 2 is a top view showing an example of an electrode shape viewed from the light receiving surface side of solar cell element 11.
[図 3]図 3は、太陽電池素子 11の非受光面側力 見た電極形状の一例を示す上視 図である。 FIG. 3 is a top view showing an example of an electrode shape as seen from the non-light-receiving surface side force of solar cell element 11.
[図 4]図 4(a)〜図 4(d)は、坩堝内のシリコンの溶解開始から、融液を铸型に移すまで の工程を説明するための工程図である。 [FIG. 4] FIGS. 4 (a) to 4 (d) are process diagrams for explaining the process from the start of the dissolution of silicon in the crucible to the transfer of the melt into a bowl.
[図 5]図 5は、太陽電池モジュールの構造を示す断面図である。 [図 6]図 6は、受光面側からこの太陽電池モジュールを見た上視図である 符号の説明 FIG. 5 is a cross-sectional view showing the structure of a solar cell module. FIG. 6 is a top view of the solar cell module viewed from the light receiving surface side.
1 表集電極 1 Surface electrode
la パスバー電極 la passbar electrode
lb フィンガー電極 lb finger electrode
3 半導体領域 3 Semiconductor area
4 逆導電型領域 4 Reverse conductivity type region
5 p型バルタ領域 5 p-type Balta region
6 反射防止膜 6 Anti-reflective coating
7 p+型領域 7 p + type region
8 裏面集電極 8 Back collector
9 裏面出力電極 9 Back output electrode
11 太陽電池素子 11 Solar cell element
12 坩堝本体 12 Crucible body
13 坩堝の蓋 13 Crucible lid
21 錶型本体 21 Vertical body
24 冷却板 24 Cold plate
41 配線部材 41 Wiring material
42 透明部材 42 Transparent material
43 裏 nife ォ 43 Back nife
44 表側充填材 44 Front side filler
45 裏側充填材 45 Back side filler
46 出力取出配線 46 Output extraction wiring
47 端子ボックス 47 Terminal box
48 枠 48 frames
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、本発明に係る多結晶シリコン基板を用いた太陽電池素子 11の構造の一例 を示す断面図である。 さらに、図 2、図 3は、太陽電池素子 11の電極形状の一例を示す図であり、図 2は 図 1を受光面側から見た上視図、図 3は図 1を非受光面側力 見た下視図である。 以下、この太陽電池素子 11の構造にっ 、て簡単に説明する。 FIG. 1 is a cross-sectional view showing an example of the structure of a solar cell element 11 using a polycrystalline silicon substrate according to the present invention. 2 and 3 are diagrams showing an example of the electrode shape of the solar cell element 11. FIG. 2 is a top view when FIG. 1 is viewed from the light receiving surface side, and FIG. 3 is the non-light receiving surface side of FIG. It is a bottom view of power. Hereinafter, the structure of the solar cell element 11 will be briefly described.
[0026] p型シリコン基板は、厚さ 350 m以下の薄板状であり、図 1に示すように、 p型バル ク領域 5を含む。 p型シリコン基板の光入射面側には、 P (リン)原子などが高濃度に拡 散されて n型となる逆導電型領域 4が形成され、 p型バルタ領域との間に pn接合部が 形成されている。この逆導電型領域 4の厚さは通常 0. 2〜0. 5 m程度である。 光入射面側の半導体上には、窒化シリコン膜や酸ィ匕シリコン膜など力 なる反射防 止膜 6が設けられている。また、光入射面の反対側には、アルミニウムなどの p型半導 体不純物を多量に含んだ P+型領域 7が設けられて 、る。この p+型領域 7は BSF (Bac k Surface Field)領域とも呼ばれ、光生成電子キャリアが裏面集電極 8に到達して再 結合損失する割合を低減する役割を果たすものである。これにより、光電流 ¾sc が向上する。またこの p+型領域 7では少数キャリア(電子)密度が低減されるので、こ の P+型領域 7及び裏面集電極 8に接する領域でのダイオード電流量(暗電流量)を低 減する働きをし、開放電圧 Vocが向上する。 The p-type silicon substrate has a thin plate shape with a thickness of 350 m or less, and includes a p-type bulk region 5 as shown in FIG. On the light incident surface side of the p-type silicon substrate, P (phosphorus) atoms and the like are diffused at a high concentration to form an n-type reverse conductivity type region 4, and a pn junction between the p-type silicon region Is formed. The thickness of the reverse conductivity type region 4 is usually about 0.2 to 0.5 m. A powerful antireflection film 6 such as a silicon nitride film or an oxide silicon film is provided on the semiconductor on the light incident surface side. On the other side of the light incident surface, a P + type region 7 containing a large amount of p-type semiconductor impurities such as aluminum is provided. This p + type region 7 is also called a BSF (Back Surface Field) region and plays a role in reducing the rate at which photogenerated electron carriers reach the back collector 8 and lose recombination. Thereby, the photocurrent ¾sc is improved. In addition, since the minority carrier (electron) density is reduced in the p + type region 7, the diode current amount (dark current amount) in the region in contact with the P + type region 7 and the back collector electrode 8 is reduced. The open circuit voltage Voc is improved.
[0027] 光入射面側には、銀などの金属材料を主成分とする表集電極 1が設けられている。 [0027] On the light incident surface side, a surface collecting electrode 1 whose main component is a metal material such as silver is provided.
裏面側にはアルミニウムなどを主成分にする裏面集電極 8が設けられている。さらに 、裏面集電極 8から電流を集めるための裏面出力電極 9が設けられて ヽる。 On the back side, a back side collecting electrode 8 mainly composed of aluminum or the like is provided. Further, a back surface output electrode 9 for collecting current from the back surface collecting electrode 8 is provided.
表集電極 1は、図 2に示すように、一般的には線幅の狭いフィンガー電極 lb (枝電 極)と、それらフィンガー電極 lbの少なくとも一端が接続される線幅が太いバスバー 電極 la (幹電極)とカゝらなっている。この表集電極 1での電力ロスをできるだけ低減す るために、表集電極 1には金属材料が使われる。金属としては抵抗率の低い銀 (Ag) を主成分とした Agペーストを用いるのが望ましぐ通常はスクリーン印刷法により塗布 •焼成して電極とする。 As shown in FIG. 2, the front electrode 1 generally has a finger electrode lb (branch electrode) having a narrow line width and a bus bar electrode la (having a large line width to which at least one end of the finger electrode lb is connected. Stem electrode). In order to reduce the power loss at the collector electrode 1 as much as possible, a metal material is used for the collector electrode 1. It is desirable to use Ag paste based on silver (Ag), which has a low resistivity, as the metal. Usually, it is applied and fired by screen printing to form an electrode.
[0028] 太陽電池素子 11の光入射面側である反射防止膜 6の側から光が入射すると、逆導 電型領域 4と p型バルタ領域 5と p+型領域 7とからなる半導体領域 3で、吸収 ·光電変 換されて電子一正孔対 (電子キャリア及び正孔キャリア)が生成される。この光励起起 源の電子キャリア及び正孔キャリア(光生成キャリア)によって、太陽電池素子 11の表 側に設けられた略線状の表集電極 1と、裏側に設けられた裏側電極 8、 9との間に光 起電力を生じ、発生した光生成キャリアはこれらの電極で集められて、出力端子にま で導かれる。また、光起電力に応じて光電流とは反対方向にダイオード電流である暗 電流が流れる。 When light is incident from the side of the antireflection film 6, which is the light incident surface side of the solar cell element 11, in the semiconductor region 3 composed of the reverse conductivity type region 4, the p-type butter region 5, and the p + type region 7. Then, absorption and photoelectric conversion are performed to generate an electron-hole pair (electron carrier and hole carrier). Due to the electron carriers and hole carriers (photogenerated carriers) of this photoexcitation source, Photoelectric power is generated between the substantially linear collector electrode 1 provided on the side and the back electrodes 8 and 9 provided on the back side, and the generated photogenerated carriers are collected by these electrodes and output. Guided to the terminal. In addition, a dark current that is a diode current flows in the opposite direction to the photocurrent in accordance with the photovoltaic force.
[0029] 次に、本発明の多結晶シリコン基板を得るための多結晶シリコンインゴット铸造工程 について説明する。 Next, a polycrystalline silicon ingot forging process for obtaining a polycrystalline silicon substrate of the present invention will be described.
図 4 (a)〜図 4 (d)は、坩堝内のシリコンの溶解開始から、融液を铸型に移すまでの 工程を説明するための模式的な工程図である。 4 (a) to 4 (d) are schematic process diagrams for explaining the process from the start of the dissolution of silicon in the crucible to the transfer of the melt into a bowl.
まずシリコン原料を準備する。シリコン原料としては不純物濃度の低いポリシリコン 原料を用いることが望ましいが、この他にも、例えば CZ法単結晶シリコンインゴット製 造時に発生する、いわゆるトップ及びテールと呼ばれるオフグレードシリコンや、ある いは坩堝中に残る残渣シリコンを用いることもできる。ただしオフグレードシリコンや残 渣シリコンを単独で用いると不純物汚染の問題が生じる場合は、ポリシリコン原料を 適量配合して用いる。 First, a silicon raw material is prepared. It is desirable to use a polysilicon material with a low impurity concentration as the silicon material, but in addition to this, for example, off-grade silicon called top and tail, which is generated during the production of CZ single crystal silicon ingots, or Residual silicon remaining in the crucible can also be used. However, if there is a problem of impurity contamination when off-grade silicon or residual silicon is used alone, an appropriate amount of polysilicon raw material is blended.
[0030] 以下、 Si原料を約 80kg準備した場合を例にとって説明を続ける。 [0030] Hereinafter, the description will be continued with an example in which about 80 kg of Si raw material is prepared.
次に、前記シリコン原料を坩堝 12内に入れる。図 4 (a)はシリコン原料を坩堝 12内 に入れた状態を示す。前記坩堝 12としては CZ法で一般的に用いられている石英坩 堝を用いることができる。 Next, the silicon raw material is put into the crucible 12. Fig. 4 (a) shows a state in which the silicon raw material is put in the crucible 12. As the crucible 12, a quartz crucible generally used in the CZ method can be used.
図 4 (b)は、これを溶解炉にて加熱して坩堝 12内の原料シリコンを溶解させている 状態を示す。炉内は、 Arガス雰囲気とし、 Ar流量は 10〜: LOOLZmin、 Arガス圧は lkPa〜: LOOkPa (大気圧)程度の範囲で調節する。 FIG. 4 (b) shows a state in which the raw silicon in the crucible 12 is melted by heating in a melting furnace. The inside of the furnace is Ar gas atmosphere, Ar flow rate is adjusted in the range of 10 ~: LOOLZmin, Ar gas pressure is in the range of lkPa ~: LOOkPa (atmospheric pressure).
[0031] 本実施形態では石英坩堝を用いた場合、本溶解段階での Si融液中の酸素濃度は 、ほぼ飽和溶解度値に近い lE18〜2E18[atoms/cm3]程度の極めて高い値となって いる。もし、石英坩堝内壁を、例えば SiNなどの非酸ィ匕物材料でコートしておけば Si 融液中酸素濃度はこれよりも小さい値となる。 [0031] In the present embodiment, when a quartz crucible is used, the oxygen concentration in the Si melt at the main melting stage is an extremely high value of about lE18 to 2E18 [atoms / cm 3 ] which is close to the saturation solubility value. ing. If the inner wall of the quartz crucible is coated with a non-acidic material such as SiN, the oxygen concentration in the Si melt will be smaller than this.
シリコンの溶解段階で注意すべきは、炉内 COガスによる Si融液の炭素汚染である 。 Si融液中の炭素濃度が増大して、ある一定値に達すれば、融液中に SiCが晶出し 、これが Si凝固の際に結晶中に取り込まれると構造欠陥として働くため基板 Si品質を 低下させる。また晶出することなく結晶 Si中に取り込まれた c元素も、その一部は結 晶 Siインゴットの冷却に伴う結晶 Si中での固溶度の低下によって結晶 Si中に SiCとし て析出することがあり、この場合も同様に結晶 Si品質を低下させる。また、 SiCあるい は固溶した Cは、酸素の析出核としても働くので、酸素析出を促進することによつても 同じく結晶 Si品質を低下させることがある。 What should be noted in the silicon melting stage is carbon contamination of the Si melt by CO gas in the furnace. When the carbon concentration in the Si melt increases and reaches a certain value, SiC crystallizes in the melt, and if this is incorporated into the crystal during Si solidification, it acts as a structural defect, so the substrate Si quality is improved. Reduce. In addition, part of the c element taken into the crystalline Si without crystallizing is precipitated as SiC in the crystalline Si due to a decrease in the solid solubility in the crystalline Si accompanying cooling of the crystalline Si ingot. In this case as well, the crystalline Si quality is similarly reduced. In addition, SiC or solid-solution C also acts as oxygen precipitation nuclei, so that promoting the oxygen precipitation may also reduce the crystalline Si quality.
[0032] 以上のことから、 Si融液の炭素汚染はできるだけ低減する必要がある。 [0032] From the above, it is necessary to reduce carbon contamination of the Si melt as much as possible.
さて、 Si融液の炭素汚染を低減するためには、 3つのファクター、すなわち、(1) C O分圧の低減、(2)溶解時間の短縮、(3)ドーパント材の投入時期、が重要である。 前記(1)の CO分圧の低減は、雰囲気である Arの流量を増大させることにより、炉 内ガス排気速度を高めて、実現することができる。これとともに、図 4 (b)に示すような 蓋 13のついた密閉型坩堝を用いることも有効である。これは蓋 13で坩堝を密閉する ことで炉内雰囲気からの CO汚染を抑制し、融液に接する密閉空間での CO分圧を 低減するためである。 In order to reduce carbon contamination of Si melt, three factors are important: (1) reduction of CO partial pressure, (2) reduction of dissolution time, and (3) timing of introduction of dopant material. is there. The reduction of the CO partial pressure in (1) can be realized by increasing the flow rate of Ar, which is the atmosphere, by increasing the gas exhaust speed in the furnace. At the same time, it is also effective to use a closed crucible with a lid 13 as shown in FIG. 4 (b). This is because sealing the crucible with the lid 13 prevents CO contamination from the furnace atmosphere and reduces the CO partial pressure in the sealed space in contact with the melt.
[0033] なお図 4 (b)の密閉型坩堝の蓋 13には、図示しないが、実際、 Arガスを坩堝内に 流すための小さな孔が設けられている。坩堝 12と蓋 13との間にも、 Arガスを流すた め隙間ができている。 [0033] Although not shown, the lid 13 of the closed crucible in Fig. 4 (b) is actually provided with a small hole for flowing Ar gas into the crucible. There is also a gap between the crucible 12 and the lid 13 for flowing Ar gas.
ここで、 Ar流量の増大ゃ密閉型坩堝を用いて COガス汚染低減効果を得る前提と して、一般的な COガス分圧低減条件を充分整えておくことは言うまでもなく重要であ る。すなわち、炉内残留ガス(吸着ガス)量の低減、炉内への空気リーク量の低減、炉 内 COガス発生反応量の低減、炉内ガス排気速度の増大、炉内 Arガスフロー経路の 最適化、炭素材ヒーターや断熱材配置の最適化、等の対策を総合的に講じておくこ とが重要である。 Here, if the Ar flow rate is increased, it is of course important to sufficiently prepare the general conditions for reducing the partial pressure of CO gas, on the premise of obtaining a CO gas contamination reduction effect using a sealed crucible. That is, reducing the amount of residual gas (adsorbed gas) in the furnace, reducing the amount of air leakage into the furnace, reducing the amount of CO gas generated in the furnace, increasing the gas exhaust speed in the furnace, and optimizing the Ar gas flow path in the furnace It is important to take comprehensive measures such as optimization, optimization of the placement of carbon material heaters and insulation materials.
[0034] 前記炉内 COガス発生源としては、炭素材料で構成された加熱ヒーターや断熱部 材が酸素系ガスと反応することで COガスが発生するメカニズムが挙げられる。具体 的には、 [0034] Examples of the in-furnace CO gas generation source include a mechanism in which CO gas is generated when a heater or a heat insulating member made of a carbon material reacts with an oxygen-based gas. In particular,
C材料 +空気リーク成分 (O H 0)→CO†、 C material + air leak component (O H 0) → CO †,
2, 2 twenty two
C材料 +SiO→SiC (あるいは Si) +CO† C material + SiO → SiC (or Si) + CO †
が挙げられる。 [0035] ここで後者は溶解中に発生して 、る大量の SiOガスによって生じ、石英坩堝を使用 した溶解プロセスでは不可避的な反応である。 Is mentioned. Here, the latter is generated during melting and is generated by a large amount of SiO gas, and is an unavoidable reaction in a melting process using a quartz crucible.
前者の炭素材料と酸素系ガスの反応を低減するためには、炭素材表面への SiCコ ートが有効な場合がある(T.Fukuda et al: J.Electrochem. Soc, vol.141, No.8, Augus t 1994, p.2216) 0 In order to reduce the reaction between the former carbon material and oxygen-based gas, SiC coating on the carbon material surface may be effective (T. Fukuda et al: J. Electrochem. Soc, vol.141, No. .8, Augus t 1994, p.2216) 0
[0036] また、前記炉内 Arガス排気速度の増大は、排気ポンプの容量を増大させることによ つて実現できるが、ポンプ排気能力にも限界があるので、この場合は炉内の有効体 積 (炉内ガスが実際に存在している領域の体積)をできるだけ減らすことが有効であ る。このとさ、 [0036] Although the increase in the Ar gas exhaust speed in the furnace can be realized by increasing the capacity of the exhaust pump, the pump exhaust capacity is limited, so in this case the effective volume in the furnace is limited. It is effective to reduce as much as possible (volume of the region where the gas in the furnace actually exists). This time,
τ gas =炉内 Arガス mol数 ZArガス流量 [molZsec] τ gas = Ar gas mol number in the furnace ZAr gas flow rate [molZsec]
(ただし炉内 Arガス mol数は、(炉内有効体積 X炉内 Arガス密度)に比例する)で定 義されるガス滞留時間て gasを目安にすると、ガス排気速度の程度を把握することが できる。ここで炉内 Arガス密度は、気体の状態方程式 PV=nkTから、 n/V=P/k Tで求められる量である。なお、実際の炉内有効体積を見積もるのは多少手間がか かるので、代わりに炉内設計体積 (炉自体の内部空間体積)をとつてもよい。このとき も目安としてのて gasの意味は有効である。 (However, the number of mols of Ar gas in the furnace is proportional to (effective volume in the furnace x Ar gas density in the furnace)). Is possible. Here, the Ar gas density in the furnace is an amount obtained by n / V = P / k T from the gas state equation PV = nkT. Note that it is somewhat time-consuming to estimate the actual effective volume in the furnace, so the design volume in the furnace (the internal space volume of the furnace itself) may be taken instead. At this time, the meaning of gas as a guide is also effective.
[0037] そこで炉内体積として、この炉内設計体積をとつた場合、これまでの経験によると、 COガス汚染を有効に低減するのに必要な τ gasは最大 25sec以下、望ましくは 19se c以下、さらに望ましくは 15sec以下である。 [0037] Therefore, when the volume inside the furnace is taken as the volume inside the furnace, τ gas required to effectively reduce CO gas contamination is maximum 25 sec or less, preferably 19 sec or less, based on past experience. More desirably, it is 15 sec or less.
ただし、密閉型坩堝を用いる場合はこの条件は緩和できる。例えば、炉内有効体積 が lm3の場合、密閉型坩堝の有効体積 (蓋と融液の間の空間の体積)を (0.5m) 3= 0 .125m3とすれば同じ τ gasを与える Ar流量は 0.125倍で済むことになる。 However, this condition can be relaxed when using a closed crucible. For example, if the effective volume in the furnace is lm 3 and the effective volume of the closed crucible (the volume of the space between the lid and the melt) is (0.5 m) 3 = 0.125 m 3 , the same τ gas is given. The flow rate will be 0.125 times.
[0038] また、 Arガスフロー経路も非常に重要な設計要素である。基本的には Si融液表面 に新鮮な Arガスが吹き付けられるようにし、以後逆流してくる成分がな 、ように Arガ ス流を一方向に揃った層流状にほ L流部分が生じな!/、ように)排気口にまで導くよう に炉内構造を設計する。 [0038] The Ar gas flow path is also a very important design element. Basically, fresh Ar gas is sprayed on the surface of the Si melt, and there is no component that flows back, so that an L gas flow portion is formed in a laminar flow in which the Ar gas flow is aligned in one direction. Design the internal structure of the furnace so that it leads to the exhaust port.
また、前記炭素材ヒーターや断熱材の配置は、シリコン融液面位置と Ar流経路との 関係から最適条件を探す必要がある。 [0039] なお、この密閉型坩堝を採用すれば、いたずらに Ar流量を増やさずとも、少量の A r流量で効率的かつ極限にまで炭素汚染を低減することができる。 In addition, it is necessary to find the optimum conditions for the arrangement of the carbon material heater and the heat insulating material from the relationship between the position of the silicon melt surface and the Ar flow path. [0039] Note that if this sealed crucible is employed, carbon contamination can be efficiently and extremely reduced with a small Ar flow rate without unnecessarily increasing the Ar flow rate.
次に、前記(2)の溶解時間の短縮については、溶解用に投入される熱エネルギー を効率的にシリコン原料に与えることで、溶解開始から完全溶解に至るまでの時間を 短縮することで、 CO汚染量を低減することができる。 Next, regarding the shortening of the melting time of (2) above, by efficiently applying the thermal energy input for melting to the silicon raw material, the time from the start of melting to the complete melting is shortened, The amount of CO contamination can be reduced.
[0040] 具体的には、溶解用加熱ヒーターの出力アップとヒーター配置の最適化、及び炉 内断熱材配置の最適化、さらに必要であれば溶解炉内部材の予備加熱、等の対策 を図って実現することができる。例えば 80kgの Si原料の溶解においては、通常 2〜4 時間程度の加熱時間で完全溶解にまで至らせることができる。 [0040] Specifically, measures such as increasing the output of the heater for melting, optimizing the heater arrangement, optimizing the arrangement of the heat insulating material in the furnace, and preheating the members in the melting furnace if necessary. Can be realized. For example, in the dissolution of 80 kg of Si raw material, complete dissolution can usually be achieved with a heating time of about 2 to 4 hours.
最後に、前記(3)のドーパント材の投入時期については、できるだけ溶解プロセス の最終段階 (注湯プロセスに移るの直前)にドーパント材料を融液中に投入するのが 望ま 、。ドーパント材の投入をできるだけ遅らせた方が融液の C汚染は低減される 傾向にある。 Finally, it is desirable that the dopant material (3) is introduced into the melt as much as possible in the final stage of the melting process (immediately before the pouring process). The C contamination of the melt tends to be reduced by delaying the introduction of the dopant material as much as possible.
[0041] 具体的にドーパントを注湯の何分前に投入するかは、ドーパントが、融解したシリコ ン内部に充分行き渡る目安時間 Tを考慮して決定する。この目安時間 Tは、シリコン の量と、シリコン融液の対流速度に基づいて、次のようにしてそのオーダーを決めるこ とがでさる。 [0041] The number of minutes before the pouring of the dopant is specifically determined in consideration of the reference time T during which the dopant is sufficiently distributed inside the molten silicon. This reference time T can be determined as follows based on the amount of silicon and the convection velocity of the silicon melt.
シリコン融液の冷却状態により重さの違い(冷→重、熱→軽)が生じ、これが対流の 起こる原因となる。このとき以下の理由で、シリコンの重量 (体積 X密度)の 3乗根を前 記の対流速度で割ったものが前記目安時間 Tになる。 Differences in weight (cool → heavy, heat → light) occur depending on the cooling state of the silicon melt, which causes convection. At this time, the reference time T is obtained by dividing the third root of the weight (volume X density) of silicon by the convection velocity for the following reason.
[0042] 例えば、シリコン融液の対流速度は、 lcmZs〜lmmZs程度である。ここで例えば 重量 M = 80kgのシリコンは、一辺長 Lの立方体換算で約 30cm X 30cm X 30cm程 度の体積 (V=L3)に相当する(M= p -V; は Siの密度)。つまり、融液が 30cm動 く(ドーパントが一辺の端力も端まで移動する)のに、前記の対流速度で、 0. 5分〜 5 分かかる。十分混ざるためには、対流により融液内の一辺を 3回程度移動すれば良 いと仮定すると、その 3倍の 1. 5分〜 15分かかる。 [0042] For example, the convection velocity of the silicon melt is about lcmZs to lmmZs. Here, for example, silicon with a weight M = 80 kg corresponds to a volume (V = L 3 ) of about 30 cm × 30 cm × 30 cm in terms of a side length L cube (M = p−V; is the density of Si). In other words, it takes 0.5 to 5 minutes at the convection rate for the melt to move 30 cm (dopant moves to the end of one side). It takes 1.5 to 15 minutes, which is three times as long as it is assumed that it is enough to move one side of the melt by convection about 3 times to mix well.
[0043] 前記目安時間 Tを式で表せば、 となる (T:時間(分)、 M :シリコン量 (kg)、係数 a: 0. 35〜3. 5)。 [0043] If the approximate time T is expressed by an equation, (T: time (minutes), M: silicon content (kg), coefficient a: 0.35 to 3.5).
このように注湯の T分前に遅延投入することで、シリコン融液の COガス汚染は、ド 一パント遅延投入法を適用しな 、場合に比べてさらに低減できる。 In this way, by delaying the injection for T minutes before pouring, the CO gas contamination of the silicon melt can be further reduced compared to the case without applying the dopant delay injection method.
[0044] ドーピング量としては、後述する太陽電池特性が最大となるように、凝固インゴット中 のドーピング元素濃度が IE 16〜 IE 17 [atoms/cm3]程度となるように調節する(この 場合、得られる基板の比抵抗値は 0. 2〜2 Ω 'cm程度となる)。 [0044] The doping amount is adjusted so that the doping element concentration in the solidified ingot is about IE 16 to IE 17 [atoms / cm 3 ] so as to maximize the solar cell characteristics described later (in this case, The specific resistance of the substrate obtained is about 0.2 to 2 Ω'cm).
具体的には、ドーピング量の調節は、ドーピング元素ごとの偏析係数 (分配係数)を 考慮して行われなければならないが、例えば B (ボロン)を例にとれば、 Bの偏析係数 は約 0. 8であるので、もし凝固インゴットの初期凝固部 (インゴット底部)の B濃度を 1 E16 [atoms/cm3]としたければ、融液中の B濃度は 1E16 + 0. 8 = 1. 25E 16 [atoms /cm3]となるようにドーピング量を決定すればよ!、。 Specifically, the doping amount must be adjusted in consideration of the segregation coefficient (distribution coefficient) for each doping element. For example, when B (boron) is taken as an example, the segregation coefficient of B is about 0. Therefore, if the B concentration in the initial solidified part (bottom of the ingot) of the solidified ingot is 1 E16 [atoms / cm 3 ], the B concentration in the melt is 1E16 + 0.8 = 1. 25E 16 Doping amount should be determined to be [atoms / cm 3 ]!
[0045] なお、太陽電池の効率を最大限に高めるには、公知のように、適当なドープ元素の 導入による p型あるいは n型の制御、及びドーピング濃度の制御が必要である。 [0045] In order to maximize the efficiency of the solar cell, it is necessary to control the p-type or n-type by introducing an appropriate doping element and the doping concentration, as is well known.
このとき p型化ドーピング元素としては B (ボロン)や Ga (ガリウム)、 n型化ドーピング 元素としては P (リン)を用いることが望ま 、。 At this time, it is desirable to use B (boron) or Ga (gallium) as the p-type doping element and P (phosphorus) as the n-type doping element.
この後、図 4 (d)に示すように、前記溶解プロセスで完全溶解に至ったシリコン融液 を、できるだけ速やかに凝固炉内に設置した铸型に注湯し、シリコン融液を凝固させ る(キャスト法)。このとき炉内は Arガス雰囲気とし、 Ar流量は 10〜: L00LZmin、 Ar ガス圧は lkPa〜100kPa (大気圧)程度の範囲で調節する。 Thereafter, as shown in FIG. 4 (d), the silicon melt that has been completely melted in the melting process is poured as quickly as possible into a vertical mold installed in the solidification furnace to solidify the silicon melt. (Cast method). At this time, the inside of the furnace should be in an Ar gas atmosphere, the Ar flow rate should be adjusted in the range of 10 to: L00LZmin, and the Ar gas pressure in the range of lkPa to 100kPa (atmospheric pressure).
[0046] 铸型 21としては、グラフアイト材ゃカーボン材といった炭素系材料で構成することも できるし、石英や石英ガラス、あるいはセラミックといった材料を用いることもできる。 铸型 21内壁には離型材を予め塗布しておき、凝固 ·冷却後にインゴットを铸型から 取り外しやすくしておく。このとき離型材は铸型材料とシリコン融液との接触反応を防 止する役目も果たし、铸型材料中の不純物がシリコン融液中に混入することを防ぐ。 離型材としては、 SiN粉末を用いることができ、場合によっては、これに SiO粉末を [0046] The mold 21 can be made of a carbon-based material such as a graphite material or a carbon material, or can be made of a material such as quartz, quartz glass, or ceramic. A mold release material is applied in advance to the inner wall of the mold 21 so that the ingot can be easily removed from the mold after solidification and cooling. At this time, the release material also serves to prevent contact reaction between the cage material and the silicon melt, and prevents impurities in the cage material from being mixed into the silicon melt. As the mold release material, SiN powder can be used.
2 適量混ぜることで離型材の強度を上げて出湯'凝固中における離型材のはがれや倒 れこみを有効に防止することができる。なお、離型材の铸型内壁への塗布は、離型 材粉末原料と PVAなどの有機材料とを適当な混合比で混合して粘性を持たせた状 態で行!ヽ、塗布後に加熱処理して有機材料成分を除去する。 2 Mixing an appropriate amount can increase the strength of the release material and effectively prevent the release material from peeling or falling during solidification. In addition, the release material is applied to the vertical inner wall by mixing the release material powder raw material and an organic material such as PVA at an appropriate mixing ratio to make it viscous. Line in state!加熱 After application, heat treatment is performed to remove organic material components.
[0047] 次に、シリコン融液の凝固工程に入る。凝固は、铸型 21の底部力も上方に向かつ て一方向に凝固させるように(一方向凝固性を高めるために)行われる。このとき铸型 シリコン全体の熱流バランスを調節するとよい。具体的には铸型底部からの凝固を Next, the silicon melt is solidified. The solidification is performed so that the bottom force of the bowl 21 is solidified upward and in one direction (in order to enhance the one-directional solidification property). At this time, the heat flow balance of the entire vertical silicon should be adjusted. Specifically, solidification from the bottom of the bowl
、冷却板 24を铸型底部に接触させることで促進するとともに、シリコン融液頭部から の熱放射による抜熱を抑制する。後者の頭部からの抜熱の抑制は、シリコン融液上 部の炉内断熱性を向上させる力、あるいは必要であれば加熱ヒーターで入熱して調 整する。 The cooling plate 24 is promoted by bringing it into contact with the bottom of the vertical mold, and heat removal from the silicon melt head due to thermal radiation is suppressed. Suppression of heat removal from the latter head can be adjusted by improving the heat insulation in the furnace at the top of the silicon melt, or by applying heat with a heater if necessary.
[0048] また、この铸型における凝固時間の短時間化については (溶解時同様に融液が存 在する時間が短ければ炭素汚染量は低減するので、できるだけ短時間凝固とするの が望ましい)、铸型底部からの効率的な抜熱を実現するために、冷却板 Z铸型接触 面積の増大 (例えば接触面を凹凸形状にした嚙み合わせ構造とする)、冷却板肉厚 の薄肉化、冷却媒体流量の増大、铸型底部材料の薄肉化及び高熱伝導化 (高密度 グラフアイトなどを使用)、などの対策を行い、さらに場合によっては一方向凝固性を 損なってでも抜熱能力を高めるために、铸型底部同様、铸型側部からも冷却する対 策が可能である。 [0048] In addition, regarding the shortening of the solidification time in this saddle type (the amount of carbon contamination is reduced if the time in which the melt exists is short as in the case of melting, it is desirable to solidify as short as possible) In order to achieve efficient heat removal from the bottom of the vertical plate, the contact area of the cold plate Z-type is increased (for example, the contact surface has a concave and convex shape), and the thickness of the cooling plate is reduced. Measures such as increasing the coolant flow rate, thinning the bottom material of the saddle and increasing the thermal conductivity (using high-density graphite, etc.) and, in some cases, improving the heat removal capability even if the unidirectional solidification is impaired. In order to increase the temperature, it is possible to take measures to cool from the vertical side as well as the vertical bottom.
[0049] また、同一重量のシリコンインゴットを铸造するのであれば、インゴット高さをできる だけ低くし、铸型底面積をできるだけ大きくとって抜熱効率を高めることが有効である 。また離型材の熱伝導性を高めるためには、離型材肉厚をできるだけ薄くし、かつ気 孔率の低!、緻密な状態で塗布する工夫が重要である。 [0049] Further, if forging silicon ingots having the same weight, it is effective to increase the heat removal efficiency by making the ingot height as low as possible and making the saddle bottom area as large as possible. In order to increase the thermal conductivity of the release material, it is important to make the release material as thin as possible and to apply it in a dense state with a low porosity.
铸型側壁からの抜熱は、離型材あるいは離型材を通しての铸型からの不純物汚染 が多い場合に有効である。すなわち、凝固プロセスの初期段階で意図的に铸型側壁 力 の抜熱を進めて、铸型側壁に接する領域の Si融液を強制的に凝固させ、铸型側 壁内面に接して凝固した結晶シリコン層が離型材力 の不純物拡散のブロック層とし て機能するようにすることができる。 Heat removal from the vertical side wall is effective when there is a lot of impurity contamination from the vertical mold through the mold release material or the mold release material. In other words, in the initial stage of the solidification process, the side wall force is intentionally removed to forcibly solidify the Si melt in the region in contact with the vertical side wall and solidify in contact with the inner surface of the vertical side wall. The silicon layer can function as a blocking layer for impurity diffusion with a release material force.
[0050] この铸型側壁力 の抜熱は、铸型側壁内面に接する領域の結晶シリコン層は、後 のインゴット切断時に端材として切断除去されることを見込んで行うものである。 この铸型側壁力もの抜熱をすれば、主に SiN系の離型材を用いることによる Si融液 中への窒素 (N)の溶出に起因したシリコンインゴット中の窒素 (N)不純物濃度の増大 を効果的に抑制することができる。また離型材中のその他の不純物(例えば鉄 (Fe) など)の融液中への溶出も効果的に抑制することもできる。 [0050] The heat removal of the saddle type side wall force is performed in anticipation that the crystalline silicon layer in the region in contact with the inside surface of the saddle type side wall is cut and removed as an end material during the subsequent ingot cutting. By removing heat with this saddle-shaped side wall force, the Si melt mainly using SiN mold release material The increase in the concentration of nitrogen (N) impurities in the silicon ingot due to the elution of nitrogen (N) into the inside can be effectively suppressed. In addition, elution of other impurities (such as iron (Fe), etc.) in the release material into the melt can be effectively suppressed.
[0051] なお、铸型側壁からの抜熱性の向上は、サイドヒーター HI (図 4 (d)参照)の出力を 弱めることや、铸型側壁に熱伝導性の高い铸型材質 (例えばカーボン系の、いわゆ る CCM材ゃ、グラフアイト材)を選択すること、などで実現できる。 [0051] Note that the improvement in heat removal from the vertical side wall can be achieved by weakening the output of the side heater HI (see Fig. 4 (d)) or by improving the vertical side wall of the vertical wall (for example, carbon-based material). This can be achieved by selecting so-called CCM materials or graphite materials.
凝固プロセスで問題なのは、前記溶解段階でも述べた炉内 COガスによる Si融液 の炭素汚染である。この炭素汚染低減のため、前記溶解プロセスのところでも述べた ように、ガス排気速度を高めて炉内 CO分圧をできる限り低減し、また凝固もできる限 り短時間で完了させることが重要である。もちろん、前記溶解プロセスのところで述べ た一般的な COガス分圧低減条件を充分整えておくことも必要である。 The problem in the solidification process is the carbon contamination of the Si melt due to the CO gas in the furnace described in the melting stage. In order to reduce this carbon contamination, it is important to increase the gas exhaust speed to reduce the CO partial pressure in the furnace as much as possible and to complete the solidification in as short a time as possible, as described in the melting process. is there. Of course, it is also necessary to prepare the general conditions for reducing the partial pressure of CO gas described in the melting process.
[0052] なお、 COガス分圧の低減については、より好ましくは図 4 (b)に示すような、 COガ スと Si融液との接触を効果的に低減 '遮断できる密閉型铸型を用 ヽるのがよ!/ヽ。この 密閉型铸型を用いてシリコンを凝固させると、坩堝内の CO分圧低減効果が得られる ので、いたずらに Ar流量を増やさずとも、融液と COガスとの接触を低減することがで きる。したがって、少量の Ar流量で効率的かつ極限にまで炭素汚染を低減すること ができる。 [0052] Regarding the reduction of the CO gas partial pressure, more preferably, as shown in Fig. 4 (b), a closed saddle type that can effectively reduce and block the contact between the CO gas and the Si melt. Use it! / ヽ. If silicon is solidified using this closed saddle type, the effect of reducing the CO partial pressure in the crucible can be obtained, so contact between the melt and CO gas can be reduced without increasing the Ar flow rate unnecessarily. wear. Therefore, carbon contamination can be reduced efficiently and extremely with a small Ar flow rate.
[0053] 酸素については、理想的には、ある一定値に制御できることが望ましい。これは酸 素濃度が多すぎると酸素析出物の発生量が増大して結晶品質を低下させ、また一方 で酸素濃度が低すぎると結晶の強度 (転位が発生する降伏応力値)が低下し、凝固 プロセス中に生じる熱応力によって転位が発生しやすくなり、またその結果として亜 粒界 (サブグレインバウンダリー)が多発するようになって、やはり結晶品質を低下さ せる力 である。し力 実際には酸素濃度を適当な値に制御するのは特別な方法を とらない限り困難であり、通常は以下に述べる現象によって、インゴットの底部から頭 部に向力つて一方的に(指数関数的に近い形で)減少する濃度プロファイルを示す。 [0053] Ideally, it is desirable that oxygen can be controlled to a certain value. This is because if the oxygen concentration is too high, the amount of oxygen precipitates generated will increase the crystal quality, while if the oxygen concentration is too low, the crystal strength (the yield stress value at which dislocations will occur) will decrease. Dislocations are likely to occur due to the thermal stress that occurs during the solidification process, and as a result, subgrain boundaries (subgrain boundaries) are frequently generated, which is also a force that degrades the crystal quality. In practice, it is difficult to control the oxygen concentration to an appropriate value unless a special method is taken. Normally, due to the phenomenon described below, the oxygen concentration is unilaterally (indexed) from the bottom of the ingot to the head. Shows a decreasing concentration profile (in a functionally close fashion).
[0054] 溶解プロセス中の Si融液は、石英力もなる坩堝に接触しているので融液中の酸素 濃度は飽和値に近い lE18〜2E18[atoms/cm3]程度の値になっている。これに対し て、铸型に注湯された後の凝固プロセス中にあるシリコン融液は、铸型の内側壁に塗 布された SiN系離型材に接触している。このため、凝固プロセス中にある Si融液には 、実質的に铸型ゃ離型材カも酸素が供給されることはほとんどない。すなわち、 S職 液への酸素の供給がほぼ絶たれる。一方、シリコン融液からは、その表面から SiOガ スが極めて高速に蒸発していく。このため、凝固段階においては、 Si融液の酸素濃 度は、時間とともにほぼ指数関数的に急激に減少していく。例えば、 80kgの Si融液 を 8時間程度で一方向凝固させた場合、出湯直後の初期シリコン融液中に 1E18/C m3[atomS/Cm3]程度の濃度で存在していた酸素は、固化率 20%程度の段階で早くも 2〜4E17/cm3[atoms/cm3]程度にまで濃度低下し、さらに固化率 40%程度では 4〜 8E 16/cm3[atoms/cm3]程度にまで濃度低下する。 [0054] Since the Si melt in the melting process is in contact with a crucible having a quartz force, the oxygen concentration in the melt is about lE18 to 2E18 [atoms / cm 3 ] close to the saturation value. In contrast, the silicon melt that is in the solidification process after being poured into the bowl is applied to the inner wall of the bowl. It is in contact with the clothed SiN release material. For this reason, the Si melt in the solidification process is substantially not supplied with oxygen even by the mold release material. In other words, the supply of oxygen to the S job fluid is almost cut off. On the other hand, SiO gas evaporates from the surface of silicon melt very rapidly. For this reason, in the solidification stage, the oxygen concentration of the Si melt decreases exponentially with time. For example, when is unidirectional solidification the Si melt 80kg in about 8 hours, was present at a concentration of about the initial silicon melt 1E18 / C m 3 [a tom S / C m 3] immediately after tapping The concentration of oxygen decreases as early as 2 to 4E17 / cm 3 [atoms / cm 3 ] at a solidification rate of about 20%, and 4 to 8E 16 / cm 3 [atoms / cm at a solidification rate of about 40%. 3 ] Concentration drops to about
[0055] このように、融液中酸素濃度の低減は、 Si融液表面力もの SiOガスの蒸発に起因し ているため、雰囲気ガス (Arガス)の圧力低減は SiO蒸発を促進し、融液中酸素濃度 を低下させる。これは先にも述べたように結晶の強度(降伏応力)を下げることになる ため、その悪影響を抑制できる対策がとれない限り雰囲気ガス圧の低減は好ま 、こ とではない。 [0055] As described above, since the reduction of the oxygen concentration in the melt is caused by the evaporation of SiO gas with the surface strength of the Si melt, the pressure reduction of the atmospheric gas (Ar gas) promotes the evaporation of SiO and melts the melt. Reduce the oxygen concentration in the liquid. As described above, this lowers the strength (yield stress) of the crystal, so unless the measures to suppress the adverse effects are taken, it is preferable to reduce the atmospheric gas pressure.
[0056] なお、固化率 0〜 10%の領域は酸素析出物の発生量が多ぐまた铸型底部からの 不純物拡散の影響もあって結晶品質は非常に低い。また固化率 85%以上となると、 各種不純物の偏祈の影響が急激に大きくなつてくるためやはり結晶品質は極度に低 下する。また、これら領域の基板を用いた素子の特性も一般に非常に低い。 [0056] In the region where the solidification rate is 0 to 10%, the amount of generated oxygen precipitates is large, and the crystal quality is very low due to the influence of impurity diffusion from the bottom of the bowl. When the solidification rate is 85% or more, the influence of the various prayers of impurities rapidly increases, and the crystal quality is extremely lowered. In addition, the characteristics of elements using substrates in these regions are generally very low.
このため、本発明の効果が及びにくい (他の結晶品質低下要因の影響が大きい)こ れらの領域は、本発明の対象外とするのがよい。具体的には固化率 15〜80%の領 域を本発明の対象とするとよい。 For this reason, the effects of the present invention are difficult to achieve (the influence of other crystal quality lowering factors is great). These areas should be excluded from the scope of the present invention. Specifically, an area having a solidification rate of 15 to 80% may be an object of the present invention.
[0057] 以上のようにして、シリコンを完全に凝固させ、必要な冷却プロセスを経た後に、铸 型を外してインゴットを取り出す。 As described above, silicon is completely solidified, and after a necessary cooling process, the mold is removed and the ingot is taken out.
次に、本発明の多結晶シリコン基板を用いた太陽電池素子を形成する素子化工程 について説明する。 Next, an element forming process for forming a solar cell element using the polycrystalline silicon substrate of the present invention will be described.
まず一導電型の半導体基板として、前記多結晶シリコン铸造プロセスにおいて Bを lE16〜lE17[atoms/cm3]程度ドープした p型多結晶シリコンインゴットをスライスして 多結晶シリコン基板を用意する。ここで、基板厚は 300 /z m以下にし、より好ましくは 2 50 μ m以下、さらに好ましくは 150 μ m以下にする。 First, as a one-conductivity type semiconductor substrate, a polycrystalline silicon substrate is prepared by slicing a p-type polycrystalline silicon ingot doped with B by about lE16 to lE17 [atoms / cm 3 ] in the polycrystalline silicon fabrication process. Here, the substrate thickness should be 300 / zm or less, more preferably 2 50 μm or less, more preferably 150 μm or less.
[0058] その後、基板のスライスにともなう基板表層部の機械的ダメージ層や汚染層を除去 するために、この基板の表面側及び裏面側の表層部を NaOHや KOH、あるいはフ ッ酸と硝酸の混合液などでそれぞれ 10〜20 m程度エッチングし、その後、純水な どで洗浄する。 [0058] Thereafter, in order to remove the mechanical damage layer and the contamination layer on the surface layer portion of the substrate due to the slicing of the substrate, the surface layer portions on the front surface side and the back surface side of this substrate are made of NaOH, KOH, or hydrofluoric acid and nitric acid. Etch about 10-20 m each with a mixed solution, and then clean with pure water.
次に光入射面となる基板表面側に、光反射率低減機能を有する凹凸 (粗面化)構 造を形成する(不図示)。この凹凸構造の形成にあたっては、上述の基板表層部を除 去する際に用いる NaOHなどのアルカリ液による異方性ウエットエッチング法を適用 することができるが、シリコン基板がキャスト法などによる多結晶シリコン基板である場 合は、基板面内での結晶面方位が結晶粒ごとにランダムにばらつくので、基板全域 にわたつて光反射率を効果的に低減せしめる良好な凹凸構造を一様に形成すること は困難である。この場合は、例えば RIE (Reactive Ion Etching)法などによるガスエツ チングを行えば比較的容易に良好な凹凸構造を基板全域にわたって一様に形成す ることがでさる。 Next, an uneven (roughened) structure having a light reflectance reduction function is formed on the surface side of the substrate that becomes the light incident surface (not shown). In forming this concavo-convex structure, an anisotropic wet etching method using an alkaline solution such as NaOH used for removing the substrate surface layer portion described above can be applied. In the case of a substrate, the crystal plane orientation in the substrate plane varies randomly from crystal grain to crystal grain, so that a good concavo-convex structure that effectively reduces the light reflectivity over the entire substrate area must be uniformly formed. It is difficult. In this case, for example, by performing gas etching by the RIE (Reactive Ion Etching) method or the like, it is relatively easy to form a good uneven structure uniformly over the entire substrate.
[0059] なお、上述した基板表層部に低酸素濃度領域を形成する熱処理工程やレーザー 再結晶化工程は、本凹凸構造形成プロセス後に適用しても同様の効果を得ることが できる。 [0059] It should be noted that the same effect can be obtained even when the heat treatment step and the laser recrystallization step for forming the low oxygen concentration region on the substrate surface layer described above are applied after the present concavo-convex structure forming process.
次に n型の逆導電型領域 4を形成する。 n型化ドーピング元素としては P (リン)を用 いることが望ましい。ドーピング濃度は lE18〜5E21[atoms/cm3]程度とし、シート抵 抗が 30〜300ΩΖ口程度の n+型とする。これによつて上述の p型バルタ領域との間 に pn接合部が形成される。ここで、 pn接合部は、 p型バルタ領域側に広がった空乏 領域と逆導電型領域 4側に広がった空乏領域から構成される。 Next, an n-type reverse conductivity type region 4 is formed. It is desirable to use P (phosphorus) as the n-type doping element. The doping concentration is about lE18 to 5E21 [atoms / cm 3 ], and n + type with a sheet resistance of about 30 to 300Ω. As a result, a pn junction is formed between the p-type butter region described above. Here, the pn junction is composed of a depletion region extending toward the p-type butter region and a depletion region extending toward the reverse conductivity region 4.
[0060] 逆導電型領域 4の製法としては、ガス状態にした POC1 (ォキシ塩化リン)を拡散源 [0060] As a method of manufacturing the reverse conductivity type region 4, POC1 (phosphorus oxychloride) in a gas state is used as a diffusion source.
3 Three
とした熱拡散法を用いて、温度 700〜: L000°C程度で p型シリコン基板の表層部にド 一ビング元素(P)を拡散させることによって形成する。このとき拡散層厚は 0. 2〜0. 5 m程度とするが、これは拡散温度と拡散時間を調節することで、所望のドーププ 口ファイルを形成することで実現できる。また、シート抵抗値は、好ましくは 45〜: L00 Ω Ζ口程度とし、より好ましくは 65〜90 Ω Ζ口程度とする。 [0061] なお、上述の通常のガス拡散源を用いた熱拡散法では、目的とする面とは反対側 の面にも拡散領域が形成されるが、その部分は後からエッチングして除去すれば良 い。このとき、この基板の表面側以外の逆導電型領域 4の除去は、シリコン基板の表 面側にレジスト膜を塗布し、フッ酸と硝酸の混合液を用いてエッチング除去した後、レ ジスト膜を除去することにより行う。また、後述するように、裏面の P+型領域 7 (BSF領 域)をアルミニウムペーストによって形成する場合は、 p型ドープ剤であるアルミニウム を充分な濃度で充分な深さまで拡散させることができるので、既に拡散してあった浅 い n型拡散層の影響は無視できるようにすることができ、この裏面側に形成された n型 拡散層を特に除去する必要はない。 Using the thermal diffusion method described above, the doping element (P) is diffused in the surface layer portion of the p-type silicon substrate at a temperature of about 700 to L000 ° C. At this time, the thickness of the diffusion layer is about 0.2 to 0.5 m, and this can be realized by forming a desired doping profile file by adjusting the diffusion temperature and diffusion time. The sheet resistance value is preferably about 45 to about L00 Ω, more preferably about 65 to 90 Ω. [0061] In the above thermal diffusion method using a normal gas diffusion source, a diffusion region is also formed on the surface opposite to the target surface, but this portion is etched away later. I hope. At this time, the reverse conductivity type region 4 other than the surface side of the substrate is removed by applying a resist film on the surface side of the silicon substrate, etching away using a mixed solution of hydrofluoric acid and nitric acid, and then resist film. By removing. As will be described later, when the P + type region 7 (BSF region) on the back surface is formed with aluminum paste, the p-type dopant aluminum can be diffused to a sufficient depth at a sufficient concentration. The influence of the already diffused shallow n-type diffusion layer can be neglected, and it is not necessary to remove the n-type diffusion layer formed on the back side.
[0062] なお、逆導電型領域 4の形成方法は熱拡散法に限定されるものではなぐ例えば 薄膜技術及び条件を用いて、水素化アモルファスシリコン膜や、微結晶シリコン膜を 含む結晶質シリコン膜などを基板温度 400°C程度以下で形成しても良い。 Note that the method of forming the reverse conductivity type region 4 is not limited to the thermal diffusion method. For example, by using a thin film technology and conditions, a crystalline silicon film including a hydrogenated amorphous silicon film or a microcrystalline silicon film is used. Or the like may be formed at a substrate temperature of about 400 ° C. or lower.
このように逆導電型領域 4を熱拡散法に代えて薄膜技術を用いて低温度で形成す る場合は、この工程での酸素の基板側への拡散は無視できるので、基板状態での基 板中酸素濃度は最大 lE18[atomS/Cm3]程度まで許容されるし、また基板中酸素濃 度がこれよりも高い場合に上述した熱処理工程やレーザー再結晶化工程を基板表 層部に適用する場合でも、酸素濃度は pn接合部の空乏領域が形成される範囲内で lE18[atomS/Cm3]以下とできればよぐ pn接合形成前基板状態での酸素濃度要求 値を大幅に緩めることができる。ただし、本発明の多結晶シリコン基板を用いる限り、 ここで述べた酸素濃度上限値は必須ではな!/、。 In this way, when the reverse conductivity type region 4 is formed at a low temperature using thin film technology instead of the thermal diffusion method, the diffusion of oxygen to the substrate side in this process can be ignored. plate oxygen concentration is permitted to the extent the maximum lE18 [a tom S / C m 3], also substrate table layer a heat treatment process or laser re-crystallization process described above when the oxygen concentration in the substrate is higher than this even when applied to parts, the oxygen concentration within the range of the depletion region of the pn junction is formed lE18 [a tom S / C m 3] follows if possible Yogu pn junction formed before oxygen concentration required value of the substrate state Can be greatly relaxed. However, as long as the polycrystalline silicon substrate of the present invention is used, the upper limit value of oxygen concentration described here is not essential! /.
[0063] なお、逆導電型領域 4を、薄膜技術を用いて形成する場合は、以下に述べる各ェ 程の温度を考慮して後段プロセスほど低 、工程温度となるようにその形成順序を決 めることが必要である。 [0063] When the reverse conductivity type region 4 is formed using thin film technology, the formation order is determined so that the process temperature is lower and the process temperature is lower in consideration of the temperature of each process described below. It is necessary to
ここで水素化アモルファスシリコン膜を用いて逆導電型領域 4を形成する場合は、 その厚さは 50nm以下、好ましくは 20nm以下とし、結晶質シリコン膜を用いて形成す る場合はその厚さは 500nm以下、好ましくは 200nm以下とする。なお、逆導電型領 域 4を前記薄膜技術で形成するときは、 p型バルタ領域と逆導電型領域 4との間に i型 シリコン領域 (不図示)を厚さ 20nm以下で形成すると特性向上に有効である。 [0064] 次に反射防止膜 6を形成する。反射防止膜 6の材料としては、 Si N膜、 TiO膜、 S Here, when the reverse conductivity type region 4 is formed using a hydrogenated amorphous silicon film, the thickness is 50 nm or less, preferably 20 nm or less, and when it is formed using a crystalline silicon film, the thickness is 500 nm or less, preferably 200 nm or less. When the reverse conductivity type region 4 is formed by the above thin film technology, if an i type silicon region (not shown) is formed with a thickness of 20 nm or less between the p type butter region and the reverse conductivity type region 4, the characteristics are improved. It is effective for. Next, the antireflection film 6 is formed. Anti-reflective coating 6 materials include Si N film, TiO film, S
3 4 2 iO膜、 MgO膜、 ITO膜、 SnO膜、 ZnO膜などを用いることができる。その厚さは、 3 4 2 An iO film, MgO film, ITO film, SnO film, ZnO film, or the like can be used. Its thickness is
2 2 twenty two
材料によって適宜選択され入射光に対する無反射条件を実現する (材料の屈折率を nとし、無反射にしたいスペクトル領域の波長をえとすれば、( λ Zn) Z4 = dが反射 防止膜 6の最適膜厚となる)。例えば、一般的に用いられる Si N膜 (n=約 2)の場合 Appropriately selected according to the material to realize the non-reflection condition for the incident light (If the refractive index of the material is n and the wavelength of the spectral region to be made non-reflection is selected, (λ Zn) Z4 = d is the optimum anti-reflection film 6 Film thickness). For example, in the case of a commonly used Si N film (n = about 2)
3 4 3 4
は、無反射としたい波長を、太陽光スペクトル特性を考慮して 600nmとするならば、 膜厚を 75nm程度とすれば良 、。 If the wavelength to be made non-reflective is 600nm considering the solar spectrum characteristics, the film thickness should be about 75nm.
[0065] 反射防止膜 6の製法としては、 PECVD法、蒸着法、スパッタ法などを用い、 pn接 合部を熱拡散法で形成した場合は温度 400〜500°C程度で、薄膜技術で形成した 場合は温度 400°C以下で形成する。なお反射防止膜 6は、後述するフアイヤースル 一法で表集電極 1を形成しない場合は、表集電極 1を形成するために所定のパター ンでパター-ングしておく。パター-ング法としてはレジストなどマスクに用いたエッチ ング法 (ウエットあるいはドライ)や、反射防止膜 6形成時にマスクを予め形成しておき 、反射防止膜 6形成後にこれを除去する方法を用いることができる。一方、反射防止 膜 6の上に表集電極 1の電極材料を直接塗布し焼き付けることによって表集電極 1と 逆導電型領域 4を電気的に接触させるいわゆるフアイヤースルー法を用いる場合は 前記パターユングの必要はない。この Si N膜には、形成の際には表面パッシベーシ [0065] The antireflection film 6 is manufactured by PECVD, vapor deposition, sputtering, etc., and when the pn junction is formed by thermal diffusion, the temperature is about 400-500 ° C, and it is formed by thin film technology. In this case, it is formed at a temperature of 400 ° C or less. The antireflection film 6 is patterned with a predetermined pattern in order to form the surface collecting electrode 1 when the surface collecting electrode 1 is not formed by the fire through method described later. As a patterning method, an etching method (wet or dry) used for a mask such as a resist, or a method in which a mask is formed in advance when the antireflection film 6 is formed and then removed after the formation of the antireflection film 6 is used. Can do. On the other hand, when the so-called fire-through method is used in which the electrode material of the collector electrode 1 is directly applied and baked on the antireflection film 6 to electrically contact the collector electrode 1 and the reverse conductivity type region 4 There is no need for Jung. This Si N film is surface passivated during formation.
3 4 3 4
ヨン効果、その後の熱処理の際にはバルタパッシベーシヨン効果があり、反射防止の 機能と併せて、太陽電池素子の電気特性を向上させる効果がある。 The Yon effect and the subsequent heat treatment have a Balta passivation effect and, together with an antireflection function, have the effect of improving the electrical characteristics of the solar cell element.
[0066] 次に、 p+型領域 (BSF領域)を形成する。具体的には、アルミニウム粉末と有機ビヒ クルとガラスフリットをアルミニウム 100重量部に対してそれぞれ 10〜30重量部、 0. 1〜5重量部を添加してペースト状にしたアルミニウムペーストを、例えばスクリーン印 刷法で印刷し、乾燥後に 600〜850°Cで数秒〜数十分程度の範囲で熱処理する。 これによつてアルミニウムがシリコン基板中に拡散して裏面で発生したキャリアが再結 合することを防ぐ P+型領域 7 (BSF領域)が形成される。 p+型領域 7のアルミニウムドー プ濃度は、 lE18〜5E21[at。ms/cm3]程度とする。 Next, a p + type region (BSF region) is formed. Specifically, an aluminum paste in which aluminum powder, organic vehicle, and glass frit are added in a paste form by adding 10 to 30 parts by weight and 0.1 to 5 parts by weight with respect to 100 parts by weight of aluminum, for example, Print by screen printing, and after drying, heat-treat at 600-850 ° C for several seconds to several tens of minutes. This forms a P + type region 7 (BSF region) that prevents aluminum from diffusing into the silicon substrate and recombining the carriers generated on the back surface. The aluminum dopant concentration in p + type region 7 is lE18 ~ 5E21 [at. ms / cm 3 ].
[0067] このとき、このペースト中の金属成分のうち、 p+型領域 7の形成に使われずこの p+型 領域 7の上に残存したものは、そのまま裏面集電極 8の一部として使うこともでき、この 場合は残存成分を塩酸などで特に除去する必要はない。なお、本明細書では、この[0067] At this time, among the metal components in the paste, those not used for forming the p + type region 7 but remaining on the p + type region 7 can be used as a part of the back collector electrode 8 as they are. ,this In this case, it is not necessary to remove the remaining components with hydrochloric acid. In this specification, this
P+型領域 7の上に残存したアルミニウムを主成分とする裏面集電極 8が存在するもの として扱うが、除去した場合は代替電極材料を形成すれば良い。この代替電極材料 としては、後述する裏面集電極 8となる銀ペーストを使うことが、裏面に到達した長波 長光の反射率を高めるために望ましい。なお、 p型化ドーピング元素としては B (ポロ ン)を用いることもできる。 Although it is assumed that the back surface collecting electrode 8 whose main component is aluminum remaining on the P + type region 7 is present, an alternative electrode material may be formed when it is removed. As this alternative electrode material, it is desirable to use a silver paste that will be the back collector 8 described later in order to increase the reflectance of long wavelength light reaching the back. B (polon) can also be used as the p-type doping element.
[0068] また、印刷焼成法を用いてこの p+型領域 7を形成する場合は、既に述べたように、 基板表面側の逆導電型領域 4形成時に同時に基板裏面側にも形成されている n型 の領域を除去する必要もなくすことができる。 [0068] Further, when the p + type region 7 is formed by using the printing and baking method, as already described, n is formed on the back surface side of the substrate simultaneously with the formation of the reverse conductivity type region 4 on the substrate surface side. There is no need to remove the mold area.
さらに、この p+型領域 7 (裏面側)は、印刷焼成法に代えて、ガスを用いた熱拡散法 で形成することも可能である。この場合は、 BBrを拡散源として温度 800〜: L 100°C Further, the p + -type region 7 (back surface side) can be formed by a thermal diffusion method using a gas instead of the printing and baking method. In this case, using BBr as the diffusion source, temperature 800 ~: L 100 ° C
3 Three
程度で形成する。このとき、既に形成してある逆導電型領域 4 (表面側)には酸化膜 などの拡散ノリアをあら力じめ形成しておく。また、この工程によって反射防止膜 6に ダメージが生じる場合は、この工程を反射防止膜 6形成工程の前に行うことができる。 またドーピング元素濃度は、 lE18〜5E21[atoms/cm3]程度とする。これによつて p型 バルタ領域とこの P+型領域との間に Low— High接合を形成することができる。 Form with degree. At this time, diffusion noria such as an oxide film is preliminarily formed in the reverse conductivity type region 4 (surface side) already formed. Further, when the antireflection film 6 is damaged by this step, this step can be performed before the antireflection film 6 formation step. The doping element concentration is about lE18 to 5E21 [atoms / cm 3 ]. As a result, a low-high junction can be formed between the p-type Balta region and the P + type region.
[0069] なお、 p+型領域の形成方法は、印刷焼成法やガスを用いた熱拡散法に限定される ものではなぐ例えば薄膜技術を用いて水素化アモルファスシリコン膜ゃ微結晶シリ コン相を含む結晶質シリコン膜などを基板温度 400°C程度以下で形成しても良い。 特に pn接合部を、薄膜技術を用いて形成した場合は、 P+型領域の形成も薄膜技術 を用いて行う。このとき膜厚は 10〜200nm程度とする。このとき、 p+型領域と p型バル ク領域との間に i型シリコン領域 (不図示)を厚さ 20nm以下で形成すると特性向上に 有効である。ただし薄膜技術を用いて形成する場合は、以下に述べる各プロセスの 温度を考慮して後段プロセスほど低 、プロセス温度となるようにその形成順序を決め ることが望ましい。 [0069] Note that the method for forming the p + -type region is not limited to the printing and baking method or the thermal diffusion method using a gas. For example, a hydrogenated amorphous silicon film using a thin film technique includes a microcrystalline silicon phase. A crystalline silicon film or the like may be formed at a substrate temperature of about 400 ° C. or lower. In particular, if the pn junction is formed using thin film technology, the P + region is also formed using thin film technology. At this time, the film thickness is about 10 to 200 nm. At this time, if an i-type silicon region (not shown) having a thickness of 20 nm or less is formed between the p + type region and the p-type bulk region, it is effective for improving the characteristics. However, when forming using thin film technology, it is desirable to determine the order of formation so that the temperature of each subsequent process is lower and the process temperature is lower in consideration of the temperature of each process described below.
[0070] 次に、基板の表面及び裏面に銀ペーストを塗布 '焼成することにより、表集電極 1及 び裏面出力電極 9を形成する。これらは、銀粉末と有機ビヒクルとガラスフリットを銀 1 00重量部に対してそれぞれ 10〜30重量部、 0. 1〜5重量部を添加してペースト状 にした銀ペーストを、例えばスクリーン印刷法で印刷、乾燥後に同時に 600〜800°C で数秒〜数分程度焼成することにより印刷面に焼き付けられる。 Next, a surface paste electrode 1 and a back surface output electrode 9 are formed by applying and baking a silver paste on the front surface and the back surface of the substrate. These are pastes of silver powder, organic vehicle and glass frit added to 10 to 30 parts by weight and 0.1 to 5 parts by weight, respectively, with respect to 100 parts by weight of silver. The silver paste thus formed is printed on the printed surface by, for example, printing by screen printing and drying, followed by baking at 600 to 800 ° C. for several seconds to several minutes.
[0071] なお、表集電極 1と裏面出力電極 9とは同時に(1回で)焼成することがコスト的には 望ましいが、特に裏面電極の電極強度特性の関係上、 2回に分けて焼成した方が良 い場合もある(例えば、先に表集電極 1を印刷焼成し、次いで裏面出力電極 9を印刷 焼成する、など)。 [0071] Although it is desirable in terms of cost to fire the collector electrode 1 and the back surface output electrode 9 simultaneously (in one time), it is fired in two times, particularly because of the electrode strength characteristics of the back surface electrode. In some cases, it may be better (for example, the surface electrode 1 is first printed and fired, and then the back surface output electrode 9 is printed and fired).
なお、製法としては印刷焼成法以外にも、スパッタ法、蒸着法などの真空製膜法を 用いることができる力 特にペーストを用いた印刷焼成法では、いわゆるフアイヤース ルー法によって、反射防止膜 6をパターユングすることなしに、表集電極 1となる金属 含ペーストを反射防止膜 6上に直接印刷し焼成処理をすることによって表集電極 1と 逆導電型領域 4との間に電気的コンタクトをとることができ、製造コスト低減に非常に 有効である。なお、表集電極 1の形成は、裏面側の P+型領域 7の形成に先立って行 われても良い。 In addition to the printing and baking method, the manufacturing method can use vacuum film forming methods such as sputtering and vapor deposition. Particularly in the printing and baking method using paste, the antireflection film 6 is formed by the so-called fire through method. Without patterning, the metal-containing paste that will become the collector electrode 1 is printed directly on the antireflection film 6 and fired to make electrical contact between the collector electrode 1 and the reverse conductivity type region 4. It is very effective in reducing manufacturing costs. The surface collection electrode 1 may be formed prior to the formation of the P + type region 7 on the back surface side.
[0072] さらに電極と半導体領域との接着強度を特に高めるため、ペーストを用いた印刷焼 成法では TiOなどの酸ィ匕物成分をペースト中にわずかに含ませ、また、真空製膜法 [0072] Further, in order to particularly increase the bonding strength between the electrode and the semiconductor region, the paste printing method includes a slight amount of oxidic acid components such as TiO in the paste, and a vacuum film forming method.
2 2
では電極と半導体領域との界面に Tiを主成分とした金属層を挿入すると良 ヽ。なお 、裏側電極の場合は、 Ti主成分金属層の厚さは 5nm以下として金属層が挿入される ことによる反射率低減を抑制することが望ましい。裏面集電極 8は基板裏面全面に形 成することが裏面に到達した長波長光の反射率を高めるために望ましい。 Then, it is good to insert a metal layer mainly composed of Ti at the interface between the electrode and the semiconductor region. In the case of the back side electrode, it is desirable to suppress the reduction in reflectivity due to the insertion of the metal layer with the thickness of the Ti main component metal layer being 5 nm or less. It is desirable that the back collector 8 be formed on the entire back surface of the substrate in order to increase the reflectance of long-wavelength light reaching the back surface.
[0073] なお、裏面集電極 8と裏面出力電極 9とは重なり合って厚くなると割れやピールが生 じゃすいので、出力取出用の裏面出力電極 9を形成した後、裏面集電極 8は、裏面 出力電極 9をできるだけ覆わないように導通が取れる程度の状態で形成するのが望 ましい。また、この裏面出力電極 9と裏面集電極 8を形成する順番はこの逆でも良い。 また、裏側電極においては前記構造をとらず、表集電極 1と同様の銀を主成分とする バスバー部とフィンガー部で構成された構造としても良い。 [0073] Since the back collector electrode 8 and the back output electrode 9 overlap with each other and become thick, cracks and peels are not easily generated. Therefore, after forming the back output electrode 9 for output extraction, the back collector electrode 8 It is desirable to form the electrode 9 in such a state that it can conduct electricity so as not to cover as much as possible. Further, the order of forming the back surface output electrode 9 and the back surface collecting electrode 8 may be reversed. Further, the back side electrode may not have the above-described structure, and may have a structure composed of a bus bar portion and a finger portion having silver as a main component, similar to the surface collection electrode 1.
[0074] なお、逆導電型領域 4や p+型領域 7を、薄膜技術を用いて形成した場合も、表集電 極 1、裏面集電極 8及び裏面出力電極 9は、印刷法、スパッタ法、蒸着法、などを用 いて形成することができる力 工程温度は薄膜層のダメージを考慮して 400°C以下に する。 [0074] Even when the reverse conductivity type region 4 and the p + type region 7 are formed by using thin film technology, the front collector electrode 1, the back collector electrode 8, and the back output electrode 9 are formed by a printing method, a sputtering method, Force that can be formed using vapor deposition, etc.Process temperature should be 400 ° C or less in consideration of damage to the thin film layer. To do.
最後に、必要に応じて半田ディップ処理によって表集電極 1及び裏側電極上に半 田領域を形成する(不図示)。なお、半田材料を用いない半田レス電極とする場合は 半田ディップ処理を省略する。 Finally, a solder region is formed on the front electrode 1 and the back electrode by solder dipping as necessary (not shown). Note that the solder dipping process is omitted when using a solderless electrode that does not use solder material.
[0075] 以上によって、本発明の高品質な多結晶シリコン基板を実現でき、さらにこれを用 いた高特性な太陽電池素子及び太陽電池モジュールを実現することができる。 このようにして形成された光電変換素子である太陽電池素子は、通常、太陽電池素 子一枚では発生する電気出力が小さいため、一般的に複数の太陽電池素子を直並 列に接続した太陽電池モジュールとして用いられる。そして、さらにこの太陽電池モ ジュールを複数枚組み合わせることによって、実用的な電気出力が取り出せるように 構成される。 As described above, the high-quality polycrystalline silicon substrate of the present invention can be realized, and further, a high-performance solar cell element and solar cell module using the same can be realized. A solar cell element, which is a photoelectric conversion element formed in this way, generally has a small electrical output generated by one solar cell element. Therefore, a solar cell in which a plurality of solar cell elements are generally connected in series. Used as a battery module. Further, by combining a plurality of solar cell modules, a practical electric output can be obtained.
[0076] 太陽電池モジュールの代表的構造図を図 5、図 6に示す。 [0076] Representative structural diagrams of the solar cell module are shown in Figs.
図 5は一般的な太陽電池モジュールの構造を示す断面図であり、図 6は受光面側 力もこの太陽電池モジュールを見た上視図である。 FIG. 5 is a cross-sectional view showing the structure of a general solar cell module, and FIG. 6 is a top view of the light receiving surface side of the solar cell module.
11は太陽電池素子、 41は太陽電池素子同士を電気的に接続する配線部材、 42 はガラスなど力もなる透明部材、 43はポリエチレンテレフタレート(PET)や金属箔を ポリフッ化ビュル榭脂 (PVF)で挟みこんだ裏面保護材、 44は透明のエチレンビュル アセテート共重合体 (EVA)など力 なる表面側充填材、 45は EVAなど力 なる裏 側充填材、 46は出力取出配線、 47は端子ボックス、 48は太陽電池モジュールの枠 を示す。 11 is a solar cell element, 41 is a wiring member that electrically connects the solar cell elements, 42 is a transparent member such as glass, and 43 is polyethylene terephthalate (PET) or metal foil made of poly (fluorinated fluorinated resin) (PVF). Sandwiched back surface protective material, 44 is a powerful front side filler such as transparent ethylene butyl acetate copolymer (EVA), 45 is a powerful back side filler such as EVA, 46 is output lead wiring, 47 is a terminal box, Reference numeral 48 denotes a frame of the solar cell module.
[0077] 図 5に示すように、透明部材 42の上に、透明のエチレンビュルアセテート共重合体 [0077] As shown in FIG. 5, a transparent ethylene butylacetate copolymer is formed on the transparent member 42.
(EVA)など力もなる表側充填材 44と、配線部材 41によって隣接太陽電池素子の表 面電極と裏面電極とを交互に接続された複数の太陽電池素子 11と、 EVAなどから なる裏側充填材 45と、例えばポリエチレンテレフタレート (PET)や金属箔をポリフッ 化ビニル榭脂 (PVF)で挟みこんだ裏面保護材 43とを順次積層して、ラミネータの中 で脱気、加熱して押圧することによって一体化させ太陽電池モジュールを完成するこ とがでさる。 (EVA) and other front-side fillers 44, a plurality of solar cell elements 11 in which the front and back electrodes of adjacent solar cell elements are alternately connected by wiring members 41, and back-side fillers made of EVA, etc. 45 And, for example, polyethylene terephthalate (PET) or back surface protective material 43 in which a metal foil is sandwiched between polyvinyl fluoride (PVF), are laminated one after another, deaerated in a laminator, heated and pressed together To complete the solar cell module.
[0078] その後必要に応じてアルミニウムなどの枠 48を周囲にはめ込む。さらに直列接続さ れた複数の素子の最初の素子と最後の素子の電極の一端は、出力取出部である端 子ボックス 47に、出力取出配線 46によって接続される。 [0078] Then, if necessary, a frame 48 of aluminum or the like is fitted around the periphery. Further connected in series One end of the electrodes of the first element and the last element of the plurality of elements is connected to an terminal box 47 which is an output extraction portion by an output extraction wiring 46.
これらの太陽電池素子同士を接続する配線部材 41としては、通常、厚さ 0. 1〜0. 2mm程度、幅 2mm程度の銅箔の全面を半田材料によって被覆したものを、所定の 長さに切断し、太陽電池素子の電極上に半田付けして用いる。 As the wiring member 41 for connecting these solar cell elements, a copper foil having a thickness of about 0.1 to 0.2 mm and a width of about 2 mm is generally coated with a solder material to a predetermined length. Cut and solder on the electrode of the solar cell element.
[0079] 以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定 されるものではない。 Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above embodiments.
例えば、上述の説明では、シリコンインゴットの铸造にキャスト法を用いた場合につ いて説明したが、これに限る必要はない。すなわち、铸型内で原料を溶解しそのまま 凝固させる铸型内溶解凝固法、溶融シリコンを例えばグラフアイト材上にシート状に 導いて凝固固化させるシートシリコン形成法、あるいは溶融シリコン力 シリコンをシ ート状に引き出しつつ凝固固化させるリボン法、などにおいても本発明を適用するこ とは可能である。 For example, in the above description, the case where the casting method is used for the fabrication of the silicon ingot has been described, but the present invention is not limited to this. That is, in-mold melting and solidification method in which the raw material is melted and solidified as it is in the vertical mold, molten silicon is introduced into a sheet shape on, for example, a graphite material, solidified and solidified, or molten silicon force silicon is sheared. The present invention can also be applied to a ribbon method that solidifies and solidifies while being drawn out.
[0080] また、上述の説明では、 p型シリコン基板を用いた太陽電池について説明したが、 n 型シリコン基板を用いた場合にも、説明中の極性を逆にすれば同様の工程によって 本発明を適用することができる。 [0080] In the above description, a solar cell using a p-type silicon substrate has been described. However, even when an n-type silicon substrate is used, the present invention can be performed by the same process if the polarity in the description is reversed. Can be applied.
また、上述の説明では、シングル接合の場合について説明したが、半導体多層膜 カゝらなる薄膜接合層をバルタ基板使用接合素子に積層して形成した多接合型であつ ても、本発明を適用することができる。 In the above description, the case of single junction has been described. However, the present invention can be applied to a multi-junction type in which a thin film junction layer such as a semiconductor multilayer film is laminated on a junction element using a Balta substrate. can do.
[0081] また、上述の説明では、バルタ型シリコン太陽電池を例にとったが、本発明はこれら に限定されるものではなぐ発明の原理'目的を逸脱しない限り任意の形態とすること ができる。すなわち、光入射面を有する結晶シリコンを構成要素にもつ pn接合部を 備えた光電変換素子であって、前記光入射面への光照射によって前記半導体領域 で生じた光生成キャリアを電流として集める太陽電池以外の光センサなどの光電変 換素子一般に適用できる。 Further, in the above description, the Balta type silicon solar cell is taken as an example, but the present invention is not limited thereto, and can be in any form as long as it does not deviate from the principle of the invention. . That is, a photoelectric conversion element including a pn junction having a crystalline silicon having a light incident surface as a constituent element, and a solar cell that collects photogenerated carriers generated in the semiconductor region by light irradiation on the light incident surface as a current Applicable to general photoelectric conversion elements such as photosensors other than batteries.
実施例 Example
[0082] 以下、上述の実施形態に沿って作製した多結晶シリコン基板を用いたバルタ型多 結晶シリコン太陽電池について、基板状態(素子化前)の基板のへき開面に現れるダ ングリングボンドに基づく ESRスピン密度、軽元素濃度、及び素子特性の関係を調 ベた実験結果にっ 、て説明する。 [0082] Hereinafter, with respect to a Balta type polycrystalline silicon solar cell using a polycrystalline silicon substrate manufactured according to the above-described embodiment, a substrate appearing on the cleavage surface of the substrate in a substrate state (before elementization). This will be explained using experimental results that examine the relationship between the ESR spin density, light element concentration, and device characteristics based on ring rings.
铸造実験は、上述の実施形態のところで述べた炭素汚染低減のための総合的な 対策を施した後、 Arガス排気速度の大小によって、インゴット中の炭素濃度が変化 することを予め確認して力も行った。 In the forging experiment, after comprehensive measures for reducing carbon contamination described in the above embodiment were taken, it was confirmed in advance that the carbon concentration in the ingot would change depending on the Ar gas pumping speed. went.
[0083] シリコン原料は 80kg、 Bドーピング量は基板のバルタの比抵抗 p b = 2 Q 'cmを実 現するのに適した量とし、炉内 Arガス圧は lOkPaに調節した。 [0083] The silicon raw material was 80 kg, the B doping amount was an amount suitable for realizing the specific resistance p b = 2 Q'cm of the substrate butter, and the Ar gas pressure in the furnace was adjusted to lOkPa.
融解及び凝固プロセスでの Arガス流量と、凝固初期における铸型側部力 の抜熱 性 (铸型内壁側面部の強制凝固の有無)をパラメータにして铸造を行った。ここで、 A rガス流量については、 Arガス圧を固定しているので、 Ar流量の増大は、ガス排気量 の増大を意味している。 Forging was carried out using the Ar gas flow rate during the melting and solidification process and the heat removal performance of the vertical side force at the initial stage of solidification (whether or not the side wall of the vertical inner wall was forcedly solidified) as parameters. Here, since the Ar gas pressure is fixed with respect to the Ar gas flow rate, an increase in the Ar flow rate means an increase in the gas displacement.
[0084] 铸造されたインゴットは、次の通りである。 [0084] The forged ingot is as follows.
インゴット No.1: Arガス流量 40L/min,凝固初期における铸型側部抜熱促進(強制 凝固)なし Ingot No.1: Ar gas flow rate of 40L / min, no vertical side heat removal acceleration (forced solidification) in the initial stage of solidification
インゴット No.2: Arガス流量 80L/min,凝固初期における铸型側部抜熱促進(強制 凝固)なし Ingot No.2: Ar gas flow rate 80L / min, no vertical side heat removal acceleration (forced solidification) at the initial stage of solidification
インゴット No.3: Arガス流量 80L/min,凝固初期における铸型側部抜熱促進(強制 凝固)あり Ingot No.3: Ar gas flow rate 80L / min, vertical side heat removal promotion (forced solidification) in the initial stage of solidification
インゴット No.1は従来の方法で製造したもの、インゴット No.2は Arガス流量を従来 よりも増大させたもの、インゴット No.3は、 Arガス流量を増大させるとともに、凝固初期 における铸型側部铸型側部抜熱促進あり(強制凝固)としたものである。 Ingot No. 1 was manufactured by a conventional method, Ingot No. 2 was obtained by increasing the Ar gas flow rate compared to the conventional method, and Ingot No. 3 increased the Ar gas flow rate and the vertical side in the initial stage of solidification. A part-shaped side part with enhanced heat removal (forced coagulation).
[0085] ここで、铸型側部からの抜熱性を促進するには、例えばサイドヒーター HIの出力を 低下させるとよい。従来のサイドヒーターの出力は、上部ヒーター出力を 100 (相対値 )としたときに、 10〜20程度である力 抜熱性を高めて铸型壁面に接する部分の Si 融液を強制凝固させるには、このサイドヒーター HIの出力を、 0〜10程度に低下さ せればよい。あるいはカーボン系材料を特に側部铸型材として用いることでも、強制 凝固が実現できる。 [0085] Here, in order to promote heat removal from the vertical side, for example, the output of the side heater HI may be reduced. The output of the conventional side heater is about 10 to 20 when the upper heater output is 100 (relative value). To improve the heat release performance and forcibly solidify the Si melt at the part in contact with the vertical wall The output of this side heater HI should be reduced to about 0-10. Alternatively, forced solidification can also be realized by using a carbon-based material as the side saddle material.
[0086] 铸造されたインゴットは、切断'スライス工程によってカ卩ェし、厚さ約 250 μ m、サイ Xl 50mm X 155mm,の平板状の多結晶シリコン基板を得た。 [0086] The fabricated ingot was cured by a cutting and slicing process, and was about 250 μm thick. A flat polycrystalline silicon substrate of Xl 50 mm X 155 mm, was obtained.
なお、素子化及び分析に用いる基板は、前記インゴットにおける固化率 15%、 20 %、 40%、 60%、 80%の領域からそれぞれ複数枚採取した。ここで、固化率 x%の 領域とは、インゴットにおける固化の方向に沿って規定した領域をいい、最も固化の 早いインゴット底部を x=0%、最も固化の遅いインゴット上部を x= 100%とする。 In addition, a plurality of substrates used for elementization and analysis were collected from regions with a solidification rate of 15%, 20%, 40%, 60%, and 80% in the ingot. Here, the region of solidification rate x% is a region defined along the direction of solidification in the ingot, where the bottom of the ingot with the fastest solidification is x = 0% and the top of the ingot with the slowest solidification is x = 100%. To do.
[0087] 基板の酸素、炭素、窒素の不純物濃度分析は FTIR (フーリエ変換赤外分光光度 十; Fourier Transform Infra Red spectrometer)で行つ 7こ (7こ 7こし窒素については Si MSで代用しても構わない)。このとき分析位置は、基板端部 lcm幅を除いた基板内 にほぼ均等に配置した 4点とし、それら 4点における不純物濃度の平均値をその基板 の不純物濃度とした。ただし、基板端部 lcm幅を除いた基板面内での不純物濃度の 分布幅が ± 10%程度に収まることが、過去の経験力も既に充分明らかになつていて 、問題とするインゴットにおいても特段にこれを疑う理由がない場合は、基板端部 lc m幅を除 、た基板内の 1点の測定値ある 、は、複数点(2点または 3点)の測定値の 平均値で代表させることもできる。 [0087] Impurity concentration analysis of oxygen, carbon, and nitrogen on the substrate is performed using FTIR (Fourier Transform Infrared Spectrometer tens; Fourier Transform Infra Red spectrometer). It does not matter.) At this time, the analysis positions were four points arranged almost evenly in the substrate excluding the substrate edge lcm width, and the average impurity concentration at these four points was taken as the impurity concentration of the substrate. However, the distribution width of the impurity concentration within the substrate surface excluding the lcm width at the edge of the substrate is about ± 10%, and the past experience has already become sufficiently clear, especially in the ingots in question. If there is no reason to suspect this, the measured value at one point in the board, excluding the width at the edge of the board, should be represented by the average value of the measured values at multiple points (2 or 3 points). You can also.
[0088] 基板のへき開面における欠陥準位 (スピン密度)は ESR法を用いて調べた。測定サ ンプルたる基板は、インゴットから切り出した際のスライスダメージ層を前述した方法、 すなわち NaOHや KOH、あるいはフッ酸と硝酸の混合液などで 10〜20 m程度ェ ツチングする方法で除去した後、基板厚が約 200 m程度となるように混酸でミラーェ ツチング処理し、続いて、へき開処理 (結晶固有の構造による特定結晶面での割れ 易さを利用した分離分割処理)によって 3mm X 10mmサイズの小片に分割したものを 8枚用意し、これを測定サンプルとした。 [0088] The defect level (spin density) at the cleavage plane of the substrate was examined using the ESR method. After removing the slice damage layer from the ingot from the ingot by the method described above, that is, by etching with NaOH, KOH, or a mixed solution of hydrofluoric acid and nitric acid for about 10 to 20 m. Mirror etching treatment with mixed acid so that the substrate thickness is about 200 m, followed by cleavage treatment (separation and division treatment using the ease of cracking on specific crystal planes due to the unique structure of the crystal). Eight pieces divided into small pieces were prepared and used as measurement samples.
[0089] へき開処理は、基板端部にダイヤモンドカッターなどで少し傷をつけて、そこを基点 にして割ることで容易に行うことができる。その結果、へき開面が得られる。 The cleavage treatment can be easily performed by slightly scratching the end portion of the substrate with a diamond cutter or the like and dividing it with the base point. As a result, a cleavage plane is obtained.
なお、本発明はへき開面に現れるダングリングボンドと太陽電池特性および不純物 濃度との間に相関関係があることを知見したことに基づくものであるので、本発明に 関する ESR測定を行う場合は、へき開処理をした後は酸処理などを行わない(へき 開面をエッチング処理などしな 、)ことが重要である。 Since the present invention is based on the knowledge that there is a correlation between the dangling bond appearing on the cleavage plane and the solar cell characteristics and impurity concentration, when performing ESR measurement related to the present invention, It is important not to perform acid treatment after cleaving (do not etch the cleaved surface).
[0090] このとき測定温度は約 10Kの極低温とし、 g = 2. 005〜2. 006に対応した Siのへ き開面に存在するダングリングボンドに基づくと考えられるスピン密度を測定した。 この ESR分析についても、先に述べた不純物分析の場合と同様に、基板端部 lcm 幅を除 、た基板面内でほぼ均等に配置した 4点にっ 、て行うことが望ま 、が、前記 同様の理由によって 1点の測定値又は複数点(2点または 3点)の測定値の平均値で 代表させることちでさる。 [0090] At this time, the measurement temperature is about 10K, and Si corresponding to g = 2.005 to 2.006. The spin density considered to be based on dangling bonds existing on the cleavage plane was measured. As in the case of the impurity analysis described above, this ESR analysis is preferably performed by four points arranged almost evenly on the substrate surface except for the lcm width of the substrate edge. For the same reason, it can be represented by the average of the measured values of one point or the measured values of multiple points (2 or 3 points).
[0091] 次に、主な素子作製条件は、以下の通りである。逆導電型領域 4は、そのシート抵 抗が 65 ΩΖ口となることを狙って、 POC1 [0091] Next, main element fabrication conditions are as follows. The reverse conductivity type region 4 has a POC1 of POC1 with the aim of having a sheet resistance of 65 Ω.
3を拡散源とした熱拡散法で形成した。また 表集電極 1は銀を主成分とした Agペーストを用いて印刷焼成法で形成した。また、 表集電極 1は、長さが 155mmの基板端辺に平行に 2mm幅のバスバー電極 laを 2 本、長さが 150mmの基板端辺に平行に 100 μ m幅のフィンガー電極 lbを 63本配 置したパターンとした。素子作製枚数は、一実験条件につき、前記固化率位置から 1 0枚ずつ採取し、その平均特性をその固化率位置での素子特性とした。 It was formed by the thermal diffusion method using 3 as the diffusion source. The surface electrode 1 was formed by printing and baking using an Ag paste mainly composed of silver. The front electrode 1 has two 2 mm wide bus bar electrodes la parallel to the edge of the 155 mm substrate and 63 μm wide finger electrodes lb parallel to the edge of the 150 mm substrate. This pattern was used. The number of fabricated elements was 10 samples from the solidification rate position for each experimental condition, and the average characteristic was defined as the element characteristic at the solidification ratio position.
[0092] なお、以下に、前記した分析手法についての簡単な説明と、今回の測定条件につ いて記しておく。 [0092] In the following, a brief description of the analysis method described above and the current measurement conditions will be described.
ESR (Electron Spin Resonance :電子スピン共鳴)法は、適当な磁場を与えて電子 のスピン状態の縮退 (degeneracy)を解き (エネルギー準位差を生じさせ)、磁場強度に 対応したマイクロ波の吸収特性を調べることで電子スピンの密度を測定する測定方 法である。ここで g値とは、 g=h v / j8 H (h vはマイクロ波のエネルギー、 βはボー ァ定数、 Ηは磁場強度)で定義される欠陥種類に固有の値であり、例えば Siのダング リングボンドに対応する g値は約 2. 005-2. 006程度である。 The ESR (Electron Spin Resonance) method solves the degeneracy of the spin state of an electron by applying an appropriate magnetic field (causing an energy level difference), and absorbs microwaves according to the magnetic field strength. This is a measurement method that measures the density of electron spins by examining. Here, the g value is a value specific to the defect type defined by g = hv / j8 H (hv is the microwave energy, β is the Bohr constant, and Η is the magnetic field strength), for example, Si dangling The g value corresponding to the bond is about 2.005-2.006.
[0093] この ESR法では、スピン量子数 S = 1Z2の状態にある電子のみが検知される。す なわち S = 0の状態ではマイクロ波を吸収するべき電子が存在しな 、ためにマイクロ 波吸収は起こらず、一方 S = 1の状態では縮退が解けた 2つの状態のそれぞれに電 子が存在して!/、るために(席を埋めて 、るために)やはりマイクロ波吸収は起こらな ヽ 。一方、キャリアの再結合を生ぜしめる欠陥準位の観点力 見ると、 S = 1Z2以外の 準位も一般に再結合準位として機能しうる。このため、 ESR法は、再結合準位密度に 対応したライフタイムを測定する μ PCD法や拡散長を測定する SPV法とは異なる情 報を与えるものと理解される。 [0094] なお、室温ではノイズが大きく測定が困難である場合は、前述した約 10Kの極低温 条件で行えば測定可能となる場合がある。現在の高効率多結晶シリコン太陽電池用 に使用されている多結晶シリコン基板については、通常極低温で測定を行う必要が ある。 [0093] In the ESR method, only electrons in the state of the spin quantum number S = 1Z2 are detected. In other words, in S = 0 state, there is no electron to absorb the microwave, so microwave absorption does not occur, while in S = 1, the electron is present in each of the two states where degeneracy is solved. In order to exist! /, Microwave absorption does not occur (for filling up seats). On the other hand, from the viewpoint of defect levels that cause carrier recombination, levels other than S = 1Z2 can generally function as recombination levels. Therefore, it is understood that the ESR method gives different information from the μPCD method that measures the lifetime corresponding to the recombination level density and the SPV method that measures the diffusion length. [0094] When measurement is difficult due to large noise at room temperature, measurement may be possible if the measurement is performed under the above-mentioned cryogenic conditions of about 10K. The polycrystalline silicon substrate currently used for high-efficiency polycrystalline silicon solar cells usually needs to be measured at very low temperatures.
今回の測定条件は次の通りである。 The measurement conditions this time are as follows.
使用装置: Bruker社製 ESP350E Equipment used: Bruker ESP350E
測定温度: 10K Measurement temperature: 10K
中心磁場: 3368G付近 Central magnetic field: around 3368G
磁場掃引範囲: 100G Magnetic field sweep range: 100G
変調: 100kHz、 2G Modulation: 100kHz, 2G
マイクロ波: 9. 46GHz, 0. 04mW Microwave: 9. 46GHz, 0.04mW
掃引時間: 83. 886sec X 8times Sweep time: 83. 886sec X 8times
時定数: 327. 68msec Time constant: 327. 68msec
なお、測定温度 10Kは、 Heガスを用いて達成された温度である。この ESR測定で は測定温度を 10Kとしている力 必ずしも厳密に 10Kに設定する必要はない。通常 、約 10K〜約 20Kの範囲で測定を行えば、 10Kで測定したのとほぼ同様の測定結 果 (違 、があってもそれは誤差の範囲に入る)が得られると考えられる。 The measurement temperature of 10K is a temperature achieved using He gas. In this ESR measurement, the force at which the measurement temperature is 10K does not necessarily have to be set strictly at 10K. Usually, if measurement is performed in the range of about 10K to about 20K, it is considered that a measurement result almost the same as that measured at 10K (even if there is a difference, it falls within the error range) can be obtained.
[0095] 一方、 FTIRは、光源部、干渉計、試料部、検出部、データ処理部から構成される。 On the other hand, the FTIR includes a light source unit, an interferometer, a sample unit, a detection unit, and a data processing unit.
光源部より出た光は、干渉計に入り、干渉波となって試料を通過する。その際、試料 を構成する分子中の原子または原子団の振動エネルギーに対応した固有の振動数 の光が吸収される。検出器で得られた信号はフーリエ変換され、元素固有の赤外ス ベクトルを得ることができる。シリコンの格子間位置における酸素は 1106cm 置換 格子位置の炭素は 607cm 1にピークが現れる。このピークを標準サンプルと比較す ることによって絶対濃度を測定する。 The light emitted from the light source unit enters the interferometer and passes through the sample as an interference wave. At that time, light having a specific frequency corresponding to the vibration energy of atoms or atomic groups in the molecules constituting the sample is absorbed. The signal obtained by the detector is Fourier transformed to obtain an infrared vector specific to the element. Oxygen in interstitial silicon carbon of 1106cm substitution lattice positions peak appears at 607cm 1. The absolute concentration is measured by comparing this peak with a standard sample.
[0096] 今回測定条件は次のとおりである。 [0096] The measurement conditions this time are as follows.
使用装置: Bruker製 IFS— 66vZS Equipment used: Bruker IFS—66vZS
光源: SiC Light source: SiC
検出器: DTGS ビームスプリツター: Ge/KBr Detector: DTGS Beam Splitter: Ge / KBr
分解能: 8cm 1 Resolution: 8cm 1
積算回数: 1024 Integration count: 1024
測定モード:透過 Measurement mode: Transmission
測定エリア: 5mm φ Measurement area: 5mm φ
SIMS (二次イオン質量分析法; Secondary Ion Mass Spectrometry)は、加速して細 く絞った一次イオンビーム(酸素、セシウムなど)を真空中で試料に照射し、スパッタリ ングにより試料表面力 飛び出す粒子のうち、二次イオンを電場で引き出して質量分 析を行う方法である。標準サンプルと比較することによって絶対濃度を換算する。今 回の測定条件は次のとおりである。 SIMS (Secondary Ion Mass Spectrometry) is a method of irradiating a sample with a primary ion beam (oxygen, cesium, etc.) that has been accelerated and finely focused in a vacuum, and the surface force of the sample popping out by sputtering. Among these methods, secondary ions are extracted with an electric field and mass analysis is performed. The absolute concentration is converted by comparison with a standard sample. The measurement conditions this time are as follows.
使用装置: Cameca社 IMS— 4f Equipment used: Cameca IMS—4f
一次イオン種: Cs+ Primary ion species: Cs +
一次イオン加速電圧: 14. 5kV Primary ion acceleration voltage: 14.5 kV
一次イオン電流: 120nA Primary ion current: 120nA
ラスター領域: 125 m Raster area: 125 m
分析領域: 30 /ζ πι φ Analysis area: 30 / ζ πι φ
測定真空度: IE— 7 Measuring vacuum: IE-7
表 1に、実験結果を示す。表 1の数値は、基板端部 lcm幅を除いた基板面内でほ ぼ均等に配置した 4点につ 、て行った各測定値の平均値を掲げて 、る。 Table 1 shows the experimental results. The numerical values in Table 1 are the average values of the measured values for the four points that are arranged almost evenly in the board surface excluding the lcm width at the edge of the board.
[表 1] [table 1]
実験 錶造条件 固化率 固化率 固化率 固化率 固化率 Experiment Forging conditions Solidification rate Solidification rate Solidification rate Solidification rate Solidification rate
No 1 5% 20% 40% 60% 80% No 1 5% 20% 40% 60% 80%
1 従来 [Οί] 4.2E17 2.4E17 6.7E16 2.2E16 0.7E16 1 Conventional [Οί] 4.2E17 2.4E17 6.7E16 2.2E16 0.7E16
(Ar流量 = [Csl 1.8E17 2.3E1フ 3.9EI 7 4.2E17 3.8E17 (Ar flow rate = (Csl 1.8E17 2.3E1 3.9EI 7 4.2E17 3.8E17
40し/ min) [oil- 4.4E86 6.7E86 15.5E86 6.8E86 1.5E86 40 / min) (oil- 4.4E86 6.7E86 15.5E86 6.8E86 1.5E86
[Cs]^4 <2E15 2.3E15 5.2E15 4.9E15 5.5E15 [Cs] ^ 4 <2E15 2.3E15 5.2E15 4.9E15 5.5E15
[N] 3.5E14 5.1 E14 6.2E14 4.4E14 3.8E14 [N] 3.5E14 5.1 E14 6.2E14 4.4E14 3.8E14
Nspin 35.36 35.27 34.83 35.35 35.41 Nspin 35.36 35.27 34.83 35.35 35.41
Jsc 0.613 0.612 0.609 0.61 1 0.612 Jsc 0.613 0.612 0.609 0.61 1 0.612
Voc 0.755 0.756 0.756 0.756 0.755 Voc 0.755 0.756 0.756 0.756 0.755
FF 16.37 16.32 16.04 16.33 16.36 効率 FF 16.37 16.32 16.04 16.33 16.36 Efficiency
2 Ar流量増大 [Oi] 3.8E17 2.3E17 6.9E16 2.3E16 0.7E16 2 Ar flow increase [Oi] 3.8E17 2.3E17 6.9E16 2.3E16 0.7E16
(80l_/min) [Cs] 0.6E17 0.7E17 2.1E17 3.2E17 4.1E17 (80l_ / min) [Cs] 0.6E17 0.7E17 2.1E17 3.2E17 4.1E17
[Oi]- 4.9E84 5.5E84 1.3E86 2.4E86 2.0E86 [Oi]-4.9E84 5.5E84 1.3E86 2.4E86 2.0E86
[Cs]"4 <2E15 2.4E15 4.9E15 5.1E15 4.9E15 [Cs] "4 <2E15 2.4E15 4.9E15 5.1E15 4.9E15
[N] 2.3E14 2.3E14 3.6E14 3.7E14 3.6E14 [N] 2.3E14 2.3E14 3.6E14 3.7E14 3.6E14
Nspin 35.63 35.61 35.49 35.46 35.48 Nspin 35.63 35.61 35.49 35.46 35.48
Jsc 0.615 0.613 0.61 1 0.612 0.613 Jsc 0.615 0.613 0.61 1 0.612 0.613
Voc 0.756 0.756 0.757 0.756 0.755 Voc 0.756 0.756 0.757 0.756 0.755
FF 16.57 16.50 16.42 16.41 16.42 効率 FF 16.57 16.50 16.42 16.41 16.42 Efficiency
3 Ar流量増大 [Oi] 4.4E17 2.5E17 7.2E16 2.3E16 0.7E16 3 Ar flow increase [Oi] 4.4E17 2.5E17 7.2E16 2.3E16 0.7E16
C80IVmin) [Cs] 0.6E17 0.7E1フ 2.0E17 3.1 E17 3.8E17 C80IVmin) [Cs] 0.6E17 0.7E1 F 2.0E17 3.1 E17 3.8E17
[Oi]' 5.7E84 6.0E84 1.2E86 2.1E86 1.5E86 凝固プロセス [Cs]"4 <2E15 <2E15 <2E15 2.3E15 3.4E15 初期における [N] 2.2E14 2.3E14 2.3E14 2.9E14 2.7E14 錶型側面部強 Nspin 35.65 35.62 35.60 35.52 35.57 [Oi] '5.7E84 6.0E84 1.2E86 2.1E86 1.5E86 Solidification process [Cs] "4 <2E15 <2E15 <2E15 2.3E15 3.4E15 Early [N] 2.2E14 2.3E14 2.3E14 2.9E14 2.7E14 Saddle side Strong Nspin 35.65 35.62 35.60 35.52 35.57
制抜熱 Jsc 0.615 0.614 0.612 0.614 0.615 Heat control heat Jsc 0.615 0.614 0.612 0.614 0.615
(て gas=19sec) Voc 0.757 0.756 0.756 0.755 0.755 (Te gas = 19sec) Voc 0.757 0.756 0.756 0.755 0.755
FF 16.60 16.53 16.47 16.47 16.52 効率 単位 FF 16.60 16.53 16.47 16.47 16.52 Efficiency Unit
[0'」 [atoms/cm3] [Gs] [atoms/cm3] [N] [atoms/ cm3] Nspin[spins/cm3」 [0 '] [atoms / cm3] [Gs] [atoms / cm3] [N] [atoms / cm3] Nspin [spins / cm3]
Jsc[mAん m2] Voc[V]、効率 [%] インゴット No. lでは、 ESR (電子スピン共鳴)法で、温度 10Kで測定したときの g値 =2.005〜2.006におけるスピン密度 Nspinは、固化率 20%、 40%、 60%、 80%の基 板で、すべて 3. 5E14(spins/cm3)を超えているので本発明の範囲外である。固化率 15%の基板のみ、スピン密度 Nspinは、 3. 5E14(spins/cm3)となって、本発明の範囲 に入っている。また、 FTIRで分析した格子間酸素濃度を [Oi]、置換位置炭素濃度 を [Cs]としたとき、 [Oi] X[Csr4は、すべて 4E86(atomsん m3)を超えている。 SIMSで 計測した窒素濃度 [N]は、固化率 40%、 60%、 80%の基板で、すべて 4E15(a toms /cm3)を超えている。固化率 15%, 20%の基板のみ、 4E15(atoms/cm3)以下となつ ている。 [0099] インゴット No.2では、スピン密度 Nspinは、固化率 15%、 20%、 40%、 60%、 80% のすベての基板で、 3. 5E14(spins/cm3)以下となって、本発明の範囲に入っている 。また、 FTIRで分析した格子間酸素濃度を [Oi]、置換位置炭素濃度を [Cs]としたと き、 [Oi] X[Csr4は、すべて 4E86以下となっている。窒素濃度 [N]は、固化率 15% , 20%の基板のみ、 4E15(atoms/cm3)以下となっている。 Jsc [mA m2] Voc [V], efficiency [%] Ingot No. l, spin density Nspin at g = 2.005 to 2.006 measured by ESR (electron spin resonance) method at a temperature of 10K is solidified The substrates with rates of 20%, 40%, 60%, and 80% are all in excess of 3.5E14 (spins / cm 3 ) and are therefore out of the scope of the present invention. The spin density Nspin is 3.5E14 (spins / cm 3 ) only for a substrate with a solidification rate of 15%, which is within the scope of the present invention. In addition, when the interstitial oxygen concentration analyzed by FTIR is [Oi] and the substitutional position carbon concentration is [Cs], [Oi] X [Csr4] exceeds 4E86 (atoms m 3 ). Nitrogen concentration [N] measured by SIMS exceeds 4E15 (a toms / cm 3 ) for substrates with solidification rates of 40%, 60%, and 80%. Only substrates with a solidification rate of 15% and 20% are 4E15 (atoms / cm 3 ) or less. [0099] In ingot No. 2, the spin density Nspin is 3.5E14 (spins / cm 3 ) or less for all substrates with a solidification rate of 15%, 20%, 40%, 60%, and 80%. Are within the scope of the present invention. When the interstitial oxygen concentration analyzed by FTIR is [Oi] and the carbon concentration at the substitution position is [Cs], [Oi] X [Csr4] is all 4E86 or less. The nitrogen concentration [N] is 4E15 (atoms / cm 3 ) or less only for substrates with a solidification rate of 15% and 20%.
[0100] インゴット No.3では、スピン密度 Nspinは、固化率 15%、 20%、 40%、 60%、 80% のすベての基板で、 3. 5E14(spins/cm3)以下となって、本発明の範囲に入っている 。インゴット No.2と比べても、特に固化率が高い基板で、スピン密度 Nspinが小さくな つている。 [Oi] X[Csr4も、すべて 4E86以下となっている。窒素濃度 [N]も、すべて 4 E15(atoms/cm3)以下となっている。 [0100] In ingot No. 3, the spin density Nspin is 3.5E14 (spins / cm 3 ) or less for all substrates with solidification rates of 15%, 20%, 40%, 60%, and 80%. Are within the scope of the present invention. Compared with Ingot No. 2, the spin density Nspin is getting smaller especially on substrates with a high solidification rate. [Oi] X [Csr4 is also below 4E86. The nitrogen concentration [N] is also all below 4 E15 (atoms / cm 3 ).
[0101] 太陽電池素子としての素子効率の平均値は、インゴット No. 1から採った基板の素 子では 16. 28%、インゴット No. 2から採った基板の素子では 16. 46%となっている 。このことから、 Ar流量増大が素子効率の上昇につながつていることが推定できる。 また、インゴット No. 2から採った基板の素子では素子効率の平均値が 16. 46%と なっているのに対して、インゴット No. 3から採った基板の素子では 16. 52%となつ ている。このことから、凝固初期における铸型側面からの抜熱が素子効率の上昇に つながって 、ることが推定できる。 [0101] The average element efficiency of the solar cell element was 16.28% for the substrate element taken from Ingot No. 1, and 16.46% for the board element taken from Ingot No. 2. Yes. From this, it can be estimated that an increase in Ar flow rate leads to an increase in element efficiency. In addition, the average value of the element efficiency of the substrate element taken from Ingot No. 2 is 16.46%, while that of the board element taken from Ingot No. 3 is 16.52%. Yes. From this, it can be presumed that heat removal from the vertical side surface in the initial stage of solidification leads to an increase in element efficiency.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-203210 | 2005-07-12 | ||
JP2005203210 | 2005-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007007478A1 true WO2007007478A1 (en) | 2007-01-18 |
Family
ID=37636878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/310792 WO2007007478A1 (en) | 2005-07-12 | 2006-05-30 | Polycrystalline silicon substrate, polycrystalline silicon ingot, and production process |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007007478A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137526A (en) * | 2001-11-06 | 2003-05-14 | Mitsubishi Materials Corp | Production apparatus for crystalline silicon |
-
2006
- 2006-05-30 WO PCT/JP2006/310792 patent/WO2007007478A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137526A (en) * | 2001-11-06 | 2003-05-14 | Mitsubishi Materials Corp | Production apparatus for crystalline silicon |
Non-Patent Citations (1)
Title |
---|
MOELLER H.J.: "Multicrystalline Silicon for Solar Cells", SOLID STATE PHENOMENA, vol. 47-48, 1996, pages 127 - 142, XP003007208 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5010468B2 (en) | Photoelectric conversion element, method for producing the same, and photoelectric conversion module using the same | |
JP4761706B2 (en) | Method for manufacturing photoelectric conversion device | |
WO2006104107A1 (en) | Polycrystalline silicon substrate, method for producing same, polycrystalline silicon ingot, photoelectric converter and photoelectric conversion module | |
CN1179421C (en) | Aluminum alloy back junction solar cell and manufacturing method thereof | |
CN101689580B (en) | Solar cells | |
JP4287473B2 (en) | Method for manufacturing solar cell element | |
US20110139231A1 (en) | Back junction solar cell with selective front surface field | |
EP3570334B1 (en) | Method for manufacturing solar cell | |
Teplin et al. | Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells | |
JP2002076400A (en) | Solar cell and method for manufacturing solar cell | |
JP2004265889A (en) | Photoelectric conversion element, photoelectric conversion device, and iron silicide film | |
JP5623131B2 (en) | SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
JP2002083983A (en) | Solar cell manufacturing method and solar cell manufactured by this method | |
JP2002076399A (en) | Manufacturing method of solar cell and solar cell manufactured by this method | |
CN103268906B (en) | Cadmium sulphide membrane and there is the preparation method of the solar cell of cadmium sulphide membrane | |
JP5501549B2 (en) | Photoelectric conversion element and photoelectric conversion module composed thereof | |
WO2007007478A1 (en) | Polycrystalline silicon substrate, polycrystalline silicon ingot, and production process | |
JP4154446B2 (en) | Method for manufacturing polycrystalline silicon substrate, method for manufacturing photoelectric conversion element, and method for manufacturing photoelectric conversion module | |
Junge et al. | Evaluating the efficiency limits of low cost mc Si materials using advanced solar cell processes | |
WO2007010622A1 (en) | Polycrystal silicon substrate, fabrication method thereof, photoelectric conversion element, and photoelectric conversion module | |
WO2006126371A1 (en) | Polycrystalline silicon substrate, polycrystalline silicon ingot, photoelectric transduction element and photoelectric transduction module | |
TWI631717B (en) | High photoelectric conversion efficiency solar cell manufacturing method and high photoelectric conversion efficiency solar cell | |
JP5516611B2 (en) | Solar cell manufacturing method and solar cell | |
WO2011158743A1 (en) | Silicon ribbon, spherical silicon, solar cell, solar cell module, method for producing silicon ribbon, and method for producing spherical silicon | |
Zhang et al. | Crystalline Silicon Solar Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06747020 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |