[go: up one dir, main page]

WO2007004428A1 - Signal transmission circuit and endoscope - Google Patents

Signal transmission circuit and endoscope Download PDF

Info

Publication number
WO2007004428A1
WO2007004428A1 PCT/JP2006/312437 JP2006312437W WO2007004428A1 WO 2007004428 A1 WO2007004428 A1 WO 2007004428A1 JP 2006312437 W JP2006312437 W JP 2006312437W WO 2007004428 A1 WO2007004428 A1 WO 2007004428A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switch
coil
pair
differential signal
Prior art date
Application number
PCT/JP2006/312437
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Segawa
Original Assignee
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp. filed Critical Olympus Medical Systems Corp.
Priority to JP2007523415A priority Critical patent/JP4512639B2/en
Publication of WO2007004428A1 publication Critical patent/WO2007004428A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00018Operational features of endoscopes characterised by signal transmission using electrical cables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling

Definitions

  • the present invention relates to a signal transmission circuit that transmits a differential signal and an endoscope apparatus that includes a signal transmission circuit that transmits a differential signal.
  • an endoscope apparatus has an imaging device having specifications according to various uses, and converts reflected light from an illuminated observation site into an imaging signal.
  • the generated imaging signal is transmitted to a video processing circuit of a camera control unit (hereinafter abbreviated as “ecu”), converted into a video signal, and output to a monitor.
  • ecu camera control unit
  • an image sensor that captures images with high resolution and high image quality and a video processing circuit corresponding to the image sensor are required. Therefore, an endoscope device is required to have an imaging element corresponding to an observation site and application.
  • an imaging device for example, in Japanese Patent Application Laid-Open No. 2003-224743, an imaging device, a converter for digitally converting an imaging signal, a serializer for serially converting a digital signal, and a serial signal converted into a differential signal are transmitted.
  • An image system having an intelligent camera head equipped with a transmission means is proposed.
  • the present invention has been made in view of the above-described circumstances, and a signal transmission circuit and an endoscope that enable communication using a plurality of differential signals, each having a different signal standard, with a simpler configuration than in the past.
  • An object is to provide a mirror device.
  • the signal transmission circuit of the present invention is connected in series with a pair of first signal lines that transmit a first differential signal and a pair of second signal lines that transmit a second differential signal.
  • FIG. 1 is a schematic schematic configuration diagram of an endoscope apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block configuration diagram of the endoscope apparatus according to the embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a twisted pair cable, a transmission circuit, and a reception circuit according to the embodiment of the present invention.
  • FIG. 4 is a signal transmission circuit diagram in the case where the first differential signal is CML according to the embodiment of the present invention.
  • FIG. 5 is a signal transmission circuit diagram when the first differential signal is LVDS according to the embodiment of the present invention.
  • Fig. 6 CML transmission / reception circuit diagram.
  • FIG. 7 LVDS transmission / reception circuit diagram.
  • the signal standards for differential signals that can be transmitted by the signal transmission circuit of the present invention include, for example, CML, LVDS, and ECL (Emitter Coupled Logic).
  • Endoscope device equipped with a transmission circuit uses CML or LVDS as the first differential signal to be transmitted on the transmitting side, and CML as the second differential signal to be received on the receiving side! The case where communication is carried out using is described.
  • FIG. 1 to FIG. 5 relate to an embodiment of the present invention.
  • FIG. 1 is a schematic schematic configuration diagram of an endoscope apparatus.
  • FIG. 2 is a block diagram of the endoscope apparatus.
  • Fig. 3 is a circuit diagram of the twisted pair cable, transmission circuit, and reception circuit.
  • FIG. 4 is a signal transmission circuit diagram in the case of the first differential signal strength SCML.
  • Figure 5 is a signal transmission circuit diagram when the first differential signal is LVDS.
  • FIG. 1 shows a schematic configuration diagram of an endoscope apparatus, which will be described below.
  • an endoscope apparatus 1 includes an endoscope 10, a camera control unit (hereinafter abbreviated as “C CU”) 11, a light source device 12, and a monitor 13. Is configured.
  • the endoscope 10 includes an operation unit 14 and an insertion unit 15. Further, the operation unit 14 includes an endoscope circuit unit 20.
  • the insertion section 15 includes an objective lens 16, a solid-state imaging element 17, a light guide fiber 19, and a cable 21.
  • the CCU 11 and the light source device 12 described above can connect a plurality of types of endoscopes 10 including a plurality of differential signals, in this embodiment CML or LVDS, by a cable 18. ing.
  • the CCU 11 is connected to the monitor 13 via the coaxial cable 22.
  • the illumination light generated in the light source device 12 illuminates the subject through a light guide cable (not shown) in the cable 18 and a light guide fiber 19 in the insertion portion 15.
  • the illuminated reflected light of the subject power is an objective lens 1 provided at the distal end of the insertion section 15. 6 forms an image on the light receiving surface of the solid-state imaging device 17.
  • the solid-state imaging device 17 images reflected light from the imaged subject based on the drive signal received from the endoscope circuit unit 20 via the cable 21, and generates an imaging signal. In addition, the solid-state imaging device 17 transmits an imaging signal to the endoscope circuit unit 20 via the cable 21.
  • the endoscope circuit unit 20 performs a predetermined process on the received imaging signal. Further, the endoscope circuit unit 20 transmits the processed imaging signal as CML or LVDS of the first differential signal to the CCU 11 via the cable 18.
  • the CCU 11 has a circuit for receiving the received first differential signal as CML of the second differential signal. Then, the CCU 11 performs a predetermined process on the obtained second differential signal to generate a video signal. This video signal is transmitted to the monitor 13 via the coaxial cable 22 and displayed on the monitor 13. Details of the predetermined processing for the above-described imaging signal and details of signal transmission will be described later.
  • FIG. 2 is a block configuration diagram of the endoscope apparatus 1.
  • the CCU 11 includes a crystal oscillator 30 as a synchronization signal generation unit, a synchronization signal generation circuit 31, a transmission circuit 41, a reception circuit 42, and a serial-parallel conversion circuit (hereinafter referred to as a digital imaging signal generation unit).
  • SZP conversion circuit) 43 clock phase change (hereinafter referred to as line memory) 44 as storage means and digital image signal generation means 44
  • video processing circuit 45 digital analog conversion circuit (hereinafter DZA) (Abbreviated as a conversion circuit) 46 and an operation node 47.
  • DZA digital analog conversion circuit
  • the endoscope 10 includes an analog digital circuit to which a drive circuit 33, a coaxial cable 34, a solid-state imaging device 17 as an imaging means, a coaxial cable 35, an amplifier circuit 36, and a CDS circuit are added.
  • a conversion circuit hereinafter abbreviated as “CDS + AZD conversion circuit” 37, a normal serial conversion circuit (hereinafter abbreviated as “PZS conversion circuit”) 38, and a transmission circuit 39.
  • the cable 18 includes two coaxial cables 32a, a coaxial cable 32b, and a twisted pair cable 40.
  • the driving circuit 33, the amplifier circuit 36, the CDS + AZD conversion circuit 37, the PZS conversion circuit 38, and the transmission circuit 39 constitute an endoscope circuit unit 20.
  • the coaxial cable 34 and the coaxial cable 35 constitute a cable 21.
  • the crystal oscillator 30 generates a clock signal (hereinafter abbreviated as CLK). Further, the crystal oscillator 30 transmits CLK to the synchronization signal generation circuit 31 and the video processing circuit 45. Further, the crystal oscillator 30 transmits CLK to the drive circuit 33 via the coaxial cable 32b.
  • CLK a clock signal
  • the synchronization signal generation circuit 31 uses a horizontal synchronization signal (hereinafter abbreviated as HD) 1 used in the solid-state imaging device 17 based on the received CLK, a vertical synchronization signal (hereinafter abbreviated as VD), HD2 used in the video processing circuit 45 is generated.
  • HD horizontal synchronization signal
  • VD vertical synchronization signal
  • the synchronization signal generation circuit 31 transmits HD1 and VD to the drive circuit 33 via the coaxial cable 32a. Further, the synchronization signal generation circuit 31 transmits HD2 to the video processing circuit 45.
  • the drive circuit 33 generates a drive signal based on the received CLK, HD1, and VD. Further, the drive circuit 33 transmits a drive signal to the solid-state imaging device 17 via the coaxial cable 34. Further, the drive circuit 33 transmits HD1 to the PZS conversion circuit 38.
  • the solid-state imaging device 17 images reflected light having a subject power based on the received drive signal, and generates an analog imaging signal.
  • the solid-state imaging device 17 transmits an analog imaging signal to the amplifier circuit 36 via the cable 35.
  • the amplifier circuit 36 amplifies the received analog imaging signal by the amount attenuated by transmission / reception.
  • the amplifier circuit 36 transmits the amplified analog image signal to the CDS + AZD conversion circuit 37.
  • the CDS + AZD conversion circuit 37 converts the received analog imaging signal into a digital imaging signal. Further, the CDS + AZD conversion circuit 37 transmits a digital imaging signal to the PZS conversion circuit 38.
  • the PZS conversion circuit 38 generates a first serial signal having the received digital imaging signal and HD 1 received from the drive circuit 33. The reason for generating the first serial signal including HD1 as well as the digital imaging signal will be described later. Then, the P / S conversion circuit 38 transmits the first serial signal to the transmission circuit 39.
  • the transmission circuit 39 converts the received first serial signal into CML or LV of the first differential signal.
  • DS is transmitted to the receiving circuit 42 via the twisted pair cable 40 and the transmission circuit 41.
  • the reception circuit 42 receives the first differential signal as CML of the second differential signal through the transmission circuit 41.
  • the receiving circuit 42 generates a second serial signal based on the received second differential signal. Further, the reception circuit 42 transmits the second serial signal to the SZP conversion circuit 43. Details of the differential signal transmission described above will be described later.
  • the SZP conversion circuit 43 includes a clock data recovery circuit for using a clock data recovery method (hereinafter abbreviated as CDR).
  • CDR is a method in which only the serial signal is transmitted and the CLK is regenerated on the receiving side according to the signal interval. Normally, differential signal transmission sends data and CLK separately. However, when the signal transmission speed increases, a skew occurs between the data and CLK, and the problem arises that data cannot be restored properly. Therefore, CDR is mainly used in high-speed signal transmission.
  • the reproduced CLK (hereinafter abbreviated as “reproduced CLK”) is the CLK used in the downstream circuit, which is the video in this embodiment. It may not match the CLK used in the processing circuit 45 (hereinafter abbreviated as processing CLK).
  • processing CLK used in the processing circuit 45
  • the difference between the reproduction CLK and the processing CLK causes an abnormal image such as an image inversion or a color shift to be output by the video processing in the video processing circuit 45. Therefore, it is necessary to convert the digital imaging signal based on the reproduction CLK into a digital imaging signal based on the processing CLK that can be processed by the video processing circuit 45.
  • the SZP conversion circuit 43 also reproduces the CLK of the received second serial signal power, and restores the digital imaging signal (parallel signal, for example, 12 bits) and HD1. Also, the S / P converter circuit 43, based on HD1 included in the serial signal, writes a write enable signal (indicated as W_Enable in the figure) as a timing signal, a write reset signal (indicated as W-Reset in the figure), , Generate.
  • the SZP conversion circuit 43 writes the digital imaging signal to the line memory 44 at a timing determined based on the reproduction CLK, the write enable signal, and the write reset signal.
  • the line memory 44 is configured by a dual port RAM as a multiport RAM. Dual-port RAM is a storage device that can write to and read from a single RAM based on different CLKs from two systems.
  • the video processing circuit 45 generates a processing CLK based on the CLK received from the crystal oscillator 30. Further, the video processing circuit 45 generates a read enable signal (shown as R-Enable in the figure) and a read reset signal (shown as R_Reset in the figure) as timing signals based on the processing CLK and HD2.
  • a read enable signal shown as R-Enable in the figure
  • R_Reset shown as R_Reset in the figure
  • the video processing circuit 45 reads the digital imaging signal written in the line memory 44 at a timing determined based on the processing CLK, the read enable signal, and the read reset signal.
  • the digital imaging signal based on the reproduction CLK can be appropriately converted into a digital imaging signal based on the processing CLK.
  • the video processing circuit 45 performs video processing on the read digital imaging signal to generate a digital video signal. In addition, the video processing circuit 45 transmits a digital video signal to the DZA conversion circuit 46.
  • the DZA conversion circuit 46 performs analog conversion on the received digital video signal to generate an analog video signal. Further, the DZA conversion circuit 46 transmits an analog video signal to the monitor 13 as a video output.
  • the operation panel 47 is configured to include a plurality of switches such as signal switching switches provided on the exterior surface of the CCU 11, for example.
  • the operation panel 47 outputs a signal switching signal to the transmission circuit 41 in response to the operation of the signal switching switch.
  • FIG. 3 shows a circuit diagram of the twisted pair cable 40, the transmission circuit 41, and the reception circuit 42, and the configuration will be described below.
  • the twisted pair cable 40 is a communication cable in which two signal lines are twisted together to make a pair, and the influence of noise can be suppressed as compared to signal lines arranged in parallel.
  • the transmission circuit 41 as a signal transmission circuit includes a resistor 50, a resistor 51, and an insulation in the transmission path.
  • a pulse transformer 52 as an edge element, a switch 53a as a first switch, a switch 53b as a second switch, and a pair of capacitors 54 for AC coupling are configured.
  • the pulse transformer 52 includes a coil 52a as a first coil that is a primary winding, a coil 52b as a second coil, a coil 52c as a third coil that is a secondary winding, and a fourth coil. And a coil 52d as the coil.
  • the switches 53a and 53b are switched between ON and OFF! And between based on the signal switching signal output from the operation panel 47.
  • the receiving circuit 42 includes one constant current source, two re-reflection preventing resistors, two n-channel field effect transistors (hereinafter referred to as FETs), a 50 ⁇ resistor 8 la and a resistor. 8 lb, and comprising.
  • FETs two n-channel field effect transistors
  • the two signal lines extended from the twisted pair cable 40 constitute a pair of first signal lines. These two signal lines are connected to one end of the coil 52a and one end of a coil 52b connected in series to the coil 52a. Furthermore, the connection part between the coil 52a and the coil 52b is connected to a switch 53a connected to the high potential circuit part via the resistor 50. In addition, two signal lines extending from one end of the coil 52 c and one end of the coil 52 d connected in series to the coil 52 c are input to the receiving circuit 42 via the pair of capacitors 54. Further, the connection between the coil 52c and the coil 52d is connected to the switch 53b that is grounded via the resistor 51. In addition, the coil 52a and the coil 52b, and the coil 52c and the coil 52d connected in series are arranged at positions that are affected by the magnetic field generated when a current flows in each, and constitute one pulse transformer 52. To do.
  • the two signal lines input to the receiving circuit 42 constitute a pair of second signal lines.
  • One of these two signal lines is connected to the high potential circuit section through the resistor 81a and the other through the resistor 8 lb.
  • One of these two signal lines is connected to the gate of one n-channel FET, and the other is connected to the gate of another n-channel FET.
  • the sources of the one n-channel FET and the other n-channel FET are connected to each other and grounded through one constant current source.
  • the drains of the one n-channel FET and the other n-channel FET are connected to one ends of two re-reflection preventing resistors, respectively.
  • the other ends of the two anti-reflective resistors are connected to each other and have a high potential. Connect to the circuit section.
  • the transmission circuit 41 described above receives the CML or LVDS of the first differential signal from the transmission circuit 39 via the pair of first signal lines connected to the twisted pair cable 40, and receives the second differential signal.
  • the CML of the differential signal is transmitted to the receiving circuit 42 via a pair of second signal lines.
  • the switch 53a and the switch 53b are turned on based on the signal switching signal output from the operation panel 47 and are closed.
  • the switch 53a and the switch 53b are turned off and opened based on a signal switching signal output from the operation panel 47. Details of differential signal transmission will be described later.
  • FIG. 6 shows details of the signal flow when both the transmission and reception circuits are CML.
  • the transmission circuit 70 and the reception circuit 71 have the same configuration as the above-described reception circuit 42 in FIG.
  • the two n-channel FETs of the transmission circuit 70 are transistors 95a and 95b, respectively.
  • the resistor 81a and the resistor 81b in the receiving circuit 42 correspond to the resistor 85a and the resistor 85b in the receiving circuit 71, respectively.
  • the signal line 64 and the signal line 65 extending from the connection points in the two series circuits including the two re-reflection preventing resistors of the transmission circuit 70 and the transistors 95a and 95b are respectively received. Connected to the gates of the two n-channel FETs in circuit 71.
  • the CML differential signal is transmitted by alternately turning on and off the transistors 95a and 95b.
  • the transistor 95a when the transistor 95a is turned on, the current I flows from the high-potential circuit section so as to pass through the transistor 95a of the transmission circuit 70 via the signal line 64 connected to one resistor 85a of the reception circuit 71. Flowing.
  • transistor 95b when transistor 95b is turned on,
  • the transceiver circuit is CML.
  • FIG. 7 shows the details of the signal flow when both the transmission and reception circuits are LVDS.
  • the transmission circuit 75 includes two constant current sources, a transistor 96a and a transistor 96b that are p-channel FETs, and a transistor 97a and a transistor 97b that are n-channel FETs.
  • the sources of the transistors 96a and 96b are connected to each other, and are connected to the high potential circuit section through a constant current source.
  • the sources of the transistors 97a and 97b are connected to each other and grounded through a constant current source.
  • the drains of the transistors 96a and 96b are connected to the drains of the transistors 97a and 97b, respectively.
  • Signal line 66 and signal line 67 are connected to the gates of the four FETs of receiving circuit 76 from the two connection points.
  • the signal line 66 and the signal line 67 are respectively connected to both ends of a 100 ⁇ termination resistor 86 immediately before the receiving circuit 76.
  • the differential signal of LVDS is transmitted by alternately turning on / off one of the power of the transistors 96a and 96b and one of the power of the transistors 97a and 97b.
  • the transistor 96b and the transistor 97a of the transmission circuit 75 are turned on, the current from the high potential circuit unit passes through the transistor 96b, the signal line 66, the termination resistor 86, the signal line 67, and the transistor 97a of the transmission circuit 75. I flows.
  • the termination resistance is 86 mm.
  • the reception circuit 42 receives the CML as the second differential signal by the transmission circuit 41 even if the first differential signal on the transmission side is CML or LVDS. It can be done.
  • FIG. 4 shows details of the signal flow when the first differential signal is CML, that is, when the transmission circuit 39 is CML, and will be described below.
  • the CML transmission circuit 39 has the same configuration as the transmission circuit 70 in FIG. 6 described above.
  • the two n-channel FETs of the transmission circuit 39 are transistors 90a and 90b, respectively.
  • Sarakuko two anti-rereflection resistors for transmitter circuit 39 and transistor 90a
  • the signal line 60 and the signal line 61 extending from the connection point in the two series circuits including the transistor 90b are connected to the twisted pair cable 40, respectively.
  • the switch 53a and the switch 53b are turned on and closed.
  • the CML as the first differential signal is transmitted by alternately turning on and off the transistor 90a and the transistor 90b in the same manner as the above-described CML transmission / reception circuit.
  • the transistor 90a of the transmitter circuit 39 when the transistor 90a of the transmitter circuit 39 is turned on, it passes through the transistor 90a of the transmitter circuit 39 via the switch 53a connected to the resistor 50, the coil 52b, and the signal line 61 in the twisted pair cable 40.
  • a current I flows from the high potential circuit. This current I force S
  • a current I flows in the coil 52d arranged so as to be affected by the generated magnetic field in a direction that creates a magnetic field that cancels the generated magnetic field.
  • This current I is a resistance of the receiving circuit 42.
  • the transistor 90b when the transistor 90b is turned on, the transistor 90b passes through the transistor 90b of the transmission circuit 39 via the switch 53a connected to the resistor 50, the coil 52a, and the signal line 60 in the twisted pair cable 40.
  • High-potential circuit force current flows.
  • this current flows through the coil 52a, a magnetic field due to the current is generated around the coil 52a.
  • a current flows in the coil 52c arranged so as to be affected by the generated magnetic field in a direction that creates a magnetic field that cancels the generated magnetic field.
  • This current flows from the high potential circuit connected to the resistor 8 lb of the receiving circuit 42 to the ground through the coil 52c and the resistor 51.
  • one of the two n-channel FETs of the receiving circuit 42 is turned on, and a signal is transmitted by changing the current flowing through the two n-channel FETs. That is, the same voltage as when the transmission / reception circuit shown in FIG. 6 is CML is applied to the n-channel FET of the reception circuit 42. As a result, the CML of the first differential signal is transmitted as the CML of the second differential signal.
  • FIG. 5 shows details of the signal flow when the first differential signal is LVDS, that is, when the transmission circuit 39 is LVDS, and will be described below.
  • the LVDS transmission circuit 39 has the same configuration as the transmission circuit 75 of FIG. It is completed.
  • the two p-channel FETs of the transmission circuit 39 are transistors 9la and 91b, respectively, and the two n-channel FETs are transistors 92a and 92b, respectively.
  • the transistor 9 la and 9 lb of the transmission circuit 39, the transistor 92a and the transistor 92b, and the signal line 62 and the signal line 63 which extend the connection point in the two series circuits that are also power, are respectively connected to the twisted pair cable 40. Connected.
  • the switch 53a and the switch 53b are turned off and opened.
  • the LVDS as the first differential signal is transmitted by alternately turning on and off the transistor 9la and the transistor 92b and the transistor 9lb and the transistor 92a in the same manner as the LVDS transmission / reception circuit described above. Is done.
  • the transistor 91a and the transistor 92b are turned on, the transistor 91a, the signal line 63 in the twisted pair cable 40, the coil 52b, the coil 52a, the signal line 62 in the twisted pair cable 40, and the transistor A current flows from the high potential circuit section of the transmission circuit section 39 so as to pass through 92b. That is, the current direction in the coil 52b and the coil 52a is opposite to the current I, and the current in the opposite direction to the current I flows in the coils 52c and 52d.
  • one of the two n-channel FETs of the receiving circuit 42 is turned on, and a signal is transmitted by changing the current flowing through the two n-channel FETs. That is, the same voltage is applied to the two n-channel FETs of the receiving circuit 42 as when the transmitting circuit 39 in FIG. 4 is CML. As a result, the LVDS of the first differential signal is transmitted as CML of the second differential signal.
  • the pair of capacitors 54 add an appropriate bias voltage in the receiving circuit 42. Therefore, it plays a role in absorbing the difference in offset voltage between CML and LVDS of differential signals.
  • the transmission circuit 41 has the second differential signal regardless of whether the first differential signal transmitted from the transmission side is CML or LVDS. It can be transmitted as CML of the signal so that the receiving side can receive it.
  • the transmission circuit 41 as a signal transmission circuit in the present embodiment can perform communication using a plurality of differential signals having different signal standards with a simpler configuration than the conventional one.
  • an endoscope apparatus including a signal transmission circuit capable of converting a plurality of different differential signals into predetermined differential signals and transmitting them. it can. Therefore, the degree of freedom in circuit design in the endoscope 10 increases.
  • the PZS conversion circuit 38 may generate a serial signal in which, for example, unique optical information or the like is added to a plurality of endoscopes 10 having different characteristics.
  • correction control is added to the video processing performed by the video processing circuit 45 based on the received information.
  • the optical image obtained by the objective lens 16 is split into red, blue, and green light via a spectral prism, and each of the three lights is imaged. You may make it the structure which images by an element and obtains a power error image.
  • the transmission / reception time of each transmission path differs depending on the length of the twisted pair cable 40 of each of the plurality of transmission paths, the length of the differential pattern on the board, and the like, resulting in a time difference.
  • the time difference generated can be adjusted by using a configuration in which the writing timing is generated based on HD1 that is transmitted together with the imaging signal, as in this embodiment.
  • the line memory 44 may be configured by various storage devices having similar functions that are not limited to the multiport RAM or the dual port RAM. It should be noted that according to the present embodiment, means for generating a digital image pickup signal based on a different CLK from a digital image pickup signal based on a reproduction CLK not in the line memory 44 may be used. Good.
  • the signal transmission circuit of the present invention may be configured as a repeater or a connection terminal in various signal transmission apparatuses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Dc Digital Transmission (AREA)
  • Endoscopes (AREA)

Abstract

A signal transmission circuit and an endoscope in which communication by a plurality of differential signals of different signal standards can be achieved through a simpler arrangement than before. The signal transmission circuit comprises a pulse transformer (52) including a primary winding consisting of coils (52a, 52b) connected in series and a secondary winding consisting of coils (52c, 52d) connected in series, a switch (53a) having one end connected with a predetermined potential and the other end connected with the joint of the coils (52a, 52b), a switch (53b) having one end connected to the ground side and the other end connected with the joint of the coils (52c, 52d), a pair of first signal lines being connected with the opposite ends of the primary winding, respectively, a pair of capacitors (54) being connected with the opposite ends of the secondary winding, respectively, and a pair of second signal lines being connected with the other end of the pair of capacitors (54), respectively.

Description

明 細 書  Specification
信号伝送回路及び内視鏡装置  Signal transmission circuit and endoscope apparatus
技術分野  Technical field
[0001] 本発明は、差動信号を伝送する信号伝送回路、及び差動信号を伝送する信号伝 送回路を具備する内視鏡装置に関する。  The present invention relates to a signal transmission circuit that transmits a differential signal and an endoscope apparatus that includes a signal transmission circuit that transmits a differential signal.
背景技術  Background art
[0002] 内視鏡装置は、医療分野、工業分野等において幅広く用いられている。一般的に 、内視鏡装置は、種々の用途に応じた仕様の撮像素子を有し、照明された観察部位 からの反射光を撮像信号に変換する。生成された撮像信号は、カメラコントロールュ ニット(以下 ecuと略す)の映像処理回路に伝送され、映像信号に変換されてモニタ へ出力される。例えば内視鏡装置において、観察部位が微細かつ複雑な場合、高 解像かつ高画質に撮像する撮像素子及びその撮像素子に対応する映像処理回路 が必要となる。従って、内視鏡装置には、観察部位、及び用途に応じた撮像素子等 が要求される。  Endoscopic devices are widely used in the medical field, industrial field, and the like. In general, an endoscope apparatus has an imaging device having specifications according to various uses, and converts reflected light from an illuminated observation site into an imaging signal. The generated imaging signal is transmitted to a video processing circuit of a camera control unit (hereinafter abbreviated as “ecu”), converted into a video signal, and output to a monitor. For example, in an endoscope apparatus, when an observation site is fine and complicated, an image sensor that captures images with high resolution and high image quality and a video processing circuit corresponding to the image sensor are required. Therefore, an endoscope device is required to have an imaging element corresponding to an observation site and application.
[0003] しかし、複数の異なる撮像素子に対応するためには、撮像素子を駆動するための 駆動回路、アナログ撮像信号をデジタル変換する CDS (相関二重サンプリング: Cor related Double Sampling)回路、 AZD変換回路、撮像信号を伝送する信号伝 送回路、及び信号伝送路は、撮像素子毎に異なる駆動周波数、駆動方法に対応し たものを設けなければならな 、と 、つた問題がある。  [0003] However, in order to support a plurality of different image sensors, a drive circuit for driving the image sensor, a CDS (Correlated Double Sampling) circuit that converts analog image signals to digital, and AZD conversion There is a problem that a circuit, a signal transmission circuit that transmits an imaging signal, and a signal transmission path must be provided with a driving frequency and a driving method that are different for each imaging device.
[0004] そこで、例えば、特開 2003— 224743号公報において、撮像素子と、撮像信号を デジタル変換する変換器と、デジタル信号をシリアル変換するシリアライザと、シリア ル信号を差動信号に変換し伝送する伝送手段と、を備えるインテリジェントカメラへッ ドを具備した画像システムが提案されて 、る。  [0004] Therefore, for example, in Japanese Patent Application Laid-Open No. 2003-224743, an imaging device, a converter for digitally converting an imaging signal, a serializer for serially converting a digital signal, and a serial signal converted into a differential signal are transmitted. An image system having an intelligent camera head equipped with a transmission means is proposed.
[0005] ところで、差動信号の信号規格としては、例えば、 CML (Current Mode Logic )、及び、 LVDS (Low Voltage Differential Signaling)といった、オフセット電 圧、差動振幅電圧及び駆動原理等が互いに異なる複数の規格が存在する。そのた め、例えば、特開 2003— 224743号公報のインテリジェントカメラヘッドを具備した画 像システムのように、信号規格が各々異なる複数の差動信号による通信が可能なシ ステムを構成する場合には、該複数の差動信号が有する各信号規格に対応可能な 信号伝送回路を個別に設けなければならず、その結果、該システムの回路構成が複 雑ィ匕してしまうと!、う課題が生じて 、る。 [0005] By the way, as signal standards for differential signals, for example, CML (Current Mode Logic) and LVDS (Low Voltage Differential Signaling) such as offset voltage, differential amplitude voltage, driving principle, and the like are different from each other. There are standards. Therefore, for example, an image equipped with an intelligent camera head disclosed in Japanese Patent Laid-Open No. 2003-224743. When configuring a system that can communicate with multiple differential signals with different signal standards, such as an image system, separate signal transmission circuits that are compatible with the signal standards of the multiple differential signals. As a result, if the circuit configuration of the system becomes complicated, a problem arises.
[0006] 本発明は、上述した事情に鑑みてなされたものであり、信号規格が各々異なる複数 の差動信号による通信を、従来に比べて簡易な構成により可能とする信号伝送回路 及び内視鏡装置を提供することを目的とする。  [0006] The present invention has been made in view of the above-described circumstances, and a signal transmission circuit and an endoscope that enable communication using a plurality of differential signals, each having a different signal standard, with a simpler configuration than in the past. An object is to provide a mirror device.
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0007] 本発明の信号伝送回路は、第 1の差動信号を伝送する一対の第 1の信号線と、第 2の差動信号を伝送する一対の第 2の信号線と、直列接続された第 1のコイル及び第 2のコイルにより構成された一次卷線と、直列接続された第 3のコイル及び第 4のコィ ルにより構成された二次卷線と、を有して構成され、上記一次卷線の両端が上記一 対の第 1の信号線のそれぞれ一端と接続するパルストランスと、一端が所定の電位に 接続され、他端が上記第 1のコイルと上記第 2のコイルの接続点に接続された第 1の スィッチと、一端が接地側に接続され、他端が上記第 3のコイルと上記第 4のコイルの 接続点に接続された第 2のスィッチと、上記二次卷線の両端と、上記一対の第 2の信 号線のそれぞれ一端と、を接続する一対のコンデンサと、を具備することを特徴とす る。 [0007] The signal transmission circuit of the present invention is connected in series with a pair of first signal lines that transmit a first differential signal and a pair of second signal lines that transmit a second differential signal. A primary winding constituted by the first coil and the second coil, and a secondary winding constituted by the third coil and the fourth coil connected in series, A pulse transformer in which both ends of the primary winding are connected to one end of each of the pair of first signal lines, one end is connected to a predetermined potential, and the other ends are connected to the first coil and the second coil. A first switch connected to the connection point; a second switch having one end connected to the ground side and the other end connected to the connection point of the third coil and the fourth coil; and the secondary switch A pair of capacitors that connect both ends of the cable and one end of each of the pair of second signal lines; It characterized the door.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の実施の形態に係る、内視鏡装置の模式的概略構成図。 FIG. 1 is a schematic schematic configuration diagram of an endoscope apparatus according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係る、内視鏡装置のブロック構成図。  FIG. 2 is a block configuration diagram of the endoscope apparatus according to the embodiment of the present invention.
[図 3]本発明の実施の形態に係る、ツイストペアケーブル、伝送回路、並びに受信回 路の回路図。  FIG. 3 is a circuit diagram of a twisted pair cable, a transmission circuit, and a reception circuit according to the embodiment of the present invention.
[図 4]本発明の実施の形態に係る、第 1の差動信号が CMLの場合の信号伝送回路 図。  FIG. 4 is a signal transmission circuit diagram in the case where the first differential signal is CML according to the embodiment of the present invention.
[図 5]本発明の実施の形態に係る、第 1の差動信号が LVDSの場合の信号伝送回路 図。 [図 6]CMLの送受信回路図。 FIG. 5 is a signal transmission circuit diagram when the first differential signal is LVDS according to the embodiment of the present invention. [Fig. 6] CML transmission / reception circuit diagram.
[図 7]LVDSの送受信回路図。  [Fig. 7] LVDS transmission / reception circuit diagram.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下に、本発明の実施の形態に係る信号伝送回路を備えた内視鏡装置について 、図を用いて説明する。なお、本発明の信号伝送回路により伝送され得る差動信号 の信号規格としては、例えば、 CML、 LVDS及び ECL (Emitter Coupled Logic )等があるが、本実施の形態においては、一例として、該信号伝送回路を具備する内 視鏡装置が、送信側力 送信される第 1の差動信号として CMLもしくは LVDSを用 V、、受信側にお!、て受信される第 2の差動信号として CMLを用いて通信を行う場合 について説明する。 Hereinafter, an endoscope apparatus provided with a signal transmission circuit according to an embodiment of the present invention will be described with reference to the drawings. The signal standards for differential signals that can be transmitted by the signal transmission circuit of the present invention include, for example, CML, LVDS, and ECL (Emitter Coupled Logic). Endoscope device equipped with a transmission circuit uses CML or LVDS as the first differential signal to be transmitted on the transmitting side, and CML as the second differential signal to be received on the receiving side! The case where communication is carried out using is described.
[0010] 図 1から図 5は本発明の実施の形態に係るものである。図 1は内視鏡装置の模式的 概略構成図である。図 2は内視鏡装置のブロック構成図である。図 3はツイストペアケ 一ブル、伝送回路、及び受信回路の回路図である。図 4は第 1の差動信号力 SCML の場合の信号伝送回路図である。図 5は第 1の差動信号が LVDSの場合の信号伝 送回路図である。  FIG. 1 to FIG. 5 relate to an embodiment of the present invention. FIG. 1 is a schematic schematic configuration diagram of an endoscope apparatus. FIG. 2 is a block diagram of the endoscope apparatus. Fig. 3 is a circuit diagram of the twisted pair cable, transmission circuit, and reception circuit. FIG. 4 is a signal transmission circuit diagram in the case of the first differential signal strength SCML. Figure 5 is a signal transmission circuit diagram when the first differential signal is LVDS.
[0011] まず、図 1に内視鏡装置の概略構成図を示し、以下に説明する。  First, FIG. 1 shows a schematic configuration diagram of an endoscope apparatus, which will be described below.
[0012] 図 1に示すように内視鏡装置 1は、内視鏡 10と、カメラコントロールユニット(以下、 C CUと略す) 11と、光源装置 12と、モニタ 13とを有して要部が構成される。また、内視 鏡 10は、操作部 14と、挿入部 15とを有して構成される。さらに、操作部 14は、内視 鏡回路部 20を有して構成される。一方、挿入部 15は、対物レンズ 16と、固体撮像素 子 17と、ライトガイドファイバ 19と、ケーブル 21とを有して構成される。 As shown in FIG. 1, an endoscope apparatus 1 includes an endoscope 10, a camera control unit (hereinafter abbreviated as “C CU”) 11, a light source device 12, and a monitor 13. Is configured. The endoscope 10 includes an operation unit 14 and an insertion unit 15. Further, the operation unit 14 includes an endoscope circuit unit 20. On the other hand, the insertion section 15 includes an objective lens 16, a solid-state imaging element 17, a light guide fiber 19, and a cable 21.
[0013] 上述の CCU11及び光源装置 12は、ケーブル 18により複数の差動信号、本実施 の形態においては CMLもしくは LVDS、の送信回路を備える複数の種類の内視鏡 1 0が接続可能となっている。また、 CCU11は、同軸ケーブル 22を介してモニタ 13と 接続される。 [0013] The CCU 11 and the light source device 12 described above can connect a plurality of types of endoscopes 10 including a plurality of differential signals, in this embodiment CML or LVDS, by a cable 18. ing. The CCU 11 is connected to the monitor 13 via the coaxial cable 22.
[0014] 上記光源装置 12において発生した照明光は、ケーブル 18内の図示しないライトガ イドケーブル、及び挿入部 15内のライトガイドファイバ 19を通って被写体を照明する 。照明された被写体力もの反射光は、挿入部 15の先端部に設けられた対物レンズ 1 6によって、固体撮像素子 17の受光面に結像される。 The illumination light generated in the light source device 12 illuminates the subject through a light guide cable (not shown) in the cable 18 and a light guide fiber 19 in the insertion portion 15. The illuminated reflected light of the subject power is an objective lens 1 provided at the distal end of the insertion section 15. 6 forms an image on the light receiving surface of the solid-state imaging device 17.
[0015] 固体撮像素子 17は、内視鏡回路部 20からケーブル 21を介して受信した駆動信号 に基づいて、結像された被写体からの反射光を撮像し、撮像信号を生成する。また、 固体撮像素子 17は、内視鏡回路部 20へケーブル 21を介して撮像信号を送信する [0015] The solid-state imaging device 17 images reflected light from the imaged subject based on the drive signal received from the endoscope circuit unit 20 via the cable 21, and generates an imaging signal. In addition, the solid-state imaging device 17 transmits an imaging signal to the endoscope circuit unit 20 via the cable 21.
[0016] 内視鏡回路部 20は、受信した撮像信号に対して所定の処理を行う。また、内視鏡 回路部 20は、処理された撮像信号を第 1の差動信号の CMLもしくは LVDSとして、 CCU11へケーブル 18を介して送信する。 The endoscope circuit unit 20 performs a predetermined process on the received imaging signal. Further, the endoscope circuit unit 20 transmits the processed imaging signal as CML or LVDS of the first differential signal to the CCU 11 via the cable 18.
[0017] CCU11は、受信した第 1の差動信号を第 2の差動信号の CMLとして受信する回 路を有している。そして、 CCU11は、得られた第 2の差動信号に対して所定の処理 を行って映像信号を生成する。この映像信号は、同軸ケーブル 22を介してモニタ 13 へ伝送され、モニタ 13により表示される。なお、上述した撮像信号に対しての所定の 処理の詳細と信号の伝送の詳細は後述する。  [0017] The CCU 11 has a circuit for receiving the received first differential signal as CML of the second differential signal. Then, the CCU 11 performs a predetermined process on the obtained second differential signal to generate a video signal. This video signal is transmitted to the monitor 13 via the coaxial cable 22 and displayed on the monitor 13. Details of the predetermined processing for the above-described imaging signal and details of signal transmission will be described later.
[0018] 次に、内視鏡装置 1の詳細な構成を以下に説明する。  Next, a detailed configuration of the endoscope apparatus 1 will be described below.
[0019] 図 2は内視鏡装置 1のブロック構成図である。  FIG. 2 is a block configuration diagram of the endoscope apparatus 1.
[0020] まず、 CCU11は、同期信号生成手段としての水晶発振器 30と、同期信号発生回 路 31と、伝送回路 41と、受信回路 42と、デジタル撮像信号生成手段としてのシリア ルパラレル変換回路 (以下、 SZP変換回路と略す) 43と、記憶手段及びデジタル撮 像信号生成手段としてのクロック位相変 (以下、ラインメモリと記す) 44と、映像処 理回路 45と、デジタルアナログ変換回路 (以下、 DZA変換回路と略す) 46と、操作 ノネル 47と、を有して構成されている。  First, the CCU 11 includes a crystal oscillator 30 as a synchronization signal generation unit, a synchronization signal generation circuit 31, a transmission circuit 41, a reception circuit 42, and a serial-parallel conversion circuit (hereinafter referred to as a digital imaging signal generation unit). , SZP conversion circuit) 43, clock phase change (hereinafter referred to as line memory) 44 as storage means and digital image signal generation means 44, video processing circuit 45, digital analog conversion circuit (hereinafter DZA) (Abbreviated as a conversion circuit) 46 and an operation node 47.
[0021] また、内視鏡 10は、駆動回路 33と、同軸ケーブル 34と、撮像手段としての固体撮 像素子 17と、同軸ケーブル 35と、アンプ回路 36と、 CDS回路が付加されたアナログ デジタル変換回路(以下、 CDS +AZD変換回路と略す) 37と、ノラレルシリアル変 換回路 (以下、 PZS変換回路と略す) 38と、送信回路 39と、を有して構成されている  In addition, the endoscope 10 includes an analog digital circuit to which a drive circuit 33, a coaxial cable 34, a solid-state imaging device 17 as an imaging means, a coaxial cable 35, an amplifier circuit 36, and a CDS circuit are added. A conversion circuit (hereinafter abbreviated as “CDS + AZD conversion circuit”) 37, a normal serial conversion circuit (hereinafter abbreviated as “PZS conversion circuit”) 38, and a transmission circuit 39.
[0022] さらに、ケーブル 18は、 2本の同軸ケーブル 32aと、同軸ケーブル 32bと、ツイスト ペアケーブル 40と、を有して構成されている。 [0023] なお、駆動回路 33、アンプ回路 36、 CDS +AZD変換回路 37、 PZS変換回路 3 8、及び送信回路 39は、内視鏡回路部 20を構成する。さらに、同軸ケーブル 34及び 同軸ケーブル 35は、ケーブル 21を構成する。 Furthermore, the cable 18 includes two coaxial cables 32a, a coaxial cable 32b, and a twisted pair cable 40. Note that the driving circuit 33, the amplifier circuit 36, the CDS + AZD conversion circuit 37, the PZS conversion circuit 38, and the transmission circuit 39 constitute an endoscope circuit unit 20. Further, the coaxial cable 34 and the coaxial cable 35 constitute a cable 21.
[0024] 上記水晶発振器 30は、クロック信号 (以下、 CLKと略す)を生成する。また、水晶発 振器 30は、同期信号発生回路 31及び映像処理回路 45へ、 CLKを送信する。さら に、水晶発振器 30は、駆動回路 33へ同軸ケーブル 32bを介して CLKを送信する。  The crystal oscillator 30 generates a clock signal (hereinafter abbreviated as CLK). Further, the crystal oscillator 30 transmits CLK to the synchronization signal generation circuit 31 and the video processing circuit 45. Further, the crystal oscillator 30 transmits CLK to the drive circuit 33 via the coaxial cable 32b.
[0025] 同期信号発生回路 31は、受信した CLKに基づいて固体撮像素子 17において用 V、られる水平同期信号 (以下、 HDと略す) 1と、垂直同期信号 (以下、 VDと略す)と、 映像処理回路 45において用いられる HD2と、を生成する。また、同期信号発生回路 31は、駆動回路 33へ同軸ケーブル 32aを介して HD1及び VDを送信する。さらに、 同期信号発生回路 31は、映像処理回路 45へ HD2を送信する。  [0025] The synchronization signal generation circuit 31 uses a horizontal synchronization signal (hereinafter abbreviated as HD) 1 used in the solid-state imaging device 17 based on the received CLK, a vertical synchronization signal (hereinafter abbreviated as VD), HD2 used in the video processing circuit 45 is generated. The synchronization signal generation circuit 31 transmits HD1 and VD to the drive circuit 33 via the coaxial cable 32a. Further, the synchronization signal generation circuit 31 transmits HD2 to the video processing circuit 45.
[0026] 一方、駆動回路 33は、受信した CLK、 HD1、及び VDに基づいて、駆動信号を生 成する。また、駆動回路 33は、固体撮像素子 17へ同軸ケーブル 34を介して駆動信 号を送信する。さらに、駆動回路 33は、 PZS変換回路 38へ HD1を送信する。  On the other hand, the drive circuit 33 generates a drive signal based on the received CLK, HD1, and VD. Further, the drive circuit 33 transmits a drive signal to the solid-state imaging device 17 via the coaxial cable 34. Further, the drive circuit 33 transmits HD1 to the PZS conversion circuit 38.
[0027] 固体撮像素子 17は、受信した駆動信号に基づいて被写体力もの反射光を撮像し 、アナログ撮像信号を生成する。この固体撮像素子 17は、アンプ回路 36へケーブル 35を介してアナログ撮像信号を送信する。  [0027] The solid-state imaging device 17 images reflected light having a subject power based on the received drive signal, and generates an analog imaging signal. The solid-state imaging device 17 transmits an analog imaging signal to the amplifier circuit 36 via the cable 35.
[0028] アンプ回路 36は、送受信によって減衰した分だけ受信したアナログ撮像信号を増 幅する。また、アンプ回路 36は、 CDS +AZD変換回路 37へ増幅されたアナログ撮 像信号を送信する。  The amplifier circuit 36 amplifies the received analog imaging signal by the amount attenuated by transmission / reception. The amplifier circuit 36 transmits the amplified analog image signal to the CDS + AZD conversion circuit 37.
[0029] そして、 CDS+AZD変換回路 37は、受信したアナログ撮像信号をデジタル撮像 信号に変換する。また、 CDS +AZD変換回路 37は、 PZS変換回路 38へデジタル 撮像信号を送信する。  [0029] Then, the CDS + AZD conversion circuit 37 converts the received analog imaging signal into a digital imaging signal. Further, the CDS + AZD conversion circuit 37 transmits a digital imaging signal to the PZS conversion circuit 38.
[0030] 次に、 PZS変換回路 38は、受信したデジタル撮像信号と、駆動回路 33から受信 した HD1と、を有する第 1のシリアル信号を生成する。なお、デジタル撮像信号だけ ではなく HD1を含んだ第 1のシリアル信号を生成する理由は後述する。そして、 P/ S変換回路 38は、送信回路 39へ第 1のシリアル信号を送信する。  Next, the PZS conversion circuit 38 generates a first serial signal having the received digital imaging signal and HD 1 received from the drive circuit 33. The reason for generating the first serial signal including HD1 as well as the digital imaging signal will be described later. Then, the P / S conversion circuit 38 transmits the first serial signal to the transmission circuit 39.
[0031] 送信回路 39は、受信した第 1のシリアル信号を第 1の差動信号の CMLもしくは LV DSとして、受信回路 42へツイストペアケーブル 40及び伝送回路 41を介して送信す る。この受信回路 42は、第 1の差動信号を、伝送回路 41を介すことによって第 2の差 動信号の CMLとして受信する。また、受信回路 42は、受信した第 2の差動信号に基 づいて第 2のシリアル信号を生成する。さらに、受信回路 42は、 SZP変換回路 43へ 第 2のシリアル信号を送信する。上述した差動信号の伝送にっ 、ての詳細は後述す る。 [0031] The transmission circuit 39 converts the received first serial signal into CML or LV of the first differential signal. DS is transmitted to the receiving circuit 42 via the twisted pair cable 40 and the transmission circuit 41. The reception circuit 42 receives the first differential signal as CML of the second differential signal through the transmission circuit 41. The receiving circuit 42 generates a second serial signal based on the received second differential signal. Further, the reception circuit 42 transmits the second serial signal to the SZP conversion circuit 43. Details of the differential signal transmission described above will be described later.
[0032] 一方、 SZP変換回路 43は、クロックデータリカバリ方式 (以下、 CDRと略す)を用い るためのクロックデータリカバリ回路を含んで構成される。 CDRは、シリアル信号のみ を送信し、受信側において信号間隔に合わせて CLKを再生する方法である。通常、 差動信号の伝送は、データと CLKを別々に送信するが、信号伝送が高速になると、 データと CLKとの間にスキユーが発生し、適切にデータを復元できないといった問題 力 S起こる。そのため、 CDRが、高速信号伝送において主に用いられる。し力し、高速 伝送されたシリアル信号カゝら CDRによって CLKを再生する場合、再生した CLK (以 下、再生 CLKと略す)が、下流回路において用いられる CLK、本実施の形態におい ては映像処理回路 45において用いられる CLK (以下、処理 CLKと略す)、と一致し ないことがある。この再生 CLKと処理 CLKのずれは、映像処理回路 45における映像 処理により異常な画像、例えば画像反転、色ずれ等、が出力される原因となる。その ため、再生 CLKに基づいたデジタル撮像信号を、映像処理回路 45において映像処 理を行うことができる処理 CLKに基づいたデジタル撮像信号に変換する必要がある  On the other hand, the SZP conversion circuit 43 includes a clock data recovery circuit for using a clock data recovery method (hereinafter abbreviated as CDR). CDR is a method in which only the serial signal is transmitted and the CLK is regenerated on the receiving side according to the signal interval. Normally, differential signal transmission sends data and CLK separately. However, when the signal transmission speed increases, a skew occurs between the data and CLK, and the problem arises that data cannot be restored properly. Therefore, CDR is mainly used in high-speed signal transmission. However, when the CLK is reproduced by the CDR of the serial signal that is transmitted at high speed, the reproduced CLK (hereinafter abbreviated as “reproduced CLK”) is the CLK used in the downstream circuit, which is the video in this embodiment. It may not match the CLK used in the processing circuit 45 (hereinafter abbreviated as processing CLK). The difference between the reproduction CLK and the processing CLK causes an abnormal image such as an image inversion or a color shift to be output by the video processing in the video processing circuit 45. Therefore, it is necessary to convert the digital imaging signal based on the reproduction CLK into a digital imaging signal based on the processing CLK that can be processed by the video processing circuit 45.
[0033] そこで、 SZP変換回路 43は、受信した第 2のシリアル信号力も CLKを再生して、 デジタル撮像信号 (パラレル信号、例えば 12ビット)、及び HD1を復元する。また、 S /P変換回路 43は、シリアル信号に含まれた HD1に基づいて、タイミング信号として の書き込みィネーブル信号(図中 W_Enableと示す)と、書き込みリセット信号(図中 W— Resetと示す)と、を生成する。 [0033] Therefore, the SZP conversion circuit 43 also reproduces the CLK of the received second serial signal power, and restores the digital imaging signal (parallel signal, for example, 12 bits) and HD1. Also, the S / P converter circuit 43, based on HD1 included in the serial signal, writes a write enable signal (indicated as W_Enable in the figure) as a timing signal, a write reset signal (indicated as W-Reset in the figure), , Generate.
[0034] さらに、 SZP変換回路 43は、再生 CLK、書き込みィネーブル信号、及び書き込み リセット信号に基づ ヽて決定されるタイミングによって、デジタル撮像信号をラインメモ リ 44に書き込む。 [0035] このラインメモリ 44は、マルチポート RAMとしてのデュアルポート RAMにより構成さ れる。デュアルポート RAMは、 1つの RAMに 2つのシステムから異なる CLKに基づ いて書き込み、及び読み出しが可能な記憶装置である。 Furthermore, the SZP conversion circuit 43 writes the digital imaging signal to the line memory 44 at a timing determined based on the reproduction CLK, the write enable signal, and the write reset signal. The line memory 44 is configured by a dual port RAM as a multiport RAM. Dual-port RAM is a storage device that can write to and read from a single RAM based on different CLKs from two systems.
[0036] また、映像処理回路 45は、水晶発振器 30から受信した CLKに基づいて処理 CLK を生成する。また、映像処理回路 45は、処理 CLK、 HD2に基づいて、タイミング信 号としての読み出しィネーブル信号(図中 R— Enableと示す)、及び読み出しリセット 信号(図中 R_Resetと示す)を生成する。 Further, the video processing circuit 45 generates a processing CLK based on the CLK received from the crystal oscillator 30. Further, the video processing circuit 45 generates a read enable signal (shown as R-Enable in the figure) and a read reset signal (shown as R_Reset in the figure) as timing signals based on the processing CLK and HD2.
[0037] 続、て、映像処理回路 45は、処理 CLK、読み出しィネーブル信号、及び読み出し リセット信号に基づいて決定されるタイミングによって、ラインメモリ 44に書き込まれた デジタル撮像信号を読み出す。 Subsequently, the video processing circuit 45 reads the digital imaging signal written in the line memory 44 at a timing determined based on the processing CLK, the read enable signal, and the read reset signal.
[0038] つまり、 HD1及び HD2を書き込み及び読み出しのタイミングの基準とすることにより[0038] In other words, by using HD1 and HD2 as a reference for writing and reading timing
、再生 CLKに基づいたデジタル撮像信号を、処理 CLKに基づいたデジタル撮像信 号に適切に変換することができる。 The digital imaging signal based on the reproduction CLK can be appropriately converted into a digital imaging signal based on the processing CLK.
[0039] そして、映像処理回路 45は、読み出したデジタル撮像信号に対して映像処理を行 い、デジタル映像信号を生成する。また、映像処理回路 45は、 DZA変換回路 46へ デジタル映像信号を送信する。 [0039] The video processing circuit 45 performs video processing on the read digital imaging signal to generate a digital video signal. In addition, the video processing circuit 45 transmits a digital video signal to the DZA conversion circuit 46.
[0040] さらに、 DZA変換回路 46は、受信したデジタル映像信号をアナログ変換し、アナ ログ映像信号を生成する。また、 DZA変換回路 46は、モニタ 13へ映像出力として アナログ映像信号を送信する。 [0040] Further, the DZA conversion circuit 46 performs analog conversion on the received digital video signal to generate an analog video signal. Further, the DZA conversion circuit 46 transmits an analog video signal to the monitor 13 as a video output.
[0041] 操作パネル 47は、例えば、 CCU11の外装表面上に設けられた、信号切替スイツ チ等の複数のスィッチを有して構成されている。そして、操作パネル 47は、前記信号 切替スィッチの操作に応じ、伝送回路 41に対して信号切替信号を出力する。  [0041] The operation panel 47 is configured to include a plurality of switches such as signal switching switches provided on the exterior surface of the CCU 11, for example. The operation panel 47 outputs a signal switching signal to the transmission circuit 41 in response to the operation of the signal switching switch.
[0042] ここで、本実施の形態における差動信号の伝送の詳細を以下に説明する。  [0042] Here, the details of the differential signal transmission in the present embodiment will be described below.
まず、図 3にツイストペアケーブル 40、伝送回路 41、及び受信回路 42、の回路図 を示し、以下にその構成を説明する。  First, FIG. 3 shows a circuit diagram of the twisted pair cable 40, the transmission circuit 41, and the reception circuit 42, and the configuration will be described below.
[0043] ツイストペアケーブル 40は、信号線を 2本ずっ撚り合わせて対にした通信用ケープ ルであり、平行に配置された信号線に比べてノイズの影響を抑えることができる。  [0043] The twisted pair cable 40 is a communication cable in which two signal lines are twisted together to make a pair, and the influence of noise can be suppressed as compared to signal lines arranged in parallel.
[0044] また、信号伝送回路としての伝送回路 41は、抵抗 50と、抵抗 51と、伝送路内の絶 縁素子としてのパルストランス 52と、第 1のスィッチとしてのスィッチ 53aと、第 2のスィ ツチとしてのスィッチ 53bと、 ACカップリングのための一対のコンデンサ 54と、を有し て構成されている。パルストランス 52は、一次卷線である第 1のコイルとしてのコイル 5 2a、及び第 2のコイルとしてのコイル 52bと、二次卷線である第 3のコイルとしてのコィ ル 52cと、第 4のコイルとしてのコイル 52dと、を有して構成される。また、スィッチ 53a 及び 53bは、操作パネル 47から出力される信号切替信号に基づいてオンまたはオフ の!、ずれかに切り替えられる。 [0044] In addition, the transmission circuit 41 as a signal transmission circuit includes a resistor 50, a resistor 51, and an insulation in the transmission path. A pulse transformer 52 as an edge element, a switch 53a as a first switch, a switch 53b as a second switch, and a pair of capacitors 54 for AC coupling are configured. . The pulse transformer 52 includes a coil 52a as a first coil that is a primary winding, a coil 52b as a second coil, a coil 52c as a third coil that is a secondary winding, and a fourth coil. And a coil 52d as the coil. Further, the switches 53a and 53b are switched between ON and OFF! And between based on the signal switching signal output from the operation panel 47.
[0045] さらに、受信回路 42は、 1つの定電流源と、 2つの再反射防止用抵抗と、 2つの nチ ャネル電界効果トランジスタ(以下 FETと記す)と、 50 Ωの抵抗 8 la及び抵抗 8 lbと、 を有して構成される。 [0045] Further, the receiving circuit 42 includes one constant current source, two re-reflection preventing resistors, two n-channel field effect transistors (hereinafter referred to as FETs), a 50 Ω resistor 8 la and a resistor. 8 lb, and comprising.
[0046] 上記ツイストペアケーブル 40から延出した 2本の信号線は、一対の第 1の信号線を 構成する。この 2本の信号線は、コイル 52aの一端と、コイル 52aに直列接続されたコ ィル 52bの一端とにそれぞれ接続されている。さらに、コイル 52aとコイル 52bとの接 続部は、抵抗 50を介して高電位回路部に接続されたスィッチ 53aに接続される。また 、コイル 52cの一端と、コイル 52cに直列接続されたコイル 52dの一端と力 延出する 2本の信号線は、一対のコンデンサ 54を介して受信回路 42へ入力する。さらに、コィ ル 52cとコイル 52dとの接続部は、抵抗 51を介して接地されているスィッチ 53bに接 続される。また、直列接続されたコイル 52a及びコイル 52bと、コイル 52c及びコイル 5 2dとは、それぞれに電流が流れたときに発生する磁界の影響を受ける位置に配置さ れ、 1つのパルストランス 52を構成する。  [0046] The two signal lines extended from the twisted pair cable 40 constitute a pair of first signal lines. These two signal lines are connected to one end of the coil 52a and one end of a coil 52b connected in series to the coil 52a. Furthermore, the connection part between the coil 52a and the coil 52b is connected to a switch 53a connected to the high potential circuit part via the resistor 50. In addition, two signal lines extending from one end of the coil 52 c and one end of the coil 52 d connected in series to the coil 52 c are input to the receiving circuit 42 via the pair of capacitors 54. Further, the connection between the coil 52c and the coil 52d is connected to the switch 53b that is grounded via the resistor 51. In addition, the coil 52a and the coil 52b, and the coil 52c and the coil 52d connected in series are arranged at positions that are affected by the magnetic field generated when a current flows in each, and constitute one pulse transformer 52. To do.
[0047] 一方、受信回路 42に入力する 2本の信号線は、一対の第 2の信号線を構成する。  On the other hand, the two signal lines input to the receiving circuit 42 constitute a pair of second signal lines.
この 2本の信号線は、一方が抵抗 81aを介し、また、他方が抵抗 8 lbを介して高電位 回路部にそれぞれ接続される。また、この 2本の信号線は、一方が一の nチャネル FE Tのゲートに接続され、また、他方が他の nチャネル FETのゲートに接続される。前記 一の nチャネル FET及び前記他の nチャネル FETのソースは、それぞれが接続され 、さらに 1つの定電流源を介して接地される。また、前記一の nチャネル FET及び前 記他の nチャネル FETのドレインは、 2つの再反射防止用抵抗の一端とそれぞれ接 続される。さらに、 2つの再反射防止用抵抗の他端はそれぞれが接続され、高電位 回路部に接続する。 One of these two signal lines is connected to the high potential circuit section through the resistor 81a and the other through the resistor 8 lb. One of these two signal lines is connected to the gate of one n-channel FET, and the other is connected to the gate of another n-channel FET. The sources of the one n-channel FET and the other n-channel FET are connected to each other and grounded through one constant current source. The drains of the one n-channel FET and the other n-channel FET are connected to one ends of two re-reflection preventing resistors, respectively. In addition, the other ends of the two anti-reflective resistors are connected to each other and have a high potential. Connect to the circuit section.
[0048] 上述の伝送回路 41は、送信回路 39から、ツイストペアケーブル 40に接続された一 対の第 1の信号線を介して、第 1の差動信号の CMLもしくは LVDSを受信し、第 2の 差動信号の CMLとして一対の第 2の信号線を介して受信回路 42へ伝送する。また、 第 1の差動信号が CMLの場合、スィッチ 53a及びスィッチ 53bは、操作パネル 47か ら出力される信号切替信号に基づいてオンにされ、閉じているものとする。さらに、第 1の差動信号力 SLVDSの場合、スィッチ 53a及びスィッチ 53bは、操作パネル 47から 出力される信号切替信号に基づいてオフにされ、開いているものとする。なお、差動 信号の伝送の詳細は後述する。 [0048] The transmission circuit 41 described above receives the CML or LVDS of the first differential signal from the transmission circuit 39 via the pair of first signal lines connected to the twisted pair cable 40, and receives the second differential signal. The CML of the differential signal is transmitted to the receiving circuit 42 via a pair of second signal lines. When the first differential signal is CML, it is assumed that the switch 53a and the switch 53b are turned on based on the signal switching signal output from the operation panel 47 and are closed. Further, in the case of the first differential signal force S LVDS, it is assumed that the switch 53a and the switch 53b are turned off and opened based on a signal switching signal output from the operation panel 47. Details of differential signal transmission will be described later.
[0049] 続、て、本実施の形態における差動信号の伝送の詳細を説明する前に、比較のた め、送受信回路が共に CMLの場合、及び送受信回路が共に LVDSの場合、におけ る信号の流れの詳細を以下に説明する。  [0049] Next, before explaining the details of the differential signal transmission in this embodiment, for comparison, in the case where both the transmitting and receiving circuits are CML and in the case where both the transmitting and receiving circuits are LVDS, Details of the signal flow will be described below.
[0050] まず、図 6に送受信回路が共に CMLの場合の信号の流れの詳細を示す。  [0050] First, FIG. 6 shows details of the signal flow when both the transmission and reception circuits are CML.
[0051] 送信回路 70及び受信回路 71は、上述した図 3の受信回路 42と同様の構成である 。この送信回路 70の 2つの nチャネル FETは、それぞれトランジスタ 95a及び 95bと する。また、受信回路 42における抵抗 81a及び抵抗 81bは、受信回路 71においてそ れぞれ抵抗 85a及び抵抗 85bに対応する。また、送信回路 70の 2つの再反射防止 用抵抗と、トランジスタ 95a及びトランジスタ 95bとからなる 2つの直列回路におけるそ れぞれの接続点から延出した信号線 64と信号線 65は、それぞれ受信回路 71の 2つ の nチャネル FETのゲートに接続される。  [0051] The transmission circuit 70 and the reception circuit 71 have the same configuration as the above-described reception circuit 42 in FIG. The two n-channel FETs of the transmission circuit 70 are transistors 95a and 95b, respectively. Further, the resistor 81a and the resistor 81b in the receiving circuit 42 correspond to the resistor 85a and the resistor 85b in the receiving circuit 71, respectively. Further, the signal line 64 and the signal line 65 extending from the connection points in the two series circuits including the two re-reflection preventing resistors of the transmission circuit 70 and the transistors 95a and 95b are respectively received. Connected to the gates of the two n-channel FETs in circuit 71.
[0052] CMLの差動信号は、トランジスタ 95aとトランジスタ 95bを交互にオンオフさせること によって伝送される。例えばトランジスタ 95aがオンにされると、受信回路 71の 1つの 抵抗 85aが接続されて ヽる信号線 64を介して、送信回路 70のトランジスタ 95aを通る ように、高電位回路部から電流 I が流れる。同様にトランジスタ 95bがオンされると、  [0052] The CML differential signal is transmitted by alternately turning on and off the transistors 95a and 95b. For example, when the transistor 95a is turned on, the current I flows from the high-potential circuit section so as to pass through the transistor 95a of the transmission circuit 70 via the signal line 64 connected to one resistor 85a of the reception circuit 71. Flowing. Similarly, when transistor 95b is turned on,
31  31
受信回路 71の抵抗 85bが接続されている信号線 65を介して、送信回路 70のトラン ジスタ 95bに電流が流れる。その結果、受信回路 71の 2つの nチャネル FETのいず れか一方のゲートに電圧が印加され、オン状態になることによって、信号が伝送され る。以上が、送受信回路が CMLの場合の信号の流れの詳細である。 [0053] 次に、図 7に送受信回路が共に LVDSの場合の信号の流れの詳細を示す。 A current flows through the transistor 95b of the transmission circuit 70 via the signal line 65 to which the resistor 85b of the reception circuit 71 is connected. As a result, a voltage is applied to one of the two n-channel FETs of the receiving circuit 71, and the signal is transmitted by being turned on. The above is the details of the signal flow when the transceiver circuit is CML. Next, FIG. 7 shows the details of the signal flow when both the transmission and reception circuits are LVDS.
[0054] 送信回路 75は、 2つの定電流源と、 pチャネル FETであるトランジスタ 96a及びトラ ンジスタ 96bと、 nチャネル FETであるトランジスタ 97a及びトランジスタ 97bとにより構 成される。トランジスタ 96aとトランジスタ 96bのソースがそれぞれ接続され、定電流源 を介して高電位回路部と接続される。また、トランジスタ 97aとトランジスタ 97bのソー スがそれぞれ接続され、定電流源を介して接地される。さらに、トランジスタ 96a及び トランジスタ 96bのドレインと、トランジスタ 97a及びトランジスタ 97bのドレインとがそれ ぞれ接続される。信号線 66と信号線 67が、それぞれその 2つの接続点から受信回路 76の 4つの FETのゲートに接続される。信号線 66と信号線 67は、受信回路 76の直 前において 100 Ωの終端抵抗 86の両端にそれぞれが接続される。 The transmission circuit 75 includes two constant current sources, a transistor 96a and a transistor 96b that are p-channel FETs, and a transistor 97a and a transistor 97b that are n-channel FETs. The sources of the transistors 96a and 96b are connected to each other, and are connected to the high potential circuit section through a constant current source. The sources of the transistors 97a and 97b are connected to each other and grounded through a constant current source. Further, the drains of the transistors 96a and 96b are connected to the drains of the transistors 97a and 97b, respectively. Signal line 66 and signal line 67 are connected to the gates of the four FETs of receiving circuit 76 from the two connection points. The signal line 66 and the signal line 67 are respectively connected to both ends of a 100 Ω termination resistor 86 immediately before the receiving circuit 76.
[0055] LVDSの差動信号は、トランジスタ 96a及びトランジスタ 96bのどちら力 1つと、トラン ジスタ 97a及びトランジスタ 97bのどちら力 1つとを交互にオンオフすることによって伝 送される。例えば送信回路 75のトランジスタ 96b及びトランジスタ 97aがオンにされる と、送信回路 75のトランジスタ 96b、信号線 66、終端抵抗 86、信号線 67、トランジス タ 97aを通るように、高電位回路部から電流 I が流れる。その結果、終端抵抗 86〖こ [0055] The differential signal of LVDS is transmitted by alternately turning on / off one of the power of the transistors 96a and 96b and one of the power of the transistors 97a and 97b. For example, when the transistor 96b and the transistor 97a of the transmission circuit 75 are turned on, the current from the high potential circuit unit passes through the transistor 96b, the signal line 66, the termination resistor 86, the signal line 67, and the transistor 97a of the transmission circuit 75. I flows. As a result, the termination resistance is 86 mm.
41  41
電圧が発生し、受信回路 76のそれぞれ 2つの nチャネル FET及び pチャネル FETの 各ゲートに電圧が印加され、 pチャネル FET及び nチャネル FETのそれぞれ 1つがォ ンになることによって、信号が伝送されることになる。以上が、送受信回路が LVDSの 場合の信号の流れの詳細である。  When a voltage is generated, a voltage is applied to the gate of each of the two n-channel FETs and p-channel FETs of the receiving circuit 76, and one of each of the p-channel FET and n-channel FET is turned on to transmit a signal. Will be. The above is the details of the signal flow when the transceiver circuit is LVDS.
[0056] ここで、本実施の形態における差動信号の伝送の詳細を以下に説明する。 [0056] Here, details of differential signal transmission in the present embodiment will be described below.
[0057] 本実施の形態において、受信回路 42は、送信側の第 1の差動信号が CMLもしく は LVDSであっても、伝送回路 41によって、第 2の差動信号としての CMLを受信す ることがでさる。 [0057] In the present embodiment, the reception circuit 42 receives the CML as the second differential signal by the transmission circuit 41 even if the first differential signal on the transmission side is CML or LVDS. It can be done.
[0058] まず、図 4に第 1の差動信号が CMLの場合、つまり送信回路 39が CMLの場合の 信号の流れの詳細を示し、以下に説明する。  [0058] First, FIG. 4 shows details of the signal flow when the first differential signal is CML, that is, when the transmission circuit 39 is CML, and will be described below.
[0059] 図 4に示すように CMLの送信回路 39は、上述した図 6の送信回路 70と同様の構 成である。また、送信回路 39の 2つの nチャネル FETは、それぞれトランジスタ 90a及 び 90bとする。さら〖こ、送信回路 39の 2つの再反射防止用抵抗とトランジスタ 90a及 びトランジスタ 90bとからなる 2つの直列回路における接続点から延出した信号線 60 と信号線 61は、それぞれツイストペアケーブル 40と接続される。この送信回路 39が C MLの場合、スィッチ 53a及びスィッチ 53bは、オン状態にされ、閉じている。 As shown in FIG. 4, the CML transmission circuit 39 has the same configuration as the transmission circuit 70 in FIG. 6 described above. The two n-channel FETs of the transmission circuit 39 are transistors 90a and 90b, respectively. Sarakuko, two anti-rereflection resistors for transmitter circuit 39 and transistor 90a The signal line 60 and the signal line 61 extending from the connection point in the two series circuits including the transistor 90b are connected to the twisted pair cable 40, respectively. When the transmission circuit 39 is CML, the switch 53a and the switch 53b are turned on and closed.
[0060] そして、第 1の差動信号としての CMLは、上述した CMLの送受信回路と同様に、ト ランジスタ 90aとトランジスタ 90bを交互にオンオフすることによって伝送される。 例 えば送信回路 39のトランジスタ 90aがオン状態にされると、抵抗 50に接続されたスィ ツチ 53a、コイル 52b、ツイストペアケーブル 40内の信号線 61を介して、送信回路 39 のトランジスタ 90aを通るように、高電位回路部から電流 I が流れる。この電流 I 力 Sコ [0060] The CML as the first differential signal is transmitted by alternately turning on and off the transistor 90a and the transistor 90b in the same manner as the above-described CML transmission / reception circuit. For example, when the transistor 90a of the transmitter circuit 39 is turned on, it passes through the transistor 90a of the transmitter circuit 39 via the switch 53a connected to the resistor 50, the coil 52b, and the signal line 61 in the twisted pair cable 40. In addition, a current I flows from the high potential circuit. This current I force S
11 11 ィル 52bに流れると、電流 I に起因する磁界がコイル 52b周辺に発生する。この時、  11 When the current flows through the coil 52b, a magnetic field due to the current I is generated around the coil 52b. At this time,
11  11
発生した磁界の影響を受けるように配置されたコイル 52dには、発生した磁界を打ち 消しあうような磁界を作る方向に電流 I が流れる。この電流 I は、受信回路 42の抵  A current I flows in the coil 52d arranged so as to be affected by the generated magnetic field in a direction that creates a magnetic field that cancels the generated magnetic field. This current I is a resistance of the receiving circuit 42.
12 12  12 12
抗 81aに接続された高電位回路部から、コイル 52d、及び抵抗 51を通るように接地 へと流れる。  It flows from the high potential circuit connected to the anti-81a to the ground through the coil 52d and the resistor 51.
[0061] 同様にトランジスタ 90bがオン状態にされると、抵抗 50に接続されたスィッチ 53a、 コイル 52a、ツイストペアケーブル 40内の信号線 60を介して、送信回路 39のトランジ スタ 90bを通るように、高電位回路部力 電流が流れる。この電流がコイル 52aに流 れると、その電流に起因する磁界がコイル 52a周辺に発生する。この時、発生した磁 界の影響を受けるように配置されたコイル 52cには、発生した磁界を打ち消しあうよう な磁界を作る方向に電流が流れる。この電流は、受信回路 42の抵抗 8 lbに接続され た高電位回路部から、コイル 52c、及び抵抗 51を通るように接地へと流れる。  Similarly, when the transistor 90b is turned on, the transistor 90b passes through the transistor 90b of the transmission circuit 39 via the switch 53a connected to the resistor 50, the coil 52a, and the signal line 60 in the twisted pair cable 40. High-potential circuit force current flows. When this current flows through the coil 52a, a magnetic field due to the current is generated around the coil 52a. At this time, a current flows in the coil 52c arranged so as to be affected by the generated magnetic field in a direction that creates a magnetic field that cancels the generated magnetic field. This current flows from the high potential circuit connected to the resistor 8 lb of the receiving circuit 42 to the ground through the coil 52c and the resistor 51.
[0062] その結果、受信回路 42の 2つの nチャネル FETのいずれ力 1つがオン状態になり、 2つの nチャネル FETを流れる電流が変化することにより信号が伝送される。つまり、 図 6に示した送受信回路が CMLの場合と同様の電圧が、受信回路 42の nチャネル FETに印加される事になる。その結果、第 1の差動信号の CMLが、第 2の差動信号 の CMLとして伝送される。  As a result, one of the two n-channel FETs of the receiving circuit 42 is turned on, and a signal is transmitted by changing the current flowing through the two n-channel FETs. That is, the same voltage as when the transmission / reception circuit shown in FIG. 6 is CML is applied to the n-channel FET of the reception circuit 42. As a result, the CML of the first differential signal is transmitted as the CML of the second differential signal.
[0063] 次に、図 5に第 1の差動信号が LVDSの場合、つまり送信回路 39が LVDSの場合 の信号の流れの詳細を示し、以下に説明する。  Next, FIG. 5 shows details of the signal flow when the first differential signal is LVDS, that is, when the transmission circuit 39 is LVDS, and will be described below.
[0064] 図 5に示すように LVDSの送信回路 39は、上述した図 7の送信回路 75と同様の構 成である。また、送信回路 39の 2つの pチャネル FETは、それぞれトランジスタ 9 la及 び 91b、 2つの nチャネル FETは、それぞれトランジスタ 92a及び 92bとする。さらに、 送信回路 39のトランジスタ 9 la及び 9 lbと、トランジスタ 92a及びトランジスタ 92bと、 力もなる 2つの直列回路における接続点カも延出した信号線 62と信号線 63は、それ ぞれツイストペアケーブル 40と接続される。この送信回路 39が LVDSの場合、スイツ チ 53a及びスィッチ 53bは、オフ状態にされ、開いている。 As shown in FIG. 5, the LVDS transmission circuit 39 has the same configuration as the transmission circuit 75 of FIG. It is completed. The two p-channel FETs of the transmission circuit 39 are transistors 9la and 91b, respectively, and the two n-channel FETs are transistors 92a and 92b, respectively. Furthermore, the transistor 9 la and 9 lb of the transmission circuit 39, the transistor 92a and the transistor 92b, and the signal line 62 and the signal line 63, which extend the connection point in the two series circuits that are also power, are respectively connected to the twisted pair cable 40. Connected. When the transmission circuit 39 is LVDS, the switch 53a and the switch 53b are turned off and opened.
[0065] そして、第 1の差動信号としての LVDSは、上述した LVDSの送受信回路と同様に 、トランジスタ 9 la及びトランジスタ 92bと、トランジスタ 9 lb及びトランジスタ 92aと、を 交互にオンオフすることによって伝送される。  [0065] Then, the LVDS as the first differential signal is transmitted by alternately turning on and off the transistor 9la and the transistor 92b and the transistor 9lb and the transistor 92a in the same manner as the LVDS transmission / reception circuit described above. Is done.
[0066] 例えば送信回路 39のトランジスタ 9 lb及びトランジスタ 92aがオン状態にされると、 トランジスタ 91b、ツイストペアケーブル 40内の信号線 62、コイル 52a、コイル 52b、ッ ィストペアケーブル 40内の信号線 63、及びトランジスタ 92aを通るように、送信回路 部 39の高電位回路部から電流 I が流れる。この電流 I 力コイル 52a及びコイル 52b  [0066] For example, when the transistor 9 lb and the transistor 92a of the transmission circuit 39 are turned on, the transistor 91b, the signal line 62 in the twisted pair cable 40, the coil 52a, the coil 52b, and the signal line 63 in the twisted pair cable 40 Current I flows from the high potential circuit section of the transmission circuit section 39 so as to pass through the transistor 92a. This current I force coil 52a and coil 52b
21 21  21 21
に流れると、電流 I に起因する磁界が発生する。この時、発生した磁界の影響を受  When a current flows through the, a magnetic field due to the current I is generated. At this time, it is affected by the generated magnetic field.
21  twenty one
けるように配置されたコイル 52c及び 52dには、発生した磁界を打ち消しあうような磁 界を作る方向に電流 I が流れる。  Currents I flow through the coils 52c and 52d arranged to create a magnetic field that cancels out the generated magnetic field.
22  twenty two
[0067] 同様に、トランジスタ 91a及びトランジスタ 92bがオン状態にされると、トランジスタ 91 a、ツイストペアケーブル 40内の信号線 63、コイル 52b、コイル 52a、ツイストペアケー ブル 40内の信号線 62、及びトランジスタ 92bを通るように、送信回路部 39の高電位 回路部から電流が流れる。つまり、コイル 52b及びコイル 52aにおける電流の方向は 、電流 I とは逆方向であり、コイル 52c及び 52dには、電流 I とは逆方向の電流が流 [0067] Similarly, when the transistor 91a and the transistor 92b are turned on, the transistor 91a, the signal line 63 in the twisted pair cable 40, the coil 52b, the coil 52a, the signal line 62 in the twisted pair cable 40, and the transistor A current flows from the high potential circuit section of the transmission circuit section 39 so as to pass through 92b. That is, the current direction in the coil 52b and the coil 52a is opposite to the current I, and the current in the opposite direction to the current I flows in the coils 52c and 52d.
21 22 21 22
れること〖こなる。  It will be awkward.
[0068] その結果、受信回路 42の 2つの nチャネル FETのどちら力 1つがオン状態になり、 2 つの nチャネル FETを流れる電流が変化することによって信号が伝送される。つまり、 受信回路 42の 2つの nチャネル FETに、図 4の送信回路 39が CMLの場合と同様の 電圧が印加されることになる。その結果、第 1の差動信号の LVDSが、第 2の差動信 号の CMLとして伝送される。  [0068] As a result, one of the two n-channel FETs of the receiving circuit 42 is turned on, and a signal is transmitted by changing the current flowing through the two n-channel FETs. That is, the same voltage is applied to the two n-channel FETs of the receiving circuit 42 as when the transmitting circuit 39 in FIG. 4 is CML. As a result, the LVDS of the first differential signal is transmitted as CML of the second differential signal.
[0069] さらに一対のコンデンサ 54は、受信回路 42において適切なバイアス電圧を加算す ることによって、差動信号の CMLと LVDSとのオフセット電圧の違 、を吸収する役割 を果たす。 [0069] Further, the pair of capacitors 54 add an appropriate bias voltage in the receiving circuit 42. Therefore, it plays a role in absorbing the difference in offset voltage between CML and LVDS of differential signals.
[0070] 以上のように、本実施の形態によれば、伝送回路 41は、送信側から送信される第 1 の差動信号が CMLもしくは LVDSのいずれであったとしても、第 2の差動信号の C MLとして受信側が受信可能であるように伝送することができる。その結果、本実施の 形態における信号伝送回路としての伝送回路 41は、従来に比べて簡易な構成によ り、信号規格が各々異なる複数の差動信号による通信を行うことが可能である。  [0070] As described above, according to the present embodiment, the transmission circuit 41 has the second differential signal regardless of whether the first differential signal transmitted from the transmission side is CML or LVDS. It can be transmitted as CML of the signal so that the receiving side can receive it. As a result, the transmission circuit 41 as a signal transmission circuit in the present embodiment can perform communication using a plurality of differential signals having different signal standards with a simpler configuration than the conventional one.
[0071] また、本実施の形態によれば、複数の異なる差動信号を所定の差動信号に変換し て伝送することが可能な信号伝送回路を備えた内視鏡装置を提供することができる。 そのため、内視鏡 10における回路設計の自由度が上がる。  [0071] Also, according to the present embodiment, it is possible to provide an endoscope apparatus including a signal transmission circuit capable of converting a plurality of different differential signals into predetermined differential signals and transmitting them. it can. Therefore, the degree of freedom in circuit design in the endoscope 10 increases.
[0072] さらに、本実施の形態によれば、再生 CLKに基づ ヽたデジタル撮像信号を、処理 CLKに基づいたデジタル撮像信号に変換することが可能である。  Furthermore, according to this embodiment, it is possible to convert a digital imaging signal based on the reproduction CLK into a digital imaging signal based on the processing CLK.
[0073] なお、本実施の形態において、 PZS変換回路 38が、例えば複数の互いに特徴の 異なる内視鏡 10にそれぞれ固有の光学情報等、を加えたシリアル信号を生成しても よい。この場合、 CCU11内において、受信した情報に基づいて映像処理回路 45が 行う映像処理に補正制御を加えるようにする。  [0073] In the present embodiment, the PZS conversion circuit 38 may generate a serial signal in which, for example, unique optical information or the like is added to a plurality of endoscopes 10 having different characteristics. In this case, in the CCU 11, correction control is added to the video processing performed by the video processing circuit 45 based on the received information.
[0074] また、本実施の形態にお!、て、対物レンズ 16によって得られた光学像を、分光プリ ズムを介して赤、青及び緑の光に分光し、各々の光を 3つの撮像素子で撮像して、力 ラー画像を得るような構成にしてもよい。この場合、図 2に示すような、撮像信号を内 視鏡 10から CCU11へ伝送する伝送経路は、並列 3系統になる。  [0074] Further, in the present embodiment, the optical image obtained by the objective lens 16 is split into red, blue, and green light via a spectral prism, and each of the three lights is imaged. You may make it the structure which images by an element and obtains a power error image. In this case, the transmission path for transmitting the imaging signal from the endoscope 10 to the CCU 11 as shown in FIG.
[0075] また、複数の伝送経路の各々のツイストペアケーブル 40の長さ、基板上の差動パタ ーンの長さ等、の違いにより伝送経路それぞれの送受信時間が異なり、時間差が生 じることがある。この場合、本実施の形態のように、書き込みのタイミングを撮像信号と 共に送信する HD1に基づいて生成する構成にすれば、発生する時間差を調整可能 である。  [0075] In addition, the transmission / reception time of each transmission path differs depending on the length of the twisted pair cable 40 of each of the plurality of transmission paths, the length of the differential pattern on the board, and the like, resulting in a time difference. There is. In this case, the time difference generated can be adjusted by using a configuration in which the writing timing is generated based on HD1 that is transmitted together with the imaging signal, as in this embodiment.
[0076] さらに、本実施の形態において、ラインメモリ 44は、マルチポート RAM、もしくはデ ュアルポート RAMに限定されるものではなぐ同様の機能を持った種々の記憶装置 によって構成してもよい。 [0077] なお、本実施の形態にぉ 、て、ラインメモリ 44ではなぐ再生 CLKに基づ 、たデジ タル撮像信号から、異なる CLKに基づ ヽたデジタル撮像信号を生成する手段を用 いてもよい。 Furthermore, in the present embodiment, the line memory 44 may be configured by various storage devices having similar functions that are not limited to the multiport RAM or the dual port RAM. It should be noted that according to the present embodiment, means for generating a digital image pickup signal based on a different CLK from a digital image pickup signal based on a reproduction CLK not in the line memory 44 may be used. Good.
[0078] また、本発明の信号伝送回路は、種々の信号伝送装置における中継器、もしくは 接続端子として構成してもよ ヽ。  Further, the signal transmission circuit of the present invention may be configured as a repeater or a connection terminal in various signal transmission apparatuses.
[0079] さらに、本発明は、上述した実施の形態に限定されるものではなぐ本発明の要旨 を変えない範囲において、種々の変更、改変等が可能である。 [0079] Furthermore, the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.
[0080] 本出願は、 2005年 7月 4日に日本国に出願された特願 2005— 195409号を優先 権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の 範囲、図面に引用されたものとする。 [0080] This application is filed on the basis of the priority claim of Japanese Patent Application No. 2005-195409 filed in Japan on July 4, 2005. It shall be cited in the scope of the drawing.

Claims

請求の範囲 The scope of the claims
[1] 第 1の差動信号を伝送する一対の第 1の信号線と、  [1] a pair of first signal lines for transmitting a first differential signal;
第 2の差動信号を伝送する一対の第 2の信号線と、  A pair of second signal lines for transmitting a second differential signal;
直列接続された第 1のコイル及び第 2のコイルにより構成された一次卷線と、直列接 続された第 3のコイル及び第 4のコイルにより構成された二次卷線と、を有して構成さ れ、上記一次卷線の両端が上記一対の第 1の信号線のそれぞれ一端と接続するパ ノレス卜ランスと、  A primary winding composed of a first coil and a second coil connected in series, and a secondary winding composed of a third coil and a fourth coil connected in series. And a panoramic resistor in which both ends of the primary winding are connected to respective one ends of the pair of first signal wires, and
一端が所定の電位に接続され、他端が上記第 1のコイルと上記第 2のコイルの接続 点に接続された第 1のスィッチと、  A first switch having one end connected to a predetermined potential and the other end connected to a connection point of the first coil and the second coil;
一端が接地側に接続され、他端が上記第 3のコイルと上記第 4のコイルの接続点に 接続された第 2のスィッチと、  A second switch having one end connected to the ground side and the other end connected to a connection point of the third coil and the fourth coil;
上記二次卷線の両端と、上記一対の第 2の信号線のそれぞれ一端と、を接続する 一対のコンデンサと、  A pair of capacitors connecting both ends of the secondary winding and one end of each of the pair of second signal lines;
を具備することを特徴とする信号伝送回路。  A signal transmission circuit comprising:
[2] 上記第 2の差動信号は、 CMLであることを特徴とする請求項 1に記載の信号伝送 回路。 [2] The signal transmission circuit according to [1], wherein the second differential signal is CML.
[3] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 1に記載の信号伝送回路。  [3] When the first switch and the second switch are switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch 2. The signal transmission circuit according to claim 1, wherein when each switch is switched on, CM L can be transmitted as the first differential signal.
[4] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 2に記載の信号伝送回路。  [4] When the first switch and the second switch are switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch 3. The signal transmission circuit according to claim 2, wherein CM L can be transmitted as the first differential signal when each switch is switched on.
[5] 第 1の差動信号を伝送する一対の第 1の信号線と、第 2の差動信号を伝送する一 対の第 2の信号線と、直列接続された第 1のコイル及び第 2のコイルにより構成された 一次卷線と、直列接続された第 3のコイル及び第 4のコイルにより構成された二次卷 線と、を有して構成され、上記一次卷線の両端が上記一対の第 1の信号線のそれぞ れ一端と接続するパルストランスと、一端が所定の電位に接続され、他端が上記第 1 のコイルと上記第 2のコイルの接続点に接続された第 1のスィッチと、一端が接地側 に接続され、他端が上記第 3のコイルと上記第 4のコイルの接続点に接続された第 2 のスィッチと、上記二次卷線の両端と、上記一対の第 2の信号線のそれぞれ一端と、 を接続する一対のコンデンサとを備えた信号伝送回路と、 [5] A pair of first signal lines for transmitting the first differential signal, a pair of second signal lines for transmitting the second differential signal, the first coil and the first connected in series A primary winding composed of two coils, and a secondary winding composed of a third coil and a fourth coil connected in series, and both ends of the primary winding are Each of the pair of first signal lines A pulse transformer connected to one end, a first switch having one end connected to a predetermined potential, the other end connected to the connection point of the first coil and the second coil, and one end to the ground side. A second switch connected at the other end to the connection point of the third coil and the fourth coil, both ends of the secondary winding, and one end of each of the pair of second signal lines And a signal transmission circuit comprising a pair of capacitors for connecting
同期信号を生成する同期信号生成手段と、  Synchronization signal generating means for generating a synchronization signal;
上記同期信号に基づいて被写体を撮像しアナログ撮像信号を生成する撮像手段 と、  Imaging means for imaging an object based on the synchronization signal and generating an analog imaging signal;
上記アナログ撮像信号をデジタル撮像信号に変換するアナログデジタル変換手段 と、  Analog-to-digital conversion means for converting the analog imaging signal into a digital imaging signal;
上記デジタル撮像信号と、上記同期信号と、を含んだ第 1のシリアル信号を生成す るパラレルシリアル変換手段と、  Parallel-serial conversion means for generating a first serial signal including the digital imaging signal and the synchronization signal;
上記第 1のシリアル信号を上記第 1の差動信号に変換して上記一対の第 1の信号 線により送信する送信手段と、  Transmitting means for converting the first serial signal into the first differential signal and transmitting the first differential signal through the pair of first signal lines;
上記信号伝送回路によって上記第 1の差動信号を変換して得られた上記第 2の差 動信号を上記一対の第 2の信号線力 受信して、第 2のシリアル信号を生成する受 信手段と、  A receiver that receives the second differential signal obtained by converting the first differential signal by the signal transmission circuit and receives the pair of second signal lines to generate a second serial signal. Means,
上記第 2のシリアル信号に基づいて、上記デジタル撮像信号と、上記第 2のシリアル 信号に含まれる上記同期信号に基づいて上記デジタル撮像信号を記憶させるため のタイミング信号と、を生成するシリアルパラレル変換手段と、  Serial-parallel conversion that generates the digital imaging signal based on the second serial signal and a timing signal for storing the digital imaging signal based on the synchronization signal included in the second serial signal Means,
上記デジタル撮像信号を上記タイミング信号に基づいて記憶する記憶手段と、 を具備したことを特徴とする内視鏡装置。  An endoscope apparatus comprising: storage means for storing the digital imaging signal based on the timing signal.
[6] 上記記憶手段は、マルチポート RAMを含んで構成されることを特徴とする請求項 5 に記載の内視鏡装置。 6. The endoscope apparatus according to claim 5, wherein the storage unit includes a multi-port RAM.
[7] 上記第 2の差動信号は、 CMLであることを特徴とする請求項 5に記載の内視鏡装 置。  [7] The endoscope apparatus according to [5], wherein the second differential signal is CML.
[8] 上記第 2の差動信号は、 CMLであることを特徴とする請求項 6に記載の内視鏡装 置。 [8] The endoscope apparatus according to [6], wherein the second differential signal is CML.
[9] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 5に記載の内視鏡装置。 [9] When the first switch and the second switch are switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch 6. The endoscope apparatus according to claim 5, wherein when each switch is switched on, CM L can be transmitted as the first differential signal.
[10] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 6に記載の内視鏡装置。  [10] When the first switch and the second switch are respectively switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch described above. 7. The endoscope apparatus according to claim 6, wherein CM L can be transmitted as the first differential signal when each switch is switched on.
[11] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 7に記載の内視鏡装置。  [11] When the first switch and the second switch are switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch 8. The endoscope apparatus according to claim 7, wherein when each switch is switched on, CM L can be transmitted as the first differential signal.
[12] 上記第 1のスィッチ及び上記第 2のスィッチが各々オフに切り替えられた場合、上記 第 1の差動信号として LVDSが伝送可能になるとともに、上記第 1のスィッチ及び上 記第 2のスィッチが各々オンに切り替えられた場合、上記第 1の差動信号として、 CM Lが伝送可能になることを特徴とする請求項 8に記載の内視鏡装置。  [12] When the first switch and the second switch are respectively switched off, LVDS can be transmitted as the first differential signal, and the first switch and the second switch described above. 9. The endoscope apparatus according to claim 8, wherein when each switch is switched on, CM L can be transmitted as the first differential signal.
[13] 第 1の差動信号を伝送する一対の第 1の信号線と、第 2の差動信号を伝送する一 対の第 2の信号線と、直列接続された第 1のコイル及び第 2のコイルにより構成された 一次卷線と、直列接続された第 3のコイル及び第 4のコイルにより構成された二次卷 線と、を有して構成され、上記一次卷線の両端が上記一対の第 1の信号線のそれぞ れ一端と接続するパルストランスと、一端が所定の電位に接続され、他端が上記第 1 のコイルと上記第 2のコイルの接続点に接続された第 1のスィッチと、一端が接地側 に接続され、他端が上記第 3のコイルと上記第 4のコイルの接続点に接続された第 2 のスィッチと、上記二次卷線の両端と、上記一対の第 2の信号線のそれぞれ一端と、 を接続する一対のコンデンサとを備えた信号伝送回路と、  [13] A pair of first signal lines for transmitting the first differential signal, a pair of second signal lines for transmitting the second differential signal, the first coil and the first connected in series A primary winding composed of two coils, and a secondary winding composed of a third coil and a fourth coil connected in series, and both ends of the primary winding are A pulse transformer connected to one end of each of the pair of first signal lines, one end connected to a predetermined potential, and the other end connected to a connection point of the first coil and the second coil. 1 switch, one end connected to the ground side, the other switch connected to the connection point of the third coil and the fourth coil, both ends of the secondary winding, and the above A signal transmission circuit including one end of each of the pair of second signal lines and a pair of capacitors connecting the two;
被写体を撮像しアナログ撮像信号を生成する撮像手段と、  Imaging means for imaging a subject and generating an analog imaging signal;
上記アナログ撮像信号をデジタル撮像信号に変換するアナログデジタル変換手段 と、 上記デジタル撮像信号を含んだ第 1のシリアル信号を生成するパラレルシリアル変 換手段と、 Analog-to-digital conversion means for converting the analog imaging signal into a digital imaging signal; Parallel-serial conversion means for generating a first serial signal including the digital imaging signal;
上記第 1のシリアル信号を上記第 1の差動信号に変換して上記一対の第 1の信号 線により送信する送信手段と、  Transmitting means for converting the first serial signal into the first differential signal and transmitting the first differential signal through the pair of first signal lines;
上記信号伝送回路によって上記第 1の差動信号を変換して得られた上記第 2の差 動信号を上記一対の第 2の信号線力 受信して、第 2のシリアル信号を生成する受 信手段と、  A receiver that receives the second differential signal obtained by converting the first differential signal by the signal transmission circuit and receives the pair of second signal lines to generate a second serial signal. Means,
クロックデータリカノ リ方式により、上記第 2のシリアル信号に基づいて、クロックを再 生し、再生したクロックに基づ 、たデジタル撮像信号を生成する第 1のデジタル撮像 信号生成手段と、  A first digital imaging signal generation means for generating a digital imaging signal based on the regenerated clock by regenerating the clock based on the second serial signal by the clock data recovery method;
上記再生したクロックに基づ 、たデジタル撮像信号から、上記再生したクロックと異 なるクロックに基づ!/ヽたデジタル撮像信号を生成する第 2のデジタル撮像信号生成 手段と、  Second digital imaging signal generation means for generating a digital imaging signal based on a clock different from the reproduced clock from a digital imaging signal based on the reproduced clock;
を具備したことを特徴とする内視鏡装置。  An endoscope apparatus characterized by comprising:
PCT/JP2006/312437 2005-07-04 2006-06-21 Signal transmission circuit and endoscope WO2007004428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523415A JP4512639B2 (en) 2005-07-04 2006-06-21 Signal transmission circuit and endoscope apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-195409 2005-07-04
JP2005195409 2005-07-04

Publications (1)

Publication Number Publication Date
WO2007004428A1 true WO2007004428A1 (en) 2007-01-11

Family

ID=37604299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312437 WO2007004428A1 (en) 2005-07-04 2006-06-21 Signal transmission circuit and endoscope

Country Status (2)

Country Link
JP (1) JP4512639B2 (en)
WO (1) WO2007004428A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201540A (en) * 2008-02-26 2009-09-10 Fujinon Corp Imaging system and endoscope system
JP2010130312A (en) * 2008-11-27 2010-06-10 Tdk Corp Surface-mount pulse transformer, and surface-mount pulse transformer with common mode filter
WO2010089974A1 (en) * 2009-02-09 2010-08-12 日本電気株式会社 Signal transmission system and signal transmission method
US8480567B2 (en) 2010-07-30 2013-07-09 Olympus Medical Systems Corp. Endoscope system with differential signal transmission
WO2013176055A1 (en) * 2012-05-24 2013-11-28 オリンパスメディカルシステムズ株式会社 Image data receiver and image data transmission system
JP2016046723A (en) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 Reception device, communication device, and communication method
WO2020144755A1 (en) * 2019-01-09 2020-07-16 オリンパス株式会社 Imaging system
US12036062B2 (en) 2021-04-08 2024-07-16 Canon Medical Systems Corporation Near field communication system, X-ray CT apparatus, and near field communication controlling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132278B (en) * 2014-05-08 2017-12-22 奥林巴斯株式会社 Fujinon electronic video endoscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223142U (en) * 1988-07-22 1990-02-15
JP2003224743A (en) * 2001-12-28 2003-08-08 Karl Storz Imaging Inc Intelligent camera head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223142U (en) * 1988-07-22 1990-02-15
JP2003224743A (en) * 2001-12-28 2003-08-08 Karl Storz Imaging Inc Intelligent camera head

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096865A3 (en) * 2008-02-26 2010-09-15 FUJIFILM Corporation Image pickup system and endoscope system
JP2009201540A (en) * 2008-02-26 2009-09-10 Fujinon Corp Imaging system and endoscope system
JP2010130312A (en) * 2008-11-27 2010-06-10 Tdk Corp Surface-mount pulse transformer, and surface-mount pulse transformer with common mode filter
JP5500081B2 (en) * 2009-02-09 2014-05-21 日本電気株式会社 Signal transmission system and signal transmission method
WO2010089974A1 (en) * 2009-02-09 2010-08-12 日本電気株式会社 Signal transmission system and signal transmission method
US8480567B2 (en) 2010-07-30 2013-07-09 Olympus Medical Systems Corp. Endoscope system with differential signal transmission
CN103930014A (en) * 2012-05-24 2014-07-16 奥林巴斯医疗株式会社 Image data receiving device and image data transmission system
JP5490330B1 (en) * 2012-05-24 2014-05-14 オリンパスメディカルシステムズ株式会社 Image data receiving apparatus and image data transmission system
WO2013176055A1 (en) * 2012-05-24 2013-11-28 オリンパスメディカルシステムズ株式会社 Image data receiver and image data transmission system
US9007436B2 (en) 2012-05-24 2015-04-14 Olympus Medical Systems Corp. Image data receiving apparatus and image data transmission system
JP2016046723A (en) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 Reception device, communication device, and communication method
US10027313B2 (en) 2014-08-25 2018-07-17 Renesas Electronics Corporation Receiver, communication device, and communication method
US10367485B2 (en) 2014-08-25 2019-07-30 Renesas Electronics Corporation Receiver, communication device, and communication method
WO2020144755A1 (en) * 2019-01-09 2020-07-16 オリンパス株式会社 Imaging system
JPWO2020144755A1 (en) * 2019-01-09 2021-09-09 オリンパス株式会社 Imaging system
JP7035226B2 (en) 2019-01-09 2022-03-14 オリンパス株式会社 Imaging system
US11394911B2 (en) 2019-01-09 2022-07-19 Olympus Corporation Imaging system
US12036062B2 (en) 2021-04-08 2024-07-16 Canon Medical Systems Corporation Near field communication system, X-ray CT apparatus, and near field communication controlling method

Also Published As

Publication number Publication date
JPWO2007004428A1 (en) 2009-01-22
JP4512639B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4512639B2 (en) Signal transmission circuit and endoscope apparatus
KR100933609B1 (en) Transmitter
EP1594274B1 (en) Removal of a common mode voltage in a differential receiver
US8272023B2 (en) Startup circuit and high speed cable using the same
JP3836504B2 (en) Local area network that transmits video bandwidth signals in both directions simultaneously
US20100283894A1 (en) High-speed cable with embedded signal format conversion and power control
US6972597B2 (en) Simultaneous bidirectional input/output circuit and method
KR100847505B1 (en) Power supplying system, and serial communication apparatus
JP2008042316A (en) Differential signal transmission system and signal line skew adjustment method
JP2000013450A (en) Output buffer circuit for driving symmetric transmission line
US11671552B2 (en) Imaging system
JP2001103098A (en) Receiver, transceiver circuit and signal transmission system
US7061282B2 (en) Differential signal pairs generator
JP3766671B2 (en) Line driver for transmitting data
JP4508603B2 (en) Electronic endoscope system with imaging device
EP1404050A2 (en) Input/output circuit for simultaneously bidirectional transmission
US20080219358A1 (en) Method for communicating data and clock signals and corresponding signal, transmitter and receiver
KR20090090604A (en) Single ADC Image Sensor Circuit
CN118632007A (en) Image signal transceiver system
US7734150B2 (en) Information recording device having dubbing function
JP2017212584A (en) Ringing suppression circuit
JP2002232490A (en) Clock signal transmission system
JP2006157445A (en) Transmission switching circuit and semiconductor integrated circuit
JPH07264176A (en) Frame number addition method and signal transmission device
KR100574958B1 (en) Simultaneous Bidirectional I / O Circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767096

Country of ref document: EP

Kind code of ref document: A1