WO2006136884A1 - Device for measuring indirect cable tensions - Google Patents
Device for measuring indirect cable tensions Download PDFInfo
- Publication number
- WO2006136884A1 WO2006136884A1 PCT/IB2006/000649 IB2006000649W WO2006136884A1 WO 2006136884 A1 WO2006136884 A1 WO 2006136884A1 IB 2006000649 W IB2006000649 W IB 2006000649W WO 2006136884 A1 WO2006136884 A1 WO 2006136884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cable
- measurement
- angle
- rope
- force
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
- G01L5/10—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
- G01L5/107—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means for measuring a reaction force applied on an element disposed between two supports, e.g. on a plurality of rollers or gliders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
- G01L5/10—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
- G01L5/102—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors located at a non-interrupted part of the flexible member
Definitions
- the present invention relates to a device for the indirect measurement of rope tensions in which the rope by a defined transverse force N against 2 fixed points bent and the generated bending angle ß is measured directly on the rope is the relation of lateral force and bending angle is used as a measure of the cable force T.
- Rope crushing induced displacement does not differ from that caused by bending of the rope, i. the measurement is based z.T. on an incorrect assumption.
- Another source of error for conventional equipment is the incorrect assumption of a constant span between the support points.
- the theoretically assumed point-shaped support of the rope is not possible.
- the support points are saddle-shaped so that the span is shortened with increasing deflection which changes the assumed relation between lateral force, punch displacement and cable force.
- the error sources mentioned depend essentially on the design and the diameter of the rope to be tested and can therefore be compensated only to a small extent.
- the subject invention aims essentially to eliminate the above-mentioned sources of error in the indirect cable force measurement. This is inventively achieved in that in the loaded by a transverse force rope is not used in a known manner, the deflection as the second measure but the directly detected by an independent system for angle measurement angle ß.
- the measuring device has a rigid frame (1) in the center of a movable punch (2) and at the edges of the abutment (3) are integrated.
- the sliding punch exerts on the rope (4) a
- the stamp can be moved in any way.
- the punch is designed as a spindle and the displacement is generated by a manually operated nut (5).
- the lateral force N exerted by the punch is measured by a load cell (6) or by a hydraulic or other system.
- the abutments (3) are hinged in the frame in the example to prevent frictional forces due to the shifting rope.
- the angle measurement system forms one from the rest of the
- Device independent unit It consists essentially of the two by the axis (7) pivotally interconnected legs (8) and (9) and a measuring device (10) which registers the rotation of one leg relative to the other. Due to the non-positive pressing of the legs (8) and (9) on the rope via the terminals (11) corresponds to the measuring device (10) registered twist the bending angle ß of the rope.
- the angle measurement system is free to move relative to the rest of the equipment and therefore occupies a position determined solely by the rope. Thus influencing the angle measurement by externally introduced forces, deformations or displacements can not occur.
- the system for angle measurement is preferably connected to the rest of the device in such a way that free mobility in all directions is maintained by correspondingly large clearances.
- the angle measurement can be done in different ways.
- the measurement is carried out by a link (12) which is solid with the leg (9) and which displaces the measuring pin of a dial gauge (10) which is integral with the leg (8).
- a link (12) which is solid with the leg (9) and which displaces the measuring pin of a dial gauge (10) which is integral with the leg (8).
- the punch (2) is displaced until the bending angle indicated by the dial gauge (10) indicates a predetermined value.
- This predetermined value is due to the mathematical relationships between
- Shear force N, bending angle ⁇ and cable T are chosen so that the desired cable pull by simple multiplication of the value indicated by the load cell (6), for. is obtained with the factor 10.
- Another method could be that both measuring signals, ie that of the acting lateral force and that the bending angle generated in each position of the punch can be automatically processed by a computer and as a result, the cable force T can be read directly without any arithmetic operation by the operator.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
According to the invention, a cable (4) is bent under the effect of a defined transversal force N in relation to two fixed points (3) and the produced deflection angle ß is directly measured by a system which is connected in a positive fit to the cable and which is used to measure angles (8) (9) (10). The relation between the transversal force N and the deflection angle ß is used to determine the active cable force T.
Description
Gerät zum indirekten Messen von SeilspannungenDevice for the indirect measurement of rope tensions
Die vorliegende Erfindung betrifft ein Gerät zum indirekten Messen von Seilspannungen bei dem das Seil durch eine definierte Querkraft N gegenüber 2 Fixpunkten durchgebogen und der erzeugte Knickwinkel ß direkt am Seil gemessen wird wobei die Relation aus Querkraft und Knickwinkel als Maß für die Seilkraft T herangezogen wird.The present invention relates to a device for the indirect measurement of rope tensions in which the rope by a defined transverse force N against 2 fixed points bent and the generated bending angle ß is measured directly on the rope is the relation of lateral force and bending angle is used as a measure of the cable force T.
Zur direkten Bestimmung einer Seilkraft kommen so weit . als möglich Dynamometer zum Einsatz die zwischen einem Seilende und einem Verankerungspunkt eingefügt werden. Eine derartige Umleitung der Seilkräfte ist aber oft unmöglich oder gefährlich und bedeutet auf jeden Fall einen erheblichen Arbeitsaufwand. Oft scheidet die direkte Messung auch aus weil hohe Seilkräfte die Kapazität der normalerweise verfügbaren Dynamometer übersteigt .For the direct determination of a cable force come so far. as possible dynamometers for use inserted between a rope end and an anchoring point. Such a diversion of the rope forces is often impossible or dangerous and definitely means a considerable amount of work. Often the direct measurement is also eliminated because high rope forces exceed the capacity of the normally available dynamometers.
Bei Fällen in denen die direkte Kraftmessung mittels Dynamometer ausscheidet können verschiedene Formen von indirekten Messungen zur Anwendung kommen. Bei diesen Verfahren werden üblicherweise 2 unterschiedliche Messgrößen registriert die dann durch mathematische Verknüpfung einen Rückschluss auf die Seilkraft erlauben. U.a. sind Messgeräte bekannt die das zu prüfende Seil durch eine Querkraft belasten wobei durch die gleichzeitige Messung der dabei erzeugten Durchbiegung auf die im Seil wirksame Zugkraft geschlossen werden kann. Üblicherweise wird dabei die Querkraft durch einen hydraulisch betätigten Stempel
erzeugt der das auf 2 Fixpunkten aufliegende Seil durchbiegt wobei z.B. der Druck des Öls als Maß für die Größe der Querkraft und die Verschiebung des Stempels als Maß für die Durchbiegung herangezogen wird. Die mathematische Verknüpfung beider Messresultate liefet angenähert den gesuchten Seilzug. Bei diesem Prinzip treten jedoch unerwünschte Nebeneffekte auf welche die Genauigkeit der Messung beeinträchtigen .In cases in which the direct force measurement by means of dynamometer excretes different forms of indirect measurements can be used. In these methods, usually two different measured variables are registered which then allow a mathematical connection to draw conclusions about the cable force. Among other things, measuring devices are known which load the rope to be tested by a transverse force, whereby the simultaneous measurement of the deflection produced thereby can be used to deduce the effective tensile force in the rope. Usually, the transverse force is by a hydraulically actuated punch generates the rope resting on 2 fixed points by bending, for example, the pressure of the oil as a measure of the size of the lateral force and the displacement of the punch is used as a measure of the deflection. The mathematical combination of both measurement results approximates the searched cable pull. In this principle, however, occur undesirable side effects on which affect the accuracy of the measurement.
U.a. wird der Querschnitt des Seiles unter der Wirkung der Querkraft gequetscht was ebenfalls zu einer Verschiebung des Stempels führt die aber in diesem Fall keinen Zusammenhang mit der Seilkraft hat. Das Meßsystem kann bei den herkömmlichen Messgeräten die durchEt al the cross-section of the rope is crushed under the action of the lateral force which also leads to a displacement of the punch but in this case has no connection with the cable force. The measuring system can in the conventional measuring devices by
Seilquetschung hervorgerufene Verschiebung nicht von der durch Biegung des Seiles zustande gekommenen unterscheiden d.h. die Messung basiert z.T. auf einer unrichtigen Annahme.Rope crushing induced displacement does not differ from that caused by bending of the rope, i. the measurement is based z.T. on an incorrect assumption.
Eine weitere Fehlerquelle herkömmlicher Geräte ist die nicht zutreffende Annahme einer konstanten Spannweite zwischen den Auflagerpunkten. Tatsächlich ist die theoretisch angenommene punktförmige Auflage des Seiles nicht möglich. In der Realität sind die Auflagerpunkte sattelförmig sodass sich die Spannweite bei zunehmender Durchbiegung verkürzt wodurch sich die angenommene Relation zwischen Querkraft, Stempelverschiebung und Seilkraft verändert. Die genannten Fehlerquellen hängen wesentlich von der Machart und dem Durchmesser des zu prüfenden Seiles ab und können daher nur in geringem Maß kompensiert werden.
Die gegenständliche Erfindung zielt im wesentlichen darauf ab die oben erwähnten Fehlerquellen bei der indirekten Seilkraftmessung zu eliminieren. Dies wird erfindungsgemäß dadurch erreicht, dass bei dem durch eine Querkraft belasteten Seil nicht in bekannter Weise die Durchbiegung als zweite Messgröße herangezogen wird sondern der durch ein unabhängiges System zur Winkelmessung direkt festgestellte Knickwinkel ß.Another source of error for conventional equipment is the incorrect assumption of a constant span between the support points. In fact, the theoretically assumed point-shaped support of the rope is not possible. In reality, the support points are saddle-shaped so that the span is shortened with increasing deflection which changes the assumed relation between lateral force, punch displacement and cable force. The error sources mentioned depend essentially on the design and the diameter of the rope to be tested and can therefore be compensated only to a small extent. The subject invention aims essentially to eliminate the above-mentioned sources of error in the indirect cable force measurement. This is inventively achieved in that in the loaded by a transverse force rope is not used in a known manner, the deflection as the second measure but the directly detected by an independent system for angle measurement angle ß.
Die Kenntnis von Querkraft und Knickwinkel erlaubt dann auf Grund eines einfachen mathematischen Zusammenhanges die Bestimmung des Seilzuges.The knowledge of lateral force and bending angle then allows the determination of the cable pull on the basis of a simple mathematical relationship.
Der Knickwinkel des Seiles steht bei diesem Konzept in keinem Zusammenhang mit der Entfernung der Auflagerpunkte bzw. mit der Seilquetschung durch die Querkraft d.h. diese beiden Größen spielen bei dem erfindungsgemäßen Gerät im Gegensatz zu den herkömmlichen Geräten keine Rolle wodurch sie als Ursache für Messfehler nicht mehr in Erscheinung treten. Geräte dieser Bauart erlauben daher gegenüber herkömmlichen eine wesentlich verbesserte Genauigkeit. Ein erfindungsgemäßes Messgerät ist beispielhaft in der beiliegenden Darstellung abgebildet.The bending angle of the rope in this concept is unrelated to the distance of the support points or with the rope squeezing by the lateral force, i. these two sizes play no role in the device according to the invention in contrast to the conventional devices whereby they no longer appear as the cause of measurement errors. Devices of this type therefore allow compared to conventional significantly improved accuracy. An inventive measuring device is shown by way of example in the accompanying illustration.
Das Messgerät besitzt einen biegesteifen Rahmen (1) in den mittig ein verschiebbarer Stempel (2) und an den Rändern die Widerlager (3) integriert sind. Der verschiebbare Stempel übt auf das Seil (4) eineThe measuring device has a rigid frame (1) in the center of a movable punch (2) and at the edges of the abutment (3) are integrated. The sliding punch exerts on the rope (4) a
Querkraft N aus welche in den beiden Widerlagern (3) zu den entsprechende Reaktionen N/2 führen. Der Stempel kann
auf beliebige Art verschoben werden. Im Beispiel ist der Stempel als Spindel ausgeführt und die Verschiebung wird durch eine manuell betätigte Mutter (5) erzeugt. Die vom Stempel ausgeübte Querkraft N wird durch eine Kraftmessdose (6) oder durch ein hydraulisches bzw. anderes System gemessen. Die Widerlager (3) sind im Beispiel gelenkig im Rahmen gelagert um Reibungskräfte durch das sich verschiebende Seil zu verhindern.Transverse force N from which lead in the two abutments (3) to the corresponding reactions N / 2. The stamp can be moved in any way. In the example, the punch is designed as a spindle and the displacement is generated by a manually operated nut (5). The lateral force N exerted by the punch is measured by a load cell (6) or by a hydraulic or other system. The abutments (3) are hinged in the frame in the example to prevent frictional forces due to the shifting rope.
Das System zur Winkelmessung bildet eine vom Rest desThe angle measurement system forms one from the rest of the
Gerätes unabhängige Einheit. Es besteht im wesentlichen aus den beiden durch die Achse (7) schwenkbar miteinander verbundenen Schenkeln (8) und ( 9) sowie einer Messeinrichtung (10) welche die Verdrehung eines Schenkels gegenüber dem anderen registriert. Durch die kraftschlüssige Anpressung der Schenkel (8) und (9) auf das Seil über die Klemmen (11 ) entspricht die von der Messeinrichtung (10) registrierte Verdrehung dem Knickwinkel ß des Seiles. Das System zur Winkelmessung ist gegenüber dem Rest des Gerätes frei beweglich und nimmt daher eine Position ein die ausschließlich vom Seil bestimmt wird. Damit kann eine Beeinflussung der Winkelmessung durch von außen eingeleitete Kräfte, Deformationen oder Verschiebungen nicht eintreten.Device independent unit. It consists essentially of the two by the axis (7) pivotally interconnected legs (8) and (9) and a measuring device (10) which registers the rotation of one leg relative to the other. Due to the non-positive pressing of the legs (8) and (9) on the rope via the terminals (11) corresponds to the measuring device (10) registered twist the bending angle ß of the rope. The angle measurement system is free to move relative to the rest of the equipment and therefore occupies a position determined solely by the rope. Thus influencing the angle measurement by externally introduced forces, deformations or displacements can not occur.
Um trotzdem alle Teile zu einer Einheit zusammen zu fassen wird das System zur Winkelmessung vorzugsweise so mit dem Rest des Gerätes verbunden dass die freie Beweglichkeit in alle Richtungen durch entsprechend große Spielräume erhalten bleibt.
Die Winkelmessung kann auf verschiedene Arten erfolgen. Im dargestellten Beispiel erfolgt die Messung durch eine mit dem Schenkel (9) solidale Kulisse (12) welche den Messstift einer mit dem Schenkel (8) solidalen Messuhr (10) verschiebt. Durch eine geeignete Wahl der Kulisse kann man einen linearen Zusammenhang zwischen dem Knickwinkel ß und dem an der Messuhr abgelesenen Wert herstellen.Nevertheless, in order to combine all the parts into a single unit, the system for angle measurement is preferably connected to the rest of the device in such a way that free mobility in all directions is maintained by correspondingly large clearances. The angle measurement can be done in different ways. In the example shown, the measurement is carried out by a link (12) which is solid with the leg (9) and which displaces the measuring pin of a dial gauge (10) which is integral with the leg (8). By a suitable choice of the scenery one can produce a linear relationship between the bending angle β and the value read on the dial gauge.
Eine andere Variante der Winkelmessung wäre z.B. derAnother variant of the angle measurement would be e.g. of the
Einbau eines Drehgebers, vorzugsweise koaxial zur Achse (7). (Hier nicht gezeichnet)Installation of a rotary encoder, preferably coaxial with the axis (7). (Not drawn here)
Die praktische Durchführung einer Seilkraftmessung mit dem erfindungsgemäßen Gerät kann auf verschiedene Arten erfolgen.The practical implementation of a cable force measurement with the device according to the invention can be carried out in various ways.
Vorzugsweise wird den Stempel (2) solange verschoben bis der von der Messuhr (10) angezeigte Knickwinkel einen vorbestimmten Wert anzeigt. Dieser vorbestimmte Wert wird auf Grund der mathematischen Zusammenhänge zwischenPreferably, the punch (2) is displaced until the bending angle indicated by the dial gauge (10) indicates a predetermined value. This predetermined value is due to the mathematical relationships between
Querkraft N, Knickwinkel ß und Seilzug T so gewählt, dass der gesuchte Seilzug durch einfache Multiplikation des von der Kraftmessdose (6) angezeigten Wertes z.B. mit dem Faktor 10 erhalten wird.Shear force N, bending angle β and cable T are chosen so that the desired cable pull by simple multiplication of the value indicated by the load cell (6), for. is obtained with the factor 10.
Ebenso könnte man den Vorgang umdrehen d.h. Den Stempel solange verschieben bis die Querkraft einen vorbestimmten Wert erreicht. Der Seilzug T kann in diesem Fall durch Auswertung der Winkelmessung gefunden werden.Likewise, one could reverse the process, i. Move the plunger until the shear force reaches a predetermined value. The cable T can be found in this case by evaluating the angle measurement.
Eine weitere Methode könnte darin bestehen, dass beide Messsignale, also jenes der wirkenden Querkraft und jenes
des erzeugten Knickwinkels in jeder Position des Stempels automatisch durch einen Rechner verarbeitet werden und als Ergebnis die Seilkraft T ohne Rechenoperation durch den Bedienungsmann unmittelbar abgelesen werden kann.
Another method could be that both measuring signals, ie that of the acting lateral force and that the bending angle generated in each position of the punch can be automatically processed by a computer and as a result, the cable force T can be read directly without any arithmetic operation by the operator.
Claims
1. Gerät zur indirekten Messung von Seilspannungen dadurch gekennzeichnet, dass das Seil (4) unter der Wirkung einer definierten Querkraft N gegenüber 2 Fixpunkten (3) durchgebogen und der erzeugte Knickwinkel ß durch ein kraftschlüssig mit dem Seil verbundenes System zur Winkelmessung (8) (9) (10) direkt gemessen wird, wobei die Relation aus Querkraft N und Knickwinkel ß zur Bestimmung der wirkenden Seilkraft T herangezogen wird.1. Apparatus for the indirect measurement of cable tensions, characterized in that the cable (4) under the action of a defined transverse force N against 2 fixed points (3) bent and the generated bending angle ß by a non-positively connected to the rope system for angle measurement (8) ( 9) (10) is measured directly, wherein the relation of lateral force N and bending angle ß is used to determine the effective cable force T.
2. Gerät zur indirekten Messung von Seilspannungen nach Anspruch 1 dadurch gekennzeichnet, dass das System zur Winkelmessung aus 2 über eine Achse (7) gelenkig miteinender verbundenen Schenkeln (8) und2. Device for the indirect measurement of rope tensions according to claim 1, characterized in that the system for angle measurement of 2 via an axis (7) hingedly miteinender connected legs (8) and
(9) besteht die ihrerseits durch die Klemmen (11) kraftschlüssig mit dem zu prüfenden Seil verbunden sind und dadurch über ein geeignetes Messinstrument(9) which in turn by the terminals (11) are positively connected to the rope to be tested and thereby a suitable measuring instrument
(10) den Knickwinkel ß anzeigen.(10) indicate the bending angle ß.
3. Gerät zur indirekten Messung von Seilspannungen nach Anspruch 1 und 2 dadurch gekennzeichnet, dass eine auf dem Schenkel (8) fixierte Messuhr (10) von einer auf dem Schenkel (9) fixierten Kulisse (12) derart betätigt wird, dass die Anzeige der Messuhr dem Knickwinkel ß entspricht.3. A device for the indirect measurement of cable tensions according to claim 1 and 2, characterized in that on the leg (8) fixed dial gauge (10) of a on the leg (9) fixed gate (12) is actuated such that the display of the Dial gauge corresponds to the bending angle ß.
4. Gerät zur indirekten Messung von Seilspannungen nach Anspruch 1 und 2 dadurch gekennzeichnet, dass die Messung des Knickwinkels ß durch einen Drehgeber _4. Apparatus for the indirect measurement of cable tensions according to claim 1 and 2, characterized in that the measurement of the bending angle ß by a rotary encoder _
erfolgt der koaxial zur Achse (7) angeordnet wird der die Schenkel (8) und (9) verbindet.takes place coaxially with the axis (7) is arranged, which connects the legs (8) and (9).
5. Gerät zur indirekten Messung von Seilspannungen nach Anspruch 1, dadurch gekennzeichnet, dass die Messung des Winkels ß über ein übliches Präzisionsgoniometer erfolgt, das mit der die Schenkel (8) und (9) verbindenden Achse (7) koaxial positioniert ist.5. An apparatus for the indirect measurement of cable tensions according to claim 1, characterized in that the measurement of the angle ß via a standard precision goniometer, which is coaxially positioned with the legs (8) and (9) connecting the axis (7).
6. Gerät zur indirekten Messung von Seilspannungen nach Anspruch 1, dadurch gekennzeichnet, dass die erfassten Beträge der Kraft N und des Winkels ß durch einen im Gerät eingebauten Rechner verarbeitet werden, wobei die direkte Ablesung des Seilzugs T erlaubt wird. 6. Apparatus for the indirect measurement of cable tensions according to claim 1, characterized in that the detected amounts of the force N and the angle ß are processed by a built-in computer calculator, the direct reading of the cable T is allowed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITBZ2005A000013 | 2005-04-04 | ||
ITBZ20050013 ITBZ20050013A1 (en) | 2005-04-04 | 2005-04-04 | TOOL FOR INDIRECT MEASUREMENT OF THE ROPE OF A ROPE. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006136884A1 true WO2006136884A1 (en) | 2006-12-28 |
Family
ID=37388044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/000649 WO2006136884A1 (en) | 2005-04-04 | 2006-03-23 | Device for measuring indirect cable tensions |
Country Status (2)
Country | Link |
---|---|
IT (1) | ITBZ20050013A1 (en) |
WO (1) | WO2006136884A1 (en) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101782472A (en) * | 2010-03-17 | 2010-07-21 | 东南大学 | Healthy monitoring method of rope system based on angle monitoring during support settlement |
CN101782473A (en) * | 2010-03-17 | 2010-07-21 | 东南大学 | Progressive type healthy monitoring method of rope system based on angle monitoring during support settlement |
CN101788402A (en) * | 2010-03-17 | 2010-07-28 | 东南大学 | Method for indentifying loose supporting cable based on angle monitoring during support settlement |
CN101793631A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Cable structure health monitoring method based on space coordinate monitoring |
CN101793628A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Cable structure health monitoring method based on hybrid monitoring |
CN101793629A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Method for monitoring health of progressive cable structure based on strain monitor |
CN101799373A (en) * | 2010-03-31 | 2010-08-11 | 东南大学 | Health monitor method for identifying damaged cable and support seat displacement based on angle monitor |
CN101806663A (en) * | 2010-03-17 | 2010-08-18 | 东南大学 | Health monitoring method of cable system based on mixed monitoring in presence of support seat settlement |
CN101806667A (en) * | 2010-03-31 | 2010-08-18 | 东南大学 | Progressive method for identifying damaged cable and support displacement based on cable force monitoring |
CN101806665A (en) * | 2010-03-17 | 2010-08-18 | 东南大学 | Method for identifying untensioned support cables based on mixed monitoring in presence of support seat settlement |
CN101806666A (en) * | 2010-03-31 | 2010-08-18 | 东南大学 | Health monitoring method for identifying damaged cable and support displacement based on space coordinate monitoring |
CN101813569A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | Health monitoring method for identifying damaged cable and support displacement based on strain monitoring |
CN101813571A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | A Progressive Method for Identifying Damaged Cable and Bearing Displacement Based on Angle Monitoring |
CN101813570A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | Health monitoring method for recognizing damaged cable and support displacement based on mixed monitoring |
CN101819098A (en) * | 2010-03-31 | 2010-09-01 | 东南大学 | Mixed monitoring based progressive method for identifying damaged cables and support displacement |
CN101819097A (en) * | 2010-03-31 | 2010-09-01 | 东南大学 | Progressive method for identifying damaged cable and support displacement based on strain monitoring |
CN102221481A (en) * | 2011-05-31 | 2011-10-19 | 东南大学 | Relax cable identification method based on mixed monitoring in support generalized displacement |
CN102305723A (en) * | 2011-05-31 | 2012-01-04 | 东南大学 | Health monitoring method based on mixed monitoring and identification of damaged cable and generalized displacement of support |
CN102305720A (en) * | 2011-05-13 | 2012-01-04 | 东南大学 | Cable stress monitoring-based progressive method for identifying damaged cable and angular displacement of support |
CN102323096A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Cable force monitoring based method for recognizing damaged cable, loose cable and supporting seat generalized displacement |
CN102323080A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | The health monitor method of the cable system of bearing generalized displacement time space coordinate monitoring |
CN102323093A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Angle monitoring based cable system progressive health monitoring method applied in supporting seat generalized displacement |
CN102323081A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Hybrid monitoring based cable system health monitoring method applied in supporting seat generalized displacement |
CN102706624A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support angular displacement progressive identification method on basis of cable force monitoring temperature variation |
CN102706618A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable approximant identification method on basis of strain monitoring during temperature variation |
CN102706670A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support generalized displacement identification method based on cable force monitoring of temperature change |
CN102706606A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable identification method on basis of the space coordinate monitoring during temperature variation |
CN102706668A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Progressive type identification method of damaged cable and support generalized displacement based on hybrid monitoring during temperature variation |
CN102706602A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of cable force monitoring during temperature variation |
CN102706677A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximation identification method based on angular monitoring of support angular displacement and temperature change |
CN102706658A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change |
CN102706652A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support translation based on strain monitoring during temperature variation |
CN102706580A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable based on cable force monitoring during temperature change |
CN102706649A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable and support translation progressive identification method on basis of strain monitoring during temperature variation |
CN102706646A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation |
CN102706596A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Problem cable and support translation progressive identification method used on basis of strain monitoring during temperature variation |
CN102706650A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of strain monitoring during support settlement and temperature variation |
CN102706626A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of cable force monitoring during temperature variation |
CN102706627A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support angular displacement identification method on basis of hybrid monitoring during temperature variation |
CN102706608A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Loosened cable identification method based on angle monitoring at moment of temperature variation |
CN102706672A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support generalized displacement progressive identification method based on angular monitoring of temperature change |
CN102706629A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable supporting seat generalized displacement progressive-type identification method based on space coordinate monitoring at moment of temperature variation |
CN102706576A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for progressively identifying problem cable and support translation based on angle monitoring during temperature change |
CN102706599A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Loosened cable progressive-type identification method based on combined monitoring at moment of sedimentation of supporting seat and temperature variation |
CN102706586A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of angle monitoring during support settlement and temperature variation |
CN102706665A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support generalized displacement based on hybrid monitoring during temperature variation |
CN102706597A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable approximant identification method on basis of hybrid monitoring during temperature variation |
CN102706659A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Defective cable and support angular displacement progressive identification method based on angular monitoring of temperature change |
CN102706664A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximation identification method based on mixed monitoring of support generalized displacement and temperature change |
CN102706603A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of space coordinate monitoring during support settlement and temperature variation |
CN102706647A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying slack cable based on strain monitoring during temperature variation. |
CN102706667A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Generalized Displacement Identification Method for Damaged Cables and Supports Based on Temperature Change Angle Monitoring |
CN102706620A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of strain monitoring during generalized displacement of support and temperature variation |
CN102706637A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable and support translation progressive identification method on basis of hybrid monitoring during temperature variation |
CN102706590A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximation-type identification method based on strain monitoring at moment of temperature variation |
CN102706643A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support translation based on angle monitoring during temperature variation |
CN102706611A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable and supporting seat generalized displacement identification method based on cable tension monitoring at moment of temperature variation |
CN102706613A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation |
CN102706660A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Temperature variation space coordinate monitoring problem cable and support saddle angular displacement progressive identification method |
CN102706642A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of angle monitoring during support settlement and temperature variation |
CN102706653A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying slack cable based on space coordinate monitoring during support settlement and temperature variation |
CN102706640A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable identification method on basis of strain monitoring during temperature variation |
CN102706635A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of angle monitoring during generalized displacement of support and temperature variation |
CN102706610A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable and supporting seat generalized displacement identification method based on strain monitoring at moment of temperature variation |
CN102706634A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation |
CN102721556A (en) * | 2012-05-30 | 2012-10-10 | 东南大学 | Damaged cable and support angular displacement progressive identification method used in case of temperature variation on basis of strain monitoring |
CN102721555A (en) * | 2012-05-29 | 2012-10-10 | 东南大学 | Damaged cable approximant identification method used in case of support settlement and temperature variation on basis of hybrid monitoring |
WO2013057283A1 (en) * | 2011-10-21 | 2013-04-25 | Plumettaz Holding Sa | Force monitoring for jetting equipment |
CN103852316A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Recognition method for problematic cable loads through generalized displacement and space coordinate monitoring |
CN103852294A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Problem cable load linear displacement recognition method based on space coordinate monitoring |
CN103852306A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Recognition method for damaged cable load linear displacement based on mixing monitoring |
CN103868727A (en) * | 2014-03-10 | 2014-06-18 | 东南大学 | Linear displacement angle monitoring-based progressive load identification method for defective cable |
CN103868723A (en) * | 2014-03-10 | 2014-06-18 | 东南大学 | Angular displacement strain monitoring problem cable load identification method |
CN107101764A (en) * | 2017-06-03 | 2017-08-29 | 西南交通大学 | A kind of experimental rig for being used to test main push-towing rope side force |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2005849A (en) * | 1977-08-23 | 1979-04-25 | Coal Industry Patents Ltd | Rope tension measuring device and speed monitor tester |
DE10141549C1 (en) * | 2001-08-24 | 2003-02-13 | Tensometric Mestechnik Stroehm | Assembly for measuring tensile force on running materials, has deflection roller as a force monitor, with measurements of deflection angle and resulting force at deflection roller |
-
2005
- 2005-04-04 IT ITBZ20050013 patent/ITBZ20050013A1/en unknown
-
2006
- 2006-03-23 WO PCT/IB2006/000649 patent/WO2006136884A1/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2005849A (en) * | 1977-08-23 | 1979-04-25 | Coal Industry Patents Ltd | Rope tension measuring device and speed monitor tester |
DE10141549C1 (en) * | 2001-08-24 | 2003-02-13 | Tensometric Mestechnik Stroehm | Assembly for measuring tensile force on running materials, has deflection roller as a force monitor, with measurements of deflection angle and resulting force at deflection roller |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101806663A (en) * | 2010-03-17 | 2010-08-18 | 东南大学 | Health monitoring method of cable system based on mixed monitoring in presence of support seat settlement |
CN101782473A (en) * | 2010-03-17 | 2010-07-21 | 东南大学 | Progressive type healthy monitoring method of rope system based on angle monitoring during support settlement |
CN101788402A (en) * | 2010-03-17 | 2010-07-28 | 东南大学 | Method for indentifying loose supporting cable based on angle monitoring during support settlement |
CN101782472A (en) * | 2010-03-17 | 2010-07-21 | 东南大学 | Healthy monitoring method of rope system based on angle monitoring during support settlement |
CN101806665A (en) * | 2010-03-17 | 2010-08-18 | 东南大学 | Method for identifying untensioned support cables based on mixed monitoring in presence of support seat settlement |
CN101813571A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | A Progressive Method for Identifying Damaged Cable and Bearing Displacement Based on Angle Monitoring |
CN101813571B (en) * | 2010-03-31 | 2011-09-14 | 东南大学 | Progressive method for identifying damaged cables and support displacement based on angle monitoring |
CN101806667B (en) * | 2010-03-31 | 2011-09-14 | 东南大学 | Progressive method for identifying damaged cable and support displacement based on cable force monitoring |
CN101806667A (en) * | 2010-03-31 | 2010-08-18 | 东南大学 | Progressive method for identifying damaged cable and support displacement based on cable force monitoring |
CN101799373A (en) * | 2010-03-31 | 2010-08-11 | 东南大学 | Health monitor method for identifying damaged cable and support seat displacement based on angle monitor |
CN101806666A (en) * | 2010-03-31 | 2010-08-18 | 东南大学 | Health monitoring method for identifying damaged cable and support displacement based on space coordinate monitoring |
CN101813569A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | Health monitoring method for identifying damaged cable and support displacement based on strain monitoring |
CN101819097A (en) * | 2010-03-31 | 2010-09-01 | 东南大学 | Progressive method for identifying damaged cable and support displacement based on strain monitoring |
CN101813570A (en) * | 2010-03-31 | 2010-08-25 | 东南大学 | Health monitoring method for recognizing damaged cable and support displacement based on mixed monitoring |
CN101819098A (en) * | 2010-03-31 | 2010-09-01 | 东南大学 | Mixed monitoring based progressive method for identifying damaged cables and support displacement |
CN101793631A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Cable structure health monitoring method based on space coordinate monitoring |
CN101793628A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Cable structure health monitoring method based on hybrid monitoring |
CN101793629A (en) * | 2010-04-02 | 2010-08-04 | 东南大学 | Method for monitoring health of progressive cable structure based on strain monitor |
CN102305720A (en) * | 2011-05-13 | 2012-01-04 | 东南大学 | Cable stress monitoring-based progressive method for identifying damaged cable and angular displacement of support |
CN102221481A (en) * | 2011-05-31 | 2011-10-19 | 东南大学 | Relax cable identification method based on mixed monitoring in support generalized displacement |
CN102305723A (en) * | 2011-05-31 | 2012-01-04 | 东南大学 | Health monitoring method based on mixed monitoring and identification of damaged cable and generalized displacement of support |
CN102323096A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Cable force monitoring based method for recognizing damaged cable, loose cable and supporting seat generalized displacement |
CN102323080A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | The health monitor method of the cable system of bearing generalized displacement time space coordinate monitoring |
CN102323093A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Angle monitoring based cable system progressive health monitoring method applied in supporting seat generalized displacement |
CN102323081A (en) * | 2011-05-31 | 2012-01-18 | 东南大学 | Hybrid monitoring based cable system health monitoring method applied in supporting seat generalized displacement |
WO2013057283A1 (en) * | 2011-10-21 | 2013-04-25 | Plumettaz Holding Sa | Force monitoring for jetting equipment |
CN102706608A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Loosened cable identification method based on angle monitoring at moment of temperature variation |
CN102706647A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying slack cable based on strain monitoring during temperature variation. |
CN102706606A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable identification method on basis of the space coordinate monitoring during temperature variation |
CN102706608B (en) * | 2012-05-29 | 2015-10-07 | 东南大学 | Based on the slack line recognition methods of angle monitor during temperature variation |
CN102706602A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of cable force monitoring during temperature variation |
CN102706626B (en) * | 2012-05-29 | 2015-07-08 | 东南大学 | Slack cable identification method on basis of cable force monitoring during temperature variation |
CN102721555A (en) * | 2012-05-29 | 2012-10-10 | 东南大学 | Damaged cable approximant identification method used in case of support settlement and temperature variation on basis of hybrid monitoring |
CN102706652A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support translation based on strain monitoring during temperature variation |
CN102706580A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable based on cable force monitoring during temperature change |
CN102706649A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable and support translation progressive identification method on basis of strain monitoring during temperature variation |
CN102706646A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation |
CN102706596A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Problem cable and support translation progressive identification method used on basis of strain monitoring during temperature variation |
CN102706650A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of strain monitoring during support settlement and temperature variation |
CN102706626A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of cable force monitoring during temperature variation |
CN102706640A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable identification method on basis of strain monitoring during temperature variation |
CN102706618A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable approximant identification method on basis of strain monitoring during temperature variation |
CN102706653A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying slack cable based on space coordinate monitoring during support settlement and temperature variation |
CN102706642A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of angle monitoring during support settlement and temperature variation |
CN102706576A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for progressively identifying problem cable and support translation based on angle monitoring during temperature change |
CN102706599A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Loosened cable progressive-type identification method based on combined monitoring at moment of sedimentation of supporting seat and temperature variation |
CN102706586A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of angle monitoring during support settlement and temperature variation |
CN102706643A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support translation based on angle monitoring during temperature variation |
CN102706597A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Slack cable approximant identification method on basis of hybrid monitoring during temperature variation |
CN102706590A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximation-type identification method based on strain monitoring at moment of temperature variation |
CN102706637A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable and support translation progressive identification method on basis of hybrid monitoring during temperature variation |
CN102706603A (en) * | 2012-05-29 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of space coordinate monitoring during support settlement and temperature variation |
CN102706667A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Generalized Displacement Identification Method for Damaged Cables and Supports Based on Temperature Change Angle Monitoring |
CN102721556A (en) * | 2012-05-30 | 2012-10-10 | 东南大学 | Damaged cable and support angular displacement progressive identification method used in case of temperature variation on basis of strain monitoring |
CN102706620A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Slack cable identification method on basis of strain monitoring during generalized displacement of support and temperature variation |
CN102706664A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximation identification method based on mixed monitoring of support generalized displacement and temperature change |
CN102706659A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Defective cable and support angular displacement progressive identification method based on angular monitoring of temperature change |
CN102706665A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Method for identifying damaged cable and support generalized displacement based on hybrid monitoring during temperature variation |
CN102706611A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable and supporting seat generalized displacement identification method based on cable tension monitoring at moment of temperature variation |
CN102706613A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Slack cable progressive identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation |
CN102706660A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Temperature variation space coordinate monitoring problem cable and support saddle angular displacement progressive identification method |
CN102706629A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable supporting seat generalized displacement progressive-type identification method based on space coordinate monitoring at moment of temperature variation |
CN102706672A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support generalized displacement progressive identification method based on angular monitoring of temperature change |
CN102706627A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support angular displacement identification method on basis of hybrid monitoring during temperature variation |
CN102706635A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of angle monitoring during generalized displacement of support and temperature variation |
CN102706610A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Problem cable and supporting seat generalized displacement identification method based on strain monitoring at moment of temperature variation |
CN102706634A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximant identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation |
CN102706670A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support generalized displacement identification method based on cable force monitoring of temperature change |
CN102706658A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change |
CN102706624A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable and support angular displacement progressive identification method on basis of cable force monitoring temperature variation |
CN102706611B (en) * | 2012-05-30 | 2015-12-02 | 东南大学 | The problem cable of temperature variation cable force monitoring and generalized displacement of support recognition methods |
CN102706624B (en) * | 2012-05-30 | 2015-10-07 | 东南大学 | The damaged cable support angular displacement progressive identification method of temperature variation cable force monitoring |
CN102706668A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Progressive type identification method of damaged cable and support generalized displacement based on hybrid monitoring during temperature variation |
CN102706677A (en) * | 2012-05-30 | 2012-10-03 | 东南大学 | Damaged cable approximation identification method based on angular monitoring of support angular displacement and temperature change |
CN102706658B (en) * | 2012-05-30 | 2015-07-08 | 东南大学 | Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change |
CN103868723A (en) * | 2014-03-10 | 2014-06-18 | 东南大学 | Angular displacement strain monitoring problem cable load identification method |
CN103868727A (en) * | 2014-03-10 | 2014-06-18 | 东南大学 | Linear displacement angle monitoring-based progressive load identification method for defective cable |
CN103852306A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Recognition method for damaged cable load linear displacement based on mixing monitoring |
CN103852294A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Problem cable load linear displacement recognition method based on space coordinate monitoring |
CN103852316A (en) * | 2014-03-10 | 2014-06-11 | 东南大学 | Recognition method for problematic cable loads through generalized displacement and space coordinate monitoring |
CN107101764A (en) * | 2017-06-03 | 2017-08-29 | 西南交通大学 | A kind of experimental rig for being used to test main push-towing rope side force |
Also Published As
Publication number | Publication date |
---|---|
ITBZ20050013A1 (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006136884A1 (en) | Device for measuring indirect cable tensions | |
DE60003744T2 (en) | Device for stress and strain measurements | |
DE2350730C2 (en) | Method and device for determining the properties of metallic materials | |
DE202017101176U1 (en) | Device for testing and / or calibrating a test stand | |
DE2038771A1 (en) | Pressure transducer | |
WO2006105931A2 (en) | Hydraulic threaded bolt clamping device and method for tightening large screws by means of said hydraulic threaded bolt clamping device | |
DE202008002919U1 (en) | Actuator for testing torque wrenches | |
DE102014216350A1 (en) | System and method for measuring and evaluating brake pedal behavior | |
DE102018219093A1 (en) | Procedure for testing the coefficient of friction of a screw and coefficient of friction test for screws | |
DE102009002284B4 (en) | Device for calibrating fluid-actuated motor-driven torque tools | |
EP0756165A2 (en) | Method and device for calibrating of torque in measuring installation | |
WO2011157261A2 (en) | Method for low-vibration optical force measurement, in particular at high temperatures | |
DE2651576A1 (en) | TORQUE TESTING DEVICE FOR TOOLS, ESPECIALLY WRENCHES | |
DE202015106965U1 (en) | Measuring device for checking a chuck | |
DE102018110814B3 (en) | DEVICE AND METHOD FOR CALIBRATING MEASURING DEVICES | |
EP1607714A1 (en) | Method and device for measuring the play of a pivotable link | |
DE102017104327B3 (en) | Device and method for testing and / or calibrating a test bench | |
DE2019239A1 (en) | Method and device for tuning irregularities in the behavior of tires rotating under load | |
DE2749067A1 (en) | Static testing device for screw combined with nut - has screw attached to dynamometer and also attached to adjustable spindle | |
DE10163287B4 (en) | Method and device for testing the turn-off behavior of yield-limit-controlled power wrenches | |
DE102014110507A1 (en) | Pressing method with compensation of positioning errors in a pressing process and press for carrying out such a method | |
DE10156346A1 (en) | Measurement transducer for small torques in form of rim linked to hub by spokes with measurement instruments on spokes | |
EP0487546B1 (en) | Dynamometer | |
DE10238077A1 (en) | Standard torque measurement unit for standards institute calibration of torque measurement equipment has lever arms with strain gauges and force sensors | |
DE29822319U1 (en) | Torque measuring device as a static / dynamic torque measuring simulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06795050 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6795050 Country of ref document: EP |