WO2006134717A1 - Nitride semiconductor laser and method for fabricating same - Google Patents
Nitride semiconductor laser and method for fabricating same Download PDFInfo
- Publication number
- WO2006134717A1 WO2006134717A1 PCT/JP2006/307771 JP2006307771W WO2006134717A1 WO 2006134717 A1 WO2006134717 A1 WO 2006134717A1 JP 2006307771 W JP2006307771 W JP 2006307771W WO 2006134717 A1 WO2006134717 A1 WO 2006134717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitride semiconductor
- electrode
- resist mask
- insulating layer
- waveguide
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
Definitions
- Nitride semiconductor laser device and manufacturing method thereof Nitride semiconductor laser device and manufacturing method thereof
- the present invention relates to a nitride semiconductor laser device having a high manufacturing yield and high reliability of a cavity end face, and a method for manufacturing the same.
- a nitride semiconductor laser device having a ridge stripe-shaped waveguide, a waveguide formed on the upper surface of a nitride semiconductor laminated portion formed on a substrate, and an insulation provided with an opening on the upper surface of the waveguide
- an electrode is formed on the nitride semiconductor multilayer portion through the protective protective film.
- FIG. 23 is a cross-sectional view of the nitride semiconductor laser device 100 cut in a direction perpendicular to the convex stripe (ridge stripe) waveguide region 115, that is, in a direction parallel to the resonance surface. It is.
- the nitride semiconductor laser device 100 includes an n-type crack prevention layer 107, an n-type cladding layer 108, an optical guide layer 109, an active layer 110, a p-type cap layer 111, on a nitride semiconductor substrate 106 exhibiting n-type conductivity.
- a light guide layer 112, a p-type cladding layer 113, and a p-type contact layer 114 are stacked, and a part of the nitride semiconductor substrate 106 is etched to form a convex stripe-shaped waveguide region 115. Yes.
- a first protective film 104 having an opening on the upper surface of the waveguide region 115 is formed on the upper surface of the nitride semiconductor substrate 106 and the side surface of the waveguide region 115 as an insulating protective film.
- the p-type electrode 101 and the vicinity thereof are covered with a p-type electrode 101, and a second protective film 105 is formed on a portion other than the p-type electrode 101 on the upper surface of the nitride semiconductor substrate 106.
- a pad electrode 102 is formed on the substrate!
- Patent Document 1 JP-A-11-330610 (Page 5, Figure 1)
- This conventional nitride semiconductor laser device 100 is formed by cleaving the nitride semiconductor substrate 106. A resonator end face is produced. At this time, the first protective film 104 and the second protective film 105 are also cracked, but these insulating protective films are hard and brittle, and fine fragments are generated. That is, the first protective film 104 and the second protective film 105 serve as a dust generation source. If these fragments adhere to the laser emission point at or near the resonator end face, the light emission characteristics of the nitride semiconductor laser device 100 will be abnormal, resulting in a defective product. Become.
- the coat film formed on the cleavage plane when driven is generated by the oscillation light. It is activated to increase reactivity.
- SiO is used as an insulating protective film
- the Si of the insulating protective film and A1 and Hf of these films form a eutectic. Therefore, when this nitride semiconductor laser device is continuously driven and the temperature of the cavity end face rises, for example, when it reaches 100 ° C. or higher, this eutectic is formed in the coating film, so that these films are reflected.
- the rate may deviate significantly from the design value, and the laser drive characteristics may vary accordingly.
- the present invention provides a nitride semiconductor laser in which no fragments are generated from the insulating protective film when the nitride semiconductor substrate is cleaved, the manufacturing yield is good, and the resonator end face has high reliability.
- An object is to provide an apparatus and a method for manufacturing the same.
- the present invention provides a substrate, a nitride semiconductor stacked portion in which a plurality of nitride semiconductor layers are stacked on the substrate, and a ridge stripe-shaped waveguide is provided;
- a nitride semiconductor comprising: an insulating layer formed on the nitride semiconductor stacked portion and having an opening above the waveguide; and a first electrode provided on the waveguide and the insulating layer.
- the present invention provides the semiconductor laser device having the above configuration, wherein the waveguide and the first A second electrode is provided between the electrodes, and the second electrode is disposed over the entire top surface of the waveguide.
- a length in a direction parallel to a longitudinal direction of the waveguide of a region where the insulating layer above the nitride semiconductor stacked portion is not disposed is provided. It is characterized by being 2 ⁇ m or more and 20 ⁇ m or less.
- a coat film is formed on at least one of the substrate and the nitride semiconductor stacked portion on an end surface perpendicular to the longitudinal direction of the waveguide.
- the insulating film is provided so as to protrude above the semiconductor laminated portion, and the protruding portion of the coating film does not contact the insulating layer.
- the method for manufacturing a nitride semiconductor laser device of the present invention includes a first step in which a plurality of nitride semiconductor layers are stacked on a substrate to form a nitride semiconductor stacked portion, and the first step.
- a second step of forming a striped first resist mask on the upper surface of the nitride semiconductor multilayer portion, and an upper portion of the nitride semiconductor multilayer portion on the first resist mask formed in the second step A third step of forming a ridge-striped waveguide in the nitride semiconductor stack by etching an uncovered portion, and the nitridation etched in the third step including the first resist mask
- a first electrode is formed on top of the insulating layer and the nitride semiconductor stacked portion provided with the opening in the fifth step.
- the second step after the second electrode is formed on the upper surface of the nitride semiconductor multilayer portion formed in the first step, the second electrode A striped first resist mask is formed on the upper surface of the electrode, and the third step is performed. Then, after removing the portion covered with the first resist mask of the second electrode formed in the second step, the surface of the nitride semiconductor multilayer portion is removed. A ridge stripe-shaped waveguide is formed in the nitride semiconductor multilayer portion by etching the portion in contact with the second electrode, and in the sixth step, the insulating layer and the second electrode are formed. A first resist is formed on top of the insulating layer, and in the seventh step, a second resist mask is formed on the insulating layer, the first electrode, and the second electrode except in the vicinity of the cleavage position. It is characterized by doing.
- the method for manufacturing a semiconductor laser device of the present invention is obtained by removing the second resist mask in the ninth step and then cleaving in the cleavage position, and cleaving in the tenth step. And an eleventh step of forming a coating film on at least one of the cleavage planes so as not to contact the insulating layer.
- FIG. 1 is a partial perspective view of a nitride semiconductor laser device according to a first embodiment.
- FIG. 2 is a partial front view around the nitride semiconductor multilayer portion according to the first embodiment.
- FIG. 3 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 4 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 5 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 6 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 7 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 8 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 9 is a partial perspective view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- 10 Partial perspective view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
- FIG. 11 is a partial perspective view of the nitride semiconductor laser device according to the second embodiment.
- FIG. 23 is a schematic sectional view of a conventional nitride semiconductor laser device.
- FIG. 1 is a partial perspective view of the nitride semiconductor laser device according to the first embodiment
- FIG. 2 is a partial front view around the nitride semiconductor multilayer portion according to the first embodiment
- FIGS. FIG. 9 and FIG. 10 are partial perspective views showing a method of manufacturing a nitride semiconductor laser device according to the embodiment.
- a nitride semiconductor multilayer portion 11 is formed on an n-type GaN substrate (not shown) as shown in FIG.
- the nitride semiconductor multilayer portion 1 1 includes, in order from the n-type GaN substrate 10 side, a Si-doped GaN buffer layer l la, an n-type GaN layer l lb, and an n-type AlGaN cladding layer 11 c by low-temperature growth.
- N-type GaN optical waveguide layer l ld N-type GaN optical waveguide layer l ld, I nGaN multiple quantum well structure active layer l le, p-type AlGaN cap layer 1 If, p-type GaN optical wave layer 1 lg, p-type AlGaN cladding layer 1 lh and p-type GaN Contact layer 1 li is laminated.
- the nitride semiconductor multilayer portion 11 includes a ridge stripe-shaped waveguide having a width of 2 ⁇ m formed by removing a part of the p-type AlGaN cladding layer l lh and a part of the p-type GaN contact layer l li 12 is formed.
- an insulating film 21 having a thickness of 3500 A and having an SiO force is provided on the upper portion of the nitride semiconductor multilayer portion 11 and has an opening 21 a in a portion corresponding to the upper surface of the waveguide 12.
- a p-side electrode 31 in which Pd with a thickness of 500 A and Au with a thickness of 6000 A are sequentially stacked is provided on the upper portion of the insulating film 21 and the upper surface of the waveguide 12, and is conducted through the opening 2 la of the insulating film 21. It is in ohmic contact with the upper surface of the waveguide 12.
- the insulating film 21 is disposed at a position retracted 10 m from the exit side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage, respectively, and from the exit side cleavage surface 13 and the reflection side cleavage surface 14. In the range of 10 m, the upper surface of the nitride semiconductor multilayer portion 11 is exposed.
- nitride semiconductor laser device 1 As shown in FIG. 3, on an n-type GaN substrate (not shown), metal organic chemical vapor deposition (MOCVD) method, molecular beam epitaxy (MBE) The nitride semiconductor multilayer portion 11 is formed by a crystal growth method such as the) method.
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- a striped first resist mask 41 having a width of 2 m is formed on the surface of the nitride semiconductor multilayer portion 11.
- the nitride semiconductor multilayer portion 11 is etched up to the middle of the p-type AlGaN cladding layer l lh by reactive ion etching using the first resist mask 41 as a mask to obtain a waveguide. 12 is formed (see Fig. 2).
- the process gas in this case is, for example, a chlorine-based gas such as CI, SiCl, BC1
- an insulating film 21 having a SiO force of 3500 A is formed on the entire top surface of the nitride semiconductor multilayer portion 11 including the first resist mask 41 by an electron beam evaporation method.
- the insulating film 21 and the first resist mask 41 on the first resist mask 41 are removed by a lift-off method, and an opening 21 a is provided in the insulating film 21.
- FIG. 8 and FIG. 9 which is a perspective view thereof, a p-side electrode 31 in which Pd having a thickness of 500 A and Au having a thickness of 6000 A are sequentially stacked on the upper surfaces of the insulating film 21 and the waveguide 12. Form. At this time, the p-side electrode 31 is formed so as to avoid the portion forming the resonator end face, that is, the cleavage position 15.
- a second resist mask 42 is formed on the insulating film 21 so as to completely cover the p-side electrode 31. At this time, the second resist mask 42 is formed at a position retracted 10 m from each cleavage position 15 on both the emission surface side and the reflection surface side.
- the portion of the insulating film 21 that is exposed without being covered by the second resist mask 42 is etched by the reactive ion etching method until the nitride semiconductor multilayer portion 11 is reached.
- the reactive ion etching method for example, CHF or CF is used as the process gas in this case.
- the second resist mask 42 is removed with an agent, and cleavage is performed so as to form the emission-side cleavage surface 13 and the reflection-side cleavage surface 14, thereby obtaining the nitride semiconductor laser device 1 having the structure shown in FIG.
- the nitride semiconductor laser device 1 before cleaving is not provided with the insulating film 21 above the cleavage position.
- the cleavage plane 14 is formed, debris is generated from the insulating film 21 that also has SiO force.
- the nitride semiconductor laser device 1 in which foreign matter derived from the insulating film 21 does not adhere to the emission-side cleavage surface 13 and the reflection-side cleavage surface 14 can greatly improve the yield related to the light emission characteristics. .
- the nitride semiconductor laser device 1 shown in FIG. 1 is coated with the outgoing side cleaved surface 13 and the reflective side cleaved surface 14 to obtain a state shown in FIG.
- the peeling of the end coat film originating from the foreign material adhering to the cleaved surface is dramatically reduced, and the reliability is improved. I was able to.
- the force described in the case where the insulating film 21 is retracted by 10 m from the emission side cleavage surface 13 and the reflection side cleavage surface 14, respectively is 2 ⁇ m or more and 20 ⁇ m or less.
- this width is narrower than m, when the cleavage plane is bent due to the influence of voids or the like in the nitride semiconductor multilayer portion 11 when the cleaved surface 13 and the reflective-side cleaved surface 14 are cleaved.
- the cleavage plane may reach the insulating film 21, and the insulating film 21 may break and generate fragments.
- this width is wider than 20 m, the linearity of the current 'light output characteristic of the nitride semiconductor laser device 1 is likely to be lost.
- the p-side electrode 31 is not arranged in the part where the insulating film 21 is retracted, so that no current is injected into the waveguide 12 in this part, but there is a part where this current is not injected. This is because the effect on the current * light output characteristics is so large that it cannot be ignored.
- FIG. 11 is a partial perspective view of the nitride semiconductor laser device according to the second embodiment
- FIGS. 12 to 18 are partial sectional views showing a method for manufacturing the nitride semiconductor laser according to the second embodiment
- a contact electrode is provided on the waveguide
- the second embodiment is the same as the first embodiment except that a pad electrode is provided instead of the p-side electrode, and substantially the same parts are denoted by the same reference numerals.
- a nitride semiconductor multilayer portion 11 is formed on an n-type GaN substrate (not shown) as shown in FIG.
- the nitride semiconductor multilayer portion 11 has the same configuration as that of the first embodiment shown in FIG.
- a waveguide 12 is formed in the nitride semiconductor multilayer portion 11 as in the first embodiment, and the upper portion of the nitride semiconductor multilayer portion 11 corresponds to the upper surface of the waveguide 12.
- An insulating film 21 having an opening 21a is provided at a site to be formed.
- a contact electrode 33 made of Pd having a thickness of 500 A is provided on the upper surface of the waveguide 12 and is in ohmic contact with the upper surface of the waveguide 12.
- a pad electrode 34 having a thickness of 6000 A and having an Au force is provided on the insulating film 21 and the contact electrode 33.
- the insulating film 21 is disposed at a position retracted by 25 ⁇ m from the emission side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage, respectively.
- the emission side cleavage surface 13 and the reflection side cleavage surface 14 To 25 m, the upper surface of the nitride semiconductor multilayer portion 11 is exposed.
- the nitride semiconductor multilayer portion 11 of the nitride semiconductor multilayer portion 11 is formed as shown in FIG.
- a contact electrode 33 is formed on the surface, and a stripe-shaped first resist mask 41 having a width is formed on the contact electrode 33 as shown in FIG.
- the contact electrode 33 is etched by reactive ion etching until the surface of the nitride semiconductor multilayer portion 11 is exposed.
- Ar, CHF, or the like is used as an etching gas.
- the nitride semiconductor multilayer portion 11 is etched from the upper surface to the middle of the p-type AlGaN cladding layer l lh by reactive ion etching to form a waveguide 12.
- a process gas for example, a chlorine-based gas such as CI, SiCl, or BC1 is used.
- an insulating film having a thickness of 3500 and 310 forces is formed on the entire top surface of the nitride semiconductor multilayer portion 11 including the side surfaces of the first resist mask 41 and the contact electrode 33.
- the insulating film 21 and the first resist mask 41 on the first resist mask 41 are removed by a lift-off method to provide an opening 21 a in the insulating film 21.
- the state shown in Fig. 17 is obtained.
- FIG. 18 and FIG. 19 which is a perspective view thereof, a pad electrode 34 made of Au having a thickness of 6000 A is formed on the insulating film 21 and the contact electrode 33. At this time, the pad electrode 34 is formed so as to avoid the portion forming the resonator end face, that is, the cleavage position 15.
- a second resist mask 42 is formed on the insulating film 21 so as to completely cover the contact electrode 33 and the pad electrode 34. At this time, the second resist mask 42 is formed at a position retracted by 25 m from the cleavage position 15 on both the emission surface side and the reflection surface side.
- the insulating film 21 that is exposed without being covered with the second resist mask 42 is etched by the reactive ion etching method until it reaches the nitride semiconductor multilayer portion 11. To do. Finally, the second resist mask 42 is removed with an organic solvent, and the cleaved surface 13 and the reflective side cleaved surface 14 are cleaved to form the nitride semiconductor laser device 1 having the structure shown in FIG. Get.
- the insulating film 21 is not disposed above the cleavage position as in the first embodiment.
- the emission-side cleavage surface 13 and the reflection-side cleavage surface 14 are formed by cleavage, no debris is generated from the insulating film 21 that also has the Si 2 O force. Therefore, the exit side cleaved surface 13 and
- the nitride semiconductor laser device 1 in which foreign matter derived from the insulating film 21 does not adhere to the reflection-side cleaved surface 14 can greatly improve the yield related to the light emission characteristics.
- the contact electrode 33 is disposed up to the resonator end face, that is, directly above the emission-side cleavage surface 13 and the reflection-side cleavage surface 14, and the waveguide 12 has a current as a whole. Therefore, the linearity of the current optical output characteristics is not lost due to the injected current as in the case where there is a portion where no electrode is provided on the waveguide 12.
- FIG. 22 is a partial perspective view of a nitride semiconductor laser device according to the third embodiment of the present invention.
- Third embodiment Is the same as in the first embodiment except that end face coating with a coating film is performed on the outgoing side cleaved surface 13 and the reflective side cleaved surface 14, and substantially the same parts are denoted by the same reference numerals. It is.
- the nitride semiconductor laser device 1 according to the third embodiment is formed on the nitride semiconductor multilayer portion 11 having the configuration shown in FIG. 2 as in the first embodiment.
- a waveguide 12 is formed, and has an opening 21a at a portion corresponding to the upper surface of the waveguide 12, and has no SiO force.
- a p-side electrode 31 in which Pd having a thickness of 500 A and Au having a thickness of 6000 A are sequentially laminated is provided on the insulating film 21 and the top surface of the waveguide 12. Further, the insulating film 21 is disposed at a position retracted by 18 ⁇ m from each of the emission side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage.
- the surface of the outgoing side cleaved surface 13 is made of AlO with a thickness of 70 A.
- the front coat film 51 has a total of nine layers of SiO and TiO alternately stacked on the surface of the reflective cleaved surface 14.
- a rear coat film 52 having a multilayer structure with two layers is provided, and partially overlies the upper surface of the nitride semiconductor multilayer portion 11 with a gap 61 and a gap 62 from the insulating film 21, respectively.
- the front coat film 51 is activated by the oscillation light and the reactivity is increased.
- the temperature of the resonator end face that is, the emission-side cleavage face 13 and the reflection-side cleavage face 14 is continuously driven. For example, when the temperature exceeds 100 ° C, Al O force
- the front coat film 51 reacts with the insulating film 21 with SiO force, and the eutectic of Al and Si coats the front coat.
- the film 51 Due to this eutectic, the reflectance of the front coat film 51 is greatly deviated from the design value, and accordingly, the operating characteristics of the semiconductor laser device 10 may be fluctuated, resulting in lack of long-term reliability.
- the eutectic of A1 and Si is not formed in the front coat film 51 by arranging the front coat film 51, the insulating film 21, and the force gap 61 as in the third embodiment. Therefore, the long-term reliability could be greatly improved.
- nitride semiconductor refers to a semiconductor in which Ga in gallium nitride (GaN) is partially replaced by another group III element, such as Ga Al ln N (0 ⁇ s ⁇ l, 0 ⁇ t ⁇ l, 0 ⁇ s + t ⁇ l), including semiconductors in which some of the constituent elements are replaced by impurity elements and semiconductors to which other impurities are added.
- the p-side electrode 31 of the first and third embodiments also has a two-layer structural force of Pd with a thickness of 500A and Au with a thickness of 6000A in order from the surface side of the nitride semiconductor multilayer portion 11.
- Ni or Ti is used instead of Pd or Au, or if another metal such as Au or Mo is laminated on Pd, Au, Ni or Ti, etc., it is even thicker.
- the same nitride semiconductor laser device can be manufactured by the manufacturing method according to the present invention even if it is not as in these embodiments.
- the contact electrode 33 is made of Pd and the pad electrode 34 is made of Au.
- the contact electrode 33 is made of Ni, Ti, the pad electrode 34 is made of Mo, etc. Even if the electrode has a structure in which a plurality of metals such as Pd, Au, Ni, Ti and Mo are laminated, and even if the thickness is not as in the second embodiment, the manufacturing method according to the present invention A similar nitride semiconductor laser device can be produced.
- the insulating film 21 of the first to third embodiments has a force that has a SiO force TiO, Si
- inorganic dielectrics such as 0, Ta O, SiN, or nitride semiconductors such as AlGaN.
- the formation method may be based on the sputtering method, the plasma CVD method, or the like, instead of the electron beam evaporation method exemplified in the description of the embodiment.
- the insulating film 21 has removed all of the partial force directly above the resonator end face, that is, the emission-side cleaved surface 13 and the reflection-side cleaved surface 14, fragments of the insulating film 21 crushed at the time of cleavage become the light emission point. As long as it does not scatter to the end face of the waveguide 12 and its vicinity, it is not always necessary to remove all the portions directly above the end face of the resonator. For example, the removal range may be only the waveguide 12 and its vicinity. .
- the third embodiment of the present invention corresponds to a state in which the nitride semiconductor laser device according to the first embodiment is end-coated, but the second embodiment Pertaining to The same effect can be obtained even when the same end face coating is applied to the nitride semiconductor laser device.
- a reactive ion etching method as a dry etching method, an inductively coupled plasma etching method, an ECR plasma etching method, etc.
- similar etching is possible by using the same process gas.
- the portion exposed without being covered with the second resist mask 42 of the insulating film 21 is dug by the reactive ion etching method.
- the nitride semiconductor multilayer portion 11 itself is partially dug, the same effect can be obtained.
- the insulating protective film is not disposed at least in the vicinity of the longitudinal end portion of the waveguide on the upper portion of the nitride semiconductor multilayer portion, and the end surface is obtained by cleaving the nitride semiconductor multilayer portion. Since the insulating protective film is not crushed when manufacturing the semiconductor device, it is possible to realize a nitride semiconductor laser device with a high manufacturing yield that does not cause problems due to fragments of the insulating protective film. .
- the electrode is provided on the waveguide. As a result, the linearity of the current / light output characteristics is not disrupted.
- the length in the direction parallel to the longitudinal direction of the waveguide in the region where the insulating layer on the upper part of the nitride semiconductor multilayer portion is not disposed is 2 ⁇ m or more and 20 m or less. Therefore, even if the cleavage plane is bent at the time of cleavage, the insulating film does not break and generates fragments.In addition, even if the second electrode is provided only under the insulating layer, the current It is hard to break down.
- the insulating protective film does not contact the coat film formed on the cleavage plane, for example, SiO is used as the insulating protective film, and the coat film forms a eutectic with Si.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
In a method for fabricating a nitride semiconductor laser, an insulating film (21) is formed on a multilayer nitride semiconductor portion (11) on a substrate, a resist mask is formed on the insulating film (21) such that the insulating film (21) is exposed in the vicinity of positions to be an exit side cleavage face (13) and a reflection side cleavage face (14), an insulating film (21) is removed in the vicinity of the positions to be the exit side cleavage face (13) and the reflection side cleavage face (14), and after the resist mask is removed, they are cleaved. Since the insulating film (21) is not crushed even if the substrate and the multilayer nitride semiconductor portion (11) are cleaved at the positions to be the exit side cleavage face (13) and the reflection side cleavage face (14), fragments derived from the insulating film (21) do not adhere to the exit side cleavage face (13) and the reflection side cleavage face (14).
Description
明 細 書 Specification
窒化物半導体レーザ装置およびその製造方法 Nitride semiconductor laser device and manufacturing method thereof
技術分野 Technical field
[0001] 本発明は、製造歩留まりおよび共振器端面の信頼性が高い窒化物半導体レーザ 装置およびその製造方法に関する。 TECHNICAL FIELD [0001] The present invention relates to a nitride semiconductor laser device having a high manufacturing yield and high reliability of a cavity end face, and a method for manufacturing the same.
背景技術 Background art
[0002] リッジストライプ状の導波路を有する窒化物半導体レーザ装置において、基板上に 形成された窒化物半導体積層部の上面に形成した導波路と、この導波路の上面に 開口部を設けた絶縁性保護膜を介して、窒化物半導体積層部上に電極を形成する ことが一般的に行われる。このような構造の窒化物半導体レーザ装置としては、例え ば特許文献 1で提案された、図 23に示すものが挙げられる。 In a nitride semiconductor laser device having a ridge stripe-shaped waveguide, a waveguide formed on the upper surface of a nitride semiconductor laminated portion formed on a substrate, and an insulation provided with an opening on the upper surface of the waveguide In general, an electrode is formed on the nitride semiconductor multilayer portion through the protective protective film. As a nitride semiconductor laser device having such a structure, for example, the one shown in FIG.
[0003] 図 23は、窒化物半導体レーザ装置 100を、凸型ストライプ状 (リッジストライプ型)の 導波路領域 115に対して垂直方向、すなわち共振面に対して平行な方向で切断し た断面図である。窒化物半導体レーザ装置 100は、 n型導電性を示す窒化物半導体 基板 106上に、 n型クラック防止層 107、 n型クラッド層 108、光ガイド層 109、活性層 110、 p型キャップ層 111、光ガイド層 112、 p型クラッド層 113、 p型コンタクト層 114 を積層し、これらの層および窒化物半導体基板 106の一部をエッチングして凸型スト ライプ状の導波路領域 115が形成されている。窒化物半導体基板 106の上面および 導波路領域 115の側面には、絶縁性保護膜として、導波路領域 115の上面に開口 部を有する第 1の保護膜 104が形成されており、導波路領域 115およびその近傍は p型電極 101で被覆され、さらに窒化物半導体基板 106の上面の p型電極 101以外 の部分は第 2の保護膜 105が形成され、 p型電極 101および第 2の保護膜 105の上 にパッド電極 102が形成されて!、る。 FIG. 23 is a cross-sectional view of the nitride semiconductor laser device 100 cut in a direction perpendicular to the convex stripe (ridge stripe) waveguide region 115, that is, in a direction parallel to the resonance surface. It is. The nitride semiconductor laser device 100 includes an n-type crack prevention layer 107, an n-type cladding layer 108, an optical guide layer 109, an active layer 110, a p-type cap layer 111, on a nitride semiconductor substrate 106 exhibiting n-type conductivity. A light guide layer 112, a p-type cladding layer 113, and a p-type contact layer 114 are stacked, and a part of the nitride semiconductor substrate 106 is etched to form a convex stripe-shaped waveguide region 115. Yes. A first protective film 104 having an opening on the upper surface of the waveguide region 115 is formed on the upper surface of the nitride semiconductor substrate 106 and the side surface of the waveguide region 115 as an insulating protective film. The p-type electrode 101 and the vicinity thereof are covered with a p-type electrode 101, and a second protective film 105 is formed on a portion other than the p-type electrode 101 on the upper surface of the nitride semiconductor substrate 106. A pad electrode 102 is formed on the substrate!
特許文献 1 :特開平 11— 330610号公報 (第 5頁、図 1) Patent Document 1: JP-A-11-330610 (Page 5, Figure 1)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] この従来の窒化物半導体レーザ装置 100は、窒化物半導体基板 106を劈開して
共振器端面が作製される。このとき第 1の保護膜 104および第 2の保護膜 105も割れ るが、これらの絶縁性保護膜は固くて脆いため、細かい破片を発生する。つまり、第 1 の保護膜 104および第 2の保護膜 105が発塵源となる。この破片が共振器端面のレ 一ザの発光点またはその近傍に付着すると、窒化物半導体レーザ装置 100の光放 射特性の異常を招来し、不良品となるため、製造歩留まりの低下の要因となる。 This conventional nitride semiconductor laser device 100 is formed by cleaving the nitride semiconductor substrate 106. A resonator end face is produced. At this time, the first protective film 104 and the second protective film 105 are also cracked, but these insulating protective films are hard and brittle, and fine fragments are generated. That is, the first protective film 104 and the second protective film 105 serve as a dust generation source. If these fragments adhere to the laser emission point at or near the resonator end face, the light emission characteristics of the nitride semiconductor laser device 100 will be abnormal, resulting in a defective product. Become.
[0005] また、この破片がレーザの発光点およびその近傍以外の場所に付着した場合でも 、劈開面に形成されるコート膜が剥落する基点となる可能性を包含しており、窒化物 半導体レーザ装置 100の長期信頼性を低下させる要因となる。 [0005] Further, even if this fragment adheres to a place other than the laser emission point and its vicinity, the possibility exists that the coating film formed on the cleavage plane may become a base point from which the nitride semiconductor laser is removed. This is a factor that reduces the long-term reliability of the device 100.
[0006] 一方、窒化ガリウム系の窒化物半導体レーザ装置にお!、ては、その発振波長が 40 5nm前後と比較的短いため、駆動すると劈開面に形成されるコート膜が発振光によ つて活性化されて反応性が高まる。ここで、例えば絶縁性保護膜として SiOを用い、 [0006] On the other hand, in a gallium nitride-based nitride semiconductor laser device, since its oscillation wavelength is relatively short, about 405 nm, the coat film formed on the cleavage plane when driven is generated by the oscillation light. It is activated to increase reactivity. Here, for example, SiO is used as an insulating protective film,
2 劈開面に形成されるコート膜が A1や Hfを含む場合、絶縁性保護膜の Siとこれらの膜 の A1や Hfとが共晶を形成する。したがって、この窒化物半導体レーザ装置を連続駆 動して共振器端面の温度が上昇すると、例えば 100°C以上になると、コート膜中にこ の共晶が形成されることによりこれらの膜の反射率が設計値から大幅にずれ、それに 伴ってレーザの駆動特性が変動する可能性もある。 2 When the coating film formed on the cleavage plane contains A1 and Hf, the Si of the insulating protective film and A1 and Hf of these films form a eutectic. Therefore, when this nitride semiconductor laser device is continuously driven and the temperature of the cavity end face rises, for example, when it reaches 100 ° C. or higher, this eutectic is formed in the coating film, so that these films are reflected. The rate may deviate significantly from the design value, and the laser drive characteristics may vary accordingly.
[0007] そこで、本発明は、窒化物半導体基板を劈開する際に絶縁性保護膜から破片が発 生せず、製造歩留まりが良好であり、また共振器端面の信頼性の高い窒化物半導体 レーザ装置およびその製造方法を提供することを目的とする。 [0007] Therefore, the present invention provides a nitride semiconductor laser in which no fragments are generated from the insulating protective film when the nitride semiconductor substrate is cleaved, the manufacturing yield is good, and the resonator end face has high reliability. An object is to provide an apparatus and a method for manufacturing the same.
課題を解決するための手段 Means for solving the problem
[0008] 上記目的を達成するために本発明は、基板と、この基板上に複数の窒化物半導体 層が積層されてなり、リッジストライプ状の導波路が設けられた窒化物半導体積層部 と、前記窒化物半導体積層部上に形成され、前記導波路の上部に開口部を有する 絶縁層と、前記導波路および前記絶縁層の上部に設けられた第 1の電極と、を備え る窒化物半導体レーザ装置において、前記窒化物半導体積層部の上部の、少なくと も前記導波路の長手方向の端部の近傍には前記絶縁層が配置されずに前記窒化 物半導体積層部が露出している部分を有することを特徴とする。 [0008] In order to achieve the above object, the present invention provides a substrate, a nitride semiconductor stacked portion in which a plurality of nitride semiconductor layers are stacked on the substrate, and a ridge stripe-shaped waveguide is provided; A nitride semiconductor comprising: an insulating layer formed on the nitride semiconductor stacked portion and having an opening above the waveguide; and a first electrode provided on the waveguide and the insulating layer. In the laser device, a portion of the upper portion of the nitride semiconductor multilayer portion where the nitride semiconductor multilayer portion is exposed without the insulating layer being disposed at least in the vicinity of the longitudinal end portion of the waveguide It is characterized by having.
[0009] また本発明は、上記構成の半導体レーザ装置において、前記導波路と前記第 1の
電極との間に第 2の電極を有し、この第 2の電極が前記導波路の上面の全体に配置 されていることを特徴とする。 [0009] Further, the present invention provides the semiconductor laser device having the above configuration, wherein the waveguide and the first A second electrode is provided between the electrodes, and the second electrode is disposed over the entire top surface of the waveguide.
[0010] また本発明は、上記構成の半導体レーザ装置において、前記窒化物半導体積層 部の上部の前記絶縁層が配置されていない領域の、前記導波路の長手方向と平行 な方向の長さが 2 μ m以上 20 μ m以下であることを特徴とする。 [0010] Further, according to the present invention, in the semiconductor laser device configured as described above, a length in a direction parallel to a longitudinal direction of the waveguide of a region where the insulating layer above the nitride semiconductor stacked portion is not disposed is provided. It is characterized by being 2 μm or more and 20 μm or less.
[0011] また本発明は、上記構成の半導体レーザ装置において、前記基板および前記窒 化物半導体積層部の、前記導波路の長手方向に垂直な端面の少なくとも一方に、コ ート膜が前記窒化物半導体積層部の上部に張り出すように設けられており、このコー ト膜の張り出した部分と前記絶縁層とが接触しないことを特徴とする。 [0011] Further, according to the present invention, in the semiconductor laser device configured as described above, a coat film is formed on at least one of the substrate and the nitride semiconductor stacked portion on an end surface perpendicular to the longitudinal direction of the waveguide. The insulating film is provided so as to protrude above the semiconductor laminated portion, and the protruding portion of the coating film does not contact the insulating layer.
[0012] 本発明の窒化物半導体レーザ装置の製造方法は、基板上に複数の窒化物半導体 層を積層して窒化物半導体積層部を形成する第 1ステップと、前記第 1ステップで形 成した前記窒化物半導体積層部の上面にストライプ状の第 1のレジストマスクを形成 する第 2ステップと、前記窒化物半導体積層部の上部の、前記第 2ステップで形成し た前記第 1のレジストマスクに覆われていない部分をエッチングすることによって前記 窒化物半導体積層部にリッジストライプ状の導波路を形成する第 3ステップと、前記 第 1のレジストマスクを含めた、前記第 3ステップでエッチングした前記窒化物半導体 積層部の上部に絶縁層を形成する第 4ステップと、前記第 1のレジストマスク上の前 記第 4ステップで形成した前記絶縁層と前記第 1のレジストマスクとを除去して前記絶 縁層に開口部を設ける第 5ステップと、前記第 5ステップで開口部が設けられた前記 絶縁層および前記窒化物半導体積層部の上部に第 1の電極を形成する第 6ステップ と、前記絶縁層および前記第 6ステップで形成した前記電極の上部に、前記導波路 の長手方向に垂直な劈開位置近傍を除いて第 2のレジストマスクを形成する第 7ステ ップと、前記絶縁層の、前記第 7ステップで形成した前記第 2のレジストマスクに覆わ れて 、な 、部分を除去する第 8ステップと、前記第 8ステップで前記絶縁層を除去し た後、前記第 2のレジストマスクを除去する第 9ステップと、を備える。 [0012] The method for manufacturing a nitride semiconductor laser device of the present invention includes a first step in which a plurality of nitride semiconductor layers are stacked on a substrate to form a nitride semiconductor stacked portion, and the first step. A second step of forming a striped first resist mask on the upper surface of the nitride semiconductor multilayer portion, and an upper portion of the nitride semiconductor multilayer portion on the first resist mask formed in the second step A third step of forming a ridge-striped waveguide in the nitride semiconductor stack by etching an uncovered portion, and the nitridation etched in the third step including the first resist mask A fourth step of forming an insulating layer on the top of the stacked semiconductor layer; and the insulating layer and the first resist mass formed in the fourth step on the first resist mask. And a first electrode is formed on top of the insulating layer and the nitride semiconductor stacked portion provided with the opening in the fifth step. A sixth step and a seventh step of forming a second resist mask on the insulating layer and the upper part of the electrode formed in the sixth step, except in the vicinity of the cleavage position perpendicular to the longitudinal direction of the waveguide. And, after the insulating layer is covered with the second resist mask formed in the seventh step and the portion is removed, and after the insulating layer is removed in the eighth step, A ninth step of removing the second resist mask.
[0013] また本発明の半導体レーザ装置の製造方法は、前記第 2ステップにおいて、前記 第 1ステップで形成した前記窒化物半導体積層部の上面に第 2の電極を形成した後 、前記第 2の電極の上面にストライプ状の第 1のレジストマスクを形成し、前記第 3ステ
ップにお 、て、前記第 2ステップで形成した前記第 2の電極の前記第 1のレジストマス クで覆われて 、な 、部分を除去した後、前記窒化物半導体積層部の表面の前記第 2の電極と接して 、な 、部分をエッチングすることによって前記窒化物半導体積層部 にリッジストライプ状の導波路を形成し、前記第 6ステップにおいて、前記絶縁層およ び前記第 2の電極の上部に第 1の電極を形成し、前記第 7ステップにおいて、前記絶 縁層、前記第 1の電極および前記第 2の電極の上に、劈開位置近傍を除いて第 2の レジストマスクを形成することを特徴とする。 [0013] Further, in the method for manufacturing a semiconductor laser device of the present invention, in the second step, after the second electrode is formed on the upper surface of the nitride semiconductor multilayer portion formed in the first step, the second electrode A striped first resist mask is formed on the upper surface of the electrode, and the third step is performed. Then, after removing the portion covered with the first resist mask of the second electrode formed in the second step, the surface of the nitride semiconductor multilayer portion is removed. A ridge stripe-shaped waveguide is formed in the nitride semiconductor multilayer portion by etching the portion in contact with the second electrode, and in the sixth step, the insulating layer and the second electrode are formed. A first resist is formed on top of the insulating layer, and in the seventh step, a second resist mask is formed on the insulating layer, the first electrode, and the second electrode except in the vicinity of the cleavage position. It is characterized by doing.
[0014] また本発明の半導体レーザ装置の製造方法は、前記第 9ステップで第 2のレジスト マスクを除去した後、前記劈開位置で劈開する第 10ステップと、前記第 10ステップ で劈開してできた劈開面の少なくとも一方に、前記絶縁層と接しないようにコート膜を 形成する第 11ステップと、を有することを特徴とする。 [0014] Further, the method for manufacturing a semiconductor laser device of the present invention is obtained by removing the second resist mask in the ninth step and then cleaving in the cleavage position, and cleaving in the tenth step. And an eleventh step of forming a coating film on at least one of the cleavage planes so as not to contact the insulating layer.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]第 1の実施形態に係る窒化物半導体レーザ装置の部分斜視図 FIG. 1 is a partial perspective view of a nitride semiconductor laser device according to a first embodiment.
[図 2]第 1の実施形態に係る窒化物半導体積層部周辺の部分正面図 FIG. 2 is a partial front view around the nitride semiconductor multilayer portion according to the first embodiment.
[図 3]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 3 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 4]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 4 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 5]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 5 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 6]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 6 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 7]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 7 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 8]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分断面 図 FIG. 8 is a partial cross-sectional view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 9]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分斜視 図
圆 10]第 1の実施形態に係る窒化物半導体レーザ装置の製造方法を示す部分斜視 図 FIG. 9 is a partial perspective view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment. 10] Partial perspective view showing the method for manufacturing the nitride semiconductor laser device according to the first embodiment.
[図 11]第 2の実施形態に係る窒化物半導体レーザ装置の部分斜視図 FIG. 11 is a partial perspective view of the nitride semiconductor laser device according to the second embodiment.
圆 12]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 13]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 14]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 15]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 16]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 17]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 18]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分断面図 圆 19]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分斜視図 圆 20]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分斜視図 圆 21]第 2の実施形態に係る窒化物半導体レーザの製造方法を示す部分斜視図 [図 22]第 3の実施形態に係る窒化物半導体レーザ装置の部分斜視図 圆 12] Partial cross-sectional view showing a method for manufacturing a nitride semiconductor laser according to the second embodiment 圆 13] Partial cross-sectional view showing a method for manufacturing a nitride semiconductor laser according to the second embodiment 圆 14] Second Partial sectional view showing a method for manufacturing a nitride semiconductor laser according to the embodiment 圆 15] Partial sectional view showing a method for manufacturing the nitride semiconductor laser according to the second embodiment 圆 16] Nitride according to the second embodiment Partial sectional view showing a method for manufacturing a semiconductor laser 圆 17] Partial sectional view showing a method for manufacturing a nitride semiconductor laser according to the second embodiment 圆 18] Method for manufacturing a nitride semiconductor laser according to the second embodiment Partial sectional view showing 圆 19] Partial perspective view showing a method for manufacturing a nitride semiconductor laser according to the second embodiment 圆 20] Partial perspective view showing a method for manufacturing a nitride semiconductor laser according to the second embodiment 圆 21 Production of nitride semiconductor laser according to the second embodiment Partial perspective view of the law [22] a partial perspective view of the nitride semiconductor laser device according to a third embodiment
[図 23]従来の窒化物半導体レーザ装置の概略断面図 FIG. 23 is a schematic sectional view of a conventional nitride semiconductor laser device.
符号の説明 Explanation of symbols
1 窒化物半導体レーザ装置 1 Nitride semiconductor laser device
10 n型 GaN基板 10 n-type GaN substrate
11 窒化物半導体積層部 11 Nitride semiconductor stack
12 導波路 12 waveguide
15 劈開位置 15 cleavage position
21 絶縁膜 21 Insulating film
21a 開口部 21a opening
31 P側電極 31 P side electrode
33 コンタクト電極 33 Contact electrode
34 パッド電極 34 Pad electrode
51 前面コート膜 51 Front coat film
52 後面コート膜
61 ギャップ 52 Rear coating film 61 gap
62 ギャップ 62 Gap
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0017] <第 1の実施形態 > <First Embodiment>
本発明の第 1の実施形態について、図 1〜10を用いて説明する。図 1は第 1の実施 形態に係る窒化物半導体レーザ装置の部分斜視図、図 2は第 1の実施形態に係る 窒化物半導体積層部周辺の部分正面図、図 3〜8は第 1の実施形態に係る窒化物 半導体レーザ装置の製造方法を示す部分断面図、図 9および図 10はその部分斜視 図である。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a partial perspective view of the nitride semiconductor laser device according to the first embodiment, FIG. 2 is a partial front view around the nitride semiconductor multilayer portion according to the first embodiment, and FIGS. FIG. 9 and FIG. 10 are partial perspective views showing a method of manufacturing a nitride semiconductor laser device according to the embodiment.
[0018] 第 1の実施形態に係る窒化物半導体レーザ装置 1は、図 1に示すように n型 GaN基 板 (不図示)上に窒化物半導体積層部 11が形成されている。窒化物半導体積層部 1 1は、図 2に示すように n型 GaN基板 10側から順に、低温成長による Siドープ GaNバ ッファ層 l la、 n型 GaN層 l lb、 n型 AlGaNクラッド層 11 c、 n型 GaN光導波層 l ld、 I nGaN多重量子井戸構造の活性層 l le、 p型 AlGaNキャップ層 1 If、 p型 GaN光導 波層 1 lg、 p型 AlGaNクラッド層 1 lhおよび p型 GaNコンタクト層 1 liが積層されてな るものである。 In the nitride semiconductor laser device 1 according to the first embodiment, a nitride semiconductor multilayer portion 11 is formed on an n-type GaN substrate (not shown) as shown in FIG. As shown in FIG. 2, the nitride semiconductor multilayer portion 1 1 includes, in order from the n-type GaN substrate 10 side, a Si-doped GaN buffer layer l la, an n-type GaN layer l lb, and an n-type AlGaN cladding layer 11 c by low-temperature growth. , N-type GaN optical waveguide layer l ld, I nGaN multiple quantum well structure active layer l le, p-type AlGaN cap layer 1 If, p-type GaN optical wave layer 1 lg, p-type AlGaN cladding layer 1 lh and p-type GaN Contact layer 1 li is laminated.
[0019] 窒化物半導体積層部 11には、 p型 AlGaNクラッド層 l lhの上層部および p型 GaN コンタクト層 l liの一部を除去して形成した幅 2 μ mのリッジストライプ状の導波路 12 が形成されている。また、窒化物半導体積層部 11の上部には、導波路 12の上面に 相当する部位に開口部 21aを有する、厚さ 3500Aの SiO力もなる絶縁膜 21が設け [0019] The nitride semiconductor multilayer portion 11 includes a ridge stripe-shaped waveguide having a width of 2 μm formed by removing a part of the p-type AlGaN cladding layer l lh and a part of the p-type GaN contact layer l li 12 is formed. In addition, an insulating film 21 having a thickness of 3500 A and having an SiO force is provided on the upper portion of the nitride semiconductor multilayer portion 11 and has an opening 21 a in a portion corresponding to the upper surface of the waveguide 12.
2 2
られている。絶縁膜 21の上部および導波路 12の上面には厚さ 500 Aの Pdおよび厚 さ 6000 Aの Auを順に積層した p側電極 31が設けられており、絶縁膜 21の開口部 2 laを通じて導波路 12の上面とォーミックコンタクトしている。また、絶縁膜 21は、劈開 により形成された出射側劈開面 13および反射側劈開面 14から、それぞれ 10 m後 退した位置に配置されており、出射側劈開面 13および反射側劈開面 14から 10 m の範囲では窒化物半導体積層部 11の上面が露出している。 It has been. A p-side electrode 31 in which Pd with a thickness of 500 A and Au with a thickness of 6000 A are sequentially stacked is provided on the upper portion of the insulating film 21 and the upper surface of the waveguide 12, and is conducted through the opening 2 la of the insulating film 21. It is in ohmic contact with the upper surface of the waveguide 12. The insulating film 21 is disposed at a position retracted 10 m from the exit side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage, respectively, and from the exit side cleavage surface 13 and the reflection side cleavage surface 14. In the range of 10 m, the upper surface of the nitride semiconductor multilayer portion 11 is exposed.
[0020] 次に、第 1の実施形態に係る窒化物半導体レーザ装置 1の製造方法について図 3 〜10を用いて説明する。
[0021] まず、図 3に示すように、 n型 GaN基板 (不図示)上に、有機金属気相成長(Metal Organic Chemical Vapor Deposition : MOCVD)法、分子線ェピタキシャル 成長(Molecular Beam Epitaxy: MBE)法などの結晶成長法により、窒化物半 導体積層部 11を形成する。 Next, a method for manufacturing the nitride semiconductor laser device 1 according to the first embodiment will be described with reference to FIGS. First, as shown in FIG. 3, on an n-type GaN substrate (not shown), metal organic chemical vapor deposition (MOCVD) method, molecular beam epitaxy (MBE) The nitride semiconductor multilayer portion 11 is formed by a crystal growth method such as the) method.
[0022] 次に、図 4に示すように、窒化物半導体積層部 11の表面に、幅 2 mのストライプ 状の第 1のレジストマスク 41を形成する。続いて図 5に示すように、第 1のレジストマス ク 41をマスクとして反応性イオンエッチング法によって窒化物半導体積層部 11を上 面力も p型 AlGaNクラッド層 l lhの途中までエッチングし、導波路 12を形成する(図 2 参照)。この場合のプロセスガスとしては、例えば CI、 SiCl、 BC1などの塩素系ガス Next, as shown in FIG. 4, a striped first resist mask 41 having a width of 2 m is formed on the surface of the nitride semiconductor multilayer portion 11. Subsequently, as shown in FIG. 5, the nitride semiconductor multilayer portion 11 is etched up to the middle of the p-type AlGaN cladding layer l lh by reactive ion etching using the first resist mask 41 as a mask to obtain a waveguide. 12 is formed (see Fig. 2). The process gas in this case is, for example, a chlorine-based gas such as CI, SiCl, BC1
2 4 3 2 4 3
を用いる。 Is used.
[0023] 次に、図 6に示すように、第 1のレジストマスク 41を含めた窒化物半導体積層部 11 の上面全体に、厚さ 3500Aの SiO力もなる絶縁膜 21を、電子ビーム蒸着法により Next, as shown in FIG. 6, an insulating film 21 having a SiO force of 3500 A is formed on the entire top surface of the nitride semiconductor multilayer portion 11 including the first resist mask 41 by an electron beam evaporation method.
2 2
形成する。続いて、図 7に示すように、リフトオフ法によって第 1のレジストマスク 41の 上部の絶縁膜 21と第 1のレジストマスク 41とを除去し、絶縁膜 21に開口部 21aを設 ける。 Form. Subsequently, as shown in FIG. 7, the insulating film 21 and the first resist mask 41 on the first resist mask 41 are removed by a lift-off method, and an opening 21 a is provided in the insulating film 21.
[0024] 次に、図 8およびその斜視図である図 9に示すように、絶縁膜 21および導波路 12 の上面に厚さ 500Aの Pdと厚さ 6000Aの Auを順に積層した p側電極 31を形成す る。このとき、 p側電極 31は、共振器端面を形成する部分すなわち劈開位置 15を避 けて形成する。 Next, as shown in FIG. 8 and FIG. 9 which is a perspective view thereof, a p-side electrode 31 in which Pd having a thickness of 500 A and Au having a thickness of 6000 A are sequentially stacked on the upper surfaces of the insulating film 21 and the waveguide 12. Form. At this time, the p-side electrode 31 is formed so as to avoid the portion forming the resonator end face, that is, the cleavage position 15.
[0025] 次に、図 10に示すように、絶縁膜 21の上部に、 p側電極 31を完全に覆うように第 2 のレジストマスク 42を形成する。このとき第 2のレジストマスク 42は、出射面側、反射 面側ともに、各劈開位置 15から 10 m後退した位置に形成する。 Next, as shown in FIG. 10, a second resist mask 42 is formed on the insulating film 21 so as to completely cover the p-side electrode 31. At this time, the second resist mask 42 is formed at a position retracted 10 m from each cleavage position 15 on both the emission surface side and the reflection surface side.
[0026] この後、絶縁膜 21の第 2のレジストマスク 42に覆われずに露出して 、る部分を、反 応性イオンエッチング法により窒化物半導体積層部 11に達するまでエッチングする。 この場合のプロセスガスとしては、例えば CHF、 CFなどを用いる。最後に、有機溶 Thereafter, the portion of the insulating film 21 that is exposed without being covered by the second resist mask 42 is etched by the reactive ion etching method until the nitride semiconductor multilayer portion 11 is reached. For example, CHF or CF is used as the process gas in this case. Finally, organic solvent
3 4 3 4
剤によって第 2のレジストマスク 42を除去し、出射側劈開面 13および反射側劈開面 1 4を形成するように劈開することによって、図 1に示す構造の窒化物半導体レーザ装 置 1を得る。
[0027] このような方法で製造することにより、劈開する前の窒化物半導体レーザ装置 1は、 劈開位置の上部に絶縁膜 21が配置されていないため、劈開によって出射側劈開面 13および反射側劈開面 14を形成する際に、 SiO力もなる絶縁膜 21から破片が生じ The second resist mask 42 is removed with an agent, and cleavage is performed so as to form the emission-side cleavage surface 13 and the reflection-side cleavage surface 14, thereby obtaining the nitride semiconductor laser device 1 having the structure shown in FIG. By manufacturing in this way, the nitride semiconductor laser device 1 before cleaving is not provided with the insulating film 21 above the cleavage position. When the cleavage plane 14 is formed, debris is generated from the insulating film 21 that also has SiO force.
2 2
ることがない。そのため、出射側劈開面 13および反射側劈開面 14には絶縁膜 21に 由来する異物が付着することがなぐ窒化物半導体レーザ装置 1は、光放射特性に 係る歩留まりを大きく向上させることができた。 There is nothing to do. Therefore, the nitride semiconductor laser device 1 in which foreign matter derived from the insulating film 21 does not adhere to the emission-side cleavage surface 13 and the reflection-side cleavage surface 14 can greatly improve the yield related to the light emission characteristics. .
[0028] また、図 1に示す窒化物半導体レーザ装置 1の出射側劈開面 13および反射側劈 開面 14にコ一ティングを施して、後述する図 21に示す状態にしたもの長期信頼性試 験においては、従来の製造方法で製造した窒化物半導体レーザ装置では散見され た、劈開面に付着した異物に基点を発する端面コート膜の剥落が劇的に減少し、信 頼性も向上させることができた。 In addition, the nitride semiconductor laser device 1 shown in FIG. 1 is coated with the outgoing side cleaved surface 13 and the reflective side cleaved surface 14 to obtain a state shown in FIG. In the experiment, the peeling of the end coat film originating from the foreign material adhering to the cleaved surface, which is sometimes seen in nitride semiconductor laser devices manufactured by the conventional manufacturing method, is dramatically reduced, and the reliability is improved. I was able to.
[0029] 第 1の実施形態では、絶縁膜 21が出射側劈開面 13および反射側劈開面 14からそ れぞれ 10 mずつ後退している場合について説明した力 この後退させる部分の幅 は、 2 μ m以上 20 μ m以下とすることが望まし 、。 [0029] In the first embodiment, the force described in the case where the insulating film 21 is retracted by 10 m from the emission side cleavage surface 13 and the reflection side cleavage surface 14, respectively. Desirably, it is 2 μm or more and 20 μm or less.
[0030] この幅が mよりも狭い場合、劈開する際に出射側劈開面 13および反射側劈開 面 14が窒化物半導体積層部 11中のボイドなどの影響によって、劈開面が折れ曲が つた場合に、劈開面が絶縁膜 21まで到達し、絶縁膜 21が割れて破片を生じさせる 可能性がある。 [0030] When this width is narrower than m, when the cleavage plane is bent due to the influence of voids or the like in the nitride semiconductor multilayer portion 11 when the cleaved surface 13 and the reflective-side cleaved surface 14 are cleaved. In addition, the cleavage plane may reach the insulating film 21, and the insulating film 21 may break and generate fragments.
[0031] 一方、この幅が 20 mよりも広い場合、窒化物半導体レーザ装置 1の電流'光出力 特性の線形性が崩れる可能性が高い。これは、図 1に示した構造では絶縁膜 21を後 退させた部分には p側電極 31も配置されないため、この部分では導波路 12に電流 が注入されないが、この電流が注入されない部分が電流 *光出力特性に及ぼす影響 が無視できな 、ほど大きくなるためである。 On the other hand, when this width is wider than 20 m, the linearity of the current 'light output characteristic of the nitride semiconductor laser device 1 is likely to be lost. This is because, in the structure shown in FIG. 1, the p-side electrode 31 is not arranged in the part where the insulating film 21 is retracted, so that no current is injected into the waveguide 12 in this part, but there is a part where this current is not injected. This is because the effect on the current * light output characteristics is so large that it cannot be ignored.
<第 2の実施形態 > <Second Embodiment>
本発明の第 2の実施形態について、図 11〜21を用いて説明する。図 11は第 2の 実施形態に係る窒化物半導体レーザ装置の部分斜視図、図 12〜18は第 2の実施 形態に係る窒化物半導体レーザの製造方法を示す部分断面図、図 19〜21はその 部分斜視図である。第 2の実施形態は、導波路上にコンタクト電極が設けられ、かつ
p側電極に替えてパッド電極が設けられている点以外は第 1の実施形態と同じであり 、実質上同一の部分には同一の符号を付してある。 A second embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a partial perspective view of the nitride semiconductor laser device according to the second embodiment, FIGS. 12 to 18 are partial sectional views showing a method for manufacturing the nitride semiconductor laser according to the second embodiment, and FIGS. FIG. In the second embodiment, a contact electrode is provided on the waveguide, and The second embodiment is the same as the first embodiment except that a pad electrode is provided instead of the p-side electrode, and substantially the same parts are denoted by the same reference numerals.
[0032] 第 2の実施形態に係る窒化物半導体レーザ装置 1は、 n型 GaN基板 (不図示)上に 、図 11に示すように窒化物半導体積層部 11が形成されている。窒化物半導体積層 部 11は第 1の実施形態と同様の図 2に示す構成である。 In the nitride semiconductor laser device 1 according to the second embodiment, a nitride semiconductor multilayer portion 11 is formed on an n-type GaN substrate (not shown) as shown in FIG. The nitride semiconductor multilayer portion 11 has the same configuration as that of the first embodiment shown in FIG.
[0033] また、窒化物半導体積層部 11には、第 1の実施形態と同様に導波路 12が形成さ れており、窒化物半導体積層部 11の上部には、導波路 12の上面に相当する部位に 開口部 21aを有する、絶縁膜 21が設けられている。導波路 12の上面には、厚さ 500 Aの Pdからなるコンタクト電極 33が設けられており、導波路 12の上面とォーミックコ ンタタトしている。また、絶縁膜 21およびコンタクト電極 33の上部には、厚さ 6000 A の Au力もなるパッド電極 34が設けられている。また、絶縁膜 21は、劈開により形成さ れた出射側劈開面 13および反射側劈開面 14から、それぞれ 25 μ m後退した位置 に配置されており、出射側劈開面 13および反射側劈開面 14から 25 mの範囲では 窒化物半導体積層部 11の上面が露出している。 In addition, a waveguide 12 is formed in the nitride semiconductor multilayer portion 11 as in the first embodiment, and the upper portion of the nitride semiconductor multilayer portion 11 corresponds to the upper surface of the waveguide 12. An insulating film 21 having an opening 21a is provided at a site to be formed. A contact electrode 33 made of Pd having a thickness of 500 A is provided on the upper surface of the waveguide 12 and is in ohmic contact with the upper surface of the waveguide 12. In addition, a pad electrode 34 having a thickness of 6000 A and having an Au force is provided on the insulating film 21 and the contact electrode 33. The insulating film 21 is disposed at a position retracted by 25 μm from the emission side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage, respectively. The emission side cleavage surface 13 and the reflection side cleavage surface 14 To 25 m, the upper surface of the nitride semiconductor multilayer portion 11 is exposed.
[0034] 次に、第 2の実施形態に係る窒化物半導体レーザ装置 1の製造方法について図 1 2〜図 21を用いて説明する。 Next, a method for manufacturing the nitride semiconductor laser device 1 according to the second embodiment will be described with reference to FIGS.
[0035] まず、 n型 GaN基板 (不図示)上に、第 1の実施形態と同様の方法で窒化物半導体 積層部 11を形成した後、図 12に示すように窒化物半導体積層部 11の表面にコンタ タト電極 33を形成し、さらに図 13に示すようにコンタクト電極 33の上に幅 のスト ライプ状の第 1のレジストマスク 41を形成する。続いて図 14に示すように、第 1のレジ ストマスク 41をマスクとして、反応性イオンエッチング法によってコンタクト電極 33を窒 化物半導体積層部 11の表面が露出するまでエッチングする。この際、エッチングガ スとしては、 Arや CHFなどを用いる。次に図 15に示すように、第 1のレジストマスク 4 First, after forming the nitride semiconductor multilayer portion 11 on an n-type GaN substrate (not shown) by the same method as in the first embodiment, the nitride semiconductor multilayer portion 11 of the nitride semiconductor multilayer portion 11 is formed as shown in FIG. A contact electrode 33 is formed on the surface, and a stripe-shaped first resist mask 41 having a width is formed on the contact electrode 33 as shown in FIG. Next, as shown in FIG. 14, using the first resist mask 41 as a mask, the contact electrode 33 is etched by reactive ion etching until the surface of the nitride semiconductor multilayer portion 11 is exposed. At this time, Ar, CHF, or the like is used as an etching gas. Next, as shown in FIG. 15, the first resist mask 4
3 Three
1をマスクとして、反応性イオンエッチング法により窒化物半導体積層部 11を上面か ら p型 AlGaNクラッド層 l lhの途中までエッチングし、導波路 12を形成する。この場 合のプロセスガスとしては、例えば CI、 SiCl、 BC1などの塩素系ガスを用いる。 Using 1 as a mask, the nitride semiconductor multilayer portion 11 is etched from the upper surface to the middle of the p-type AlGaN cladding layer l lh by reactive ion etching to form a waveguide 12. As a process gas in this case, for example, a chlorine-based gas such as CI, SiCl, or BC1 is used.
2 4 3 2 4 3
[0036] 次に、図 16に示すように、第 1のレジストマスク 41およびコンタクト電極 33の側面を 含めた窒化物半導体積層部 11の上面全体に、厚さ 3500 の310力もなる絶縁膜
21を電子ビーム蒸着法により形成した後、リフトオフ法によって第 1のレジストマスク 4 1の上部の絶縁膜 21と第 1のレジストマスク 41とを除去して絶縁膜 21に開口部 21 a を設け、図 17に示す状態にする。 Next, as shown in FIG. 16, an insulating film having a thickness of 3500 and 310 forces is formed on the entire top surface of the nitride semiconductor multilayer portion 11 including the side surfaces of the first resist mask 41 and the contact electrode 33. After forming 21 by electron beam evaporation, the insulating film 21 and the first resist mask 41 on the first resist mask 41 are removed by a lift-off method to provide an opening 21 a in the insulating film 21. The state shown in Fig. 17 is obtained.
[0037] 次に、図 18およびその斜視図である図 19に示すように、絶縁膜 21およびコンタクト 電極 33の上部に厚さ 6000Aの Auからなるパッド電極 34を形成する。このとき、パッ ド電極 34は、共振器端面を形成する部分すなわち劈開位置 15を避けて形成する。 Next, as shown in FIG. 18 and FIG. 19 which is a perspective view thereof, a pad electrode 34 made of Au having a thickness of 6000 A is formed on the insulating film 21 and the contact electrode 33. At this time, the pad electrode 34 is formed so as to avoid the portion forming the resonator end face, that is, the cleavage position 15.
[0038] 次に、図 20に示すように、絶縁膜 21の上部に、コンタクト電極 33およびパッド電極 34を完全に覆うように第 2のレジストマスク 42を形成する。このとき第 2のレジストマス ク 42は、出射面側、反射面側ともに、劈開位置 15から 25 m後退した位置に形成 する。 Next, as shown in FIG. 20, a second resist mask 42 is formed on the insulating film 21 so as to completely cover the contact electrode 33 and the pad electrode 34. At this time, the second resist mask 42 is formed at a position retracted by 25 m from the cleavage position 15 on both the emission surface side and the reflection surface side.
[0039] この後、第 1の実施形態と同様に、第 2のレジストマスク 42に覆われず露出している 絶縁膜 21を、反応性イオンエッチング法により窒化物半導体積層部 11に達するまで エッチングする。最後に、有機溶剤によって第 2のレジストマスク 42を除去し、出射側 劈開面 13および反射側劈開面 14を形成するように劈開することによって、図 11に示 す構造の窒化物半導体レーザ装置 1を得る。 Thereafter, as in the first embodiment, the insulating film 21 that is exposed without being covered with the second resist mask 42 is etched by the reactive ion etching method until it reaches the nitride semiconductor multilayer portion 11. To do. Finally, the second resist mask 42 is removed with an organic solvent, and the cleaved surface 13 and the reflective side cleaved surface 14 are cleaved to form the nitride semiconductor laser device 1 having the structure shown in FIG. Get.
[0040] このような方法で製造することにより、第 2の実施形態に係る窒化物半導体レーザ 装置 1は、第 1の実施形態と同様に劈開位置の上部に絶縁膜 21が配置されていな いため、劈開によって出射側劈開面 13および反射側劈開面 14を形成する際に、 Si O力もなる絶縁膜 21から破片が生じることがない。そのため、出射側劈開面 13およ Since the nitride semiconductor laser device 1 according to the second embodiment is manufactured by such a method, the insulating film 21 is not disposed above the cleavage position as in the first embodiment. When the emission-side cleavage surface 13 and the reflection-side cleavage surface 14 are formed by cleavage, no debris is generated from the insulating film 21 that also has the Si 2 O force. Therefore, the exit side cleaved surface 13 and
2 2
び反射側劈開面 14には絶縁膜 21に由来する異物が付着することがなぐ窒化物半 導体レーザ装置 1は、光放射特性に係る歩留まりを大きく向上させることができた。 The nitride semiconductor laser device 1 in which foreign matter derived from the insulating film 21 does not adhere to the reflection-side cleaved surface 14 can greatly improve the yield related to the light emission characteristics.
[0041] さらに、第 1の実施形態とは異なり、コンタクト電極 33が共振器端面すなわち出射 側劈開面 13および反射側劈開面 14の直上まで配置されており、導波路 12には全 体に電流が注入されるため、導波路 12上に電極が設けられていない部分がある場 合のように注入電流に起因して電流 '光出力特性の線形性が崩れることがない。 <第 3の実施形態 > [0041] Further, unlike the first embodiment, the contact electrode 33 is disposed up to the resonator end face, that is, directly above the emission-side cleavage surface 13 and the reflection-side cleavage surface 14, and the waveguide 12 has a current as a whole. Therefore, the linearity of the current optical output characteristics is not lost due to the injected current as in the case where there is a portion where no electrode is provided on the waveguide 12. <Third embodiment>
本発明の第 3の実施形態について、図 22を用いて説明する。図 22は本発明の第 3 の実施形態に係る窒化物半導体レーザ装置の部分斜視図である。第 3の実施形態
は、出射側劈開面 13および反射側劈開面 14の上にコート膜による端面コーティング を施した点以外は第 1の実施形態と同じであり、実質上同一の部分には同一の符号 を付してある。 A third embodiment of the present invention will be described with reference to FIG. FIG. 22 is a partial perspective view of a nitride semiconductor laser device according to the third embodiment of the present invention. Third embodiment Is the same as in the first embodiment except that end face coating with a coating film is performed on the outgoing side cleaved surface 13 and the reflective side cleaved surface 14, and substantially the same parts are denoted by the same reference numerals. It is.
[0042] 第 3の実施形態に係る窒化物半導体レーザ装置 1は、図 22に示すように、第 1の実 施形態と同様の図 2に示す構成の窒化物半導体積層部 11の上に、導波路 12が形 成されており、導波路 12の上面に相当する部位に開口部 21aを有する、 SiO力もな As shown in FIG. 22, the nitride semiconductor laser device 1 according to the third embodiment is formed on the nitride semiconductor multilayer portion 11 having the configuration shown in FIG. 2 as in the first embodiment. A waveguide 12 is formed, and has an opening 21a at a portion corresponding to the upper surface of the waveguide 12, and has no SiO force.
2 る絶縁膜 21が設けられている。絶縁膜 21の上部および導波路 12の上面には厚さ 5 00 Aの Pdおよび厚さ 6000 Aの Auを順に積層した p側電極 31が設けられている。ま た、絶縁膜 21は、劈開により形成された出射側劈開面 13および反射側劈開面 14か ら、それぞれ 18 μ m後退した位置に配置されている。 2 insulating film 21 is provided. A p-side electrode 31 in which Pd having a thickness of 500 A and Au having a thickness of 6000 A are sequentially laminated is provided on the insulating film 21 and the top surface of the waveguide 12. Further, the insulating film 21 is disposed at a position retracted by 18 μm from each of the emission side cleavage surface 13 and the reflection side cleavage surface 14 formed by cleavage.
[0043] 第 3の実施形態において出射側劈開面 13の表面には厚さ 70 Aの Al Oからなる [0043] In the third embodiment, the surface of the outgoing side cleaved surface 13 is made of AlO with a thickness of 70 A.
2 3 前面コート膜 51が、反射側劈開面 14の表面には合計 9層の SiOと TiOを交互に積 2 3 The front coat film 51 has a total of nine layers of SiO and TiO alternately stacked on the surface of the reflective cleaved surface 14.
2 2 層した多層構造を有する後面コート膜 52が設けられており、それぞれ絶縁膜 21に対 してギャップ 61およびギャップ 62を隔てて窒化物半導体積層部 11の上面にも一部 乗り上げている。 A rear coat film 52 having a multilayer structure with two layers is provided, and partially overlies the upper surface of the nitride semiconductor multilayer portion 11 with a gap 61 and a gap 62 from the insulating film 21, respectively.
[0044] レーザの発振波長が 405nm前後と比較的短 、場合にぉ 、て、この窒化物半導体 レーザ装置 1を連続駆動すると、発振光によって前面コート膜 51が活性化されて反 応性が高まる。ここで、前面コート膜 51と絶縁膜 21とがギャップ 61を隔てずに互いに 重なり合つている配置とした場合、連続駆動によって共振器端面すなわち出射側劈 開面 13および反射側劈開面 14の温度が例えば 100°C以上になると、 Al O力もな [0044] When the oscillation wavelength of the laser is relatively short, around 405 nm, when the nitride semiconductor laser device 1 is continuously driven, the front coat film 51 is activated by the oscillation light and the reactivity is increased. Here, when the front coat film 51 and the insulating film 21 are arranged so as to overlap each other with no gap 61 therebetween, the temperature of the resonator end face, that is, the emission-side cleavage face 13 and the reflection-side cleavage face 14 is continuously driven. For example, when the temperature exceeds 100 ° C, Al O force
2 3 る前面コート膜 51と SiO力もなる絶縁膜 21とが反応して Alと Siの共晶が前面コート 2 3 The front coat film 51 reacts with the insulating film 21 with SiO force, and the eutectic of Al and Si coats the front coat.
2 2
膜 51中に形成される。この共晶によって、前面コート膜 51の反射率が設計値から大 幅にずれ、それに伴って半導体レーザ装置 10の動作特性を変動させる可能性があ り、長期信頼性に欠ける。しかし、第 3の実施形態のように、前面コート膜 51と絶縁膜 21と力 ギャップ 61を隔てる配置とすることで、 A1と Siの共晶が前面コート膜 51中に 形成されることがないため、長期信頼性を大幅に向上させることができた。 It is formed in the film 51. Due to this eutectic, the reflectance of the front coat film 51 is greatly deviated from the design value, and accordingly, the operating characteristics of the semiconductor laser device 10 may be fluctuated, resulting in lack of long-term reliability. However, the eutectic of A1 and Si is not formed in the front coat film 51 by arranging the front coat film 51, the insulating film 21, and the force gap 61 as in the third embodiment. Therefore, the long-term reliability could be greatly improved.
[0045] 以上、本発明について第 1〜第 3の実施形態に基づいて説明した力 本発明の内 容は、以上の実施形態の説明に記載した内容に限定されるものではない。
[0046] 次に、本発明の変形例について説明する。本明細書において、「窒化物半導体」と は、窒化ガリウム (GaN)の Gaが部分的に他の III族元素に置き換えられた半導体、 例えば Ga Al ln N (0< s≤l、 0≤t< l、 0< s+t≤l)を含み、各構成元素の 一部が不純物元素に置き換えられた半導体や、他の不純物が添加された半導体を も含むものとする。 [0045] The force described above based on the first to third embodiments of the present invention The contents of the present invention are not limited to the contents described in the description of the above embodiments. Next, a modified example of the present invention will be described. In this specification, the term “nitride semiconductor” refers to a semiconductor in which Ga in gallium nitride (GaN) is partially replaced by another group III element, such as Ga Al ln N (0 <s≤l, 0≤t <l, 0 <s + t≤l), including semiconductors in which some of the constituent elements are replaced by impurity elements and semiconductors to which other impurities are added.
[0047] また、第 1および第 3の実施形態の p側電極 31は、窒化物半導体積層部 11の表面 側から順に、厚さ 500Aの Pdと厚さ 6000Aの Auの 2層構造力もなるものであつたが 、 Pdおよび Auに替えて Niや Tiなどでも、また、 Pd、 Au、 Niおよび Tiなどの上に Au 、 Moなどの別の金属が積層された構造であっても、さらに厚さがこれらの実施形態 の通りでなくても、本発明に係る製造方法により、同様の窒化物半導体レーザ装置を 作製することが可能である。 [0047] The p-side electrode 31 of the first and third embodiments also has a two-layer structural force of Pd with a thickness of 500A and Au with a thickness of 6000A in order from the surface side of the nitride semiconductor multilayer portion 11. However, even if Ni or Ti is used instead of Pd or Au, or if another metal such as Au or Mo is laminated on Pd, Au, Ni or Ti, etc., it is even thicker. However, the same nitride semiconductor laser device can be manufactured by the manufacturing method according to the present invention even if it is not as in these embodiments.
[0048] また、第 2の実施形態のコンタクト電極 33は Pd、パッド電極 34は Auからなるもので あつたが、コンタクト電極 33は Ni、 Tiなど、パッド電極 34は Moなどでも、またいずれ の電極とも Pd、 Au、 Ni、 Tiおよび Moなど複数の金属が積層された構造であっても、 また、厚さが第 2の実施形態の通りでなくても、本発明に係る製造方法により、同様の 窒化物半導体レーザ装置を作成することが可能である。 In the second embodiment, the contact electrode 33 is made of Pd and the pad electrode 34 is made of Au. However, the contact electrode 33 is made of Ni, Ti, the pad electrode 34 is made of Mo, etc. Even if the electrode has a structure in which a plurality of metals such as Pd, Au, Ni, Ti and Mo are laminated, and even if the thickness is not as in the second embodiment, the manufacturing method according to the present invention A similar nitride semiconductor laser device can be produced.
[0049] また、第 1〜第 3の実施形態の絶縁膜 21は SiO力もなるものであった力 TiO、 Si [0049] In addition, the insulating film 21 of the first to third embodiments has a force that has a SiO force TiO, Si
2 2 twenty two
0、 Ta O、 SiNなど、他の無機誘電体や、 AlGaNなどの窒化物半導体などで置きPlace with other inorganic dielectrics such as 0, Ta O, SiN, or nitride semiconductors such as AlGaN.
2 5 twenty five
換えても何ら問題はなぐその厚さも実施形態の説明に例示したものに限られない。 また、その形成方法についても、実施形態の説明に例示した電子ビーム蒸着法によ らずとも、スパッタリング法、プラズマ CVD法などによるものであっても構わない。 Even if it changes, the thickness which does not have any problem is not restricted to what was illustrated to description of embodiment. In addition, the formation method may be based on the sputtering method, the plasma CVD method, or the like, instead of the electron beam evaporation method exemplified in the description of the embodiment.
[0050] また、絶縁膜 21は、共振器端面すなわち出射側劈開面 13および反射側劈開面 14 の直上にあたる部分力 全て除去したが、劈開時に破砕した絶縁膜 21の破片が発 光点となる導波路 12の端面およびその近傍にまでは飛散しない場合に限り、必ずし も共振器端面直上にあたる部分を全て除去する必要はなぐ除去する範囲が例えば 導波路 12およびその近傍だけであってもよい。 [0050] Although the insulating film 21 has removed all of the partial force directly above the resonator end face, that is, the emission-side cleaved surface 13 and the reflection-side cleaved surface 14, fragments of the insulating film 21 crushed at the time of cleavage become the light emission point. As long as it does not scatter to the end face of the waveguide 12 and its vicinity, it is not always necessary to remove all the portions directly above the end face of the resonator. For example, the removal range may be only the waveguide 12 and its vicinity. .
[0051] また、本発明の第 3の実施形態は、第 1の実施形態に係る窒化物半導体レーザ装 置に端面コ一ティングを施した状態に相当するものであるが、第 2の実施形態に係る
窒化物半導体レーザ装置に同様の端面コーティングを施した場合でも、同様の効果 が得られる。 [0051] Further, the third embodiment of the present invention corresponds to a state in which the nitride semiconductor laser device according to the first embodiment is end-coated, but the second embodiment Pertaining to The same effect can be obtained even when the same end face coating is applied to the nitride semiconductor laser device.
[0052] また、本発明の第 1〜第 3の実施形態では、ドライエッチング法として反応性イオン エッチング法を用いた力 反応性イオンビームエッチング法や、誘導結合プラズマェ ツチング法、 ECRプラズマエッチング法などでも、同様のプロセスガスを使用すること によって、同様のエッチングが可能である。 In the first to third embodiments of the present invention, a force reactive ion beam etching method using a reactive ion etching method as a dry etching method, an inductively coupled plasma etching method, an ECR plasma etching method, etc. However, similar etching is possible by using the same process gas.
[0053] また、本発明の第 1〜第 3の実施形態では、絶縁膜 21の第 2のレジストマスク 42に 覆われずに露出している部分を、反応性イオンエッチング法により掘り込む際には、 窒化物半導体積層部 11に達した時点まで掘り込んで!/、るが、窒化物半導体積層部 11自体が一部掘り込まれていても、同様の効果が得られる。 In the first to third embodiments of the present invention, the portion exposed without being covered with the second resist mask 42 of the insulating film 21 is dug by the reactive ion etching method. However, even if the nitride semiconductor multilayer portion 11 itself is partially dug, the same effect can be obtained.
産業上の利用可能性 Industrial applicability
[0054] 本発明によると、絶縁性保護膜が窒化物半導体積層部の上部の少なくとも導波路 の長手方向の端部の近傍には配置されておらず、窒化物半導体積層部を劈開して 端面を作製する際にこの絶縁性保護膜を破砕することがないため、絶縁性保護膜の 破片に起因する問題が発生することがなぐ製造歩留まりの高い窒化物半導体レー ザ装置を実現することができる。 [0054] According to the present invention, the insulating protective film is not disposed at least in the vicinity of the longitudinal end portion of the waveguide on the upper portion of the nitride semiconductor multilayer portion, and the end surface is obtained by cleaving the nitride semiconductor multilayer portion. Since the insulating protective film is not crushed when manufacturing the semiconductor device, it is possible to realize a nitride semiconductor laser device with a high manufacturing yield that does not cause problems due to fragments of the insulating protective film. .
[0055] また本発明によると、導波路の上面全体に第 2の電極が設けられて ヽるため、導波 路上に電極が設けられて 、な 、部分がある場合のように注入電流に起因して電流 · 光出力特性の線形性が崩れることがない。 [0055] Also, according to the present invention, since the second electrode is provided on the entire top surface of the waveguide, the electrode is provided on the waveguide. As a result, the linearity of the current / light output characteristics is not disrupted.
[0056] また本発明によると、窒化物半導体積層部の上部の絶縁層が配置されていない領 域の、導波路の長手方向と平行な方向の長さが 2 μ m以上 20 m以下であるため、 劈開の際に劈開面が折れ曲がっても絶縁膜が割れて破片を生じることがなぐまた、 絶縁層の下部にしか第 2の電極が設けられていない場合でも電流'光出力特性の線 形性が崩れにくい。 [0056] Further, according to the present invention, the length in the direction parallel to the longitudinal direction of the waveguide in the region where the insulating layer on the upper part of the nitride semiconductor multilayer portion is not disposed is 2 μm or more and 20 m or less. Therefore, even if the cleavage plane is bent at the time of cleavage, the insulating film does not break and generates fragments.In addition, even if the second electrode is provided only under the insulating layer, the current It is hard to break down.
[0057] また本発明によると、絶縁性保護膜と劈開面に形成するコート膜とが接しないため、 絶縁性保護膜として例えば SiOを用い、コート膜が Siと共晶を形成する A1や Hfを含 Further, according to the present invention, since the insulating protective film does not contact the coat film formed on the cleavage plane, for example, SiO is used as the insulating protective film, and the coat film forms a eutectic with Si. Including
2 2
む場合でもコート膜に共晶が形成されず、共晶によってコート膜の反射率が変動する ことがない。
Even in this case, no eutectic is formed in the coating film, and the reflectance of the coating film does not fluctuate due to the eutectic.
Claims
[1] 基板と、この基板上に複数の窒化物半導体層が積層されてなり、リッジストライプ状 の導波路が設けられた窒化物半導体積層部と、前記窒化物半導体積層部上に形成 され、前記導波路の上部に開口部を有する絶縁層と、前記導波路および前記絶縁 層の上部に設けられた第 1の電極と、を備える窒化物半導体レーザ装置において、 前記窒化物半導体積層部の上部の、少なくとも前記導波路の長手方向の端部の 近傍には前記絶縁層が配置されずに前記窒化物半導体積層部が露出している部分 を有することを特徴とする窒化物半導体レーザ装置。 [1] A substrate, a nitride semiconductor multilayer portion formed by laminating a plurality of nitride semiconductor layers on the substrate, and provided with a ridge stripe-shaped waveguide, and formed on the nitride semiconductor multilayer portion, A nitride semiconductor laser device comprising: an insulating layer having an opening above the waveguide; and a first electrode provided on the waveguide and the insulating layer. The nitride semiconductor laser device has a portion in which the insulating layer is not disposed and the nitride semiconductor stacked portion is exposed at least in the vicinity of an end portion in the longitudinal direction of the waveguide.
[2] 前記導波路と前記第 1の電極との間に第 2の電極を有し、この第 2の電極が前記導 波路の上面の全体に配置されて 、ることを特徴とする請求項 1に記載の窒化物半導 体レーザ装置。 [2] The second electrode is provided between the waveguide and the first electrode, and the second electrode is disposed on the entire upper surface of the waveguide. 2. The nitride semiconductor laser device according to 1.
[3] 前記窒化物半導体積層部の上部の前記絶縁層が配置されて 、な 、領域の、前記 導波路の長手方向と平行な方向の長さが 2 m以上 20 m以下であることを特徴と する請求項 1に記載の窒化物半導体レーザ装置。 [3] The insulating layer above the nitride semiconductor multilayer portion is disposed, and the length of the region in the direction parallel to the longitudinal direction of the waveguide is 2 m or more and 20 m or less. The nitride semiconductor laser device according to claim 1.
[4] 前記基板および前記窒化物半導体積層部の、前記導波路の長手方向に垂直な端 面の少なくとも一方に、コート膜が前記窒化物半導体積層部の上部に張り出すように 設けられており、このコート膜の張り出した部分と前記絶縁層とが接触しないことを特 徴とする請求項 1〜3のいずれかに記載の窒化物半導体レーザ装置。 [4] A coat film is provided on at least one of the end surfaces of the substrate and the nitride semiconductor multilayer portion perpendicular to the longitudinal direction of the waveguide so as to protrude above the nitride semiconductor multilayer portion. 4. The nitride semiconductor laser device according to claim 1, wherein the protruding portion of the coating film does not contact the insulating layer.
[5] 基板上に複数の窒化物半導体層を積層して窒化物半導体積層部を形成する第 1 ステップと、 [5] a first step of stacking a plurality of nitride semiconductor layers on a substrate to form a nitride semiconductor stacked portion;
前記第 1ステップで形成した前記窒化物半導体積層部の上面にストライプ状の第 1 のレジストマスクを形成する第 2ステップと、 A second step of forming a striped first resist mask on the upper surface of the nitride semiconductor multilayer portion formed in the first step;
前記窒化物半導体積層部の上部の、前記第 2ステップで形成した前記第 1のレジ ストマスクに覆われていない部分をエッチングすることによって前記窒化物半導体積 層部にリッジストライプ状の導波路を形成する第 3ステップと、 A ridge stripe-shaped waveguide is formed in the nitride semiconductor multilayer portion by etching a portion of the nitride semiconductor multilayer portion that is not covered with the first resist mask formed in the second step. And the third step
前記第 1のレジストマスクを含めた、前記第 3ステップでエッチングした前記窒化物 半導体積層部の上部に絶縁層を形成する第 4ステップと、 A fourth step of forming an insulating layer on top of the nitride semiconductor stacked portion etched in the third step, including the first resist mask;
前記第 1のレジストマスク上の前記第 4ステップで形成した前記絶縁層と前記第 1の
レジストマスクとを除去して前記絶縁層に開口部を設ける第 5ステップと、 前記第 5ステップで開口部が設けられた前記絶縁層および前記窒化物半導体積層 部の上部に第 1の電極を形成する第 6ステップと、 The insulating layer formed in the fourth step on the first resist mask and the first resist mask; A fifth step of removing the resist mask and providing an opening in the insulating layer; and forming the first electrode on the insulating layer and the nitride semiconductor multilayer portion provided with the opening in the fifth step. And the sixth step
前記絶縁層および前記第 6ステップで形成した前記電極の上部に、前記導波路の 長手方向に垂直な劈開位置近傍を除いて第 2のレジストマスクを形成する第 7ステツ プと、 A seventh step of forming a second resist mask on top of the insulating layer and the electrode formed in the sixth step, except in the vicinity of a cleavage position perpendicular to the longitudinal direction of the waveguide;
前記絶縁層の、前記第 7ステップで形成した前記第 2のレジストマスクに覆われて ヽ な 、部分を除去する第 8ステップと、 An eighth step of removing a portion of the insulating layer that is covered with the second resist mask formed in the seventh step;
前記第 8ステップで前記絶縁層を除去した後、前記第 2のレジストマスクを除去する 第 9ステップと、を備える、窒化物半導体レーザ装置の製造方法。 And a ninth step of removing the second resist mask after removing the insulating layer in the eighth step.
[6] 前記第 2ステップにお 、て、前記第 1ステップで形成した前記窒化物半導体積層部 の上面に第 2の電極を形成した後、前記第 2の電極の上面にストライプ状の第 1のレ ジストマスクを形成し、 [6] In the second step, a second electrode is formed on the top surface of the nitride semiconductor multilayer portion formed in the first step, and then a striped first on the top surface of the second electrode. Forming a resist mask of
前記第 3ステップにお 、て、前記第 2ステップで形成した前記第 2の電極の前記第 1 のレジストマスクで覆われて 、な 、部分を除去した後、前記窒化物半導体積層部の 表面の前記第 2の電極と接していない部分をエッチングすることによって前記窒化物 半導体積層部にリッジストライプ状の導波路を形成し、 In the third step, the first electrode mask of the second electrode formed in the second step is covered with the first resist mask, and after removing the portion, the surface of the nitride semiconductor multilayer portion is removed. Forming a ridge stripe-shaped waveguide in the nitride semiconductor stack by etching a portion not in contact with the second electrode;
前記第 6ステップにおいて、前記絶縁層および前記第 2の電極の上部に第 1の電 極を形成し、 In the sixth step, a first electrode is formed on the insulating layer and the second electrode,
前記第 7ステップにおいて、前記絶縁層、前記第 1の電極および前記第 2の電極の 上に、劈開位置近傍を除いて第 2のレジストマスクを形成することを特徴とする請求 項 5に記載の窒化物半導体レーザ装置の製造方法。 6. The seventh step according to claim 5, wherein a second resist mask is formed on the insulating layer, the first electrode, and the second electrode, except in the vicinity of a cleavage position. A method of manufacturing a nitride semiconductor laser device.
[7] 前記第 9ステップで第 2のレジストマスクを除去した後、前記劈開位置で劈開する第 10ステップと、 [7] A tenth step of cleaving at the cleavage position after removing the second resist mask in the ninth step;
前記第 10ステップで劈開してできた劈開面の少なくとも一方に、前記絶縁層と接し ないようにコート膜を形成する第 11ステップと、を有することを特徴とする、請求項 5ま たは請求項 6に記載の窒化物半導体レーザ装置の製造方法。
An eleventh step of forming a coating film on at least one of the cleavage planes formed by cleavage in the tenth step so as not to be in contact with the insulating layer. Item 7. A method for manufacturing a nitride semiconductor laser device according to Item 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007521207A JP4917031B2 (en) | 2005-06-16 | 2006-04-12 | Nitride semiconductor laser device and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005175906 | 2005-06-16 | ||
JP2005-175906 | 2005-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006134717A1 true WO2006134717A1 (en) | 2006-12-21 |
Family
ID=37532084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/307771 WO2006134717A1 (en) | 2005-06-16 | 2006-04-12 | Nitride semiconductor laser and method for fabricating same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4917031B2 (en) |
WO (1) | WO2006134717A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009078482A1 (en) * | 2007-12-19 | 2009-06-25 | Rohm Co., Ltd. | Semiconductor light-emitting device |
JP2009200478A (en) * | 2008-01-21 | 2009-09-03 | Sanyo Electric Co Ltd | Semiconductor laser device and method of manufacturing the same |
JP2011507304A (en) * | 2007-12-28 | 2011-03-03 | アギア システムズ インコーポレーテッド | Waveguide device with delta-doped active region |
JP2013041978A (en) * | 2011-08-15 | 2013-02-28 | Sumitomo Electric Ind Ltd | Nitride semiconductor light-emitting element and nitride semiconductor light-emitting element manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07122816A (en) * | 1993-10-15 | 1995-05-12 | Internatl Business Mach Corp <Ibm> | Semiconductor quantum well type laser and its preparation |
JP2000012956A (en) * | 1998-06-19 | 2000-01-14 | Nichia Chem Ind Ltd | Nitride semiconductor laser element |
JP2004111997A (en) * | 2001-05-31 | 2004-04-08 | Nichia Chem Ind Ltd | Semiconductor laser device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003332674A (en) * | 2002-05-10 | 2003-11-21 | Fuji Photo Film Co Ltd | Semiconductor laser element |
JP4390433B2 (en) * | 2002-06-19 | 2009-12-24 | シャープ株式会社 | Nitride semiconductor laser and manufacturing method thereof |
JP4186581B2 (en) * | 2002-10-15 | 2008-11-26 | 三菱電機株式会社 | Manufacturing method of semiconductor laser device |
-
2006
- 2006-04-12 JP JP2007521207A patent/JP4917031B2/en active Active
- 2006-04-12 WO PCT/JP2006/307771 patent/WO2006134717A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07122816A (en) * | 1993-10-15 | 1995-05-12 | Internatl Business Mach Corp <Ibm> | Semiconductor quantum well type laser and its preparation |
JP2000012956A (en) * | 1998-06-19 | 2000-01-14 | Nichia Chem Ind Ltd | Nitride semiconductor laser element |
JP2004111997A (en) * | 2001-05-31 | 2004-04-08 | Nichia Chem Ind Ltd | Semiconductor laser device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009078482A1 (en) * | 2007-12-19 | 2009-06-25 | Rohm Co., Ltd. | Semiconductor light-emitting device |
JPWO2009078482A1 (en) * | 2007-12-19 | 2011-05-06 | ローム株式会社 | Semiconductor light emitting device |
US8411718B2 (en) | 2007-12-19 | 2013-04-02 | Rohm Co., Ltd. | Semiconductor light-emitting device |
JP2011507304A (en) * | 2007-12-28 | 2011-03-03 | アギア システムズ インコーポレーテッド | Waveguide device with delta-doped active region |
JP2009200478A (en) * | 2008-01-21 | 2009-09-03 | Sanyo Electric Co Ltd | Semiconductor laser device and method of manufacturing the same |
JP2013041978A (en) * | 2011-08-15 | 2013-02-28 | Sumitomo Electric Ind Ltd | Nitride semiconductor light-emitting element and nitride semiconductor light-emitting element manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4917031B2 (en) | 2012-04-18 |
JPWO2006134717A1 (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7995632B2 (en) | Nitride semiconductor laser chip and fabrication method thereof | |
JP5285835B2 (en) | Semiconductor device and manufacturing method thereof | |
US7924898B2 (en) | Nitride based semiconductor laser device with oxynitride protective coatings on facets | |
KR100770438B1 (en) | Semiconductor light-emitting device | |
WO2008016019A1 (en) | Semiconductor laser device and its manufacturing method | |
US7518162B2 (en) | Semiconductor light emitting device | |
US8053262B2 (en) | Method for manufacturing nitride semiconductor laser element | |
US7842956B2 (en) | Nitride semiconductor laser element and fabrication method thereof | |
US20080304528A1 (en) | Nitride semiconductor laser device and fabrication method thereof | |
EP2416460B1 (en) | Nitride semiconductor laser element and method for manufacturing same | |
CN102956770B (en) | Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device, and method of manufacturing nitride semiconductor light-emitting element | |
US12155019B2 (en) | Light-emitting device | |
CN103975491A (en) | Laser diode element and method of manufacturing laser diode element | |
JP2008034587A (en) | Method of manufacturing semiconductor laser, semiconductor device, and device | |
WO2006134717A1 (en) | Nitride semiconductor laser and method for fabricating same | |
JP2009212386A (en) | Method of manufacturing semiconductor light element | |
US20090323746A1 (en) | Nitride Semiconductor Laser and Method for Fabricating Same | |
JP4390433B2 (en) | Nitride semiconductor laser and manufacturing method thereof | |
JP4889930B2 (en) | Manufacturing method of nitride semiconductor laser device | |
US20100244074A1 (en) | Semiconductor light-emitting device and method of manufacturing the same | |
JP5306581B2 (en) | Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device | |
CN101465518A (en) | Method for manufacturing nitride semiconductor laser | |
JP2003051611A (en) | Semiconductor element and manufacturing method therefor | |
JP2010205829A (en) | Semiconductor light-emitting element, and method for manufacturing the same | |
JP2011258883A (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007521207 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06731707 Country of ref document: EP Kind code of ref document: A1 |