[go: up one dir, main page]

WO2006132209A1 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
WO2006132209A1
WO2006132209A1 PCT/JP2006/311276 JP2006311276W WO2006132209A1 WO 2006132209 A1 WO2006132209 A1 WO 2006132209A1 JP 2006311276 W JP2006311276 W JP 2006311276W WO 2006132209 A1 WO2006132209 A1 WO 2006132209A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
sample
analysis
automatic analyzer
liquid
Prior art date
Application number
PCT/JP2006/311276
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Yamazaki
Ryuji Tao
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Publication of WO2006132209A1 publication Critical patent/WO2006132209A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the reaction cell needs to contain a reaction solution (sample + reagent) larger than the luminous flux diameter of the photometer, and a certain amount or more of the sample Z reagent is required.
  • a reaction solution sample + reagent
  • it is necessary to increase the number of reaction cells.
  • the reaction cell requires a certain volume, which inevitably increases the size of the apparatus.
  • the droplet transport device is circular, the electrode arrays that form a plurality of analysis paths are aligned in the radial direction, and the electrode arrays that form the sample distribution mechanism and the reagent distribution mechanism are aligned in the circumferential direction. Good.
  • FIG. 10 is a cross-sectional view showing the main part of the sample port of the first embodiment.
  • FIG. 7 is a cross-sectional view showing the structure of the drainage port 48 of the first embodiment.
  • the drainage port 48 protrudes upward from the analysis substrate 10 and has a hole therethrough. Furthermore, the drainage tube 47 penetrates the side force. There is space inside.
  • the discharged reagent enters the region sandwiched between the water-repellent films 62 and 66 as droplets 70, but suction force is generated by electro-etching on the control electrode 64 to which voltage is applied. Therefore, it is guided to the reagent reservoir 85 through the route 90.
  • the voltage application to the control electrode 64 on the path 90 is sequentially cut off, and only the reagent reservoir 85 is applied and the reagent is held on the reagent reservoir 85. .
  • An analysis of an item of a sample is performed as follows. [0056] The control device 12 selects one of the reagent reservoir 85 in which the first reagent used for the analysis is retained, the reagent reservoir 85 in which the second reagent is retained, and the empty analysis channel 80. .
  • the specimen droplet is conveyed to the selected analysis channel 80 by sequentially moving the electrode that is applied with voltage along the path in the sample channel 83. After collecting the required amount of sample, the sample remaining in the sample reservoir 86 is transported to the drain port 48 and discarded.
  • the photometer 50 is turned by the moving mechanism 51 at a speed of one rotation in 30 seconds.
  • light is applied to the droplets on al8, al9, and a20, and the amount of transmitted light of the selected wavelength is measured and transmitted to the controller 12.
  • the controller 12 calculates the absorbance. Periodic measurements are taken during the first reaction time.
  • a second reagent is prepared. Reagent reservoir 85 holding the second reagent is also applied to three electrodes that continue to the outer circumference, and a voltage higher than that applied to reagent reservoir 85 is applied, and the second electrode of the three electrodes is applied after a certain period of time.
  • the second reagent droplets are transported to the electrode al4 of the selected analysis channel 80 by sequentially moving the electrodes applying the voltage along the path passing through the second reagent channel 82.
  • analysis of an item of a sample is performed in one analysis channel 80, analysis of another sample or another item proceeds in parallel in another analysis channel 80.
  • the width of the relay electrode 88 is narrower than the width of the electrode forming the analysis flow path 80, so that the size of the analysis substrate 10 can be reduced, and the space-saving is reduced. An analysis device can be realized.
  • the measurement mechanism need not be a rotating photometer, and an LED as described above may be provided in each sample transport path.
  • the sample disk 20 and the reagent disk 41 are outside the analysis substrate 10, the specimen and reagent can be easily replaced and replenished even during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An automatic analyzer which is high in speed and degree of freedom, can reduce the number of times of mechanically dispensing a specimen and a reagent, and can analyze a plurality of specimens by selecting necessary items. The automatic analyzer comprises a droplet carrying device formed with two surfaces thereof facing each other on at least one of which are formed a plurality of electrodes, a plurality of analysis routes (80) that allow specimen droplets and reagent droplets to be mixed, reacted and optically measured within the droplet carrying device, a specimen distributing mechanism capable of distributing specimen droplets into a plurality of analysis routes, a reagent distributing mechanism capable of distributing reagent droplets into a plurality of analysis routes, and a control device (12) for controlling each mechanism so as to select a combination of a specimen and a reagent and guide it to an analysis route and calculating the concentrations of components contained in a specimen from the results of an optical measurement.

Description

明 細 書  Specification
自動分析装置  Automatic analyzer
技術分野  Technical field
[0001] 本発明は血液、尿等の生体成分の定性'定量分析を実行する自動分析装置に係り The present invention relates to an automatic analyzer that performs qualitative 'quantitative analysis of biological components such as blood and urine.
、特に小型で、より多くの試薬を搭載でき、かつ時間あたりの処理能力の高い自動分 析装置に関する。 In particular, the present invention relates to an automatic analyzer that is small in size, can be loaded with more reagents, and has a high throughput per hour.
背景技術  Background art
[0002] 血液等の生体試料を自動的に分析し、結果を出力する自動分析装置は、患者数 の多い大病院、中小病院、医院力 検査を請け負い検査を行う検査センターなどに ぉ 、て効率良く分析を行うのになくてはならな 、装置になって 、る。  [0002] Automatic analyzers that automatically analyze biological samples such as blood and output the results are highly efficient for large hospitals, small and medium hospitals with a large number of patients, and inspection centers that undertake clinic power tests. It is necessary to perform analysis well, and it becomes a device.
[0003] そのような自動分析装置は、コンパクトでより多種類の分析ができ、かつ処理速度 の高いものが望まれており、従来種々のものが提案されている。例えば特許文献 1に は複数の反応セルを円周上に配置し、回転可能な反応ディスクを用い、個々の反応 セルに検体、試薬をプローブで分注し、混合液の吸光度の変化を光度計で検出して 検体の特定成分の濃度を分析する装置が開示されている。  [0003] Such an automatic analyzer is desired to be compact and capable of performing more types of analysis and to have a high processing speed, and various types of automatic analyzers have been proposed. For example, in Patent Document 1, a plurality of reaction cells are arranged on the circumference, a rotatable reaction disk is used, samples and reagents are dispensed into individual reaction cells with a probe, and the change in absorbance of the mixed solution is measured with a photometer. Discloses an apparatus for detecting the concentration of a specific component of a specimen.
[0004] この方法では、全ての反応セルが反応ディスクの回転により光度計を通過して測光 されるので、必要な光度計は 1つのみであり、全てのセルに対して同一の条件でばら つきの小さい分析が可能である。また、検体、試薬の分注はどの反応セルに対しても 可能なので、必要な分析が自由な順番で実施することができ、処理能力の高い分析 が可能である。  [0004] In this method, all the reaction cells are measured by passing through the photometer by the rotation of the reaction disk. Therefore, only one photometer is required, and all the cells vary under the same conditions. A small analysis is possible. In addition, specimens and reagents can be dispensed into any reaction cell, so the necessary analyzes can be performed in any order and analysis with high throughput is possible.
[0005] しかし、この方法では、反応セルに光度計の光束径以上の反応液 (検体 +試薬)が 入っている必要があり、一定量以上の検体 Z試薬が必要である。また、処理速度を 大きくするためには反応セルの数を多くする必要がある力 一方で反応セルには一 定容積が必要であり、必然的に装置が大型化してしまうという問題があった。  However, in this method, the reaction cell needs to contain a reaction solution (sample + reagent) larger than the luminous flux diameter of the photometer, and a certain amount or more of the sample Z reagent is required. In addition, in order to increase the processing speed, it is necessary to increase the number of reaction cells. On the other hand, there is a problem in that the reaction cell requires a certain volume, which inevitably increases the size of the apparatus.
[0006] これに対して非特許文献 1には、エレクトロウヱツチングと称する電極列の配置され た平板間に液滴を操作する技術を応用して、検体と試薬を反応させ LEDを用いた光 学系で反応液滴の吸光度を検出して 4種類の項目の濃度を分析した例が紹介され ている。エレクトロウエッチングによる液滴搬送技術は、小さな量の液滴を扱える、機 械的に動く機構が不要なので信頼性が高いなどの利点があり、小型で高処理能力の 分析装置を実現できる可能性がある。 [0006] On the other hand, Non-Patent Document 1 applies a technique for manipulating droplets between flat plates on which electrode arrays called electro-watching are arranged to react a specimen with a reagent and use an LED. An example of detecting the absorbance of reaction droplets in an optical system and analyzing the concentration of four types of items was introduced. ing. The droplet transfer technology by electro-etching has advantages such as high reliability because it can handle a small amount of droplets and no mechanical movement mechanism is possible, and there is a possibility of realizing a small and high-throughput analyzer. There is.
[0007] 特許文献 1 :特開平 4 71184号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 4 71184
特干文献 1: Clinical diagnostics on human whole blooa、 plasma、 serum、 urine ^ sail va、 sweat、 and tears on a digital microfluidic platform μ TAS2003  Special Reference 1: Clinical diagnostics on human whole blooa, plasma, serum, urine ^ sail va, sweat, and tears on a digital microfluidic platform μ TAS2003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 非特許文献 1に記載の技術では、特定の項目の分析は可能であるが、複数の検体 に対して多種類の項目から必要な項目を選んで自動的に分析することができな 、。 [0008] With the technique described in Non-Patent Document 1, it is possible to analyze specific items, but it is not possible to automatically select and analyze necessary items from multiple types of items for multiple specimens. ,.
[0009] 本発明の目的は、検体、試薬の機械的な分注回数を減らし、複数の検体に対して 必要な項目を選んで自動的に分析できる高速で自由度の高 ヽ自動分析装置を提供 することにある。 [0009] An object of the present invention is to provide a high-speed and high-precision automatic analyzer capable of reducing the number of mechanical dispensing of specimens and reagents and automatically selecting and analyzing necessary items for a plurality of specimens. It is to provide.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の課題解決手段は次の通りである。 The problem solving means of the present invention is as follows.
[0011] 少なくとも一方の面に複数の電極が配置された 2つの面を対向させて形成された液 滴搬送デバイスと、液滴搬送デバイス内で検体液滴と試薬液滴を混合、反応、光学 測定させる複数の分析経路と、検体液滴を複数の分析経路に分配可能な検体分配 機構と、試薬液滴を複数の分析経路に分配可能な試薬分配機構と、検体と試薬の 組み合わせを選択して分析経路に導くよう各機構を制御し、光学測定の結果から検 体に含まれる成分の濃度を計算する制御装置を持つように構成する。  [0011] A liquid droplet transport device formed by facing two surfaces on which at least one surface has a plurality of electrodes, and a sample droplet and a reagent droplet are mixed, reacted, and optical in the liquid droplet transport device Select multiple analysis paths to be measured, sample distribution mechanism that can distribute sample droplets to multiple analysis paths, reagent distribution mechanism that can distribute reagent droplets to multiple analysis paths, and a combination of sample and reagent Then, each mechanism is controlled so as to guide it to the analysis path, and a control device for calculating the concentration of the component contained in the sample from the result of the optical measurement is provided.
[0012] より好ましくは以下のような構成である。  [0012] More preferably, the configuration is as follows.
[0013] 所定間隔で対向させ、間隙に液体を保持する少なくとも 1対の板状部材を備えた液 体搬送機構であって、前記少なくとも 1対の板状部材の少なくとも一方に、液体を搬 送する方向に沿って複数の電極を所定間隔で配置した液体搬送路を複数備え、か っ該液体搬送路には、少なくとも放射状にサンプル液体を搬送するサンプル搬送路 と、該サンプル搬送路を横断し、複数の前記サンプル搬送路に試薬を供給する試薬 搬送路と、を備えた液体搬送機構と、前記サンプル搬送路に検体を供給する検体分 配機構と、前記試薬搬送路に試薬を供給する試薬分配機構と、前記液体搬送路中 での検体と試薬の反応を光学的に分析する測定機構と、を備えた自動分析装置。 [0013] A liquid transport mechanism including at least one pair of plate-like members opposed to each other at a predetermined interval and holding a liquid in a gap, wherein the liquid is carried to at least one of the at least one pair of plate-like members. A plurality of liquid transport paths in which a plurality of electrodes are arranged at predetermined intervals along the direction in which the sample transport path is provided, and the liquid transport path includes at least a sample transport path for transporting the sample liquid in a radial manner and a crossing the sample transport path A liquid transport mechanism including a reagent transport path for supplying reagents to the plurality of sample transport paths, and a sample distribution unit for supplying a sample to the sample transport path An automatic analyzer comprising: a distribution mechanism; a reagent distribution mechanism that supplies a reagent to the reagent conveyance path; and a measurement mechanism that optically analyzes a reaction between the sample and the reagent in the liquid conveyance path.
[0014] 上記自動分析装置では、液滴の光学的性質を測定する光度計と、光度計を移動さ せる移動機構を持ち、光度計が複数の分析経路で光学測定できるように構成しても よい。  [0014] The automatic analyzer may include a photometer that measures the optical properties of the droplet and a moving mechanism that moves the photometer, and the photometer can be configured to perform optical measurement through a plurality of analysis paths. Good.
[0015] また、試薬庫が複数の試薬容器を円周上に搭載して回転可能な試薬ディスクであ り、試薬分注機構が試薬ディスク上の特定の位置の試薬容器から試薬を吸弓 Iして液 滴搬送デバイスの特定位置に吐出する試薬プローブであってもよい。  [0015] The reagent storage is a reagent disk that can be rotated by mounting a plurality of reagent containers on the circumference, and the reagent dispensing mechanism sucks the reagent from the reagent container at a specific position on the reagent disk. Then, the reagent probe may be ejected to a specific position of the liquid droplet transport device.
[0016] また、試薬プローブは複数回の分析に要する量の試薬を 1回で吸引して液滴搬送 デバイスに吐出してもよい。  [0016] The reagent probe may suck the amount of reagent required for a plurality of analyzes at a time and discharge it to the droplet transport device.
[0017] また、液滴搬送デバイス内に試薬溜めがあり、試薬液滴は試薬溜めに保持された のち分析経路に搬送しても良い。  [0017] There may be a reagent reservoir in the droplet transport device, and the reagent droplet may be transported to the analysis path after being held in the reagent reservoir.
[0018] また、試薬溜めは複数回の分析に要する量の液滴を一体として保持し、試薬溜め に接続する分取経路にて 1回の分析に必要な量の液滴に分割してカゝら分析経路に 搬送しても良い。  [0018] In addition, the reagent reservoir holds the amount of droplets required for a plurality of analyzes as a unit, and is divided into droplets required for one analysis in a sorting path connected to the reagent reservoir. It may also be transported to the analysis path.
[0019] また、試薬溜めは複数の液滴を保持し、順序を交換して分析経路に搬送可能に構 成されていてもよい。  [0019] The reagent reservoir may be configured to hold a plurality of droplets and exchange them in the order and transport them to the analysis path.
[0020] また、試薬溜めは複数設置されており、それぞれの試薬溜めに保持される試薬は 同一の種類の試薬であってもよ 、。  [0020] Further, a plurality of reagent reservoirs are provided, and the reagents held in each reagent reservoir may be the same type of reagent.
[0021] また、個々の試薬溜めに保持される試薬の種類が固定されず、異なる種類の試薬 が共通の試薬溜めに保持されてもょ ヽ。 [0021] In addition, the type of reagent held in each reagent reservoir is not fixed, and different types of reagents may be held in a common reagent reservoir.
[0022] また、検体分注機構が検体容器から検体を吸引して液滴搬送デバイスの特定位置 に吐出する検体プローブであり、検体プローブは複数の分析に要する量の検体を 1 回で吸引してもよい。 [0022] The sample dispensing mechanism is a sample probe that sucks the sample from the sample container and discharges the sample to a specific position of the droplet transport device, and the sample probe sucks the amount of samples required for a plurality of analyzes at a time. May be.
[0023] また、液滴搬送デバイス内に検体溜めがあり、検体液滴は検体溜めに保持された のち分析経路に搬送してもよい。  [0023] There is a specimen reservoir in the droplet transport device, and the specimen droplet may be transported to the analysis path after being held in the specimen reservoir.
[0024] また、検体溜めは複数回の分析に要する量の液滴を一体として保持し、検体溜め に接続する分取経路にて 1回の分析に必要な量の液滴に分割してカゝら分析経路に 搬送してちょい。 [0024] In addition, the specimen reservoir integrally holds the amount of liquid droplets required for a plurality of analyzes, and is divided into the amount of liquid droplets required for one analysis in a sorting path connected to the specimen reservoir. In the analysis path Transport it.
[0025] また、検体溜めは複数の液滴を保持し、順序を交換して分析経路に搬送可能に構 成されていても良い。  [0025] Further, the specimen reservoir may be configured to hold a plurality of droplets and to transport them to the analysis path by changing the order.
[0026] また、検体を異なる希釈率で希釈する希釈機構をもち、希釈された検体が液滴搬 送デバイスに供給されても良 ヽ。  [0026] Further, it may have a dilution mechanism for diluting the specimen at different dilution rates, and the diluted specimen may be supplied to the droplet transport device.
[0027] また、検体分注機構が検体容器力 検体を吸引する検体プローブであり、液滴搬 送デバイスの検体吐出位置にて検体を希釈しても良い。 [0027] The sample dispensing mechanism may be a sample probe that aspirates the sample container force sample, and the sample may be diluted at the sample discharge position of the droplet transport device.
[0028] また、分析経路、検体分配機構および試薬分配機構はそれぞれ複数の電極列か らなっており、分析経路をなす電極列と検体分配機構および試薬分配機構をなす電 極列は交差しており、交差点を介して液滴がそれぞれの電極列間を移動してもよい。 [0028] The analysis path, the sample distribution mechanism, and the reagent distribution mechanism each include a plurality of electrode arrays, and the electrode arrays that form the analysis path intersect the electrode arrays that form the sample distribution mechanism and the reagent distribution mechanism. In addition, the droplets may move between the respective electrode rows through the intersection.
[0029] また、複数の連続した電極に電圧を印加して一つの液滴を保持し、共通の電極列 上で異なる体積の液滴を搬送してもよ ヽ。 [0029] Alternatively, a voltage may be applied to a plurality of continuous electrodes to hold one droplet, and droplets having different volumes may be conveyed on a common electrode array.
[0030] また、液滴搬送デバイスが円形であり、複数の分析経路をなす電極列が半径方向 に整列しており、検体分配機構および試薬分配機構をなす電極列は周方向に整列 してちよい。 [0030] In addition, the droplet transport device is circular, the electrode arrays that form a plurality of analysis paths are aligned in the radial direction, and the electrode arrays that form the sample distribution mechanism and the reagent distribution mechanism are aligned in the circumferential direction. Good.
[0031] また、複数の分析経路が円周上に配置されており、光度計が回転して光学測定し てもよい。  [0031] Further, a plurality of analysis paths may be arranged on the circumference, and the photometer may rotate to perform optical measurement.
[0032] また、検体液滴を分析径路に分配する搬送経路、試薬液滴を分析経路に分配する 搬送経路のいずれかまたは両方の搬送経路が、複数の経路の中から選択可能であ つてもよい。  [0032] Either or both of the transport path for distributing the specimen droplets to the analysis path and the transport path for distributing the reagent droplets to the analysis path can be selected from a plurality of paths. Good.
発明の効果  The invention's effect
[0033] 検体、試薬の機械的な分注回数が少なぐかつ複数の検体に対して必要な項目を 選んで分析できる高速で自由度の高!ヽ自動分析装置を提供することが可能である。 図面の簡単な説明  [0033] It is possible to provide a high-speed and high-degree of freedom automatic analyzer capable of selecting and analyzing necessary items for a plurality of samples with a small number of mechanical dispensing of samples and reagents. . Brief Description of Drawings
[0034] [図 1]第 1実施例の分析装置の概略の構成を示す斜視図。 FIG. 1 is a perspective view showing a schematic configuration of an analyzer according to a first embodiment.
[図 2]第 1実施例の分析基板の要部を示す断面図。  FIG. 2 is a cross-sectional view showing the main part of the analysis substrate of the first embodiment.
[図 3]第 1実施例の分析基板の概略構成を示す上面図。  FIG. 3 is a top view showing a schematic configuration of the analysis substrate of the first embodiment.
[図 4]第 1実施例の分析流路の要部を示す上面図。 [図 5]第 1実施例の試薬ポートおよび試薬溜め要部を示す上面図。 FIG. 4 is a top view showing the main part of the analysis flow path of the first embodiment. FIG. 5 is a top view showing a reagent port and a reagent reservoir main part of the first embodiment.
[図 6]第 1実施例の試薬ポートの要部を示す断面図。  FIG. 6 is a cross-sectional view showing the main part of the reagent port of the first embodiment.
[図 7]第 1実施例の排液ポートの要部を示す断面図。  FIG. 7 is a cross-sectional view showing the main part of the drainage port of the first embodiment.
[図 8]第 2実施例の分析装置の概略の構成を示す斜視図。  FIG. 8 is a perspective view showing a schematic configuration of an analyzer according to a second embodiment.
[図 9]第 2実施例の分析基板の概略構成を示す上面図。  FIG. 9 is a top view showing a schematic configuration of the analysis substrate of the second embodiment.
[図 10]第 1実施例のサンプルポートの要部を示す断面図。  FIG. 10 is a cross-sectional view showing the main part of the sample port of the first embodiment.
符号の説明  Explanation of symbols
[0035] 10···分析基板、 12···制御装置、 13···表示装置、 20…サンプルディスク、 21···サ ンプル容器、 22···サンプルプローブ、 23···希釈液プローブ、 24…サンプルポート、 25…希釈ポート、 26…洗浄ポート、 30…第 1試薬プローブ、 31…第 1試薬ポート、 3 5…第 2試薬プローブ、 37···第 2試薬ポート、 40···試薬容器、 41···試薬ディスク、 42 …開閉機構、 43…スナップキャップ、 47···排液チューブ、 48···排液ポート、 50· "光 度計、 51···移動機構、 60…第 1基板、 61···共通電極、 62、 66、 68···撥水膜、 63 …第 2基板、 64···制御電極、 65···絶縁膜、 67…スぺーサ、 70···液滴、 71…オイル 、 73…廃液、 75…検体液、 76…希釈液、 80···分析流路、 81···排液流路、 82···第 2試薬流路、 83···サンプル流路、 8 "第1試薬流路、 85···試薬溜め、 86···サンプ ル溜め、 87···供給流路、 88···中継電極、 90、 91···経路  [0035] 10 ... Analytical substrate, 12 ... Control device, 13 ... Display device, 20 ... Sample disk, 21 ... Sample container, 22 ... Sample probe, 23 ... Diluent Probe 24 ... Sample port 25 ... Dilution port 26 ... Wash port 30 ... First reagent probe 31 ... First reagent port 3 5 ... Second reagent probe 37 ... Second reagent port 40 ··· Reagent container, ·························································································································· Mechanism 60 ... First substrate 61 ... Common electrode 62, 66, 68 ... Water repellent film 63 ... Second substrate 64 ... Control electrode 65 ... Insulating film 67 ... Paser, 70 ··· droplet, 71… oil, 73… waste fluid, 75… analyte fluid, 76… diluent, 80 ··· analysis channel, 81 ··· drain channel, 82 ·· 2 reagent channels, 83 ... sample channels, 8 "1st reagent Road, reservoir 85 ... reagent, 86 ... sample reservoir, 87 ... supply passage, 88 ... relay electrode, 90, 91 ... path
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、図面を用いて本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0037] (実施例 1)  [0037] (Example 1)
図 1は本発明の第 1実施例の斜視図である。リング状の分析基板 10の中に試薬デ イスク 41、第 1試薬プローブ 30、第 2試薬プローブ 35が配置されている。分析基板 1 0の外側にはサンプルディスク 20、サンプルプローブ 22、移動機構 51に支持された 光度計 50、制御装置 12、表示装置 13が配置されている。試薬ディスク 41には複数 の試薬容器 40が搭載されて 、る。サンプルディスク 20には複数のサンプル容器 21 が搭載されている。第 1試薬プローブ 30、第 2試薬プローブ 35、サンプルプローブ 2 2はそれぞれ独立して上下動、回転が可能である。それぞれのプローブは図示しな いシリンジポンプに接続されている。プローブの移動経路に第 1試薬ポート 31、第 2 試薬ポート 37、サンプルポート 24、および洗浄ポート 26が配置されている。また、分 析基板 FIG. 1 is a perspective view of a first embodiment of the present invention. A reagent disk 41, a first reagent probe 30, and a second reagent probe 35 are disposed in a ring-shaped analysis substrate 10. A sample disk 20, a sample probe 22, a photometer 50 supported by a moving mechanism 51, a control device 12, and a display device 13 are arranged outside the analysis substrate 10. A plurality of reagent containers 40 are mounted on the reagent disk 41. A plurality of sample containers 21 are mounted on the sample disk 20. The first reagent probe 30, the second reagent probe 35, and the sample probe 22 can be independently moved up and down and rotated. Each probe is connected to a syringe pump (not shown). First reagent port 31 and second on the probe path Reagent port 37, sample port 24, and wash port 26 are located. In addition, the analysis substrate
10には 4つの排液ポート 48が設けられ、それらには排液チューブ 47が接続されてい る。  Four drain ports 48 are provided in 10 and a drain tube 47 is connected to them.
[0038] 光度計 50は、広 、波長範囲の光を放射する光源と、回折格子と、複数の波長の光 を検出する検出器が内蔵されている。  The photometer 50 includes a light source that emits light in a wide wavelength range, a diffraction grating, and a detector that detects light of a plurality of wavelengths.
[0039] 図 2は、第 1実施例の分析基板 10の断面を示す模式図である。分析基板 10は第 1 基板 60、第 2基板 63で構成されている。第 1基板 60の下面には、共通電極 61が構 成され、さらに撥水膜 62で覆われている。第 2基板 63の上面には複数の制御電極 6 4が配置され、その上を絶縁膜 65、撥水膜 66で覆われている。共通電極 61および 制御電極 64は図示しない配線で制御装置 12に接続している。第 1基板 60、共通電 極 61、撥水膜 62、第 2基板 63、制御電極 64、絶縁膜 65、撥水膜 66は全て光を透 過する材料でできている。分析基板 10の端面はスぺーサ 67で封止されており、第 1 基板 60と第 2基板 63の間は 0. 5mmの隙間をもって隔てられている。この隙間には、 水溶液と混じり合わないオイル 71が満たされ、水溶性の液滴 70が保持される。  FIG. 2 is a schematic diagram showing a cross section of the analysis substrate 10 of the first embodiment. The analysis substrate 10 includes a first substrate 60 and a second substrate 63. A common electrode 61 is formed on the lower surface of the first substrate 60, and is further covered with a water repellent film 62. A plurality of control electrodes 64 are disposed on the upper surface of the second substrate 63, and are covered with an insulating film 65 and a water repellent film 66. The common electrode 61 and the control electrode 64 are connected to the control device 12 by wiring not shown. The first substrate 60, the common electrode 61, the water repellent film 62, the second substrate 63, the control electrode 64, the insulating film 65, and the water repellent film 66 are all made of a material that transmits light. The end surface of the analysis substrate 10 is sealed with a spacer 67, and the first substrate 60 and the second substrate 63 are separated by a gap of 0.5 mm. This gap is filled with oil 71 that does not mix with the aqueous solution, and water-soluble droplets 70 are retained.
[0040] 図 3は、第 1実施例の分析基板 10の上面図である。半径方向にのびた複数の分析 流路 80が円周状に多数並んでいる。分析流路 80に交差して、周方向に排液流路 8 1、第 2試薬流路 82、サンプル流路 83、第 1試薬流路 84が並んでいる。 84の内側に は、サンプルポート 24、複数のサンプル溜め 86、第 1試薬ポート 31、第 2試薬ポート 37、複数の試薬溜め 85、複数の排液ポート 48が配置され、更にその内側には周上 に供給流路 87が配置されている。図では省略してある力 試薬溜め 85は全周上に 1 00個程度配置されている。  FIG. 3 is a top view of the analysis substrate 10 of the first embodiment. A large number of analysis flow paths 80 extending in the radial direction are arranged in a circle. A drainage flow channel 81, a second reagent flow channel 82, a sample flow channel 83, and a first reagent flow channel 84 are arranged in the circumferential direction so as to cross the analysis flow channel 80. 84 includes a sample port 24, a plurality of sample reservoirs 86, a first reagent port 31, a second reagent port 37, a plurality of reagent reservoirs 85, and a plurality of drainage ports 48. A supply flow path 87 is disposed above. About 100 force reagent reservoirs 85, which are omitted in the figure, are arranged on the entire circumference.
[0041] 図 4は、第 1実施例の分析基板 10の一部の電極配置を示す上面図である。図で、 実線の四角い枠は、それぞれ制御電極 64を示す。分析流路 80は半径方向に並ん だ al力も a23まで 23個の電極で構成されている。本実施例の場合、個々の電極は 一辺が約 2. 8mmの正方形である。電極 al、 3、 a5、 al2は、隣の分析流路との間に 中継電極 88が配置され、周方向に搬送流路である第 1試薬流路 84、サンプル流路 83、第 2試薬流路 82、排液流路 81を形成している。中継電極 88の横幅は、分析流 路 80を形成している電極の横幅より小さい。また電極 al8、 al9、 a20の部分は測光 領域である。 FIG. 4 is a top view showing an electrode arrangement of a part of the analysis substrate 10 of the first embodiment. In the figure, each solid square frame represents a control electrode 64. The analysis channel 80 is composed of 23 electrodes with al force aligned in the radial direction up to a23. In this embodiment, each electrode is a square having a side of about 2.8 mm. Electrodes al, 3, a5, and al2 have a relay electrode 88 disposed between the adjacent analysis flow paths, and the first reagent flow path 84, sample flow path 83, and second reagent flow that are transport flow paths in the circumferential direction. A passage 82 and a drainage passage 81 are formed. The width of the relay electrode 88 is It is smaller than the width of the electrode forming the path 80. The electrodes al8, al9, and a20 are photometric areas.
[0042] 図 5は、第 1実施例の分析基板 10の別の一部の電極配置を示す上面図である。第 1試薬流路 84と同様に供給流路 87も周方向に並んだ電極列で構成される。第 1試 薬流路 84と供給流路 87の間に第 1試薬ポート 31が配置され、第 1試薬ポート 31から 供給流路 87まで電極が連なっている。供給流路 87から第 1試薬流路 84に連なる電 極列の途中に他の電極より大き 、電極の試薬溜め 85が配置されて 、る。本実施例 の場合、この電極は直径 14mmの円形である。  FIG. 5 is a top view showing another partial electrode arrangement of the analysis substrate 10 of the first embodiment. Similar to the first reagent channel 84, the supply channel 87 is composed of electrode rows arranged in the circumferential direction. A first reagent port 31 is arranged between the first reagent channel 84 and the supply channel 87, and electrodes are connected from the first reagent port 31 to the supply channel 87. An electrode reagent reservoir 85 having a size larger than that of the other electrodes is arranged in the middle of the electrode train connected from the supply channel 87 to the first reagent channel 84. In the case of this example, this electrode is circular with a diameter of 14 mm.
[0043] 図 6は、第 1実施例の第 1試薬ポート 31の構造を示す断面図である。第 1試薬ポー ト 31は分析基板 10から上に突き出て、穴が貫通している。内面には撥水膜 68が形 成されている。第 1試薬プローブ 30が第 1試薬ポート 31に挿入し、分析基板 10の内 部で液滴 70を吐出する構造を形成して 、る。  FIG. 6 is a cross-sectional view showing the structure of the first reagent port 31 of the first embodiment. The first reagent port 31 protrudes upward from the analysis substrate 10 and has a hole therethrough. A water repellent film 68 is formed on the inner surface. The first reagent probe 30 is inserted into the first reagent port 31 to form a structure in which the droplet 70 is discharged inside the analysis substrate 10.
[0044] 第 2試薬ポート 37、サンプルポート 24も第 1試薬ポート 31と同様の構造をしている。  The second reagent port 37 and the sample port 24 have the same structure as the first reagent port 31.
また、サンプル溜め 86も試薬溜め 85と同様の形状をしている。  The sample reservoir 86 has the same shape as the reagent reservoir 85.
[0045] 図 7は、第 1実施例の排液ポート 48の構造を示す断面図である。排液ポート 48は 分析基板 10から上に突き出て、穴が貫通している。更に側面力も排液チューブ 47が 貫入している。内部には空間がある。  FIG. 7 is a cross-sectional view showing the structure of the drainage port 48 of the first embodiment. The drainage port 48 protrudes upward from the analysis substrate 10 and has a hole therethrough. Furthermore, the drainage tube 47 penetrates the side force. There is space inside.
[0046] 次に、第 1実施例の動作を説明する。  Next, the operation of the first embodiment will be described.
[0047] 試薬ディスク 41には、個々の分析項目に対応して第 1試薬と第 2試薬の 2種類の試 薬が試薬容器 40に入れられて搭載される。  [0047] On the reagent disk 41, two types of reagents, a first reagent and a second reagent, are placed in a reagent container 40 and loaded corresponding to each analysis item.
[0048] ある項目の試薬の分析基板 10への分注は次のように行われる。その項目の第 1試 薬が入った試薬容器 40が第 1試薬プローブ 30の吸引位置に来るように 41を回転し 、第 1試薬プローブ 30で第 1試薬を 80マイクロリットル吸引する。第 1試薬プローブ 3 0は上昇、回転して、第 1試薬ポート 31に挿入される。挿入後、 80マイクロリットルの 試薬を吐出する。第 1試薬ポート 31からその試薬に対して選ばれた試薬溜め 85まで 接続する経路 90に沿い、試薬吐出と連動して制御電極 64に順次電圧が印加される 。吐出された試薬は液滴 70となって撥水膜 62、 66に挟まれた領域に入るが、電圧 が印加された制御電極 64の上ではエレクトロウエッチングによる吸引力が発生するた め、経路 90を通って試薬溜め 85に導かれる。第 1試薬プローブ 30からの吐出が終 了したら、経路 90上の制御電極 64への電圧印加を順次切断していき、試薬溜め 85 の印加だけを残して、試薬を試薬溜め 85上に保持する。 [0048] The dispensing of the reagent of a certain item to the analysis substrate 10 is performed as follows. Rotate 41 so that the reagent container 40 containing the first reagent of the item is at the suction position of the first reagent probe 30, and aspirate 80 microliters of the first reagent with the first reagent probe 30. The first reagent probe 30 is raised and rotated and inserted into the first reagent port 31. After insertion, dispense 80 microliters of reagent. A voltage is sequentially applied to the control electrode 64 along the path 90 connecting from the first reagent port 31 to the reagent reservoir 85 selected for the reagent in conjunction with the reagent discharge. The discharged reagent enters the region sandwiched between the water-repellent films 62 and 66 as droplets 70, but suction force is generated by electro-etching on the control electrode 64 to which voltage is applied. Therefore, it is guided to the reagent reservoir 85 through the route 90. When the discharge from the first reagent probe 30 is completed, the voltage application to the control electrode 64 on the path 90 is sequentially cut off, and only the reagent reservoir 85 is applied and the reagent is held on the reagent reservoir 85. .
[0049] 第 2試薬に対しても第 1試薬の場合と同様の動作で、第 2試薬プローブ 35で試薬 容器 40から第 2試薬を 40マイクロリットル吸引し、第 2試薬ポート 37から吐出して、第[0049] For the second reagent, the same operation as that for the first reagent is performed, and the second reagent probe 35 sucks 40 microliters of the second reagent from the reagent container 40 and discharges it from the second reagent port 37. The second
1試薬とは別に選ばれた試薬溜め 85まで搬送されて保持される。 It is transported to and held by the reagent reservoir 85 selected separately from 1 reagent.
[0050] 第 1試薬プローブ 30および第 2試薬プローブ 35はそれぞれ試薬吐出後、洗浄ポー ト 26に移動し、洗浄水でプローブ内面、外面を洗浄される。 [0050] After the reagent is discharged, the first reagent probe 30 and the second reagent probe 35 move to the cleaning port 26, and the inner surface and outer surface of the probe are cleaned with cleaning water.
[0051] 分析する全ての項目の第 1試薬および第 2試薬の分注が行われて、それぞれ異な る 85上に保持される。 [0051] The first reagent and the second reagent of all items to be analyzed are dispensed and held on 85 different from each other.
[0052] 試薬の分析基板 10への分注は、動作開始時および、個々の試薬溜め 85に保持さ れている試薬の量が定められた量を下回った場合に実施される。  [0052] The dispensing of the reagent to the analysis substrate 10 is performed at the start of the operation and when the amount of the reagent held in each reagent reservoir 85 falls below a predetermined amount.
[0053] サンプルディスク 20にはキャリブレーションおよび精度管理用の濃度既知の検体、 被分析検体がサンプル容器 21に入れられて搭載される。  [0053] On the sample disk 20, a sample of known concentration for calibration and accuracy control and a sample to be analyzed are placed in a sample container 21 and mounted.
[0054] 検体の分析基板 10への分注は次のように行われる。目的の検体が入ったサンプル 容器 21がサンプルプローブ 22の吸引位置に来るようにサンプルディスク 20が回転し 、サンプルプローブ 22がサンプル容器 21から検体を吸引する。吸引量はその検体 で分析する全項目のテストに必要な量以上である。サンプルプローブ 22は上昇、回 転し、サンプルポート 24に挿入される。挿入後、吸引した検体を吐出する。サンプル プローブ 22からその検体に対応して選ばれたサンプル溜め 86まで接続する経路に 沿い、検体吐出と連動して制御電極 64に順次電圧が印加される。吐出された検体は 液滴 70となって撥水膜 62、 66に挟まれた部分に入る力 電圧が印加された制御電 極 64の上ではエレクトロウエッチングによる吸引力が発生するため、経路を通ってサ ンプル溜め 86まで導かれる。サンプルプローブ 22からの吐出が終了したら、経路上 の制御電極 64への電圧印加を順次切断して 、き、サンプル溜め 86の印加だけを残 して、検体をサンプル溜め 86上に保持する。サンプルプローブ 22は、分注後洗浄ポ ート 26に移動し、洗浄水でプローブ内面、外面を洗浄される。  [0054] The sample is dispensed onto the analysis substrate 10 as follows. The sample disk 20 rotates so that the sample container 21 containing the target specimen is positioned at the suction position of the sample probe 22, and the sample probe 22 sucks the specimen from the sample container 21. The amount of aspiration is greater than that required for testing all items analyzed on the sample. The sample probe 22 is raised and rotated and inserted into the sample port 24. After insertion, the aspirated specimen is discharged. A voltage is sequentially applied to the control electrode 64 in conjunction with the specimen discharge along a path connecting from the sample probe 22 to the sample reservoir 86 selected corresponding to the specimen. The discharged specimen becomes a droplet 70 and enters the portion sandwiched between the water-repellent films 62 and 66. Since a suction force is generated by electroetching on the control electrode 64 to which a voltage is applied, the path is routed. It leads to sample reservoir 86. When the discharge from the sample probe 22 is completed, the voltage application to the control electrode 64 on the path is sequentially cut, and the sample is held on the sample reservoir 86, leaving only the application of the sample reservoir 86. The sample probe 22 moves to the cleaning port 26 after dispensing, and the inner and outer surfaces of the probe are cleaned with cleaning water.
[0055] ある検体のある項目の分析は次のように行われる。 [0056] 制御装置 12は、その分析に用いる第 1試薬が保持されている試薬溜め 85と、第 2 試薬が保持されている試薬溜め 85と、空き状態の分析流路 80を 1つ選択する。 [0055] An analysis of an item of a sample is performed as follows. [0056] The control device 12 selects one of the reagent reservoir 85 in which the first reagent used for the analysis is retained, the reagent reservoir 85 in which the second reagent is retained, and the empty analysis channel 80. .
[0057] 第 1試薬の保持されている試薬溜め 85から外周側に連続する 4つの電極に試薬溜 め 85に印加されているよりも高い電圧を印加する。一定時間後に 4つの電極のうち 2 番目の電極の印加を切断することにより、 3番目と 4番目の電極上に約 8マイクロリット ルの第 1試薬の液滴が形成される。試薬溜め 85から第 1試薬流路 84を通る経路 91 に沿って、電圧を印加している電極を順次移動することにより、第 1試薬の液滴は選 ばれた分析流路 80まで搬送される。  [0057] A voltage higher than that applied to the reagent reservoir 85 is applied to four electrodes continuous from the reagent reservoir 85 holding the first reagent to the outer peripheral side. By cutting off the application of the second electrode among the four electrodes after a certain period of time, a first reagent droplet of about 8 microliters is formed on the third and fourth electrodes. By sequentially moving the electrode to which the voltage is applied from the reagent reservoir 85 along the path 91 passing through the first reagent channel 84, the droplet of the first reagent is conveyed to the selected analysis channel 80. .
[0058] 検体は、サンプル溜め 86から外周側に連続する 3つの電極にサンプル溜め 86に 印加して 、るよりも高 、電圧を印加し、一定時間後に 3つの電極のうち 2番目の電極 の印加を切断することにより、 3番目の電極上に約 4マイクロリットルの検体液滴が形 成される。  [0058] The specimen is applied to the sample reservoir 86 to three electrodes that are continuous from the sample reservoir 86 to the outer peripheral side, and a voltage is applied to the sample reservoir 86 higher than the sample reservoir 86. By cutting off the application, approximately 4 microliters of analyte droplets are formed on the third electrode.
[0059] この検体液滴は、サンプル流路 83を経路に沿って、電圧を印加して ヽる電極を順 次移動することによって、選ばれた分析流路 80まで搬送される。必要な量の検体を 分取後、サンプル溜め 86に残された検体は、排液ポート 48に搬送されて廃棄される  [0059] The specimen droplet is conveyed to the selected analysis channel 80 by sequentially moving the electrode that is applied with voltage along the path in the sample channel 83. After collecting the required amount of sample, the sample remaining in the sample reservoir 86 is transported to the drain port 48 and discarded.
[0060] 分析流路 80で、まず検体液滴は alOに、第 1試薬液滴は a7、 a8に保持される。 [0060] In the analysis flow path 80, first, the specimen droplet is held in alO, and the first reagent droplet is held in a7 and a8.
[0061] 次に alOから印加電極を順次移動することで検体液滴を a20まで搬送する。続いて 、 a7、 a8の印加電極を順次移動することで第 1試薬液滴を al8、 al9まで搬送する。 ここで、検体と第 1試薬の液滴は合体し、第 1反応液となって 3つの電極 al8、 al 9、 a 20上に保持される。次に a 16から a23の間で電圧を印加している位置を往復移動す ることで、液滴は往復運動し、第 1反応液の液滴中の検体と第 1試薬は攪拌されて均 一になる。その後印加電極は al8、 al9、 a20に固定されて、第 1反応時間の 5分間 液滴は保持される。 Next, the specimen droplet is transported to a20 by sequentially moving the application electrode from alO. Subsequently, the first reagent droplet is transported to al8 and al9 by sequentially moving the application electrodes a7 and a8. Here, the specimen and the first reagent droplet are combined to form a first reaction solution, which is held on the three electrodes al8, al9, and a20. Next, by reciprocating the position where voltage is applied between a16 and a23, the droplet reciprocates, and the specimen and the first reagent in the droplet of the first reaction liquid are agitated and leveled. Become one. The applied electrode is then fixed to al8, al9, a20, and the droplet is held for 5 minutes during the first reaction time.
[0062] 光度計 50は移動機構 51により 30秒で 1回転の速度で旋回する。分析流路 80上を 通過するとき、 al8、 al9、 a20上の液滴に光を照射し、選ばれた波長の透過光量を 測定し、制御装置 12に送信する。制御装置 12では吸光度を演算する。第 1反応時 間間、周期的に測定が行われる。 [0063] 第 1反応時間の間に、第 2試薬が準備される。第 2試薬の保持された試薬溜め 85 力も外周側に連続する 3つの電極に試薬溜め 85に印加されているよりも高い電圧を 印加し、一定時間後に 3つの電極のうち 2番目の電極の印加を切断することにより、 3 番目の電極上に約 4マイクロリットルの第 2試薬液滴を形成する。この第 2試薬液滴は 、第 2試薬流路 82を通る経路に沿って電圧を印カロしている電極を順次移動すること によって、選ばれた分析流路 80の電極 al4まで搬送される。 [0062] The photometer 50 is turned by the moving mechanism 51 at a speed of one rotation in 30 seconds. When passing through the analysis flow path 80, light is applied to the droplets on al8, al9, and a20, and the amount of transmitted light of the selected wavelength is measured and transmitted to the controller 12. The controller 12 calculates the absorbance. Periodic measurements are taken during the first reaction time. [0063] During the first reaction time, a second reagent is prepared. Reagent reservoir 85 holding the second reagent is also applied to three electrodes that continue to the outer circumference, and a voltage higher than that applied to reagent reservoir 85 is applied, and the second electrode of the three electrodes is applied after a certain period of time. To form a second reagent droplet of about 4 microliters on the third electrode. The second reagent droplets are transported to the electrode al4 of the selected analysis channel 80 by sequentially moving the electrodes applying the voltage along the path passing through the second reagent channel 82.
[0064] 第 1反応時間経過後、第 2試薬の液滴は、印加電極を al4から順次移動して al8に 搬送される。ここで第 2試薬は第 1反応液と合体し、第 2反応液となる。次に al6から a 23の間で電圧を印加している位置を往復移動することで、液滴は往復運動し、第 2 反応液は攪拌されて均一になる。その後印加電極は al8、 al9、 a20、 a21に固定さ れて、第 2反応時間の 5分間液滴は保持される。第 2反応時間の間も光度計による周 期的な測定が行われる。  [0064] After the first reaction time has elapsed, the droplets of the second reagent are transferred to al8 by sequentially moving the application electrode from al4. Here, the second reagent is combined with the first reaction solution to form the second reaction solution. Next, by reciprocating the position where voltage is applied between al6 and a23, the droplet reciprocates, and the second reaction liquid is stirred and becomes uniform. The applied electrode is then fixed to al8, al9, a20, a21, and the droplet is held for 5 minutes during the second reaction time. Periodic measurements are taken with the photometer during the second reaction time.
[0065] 第 2反応時間の後、第 2反応液の液滴は排液流路 81を通る経路を通り、排液ポー ト 48まで搬送される。第 2反応液の液滴 70は撥水膜 62、 69との表面力により、排液 ポート 48の内部に入り込み、オイル 71との比重の違いで浮き上がる。浮き上がった 廃液 73は排液チューブ 47に吸引されて排出される。  After the second reaction time, the droplets of the second reaction liquid pass through the drainage flow path 81 and are conveyed to the drainage port 48. The droplet 70 of the second reaction liquid enters the drainage port 48 due to the surface force with the water repellent films 62 and 69 and rises due to the difference in specific gravity with the oil 71. The floated waste liquid 73 is sucked into the drainage tube 47 and discharged.
[0066] 第 2反応時間の間に、次の分析のための検体と第 1試薬の液滴が電極 alOおよび a 7、 a8に待機し、分析が終了して第 2反応液を排出した後すぐに次の分析が開始す る。  [0066] During the second reaction time, after the sample for the next analysis and the first reagent droplets wait on the electrodes alO and a7, a8, the analysis is completed and the second reaction solution is discharged. The next analysis will begin immediately.
[0067] ある検体のある項目の分析が、 1つの分析流路 80で行われている間に、別の検体 または別の項目の分析が、別の分析流路 80で並行して進められる。  [0067] While analysis of an item of a sample is performed in one analysis channel 80, analysis of another sample or another item proceeds in parallel in another analysis channel 80.
[0068] 制御装置 12では、分析項目毎にキャリブレーション用の検体の分析で得られた吸 光度の変化と濃度との関係を導出し、キャリブレーションデータとして格納する。被分 析検体に対しては、キャリブレーションデータを用いて分析項目の濃度を演算し、表 示装置 13に送信して表示する。また、定期的に精度管理用の検体の分析を実施し、 その結果が所定の範囲に入らな 、場合は異常のアラームを表示装置 13に送信する  [0068] The control device 12 derives the relationship between the change in absorbance and the concentration obtained by analyzing the sample for calibration for each analysis item, and stores it as calibration data. For the analyte, the concentration of the analysis item is calculated using the calibration data, transmitted to the display device 13 and displayed. Also, periodically analyze the sample for quality control, and if the result does not fall within the prescribed range, send an abnormal alarm to the display device 13.
[0069] また、制御装置は装置全体の状態を監視する。メンテナンス時に個々の制御電極 6 4に電圧を印加し、共通電極 61との間の静電容量および電流を検出して異常であつ た場合にはその電極を記憶し、それを含む分析流路 80は分析に用いないよう制御 する。 In addition, the control device monitors the state of the entire device. Individual control electrodes during maintenance 6 When a voltage is applied to 4 and the capacitance and current between the common electrode 61 are detected and abnormal, the electrode is memorized and the analysis flow path 80 containing it is controlled not to be used for analysis. To do.
[0070] 本実施例の場合は、複数の分析流路 80のそれぞれに検体液滴および試薬液滴を 供給する機能、液滴同士を混合する機能、検体、試薬やその混合物を搬送する機能 、混合物を反応させる機能をもつ領域が内蔵されていて、他の分析流路と同期せず に並列して実施可能なので、複数の分析を自由な分析流路 80で自由に開始、進行 、終了でき、複数の分析流路 80を空き時間を少なく活用することができ、単位時間当 たりの処理能力の高い分析装置が実現できる。  [0070] In the case of the present embodiment, a function of supplying specimen droplets and reagent droplets to each of the plurality of analysis channels 80, a function of mixing droplets, a function of transporting specimens, reagents, and mixtures thereof, Since there is a built-in area with the function of reacting the mixture and it can be performed in parallel without synchronizing with other analysis channels, multiple analyzes can be freely started, progressed and terminated in the free analysis channel 80. Therefore, it is possible to use a plurality of analysis flow paths 80 with less free time, and to realize an analyzer having a high processing capacity per unit time.
[0071] また、本実施例の場合は、分析基板は固定されて光度計が回転するように構成し ているので、いずれかの分析流路を測光している最中でも、液滴移動や混合、攪拌 などの動作を実施可能であり、処理能力の高い分析装置が実現できる。  [0071] Further, in the present embodiment, the analysis substrate is fixed and the photometer is configured to rotate. Therefore, even during photometry of any analysis flow path, droplet movement and mixing are performed. In addition, it is possible to perform an operation such as agitation and to realize an analyzer having a high throughput.
[0072] また、複数の分析流路にお!、て液滴移動や混合、攪拌などの動作が並列で行える ため、それぞれの動作にかける時間を長くとることが可能であり、無理のない速度で 動作させることで、発熱や流れの乱れなどの悪影響を避けることができ、安定して、高 い精度の分析が可能である。  [0072] In addition, since operations such as droplet movement, mixing, and stirring can be performed in parallel in a plurality of analysis flow paths, it is possible to take a longer time for each operation, and a reasonable speed. By operating with, it is possible to avoid adverse effects such as heat generation and flow turbulence, and stable and highly accurate analysis is possible.
[0073] 更に液滴搬送、混合、攪拌を電極への電圧印加の制御だけでおこなうため、それ らの機能を多数の分析流路のそれぞれに内蔵しても機構が複雑化せず、単純な構 成で小型で信頼性の高 、分析装置が実現できる。  [0073] Further, since the droplet conveyance, mixing, and stirring are performed only by controlling the voltage application to the electrodes, the mechanism is not complicated even if these functions are incorporated in each of the many analysis flow paths, and simple. A small, highly reliable analyzer with a configuration can be realized.
[0074] また、本実施例の場合は、検体および試薬が全ての分析流路 80に搬送可能であり 、どの分析流路でも任意の項目の分析が可能であり、効率がよぐ処理能力の高い 分析が可能である。  [0074] Further, in the case of the present embodiment, the specimen and the reagent can be transported to all the analysis flow paths 80, and any analysis flow path can be analyzed for any item, and the processing capacity is efficient. High analysis is possible.
[0075] また、本実施例の場合は、複数の分析流路 80のそれぞれに検体、試薬やその混 合物を一時的に格納する機能をもつ領域が内蔵されているため、検体流路ゃ試薬 流路から分析流路 80に検体液滴、試薬液滴を供給するタイミングを分析の進行タイ ミングに合わせる必要がなぐ複数の分析流路に対する検体および試薬の供給を効 率よく行うことができ、処理能力の高い分析が可能である。  [0075] In the case of the present embodiment, each of the plurality of analysis flow channels 80 has a built-in region having a function of temporarily storing a sample, a reagent, or a mixture thereof. It is possible to efficiently supply samples and reagents to multiple analysis channels that do not require the timing of supplying sample droplets and reagent droplets from the reagent channels to the analysis channel 80 to match the progress of the analysis. Analysis with high throughput is possible.
[0076] また、本実施例の場合、検体および試薬は分析基板の中で水溶液と反応しな!ヽォ ィルに包まれた状態であり、蒸発などによる変質が起こらないので、分析基板への供 給を分析実行のタイミングと合わせる必要がな 、。 [0076] In the present example, the specimen and the reagent do not react with the aqueous solution in the analysis substrate! Since it is wrapped in a film and does not change in quality due to evaporation, it is not necessary to synchronize the supply to the analysis board with the timing of the analysis.
[0077] また、本実施例では、全ての項目の分析がどの分析流路で行うこともでき、どの分 析流路でも自由なタイミングで分析を開始、進行させることが可能で、制御装置でど の分析流路を選択して実行するので、分析流路を効率的に利用して処理能力の高 い分析が可能である。 [0077] Further, in this embodiment, the analysis of all items can be performed in any analysis flow path, and the analysis can be started and advanced at any timing in any analysis flow path. Since any analysis channel is selected and executed, analysis with a high processing capacity is possible by efficiently using the analysis channel.
[0078] また、制御装置で分析流路を自由に選べるので、迅速な処理が必要な分析はサン プル溜めに近 、分析流路で行うように選ぶことで搬送時間を短くすることができ、分 析結果を短時間で出力することが可能である。  [0078] Further, since the analysis channel can be freely selected by the control device, the analysis that requires quick processing is close to the sample reservoir, and the conveyance time can be shortened by selecting it to be performed in the analysis channel. The analysis results can be output in a short time.
[0079] また、本実施例の場合は、光度計も全ての分析流路 80に対して共通のものを用い るため、どの流路でも同じ特性の分析が可能で、ばらつきの小さい高精度な分析が 可能である。 [0079] In the present embodiment, since the same photometer is used for all the analysis flow paths 80, the same characteristics can be analyzed in any flow path, and high accuracy with little variation is possible. Analysis is possible.
[0080] また、本実施例の場合は、光度計をスキャンして用いるため、光度計および検出電 気系が 1つですみ、低価格の分析装置が実現できる。  [0080] Further, in the case of the present embodiment, since the photometer is scanned and used, only one photometer and a detection electric system are required, and a low-cost analyzer can be realized.
[0081] また、本実施例の場合は、全ての分析流路に対して同じ光度計を用いるため、キヤ リブレーシヨンは全部の分析流路で行う必要はなぐキャリブレーションに要する検体In the case of the present embodiment, since the same photometer is used for all the analysis channels, the calibration is not necessary for all the analysis channels.
、時間を節約し、ランニングコストを削減できる。 Save time and reduce running costs.
[0082] また、本実施例の場合は、反応時間の間は反応液滴は静止して!/、て、同一場所で 周期的な測定が行われるため、液滴の形状の変化や気泡などの条件の変化を受け にくぐ精度の高い分析が可能である。 [0082] In the case of the present embodiment, the reaction droplets remain stationary during the reaction time! /, And periodic measurement is performed at the same place, so that the change in the shape of the droplets, bubbles, etc. Therefore, it is possible to perform highly accurate analysis without being subject to changes in the conditions.
[0083] また、本実施例の場合には、検体、試薬の液滴搬送、混合、攪拌が電極への電圧 印加の制御だけで行われるため、分析基板 10には機械的な動作がなぐ光度計 50 は停止することなく回転し、測光を行えるので、個々の測光の積分時間が長くとれ、ノ ィズの少な!/、高精度な分析が可能である。 [0083] In the case of the present embodiment, since the specimen, reagent droplets are transported, mixed, and stirred only by controlling the voltage application to the electrodes, the analysis substrate 10 has a light intensity with no mechanical operation. Since the total 50 rotates without stopping and can perform photometry, the integration time of each photometry can be extended, noise is reduced! And high-precision analysis is possible.
[0084] また、本実施例の場合は、光度計の測光時間が長く取れるので、反応液の光路長 が短くても吸光度の分析が可能であり、検体量、試薬量が少なくランニングコストの小 さい分析装置が実現できる。 [0084] In addition, in the case of this example, since the photometry time of the photometer can be increased, it is possible to analyze the absorbance even when the optical path length of the reaction solution is short, and the amount of sample and reagent is small and the running cost is low. Can be realized.
[0085] また、本実施例の場合は、分析基板、サンプルポート、試薬ポートの内面が全て撥 水膜でカバーされ、また内部を水溶液と溶解しな ヽオイルで満たして分析を実施す るので、検体、試薬の液滴は壁面と直接接触しないので、壁面が検体、試薬で汚染 されることなぐキャリーオーバのない高精度の分析が可能である。 [0085] In the case of this example, the inner surfaces of the analysis substrate, sample port, and reagent port are all repelled. Covered with a water film, and the inside is not dissolved with an aqueous solution. The analysis is performed with oil, so the specimen and reagent droplets do not come into direct contact with the wall, so the wall is contaminated with the specimen and reagent. Highly accurate analysis without carryover is possible.
[0086] また、本実施例の場合は、試薬容器 40から分析基板 10への試薬プローブでの分 注は 1度に 10回の分析に必要な量を行うので、試薬ディスクおよび試薬プローブの 動作回数は分析回数よりも少なくなり、低速の分注機構でも処理能力の高い分析装 置が実現できる。  [0086] In the case of the present embodiment, since the dispensing with the reagent probe from the reagent container 40 to the analysis substrate 10 is performed in an amount required for 10 analyzes at a time, the operation of the reagent disk and the reagent probe The number of analyzes is less than the number of analyses, and an analysis device with high throughput can be realized even with a low-speed dispensing mechanism.
[0087] また、本実施例の場合は、試薬ディスクと試薬プローブを用い、試薬プローブは洗 浄ポートで洗浄するので、異なる試薬を共通の分注機構で供給することができ、分注 機構による差のない高精度な分析が可能である。また分注機構の数が少なぐ低コス トで省スペースの分析装置が実現できる。  [0087] Further, in the case of the present embodiment, a reagent disk and a reagent probe are used, and the reagent probe is washed at the washing port, so that different reagents can be supplied by a common dispensing mechanism. High-precision analysis without difference is possible. Also, a low-cost and space-saving analyzer with fewer dispensing mechanisms can be realized.
[0088] また、本実施例の場合は、試薬容器を試薬ディスクに搭載するので、試薬容器と分 析基板を配管で接続する必要がなぐ試薬交換が簡単に行うことが可能である。  In the present embodiment, since the reagent container is mounted on the reagent disk, reagent replacement can be easily performed without the need to connect the reagent container and the analysis substrate with a pipe.
[0089] また、本実施例の場合は、検体容器 21から分析基板 10へのサンプルプローブ 22 での分注は、複数分析分の量を 1回の動作で行うので、サンプルプローブ 22の動作 回数は分析回数よりも少なくなり、低速の分注機構でも処理能力の高い分析装置が 実現できる。  [0089] Further, in the case of the present embodiment, since the dispensing with the sample probe 22 from the specimen container 21 to the analysis substrate 10 is performed in a single operation, the number of operations of the sample probe 22 is reduced. The number of analyzes is less than the number of analyses, and an analyzer with high throughput can be realized even with a low-speed dispensing mechanism.
[0090] また、本実施例の場合は、試薬および検体をそれぞれ試薬溜め 85およびサンプル 溜め 86に保持した後一定量ずつ分取して分析流路に搬送するため、プローブで分 注した順序に制限されずに、任意の組み合わせで検体、試薬を反応させて分析を行 うことが可能であり、分析効率がよぐ処理能力の高い分析装置が実現可能である。  [0090] In the case of this example, since the reagent and the specimen are held in the reagent reservoir 85 and the sample reservoir 86, respectively, a predetermined amount is collected and transported to the analysis channel. Without being limited, it is possible to perform analysis by reacting samples and reagents in any combination, and it is possible to realize an analyzer with high throughput and high analysis efficiency.
[0091] また、本実施例の場合は、分析流路内の個々の制御電極のサイズ力 マイクロリット ルの液滴を保持するサイズである。検体、第 1試薬、第 2試薬、第 1反応液、第 2反応 液の液滴の量はそれぞれ 4、 8、 4、 12、 16マイクロリットルであるため、それらは 1つ、 2つ、 1つ、 3つ、 4つの電極で保持される。このように 1つの制御電極に保持される量 の整数倍の複数の量の液滴を扱 ヽ、液滴を複数の電極に保持するように構成されて いるため、共通の経路で異なるサイズ、種類の液滴を搬送することができる。これによ り、検体、試薬、排液などの経路の配置を自由に設定することができ、装置の小型化 が可能になる。特に本実施例では、検体、試薬の供給用および排液用の流路を分 析流路と交差させて配置し、それぞれの間で自由に液滴が行き来できるように構成し ているため、全ての分析がどの分析流路でも実行可能であり、自由度が高ぐ効率の よい分析が可能である。 [0091] In the case of the present embodiment, the size of each control electrode in the analysis flow channel is a size that holds microliter droplets. The sample, first reagent, second reagent, first reaction liquid, and second reaction liquid have 4, 8, 4, 12, and 16 microliter droplets, respectively, so they are 1, 2, 1, Held by one, three and four electrodes. In this way, it is configured to handle a plurality of droplets that are an integral multiple of the amount held by one control electrode, and to hold the droplets to a plurality of electrodes. Various types of droplets can be transported. This makes it possible to freely set the path of specimens, reagents, drainage, etc. Is possible. In particular, in the present embodiment, the flow path for supplying the sample and reagent and the flow path for the drainage liquid are arranged so as to intersect with the analysis flow path, so that the liquid droplets can freely come and go between them. All analyzes can be performed in any analysis channel, enabling efficient analysis with a high degree of freedom.
[0092] また、本実施例の場合は、サンプルポート、試薬ポートから選ばれた分析流路に液 滴を搬送する経路および分析流路から排液ポートに液滴を搬送する経路が他の分 析流路を通過するが、どこを通るかは複数の経路の中から選択することができる。こ れにより他の分析の妨げにならない経路を選択することができ、処理能力の高い分 析装置が実現できる。  [0092] In the case of this embodiment, the path for transporting liquid droplets to the analysis flow path selected from the sample port and the reagent port and the path for transporting liquid droplets from the analysis flow path to the drainage port are different. It passes through the analysis flow path, but where to pass can be selected from a plurality of paths. This makes it possible to select a route that does not interfere with other analyses, and to realize an analyzer with a high processing capacity.
[0093] さらに、本実施例の場合、それぞれの項目の分析がどの分析流路で行うこともでき 、搬送経路も複数の中から選択可能なため、不良の電極があってもそこを避けて分 祈が可能である。そのため、分析基板の一部に不良が生じても分析ができなくなるこ とは無ぐ装置の信頼性を高め、基板の交換頻度を少なくしてランニングコストを低減 することが可能である。  [0093] Furthermore, in the case of the present embodiment, analysis of each item can be performed in any analysis flow path, and since a transfer path can be selected from a plurality of paths, even if there are defective electrodes, avoid them. Minute prayers are possible. For this reason, it is possible to improve the reliability of the apparatus, and to reduce the running cost by reducing the frequency of replacing the board, so that even if a defect occurs on a part of the analysis board, the analysis cannot be performed.
[0094] また、本実施例の場合は、分析流路 80上に検体液滴、試薬液滴の待機領域と、反 応領域が別にあり、反応領域の液滴を待機領域を通らずに排出することが可能であ るため、 1つの分析終了後、すぐに次の分析を実行することができ、効率がよぐ処理 能力の高い分析が可能である。  [0094] In the case of the present embodiment, there are separate specimen and reagent droplet standby areas on the analysis flow path 80 and reaction areas, and the reaction area droplets are discharged without passing through the standby area. As a result, the next analysis can be performed immediately after the end of one analysis, and an analysis with high throughput and high efficiency is possible.
[0095] また、本実施例の場合は、分析基板 10が円形のため、光度計 50は回転運動で全 ての分析流路 80の測光を行うことができ、停止や方向転換の必要がないため時間の 無駄がなぐ信頼性の高い分析装置を実現できる。 [0095] In the case of the present embodiment, since the analysis substrate 10 is circular, the photometer 50 can perform photometry of all the analysis flow paths 80 by a rotational motion, and there is no need to stop or change the direction. Therefore, it is possible to realize a highly reliable analyzer that does not waste time.
[0096] また、本実施例の場合は、分析基板 10が円形であり、第 1試薬流路 84、サンプル 流路 83、第 2試薬流路 82が円周状に形成されているため、検体、試薬を全ての分析 流路 80に効率的に搬送できる。 In the present example, the analysis substrate 10 has a circular shape, and the first reagent channel 84, the sample channel 83, and the second reagent channel 82 are formed in a circumferential shape. Reagents can be efficiently transported to all analysis channels 80.
[0097] また、本実施例の場合は、中継電極 88の幅が分析流路 80を形成している電極の 幅よりも狭いため、分析基板 10のサイズを小さくすることができ、省スペースの分析装 置を実現可能である。 [0097] In the present embodiment, the width of the relay electrode 88 is narrower than the width of the electrode forming the analysis flow path 80, so that the size of the analysis substrate 10 can be reduced, and the space-saving is reduced. An analysis device can be realized.
[0098] なお、本実施例においては光度計 50は吸光度を測定するものであった力 散乱光 や蛍光を測定するものでもよい。さらにそれらの組み合わせでもよぐその場合には 分析できる項目の種類が増え、免疫分析なども同じ装置で実現できる利点がある。 [0098] In this example, the photometer 50 was used to measure absorbance. It may also be one that measures fluorescence. In that case, the combination of these items increases the types of items that can be analyzed, and there is an advantage that immunoassay can be realized with the same device.
[0099] また、本実施例においては 1つの光度計をスキャンしている力 2組以上の光度計 をスキャンしてもよ!/、。その場合は短い間隔で吸光度の変化を測定できる利点がある  [0099] Further, in this embodiment, the force of scanning one photometer may scan two or more sets of photometers! /. In that case, there is an advantage that changes in absorbance can be measured at short intervals.
[0100] また、本実施例においては分析基板は円板型の一体構造であるが、複数の扇型形 状の基板に分割して構成することも可能である。その場合別の基板に液滴が移動で きるように構成することも可能であるが、基板毎に独立して、オイルや液滴が移動しな いように構成することも可能である。そのときは、分割した基板ごとに検体ポート、試 薬ポート、排液ポートを持つようにする。この場合は、個々の基板が小さくてすむため に、基板製造の設備が小さくてすみ、低コストで製造可能である。また、基板交換や オイル交換が容易〖こできるメリットもある。 [0100] In this embodiment, the analysis substrate is a disc-shaped integrated structure, but may be divided into a plurality of fan-shaped substrates. In that case, it is possible to configure so that the droplets can move to another substrate, but it is also possible to configure so that oil and droplets do not move independently for each substrate. At that time, each divided substrate should have a sample port, reagent port, and drainage port. In this case, since each substrate is small, the equipment for manufacturing the substrate is small, and can be manufactured at low cost. In addition, there is an advantage that the board and oil can be changed easily.
[0101] また、本実施例の場合は周方向の 4つの搬送流路はそれぞれ検体用、第 1試薬用 、第 2試薬用、排液用として同じ用途の液滴搬送に特ィ匕しているが、特化せずにどの 流路も選べるように使うこともできる。さらに、流路ごとに搬送方向を固定し、右回りの 流路、左回りの流路を設け、目的の搬送位置に早く到達できる流路を選ぶように制御 することも可能である。この場合はさらに効率がよぐ処理能力の高い分析装置が実 現できる。  [0101] In the case of the present embodiment, the four transport channels in the circumferential direction are specially used for transporting droplets of the same use as the sample, the first reagent, the second reagent, and the drainage, respectively. However, it can be used to select any flow path without specialization. Furthermore, it is possible to control to select a flow path that can reach the target transport position quickly by fixing the transport direction for each flow path and providing a clockwise flow path and a counterclockwise flow path. In this case, an analysis device with higher efficiency and higher throughput can be realized.
[0102] なお、図 1では液体搬送機構はディスク状となっているが、各サンプル搬送路を横 断してサンプル供給路、試薬供給路が設けられ、かつサンプル供給路、試薬供給路 が閉じたループを作っていれば良い。すなわち、サンプル搬送路が放射状であれば 四角形状でも同様の効果を奏し得る。  [0102] In FIG. 1, the liquid transport mechanism has a disk shape, but each sample transport path is provided with a sample supply path and a reagent supply path, and the sample supply path and the reagent supply path are closed. You just need to make a loop. That is, if the sample transport path is radial, the same effect can be obtained even in a square shape.
[0103] また、測定機構は回転する光度計である必要はなぐ非特許文献 1に記載されて 、 るような LEDを各サンプル搬送路に設けても良い。  [0103] Further, as described in Non-Patent Document 1, the measurement mechanism need not be a rotating photometer, and an LED as described above may be provided in each sample transport path.
[0104] (実施例 2)  [Example 2]
次に、本発明の第 2実施例を説明する。図 8は本発明の第 2実施例の斜視図、図 9 は分析基板 10の上面図、図 10はサンプルポート 24の部分を示す断面図である。第 1実施例との主な違いは、移動機構 51および光度計 50が分析基板 10の内側に配 置されていること、試薬ディスク 41、第 1試薬プローブ 30、第 2試薬プローブ 35が分 析基板 10の外側に配置されていること、サンプルポート 24に近接して希釈ポート 25 が設置されて ヽること、試薬ディスク 41に近接して開閉機構 42が設置されて ヽること 、試薬溜め 85およびサンプル溜め 86が無いことである。また、分析流路 80の配置は 図 4と同様であるが、第 1実施例の場合と異なり、電極 alが外周側、電極 a23が内周 側である。 Next, a second embodiment of the present invention will be described. FIG. 8 is a perspective view of a second embodiment of the present invention, FIG. 9 is a top view of the analysis substrate 10, and FIG. 10 is a cross-sectional view showing a portion of the sample port 24. The main difference from the first embodiment is that the moving mechanism 51 and the photometer 50 are arranged inside the analysis substrate 10. The reagent disk 41, the first reagent probe 30, and the second reagent probe 35 are arranged outside the analysis substrate 10, and the dilution port 25 is installed close to the sample port 24. In other words, the opening / closing mechanism 42 is installed close to the reagent disk 41, and there is no reagent reservoir 85 and sample reservoir 86. The arrangement of the analysis flow path 80 is the same as in FIG. 4, but unlike the first embodiment, the electrode al is on the outer peripheral side and the electrode a23 is on the inner peripheral side.
[0105] サンプルポート 24に近接して設置されている希釈ポート 25は、サンプルポート 24と 同様に分析基板 10から上に突き出ており、希釈液プローブ 23が挿入される。希釈液 プローブ 23は図示しな ヽ希釈液ポンプに接続されており、量を制御して希釈液を吐 出することができる。  The dilution port 25 installed in the vicinity of the sample port 24 protrudes upward from the analysis substrate 10 in the same manner as the sample port 24, and the diluent probe 23 is inserted therein. The diluent probe 23 is connected to a diluent pump (not shown) and can discharge the diluent by controlling the amount.
[0106] 試薬容器 40の開口部にはスナップキャップ 43が設けられており、開閉機構 42によ り開閉可能である。  A snap cap 43 is provided at the opening of the reagent container 40 and can be opened and closed by the opening / closing mechanism 42.
[0107] 第 2実施例では、試薬は次のように分析基板 10に供給される。まず、開閉機構 42 でスナップキャップ 43を開く。次に試薬ディスク 41を回転して、吸引位置に試薬容器 40を移動する。第 1試薬の場合は第 1試薬プローブ 30で 80マイクロリットル吸引し、 第 1試薬ポート 31に吐出する。そのとき 8マイクロリットルずつ 10回に分けて断続的に 吐出し、それぞれの小さい液滴として第 1試薬流路 84に搬送する。液滴は分析で必 要とされるまで第 1試薬流路 84を周回する。第 2試薬の場合は、第 2試薬プローブ 35 で 40マイクロリットル吸引し、第 2試薬ポート 37に吐出する。そのとき 4マイクロリットル ずつ 10回に分けて断続的に吐出し、それぞれの小さい液滴として第 2試薬流路 82 に搬送する。液滴は分析で必要とされるまで第 2試薬流路 82を周回する。吸引が終 えた試薬容器 40は、開閉機構 42でスナップキャップ 43を閉じられる。  [0107] In the second embodiment, the reagent is supplied to the analysis substrate 10 as follows. First, the snap cap 43 is opened by the opening / closing mechanism 42. Next, the reagent disk 41 is rotated to move the reagent container 40 to the suction position. In the case of the first reagent, aspirate 80 microliters with the first reagent probe 30 and discharge it to the first reagent port 31. At that time, 8 microliters are intermittently discharged in 10 batches, and each small droplet is transported to the first reagent channel 84. The droplet goes around the first reagent channel 84 until it is needed for analysis. In the case of the second reagent, aspirate 40 microliters with the second reagent probe 35 and discharge it to the second reagent port 37. At that time, 4 microliters are ejected intermittently in 10 batches, and each small droplet is transported to the second reagent channel 82. The droplet circulates in the second reagent channel 82 until needed for analysis. After the suction, the reagent container 40 is closed with the snap cap 43 by the opening / closing mechanism 42.
[0108] 検体は次のように分析基板 10に供給される。サンプルディスク 20が回転し、サンプ ルプローブ 22でサンプル容器 21から検体を吸引する。サンプルプローブ 22を移動 しサンプルポート 24に挿入する。吐出は、その検体で行われる分析数に再検査用の 予備数を加えた回数行われる。サンプルプローブ 22からの検体の吐出に先立ち、希 釈液プローブ 23から希釈液が吐出される。希釈液と検体の吐出量は、分析項目に 応じて決められた量になるよう、制御装置 12で制御される。サンプルプローブ 22から 吐出された検体液 75は、希釈液プローブ 23から吐出された希釈液 76に混合しなが らサンプル流路 83を経由し、選ばれた分析流路 80に搬送される。再検査用の予備 の液滴は、分析流路 80には入らず、サンプル流路 83を周回する。 [0108] The sample is supplied to the analysis substrate 10 as follows. The sample disk 20 rotates, and the sample probe 22 sucks the specimen from the sample container 21. Move sample probe 22 and insert into sample port 24. Discharge is performed as many times as the number of analyzes performed on the sample plus the number of spares for retesting. Prior to the discharge of the sample from the sample probe 22, the diluted solution is discharged from the dilution solution probe 23. The discharge amount of the diluted solution and the sample is controlled by the control device 12 so as to be an amount determined according to the analysis item. From sample probe 22 The discharged specimen liquid 75 is conveyed to the selected analysis flow path 80 via the sample flow path 83 while being mixed with the dilution liquid 76 discharged from the dilution liquid probe 23. The preliminary droplets for retesting do not enter the analysis flow path 80, but go around the sample flow path 83.
[0109] 分析流路 80における分析の手順は第 1実施例と同じである。第 2反応時間が終え 、分析が終了したとき、制御装置 12は分析項目の濃度を計算し、結果が所定範囲か ら外れた場合は、再検査用の予備の液滴を用いて再検査を実施する。再検査が必 要ない場合は、再検査用の予備の液滴は排液ポート 48から排出される。  [0109] The analysis procedure in the analysis flow path 80 is the same as in the first embodiment. When the second reaction time is over and the analysis is finished, the controller 12 calculates the concentration of the analysis item, and if the result is out of the predetermined range, a retest is performed using a spare droplet for retesting. carry out. If retesting is not required, preliminary droplets for retesting are discharged from drain port 48.
[0110] 本実施例の場合は、複数分析分の検体および試薬を分析基板 10に注入時に個 々の分析に要するサイズの液滴に分離し、搬送流路に供するので、大容量の液溜め が不要で、コンパクトな分析装置の実現が可能である。  [0110] In the case of this example, a plurality of samples and reagents for analysis are separated into droplets of the size required for each analysis when injected into the analysis substrate 10 and are supplied to the transport flow path. Therefore, a compact analyzer can be realized.
[0111] また、本実施例の場合、検体および試薬をプローブから 1回の分注で必要な量を 吐出して液滴に分離するので、液滴の体積を精度よく制御することができ、高精度な 分析が可能である。  [0111] Further, in the case of the present embodiment, since the sample and the reagent are dispensed from the probe in a single dispensing amount and separated into droplets, the volume of the droplets can be accurately controlled, Highly accurate analysis is possible.
[0112] また、本実施例の場合は、試薬を大容量の液溜めに溜めておくことがないので、試 薬の無駄が少なぐランニングコストの小さい分析装置が実現できる。  [0112] Further, in the case of the present embodiment, since the reagent is not stored in a large-capacity liquid reservoir, an analyzer with a small amount of reagent waste and a low running cost can be realized.
[0113] また、本実施例の場合は、検体を希釈液の中に吐出して液滴に分離するので、粘 性などの特性の異なる検体でも希釈液により特性の差が緩和され、精度の高 、分注 が可能であり、高精度の分析が可能である。  [0113] In the case of the present embodiment, since the specimen is discharged into the diluent and separated into droplets, even in specimens having different characteristics such as viscosity, the difference in characteristics is mitigated by the diluent, and accuracy is improved. High-volume dispensing is possible, and high-precision analysis is possible.
[0114] さらに、希釈液の量と検体の量を液滴ごとに変化させることができるので、分析項目 に最適な希釈率を設定することができ、高精度な分析が可能である。  [0114] Furthermore, since the amount of the diluted solution and the amount of the specimen can be changed for each droplet, the optimal dilution rate can be set for the analysis item, and highly accurate analysis is possible.
[0115] また、本実施例の場合、再検査用の検体を液滴としてサンプル流路 83上を周回さ せておき、再検査が必要なときにそれを用いて分析を実施するため、サンプルデイス ク 20上に再検査用のサンプル容器 21を残しておく必要がなぐサンプルディスク 20 の必要搭載数が少な!、ので、省スペースの分析装置が実現できる。  [0115] Further, in the case of this example, the sample for retesting is made to circulate on the sample flow path 83 as droplets, and the sample is used for analysis when necessary for retesting. Since the number of sample disks 20 that need not leave the sample container 21 for retesting on the disk 20 is small, a space-saving analyzer can be realized.
[0116] また、本実施例の場合は、複数回分の試薬を 1回で試薬容器カゝら吸引するため、 試薬容器 40から試薬を吸引した後開閉機構 42でスナップキャップ 43を閉じることが でき、試薬の蒸発や変質を防止することができ、ランニングコスト低減と分析精度向 上が可能である。 [0117] また、本実施例の場合は、光度計 50および移動機構 51が分析基板 10の内側にあ るため、移動機構 51の回転半径が小さくてすみ、小型で信頼性の高い分析装置が 実現できる。 [0116] Further, in this embodiment, since the reagent for a plurality of times is sucked from the reagent container at a time, the snap cap 43 can be closed by the opening / closing mechanism 42 after the reagent is sucked from the reagent container 40. In addition, evaporation and alteration of reagents can be prevented, and running costs can be reduced and analysis accuracy can be improved. [0117] In the case of the present embodiment, since the photometer 50 and the moving mechanism 51 are inside the analysis substrate 10, the rotational radius of the moving mechanism 51 is small, and a small and highly reliable analyzer is provided. realizable.
[0118] また、本実施例の場合は、サンプルディスク 20および試薬ディスク 41が分析基板 1 0の外側にあるため、動作中でも容易に検体および試薬の交換、補充ができる。 産業上の利用可能性  In the present embodiment, since the sample disk 20 and the reagent disk 41 are outside the analysis substrate 10, the specimen and reagent can be easily replaced and replenished even during operation. Industrial applicability
[0119] 本発明は、上記実施形態に限定されるものではなぐ本発明の要旨を逸脱しない 範囲で種々に変形して実施できる。 [0119] The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 所定間隔で対向させ、間隙に液体を保持する少なくとも 1対の板状部材を備えた液 体搬送機構であって、  [1] A liquid transport mechanism comprising at least one pair of plate-like members that face each other at a predetermined interval and hold liquid in a gap,
前記少なくとも 1対の板状部材の少なくとも一方に、液体を搬送する方向に沿って 複数の電極を所定間隔で配置した液体搬送路を複数備え、  At least one of the at least one pair of plate-like members includes a plurality of liquid transport paths in which a plurality of electrodes are arranged at predetermined intervals along the direction of transporting the liquid,
かつ該液体搬送路には、少なくとも放射状にサンプル液体を搬送するサンプル搬 送路 (83)と、  The liquid transport path includes at least a sample transport path (83) for transporting the sample liquid radially,
該サンプル搬送路を横断し、複数の前記サンプル搬送路に試薬を供給する試薬 搬送路 (82、 84)と、を備えた液体搬送機構と、  A reagent transport path (82, 84) that crosses the sample transport path and supplies reagents to the plurality of sample transport paths, and a liquid transport mechanism,
前記サンプル搬送路に検体を供給する検体分配機構と、  A sample distribution mechanism for supplying a sample to the sample transport path;
前記試薬搬送路に試薬を供給する試薬分配機構と、  A reagent distribution mechanism for supplying a reagent to the reagent transport path;
前記液体搬送路中での検体と試薬の反応を光学的に分析する測定機構 (al8、 al 9、 a20)と、  A measurement mechanism (al8, al 9, a20) for optically analyzing the reaction between the specimen and the reagent in the liquid conveyance path;
を備えたことを特徴とする自動分析装置。  An automatic analyzer characterized by comprising:
[2] 請求項 1記載の自動分析装置において、 [2] The automatic analyzer according to claim 1,
前記液体搬送路には、更に前記サンプル搬送路(83)を横断し、複数の前記サン プル搬送路 (83)に検体を供給するサンプル流路を備えたことを特徴とする自動分 析装置。  The automatic analyzer according to claim 1, wherein the liquid transport path further includes a sample flow path that crosses the sample transport path (83) and supplies specimens to the plurality of sample transport paths (83).
[3] 請求項 2記載の自動分析装置において、  [3] The automatic analyzer according to claim 2,
前記サンプル流路にそれぞれ異なる検体を供給する複数のサンプル供給機構と前 記試薬搬送路 (82、 84)にそれぞれ異なる試薬を供給する複数の試薬供給機構を 備えたことを特徴とする自動分析装置。  An automatic analyzer comprising: a plurality of sample supply mechanisms for supplying different specimens to the sample flow paths; and a plurality of reagent supply mechanisms for supplying different reagents to the reagent transport paths (82, 84). .
[4] 請求項 3記載の自動分析装置において、 [4] The automatic analyzer according to claim 3,
前記サンプル供給機構、前記試薬供給機構には、それぞれ複数回分の分析が実 行可能な検体または試薬を一時的に蓄えるサンプル溜め(86)、または試薬溜め(8 5)を備えたことを特徴とする自動分析装置。  The sample supply mechanism and the reagent supply mechanism are each provided with a sample reservoir (86) or a reagent reservoir (85) for temporarily storing a specimen or a reagent capable of performing analysis for a plurality of times. Automatic analyzer to do.
[5] 請求項 1〜4のいずれかに記載の自動分析装置において、 [5] In the automatic analyzer according to any one of claims 1 to 4,
前記サンプル搬送路を横断し、複数の前記サンプル搬送路から分析が終了した反 応液を排出する廃液流路 (81)を備えたことを特徴とする自動分析装置。 The analysis is completed from the plurality of sample transport paths across the sample transport path. An automatic analyzer comprising a waste liquid channel (81) for discharging a reaction liquid.
[6] 請求項 5記載の自動分析装置において、 [6] The automatic analyzer according to claim 5,
前記廃液流路から廃液を前記液体搬送機構外に取り出す廃液ポート (48)と、該廃 液ポートに挿入し廃液を吸引する廃液吸引機構を備えたことを特徴とする自動分析 装置。  An automatic analyzer comprising: a waste liquid port (48) for taking waste liquid out of the liquid transport mechanism from the waste liquid flow path; and a waste liquid suction mechanism that is inserted into the waste liquid port and sucks the waste liquid.
[7] 請求項 1〜6のいずれかに記載の自動分析装置において、  [7] In the automatic analyzer according to any one of claims 1 to 6,
前記測定機構は光源と、光源カゝら発せられ反応液を透過した光を受光する受光器 を備えた光度計 (50)であり、かつ該光度計と複数の前記サンプル搬送路の相対的 位置関係を変える相対的位置関係変更機構を備えたことを特徴とする自動分析装 置。  The measurement mechanism is a photometer (50) including a light source and a light receiver that receives light emitted from the light source and transmitted through the reaction solution, and a relative position between the photometer and the plurality of sample transport paths. An automatic analyzer equipped with a relative positional change mechanism for changing the relationship.
[8] 請求項 7記載の自動分析装置において、  [8] The automatic analyzer according to claim 7,
前記相対的位置関係変更機構は前記光度計の移動機構であり、前記サンプル搬 送路の外周または内周を回転移動するものであることを特徴とする自動分析装置。  2. The automatic analyzer according to claim 1, wherein the relative positional relationship changing mechanism is a moving mechanism of the photometer and rotationally moves on an outer periphery or an inner periphery of the sample transport path.
[9] 請求項 4記載の自動分析装置にお!、て、 [9] In the automatic analyzer according to claim 4,!
前記試薬溜めは該試薬溜めに接続する試薬搬送路にて 1回の分析に必要な量の 液滴に分割してサンプル搬送路に搬送する液滴分割機構を備えたことを特徴とする 自動分析装置。  The reagent reservoir is provided with a droplet dividing mechanism for dividing the reagent reservoir into a quantity of droplets required for one analysis in the reagent transport path connected to the reagent reservoir and transporting the droplet to the sample transport path. apparatus.
[10] 請求項 3記載の自動分析装置において、 [10] The automatic analyzer according to claim 3,
前記サンプル供給機構は、検体容器から検体を吸引する検体プローブ (22)と、該 検体プローブを移動させる検体プローブ移動機構と、検体プローブを挿入するサン プルポート (24)を備えたことを特徴とする自動分析装置。  The sample supply mechanism includes a sample probe (22) for aspirating a sample from a sample container, a sample probe moving mechanism for moving the sample probe, and a sample port (24) for inserting the sample probe. Automatic analyzer.
[11] 請求項 1〜10のいずれかに記載の自動分析装置において、 [11] In the automatic analyzer according to any one of claims 1 to 10,
検体を希釈するための希釈液を供給する希釈液供給ポートを前記サンプルポート の近傍に備えたことを特徴とする自動分析装置。  An automatic analyzer comprising a diluent supply port for supplying a diluent for diluting a specimen in the vicinity of the sample port.
[12] 所定間隔で対向させ、間隙に液体を保持する少なくとも一対の板状部材を備えた 液体搬送機構であって、 [12] A liquid transport mechanism comprising at least a pair of plate-like members facing each other at a predetermined interval and holding a liquid in the gap,
前記少なくとも一対の板状部材の少なくとも一方に、液体を搬送する方向に沿って 複数の電極を所定間隔で配置した液体搬送路を複数備え、 前記液体搬送路は、検体や試薬を供給する機能、検体、試薬やその混合物を搬 送する機能、検体、試薬やその混合物を一時的に格納する機能、検体と試薬の混合 物を反応させる機能、検体、試薬、その混合物、あるいは反応した混合物の特定物 質の濃度を測定する機能を有し、 At least one of the at least one pair of plate-like members includes a plurality of liquid transport paths in which a plurality of electrodes are arranged at predetermined intervals along the direction of transporting the liquid, The liquid transport path has a function of supplying a specimen and a reagent, a function of transporting the specimen, the reagent and a mixture thereof, a function of temporarily storing the specimen, the reagent and a mixture thereof, and a function of reacting a mixture of the specimen and the reagent. Has the function of measuring the concentration of a specific substance in a specimen, reagent, mixture thereof, or reacted mixture,
複数の液体搬送路で、検体や試薬の供給、検体、試薬やその混合物の搬送、格 納、反応、測定が並列して、かつ非同期的に実行することを特徴とする自動分析装 置。  An automatic analyzer characterized in that the supply of specimens and reagents, the transportation, storage, reaction, and measurement of specimens, reagents, and mixtures thereof are performed in parallel and asynchronously on multiple liquid transport paths.
PCT/JP2006/311276 2005-06-08 2006-06-06 Automatic analyzer WO2006132209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-167633 2005-06-08
JP2005167633A JP4969061B2 (en) 2005-06-08 2005-06-08 Automatic analyzer

Publications (1)

Publication Number Publication Date
WO2006132209A1 true WO2006132209A1 (en) 2006-12-14

Family

ID=37498410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311276 WO2006132209A1 (en) 2005-06-08 2006-06-06 Automatic analyzer

Country Status (2)

Country Link
JP (1) JP4969061B2 (en)
WO (1) WO2006132209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556496B2 (en) 2008-10-31 2013-10-15 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Stirring system and operating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948230B2 (en) * 2007-03-29 2012-06-06 シスメックス株式会社 Sample analysis apparatus and sample analysis method
JP6018810B2 (en) * 2012-06-15 2016-11-02 株式会社日立ハイテクノロジーズ Plug opening and closing device and sample processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167505A (en) * 1992-11-30 1994-06-14 Shimadzu Corp Biochemical automatic analyzer
JPH08194004A (en) * 1995-01-19 1996-07-30 Jeol Ltd Biochemical automatic analyzer
US20040031688A1 (en) * 1999-01-25 2004-02-19 Shenderov Alexander David Actuators for microfluidics without moving parts
WO2004030820A2 (en) * 2002-09-24 2004-04-15 Duke University Methods and apparatus for manipulating droplets by electrowetting-based techniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167505A (en) * 1992-11-30 1994-06-14 Shimadzu Corp Biochemical automatic analyzer
JPH08194004A (en) * 1995-01-19 1996-07-30 Jeol Ltd Biochemical automatic analyzer
US20040031688A1 (en) * 1999-01-25 2004-02-19 Shenderov Alexander David Actuators for microfluidics without moving parts
WO2004030820A2 (en) * 2002-09-24 2004-04-15 Duke University Methods and apparatus for manipulating droplets by electrowetting-based techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNG KWON CHO ET AL.: "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 12, no. 1, 2003, pages 70 - 80, XP011064831 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556496B2 (en) 2008-10-31 2013-10-15 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Stirring system and operating method thereof

Also Published As

Publication number Publication date
JP4969061B2 (en) 2012-07-04
JP2006343164A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2006132211A1 (en) Automatic analyzing instrument
CN110997147B (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
CN112041076B (en) Automatic analyzer and optical measuring method for obtaining a measuring signal from a liquid medium
US11635443B2 (en) Automatic analyzer and method for carrying out chemical, biochemical, and/or immunochemical analyses
US4325910A (en) Automated multiple-purpose chemical-analysis apparatus
JP3582240B2 (en) Automatic sample pretreatment device and automatic sample pretreatment method
JP4251627B2 (en) Chemical analyzer and dispensing method thereof
MXPA06000249A (en) Automated multi-detector analyzer.
JP2006125900A (en) Liquid transfer substrate, analysis system, and analysis method
JP6462844B2 (en) Automatic analyzer
US20220113331A1 (en) Method of washing an aspiration probe of an in-vitro diagnostic system, in-vitro diagnostic method, and in-vitro diagnostic system
JP2009041961A (en) Washing method of probe for handling liquid and analyzer
JP2011257386A (en) Automatic analyzing device
WO2007139212A1 (en) Automatic analyzer
JP2010133870A (en) Automatic analyzer and precision management method of automatic analyzer
JP7144667B2 (en) AUTOMATIC ANALYZER AND AUTOMATIC ANALYSIS SYSTEM, AND AUTOMATIC ANALYSIS METHOD FOR SAMPLE
WO2006132209A1 (en) Automatic analyzer
JPH0560765A (en) Automatic analyzer
JP6745407B2 (en) Automatic analyzer
JPS62217163A (en) Automatic analyzing instrument
JP4053222B2 (en) Biochemical analyzer
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JP5192316B2 (en) Automatic analyzer
CN116106569A (en) Automatic analysis device
JPS62232569A (en) Automatic analyser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757016

Country of ref document: EP

Kind code of ref document: A1