WO2006117866A1 - Icタグ - Google Patents
Icタグ Download PDFInfo
- Publication number
- WO2006117866A1 WO2006117866A1 PCT/JP2005/008205 JP2005008205W WO2006117866A1 WO 2006117866 A1 WO2006117866 A1 WO 2006117866A1 JP 2005008205 W JP2005008205 W JP 2005008205W WO 2006117866 A1 WO2006117866 A1 WO 2006117866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- tag
- circuit
- signal
- power supply
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/073—Special arrangements for circuits, e.g. for protecting identification code in memory
Definitions
- the present invention relates to an IC tag, and more particularly to a technique effective when applied to a passive IC tag.
- the following technologies can be considered for the technology of the IC tag.
- An IC tag refers to a small device having a storage medium, a wireless communication function, an antenna, and the like.
- the IC tag is sometimes referred to as a “wireless tag”, “electronic tag”, or “RFID (Radio Frequency Identification) tag”.
- RFID Radio Frequency Identification
- there are various shapes such as a coin type with a diameter of about 2 cm, a stick type with a length of about 5 cm, a label type and a card type with a cash card.
- Such an IC tag includes information in its storage medium.
- the information can be read out wirelessly using a device called a reader / writer.
- a reader / writer a device that can be used to read out wirelessly using a device called a reader / writer.
- attempts have been made to perform process management using an IC tag in a product assembly process, or to perform product management using an IC tag instead of a barcode.
- IC tags are roughly classified into active types and passive types because of the difference in power supply method.
- Active type IC tags obtain the power required for operation by mounting batteries.
- a noisy IC tag does not have a battery or the like, and obtains power necessary for operation through wireless communication with a reader / writer.
- radio waves that are also sent by the reader / writer force are converted into electric power and used as radio wave energy that can be used only as a signal.
- the frequency band of radio waves used for communication between an IC tag and a reader / writer is determined by standards.
- One example is the 13.56MHz band using the electromagnetic induction system and the 2.45GHz band using the microwave system.
- the 2.45 GHz band standard is defined in ISO 18000-4, which is an international standard.
- 2.45 GHz band power Waves have a communication distance of, for example, about lm, which is longer than the 13.56 MHz band.
- the 900 MHz band has attracted attention as a frequency band that can further extend the communication distance.
- the transmission / reception of data to / from the IC tag is performed by specifying the IC tag and address by the reader / writer.
- the IC tag reads a unique ID value from the storage medium, and stores the data at the address specified by the reader / writer when the ID value matches the ID value specified by the reader / writer. Read the media force and send it back to the reader / writer.
- a passive IC tag rectifies a carrier wave transmitted from a reader / writer to generate a power supply voltage.
- the input voltage level of this carrier wave depends on the distance between the reader / writer and the IC tag at the time of communication.
- this power supply voltage is directly used as an operating power source for a storage medium or the like in an IC tag, for example, fluctuations of about 1.5V to 4V may occur, which may cause the storage medium or the like to be out of the guaranteed operating range. Therefore, it is conceivable to provide a regulator circuit in order to stabilize the operating power supply of the storage medium.
- the output voltage varies due to process variations of the regulator circuit, and there is a concern that the reliability may be lowered.
- an object of the present invention is to improve the reliability of an IC tag.
- Another object of the present invention is to improve IC tag data security. Furthermore, it is to realize a low cost IC tag.
- An IC tag is a passive IC tag including a nonvolatile memory and a regulator circuit, and trimming for adjusting the value of the internal power supply voltage generated by the regulator circuit in the nonvolatile memory. It has data, is read out, and is reflected in the regulator circuit. By providing trimming data in the nonvolatile memory in this way, variations in internal power supply voltage due to process variations and the like can be suppressed at a low cost or in a small area, and the reliability of the IC tag can be improved.
- the regulator circuit when reading trimming data from the nonvolatile memory, the regulator circuit is activated upon receiving power supply from the reader / writer, and accordingly, an operable voltage level is supplied to the nonvolatile memory. It needs to be done later. In addition, it is desirable that this is performed before the synchronization of the internal clock in the IC tag is completed in response to the synchronization signal from the reader / writer. In other words, after synchronization of the internal clock, the internal power supply voltage changes as the trimming data is reflected, and there is a concern that synchronization will be lost. Therefore, by reflecting before the synchronization is completed, a stable internal clock can be generated and the reliability of the IC tag is improved.
- the reader / writer normally transmits a synchronization signal of, for example, about 10 cycles after the signal for power supply. Trimming is performed using the start of the synchronization signal (that is, the first signal edge) as a trigger. Data may be read out. Normally, the regulator circuit has already started up before the trigger time, and an internal clock signal having almost the same clock cycle as the synchronization signal starts to be generated by the trigger time clock recovery circuit or the like. Therefore, since the nonvolatile memory can be operated using this internal clock signal, the trimming data can be read easily. Even when this trigger is used, trimming data can be sufficiently read and reflected within the time when the synchronization signal is transmitted from the reader / writer (that is, before the synchronization is completely confirmed). .
- the IC tag according to the present invention is a passive IC tag including a nonvolatile memory and a regulator circuit, and includes a first storage area and a second storage area in the nonvolatile memory, and the first storage area
- the first mode is accessible only to the first mode
- the second mode is accessible to both the first storage area and the second storage area.
- the second storage area stores first data for setting the first mode or the second mode.
- the nonvolatile circuit is first The first data is read from the memory. Then, the first data is compared with a specific value provided in advance in the IC tag, and the mode is switched between the first mode and the second mode.
- the first storage area is an open area to general users and the second storage area is a security area that can be used only by a specific user
- the first data can be An IC tag that does not have a security area for users and an IC tag that has a security area for specific users can be realized.
- the second storage area it is preferable to store second data for authenticating whether the second storage area is accessible in addition to the first data.
- This second data is compared with the security code when the security code is sent from the reader / writer, and the IC tag permits access to the second storage area only when it matches. [0023] Therefore, even an IC tag whose second storage area is open (that is, an IC tag in the second mode) cannot access the second storage area unless the security code is successfully authenticated. Data security is improved.
- the second data should be rewritten only by a specific user who knows the second data. Then, the security code (ie second data) can be changed as necessary.
- data security can be further improved.
- the IC tag according to the present invention includes trimming data in addition to the first data and the second data described above in the second storage area described above.
- the trimming data is read first, and then the first data is read. Then, along with the reflection of the trimming data as described above, security-related processing is performed using the first data.
- the reader / writer also reads the second data when a security code is issued along with its own command. When the security code matches the security code, the second storage area can be accessed. This makes it possible to improve the reliability of IC tags and improve data security at a low cost or in a small area.
- trimming data and the first data are preferably written only in the manufacturing stage and thereafter can only be read and cannot be rewritten.
- the trimming data and the first data may be stored at consecutive memory addresses in the second storage area. Thus, for example, by using an address counter or the like, it is possible to efficiently read these data and perform a desired process.
- FIG. 1 A system configuration including an IC tag according to an embodiment of the present invention. It is the schematic which shows an example.
- FIG. 2 is a block diagram showing an example of the overall configuration of an IC tag according to an embodiment of the present invention.
- FIG. 3 is an explanatory diagram showing an example of a signal format when a reader / writer force reading request is made in the IC tag of FIG. 2, and (a) is an example of a signal format in which the reader / writer force is also directed to the IC tag. (B) shows an example of the signal format from the IC tag to the reader / writer.
- FIG. 4 is a block diagram showing a configuration example of a part of the logic control circuit, the VREG detection circuit, and the nonvolatile memory in the IC tag of FIG.
- FIG. 5 is a circuit diagram showing a detailed configuration example of a circuit related to setting of trimming data in the IC tag of FIGS. 2 and 4.
- FIG. 6 is an explanatory diagram showing an example of a memory map of the nonvolatile memory in the IC tag of FIG.
- FIG. 7 is a flowchart showing an example of processing of the security transaction or normal operation transaction in the IC tag of FIGS. 2 and 6.
- FIG. 8 An explanatory diagram showing an example of a signal format from the reader / writer to the IC tag in the case of a security transaction in the flow of FIG. 7, (a) is the signal format of the first half, (b ) Is a signal format of the latter half part following (a).
- each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor). Is done.
- CMOS complementary MOS transistor
- the PMOS transistor is distinguished from the N MOS transistor by adding a circle symbol to the gate of the PMOS transistor.
- the connection of the substrate potential of the MOS transistor should be clearly stated, but the connection method is not particularly limited as long as the MOS transistor can operate normally.
- the standard ISO18000 Based on —4. 2 The passive IC tag operating in the 45GHz band will be described as an example, but it is equally applicable to IC tags with other frequency bands that are not limited to this. It is.
- FIG. 1 is a schematic diagram showing an example of a system configuration including an IC tag according to an embodiment of the present invention.
- the system shown in FIG. 1 includes, for example, a reader / writer RW and a plurality of IC tags TG.
- the reader / writer RW supplies electric power to a plurality of IC tags TG by radio waves, and communicates by radio waves with a desired TG.
- the TG performs processing according to the command from the radio wave from the RW and returns the processing result to the RW.
- the IC tag TG in FIG. 1 has an IC chip in which a storage medium, a communication circuit, and the like are integrated on a film and an antenna connected to the IC chip. It is about centimeters.
- an IC tag TG called an inlet or the like is shown, and when this is packaged, various shapes such as a stick type, a coin type and a card type are formed.
- FIG. 2 is a block diagram showing an example of the overall configuration of an IC tag according to an embodiment of the present invention.
- the IC tag shown in FIG. 2 includes, for example, a power supply system circuit block, a signal processing system circuit block, and a nonvolatile memory NVM.
- the power system circuit block includes, for example, a rectifier circuit RECT connected to the antenna ATN, a voltage limiter circuit LMT and a regulator circuit VREG connected to its output, and a VREG detection circuit VREG— Including DET!
- the circuit block of the signal processing system includes, for example, a modulation circuit MO DU and a demodulation circuit DMODU connected to the antenna ATN, and a logic control circuit LOG-CTL provided between these circuits and the nonvolatile memory NVM Etc.
- the signal processing circuit block includes the oscillation circuit OSC, the clock recovery circuit CLK-GEN, and the power-on reset circuit POR.
- the antenna ATN receives the radio wave from the reader / writer RW and sends a reply to the reader / writer RW.
- the rectifier circuit RECT includes, for example, a diode bridge and a smoothing capacitor, and arranges AC signal radio waves (specifically, 2.45 GHz carrier waves) received by the ATN. It is converted into a DC power supply voltage by flowing and smoothing. This DC power supply voltage is high, for example, about 7-8V.
- the voltage limiter circuit LMT limits the DC power supply voltage converted by the RECT within a certain range for the purpose of ensuring the withstand voltage of the transistor. That is, for example, the voltage of about 7-8V is limited to the DC power supply voltage RFvdd, such as 5V or less.
- the regulator circuit VREG generates an internal power supply voltage Vdd to be supplied to a signal processing circuit block, a nonvolatile memory NVM, and the like based on the DC power supply voltage RFvdd limited by the LMT.
- VREG detection circuit VREG—DET operates with RFvdd and detects the VREG power supply rise by determining the output voltage of VREG. Details of VREG and VR EG-DET will be described later with reference to FIG.
- the modulation circuit MODU modulates the carrier wave transmitted from the reader / writer RW based on the baseband data output from the logic control circuit LOG-CTL when sending a reply to the reader / writer RW.
- encoding called FM0 is performed on 40 kHz baseband data, and the impedance of the antenna ATN is changed based on the data.
- the 2.45 GHz carrier wave transmitted from RW is reflected by ATN, and RW receives a different reflected wave corresponding to the change in its impedance. By detecting this, the response from the IC tag is returned. Can receive.
- the demodulation circuit DMODU demodulates the radio wave received from the reader / writer RW via the ATN, and generates a baseband signal. Specifically, for example, the radio wave power that has been subjected to amplitude modulation, etc. for a 2.45 GHz carrier wave. The signal part is detected, and decoding is performed based on a format called Manchester one, and 40 kHz Generate baseband signals. This generated signal is output to the logic control circuit LOG-CTL and the clock recovery circuit CLK-GEN.
- the logic control circuit LOG—CTL performs various baseband processing. For example, processing to decode commands from signals input via DMOD U, processing to read or write stored data to NVM based on commands, processing to output stored data read from NVM to MODU, etc. Is mentioned.
- the oscillation circuit OSC is, for example, a so-called ring oscillator that is supplied with the internal power supply voltage Vdd and includes a plurality of inverter circuits. The 1MHz clock signal is output.
- the clock recovery circuit CLK—GEN includes, for example, a counter that is supplied with the internal power supply voltage Vdd and operates with a 1 MHz clock signal from the OSC.
- Such CLK-GEN generates an internal clock signal in a cycle based on a counter value, for example.
- This counter value is calculated by measuring the time between the rising and falling edges of the 40kHz preamble signal (synchronization signal) from DMODU and averaging them. It is determined by making it. This makes it possible to generate an internal clock signal (40 kHz) with a uniform duty ratio in synchronization with the ATN-received radio wave.
- This internal clock signal is used as a reference clock signal for internal circuits such as LOG-CTL.
- the power-on reset circuit POR detects the rise of the power supply of the regulator circuit VREG or the reset of each internal circuit after waiting for the generation of an internal clock signal in response to this, or the fall of the power supply of the VREG. To reset each internal circuit.
- the non-volatile memory NVM is supplied with Vdd and can be read and written, for example, an EEPROM (Electronically Erasable and Programmable Read Only Memory), a FLASH memory, or the like. NVM here has a capacity of 256 bytes.
- the main feature of the present invention is that the trimming data of the regulator circuit VREG and the security-related data are stored in the nonvolatile memory NVM in addition to the ID data normally provided. Be prepared. And, to use these data while complying with the standard specified in ISO18000-4, for example. Hereinafter, these details will be described.
- FIG. 3 is an explanatory diagram showing an example of the signal format when the reader / writer force is also requested to read in the IC tag of FIG. 2, and (a) is a signal format in which the reader / writer force is also directed to the IC tag. An example of the format, (b) shows an example of the signal format for the IC tag power toward the reader / writer.
- the reader / writer RW Upon a read request, the reader / writer RW outputs radio waves in the signal format shown in Fig. 3 (a) toward the IC tag.
- the preamble detection 300 is intended to power up the IC tag, and is a level signal that is continuous for a certain period of time.
- a '1 level signal on an actual radio wave is a waveform obtained by modulating a 2.45GHz carrier wave with a' 1 'level signal. It becomes a carrier wave with amplitude A.
- the “0” level signal on the actual radio signal becomes a carrier wave having an amplitude B smaller than the amplitude A of the “1” level signal, for example, when amplitude modulation is used.
- Preamble 301 is intended for IC tag synchronization, and is composed of a synchronization signal in which a '0' level signal and a '1' level signal are repeated nine times.
- the S delimiter 302 is intended to notify the start of the command 303 and is, for example, a “1100111010” signal.
- the command 303 is an 8-bit signal. In the case of a READ command, for example, it is a “00001100” signal.
- ID304 is an 8-byte (64-bit) signal that identifies the destination IC tag.
- the address 305 designates a memory address in the destination IC tag, and is an 8-bit signal, for example.
- a CRC (Cyclic Redundancy Check) 306 is used to check whether or not the data communication is normally performed, and is a 16-bit signal, for example.
- the IC tag receives a signal as shown in FIG. 3 (a), performs an operation corresponding thereto (in this case, a memory read operation), and sends it to the reader / writer RW as shown in FIG. 3 (b).
- the signal format is returned as shown in.
- the signal format shown in FIG. 3B is composed of a quiet 307, a preamplifier reply 308, read data 309, and a CRC 310.
- the quiet 307 is a period of, for example, 16 bits provided to regenerate the power supply of the IC tag that may be lowered, as in the preamble detection 300 described above.
- the bumble reply 308 is a synchronization signal sent back to the reader / writer RW, and is, for example, 16 bits.
- Read data 309 is a signal corresponding to data read from NVM in response to a read request from RW, and is 8 bytes (64 bits), for example.
- CR C310 is the same signal as described above.
- the IC tag performs, for example, the operation shown in the lower part of Fig. 3 (a) in response to a request to read the reader / writer RW force.
- the first point in this operation is that the trimming data (TRIM-DAT) is also read out by the NVM force by the end of the preamble, and the setting has been completed.
- the reader / writer RW and the IC tag are synchronized using the clock recovery circuit CLK—GEN as described in FIG.
- the IC tag can be operated with the internal power supply voltage Vdd based on this trimming data. Therefore, variations in internal power supply voltage Vdd due to process variations are reduced, preventing malfunction of IC tags due to inappropriate power supply voltage values and destruction of IC tags due to excessive power supply voltage values. In addition, the yield of IC tags in the manufacturing process will be improved. Such power also makes it possible to improve the reliability of IC tags. In addition, the manufacturing cost of IC tags can be reduced.
- the second point in the IC tag operation in Fig. 3 (a) is that after trimming data (TRIM —DAT) is read from NVM and before ID data (ID — DAT) is read
- the switch (SECU-SW) is being read.
- TRIM-DAT and SECU-SW may be stored in consecutive memory addresses, and TRIM-DAT and SECU-SW may be read continuously. This makes it possible to shorten the readout time and reduce the readout power.
- Reading of ID—DAT after reading of SEC U—SW is performed based on the standard. That is, the ID tag is read from the NVM memory address specified by the standard, and the ID tag is identified by comparing the ID-DAT with the ID sent from the reader / writer RW. Is called.
- FIG. 4 shows the IC tag in Figure 2.
- FIG. 2 is a block diagram showing a configuration example of a part of the logic control circuit, the VREG detection circuit, and the nonvolatile memory.
- each circuit is classified into circuit blocks for explanation, but the correspondence between each circuit and circuit block is of course not limited thereto.
- the S delimiter analysis circuit S—CTL in the logic control circuit LOG—CTL, the S delimiter analysis circuit S—CTL, the command analysis circuit CMD—CTL, the read / write address register ADD—REG, and the preamplifier falling detection circuit PRE — Includes DET.
- an AND circuit AND of the PRE-DET and the VREG detection circuit VREG-DET described above is also included. The output signals of these circuits are input to the nonvolatile memory NVM.
- the non-volatile memory NVM is classified into, for example, a non-volatile memory array NVM-ARY and a memory control circuit NVM-CTL that controls the memory array.
- the NVM-CTL includes a count control circuit CUNT-CTL, a load value control circuit LD-CTL, an address counter ADD-CUNT, and a memory address register MADD-REG! /.
- S-CTL and CMD-CTL output signals and the above-described AND circuit AND output signal trg are input to CUNT-CTL.
- LD—CTU receives the output signal trg and S—CTL and ADD—REG output signals.
- the output signals of CUNT-CTL and LD-CTL are input to the address counter ADD-CUNT, and the output signal of ADD-CUNT is set in the memory address register MADD-REG.
- a read operation or a write operation using the address value of the MADD-REG is performed.
- the bit width of MADD-REG is 8 bits.
- the storage area of the nonvolatile memory NVM includes an extended storage area EXTD-ARA in addition to the normal storage area NML-ARA defined by the standard.
- NVM is, for example, 256 knots, 128 bytes are allocated to NML—ARA, and 128 bytes are allocated to EXTD—ARA.
- NML—ARA includes an ID storage area ID—ARA in which the ID of the IC tag is stored, and a user area USR_ARA that can be used by the user, from the lower part of the address.
- EXTD_ARA is, for example, the area TRIM—ARA where trimming data is stored and the area where security related data is stored (security switch H SECU—SW and security code SECU—CD) and private memory area SPE—A RA.
- the VREG detection circuit VREG-DET detects that the regulator circuit VREG has risen and its output voltage has reached a desired value.
- the preamble falling detection circuit PRE-DET detects the first falling signal in the preamble 301 in FIG. That is, in Fig. 3 (a), a change from '1, level signal to' 0, level signal when transitioning from the preamble detection 300 to the preamble 301 is detected. Then, an output signal trg obtained by performing an AND operation on these detection signals is input to the load value control circuit LD-CTL and the count control circuit CUNT-CTL.
- LD_CTL receives this output signal trg and outputs an initial value provided in advance (that is, a leading address in which trimming data is stored) to address counter ADD-CUNT. Then, the output of ADD-CUNT is set in the memory address register MADD-REG, and then reading of trimming data from the nonvolatile memory array NVM-ARY is started. On the other hand, the CUNT-CTL receives the output signal trg and controls the count in the ADD-CUNT. Therefore, the trimming data can be completely read out by sequentially counting up the addresses by a preset amount. Furthermore, when trimming data and security-related data are stored continuously (ie, when TRIM-ARA and SECU-SW are consecutive), both data can be controlled by controlling the count. Can be read continuously.
- the power of reading trimming data in response to the first fall of the preamble, and in some cases, reading of trimming data only at the rise of VREG is also possible to perform.
- the first falling edge of the preamble that occurs after the rising edge of VREG is added as a condition to facilitate the timing of the NVM read operation.
- the NVM operates based on the 40 kHz internal clock signal output from the clock recovery circuit CLK-GEN in FIG. 2. This 40 kHz internal clock signal is the first rising edge of the preamble. It will be output from the bottom. But Therefore, if the NVM is configured to operate using a different clock signal from the rise of VREG, trimming data can be read only by the rise of VREG.
- the S-delimiter analysis circuit S-CTL is a circuit that detects, for example, the first falling signal when the S-delimiter 302 shown in FIG. S-CTL is used when TRIM-ARA and SECU-SW are not continuous or when trimming data and SECU-SW are read separately. That is, starting from the S-CTL detection signal, the LD-CTL loads the start address of the SECU-SW, and the CUNT-CTL controls the ADD-CUNT as in the above-described trimming data reading. Read SECU— SW completely from ARY.
- the value input at the address 305 in FIG. 3A is set.
- the command analysis circuit CMD-CTL analyzes whether the command 303 force 1 byte read command force 8 byte read command in FIG.
- the value of ADD—REG is set to MADD—REG via LD—CTL and ADD—CUNT, 1 byte of the address is read.
- 8 bytes are read by controlling ADD-CUNT by CUNT-CTL in response to the 1-byte read operation.
- FIG. 5 is a circuit diagram showing a detailed configuration example of a circuit related to setting of trimming data in the IC tag of FIGS. 2 and 4.
- the regulator circuit VREG in FIG. 2 and the VREG detection circuit VREG—DET, preamble falling detection circuit PRE—DET, AND circuit AND in FIG. 4, nonvolatile memory array NVM—ARY and memory control circuit NVM— CTL is shown! /
- the regulator circuit VREG includes, for example, a so-called series regulator having a two-stage configuration.
- One series regulator (first series regulator) has a PMOS transistor MP 1 and a variable resistor RV connected in series between the power supply voltage RFvdd and the ground voltage GND, and an amplifier circuit AMP 1 at the gate of MP 1 The output is connected to each other.
- the variable resistor RV has a plurality of resistors connected in series and outputs one of the connection nodes between the resistors. It can be connected to the ND1. That is, the voltage of ND1 can be changed by changing the resistance ratio.
- the selection of the connection node is performed by selecting the switch SW, for example, and the selection of the SW is performed based on the value of the trimming setting register TRIM-REG.
- 16 SWs are used and TRIM-REG is configured in 16 bits (2 bytes).
- the reference voltage BIAS is input to one input, and the feedback signal from the specific connection node ND11 in the variable resistor RV is input to the other input.
- An NMOS transistor MN 1 is connected between the other input and the output node ND 1. The gate of MN1 is controlled by VREG detection circuit VREG—DET
- the other series regulator (second series regulator) has a PMOS transistor MP2 and a plurality of resistors RL connected in series between the power supply voltage RFvdd and the ground voltage GND, and an amplifier circuit at the gate of MP 2
- the output of AMP2 is connected.
- the output node ND1 described above is connected to one input, and a feedback signal from a connection node ND21 in the plurality of resistors RL is input to the other input.
- the other connection node ND22 in the plurality of resistors RL is connected to the VREG detection circuit VREG-DET.
- the internal power supply voltage Vdd is output from the drain of MP2.
- the VREG detection circuit VREG-DET includes, for example, a comparator circuit CMP and an inverter circuit INV connected to the output thereof.
- the output of CMP is also connected to the gate of the NMOS transistor MN1 described above.
- One input of the comparator circuit CMP is connected to the aforementioned output node ND1, and the other input is connected to the aforementioned connection node ND22.
- the AND circuit AND is composed of, for example, two-stage flip-flops DFF1 and DFF2.
- the flip-flop DFF1 in the first stage outputs the power supply voltage RFvdd to DFF2 at the rise of the inverter circuit INV described above, and DFF2 generates the output signal trg by the detection signal of the preamble fall detection circuit PRE—DET described above.
- the VREG—DET output and the PRE—DET output are ANDed.
- the AND output signal trg is output to the memory control circuit NVM-CTL.
- MN1 is on and the output signal trg is a '0' level signal. At this time, the output of TRIM-REG and the SW state are indefinite. However, the connection to AMP2 is secured by turning on MN1. That is, MN1 equivalently defines the SW connection point in the initial state.
- the output of MP1 is input to AMP2 via variable resistor RV and MN1, and MP2 is turned on by driving AMP2.
- the desired judgment value that is, when VREG rises and exceeds the voltage level at which NVM etc. can operate normally
- the CMP output is '1, level signal to' 0, level signal Invert to.
- MN1 is turned off.
- SW eg, Y6
- DFF1 outputs a '1' level signal in response to the transition of the CMP output to a '0' level signal
- DFF2 outputs in response to the first falling edge of the subsequent preamble signal.
- the signal trg changes from '0' level signal to '1, level signal.
- the operation as described in FIG. 4 is performed, and the trimming data is transferred from the non-volatile memory array NVM-ARY to the TRIM-REG. If the NVM data width is 8 bits, TRIM-REG is set in two data transfers. When TRIM-REG is set, the SW is set accordingly and the desired internal power supply voltage Vdd can be generated. Note that the value of Vdd is set to 1.7 V, for example, by trimming in consideration of the transistor operating range and power consumption.
- the value of the trimming data is determined for each IC tag by inspecting each IC tag in the IC tag manufacturing process (test process). In the manufacturing process, the optimum value is written to each NVM.
- a means for setting the trimming data it is possible to use a widely known fuse other than NVM. In this case, since the internal power supply voltage reflecting the trimming data has already been generated when the regulator circuit is started up, there is no difficulty in conforming to the standard. [0072] However, if a fuse is used, the manufacturing cost associated with the fuse cutting increases, and the circuit area may also increase. In the case of IC tags, such a problem that the demand for cost reduction and area reduction is very high is not preferable.
- FIG. 6 is an explanatory diagram showing an example of a memory map of the nonvolatile memory in the IC tag of FIG.
- a 256 byte memory map in NVM is shown.
- the lower 128 bytes of the address is the storage area NML—AR A defined by the standard.
- NML—AR A defined by the standard.
- USR Includes ARA.
- an area for storing the serial number may be provided in the USR-ARA.
- the upper 128 bytes of the address is an expanded storage area EXTD-ARA.
- EXTD-ARA is used as an area that can be used only by specific users, for example.
- SPE-ARA stores secret information of a specific user.
- the SECU—SW stores data for switching whether to enable the security function. If the specific code stored in the SECU-SW is stored, the EXTD-ARA is released. Otherwise, the EXTD-ARA is not released. That is, two modes are switched by SECU-SW. In one mode, only NML-ARA can be used, and in the other mode, both NML-ARA and EXTD-ARA can be used. .
- the SECU-CD stores, for example, a security code for authenticating access permission to the SPE-ARA. In such a configuration, when a signal format similar to that shown in FIG.
- FIG. 7 is a flowchart showing an example of processing of the security transaction or normal operation transaction in the IC tag of FIG. 2
- FIG. Fig. 8 is an explanatory diagram showing an example of the signal format from the reader / writer to the IC tag in the case of the security transaction in the flow of Fig. 7, (a) is the signal format of the first half, (b) Is the signal format of the second half following (a).
- the IC tag of this embodiment can support two compatible signal formats.
- One is a normal signal format as shown in Fig. 3 (a), and the other is a unique signal including a unique command 303a that does not conflict with the standard command as shown in Figs. 8 (a) and (b).
- processing is performed as a normal operation transaction
- Figs. 8 (a) and (b) processing is performed as a security transaction. Which transaction is to be performed is determined by the SECU-SW data and whether or not a unique command is received.
- the trimming data and the security-related data are Read continuously. That is, TRIM-ARA and SECU-S W in Fig. 6 are read out. Trimming data is transmitted from NVM to VREG, while SE CU-SW data is transmitted from NVM to logic control circuit LOG-CTL and held in LOG-C TL.
- the transmission of the commands 303 and 303a in Fig. 3 (a) and Fig. 8 (a) is not completed at the latest. It is desirable that the SECU-SW data is retained in the LOG-CTL. It should be noted that this condition can be fully met if the 1-byte SECU-SW is read immediately after trimming data.
- the LOG-CTL looks at the value of the SECU-SW and determines whether or not it is a specific code (S701). And if it is a specific code, EXTD ARA Release (S702), otherwise release is not performed (S707).
- S701 EXTD ARA Release
- S702 EXTD ARA Release
- S707 otherwise release is not performed.
- the IC tag is apparently equipped with only 128-byte NML-ARA. Therefore, in this case, it is not recognized when an independent command is received in the subsequent commands 303 and 303a (S708), and operates only when a normal command is received. In other words, it does not work with the signal format in Fig. 8 (a), but only with the signal format in Fig. 3 (a).
- normal operation including ID 304 and ID-DAT match determination (S709a) is performed according to the signal format of FIG. 3A (S710).
- S710 A series of processes when the normal command is received and the force normal operation is performed will be referred to as a normal operation transaction here.
- ID304a is a match
- LOG-CTL reads and holds the SECU-CD data from NVM. At this time, in order to proceed with the internal processing of the IC tag promptly in response to the input signal with the reader / writer power, at the latest by the end of the transmission of the security code 31 la in FIG. CD data should be kept in LOG—CTL.
- the LOG-CTL compares the read SECU-CD data with the security code 31 la transmitted by the reader / writer according to the signal format of FIG. 8 (a) (S704). If the results match, access to SPE-ARA is permitted (S705), and if not, the reply is rejected (S706).
- a series of processing from receiving this unique command to authenticating the availability of access to SPE-ARA is called an authentication transaction here. And this authentication transaction and the unique operation transaction described later These are called security transactions.
- the signal format shown in FIG. 8 (b) is issued immediately after the signal format shown in FIG. 8 (a). From the initial stage of the signal format shown in FIG. V dd is still maintained. In other words, in Fig. 8 (b), since the internal power supply voltage Vdd is maintained, trimming data and security-related data with NVM power are not read. Therefore, authentication is performed by the authentication transaction, and the unique operation transaction is performed while maintaining the authentication state.
- the IC tag of the present invention is particularly useful when applied to an IC tag that is passive and requires data security, and is not limited to this, and can be widely applied to all IC tags.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Storage Device Security (AREA)
- Credit Cards Or The Like (AREA)
Abstract
例えば、不揮発性メモリアレイNVM_ARYを、一般ユーザが利用可能な記憶領域NML_ARAと特定ユーザが利用可能な拡張記憶領域EXTD_ARAとで構成し、EXTD_ARAに、レギュレータ回路のトリミングデータを格納する領域TRIM_ARAとセキュリティ関連のデータを格納する領域SECU_SWを設ける。トリミングデータおよびセキュリティ関連のデータは、例えば、VREG_DETが発生するレギュレータ回路の立ち上がり検出信号と、PRE_DETが発生するプリアンブル開始の検出信号とのAND出力をトリガとして、メモリ制御回路NVM_CTLを介してNVM_ARYより読み出される。読み出されたトリミングデータは、レギュレータ回路に設定され、セキュリティ関連のデータは、例えばユーザに対するEXTD_ARAの解放/非解放を設定するためなどに使用される。
Description
明 細 書
ICタグ
技術分野
[0001] 本発明は、 ICタグに関し、特に、パッシブ型の ICタグに適用して有効な技術に関す るものである。
背景技術
[0002] 本発明者が検討したところによれば、 ICタグの技術に関しては、以下のような技術 が考えられる。
[0003] ICタグとは、記憶媒体、無線通信機能およびアンテナなどを備えた小型のデバイス のことを指す。 ICタグは、「無線タグ」、「電子タグ」、または「RFID (Radio Frequen cy Identification)タグ」などと呼ばれることもある。その外形は、例えば、直径 2cm 程度のコイン型や、長さ 5cm程度のスティック型や、キャッシュカード程度のラベル型 およびカード型など様々な形体が存在する。
[0004] このような ICタグは、その記憶媒体に情報を備えて 、る。そして、その情報は、リー ダライタなどと呼ばれる装置を用い、無線によって読み出すことが可能となっている。 近年では、例えば、製品組み立て工程において ICタグを用いた工程管理を行ったり 、また、バーコードの代わりに ICタグを用いて商品管理を行ったりする試みがなされ ている。
[0005] ところで、 ICタグは、その電源供給方法の違!、からアクティブ型とパッシブ型に大別 される。アクティブ型の ICタグは、電池等を搭載することで動作に必要な電力を得る。 一方、ノッシブ型の ICタグは、電池等を搭載せず、リーダライタとの無線通信を通じ て動作に必要な電力を得る。すなわち、リーダライタ力も送られてくる電波を、信号と して使用するのみでなぐ電波エネルギーとして電力に変換して使用する。
[0006] なお、 ICタグとリーダライタとの間の通信で使用される電波は、規格によって周波数 帯が定められている。その一例として、電磁誘導方式を用いる 13. 56MHz帯やマイ クロ波方式を用いる 2. 45GHz帯などが挙げられる。この内、 2. 45GHz帯の規格は 、国際標準規格である ISO18000— 4に定められている。通常、 2. 45GHz帯の電
波は、 13. 56MHz帯に比べて通信距離が長ぐ例えば lm程度の通信距離を備え ている。また、最近では、更に通信距離を伸ばせる周波数帯として、 900MHz帯の 電波が着目されている。
発明の開示
発明が解決しょうとする課題
[0007] ところで、前記のような ICタグの技術にっ 、て、本発明者が検討した結果、以下の ようなことが明ら力となった。
[0008] 例えば、前述したような標準規格 ISO18000— 4には、 ICタグとリーダライタとの間 の信号送受信の手順が定められている。この規格の中では、 ICタグへの入力信号に 対して同期を取るための信号フォーマットや、スタートビット等の規定はある力 特に 具体的な回路についての規定はない。
[0009] リーダライタ力も ICタグへのデータの送受信は、リーダライタによる ICタグの指定と アドレスの指定によって行われる。例えば、 READコマンドの場合、 ICタグは、記憶 媒体から固有の ID値を読み出し、その ID値とリーダライタが指定した ID値とがー致し た場合に、リーダライタが指定したアドレスのデータを記憶媒体力も読み出してリーダ ライタに返信する。
[0010] こうした中、このような ICタグには、例えば次のような問題が考えられる。
[0011] 第 1に、 ICタグの動作の信頼性に関する問題が挙げられる。例えば、前述したよう なパッシブ型の ICタグは、リーダライタカゝら送信される搬送波を整流して電源電圧を 生成する。この搬送波の入力電圧レベルは、通信時におけるリーダライタと ICタグの 距離に依存し、近距離では大きぐ遠距離では小さくなる。このため、この電源電圧を そのまま ICタグ内の記憶媒体等の動作電源にすると、例えば 1. 5V〜4V程度のば らつきが生じ、記憶媒体等の動作保証範囲を外れる恐れがある。そこで、記憶媒体 等の動作電源を安定化させるため、レギユレータ回路を設けることが考えられる。しか しながら、 ICタグ内にレギユレータ回路を搭載する場合でも、レギユレータ回路のプロ セスばらつき等によって、その出力電圧がばらつき、これに伴う信頼性の低下が懸念 される。
[0012] 第 2に、 ICタグのデータセキュリティに関する問題が挙げられる。 ICタグにおいては
、前述したように ID値が一致すれば記憶媒体の情報を読むことが可能である。したが つて、 ID値さえわ力 ていれば、汎用的なリーダライタを用いた遠隔操作によって容 易に記憶媒体内の情報を盗用することが可能である。勿論、読まれても問題がない 情報しか ICタグ内に記憶させな 、と 、うような使 、方であれば特に盗用されても支障 はないが、場合によっては、自由に読めるデータとそうでないデータとを使い分けた い時などがある。
[0013] そこで、本発明の目的は、 ICタグの信頼性を向上させることにある。また、本発明の 他の目的は、 ICタグのデータセキュリティを向上させることにある。また、更には、 ICタ グの低コストィ匕を実現することにある。
[0014] 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添 付図面から明らかになるであろう。
課題を解決するための手段
[0015] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。
[0016] 本発明による ICタグは、不揮発性メモリとレギユレータ回路を含むパッシブ型の ICタ グであり、不揮発性メモリ内に、レギユレータ回路が発生する内部電源電圧の値を調 整するためのトリミングデータを備え、これを読み出してレギユレータ回路に反映する ものとなっている。このようにトリミングデータを不揮発性メモリ内に備えることで、プロ セスばらつきなどによる内部電源電圧のばらつきを低コストまたは小面積で抑制でき 、 ICタグの信頼性を向上させることが可能となる。
[0017] ここで、不揮発性メモリからのトリミングデータの読み出しは、リーダライタからの電力 供給を受けてレギユレータ回路が立ち上がり、これに伴い不揮発性メモリに対して動 作可能な電圧レベルが供給された後で行う必要がある。そして、更に、リーダライタか らの同期信号に対応して、 ICタグ内での内部クロックの同期が完了する前に行うこと が望ましい。すなわち、内部クロックの同期後では、トリミングデータの反映に伴い内 部電源電圧が変化し、これに伴い同期が外れることが懸念される。したがって、同期 が完了する前に反映させておくことで、安定した内部クロックを生成でき、 ICタグの信 頼性が向上する。
[0018] また、リーダライタは、通常、電力供給のための信号の後に例えば 10サイクル程度 の同期信号を送信するが、この同期信号の始まり(すなわち、最初の信号エッジ)をト リガとして、トリミングデータの読み出しを行ってもよい。通常、このトリガの時点前に、 レギユレータ回路は既に立ち上がっており、このトリガの時点力 クロック再生回路な どによって同期信号とほぼ同一クロック周期の内部クロック信号が生成され始める。し たがって、不揮発性メモリをこの内部クロック信号を用いて動作させることができるた め、トリミングデータの読み出しが容易となる。なお、このトリガを用いた場合でも、リー ダライタから同期信号が送信されている時間内に (すなわち、同期が完全に確定する 前に)トリミングデータの読み出しおよび反映を十分に行うことが可能である。
[0019] また、本発明による ICタグは、不揮発性メモリとレギユレータ回路を含むパッシブ型 の ICタグであり、不揮発性メモリ内に、第 1記憶領域および第 2記憶領域を備え、第 1 記憶領域のみにアクセス可能な第 1モードと、第 1記憶領域と第 2記憶領域の両方に アクセス可能な第 2モードとを有するものとなっている。そして、前記第 2記憶領域に は、第 1モードか第 2モードかを設定するための第 1データが格納されている。
[0020] このような構成において、リーダライタ力もの電力供給を受けてレギユレータ回路が 立ち上がり、これに伴!、不揮発性メモリに対して動作可能な電圧レベルが供給された 後で、まず、不揮発性メモリから第 1データが読み出される。そして、この第 1データと ICタグ内に予め設けてある特定値とを比較判定し、第 1モードか第 2モードかを切り 替える。これによつて、 1個の ICタグを用いて、リーダライタからの見かけ上の記憶領 域が異なる 2種類の ICタグを容易に実現できる。
[0021] したがって、例えば、第 1記憶領域を一般ユーザへの開放領域とし、第 2記憶領域 を特定ユーザのみが使用可能なセキュリティ領域とすると、製造段階で第 1データを 設定することで、一般ユーザに向けたセキュリティ領域を持たない ICタグと、特定ュ 一ザに向けたセキュリティ領域を備えた ICタグとを実現できる。
[0022] また、この第 2記憶領域に、第 1データにカ卩えて、更に第 2記憶領域へのアクセス可 否を認証するための第 2データを格納するとよい。この第 2データは、リーダライタから セキュリティコードが送信された際にこのセキュリティコードと比較され、 ICタグは、こ れが一致した場合にのみ第 2記憶領域へのアクセスを許可する。
[0023] したがって、第 2記憶領域が開放されている ICタグ (すなわち第 2モードの ICタグ) であっても、セキュリティコードの認証に成功しない限り第 2記憶領域へのアクセスが 不可能となり、データセキュリティが向上する。なお、この第 2データは、この第 2デー タを知っている特定ユーザのみが書き換えられるようにするとよい。そうすると、必要 に応じてセキュリティコード (すなわち第 2データ)を変更することができる。また、この 第 1および第 2データに加えて、 ICタグ内に第 2記憶領域へアクセスするための独自 コマンドを設けると、更にデータセキュリティを向上させることが可能となる。
[0024] また、本発明による ICタグは、前述した第 2記憶領域内に、前述した第 1データおよ び第 2データに加えてトリミングデータを備えたものとなっている。この場合、不揮発 性メモリに対して動作可能な電圧レベルが供給された後で、まず、トリミングデータが 読み出され、次いで第 1データが読み出される。そして、前述したようなトリミングデー タの反映と共に、第 1データを用いてセキュリティ関連の処理が行われる。さらにリー ダライタ力も独自コマンドと共にセキュリティコードが発行された際に、第 2データが読 み出され、セキュリティコードと一致した場合に、第 2記憶領域へのアクセスが可能と なる。これによつて、低コストまたは小面積で ICタグの信頼性の向上と、データセキュ リティの向上とを実現できる。
[0025] なお、このトリミングデータと第 1データは、製造段階のみで書き込まれ、以降は読 み出しのみ可能で書き換え不可能にすることが望ましい。また、トリミングデータと第 1 データは、第 2記憶領域内の連続したメモリアドレスに格納するとよい。これによつて、 例えばアドレスカウンタなどを用いることで、これらのデータを効率的に読み出して所 望の処理を行うことが可能となる。
発明の効果
[0026] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば、 ICタグの信頼性を向上させることが可能になる。また、 ICタグのデータ セキュリティを向上させることが可能になる。また、更には、 ICタグの低コストィ匕を実現 できる。
図面の簡単な説明
[0027] [図 1]本発明の一実施の形態による ICタグにおいて、それを含めたシステム構成の一
例を示す概略図である。
[図 2]本発明の一実施の形態による ICタグにおいて、その全体構成の一例を示すブ ロック図である。
[図 3]図 2の ICタグにおいて、リーダライタ力 読み出し要求があった際の信号フォー マットの一例を示す説明図であり、 (a)はリーダライタ力も ICタグに向けた信号フォー マットの一例、(b)は ICタグからリーダライタに向けた信号フォーマットの一例を示す ものである。
[図 4]図 2の ICタグにおいて、その論理制御回路、 VREG検出回路および不揮発性 メモリの一部の構成例を示すブロック図である。
[図 5]図 2および図 4の ICタグにおいて、そのトリミングデータの設定に関連する回路 の詳細な構成例を示す回路図である。
[図 6]図 2の ICタグにおいて、その不揮発性メモリのメモリマップの一例を示す説明図 である。
[図 7]図 2および図 6の ICタグにおいて、そのセキュリティトランザクションまたは通常 動作トランザクションの処理の一例を示すフロー図である。
[図 8]図 7のフローにおいて、セキュリティトランザクションである場合のリーダライタか ら ICタグに向けた信号フォーマットの一例を示す説明図であり、(a)は、その前半部 の信号フォーマット、(b)は、(a)に続く後半部の信号フォーマットである。
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一の部材には原則として同一の符号を付し、そ の繰り返しの説明は省略する。また、実施の形態の各機能ブロックを構成する回路素 子は、特に制限されないが、公知の CMOS (相補型 MOSトランジスタ)等の集積回 路技術によって、単結晶シリコンのような半導体基板上に形成される。
[0029] なお、図面において、 PMOSトランジスタにはゲートに丸印の記号を付すことで、 N MOSトランジスタと区別することとする。また、図面において、 MOSトランジスタの基 板電位の接続は明記して ヽな 、が、 MOSトランジスタが正常動作可能な範囲であれ ば、その接続方法は特に限定しない。また、以降の説明では、標準規格 ISO18000
—4に基づく 2. 45GHz帯で動作するパッシブ型の ICタグを例として説明を行うが、 特にこれに限定されるものではなぐ他の周波数帯を備えた ICタグに対しても同様に 適用可能である。
[0030] 図 1は、本発明の一実施の形態による ICタグにおいて、それを含めたシステム構成 の一例を示す概略図である。図 1に示すシステムは、例えば、リーダライタ RWと、複 数の ICタグ TGなどカゝら構成されている。リーダライタ RWは、例えば、電波によって 複数の ICタグ TGに電力を供給すると共に、所望の TGとの間で電波による通信を行 う。 TGは、 RWからの電波による命令に応じた処理を行い、処理結果を RWに向けて 返信する。
[0031] 図 1の ICタグ TGは、フィルム上に、記憶媒体や通信回路等が集積された ICチップ とその ICチップに接続されたアンテナとが実装され、長辺方向の大きさが例えば数セ ンチ程度となっている。図 1では、例えばインレットなどと呼ばれる ICタグ TGを示して おり、これがパッケージングされることでスティック型やコイン型やカード型などの様々 な形状となる。
[0032] 図 2は、本発明の一実施の形態による ICタグにおいて、その全体構成の一例を示 すブロック図である。図 2に示す ICタグは、例えば、電源系の回路ブロックと、信号処 理系の回路ブロックと、不揮発性メモリ NVMによって構成される。電源系の回路プロ ックは、例えば、アンテナ ATNに接続された整流回路 RECTと、その出力に接続さ れた電圧リミッタ回路 LMTおよびレギユレータ回路 VREGと、 VREGの電圧を検出 する VREG検出回路 VREG— DETなどを含んで!/、る。
[0033] 信号処理系の回路ブロックは、例えば、アンテナ ATNに接続された変調回路 MO DUおよび復調回路 DMODUと、これらの回路と不揮発性メモリ NVMとの間に設け られた論理制御回路 LOG— CTLなどを含んでいる。また、信号処理系の回路ブロッ クには、発振回路 OSCや、クロック再生回路 CLK— GENや、パワーオンリセット回 路 PORなども含まれて 、る。
[0034] アンテナ ATNは、リーダライタ RWからの電波を受信し、また、リーダライタ RWに向 けて返信を行う。整流回路 RECTは、例えばダイオードブリッジや平滑コンデンサな どを含み、 ATNで受信した交流信号の電波(具体的には 2. 45GHzの搬送波)を整
流および平滑ィ匕して直流電源電圧に変換する。この直流電源電圧は、高い場合で 例えば 7〜8V程度となる。電圧リミッタ回路 LMTは、トランジスタの耐圧の確保等を 目的として RECTによって変換された直流電源電圧を一定の範囲内に制限する。す なわち、例えば、 7〜8V程度の電圧を 5V以下などの直流電源電圧 RFvddに制限す る。
[0035] レギユレータ回路 VREGは、 LMTによって制限された直流電源電圧 RFvddを基に 、信号処理系の回路ブロックや不揮発性メモリ NVM等に供給する内部電源電圧 Vd dを生成する。 VREG検出回路 VREG— DETは、 RFvddで動作し、 VREGの出力 電圧を判定することで VREGの電源立ち上がりを検出する。なお、 VREGおよび VR EG— DETの詳細については図 5で後述する。
[0036] 変調回路 MODUは、リーダライタ RWに返信を行う際に、論理制御回路 LOG— C TLから出力されたベースバンドのデータに基づいて、リーダライタ RWから送信され る搬送波に対する変調を行う。具体的には、例えば、 40kHzのベースバンドのデー タに対して FM0と呼ばれる符号化を行い、そのデータに基づいてアンテナ ATNのィ ンピーダンスを変更する。そうすると、 RWから送信された 2. 45GHzの搬送波が AT Nで反射され、 RWは、そのインピーダンスの変化に対応した異なる反射波を受信す るため、これを検出することで ICタグからの返信を受け取ることができる。
[0037] 復調回路 DMODUは、リーダライタ RWから ATNを介して受信した電波を復調し、 ベースバンドの信号を生成する。具体的には、例えば、 2. 45GHzの搬送波に対し て振幅変調などが行われている電波力 その信号部分を検波し、また、マンチェスタ 一と呼ばれる形式に基づいて復号化を行うことで 40kHzのベースバンドの信号を生 成する。この生成された信号は、論理制御回路 LOG— CTLおよびクロック再生回路 CLK— GENへ出力される。
[0038] 論理制御回路 LOG— CTLは、各種ベースバンドの処理を行う。例えば、 DMOD Uを経て入力された信号からコマンドを解読する処理や、コマンドに基づいて NVM に対して記憶データの読み出し又は書き込みを行う処理や、 NVMから読み出した 記憶データを MODUに出力する処理などが挙げられる。発振回路 OSCは、例えば 、内部電源電圧 Vddが供給され、複数のインバータ回路を含む所謂リングオシレータ
などで構成されており、 1MHzのクロック信号を出力する。クロック再生回路 CLK— G ENは、例えば、内部電源電圧 Vddが供給され、 OSCからの 1MHzのクロック信号で 動作するカウンタなどを含んで 、る。
[0039] このような CLK— GENは、例えば、カウンタ値に基づく周期で内部クロック信号を 生成する。そして、このカウンタ値は、 DMODUからの 40kHzのプリアンブル信号( 同期信号)が入力された際に、例えば、その複数の立ち上がり Z立ち下がりエッジ間 の時間をこのカウンタを用いて計測し、それらを平均化することなどで定められる。こ れによって、 ATN力 受信した電波に同期し、デューティ比が揃った内部クロック信 号 (40kHz)を生成することが可能になる。そして、この内部クロック信号は、 LOG— CTL等の内部回路に対する基準クロック信号として使用される。
[0040] パワーオンリセット回路 PORは、レギユレータ回路 VREGの電源立ち上がり又はこ れにカ卩えて内部クロック信号の発生を待って各内部回路のリセットを解除する処理や 、 VREGの電源立ち下がりを検出して各内部回路をリセットする処理などを行う。不 揮発性メモリ NVMは、 Vddが供給され、読み出しおよび書き込みが可能な例えば、 EEPROM (Electronically Erasable and Programmaole Read Only Me mory)や FLASHメモリ等となっている。 NVMは、ここでは、 256バイトの容量を備え るちのとする。
[0041] このような構成において、本発明の主要な特徴は、不揮発性メモリ NVM内に、通 常備える IDデータ等にカ卩えて、レギユレータ回路 VREGのトリミングデータと、セキュ リティ関連のデータとを備えたことにある。そして、これらのデータを、例えば ISO180 00— 4で規定された標準規格を遵守しながら活用することにある。以降、これらの詳 細について説明する。
[0042] 図 3は、図 2の ICタグにおいて、リーダライタ力も読み出し要求があった際の信号フ ォーマットの一例を示す説明図であり、 (a)はリーダライタ力も ICタグに向けた信号フ ォーマットの一例、(b)は ICタグ力もリーダライタに向けた信号フォーマットの一例を 示すものである。
[0043] 読み出し要求に際し、リーダライタ RWは ICタグに向けて、図 3 (a)に示すような信 号フォーマットの電波を出力する。図 3 (a)に示す信号フォーマットは、プリアンブル
検出 300と、プリアンプノレ 301と、 Sデリミタ 302と、 =fマンド 303と、 ID304と、 ドレス 305と、 CRC306から構成されている。プリアンブル検出 300は、 ICタグの電源立ち 上げを目的としており、一定時間連続した ' 1,レベル信号となって 、る。
[0044] なお、図示はしな!/、が、実際の電波上での ' 1,レベル信号は、 2. 45GHzの搬送 波を' 1 'レベル信号で変調した後の波形となるため、例えば振幅 Aを備えた搬送波と なる。一方、実際の電波信号上での' 0'レベル信号は、例えば振幅変調を用いる場 合には、 ' 1 'レベル信号の振幅 Aよりも小さい振幅 Bの備えた搬送波となる。
[0045] プリアンブル 301は、 ICタグの同期を目的としており、 '0'レベル信号と' 1 'レベル 信号を 9回繰り返した同期信号で構成される。 Sデリミタ 302は、コマンド 303の開始 を通知することを目的としており、例えば" 1100111010"信号となっている。コマンド 303は、 8ビットの信号となっており、 READコマンドの場合は例えば" 00001100" 信号となる。 ID304は、送信先の ICタグを特定するための 8バイト(64ビット)の信号 である。アドレス 305は、送信先の ICタグにおけるメモリアドレスを指定するものであり 、例えば 8ビットの信号となっている。 CRC (Cyclic Redundancy Check) 306は 、データ通信が正常に行えた力否かを検査するためのものであり、例えば 16ビットの 信号となっている。
[0046] 一方、 ICタグは、図 3 (a)に示したような信号を受信し、それに応じた動作 (ここでは 、メモリ読み出し動作)を行い、リーダライタ RWに向けて図 3 (b)に示すような信号フ ォーマットの返信を行う。図 3 (b)に示す信号フォーマットは、クワイエツト 307と、プリ アンプノレ返信 308と、リードデータ 309と、 CRC310から構成される。
[0047] クワイエツト 307は、前述したプリアンブル検出 300と同様に、低下した恐れがある I Cタグの電源を再生成するために設けられた例えば 16ビット分の期間である。ブリア ンブル返信 308は、リーダライタ RWに対して返信する同期信号であり、例えば 16ビ ットとなっている。リードデータ 309は、 RWからの読み出し要求に対応して NVMから 読み出したデータに該当する信号であり、例えば 8バイト(64ビット)となっている。 CR C310は、前述したのと同様の信号である。
[0048] そして、このような信号フォーマットにおいて、 ICタグは、リーダライタ RW力も読み 出し要求があった際に、それに対応して、例えば、図 3 (a)の下部に示すような動作を
行う。まず、この動作における第 1のポイントは、プリアンブルが終了するまでにトリミン グデータ (TRIM— DAT)が NVM力も読み出され、なおかつその設定が完了してい ることである。プリアンブル 301では、図 2で述べたようなクロック再生回路 CLK— GE Nを用いてリーダライタ RWと ICタグの同期が取られる。ここで、仮にプリアンブル 301 の終了後にトリミングデータの設定が完了する場合を想定すると、同期後に CLK— G ENの内部電源電圧 Vddが変動することになり、これに伴う発振回路の周期および力 ゥンタ周期の変動等によって同期が外れる恐れがある。
[0049] そこで、プリアンブル 301が終了するまでに、トリミングデータの設定を完了させるこ とで、このような同期の不具合を防止することが可能となる。さらに、トリミングデータの 設定後(および同期後)は、このトリミングデータに基づく内部電源電圧 Vddで ICタグ を動作させることができる。したがって、プロセスばらつき等に伴う内部電源電圧 Vdd のばらつきが低減され、電源電圧値の不適切による ICタグの誤動作や、過剰な電源 電圧値による ICタグの破壊等を防止できる。また、製造工程上の ICタグの歩留まりも 向上する。このようなこと力も、 ICタグの信頼性を向上させることが可能になる。また、 I Cタグの製造コスト低減なども可能となる。
[0050] 図 3 (a)の ICタグ動作における第 2のポイントは、 NVMからトリミングデータ(TRIM —DAT)が読み出された後で、なおかつ IDデータ (ID— DAT)が読み出される前に セキュリティスィッチ(SECU—SW)を読み出していることにある。ここで、例えば、 TR IM— DATと SECU— SWを連続するメモリアドレスに格納し、 TRIM— DATと SEC U—SWを連続して読み出すようにしてもよい。そうすると、読み出し時間の短縮と、 読み出し電力の低減等が可能になる。
[0051] なお、 SECU— SWの詳細な使用例に関しては、図 6および図 7で後述する。 SEC U—SWの読み出し後の ID— DATの読み出しに関しては、標準規格に基づいて行 われる。すなわち、標準規格で規定された NVMのメモリアドレスから ID— DATを読 み出し、この ID— DATと、前述したリーダライタ RWから送信された IDとを比較判定 することで ICタグの特定が行われる。
[0052] このようなトリミングデータ TRIM— DATおよびセキュリティスィッチ SECU— SWの 読み出しは、例えば図 4に示すような構成を用いて行われる。図 4は、図 2の ICタグに
おいて、その論理制御回路、 VREG検出回路および不揮発性メモリの一部の構成 例を示すブロック図である。なお、ここでは、説明を容易にするため各回路を回路ブ ロックに分類して説明を行うが、この各回路と回路ブロックの対応関係は勿論これに 限定されるものではない。
[0053] 図 4では、論理制御回路 LOG— CTL内に、 Sデリミタ解析回路 S— CTLと、コマン ド解析回路 CMD— CTLと、リードライトアドレスレジスタ ADD— REGと、プリアンプ ル立ち下がり検出回路 PRE— DETとが含まれている。また、 PRE— DETと前述した VREG検出回路 VREG— DETとのアンド回路 ANDも含まれている。そして、これら の回路の出力信号が、不揮発性メモリ NVMに入力される。
[0054] 不揮発性メモリ NVMは、例えば、不揮発性メモリアレイ NVM— ARYと、このメモリ アレイを制御するメモリ制御回路 NVM—CTLとに分類される。 NVM— CTL内には 、カウント制御回路 CUNT— CTLと、ロード値制御回路 LD— CTLと、アドレスカウン タ ADD— CUNTと、メモリアドレスレジスタ MADD— REGとが含まれて!/、る。
[0055] CUNT— CTLには、 S— CTLおよび CMD— CTLの出力信号と、前述したアンド 回路 ANDの出力信号 trgとが入力される。 LD— CTUこは、出力信号 trgと、 S— CT Lおよび ADD— REGの出力信号とが入力される。そして、 CUNT— CTLおよび LD — CTLの出力信号は、アドレスカウンタ ADD— CUNTに入力され、 ADD— CUNT の出力信号が、メモリアドレスレジスタ MADD— REGにセットされる。不揮発性メモリ アレイ NVM— ARYでは、この MADD— REGのアドレス値を用いた読み出し動作ま たは書き込み動作が行われる。なお、 MADD— REGのビット幅は、例えば 8ビット幅 とする。
[0056] ここで、不揮発性メモリ NVMの記憶領域は、標準規格で規定された通常の記憶領 域 NML— ARAに加えて、拡張記憶領域 EXTD— ARAを備えている。 NVMは、例 えば 256ノイトとし、 NML— ARAに 128バイトを割り当て、 EXTD— ARAにも 128 バイトを割り当てる。 NML— ARAは、標準規格に従い、アドレスの下位より、 ICタグ の IDが格納された ID格納領域 ID— ARAと、ユーザによって使用可能なユーザ領域 USR_ARAとを備える。 EXTD_ARAは、例えばトリミングデータが格納された領 域 TRIM— ARAと、セキュリティ関連のデータが格納された領域 (セキュリティスイツ
チ SECU— SWおよびセキュリティコード SECU— CD)と、固有メモリ領域 SPE— A RAとを備える。
[0057] 次に、図 4の動作について説明する。まず、 VREG検出回路 VREG— DETは、レ ギユレータ回路 VREGが立ち上がり、その出力電圧が所望の値に達したことを検出 する。また、プリアンブル立ち下がり検出回路 PRE— DETは、図 3 (a)のプリアンブル 301における最初の立ち下がり信号を検出する。すなわち、図 3 (a)において、ブリア ンブル検出 300からプリアンブル 301に遷移する際の ' 1,レベル信号から' 0,レベル 信号への変化を検出する。そして、これらの検出信号のアンド演算を行った出力信 号 trgがロード値制御回路 LD— CTLおよびカウント制御回路 CUNT— CTLに入力 される。
[0058] LD_CTLは、この出力信号 trgを受けて、予め備えてある初期値 (すなわち、トリミ ングデータが格納されてある先頭アドレス)をアドレスカウンタ ADD— CUNTに出力 する。そして、 ADD— CUNTの出力がメモリアドレスレジスタ MADD— REGにセット され、次いで、不揮発性メモリアレイ NVM—ARYからトリミングデータの読み出しが 開始される。一方、 CUNT— CTLは、出力信号 trgを受けて、 ADD— CUNTにお けるカウントを制御する。したがって、予め設定した分だけアドレスを逐次カウントアツ プすることで、トリミングデータを完全に読み出すことが可能になる。更に、トリミングデ ータとセキュリティ関連のデータが連続して格納されて ヽる場合 (すなわち、 TRIM— ARAと SECU— SWが連続する場合)には、カウントを制御することで、両方のデー タを続けて読み出すことが可能になる。
[0059] なお、ここでは、レギユレータ回路 VREGの立ち上がりに加えて、プリアンブルの最 初の立ち下がりを受けてトリミングデータの読み出しを行っている力、場合によっては 、 VREGの立ち上がりのみでトリミングデータの読み出しを行うことも可能である。図 4 の動作で、 VREGの立ち上がり以降に発生するプリアンブルの最初の立ち下がりを 条件に加えているのは、 NVMの読み出し動作のタイミングを容易化するためである 。すなわち、ここでは、図 2のクロック再生回路 CLK—GENが出力した 40kHzの内 部クロック信号に基づいて NVMが動作する構成を前提としており、この 40kHzの内 部クロック信号は、プリアンブルの最初の立ち下がりから出力されることになる。したが
つて、 VREGの立ち上がりから別のクロック信号を用いて NVMを動作させられる構 成であれば、 VREGの立ち上がりのみでトリミングデータの読み出しを行うこともでき る。
[0060] Sデリミタ解析回路 S— CTLは、図 3 (a)の Sデリミタ 302に際し、例えばその最初の 立ち下がり信号を検出する回路である。 S— CTLは、 TRIM— ARAと SECU— SW が連続しな 、場合や、トリミングデータと SECU—SWを個別に読み出した 、場合な どで使用する。すなわち、 S— CTLの検出信号を起点として、前述したトリミングデー タの読み出しと同様に LD— CTLが SECU— SWの先頭アドレスをロードし、 CUNT —CTLが ADD— CUNTを制御することによって NVM— ARYから SECU— SWを 完全に読み出す。
[0061] リードライトアドレスレジスタ ADD— REGには、図 3 (a)のアドレス 305で入力された 値がセットされる。コマンド解析回路 CMD— CTLは、例えば、図 3 (a)におけるコマ ンド 303力 1バイト読み出しコマンド力 8バイト読み出しコマンドかを解析する。 1バイ ト読み出しコマンドの場合は、 ADD— REGの値を LD—CTLおよび ADD— CUNT を介して MADD— REGにセットすることで、当該アドレスの 1バイト分の読み出しが 行われる。一方、 8バイト読み出しコマンドの場合は、 1バイト読み出しの動作にカロえ て CUNT— CTLが ADD— CUNTを制御することによって 8バイト分の読み出しが 行われる。
[0062] 図 5は、図 2および図 4の ICタグにおいて、そのトリミングデータの設定に関連する 回路の詳細な構成例を示す回路図である。図 5においては、図 2のレギユレータ回路 VREGと、図 4の VREG検出回路 VREG— DET、プリアンブル立ち下がり検出回路 PRE— DET、アンド回路 AND、不揮発性メモリアレイ NVM— ARYおよびメモリ制 御回路 NVM— CTLとが示されて!/、る。
[0063] レギユレータ回路 VREGは、例えば、 2段構成の所謂シリーズレギユレータを備えて いる。一方のシリーズレギユレータ(第 1シリーズレギユレータ)は、電源電圧 RFvddと 接地電圧 GNDの間〖こ PMOSトランジスタ MP 1と可変抵抗 RVが直列に接続され、 MP 1のゲートにアンプ回路 AMP 1の出力が接続された構成となつて 、る。可変抵抗 RVは、複数の抵抗が直列接続され、その抵抗間のいずれかの接続ノードを出カノ
ード ND1に接続可能な構成となっている。すなわち、抵抗比の可変によって ND1の 電圧を変更可能な構成となっている。そして、この接続ノードの選択は、例えばスイツ チ SWの選択によって行われ、この SWの選択は、トリミング設定レジスタ TRIM— RE Gの値に基づいて行われる。なお、ここでは、 SWを 16個として、 TRIM— REGが 16 ビット(2バイト)構成となって!/、る。
[0064] アンプ回路 AMP1は、一方の入力に基準電圧 BIASが入力され、他方の入力に、 可変抵抗 RV内の特定の接続ノード ND11からのフィードバック信号が入力される。 また、この他方の入力と出力ノード ND 1の間には NMOSトランジスタ MN 1が接続さ れている。この MN1のゲートは、 VREG検出回路 VREG— DETによって制御される
[0065] 他方のシリーズレギユレータ(第 2シリーズレギユレータ)は、電源電圧 RFvddと接地 電圧 GNDの間に PMOSトランジスタ MP2と複数の抵抗 RLが直列に接続され、 MP 2のゲートにアンプ回路 AMP2の出力が接続された構成となっている。アンプ回路 A MP2は、一方の入力に、前述した出力ノード ND1が接続され、他方の入力に、複数 の抵抗 RL内のある接続ノード ND21からのフィードバック信号が入力される。また、 複数の抵抗 RL内の他の接続ノード ND22は、 VREG検出回路 VREG— DETと接 続される。そして、 MP2のドレインからは、内部電源電圧 Vddが出力される。
[0066] VREG検出回路 VREG— DETは、例えば、コンパレータ回路 CMPと、その出力 に接続されたインバータ回路 INVによって構成される。なお、 CMPの出力は、前述 した NMOSトランジスタ MN1のゲートにも接続される。コンパレータ回路 CMPの一 方の入力は、前述した出力ノード ND1に接続され、他方の入力は、前述した接続ノ ード ND22に接続される。
[0067] アンド回路 ANDは、例えば、 2段構成のフリップフロップ DFF1, DFF2から構成さ れる。 1段目のフリップフロップ DFF1は、前述したインバータ回路 INVの立ち上がり によって、電源電圧 RFvddを DFF2に出力し、 DFF2は、前述したプリアンブル立ち 下がり検出回路 PRE— DETの検出信号によって、出力信号 trgを発生する。すなわ ち、 VREG— DETの出力と PRE— DETの出力との ANDが取られることになる。そし て、この ANDの出力信号 trgは、メモリ制御回路 NVM— CTLに出力される。
[0068] 次に、図 5の構成の動作概要について説明する。まず、 VREGが立ち上がる段階 では、 CMPの出力力 1 'レベル信号となる。したがって、 MN1がオンであり、出力信 号 trgは、 '0'レベル信号となる。この際、 TRIM— REGの出力および SWの状態は 不定となって 、るが、この MN1のオンによって AMP2に対する接続が確保される。 すなわち、 MN1によって、等価的に初期状態での SWの接続点を定めている。
[0069] その後、 MP1の出力が可変抵抗 RVおよび MN1を介して AMP2に入力され、 AM P2の駆動によって MP2がオンになっていく。そして、 ND22の電圧が所望の判定値 以上になると (すなわち、 VREGが立ち上がり、 NVMなどが正常に動作可能な電圧 レベル以上になると)、 CMPの出力が ' 1,レベル信号から' 0,レベル信号に反転す る。これによつて、 MN1はオフとなる。ここで、 ND1の電圧の不定が懸念されるが、 MN1がオフとなる以前のタイミングで TRIM— REGのリセットを行うことで、予めいず れかの SW (例えば Y6)をオンにしておく。
[0070] 一方、 CMP出力の' 0'レベル信号への遷移を受けて、 DFF1から' 1 'レベル信号 が出力され、なおかつ、その後のプリアンブル信号の最初の立ち下がりを受けて、 D FF2の出力信号 trgが '0'レベル信号から ' 1,レベル信号に遷移する。これによつて 、図 4で述べたような動作が行われ、不揮発性メモリアレイ NVM—ARYから TRIM —REGに向けてトリミングデータの転送が行われる。仮に、 NVMのデータ幅を 8ビッ トとすると、 2回のデータ転送で TRIM— REGがセットされる。 TRIM— REGがセット されると、それに応じた SWの設定が行われ、所望の内部電源電圧 Vddを発生するこ とが可能になる。なお、 Vddの値は、トランジスタの動作範囲や消費電力等を考慮し 、トリミングによって例えば 1. 7Vになるように設定される。
[0071] また、トリミングデータの値は、 ICタグの製造工程 (テスト工程)内において、個々の I Cタグが検査され、各 ICタグ毎に最適な値が求められる。そして、製造工程内におい て、その最適な値が各 NVMに書き込まれる。ここで、トリミングデータを設定する手 段としては、 NVM以外にも広く知られているフューズなどを用いることも可能である。 この場合、レギユレータ回路が立ち上がった時には既にトリミングデータを反映した内 部電源電圧が生成されているため、特に標準規格と適合させる上での困難性は生じ ない。
[0072] し力しながら、フューズを用いると、そのフューズ切断に伴う製造コストが増加し、更 に回路面積も増加する可能性が生じる。 ICタグにおいては、低コスト化および小面積 化の要求が非常に高ぐこのような問題はあまり好ましくない。そこで、 NVMを用い、 前述したような構成および方法でトリミングデータを設定すると、標準規格に影響を与 えることなぐ低コストおよび小面積で ICタグの信頼性を向上させることが可能となる。 更に、 NVMからのトリミングデータの読み出しにカ卩えて、後述するようなセキュリティ 関連のデータを続けて読み出すことで、 ICタグの信頼性の向上とデータセキュリティ の向上とを効率的に図ることが可能となる。
[0073] つぎに、 NVMに記憶したセキュリティ関連データの使用例について説明する。
[0074] 図 6は、図 2の ICタグにおいて、その不揮発性メモリのメモリマップの一例を示す説 明図である。図 6では、例えば NVMにおける 256バイトのメモリマップが示されている 。この内、アドレス下位の 128バイトは、標準規格で定義された記憶領域 NML— AR Aであり、例えば ICタグの IDが格納された 8バイトの領域 ID— ARAと、一般ユーザ が自由に使用可能な領域 USR— ARAとを含んでいる。なお、 USR— ARA内には 、更に製造番号等を格納する領域を設ける場合もある。
[0075] 一方、アドレス上位の 128バイトは、拡張して設けた記憶領域 EXTD— ARAである 。その内部には、例えば、 2バイトのトリミングデータの格納領域 TRIM— ARAと、 1 バイトのセキュリティ切り替えデータの格納領域 SECU—SWと、 8バイトのセキユリテ ィコードの格納領域 SECU— CDと、固有メモリ領域 SPE— ARAとを備えている。こ の EXTD—ARAは、例えば特定ユーザのみが利用可能な領域として活用される。
[0076] SPE— ARAには、特定ユーザの秘密情報などが格納される。 SECU— SWには、 セキュリティ機能を有効にする力否かを切り替えるためのデータが格納される。そして 、 SECU— SWにある特定コードが格納されている場合は、 EXTD— ARAを解放し 、そうでない場合は EXTD— ARAを解放しない。すなわち、 SECU— SWによって 2 つモードを切り替えることになり、一方のモードだと、 NML—ARAのみが使用可能 で、他方のモードだと、 NML— ARAと EXTD— ARAの両方が使用可能となる。ま た、 SECU— CDには、例えば、 SPE— ARAへのアクセス許可を認証するためのセ キユリティコードが格納されて 、る。
[0077] このような構成において、リーダライタ RWから前述した図 3 (a)と同様の信号フォー マットを受信すると、図 2の ICタグの論理制御回路 LOG— CTLは、例えば、図 7に示 すような動作を行う。図 7は、図 2および図 6の ICタグにおいて、そのセキュリティトラン ザクシヨンまたは通常動作トランザクションの処理の一例を示すフロー図である。図 8 は、図 7のフローにおいて、セキュリティトランザクションである場合のリーダライタから I Cタグに向けた信号フォーマットの一例を示す説明図であり、(a)は、その前半部の 信号フォーマット、(b)は、(a)に続く後半部の信号フォーマットである。
[0078] まず、図 7の処理フローの概要について説明する。本実施の形態の ICタグは、互換 性がある 2通りの信号フォーマットに対応することが可能となっている。その一方は、 図 3 (a)のような通常の信号フォーマットであり、他方は、図 8 (a) , (b)のような、標準 規格のコマンドと競合しな 、独自コマンド 303aを含む独自に設けた信号フォーマット である。そして、図 3 (a)の信号フォーマットの場合は、通常動作トランザクションとして 処理を行 、、図 8 (a) , (b)の信号フォーマットの場合は、セキュリティトランザクション として処理を行う。なお、このどちらのトランザクションを行うかは、 SECU— SWのデ ータと独自コマンドの受信有無などによって切り分けられる。以下、これらの詳細につ いて説明する。
[0079] まず、 03 (a) ,図 8 (a)のプリアンブル検出 300, 300aおよびプリアンブル 301, 3 Olaの最初の立ち下がりを受けて、前述したように、トリミングデータとセキュリティ関 連のデータが連続して読み出される。すなわち、図 6の TRIM— ARA、 SECU— S Wが読み出される。そして、トリミングデータを NVMから VREGに送信する一方、 SE CU— SWのデータは、 NVMから論理制御回路 LOG— CTLに送信され、 LOG— C TL内で保持される。ここで、リーダライタからの入力信号に迅速に対応して ICタグの 内部処理を進めるためには、遅くとも図 3 (a) ,図 8 (a)のコマンド 303, 303aの送信 が終了するまでには、 SECU— SWのデータが LOG— CTL内で保持されることが望 ましい。なお、トリミングデータの直後に 1バイトの SECU— SWを読み出す場合だと、 十分にこの条件を満たすことができる。
[0080] その後、図 7に示すように、 LOG— CTLは、 SECU— SWの値を見て、それが特定 コードか否かの判定を行う(S701)。そして、特定コードであれば、 EXTD ARAを
解放し(S702)、そうでなければ解放を行わない(S707)。すなわち、 SECU— SW に特定コードが記憶されていない場合は、見かけ上 128バイトの NML—ARAのみ を備えた ICタグとなる。したがって、この場合、以降のコマンド 303, 303aにおいて独 自コマンドを受信した際は認識せず (S708)、通常コマンドを受信した際のみで動作 する。すなわち、図 8 (a)の信号フォーマットでは機能せず、図 3 (a)の信号フォーマツ トのみで機能する。
[0081] なお、通常コマンドを受信した場合(S709)は、図 3 (a)の信号フォーマットに従い、 ID304と ID— DATの一致判定(S709a)等を含む通常動作を行う(S710)。この通 常コマンドを受信して力 通常動作を行う際の一連の処理を、ここでは通常動作トラ ンザクシヨンと呼ぶことにする。
[0082] 一方、 SECU— SWに特定コードが記憶され、 EXTD— ARAが解放された場合(S 702)、以降のコマンド 303, 303aが独自コマンドであるか否かを判定する(S703)。 独自コマンドでない場合は、通常コマンドの判定が行われ (S709)、図 3 (a)の信号 フォーマットに従う通常動作トランザクションとなる。独自コマンドであった場合は、図 8 (a)の信号フォーマットに従い、 ID304aと ID— DATの一致判定が行われる(S703a ) o不一致であった場合は、例えば、リーダライタに対して何も返信しないなどの返信 拒否の処理となる(S706)。
[0083] ID304aがー致であった場合は、 LOG— CTLは、 NVMから SECU— CDのデー タを読み出して保持する。この際に、リーダライタ力もの入力信号に迅速に対応して I Cタグの内部処理を進めるためには、遅くとも図 8 (a)でのセキュリティコード 31 laの 送信が終了するまでには、 SECU— CDのデータが LOG— CTL内で保持されること が望ましい。
[0084] そして、 LOG— CTLは、この読み出した SECU— CDのデータと、図 8 (a)の信号 フォーマットに従いリーダライタが送信したセキュリティコード 31 laとを比較する(S70 4)。この結果が一致した場合は、 SPE— ARAへのアクセスを許可し(S705)、不一 致の場合は返信拒否とする(S706)。この独自コマンドを受信してから SPE— ARA へのアクセス可否を認証するまでの一連の処理を、ここでは認証トランザクションと呼 ぶことにする。そして、この認証トランザクションと後述する固有動作トランザクションを
含めてセキュリティトランザクションと呼ぶことにする。
[0085] 認証トランザクションによって SPE—ARAへのアクセスが許可されると、続けて固有 動作トランザクションが行われる。固有動作トランザクションでは、図 8 (b)に示すような 信号フォーマットに基づ 、て、リーダライタ力 SPE— ARAに対して具体的な命令( 読み出しまたは書き込みなど)が発せられる。ここで、図 8 (b)に示す信号フォーマット は、図 3 (a)の信号フォーマットと同様な構成となっており、アドレス 305aとして SPE —ARAのアドレスを指定して所望の動作を行うことが可能となっている。
[0086] さらに、図 8 (b)に示す信号フォーマットは、図 8 (a)の信号フォーマットの直後に発 せられ、図 8 (b)に示す信号フォーマットの初期段階から、 VREGの内部電源電圧 V ddを維持したままとなっている。すなわち、図 8 (b)では、内部電源電圧 Vddが維持さ れているため、 NVM力ものトリミングデータやセキュリティ関連データの読み出しは 行われない。したがって、認証トランザクションによって認証が行われ、その認証状態 を維持したままで固有動作トランザクションが行われることになる。
[0087] 以上のように、 NVM内にセキュリティ関連のデータを備え、標準規格の信号フォー マットに適合するようにそれらのデータの処理を行うことで、 ICタグのデータセキユリテ ィを容易に向上させることが可能になる。また、共通のチップに対して SECU—SW のデータを切り替えることによって、通常の ICタグとセキュリティ機能を備えた ICタグと を実現することができるため、チップの共通化に伴うコストの低減が可能となる。
[0088] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは 、うまでもな!/、。
[0089] 例えば、これまでは、標準規格に基づく 2. 45GHz帯のパッシブ型の ICタグを例と して説明を行ったが、他の周波数帯の ICタグにおいても、ほぼ同様の信号フォーマ ットになると考えられるため、これまでに述べたのと同様な方式を用いてトリミングの設 定ゃセキュリティの設定を行うことが可能である。また、アクティブ型の ICタグに対して も、 NVM内にトリミングデータやセキュリティ関連のデータを格納することは有益と考 えられる。すなわち、内蔵電池によって、これらのデータを常時保持し続けることは、 省電力化の点であまり好ましくないため、実際に動作を行う際にこれまでに述べたの
と同様な方式を用いて NVM力 データをロードする方式にするとよ 、。
産業上の利用可能性
本発明の ICタグは、パッシブ型でなおかつデータセキュリティが必要な ICタグに適 用して特に有益なものであり、これに限らず、 ICタグ全般に対して広く適用可能であ る。
Claims
[1] リーダライタカゝら無線により送信された電力を用いて電源電圧を生成する回路と、 前記電源電圧を変換して内部電源電圧を生成し、なおかつ前記内部電源電圧の 値をトリミングデータに基づいて調整可能なレギユレータ回路と、
前記レギユレータ回路の動作の開始に伴い、前記内部電源電圧が所望の電圧レ ベル以上に達した際に検出信号を発生する電圧検出回路と、
前記リーダライタ力 送信された同期信号に基づいて内部クロック信号の同期を行 うクロック再生回路と、
前記内部電源電圧が供給される不揮発性メモリとを有する ICタグであって、 前記不揮発性メモリに、前記トリミングデータが格納され、
前記電圧検出回路が検出信号を発生した後で、なおかつ前記クロック再生回路に よる内部クロック信号の同期が確定する前に、前記トリミングデータを前記不揮発性メ モリから読み出して前記レギユレータ回路に反映させておくことを特徴とする ICタグ。
[2] 請求項 1記載の ICタグにおいて、さらに、
前記リーダライタ力 送信された同期信号における最初のエッジを検出した際に検 出信号を出力する信号検出回路を有し、
前記電圧検出回路が検出信号を発生し、なおかつ前記信号検出回路が検出信号 を発生した後で、前記クロック再生回路による内部クロック信号の同期が確定する前 に、前記トリミングデータを前記不揮発性メモリから読み出して前記レギユレータ回路 に反映させておくことを特徴とする ICタグ。
[3] 請求項 1または 2記載の ICタグにおいて、
前記レギユレータ回路は、
第 1電圧を基準電圧として第 1ノードに電圧を出力する第 1シリーズレギユレータと、 前記第 1ノードの電圧を基準電圧として第 2ノードに前記内部電源電圧を出力する 第 2シリーズレギユレータと、
前記不揮発性メモリから読み出したトリミングデータが保持されるトリミング設定レジ スタとを有し、
前記第 1および第 2シリーズレギユレータは、それぞれ、アンプ回路、出カトランジス
タおよび直列接続の複数の抵抗を含み、
前記第 1ノードは、
前記トリミング設定レジスタで前記トリミングデータを保持した以降は、前記保持した トリミングデータに基づいて、前記第 1シリーズレギユレータが備える複数の抵抗内の V、ずれかの接続点と接続され、
前記トリミングデータを保持する前は、予め初期状態として定めた前記 、ずれかの 接続点と接続され、
前記電圧検出回路は、前記トリミングデータを保持する前の前記第 1ノードの電圧と 前記第 2ノードの電圧とを比較するコンパレータ回路を含むことを特徴とする ICタグ。
[4] リーダライタカゝら無線により送信された電力を用いて電源電圧を生成する回路と、 前記電源電圧を変換して内部電源電圧を生成するレギユレータ回路と、 前記レギユレータ回路の動作の開始に伴い、前記内部電源電圧が所望の電圧レ ベル以上に達した際に検出信号を発生する電圧検出回路と、
前記内部電源電圧が供給され、第 1記憶領域および第 2記憶領域を備えた不揮発 性メモリと、
前記不揮発性メモリに対するアクセス制御機能を含む制御回路とを有する ICタグで あって、
前記 ICタグは、
前記第 1記憶領域のみにアクセス可能な第 1モードと、
前記第 1記憶領域と前記第 2記憶領域にアクセス可能な第 2モードとを有し、 前記第 2記憶領域には、前記第 1モードか前記第 2モードかを設定するための第 1 データが格納され、
前記制御回路は、前記電圧検出回路が検出信号を発生した後に、前記第 1データ を前記不揮発性メモリから読み出し、前記第 1データが予め設定してある特定値と同 一か否かを判定し、前記特定値と同一であれば前記第 2モードへ移行し、そうでない 場合は、前記第 1モードへ移行することを特徴とする ICタグ。
[5] 請求項 4記載の ICタグにおいて、
前記第 2記憶領域には、更に、前記第 2記憶領域へのアクセス可否を認証するため
の第 2データが格納され、
前記制御回路は、前記電圧検出回路が検出信号を発生した後に、前記第 1データ および前記第 2データを前記不揮発性メモリから読み出し、前記第 2モードへ移行し た場合かつ前記リーダライタ力も送信されたセキュリティコードと前記第 2データとが 一致した場合に前記第 2記憶領域へのアクセスを許可することを特徴とする ICタグ。
[6] 請求項 4記載の ICタグにおいて、
前記第 1データの前記不揮発性メモリからの読み出しは、前記リーダライタからのコ マンドの送信が終える前に完了することを特徴とする ICタグ。
[7] 請求項 5記載の ICタグにおいて、
前記第 2データの前記不揮発性メモリからの読み出しは、前記リーダライタからのセ キユリティコードの送信が終える前に完了することを特徴とする ICタグ。
[8] 請求項 5記載の ICタグにおいて、
前記 ICタグは、更に、前記第 2記憶領域へアクセスするために特別に設けた独自コ マンドを有し、
前記リーダライタより前記独自コマンドが送信された後に IDが送信され、次いでセ キユリティコードが送信される場合、
前記第 1データの読み出しは、前記独自コマンドの送信が終える前に完了し、 前記第 2データの読み出しは、前記セキュリティコードの送信が終える前に完了し、 前記制御回路は、前記第 1データの読み出しによって前記第 1モードまたは前記第 2モードへの移行を行 ヽ、前記第 2モードへ移行した場合かつ前記リーダライタより前 記独自コマンドが送信された場合かつ前記送信された IDと前記 ICタグの IDとが一致 した場合かつ前記読み出した第 2データと前記送信されたセキュリティコードとがー 致した場合に前記第 2記憶領域へのアクセスを許可することを特徴とする ICタグ。
[9] リーダライタカゝら無線により送信された電力を用いて電源電圧を生成する回路と、 前記電源電圧を変換して内部電源電圧を生成し、なおかつ前記内部電源電圧の 値をトリミングデータに基づいて調整可能なレギユレータ回路と、
前記レギユレータ回路の動作の開始に伴い、前記内部電源電圧が所望の電圧レ ベル以上に達した際に検出信号を発生する電圧検出回路と、
前記リーダライタ力 送信された同期信号に基づいて内部クロック信号の同期を行 うクロック再生回路と、
前記内部電源電圧が供給され、第 1記憶領域および第 2記憶領域を備えた不揮発 性メモリと、
前記不揮発性メモリに対するアクセス制御機能を含む制御回路とを有する ICタグで あって、
前記 ICタグは、
前記第 1記憶領域のみにアクセス可能な第 1モードと、
前記第 1記憶領域と前記第 2記憶領域にアクセス可能な第 2モードとを有し、 前記第 2記憶領域には、
前記トリミングデータと、
前記第 1モードか前記第 2モードかを設定するための第 1データとが格納され、 前記制御回路は、
前記電圧検出回路が検出信号を発生した後で、なおかつ前記クロック再生回路に よる内部クロック信号の同期が確定する前に、前記トリミングデータの読み出しを行つ て前記レギユレータ回路に反映し、
前記トリミングデータの読み出しを行った後で前記第 1データの読み出しを行い、 前記読み出した第 1データが予め設定してある特定値と同一であれば前記第 2モ ードへ移行し、そうでない場合は、前記第 1モードへ移行することを特徴とする ICタグ
[10] 請求項 9記載の ICタグにおいて、さらに、
前記リーダライタ力 送信された同期信号における最初のエッジを検出した際に検 出信号を出力する信号検出回路を有し、
前記電圧検出回路が検出信号を発生し、なおかつ前記信号検出回路が検出信号 を発生した後で、前記クロック再生回路による内部クロック信号の同期が確定する前 に、前記トリミングデータを前記不揮発性メモリから読み出して前記レギユレータ回路 に反映させておくことを特徴とする ICタグ。
[11] 請求項 9または 10記載の ICタグにおいて、さらに、
アドレスカウンタを有し、
前記トリミングデータと前記第 1データは、前記不揮発性メモリ内で近接するメモリア ドレスに格納されており、
前記不揮発性メモリからの前記トリミングデータと前記第 1データの読み出しは、前 記アドレスカウンタを用いて連続して行われることを特徴とする ICタグ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/008205 WO2006117866A1 (ja) | 2005-04-28 | 2005-04-28 | Icタグ |
JP2007514434A JP4680256B2 (ja) | 2005-04-28 | 2005-04-28 | Icタグ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/008205 WO2006117866A1 (ja) | 2005-04-28 | 2005-04-28 | Icタグ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006117866A1 true WO2006117866A1 (ja) | 2006-11-09 |
Family
ID=37307673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/008205 WO2006117866A1 (ja) | 2005-04-28 | 2005-04-28 | Icタグ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4680256B2 (ja) |
WO (1) | WO2006117866A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011121877A1 (ja) * | 2010-03-29 | 2011-10-06 | パナソニック株式会社 | 受電装置及び電力伝送システム |
JP2012526441A (ja) * | 2009-05-05 | 2012-10-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 無線ネットワークにおける通信を保護する方法及びそのためのリソースが制限された装置 |
JP2013211974A (ja) * | 2012-03-30 | 2013-10-10 | Renesas Electronics Corp | 電池制御用半導体装置及び電池パック |
JP2014014218A (ja) * | 2012-07-04 | 2014-01-23 | Nakayo Telecommun Inc | ワイヤレス給電型無線タグシステム |
EP2672429A3 (en) * | 2012-06-05 | 2014-02-12 | EM Microelectronic-Marin SA | RFID transponder chip with a programmable wake-up |
JP2018085036A (ja) * | 2016-11-25 | 2018-05-31 | ラピスセミコンダクタ株式会社 | 半導体装置、通信装置およびリセット方法 |
JPWO2019176325A1 (ja) * | 2018-03-15 | 2021-03-25 | ソニーセミコンダクタソリューションズ株式会社 | 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09330135A (ja) * | 1996-06-07 | 1997-12-22 | Denso Corp | 電子回路の動作特性補正装置 |
JPH10340231A (ja) * | 1997-06-05 | 1998-12-22 | Kokusai Electric Co Ltd | Icカード |
JP2000181898A (ja) * | 1998-12-14 | 2000-06-30 | Nec Corp | フラッシュメモリ搭載型シングルチップマイクロコンピュータ |
JP2003044802A (ja) * | 2001-07-30 | 2003-02-14 | Sharp Corp | 電源装置、半導体回路装置、およびicカード |
JP2003186724A (ja) * | 2001-12-20 | 2003-07-04 | Sony Corp | 情報処理システム、情報処理装置および方法、記録媒体、並びにプログラム |
-
2005
- 2005-04-28 JP JP2007514434A patent/JP4680256B2/ja not_active Expired - Fee Related
- 2005-04-28 WO PCT/JP2005/008205 patent/WO2006117866A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09330135A (ja) * | 1996-06-07 | 1997-12-22 | Denso Corp | 電子回路の動作特性補正装置 |
JPH10340231A (ja) * | 1997-06-05 | 1998-12-22 | Kokusai Electric Co Ltd | Icカード |
JP2000181898A (ja) * | 1998-12-14 | 2000-06-30 | Nec Corp | フラッシュメモリ搭載型シングルチップマイクロコンピュータ |
JP2003044802A (ja) * | 2001-07-30 | 2003-02-14 | Sharp Corp | 電源装置、半導体回路装置、およびicカード |
JP2003186724A (ja) * | 2001-12-20 | 2003-07-04 | Sony Corp | 情報処理システム、情報処理装置および方法、記録媒体、並びにプログラム |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526441A (ja) * | 2009-05-05 | 2012-10-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 無線ネットワークにおける通信を保護する方法及びそのためのリソースが制限された装置 |
WO2011121877A1 (ja) * | 2010-03-29 | 2011-10-06 | パナソニック株式会社 | 受電装置及び電力伝送システム |
JP2011211780A (ja) * | 2010-03-29 | 2011-10-20 | Panasonic Corp | 受電装置及び電力伝送システム |
CN102859841A (zh) * | 2010-03-29 | 2013-01-02 | 松下电器产业株式会社 | 受电装置及电力传输系统 |
US9791888B2 (en) | 2010-03-29 | 2017-10-17 | Panasonic Intellectual Property Management Co., Ltd. | Power reception device and power transmission system |
JP2013211974A (ja) * | 2012-03-30 | 2013-10-10 | Renesas Electronics Corp | 電池制御用半導体装置及び電池パック |
US20150236530A1 (en) * | 2012-03-30 | 2015-08-20 | Renesas Electronics Corporation | Semiconductor device for battery control and battery pack |
EP2672429A3 (en) * | 2012-06-05 | 2014-02-12 | EM Microelectronic-Marin SA | RFID transponder chip with a programmable wake-up |
JP2014014218A (ja) * | 2012-07-04 | 2014-01-23 | Nakayo Telecommun Inc | ワイヤレス給電型無線タグシステム |
JP2018085036A (ja) * | 2016-11-25 | 2018-05-31 | ラピスセミコンダクタ株式会社 | 半導体装置、通信装置およびリセット方法 |
JPWO2019176325A1 (ja) * | 2018-03-15 | 2021-03-25 | ソニーセミコンダクタソリューションズ株式会社 | 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP4680256B2 (ja) | 2011-05-11 |
JPWO2006117866A1 (ja) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7120550B2 (en) | Radio-frequency identification circuit oscillator calibration | |
US7388468B2 (en) | Method and system to backscatter modulate a radio-frequency signal from an RFID tag in accordance with both an oscillation frequency signal and a command signal | |
US7394324B2 (en) | Method and system to calibrate an oscillator within an RFID circuit utilizing a test signal supplied to the RFID circuit | |
US7253719B2 (en) | Multi-oscillator clock signals | |
US8044774B1 (en) | RFID tag chips and tags able to be partially killed and methods | |
US7403122B1 (en) | RFID tag circuits operable at different speeds | |
JP4685926B2 (ja) | 改良型トランスポンダ | |
US7926727B2 (en) | RFID tags, RFID electronic devices and related methods for anti-theft and data transmission purposes | |
CN103210597A (zh) | 应答器、rfid系统以及操作方法 | |
TWI716386B (zh) | 雙頻射頻辨識裝置及其配置方法 | |
US8060664B2 (en) | Integrated circuit having a plurality of interfaces and integrated circuit card having the same | |
US10032105B2 (en) | IC card, portable terminal, and portable electronic apparatus | |
US11250224B2 (en) | Power supply package with built-in radio frequency identification tag | |
JP2003346113A (ja) | コンビネーション型icカード | |
US20050225436A1 (en) | Method and system to calibrate an oscillator within an RFID circuit responsive to a received update value | |
JP2002064402A (ja) | 非接触応答装置 | |
JP4680256B2 (ja) | Icタグ | |
WO2010080315A1 (en) | Rfid reader discipline | |
US20080079587A1 (en) | Method And System For Utilizing Magnetic On-Chip Coil For Ultra High Frequency (UHF) | |
Tang et al. | A novel method to improve the subcarrier frequency accuracy for UHF RFID sensing system | |
JP3929761B2 (ja) | 半導体装置の動作制御方法、半導体装置動作制御プログラム、半導体装置動作制御プログラムを記録した記録媒体、半導体装置、およびicカード | |
JP4682478B2 (ja) | 非接触型icカードの通信システム,icカード及びicカードリーダ | |
JP6485016B2 (ja) | 無線通信装置、無線通信装置におけるクロックの位相調整方法 | |
JP2007104092A (ja) | Rfid装置及びリーダ・ライタ装置 | |
KR101939239B1 (ko) | Rfid 통신용 포락선 검출기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007514434 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05737246 Country of ref document: EP Kind code of ref document: A1 |