[go: up one dir, main page]

WO2006112505A1 - メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜 - Google Patents

メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜 Download PDF

Info

Publication number
WO2006112505A1
WO2006112505A1 PCT/JP2006/308336 JP2006308336W WO2006112505A1 WO 2006112505 A1 WO2006112505 A1 WO 2006112505A1 JP 2006308336 W JP2006308336 W JP 2006308336W WO 2006112505 A1 WO2006112505 A1 WO 2006112505A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous silica
film
thick
electrodeposition
thick film
Prior art date
Application number
PCT/JP2006/308336
Other languages
English (en)
French (fr)
Inventor
Hideyuki Negishi
Akira Endou
Masaru Nakaiwa
Hiroshi Yanagishita
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US11/918,894 priority Critical patent/US7781369B2/en
Priority to JP2007528191A priority patent/JP5177378B2/ja
Publication of WO2006112505A1 publication Critical patent/WO2006112505A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]

Definitions

  • the present invention relates to a mesoporous silica thick film, a method for producing the same, an adsorption device, and an adsorption film.
  • Porous materials are used in various fields such as adsorption and separation! According to IUPAC, porous materials are classified into microporous with a pore diameter of 2 nm or less, mesoporous with 2 to 50 nm, and macroporous with 50 nm or more. Microporous porous materials have been known for their strengths in the past, such as natural aluminosilicates, zeolites such as synthetic aluminosilicates, and metal phosphates. These are used as selective adsorption utilizing shape of pores, shape selective catalytic reaction, and reaction vessel of molecular size.
  • mesoporous silica having a structure in which micropores having a uniform pore size of nanometer level are regularly arranged is attracting attention.
  • This has a structure arranged in a honeycomb shape with uniform diameter.
  • zeolite it has the feature that the pore volume is large and the surface area is large.
  • Silica gel is not known to have such a high specific surface area and large pore volume due to low uniformity of pores.
  • the structure of the silica is controlled by the aggregate of surfactants in a bowl shape.
  • These materials are not only very useful as catalysts for bulky molecules that do not enter the pores of zeolite, but also by introducing guest species having various functions into the pores. Applications to functional materials such as materials and electronic materials are also being considered.
  • mesoporous silica is a substance called MCM-41, which is synthesized by hydrolyzing a silicon alkoxide in the presence of a surfactant, as described in Non-Patent Document 1.
  • MCM-41 a substance called MCM-41
  • an FSM synthesized by inter-acting alkyl ammonium between layers of kanemite which is a kind of layered key acid Known as a substance called 16.
  • Patent Document 1 is produced by hydrothermal synthesis in a heat-resistant container in which silica gel and a surfactant are sealed.
  • Patent Document 3 describes a production method by ion exchange between kanemite, which is a kind of layered silicate, and a surfactant.
  • Non-Patent Document 4 describes a hydrothermal synthesis method using a set of surfactants that can also be alkyltrimethylammumumuka as a template (saddle-type), and using precipitated silica, colloidal silica, water glass, alkoxysilane, etc. as raw materials.
  • a set of surfactants that can also be alkyltrimethylammumumuka as a template (saddle-type)
  • precipitated silica, colloidal silica, water glass, alkoxysilane, etc. as raw materials.
  • a method for producing a porous body is described.
  • the concentration of the surfactant is higher than the critical micelle concentration and lower than the liquid crystal phase formation concentration, for example, 25 wt%, and the pH of the solution is 10 to 13.
  • the standard reaction temperature is 100 ° C or higher, the reaction time is 2 days or longer, and it is synthesized using an autoclave.
  • the porous body obtained by this hydrothermal synthesis method has a remarkably uniform pore diameter as compared with the conventional porous body, and has a characteristic structure in which micropores are regularly arranged.
  • Non-patent Document 4 a method by spin coating as described in (Non-patent Document 4) and a method by dip coating as described in (Non-patent Document 5) are used.
  • Methods, Non-Patent Document 6 describe a method for depositing a film on a solid surface as described. The thickness of the thin film provided on the substrate is usually several microns.
  • Silica mesostructured thin film characterized in that it is formed in part or in full (Patent Document 2), a method of removing surface active agents by heating while maintaining pH alkaline in an aqueous solution containing surface activity (Patent Document 2) Reference 3) is known.
  • a spin coating method (Patent Document 4) is known.
  • the mesoporous silica of this porous material is characterized by having uniform mesopores even if they are regularly arranged such as lamella, hexagonal, cubic, etc., or not arranged regularly. It has a large pore volume and has many hydroxyl groups on the surface of the pore wall, so it can be used as a water adsorbent that absorbs a lot of water, as well as separation adsorbents, sensors, catalyst carriers, and fuel cells. Has been studied, and research into the production of membranes has been conducted.
  • the above mesoporous silica is expected as an adsorbent for water vapor and organic vapor because of its uniform and regular pore structure.
  • a water vapor adsorbent when considered as a water vapor adsorbent, it shows a large amount of adsorption and desorption in a specific narrow relative humidity range depending on the pore diameter, and because adsorption is capillary condensation, it can be regenerated at low temperature with less energy required for regeneration. It has a new and high adsorption capacity and has great potential as an adsorbent (humidifier).
  • This adsorption characteristic is an excellent characteristic that has been often used in the past and is not found in zeolite or silica gel.
  • adsorbent When applying the adsorbent to an actual adsorption system (eg, desiccant air conditioning), it is necessary to fix the adsorbent to an appropriate substrate.
  • the most common is a hard cam rotor, and ceramic paper is usually used.
  • ceramic paper In order to support the adsorbent on the her cam rotor, it is necessary to disperse the adsorbent and binder in a solution, make a slurry, impregnate the her cam rotor base material, and then perform drying and firing. Become.
  • an adsorbent such as an adsorption heat pump, fixing the adsorbent on a metal fin is considered desirable from the viewpoint of improving heat transfer characteristics.
  • the substrate by mixing the alkylene oxide block copolymer and Orutokei tetraalkyl ethanol solution by performing hydrolysis while adjusting the low P H region as a sol solution was added dropwise a sol solution to a substrate, the substrate The organic-inorganic composite SiO thin film having a three-dimensional structure formed on the substrate is obtained by rotating at high speed, evaporating the solvent, and gelling.
  • Patent Document 6 A manufacturing method (Patent Document 6) is known.
  • cylindrical silica is regularly deposited, that is, the pore channel is oriented in the lateral direction, so that the mesoporous material is used as an insulating layer (low-k) of a highly integrated electronic circuit.
  • stress is applied to the side surface of the pore channel, that is, the upper edge, in the processing step.
  • This type of mesoporous material having a Herkam structure has low mechanical strength on the side of the pore channel. Therefore, the pores of the conventional mesoporous film are easily damaged in the above processing steps.
  • a conventional mesoporous material when used as a separation membrane, the substance is permeated and separated through the inside of the pores, so that the pore channel is oriented in the lateral direction, and the mesoporous material is effectively used as a separation membrane. Can not. The same applies when used as a chemical sensor.
  • a mesoporous material when used for a high-density recording medium, since the individual pores function as recording units, the mesoporous material can only be used as a high-density recording medium. If this is the case, reading and writing are difficult, and it becomes difficult to exert the effect of reducing the effective surface area involved in recording.
  • (A) a surfactant, (B) silicate monomer, and (C) basic silane are mixed in water or a mixed solvent of water and an organic solvent compatible with this to obtain a uniform size.
  • a mesoporous silica composite having mesopores was obtained, and this mesoporous silica composite was washed with an acidic aqueous solution or an organic solvent compatible with water.
  • the conventionally known mesoporous silica film is limited to an m-order thin film, and no thick film is manufactured.
  • mesoporous silica is expected as an adsorbent for water vapor and organic vapor because of its uniform and regular pore structure! For example, when considered as a water vapor adsorbent, it shows a large amount of adsorption and desorption in a specific narrow and relative humidity range depending on the pore size, and because adsorption is capillary condensation, low energy required for regeneration is low.
  • Patent Document 1 Specification of International Publication No. 91Z11390
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-338229
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-27270
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-250713
  • Patent Document 5 Japanese Patent Application No. 2003-385662
  • Patent Document 6 Japanese Patent Application Laid-Open No. 20002-250713
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-335516
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-345895
  • Non-Patent Document 1 Nature. 359, 710
  • Non-Patent Literature 2 Journal oi Chemical society Chemical Communications. 1993 ⁇ , p. 680
  • Non-Patent Document 3 J. Am. Chem. Soc. 11410834 (1992)
  • Non-Patent Document 4 Chemical Communications. 1996 ⁇ , p. 1149
  • Non-Patent Document 5 Nature. 389, 364
  • Non-Patent Document 6 Nature. 379, 703
  • An object of the present invention is to provide a thick film mesoporous silica and a method for producing the thick film mesoporous silica.
  • the mesoporous silica is dispersed in a solvent.
  • Mesoporous silica needs to be uniformly dispersed, and is preferably in the form of a fine powder (particle size of 40 m or less).
  • mesoporous silica is dispersed, and an electrode plate is installed in the solvent, and a voltage of 1000 volts is applied from a finite value of OV or more.
  • the mesoporous silica is positively charged in the solvent, moves toward the anode electrode, and can be analyzed as being arranged in a regular structure on the electrode surface.
  • the amount of electrodeposition increases with time within a certain time. When this time period elapses, the electrodeposition amount becomes constant.
  • an electrodeposition film having a desired thickness up to about 1 mm can be manufactured by controlling the voltage and electrodeposition time.
  • mesoporous silica can be electrophoretically deposited to form a thick film on the surface of the electrode plate with the mesoporous being arranged in a regular structure. It was found that when the resulting thick film was processed at a temperature of 150 to 500 ° C., a thick film of the order of 1 mm could be finally formed and fixed.
  • a mesoporous silica thick film characterized in that a layer of mesoporous silica is formed to a thickness of 10 m to lmm!
  • the mesoporous silica is arranged in a regular structure by electrophoretic deposition and formed to a thickness of 10 m to: Lm m and processed at a temperature of 150 to 500 ° C.
  • a substrate with a thickness of 10 m to lmm is formed by placing a substrate in a liquid in which mesoporous silica is suspended and applying a voltage to cause electrophoretic deposition of mesoporous silica on the surface of the substrate.
  • a method for producing a thick mesoporous silica film is produced by placing a substrate in a liquid in which mesoporous silica is suspended and applying a voltage to cause electrophoretic deposition of mesoporous silica on the surface of the substrate.
  • a film having a thickness of 10 m to lmm is formed by electrophoretic deposition of mesoporous silica on the surface of the substrate, followed by treatment at a temperature of 150 to 500 ° C. (6) or (7) The method for producing a mesoporous silica thick film according to (7).
  • a thick mesoporous silica film that has been conventionally desired can be obtained.
  • This mesoporous silica thick film has a water vapor and gas adsorption / desorption characteristic that is equal to or higher than that of a mesoporous silica powder alone, which makes it possible to develop a new adsorption / desorption device.
  • the concentration system can be deployed.
  • conventional membrane A mesoporous silica thick film having the following advantages compared to the formation method can be produced.
  • the seed crystal can be applied much more rapidly and uniformly than the conventional method of impregnating the slurry.
  • the film thickness to be formed can be precisely controlled by controlling the voltage and voltage application time.
  • the amount of binder contained in the thick film can be reduced or the binder can be left unused.
  • FIG. 1 is a diagram showing the structure of mesoporous silica.
  • FIG. 2 is a diagram showing an electrophoretic electrodeposition apparatus.
  • FIG. 3 is a graph showing the relationship between the electrodeposition time and the amount of electrodeposition in mesoporous silica electrodeposition from a mesoporous silica Z acetone electrodeposition bath.
  • FIG. 4 is a diagram showing an electrodeposit.
  • FIG. 5 is a graph showing the relationship between the electrodeposition time and the amount of electrodeposition per unit area.
  • Figure 6 shows the relationship between electrodeposition time and electrodeposition film thickness.
  • FIG. 7 is a view showing a surface micrograph of the electrodeposit.
  • FIG. 8 is a 3D surface image of the electrodeposit.
  • Fig. 9 is a diagram showing the results of measuring the height distribution of electrodeposits.
  • FIG. 10 shows the results of evaluating the nitrogen adsorption characteristics of the electrodeposited film.
  • FIG. 11 is a view showing an X-ray diffraction pattern of mesoporous silica powder.
  • FIG. 12 is a view showing a mesoporous silica electrodeposition film produced on a stainless steel wire ( ⁇ 0.8 mm).
  • FIG. 13 is a view showing a mesoporous silica electrodeposition film formed thinly on an aluminum plate (5 mm ⁇ 50 mm). Explanation of symbols
  • the mesoporous silica thick film of the present invention is a film formed from mesoporous silica to a thickness of 10 ⁇ m to lmm. As long as this mesoporous silica has a uniform pore diameter in the range of 1 to LOnm, anything having the hexagonal structure shown in FIG. 1 or a cubic structure can be used.
  • the mesoporous silica thick film is formed by arranging mesoporous silica in a regular structure by electrophoretic electrodeposition.
  • This mesoporous silica thick film is a mesoporous silica thick film formed on the surface of the substrate.
  • the substrate is formed of a conductive material, and any substrate can be used as long as it can be used as an electrode.
  • Such substrates include metallic materials such as stainless steel, plain steel, low alloy steel, Al and Cu, and non-metallic materials such as ceramics, glass and ceramics.
  • non-conductive insulating material prior to electrophoretic deposition, Ni, Cu, etc. are electrolessly attached, or conductivity is imparted by coating with conductive ceramics such as ITO. be able to.
  • the substrate may have various shapes such as a plate shape, a tubular shape, and a prismatic shape. Since the thick film is formed on the surface of the substrate, a member constituting the device can be used as the substrate when the device is incorporated in the device. When the tube or prismatic shape is deformed, a thick film can be formed along the shape.
  • the mesoporous silica used for forming the thick film of the present invention has a uniform pore diameter in the range of 1 to: LOnm, and may be anything such as the shape shown in FIG. 1 or the cubic structure. .
  • LOnm uniform pore diameter
  • mesoporous for example, by the spray drying method shown below. Can be synthesized.
  • the mesoporous silica is preferably in the form of a fine powder (particle size of 40 m or less). Therefore, according to the spray drying method, a uniformly dispersed mesoporous silica suspension can be obtained.
  • a mesoporous silica synthesized by a hydrothermal synthesis method or a solvent volatilization method with a particle size of 40 m or less by pulverization or classification may be used.
  • the spray drying method is as follows.
  • a silicate compound is added thereto, and the mixture is sufficiently stirred in the presence of an acid and a surfactant to be hydrolyzed.
  • Alkyl silicate, alkoxy silicate, etc. can be used for the raw material silicate-toy compound.
  • the acid is not limited to a special acid. It can be used by adding an aqueous hydrochloric acid solution because it is easy to handle and obtain.
  • As the surfactant a cationic or non-ionic surfactant can be used.
  • the treatment temperature can be at room temperature. In this way, a hydrolyzed solution of the syrique-toy compound can be obtained. This solution is sprayed with a spray dryer (spray dryer) to volatilize the solvent to obtain a white powder.
  • a spray dryer spray dryer
  • the obtained white powder is baked to remove the template (cationic or nonionic surfactant).
  • the firing temperature is appropriately set. Generally, it is 500-700 ° C. In this manner, mesoporous silica having a three-dimensional regularity having a uniform pore diameter in the range of 1 to: LOnm can be obtained.
  • FIG. 2 is a diagram showing an electrophoretic electrodeposition apparatus used in the present invention.
  • a solvent is put into the electrophoretic electrodeposition apparatus in the container of the graduated cylinder 4 to disperse the mesoporous silica obtained in the aforementioned mesoporous silica force production process.
  • this solvent water or an organic solvent can be appropriately used.
  • organic solvent alcohols, ketones such as acetone, hexane and the like can be used.
  • the treatment can be applied by stirring with a stirrer or the like, but it is preferable to apply ultrasonic vibration. This is because it is considered that there is an effect of preventing the stacking of mesoporous silicas and improving the orientation of mesoporous silica.
  • ultrasonic vibration it is sufficient to use a commercially available ultrasonic cleaner, specifically,
  • An output of 30W or more and 20kHz or more is sufficient.
  • the charging behavior of the mesoporous silica powder in the solvent varies depending on the type of the solvent and the method for producing the mesoporous silica powder, and is positively charged or negatively charged.
  • mesoporous silica powder In acetone, mesoporous silica powder is negatively charged, so the substrate is the anode and a stainless steel net is used for the counter electrode. Install these electrodes. A known electrode can be used as appropriate.
  • mesoporous silica powder By applying a voltage for a certain period of time, mesoporous silica powder can be electrophoresed and mesoporous silica particles can be applied to the surface of the tubular stainless steel substrate 1.
  • mesoporous silica / acetone electrodeposition bath 2 a good thick film of mesoporous silica can be formed.
  • the voltage varies depending on the capability of the electrophoretic electrodeposition apparatus.
  • the voltage from DC voltmeter 5 is in the range from a finite value over OV to 1000V.
  • a range from a finite value of OV or more to 1000 V means that in the present invention, it is essential to apply a voltage in electrophoretic deposition. Specifically, when the voltage value at that time is 0, electrophoretic electrodeposition cannot be performed. Therefore, even if the voltage value exceeds 0, for example, 0.01, It means that it can be 1, 1 or 100V. In conclusion, it means that the present invention is possible if a voltage exceeding 0 and a voltage up to 1000 V is applied.
  • the amount of electrodeposition increases with time within a certain time. After this specific time period, the amount of electrodeposition does not increase and eventually becomes a constant value (Fig. 3).
  • the relationship between the amount of electrodeposition and the electrodeposition time per unit follows a similar course (Fig. 5).
  • the electrodeposition time and electrodeposited film follow the same process (Fig. 6).
  • a voltage is applied until a desired electrodeposition thick film and electrodeposition amount are obtained.
  • the mesoporous silica thick film formed on the substrate obtained in the above step is taken out, treated at 150 to 500 ° C to remove the adhering solvent, and a thick mesoporous silica film made of a dense film is formed. be able to.
  • the structure is shown in Figs. 7, 8, and 9. If it is processed at a temperature exceeding 500 ° C, its shape may be destroyed. If the temperature is lower than 150 ° C, sufficient heat treatment may not be possible in some cases, resulting in the formation of a dense film being hindered.
  • gas adsorbing ability can be examined by testing whether the mesoporous silica thick film has the gas adsorbing ability.
  • the pore structure of the obtained mesoporous silica thick film is evaluated using a nitrogen adsorption measuring device (Belsorp-mini manufactured by Nippon Bell). The results are shown in Fig. 10.
  • the mesoporous silica obtained by the present invention has the ability to adsorb water vapor and organic vapor due to its uniform and regular pore structure.
  • a water vapor adsorbent when considered as a water vapor adsorbent, it shows a large amount of adsorption / desorption in a specific narrow relative humidity range depending on the pore size, and adsorption is capillary condensation, which is necessary for regeneration. It has low energy and low temperature regeneration capability, and has great potential as a new adsorbent (humidifier) with a large amount of adsorption.
  • It can be used for gas purification equipment in various production lines as well as air purification systems with excellent characteristics. Furthermore, it can be used in an apparatus for concentrating diluted gas by adsorption treatment.
  • Cetyltrimethylammonium chloride (9.6 g) and ethanol (69 g) were placed in a 200 ml glass bottle, and stirred using a magnetic stirrer. When dissolved, 31.2 g of tetraethylorthosilicate and 27 g of aqueous hydrochloric acid (1 ⁇ 10 ” 3 M) were added and stirred at room temperature for 1 hour to obtain a transparent hydrolyzed solution.
  • This hydrolyzed solution was transferred to a 500 ml eggplant type flask, and reacted at a temperature of 25 ° C. and a reduced pressure of 70 hPa for 1 hour and 24 minutes using a rotary evaporator (38 rpm).
  • the solution was sprayed with Yamato Kagaku (spray dryer GS310) to remove the solvent to obtain a white powder.
  • the conditions at this time are 7 nozzles with a spray nozzle diameter of 0.7 mm ⁇ , a feed rate of 4.4 gZmin, a spray inlet temperature of 80 ° C, a spray pressure of 0.075 MPa, and a spray air flow of 0.5 m / min.
  • the obtained white powder was calcined at 600 ° C to remove the cationic or nonionic surfactant.
  • XRD X-ray diffraction analysis
  • a mesoporous silica powder obtained by the above synthesis method was added at a ratio of 0.1 lg to 30 ml of water or an organic solvent, and irradiated with ultrasonic waves for 10 minutes to prepare an electrodeposition solution.
  • the particle size of the mesoporous silica used in the preliminary experiment in the electrodeposition bath was 10 m or less. However, the particle size should be 40 m or less.
  • As the organic solvent alcohols such as methanol, ethanol and 1-propanol, ketones such as acetone, and hexane were used.
  • Figure 2 shows the electrodeposition apparatus. Table 1 shows the experimental results when various solvents were used as electrodeposition baths.
  • the mesoporous silica which is important for electrophoretic electrodeposition, has a strong tendency to be positively charged even in the mesoporous silica added to any surface solvent. From this result, when using electrophoretic electrodeposition, it became clear that the mesoporous silica powder was electrophoresed toward the anode. Therefore, the mesoporous silica powder is electrophoresed on the surface of the tubular stainless steel substrate by using a stainless steel mesh as the anode, using a stainless steel net as the counter electrode, and applying a voltage of 50 V for 3 minutes to cause electrophoresis of the mesoporous silica powder. Was applied. In particular, a good thick film of mesoporous silica could be formed in the mesoporous silica Z acetone electrodeposition bath.
  • the pore structure of the obtained membrane was evaluated using a nitrogen adsorption measuring device (Belsorp-mini manufactured by Nippon Bell). The results are shown in Fig. 10.
  • the nitrogen adsorption isotherm of the mesoporous silica powder, the mesoporous silica thick film formed on the stainless steel substrate by EPD, and the mesoporous silica thick film after heat treatment at 300 ° C is a characteristic IV of the porous body with mesopores.
  • the isotherm of the mold (according to the IUPAC classification) was found to maintain and maintain the original highly ordered pore structure even after EPD and heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

メソポーラスシリカによる層が10μm~1mmの厚さに形成されていることを特徴とするメソポーラスシリカ厚膜、およびメソポーラスシリカを懸濁させた液中に基板を設置し電圧を印加して、前記基板表面にメソポーラスシリカを泳動電着させることにより10μm~1mmの厚さの膜を形成することを特徴とするメソポーラスシリカ厚膜の製造方法。

Description

明 細 書
メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜 技術分野
[0001] 本発明は、メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜 に関するものである。
背景技術
[0002] 多孔質材料は、吸着、分離など様々な分野で利用されて!、る。 IUPACによれば、 多孔体は、細孔径が 2nm以下のマイクロポーラス、 2〜50nmのメソポーラス、 50nm 以上のマクロポーラスに分類される。マイクロポーラスな多孔体は以前力も知られ、天 然のアルミノケィ酸塩、合成アルミノケィ酸塩等のゼォライト、金属リン酸塩等が知ら れている。これらは、細孔のサイズを利用した選択的吸着、形状選択的触媒反応、分 子サイズの反応容器として利用されて 、る。
[0003] メソポーラスとしては、ナノメーターレベルの均一な孔径を有する微細孔が規則的に 配列した構造を有するメソポーラスシリカが注目されている。これは、径の揃った蜂の 巣状に配列した構造を有するものである。従来のゼォライト等の多孔質材料に比べ て細孔容積が大きぐ表面積も大きいという特徴を有している。シリカゲルでは、細孔 の均一性が低ぐこのように高い比表面積、大きい細孔容積を持つものは知られてい ない。
両者ともに、界面活性剤の集合体が铸型となってシリカの構造制御が行われている と考えられている。これらの物質は、ゼォライトのポアに入らないような嵩高い分子に 対する触媒として非常に有用な材料であるだけでなぐ細孔内に種々の機能を有す るゲスト種を導入することによって、光学材料や電子材料等の機能性材料への応用 も考えられている。
[0004] メソポーラスシリカは、具体的には、非特許文献 1に記載されて 、るように界面活性 剤の存在下においてケィ素のアルコキシドを加水分解させて合成される MCM— 41 と呼ばれる物質が、非特許文献 2に記載されているような、層状ケィ酸の一種である カネマイトの層間にアルキルアンモ-ゥムをインター力レートさせて合成される FSM 16と呼ばれる物質として知られている。
[0005] 有機化合物と無機化合物の自己集積ィ匕を利用した均一なメソ細孔を持つ多孔質 材料が製造される。この製造方法には、例えば、特許文献 1には、シリカゲルと界面 活性剤などを密封した耐熱性容器内で水熱合成することにより製造される。また、特 許文献 3には、層状ケィ酸塩の一種であるカネマイトと界面活性剤とのイオン交換に より製造する方法が記載されている。非特許文献 4は、アルキルトリメチルアンモ-ゥ ムカもなる界面活性剤の集合体をテンプレート (铸型)として、沈降性シリカ、コロイダ ルシリカ、水ガラス、アルコキシシラン等を原料として、水熱合成法により無機材料一 界面活性剤の 3次元高規則性複合体を沈殿物として形成し、その複合体を固液分 離'洗浄した後、焼成してその中に含まれる有機物を除去することにより、無機多孔 体を製造する方法を記載している。界面活性剤の濃度は臨界ミセル濃度より高ぐ液 晶相生成濃度より低い濃度、例えば 25wt%とされており、溶液の pHは 10から 13で ある。また標準的な反応温度は 100°C以上、反応時間は 2日以上で、オートクレープ を用いて合成される。この水熱合成法により得られた多孔体は、従来の多孔体に比 ベ著しく均一な細孔径を有し、微細孔が規則的に配列した特徴的な構造を有する。
[0006] このような規則的な細孔構造を有するメソポーラス多孔体を、触媒以外の機能性材 料分野に応用する場合、これらの材料を基板上に均一に保持することが重要となる。 基板上に均一なメソポーラス薄膜を製造する方法としては、例えば、に記載されてい るようなスピンコートによる方法 (非特許文献 4)、(非特許文献 5)に記載されているよ うなディップコートによる方法、非特許文献 6に、記載されているような固体表面に膜 を析出させる方法等が記載されている。基板上に設ける薄膜の厚さは通常数ミクロン 程度とされている。
[0007] 基板上に設けられた高分子化合物膜上に形成されたシリカメソ構造体薄膜であつ て、該薄膜が直線偏光照射によって表面に構造の異方性が付与された高分子化合 物膜の一部分もしくは全部に形成されていることを特徴とするシリカメソ構造体薄膜( 特許文献 2)、界面活性を含有する水溶液中で pHをアルカリ性に維持し加熱し、界 面活性剤を除去する方法 (特許文献 3)が知られている。スピンコート法によるもの(特 許文献 4)などが知られて ヽる。 この多孔質材料のメソポーラスシリカは、ラメラ、へキサゴナル、キュービックなどの 規則的配列をしているか、または規則的配列をしていなくても、均一なメソ細孔を持 つことが特徴であり、大きな細孔容積を持っており、細孔壁表面には水酸基を多く持 つため水の吸着量が多ぐ水の吸着剤としての用途展開や、分離吸着剤、センサー 、触媒担体、燃料電池への応用が検討され、膜を製造する研究が行われてきた。
[0008] この膜は、優れたガス吸着特性を有すること、及び各種物質の分離機能も有するこ とが判ってきた。従ってこのような空孔構造を有する多孔体の製造方法が種々の提 案されている。
また、その他の製法としても数多くの報告がある。例えば、常温'短時間でメソポー ラスシリカを合成する方法として、産業技術総合研究所の遠藤研究員による真空ェ バポレーター等を用いた合成法が、特許文献 5に記載されている。この方法は水熱 合成法に比べ、低温で、迅速に合成が可能で、固液分離工程'洗浄工程が不要で あるため操作が単純でコスト性に優れるという長所をもっている。更に得られる多孔体 は水蒸気耐久性が高 、と 、う長所をも兼ね備えて 、る。
[0009] 以上のベたメソポーラスシリカは、その均一かつ規則的な細孔構造から、水蒸気や 有機蒸気の吸着剤として期待されて ヽる。例えば水蒸気吸着剤として考えた場合、 細孔径に応じて特定の狭い相対湿度範囲において、大きな吸脱着量を示し、吸着が 毛管凝縮であることから、再生のための必要エネルギーも小さぐ低温再生可能でか つ大きな吸着量をもつ新し 、吸着剤(吸湿剤)としての大きな可能性をもって 、る。こ の吸着特性は、従来よく用いられて 、るゼオライトやシリカゲルにはな 、優れた特性 である。
吸着材を実際の吸着システム (たとえばデシカント空調)に適用する際には、吸着 剤を適当な基材に固定する必要がある。最も一般的なのがハ-カムローターで、通 常はセラミックペーパーなどが用いられる。このハ-カムローターに吸着剤を担持す るには、吸着剤とバインダーを溶液に分散し、スラリー化後、ハ-カムローター母材を 含浸させ、その後乾燥 ·焼成を行うという行程が必要となる。また、吸着ヒートポンプな どの吸着剤として用いる場合には、金属製のフィン上に吸着剤を固定することが伝熱 特性向上の観点力 望ましいと考えられる。 具体的には、アルキレンオキサイドブロックコポリマーとオルトケィ酸テトラアルキル とエタノール溶液中に混合して、低 PH域に調整しながら加水分解を行ってゾル溶液 とし、基板にゾル溶液を滴下し、基板を高速回転させ、溶剤を蒸発させ、ゲル化させ ることにより基板上に形成した三次元構造を有する有機無機複合 SiO薄膜を得、次
2
Vヽで薄膜を燒結することにより得られた三次元構造を有するメソポーラス SiO薄膜を
2 製造する方法 (特許文献 6)などが知られて 、る。
この種のメソ多孔体は、円筒状シリカが規則的に堆積し、即ち、細孔チャンネルが 横方向に向いているため、このようなメソ多孔体を高集積電子回路の絶縁層(low— k材料)に使用する場合、加工工程で細孔チャンネルの側面、即ち、上カゝら応力が加 えられることになる。ハ-カム構造を有するこの種のメソ多孔体は、細孔チャンネルの 側面の機械的強度は弱い。そのため、従来のメソポーラス膜は、上記加工工程で細 孔が損傷し易い。また、従来のメソ多孔体を分離膜に用いる場合、細孔内部を通って 物質が透過分離されるため、細孔チャンネルが横方向に向 、て 、るメソ多孔体では 事実上分離膜として利用できない。これは化学センサーとして利用する場合も同様で ある。更に、メソ多孔体を高密度記録媒体に用いる場合、個々の細孔が記録単位と して機能することによって初めて高密度記録媒体としての利用が可能となるため、細 孔チャンネルが横方向に向いていると、読み書きが困難であり、記録に関与して有効 な表面積が小さぐ効果を発揮しにくくなる。以上より、メソ多孔体を効果的に応用す るために、上下方向に貫通した細孔を有する細孔チャンネルが規則的に配列形成さ れた材料が求められており、六員環を有するシリケートシートが縦型に配列した構造 のポリ珪酸塩などが知られて 、る (特許文献 7)。
また (A)ァ-オン界面活性剤、 (B)シリケートモノマーおよび (C)塩基性シランを水 またはこれと相溶性のある有機溶媒と水との混合溶媒中で混合して均一な大きさのメ ソ細孔を有するメソポーラスシリカ複合体を得、このメソポーラスシリカ複合体を酸性 水溶液または水と相溶性のある有機溶媒ある 、はその水溶液で洗浄して成分 (A)の ァ-オン界面活性剤を除去して該メソポーラスシリカ複合体の構造をテンプレートと するメソポーラスシリカ外殻を得、そしてメソポーラスシリカ複合体またはメソポーラス シリカ外殻を焼成すること (特許文献 8)が知られて 、る。 [0011] し力しながら、従来知られているメソポーラスシリカ膜は、 mオーダーの薄膜に限 られ、厚膜は製造されていない。
メソポーラスシリカの厚膜を得るのであれば、基板上に直接ディップコーティング法 などにより膜の厚さを調整できるのではないかと考えられるが、実際には、規則的構 造に配列された状態で形成することができず、厚膜を形成することは困難となる。 そして、従来の薄膜と比較して厚膜が得られるならば、メソポーラスシリカは、その均 一かつ規則的な細孔構造から、水蒸気や有機蒸気の吸着剤として期待されて!、る。 例えば水蒸気吸着剤として考えた場合、細孔径に応じて特定の狭 、相対湿度範囲 において、大きな吸脱着量を示し、吸着が毛管凝縮であることから、再生のための必 要エネルギーも小さぐ低温再生可能でかつ大きな吸着量をもつ新しい吸着剤(吸 湿剤)としての大きな可能性をもつものであり、この吸着特性により、従来よく用いられ て 、るゼオライトやシリカゲルにはな 、優れた特性を有する空気清浄化システムを可 能にする膜が得られることとなる。
このようなことから、メソポーラスシリカ厚膜の開発が切望されて!、る。
[0012] 特許文献 1:国際公開第 91Z11390号明細書
特許文献 2:特開 2002— 338229号公報
特許文献 3:特開 2004 - 27270号公報
特許文献 4:特開 2002— 250713号公報
特許文献 5:特願 2003 - 385662号公報
特許文献 6:特開 20002 - 250713号公報
特許文献 7:特開 2003— 335516号公報
特許文献 8:特開 2004— 345895号公報
非特許文献 1 : Nature. 第 359卷、 710頁
非特干文献 2 :Journal oi Chemical society Chemical Communications. 1993卷、 680頁
非特許文献 3 :J.Am.Chem. Soc. 11410834 (1992)
非特許文献 4: Chemical Communications. 1996卷、 1149頁
非特許文献 5 : Nature. 第 389卷、 364頁 非特許文献 6 : Nature. 第 379卷、 703頁
発明の開示
発明が解決しょうとする課題
[0013] 本発明の課題は、厚膜メソポーラスシリカ及び厚膜メソポーラスシリカの製造方法を 提供することである。
課題を解決するための手段
[0014] 前記メソポーラスシリカを溶媒中に分散させる。メソポーラスシリカは均一に分散さ せることが必要であり、微粉末 (粒径 40 m以下)の形態とすることが望ましい。この 溶媒中にメソポーラスシリカが分散されて 、る中に電極板を設置し、 OV以上の有限 の値から 1000ボルトの電圧を印加する。溶媒中でメソポーラスシリカは正に帯電し、 アノード電極に向カゝつて移動し、電極表面に規則的構造に配列された状態として析 出させることができる。電着量は、ある特定の時間内では時間の経過に応じて増加す る。この時間帯を経過すると、電着量は一定となる。単位当たりに電着量と電着時間 の関係も同様の経過をたどる。また、電着時間と電着厚膜も同様な経過をたどる。 このような予め測定してある結果に基づいて、電圧、電着時間を制御して lmm程 度までの所望の厚さの電着膜を製造することができる。
[0015] このようにして、メソポーラスシリカは泳動電着させて、電極板表面に前記メソポーラ スを規則的構造に配列された状態として厚膜を形成することができ、さらに、このよう にして得られる厚膜を 150〜500°Cの温度下に、処理すると最終的に lmmオーダ 一の厚膜を形成固定することができることを見出した。
[0016] 本発明によれば、以下の発明が提供される。
( 1)メソポーラスシリカ〖こよる層が 10 m〜 lmmの厚さに形成されて!ヽることを特徴と するメソポーラスシリカ厚膜。
(2)前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 m〜: Lm mの厚さに形成されていることを特徴とする(1)記載のメソポーラスシリカ厚膜。
(3)前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 m〜: Lm mの厚さに形成され、弓 Iき続き 150〜500°Cの温度で処理されて 、ることを特徴とす る(1)又は(2)記載のメソポーラスシリカ厚膜。 (4)前記メソポーラスシリカが 1〜: LOnm範囲で均一な細孔径を有することを特徴とす る(1)から(3)の 、ずれか記載のメソポーラスシリカ厚膜。
(5)前記メソポーラスシリカ厚膜が基板の表面に形成されていることを特徴とする(1) から (4)の 、ずれか記載のメソポーラスシリカ厚膜。
(6)メソポーラスシリカを懸濁させた液中に基板を設置し電圧を印加して、前記基板 表面にメソポーラスシリカを泳動電着させることにより 10 m〜lmmの厚さの膜を形 成することを特徴とするメソポーラスシリカ厚膜の製造方法。
(7)前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 m〜: Lm mの厚さの膜を形成することを特徴とする(6)記載のメソポーラスシリカ厚膜の製造方 法。
(8)前記基板表面にメソポーラスシリカを泳動電着させることにより 10 m〜lmmの 厚さの膜を形成し、引き続き 150〜500°Cの温度で処理することを特徴とする(6)又 は(7)記載のメソポーラスシリカ厚膜の製造方法。
(9)前記メソポーラスシリカが 1〜: LOnmの範囲で均一な細孔径を有することを特徴と する(6)力も (8)の 、ずれか記載のメソポーラスシリカ厚膜の製造方法。
(10)前記メソポーラスシリカ厚膜を基板の表面に形成することを特徴とする(6)力 ( 9)の 、ずれか記載のメソポーラスシリカ厚膜の製造方法。
(11)前記電圧が、 0V以上の有限の値から 1000ボルトの範囲であることを特徴とす る(6)から(10)の 、ずれか記載のメソポーラスシリカ厚膜の製造方法。
(12)前記(1)力 (5)の 、ずれか記載の厚膜を備えて 、ることを特徴とする吸着装 置。
(13)前記(1)から (5)の 、ずれか記載の厚膜からなることを特徴とする吸着用膜。 発明の効果
本発明では、従来から要望されていた、メソポーラスシリカ厚膜を得ることができる。 この厚膜を利用することにより水蒸気や各種ガスの迅速な吸脱着を可能となる。 このメソポーラスシリカ厚膜の水蒸気や気体の吸脱着特性は、メソポーラスシリカ粉 末単体ともしくはそれ以上であり、新たな吸脱着装置の開発が可能となり、これを利 用したあらたな清浄ィ匕システムや濃縮システムの展開が可能となる。また、従来の膜 形成方法と比較して以下のような利点を有するメソポーラスシリカの厚膜の製造が可 能となった。
a.泳動電着法を用いることで、従来のスラリーを含浸する方法に比べ、格段に迅速か つ均一に種結晶を塗布できる。
b.泳動電着法を用いることで、形成する膜厚を電圧や電圧印加時間を制御すること で精密に制御することができる。
c.泳動電着法を用いることで、様々な形状の母材にメソポーラスシリカ厚膜を形成す ることが可能になる。
d.泳動電着法を用いることで、厚膜中に含まれるバインダーの量を減らす、あるいは バインダーを未使用にすることが可能になる。
e.大量生産性、低コスト化に有効である。
図面の簡単な説明
[図 1]図 1はメソポーラスシリカの構造を示す図である。
[図 2]図 2は泳動電着装置泳動電着装置を示す図である。
[図 3]図 3はメソポーラスシリカ Zアセトン系電着浴からのメソポーラスシリカの電着に おける電着時間と電着量の関係を示す図である。
[図 4]図 4は電着物を示す図である。
圆 5]図 5は電着時間と単位面積あたりの電着量の関係を示す図である。
圆 6]図 6は電着時間と電着膜厚の関係である。
圆 7]図 7は電着物の表面顕微鏡写真を示す図である。
[図 8]図 8は電着物の表面 3D画像である。
[図 9]図 9は電着物の高さ分布測定結果を示す図である。
圆 10]図 10は電着膜の窒素吸着特性評価結果を示す図である。
[図 11]図 11はメソポーラスシリカ粉末の X線回折パターンを示す図である。
[図 12]図 12はステンレス線( φ 0.8mm)上に作製したメソポーラスシリカ電着膜を示す 図である。
[図 13]図 13はアルミニウム板(5mm X 50mm)上に薄く作製したメソポーラスシリカ電着 膜を示す図である。 符号の説明
[0019] 1 管状ステンレス基板
2 電着浴
3 対極
4 メスシリンダー
5 直流電圧計
発明を実施するための最良の形態
[0020] 本発明のメソポーラスシリカ厚膜は、メソポーラスシリカにより 10 μ m〜lmmの厚さ に形成されている膜である。このメソポーラスシリカは、 1〜: LOnmの範囲で均一な細 孔径を有するものであれば、図 1に示したへキサゴナル構造をもつものや、キュービ ック構造をもつものなど何でもよ ヽ。
メソポーラスシリカ厚膜は、メソポーラシシリカを泳動電着により規則的構造に配列さ れて構成して 、るものである。
このメソポーラスシリカ厚膜は、基板の表面に形成されて 、るメソポ -ラスシリカ厚膜 である。
[0021] 基板は導電性物質により形成されるものであり、電極として用いる事ができるもので あれば適宜採用することができる。このような基板には、ステンレス鋼,普通鋼,低合 金鋼、 Al、 Cu等の金属材料やセラミックス,ガラス,陶磁器等の非金属材料がある。 導電性のない絶縁材料を基体として使用する場合、泳動電着に先立って、 Ni、 Cu 等を無電解めつきし、或いは ITO等の導電性セラミックスをコーティングすることによ つて導電性を付与することができる。
基板は板状の他,管状、角柱状などでの変形されている種々な形状のものであつ てよい。厚膜を基板の表面に形成するので、装置に組み込んで使用する場合には装 置を構成する部材を基板として用いることができる。管状や角柱状の変形されている 場合にはその形状にそって厚膜を形成することができる。
[0022] 本発明の厚膜の形成に用いるメソポーラスシリカは、 1〜: LOnmの範囲で均一な細 孔径を有するものであり、図 1に示されている形状やキュービック構造をもつものなど 何でもよい。メソポーラスの製造には、例えば以下に示されるスプレードライ法により 合成することができる。
この方法によれば、 10 m以下の微粉末のメソポーラスシリカを合成することができ る。なお、泳動電着には、電着浴にメソポーラスシリカ均一に分散させることが必要で あり、そのためには、メソポーラスシリカは微粉末 (粒径 40 m以下)の形状とすること が望ましい。したがって、スプレードライ法によれば、均一に分散させたメソポーラスシ リカ懸濁液を得ることができる。
また、その他の方法として、水熱合成法や溶媒揮発法で合成したメソポーラスシリカ を、粉砕あるいは分級などにより粒径 40 m以下にしたものを用いてもよい。
[0023] スプレードライ法は以下の通りである。
有機溶媒を反応容器に注入し、十分に攪拌する。
これにシリケート化合物を添加し、酸及び界面活性剤の存在下に十分に攪拌処理 を行い、加水分解させる。原料物質のシリケ一トイ匕合物にはアルキルシリケート、アル コキシシリケートなどを用いることができる。酸は特別な酸に限定されない。取り扱い や得やすいことなどから、塩酸水溶液を添加して用いることができる。界面活性剤に は、カチオン性またはノ-オン性界面活性剤を用いることができる。
処理温度は常温で差しつかえな 、。このようにしてシリケ一トイ匕合物の加水分解溶 液を得ることができる。この溶液を噴霧乾燥装置 (スプレードライヤ)により噴霧し、溶 媒を揮発させること〖こより白色紛体を得る。
得られた白色紛体を焼成して、テンプレート (カチオン性あるいはノ-オン性界面活 性剤)を除去する。焼成温度は適宜設定する。一般には 500〜700°Cである。このよ うにして、 1〜: LOnmの範囲で均一な細孔径を有する三次元規則性を有するメソポー ラスシリカを得ることができる。
[0024] 次に、泳動電着の工程を説明する。
図 2は、本発明で用いられる泳動電着の装置を示す図である。
メスシリンダー 4の容器中の泳動電着装置内に溶媒を入れ、前記のメソポーラスシリ 力製造工程で得られたメソポーラスシリカを分散させる。この溶媒には水や有機溶媒 を適宜用いることができる。なお、有機溶媒としてはアルコール類およびアセトンなど のケトン類、へキサンなどを用いることができる。 処理に際してスターラー等による撹拌でも適用できるが、超音波振動を与えること 力 り好ましい。その理由は、メソポーラスシリカ同士の積み重なりを防ぎ、メソポーラ スシリカの配向性を高める効果があると考えられるからである。超音波振動を与える 場合、一般に市販されている超音波洗浄器を用いる程度で充分であり、具体的には
30W以上、 20kHz以上の出力があれば充分である。
メソポーラスシリカ粉末の溶媒中での帯電挙動は、溶媒の種類ゃメソポーラスシリカ 粉末の製造方法によって異なり、正に帯電したり、負に帯電したりする。アセトン中に おいては、メソポーラスシリカ粉末は負に帯電するので、基板をアノードとし、対極に ステンレス網を使用する。これらの電極を設置する。適宜、公知の電極を用いることが できる。
電圧を一定時間印加することにより、メソポーラスシリカ粉末を電気泳動させ、管状 ステンレス基板 1表面にメソポーラスシリカ粒子を塗布することができる。特にメソポー ラスシリカ/アセトン系電着浴 2の場合には、メソポーラスシリカの良好な厚膜を形成 することができる。電圧については、泳動電着装置の能力などによって変化する。直 流電圧計 5による電圧は、 OV以上の有限の値から 1000Vの範囲のものが採用され る。
「OV以上の有限の値から 1000Vの範囲」とは、本発明では泳動電着において電圧 を印加することが必須であることを意味するものである。具体的には、その際の電圧 の値は 0であっては泳動電着を行うことができないから、電圧 0を含むものではなぐ 0 を超える値、例えば、 0. 01であっても、 0. 1であっても、 1であっても、 100Vであつ てもよいことを意味している。結論としては、 0を超える電圧であり、 1000Vまでの電 圧が印加されれば、本発明は可能であることを意味している。
電着量は、ある特定の時間内では時間の経過に応じて増加する。この特定の時間 帯を経過すると、電着量の増加はなくなり、やがて一定の値となる(図 3)。単位当たり に電着量と電着時間の関係も同様の経過をたどる(図 5)。また、電着時間と電着厚 膜も同様な経過をたどる(図 6)。
このような予め測定してある結果に基づ 、て所望の電着厚膜、電着量となるまで電 圧を印加する。 [0026] 前記の工程で得られる基板上に形成されたメソポ—ラスシリカ厚膜を取り出し、 150 〜500°Cで処理して付着する溶媒を取り除き、緻密な膜からなるメソポーラスシリカ厚 膜を形成することができる。その構造を図 7、図 8、図 9に示した。 500°Cを超える温度 で処理するとその形状が破壊される恐れがある。また 150°C未満では場合によって は十分な熱処理ができない場合があり、緻密な膜の形成が妨げられる結果となる。
[0027] 得られたメソポーラスシリカの厚膜のメソポーラスシリカの X線回折分析 (XRAD)を 行なうことにより、厚膜中のメソポーラスシリカは高い三次元規則性を有していることを ½認することができる。
また、メソポーラスシリカ厚膜にっ 、て気体の吸着能を有するかどうかの試験を行な うことにより、気体の吸着能を調べることができる。
得られたメソポーラスシリカ厚膜の細孔構造を、窒素吸着測定装置(日本ベル製、 Belsorp— mini)を用いて評価を行う。その結果を図 10に示す通りである。メソポーラ スシリカ粉末、泳動電着 (EPD)によりステンレス基板に形成したメソポーラスシリカ厚 膜および 300°Cで熱処理後のメソポーラスシリカ厚膜の窒素吸着等温線は、 、ずれ もメソ孔を有する多孔体に特有な IV型の等温線 (IUPACの分類による)を示し、 EP D及び熱処理後ももとの高規則性細孔構造を維持していることがわかる。
この結果から、本発明で得られるメソポーラスシリカは、その均一かつ規則的な細孔 構造から、水蒸気や有機蒸気の吸着能を有していることがわかる。具体的には水蒸 気吸着剤として考えた場合、細孔径に応じて特定の狭い相対湿度範囲において、大 きな吸脱着量を示し、吸着が毛管凝縮であることから、再生のための必要エネルギー も小さぐ低温再生可能でかつ大きな吸着量をもつ新しい吸着剤(吸湿剤)としての 大きな可能性をもつものであり、この吸着特性により、従来よく用いられているゼオラ イトやシリカゲルにはない優れた特性を有する空気清浄ィヒシステムの他各種生産ライ ンの気体清浄化設備に用いる事ができる。さらに希薄ガスを吸着処理して濃縮する 装置への利用も可能である。
以下に本発明の内容を実施例により説明する。本発明はこれに限定されるもので はない。
実施例 1 [0028] (1)メソポーラスシリカの合成
セチルトリメチルアンモ -ゥムクロリド 9. 6gと、エタノール 69gとを 200mlのガラスビ 一力一に入れ、マグネチックスターラーを使用して攪拌した。溶解したところに、テトラ ェチルオルトシリケート 31.2gと、塩酸水溶液(1 X 10"3M) 27gとを加えて常温で 1時 間攪拌し、透明な加水分解溶液を得た。
この加水分解溶液を 500mlナス型フラスコに移し、ロータリーエバポレーター(38r pm)を使用して 25°Cの温度および 70hPa減圧状態で 1時間 24分反応させた。
その後の溶液をャマト科学製 (スプレードライヤー GS310)を用い、溶液を噴霧して 溶媒を除去することにより、白色紛体を得た。このときの条件は噴霧ノズル径 0. 7mm Φ、送液速度 4. 4gZmin、噴霧入口温度 80°C、噴霧圧力 0. 075Mpa、噴霧風量 0. 5m / minであつ 7こ。
得られた白色紛体を 600°Cで焼成して,カチオン性あるいはノ-オン性界面活性剤 を除去した。得られたナノポーラス体の X線回折分析 (XRD) (図 11)、および窒素ガ スによる吸着等温線により多孔構造の構造規則性の評価を行ったところ、得られたメ ソボーラスシリカは高 、三次元規則性を有して 、た。
[0029] (2)メソポーラスシリカ厚膜の作製
予備実験として、前記合成法により得られたメソポーラスシリカ粉末を水又は有機溶 媒 30mlに対して 0. lgの割合で添加し超音波を 10分間照射したものを電着液とした 。予備実験で用いたメソポーラスシリカの電着浴中での粒度は 10 m以下であった。 但し、粒度は 40 m以下であればよい。有機溶媒としては、メタノール、エタノール、 1-プロパノール等のアルコール類およびアセトンなどのケトン類、およびへキサンを 用いた。電着装置を図 2に示す。この装置を用いて、各種溶媒を電着浴とした場合の 実験結果を表 1に示した。泳動電着を行う上で重要となるメソポーラスシリカの帯電は 、表はりどの溶媒に添加したメソポーラスシリカにおいても正に帯電する傾向が強い ことが分力つた。この結果から泳動電着法を利用する場合、メソポーラスシリカ粉末は アノードに向力つて電気泳動する事が明ら力となった。よって、管状ステンレス基板を アノードとし、対極にステンレス網を使用し、 50Vの電圧を 3分間印加することでメソポ 一ラスシリカ粉末を電気泳動させ、管状ステンレス基板表面にメソポーラスシリカ粒子 を塗布した。特にメソポーラスシリカ Zアセトン系電着浴において、メソポーラスシリカ の良好な厚膜を形成することができた。
そこで、本実験として、図 2に示した実験装置を用い、アセトン 140mlにメソポーラス シリカ 1. 4gを添加し、表面積 15. 7cm2 (おもて)の管状ステンレス管をアノード基板 として、 50Vで電着実験を行ったところ、メソポーラスシリカの電着量は電着時間と共 に増加し、 10分で約 0. 4gがステンレス管上に製膜できた(図 3)。そのサンプルの写 真を図 4に示す。目視上では、均一な厚膜が形成できていることがわかる。基板単位 面積あたりの電着量は電着時間 10分で約 24mg/cm2〖こ達し(図 5)、膜厚は約 240 /z mに達する厚膜が形成できていることが明ら力となった(図 6)。この電着量は、ある 特定の時間内では時間の経過に応じて増加する。この時間帯を経過すると、電着量 は一定となる。単位当たりに電着量と電着時間の関係も同様の経過をたどる。また、 電着時間と電着厚膜も同様な経過をたどる。
このような予め測定してある結果に基づ 、て所望の電着厚膜、電着量となるまで電 圧を印加する。
[表 1]
Figure imgf000017_0001
(3)メソポーラスシリカ粉末の帯電特性
メソポーラスシリカ Zアセトン系電着浴における、メソポーラスシリカ粒子の電気泳動 移動度とゼータ電位を、ゼータ電位測定装置 (大塚電子 ELS - 8000)を用 、て測 定した結果、電気泳動移動度は約— 2. 4 X 10_6cm2/VSを示し、ゼータ電位は約— 40V示したことから、メソポーラスシリカが負に帯電し、電場を印加するとアノードに向 力つて電気泳動することが裏付けられた。
[0032] (4)メソポーラスシリカ膜の構造
図 2に示した実験装置を用い、アセトン 140mlにメソポーラスシリカ 1. 4gを添加し、 表面積 15. 7cm2 (おもて)の管状ステンレス管をアノード基板として、 50Vで 10分間 の電着を行ったサンプル(図 4)の表面および断面構造を共焦点レーザー顕微鏡で 観察した。電着したメソポーラスシリカ膜を部分的に剥がした破断面を上方力 観察 したところ、電着物表面は平滑であった(図 7)。また、破断面を斜め方向から観察し たところ、均一な厚さのメソポーラスシリカ堆積層が形成されていた(図 8)。これは、図 7のライン A—Bにおける高さ分布測定からも電着物が基板に対して約 240ミクロンの 厚さで平滑に堆積していることが分かる(図 9)
[0033] (5) 細孔構造評価の評価
得られた膜の細孔構造を窒素吸着測定装置(日本ベル製、 Belsorp— mini)を用 いて評価した。その結果を図 10に示す。メソポーラスシリカ粉末、 EPDによりステンレ ス基板に形成したメソポーラスシリカ厚膜および 300°Cで熱処理後のメソポーラスシリ 力厚膜の窒素吸着等温線は、 Vヽずれもメソ孔を有する多孔体に特有な IV型の等温 線 (IUPACの分類による)を示し、 EPD及び熱処理後も、もとの高規則性細孔構造 を維持して!/ヽることがわかった。
[0034] (6) ステンレス線上に製膜した例
図 2に示した実験装置を用い、アセトン 30mlにメソポーラスシリカ 0. lgを添加し、直 径 0. 8mmのステンレス線をアノード基板として、 50Vで 3分間の電着を行った。その 結果、ステンレス線上に均一な厚さの電着膜がコーティングできた(図 12)。
[0035] (7) アルミニウム板上に製膜した例
図 2に示した実験装置を用い、アセトン 70mlにメソポーラスシリカ 0.23gを添カ卩し、幅 5mm、長さ 50mmのアルミニウム板をアノード基板として、 50Vで 10分間の電着を 行った。その結果、アルミニウム板上に均一な厚さの電着膜がコーティングできた(図
(εχ
9CC80C/900Zdf/X3d LY S0SZll/900Z OAV

Claims

請求の範囲
[I] メソポーラスシリカによる層が 10 m〜: Lmmの厚さに形成されていることを特徴と するメソポーラスシリカ厚膜。
[2] 前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 μ m〜lmm の厚さに形成されていることを特徴とする請求項 1記載のメソポーラスシリカ厚膜。
[3] 前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 μ m〜lmm の厚さに形成され、弓 Iき続き 150〜500°Cの温度で処理されて 、ることを特徴とする 請求項 1又は 2記載のメソポーラスシリカ厚膜。
[4] 前記メソポーラスシリカが 1〜: LOnmの範囲で均一な細孔径を有することを特徴とす る請求項 1から 3のいずれか記載のメソポーラスシリカ厚膜。
[5] 前記メソポーラスシリカ厚膜が基板の表面に形成されていることを特徴とする請求 項 1から 4のいずれか記載のメソポーラスシリカ厚膜。
[6] メソポーラスシリカを懸濁させた液中に基板を設置し電圧を印カロして、前記基板表 面にメソポーラスシリカを泳動電着させることにより 10 m〜lmmの厚さの膜を形成 することを特徴とするメソポーラスシリカ厚膜の製造方法。
[7] 前記メソポーラスシリカが泳動電着により規則的構造に配列されて 10 μ m〜lmm の厚さの膜を形成することを特徴とする請求項 6記載のメソポーラスシリカ厚膜の製造 方法。
[8] 前記基板表面にメソポーラスシリカを泳動電着させることにより 10 m〜lmmの厚 さの膜を形成し、弓 Iき続き 150〜500°Cの温度で処理することを特徴とする請求項 6 又は 7記載のメソポーラスシリカ厚膜の製造方法。
[9] 前記メソポーラスシリカが 1〜: LOnmの範囲で均一な細孔径を有することを特徴とす る請求項 6から 8のいずれか記載のメソポーラスシリカ厚膜の製造方法。
[10] 前記メソポーラスシリカ厚膜を基板の表面に形成することを特徴とする請求項 6から
9のいずれか記載のメソポーラスシリカ厚膜の製造方法。
[II] 前記電圧が、 0V以上の有限の値から 1000ボルトの範囲であることを特徴とする請 求項 6から 10のいずれか記載のメソポーラスシリカ厚膜の製造方法。
[12] 前記請求項 1から 5のいずれか記載の厚膜を備えていることを特徴とする吸着装置 前記請求項 1から 5のいずれか記載の厚膜からなることを特徴とする吸着用膜。
PCT/JP2006/308336 2005-04-20 2006-04-20 メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜 WO2006112505A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/918,894 US7781369B2 (en) 2005-04-20 2006-04-20 Mesoporous silica thick-film, process for producing the same, adsorption apparatus and adsorbing film
JP2007528191A JP5177378B2 (ja) 2005-04-20 2006-04-20 メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-122591 2005-04-20
JP2005122591 2005-04-20

Publications (1)

Publication Number Publication Date
WO2006112505A1 true WO2006112505A1 (ja) 2006-10-26

Family

ID=37115213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308336 WO2006112505A1 (ja) 2005-04-20 2006-04-20 メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜

Country Status (3)

Country Link
US (1) US7781369B2 (ja)
JP (1) JP5177378B2 (ja)
WO (1) WO2006112505A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047593A (ja) * 2007-08-21 2009-03-05 Sharp Corp 多孔質構造体を用いた特定ガス成分濃縮装置、及び特定ガス成分検出装置
JP2009107899A (ja) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology メソポーラスシリカ厚膜の製造方法
JP2010280121A (ja) * 2009-06-04 2010-12-16 Tokyo Univ Of Science セラミック系絶縁層と金属層との積層体及びその製造方法
JP2011517439A (ja) * 2008-03-31 2011-06-09 イエフペ エネルジ ヌヴェル 特定のサイズの球状粒子から作られ、金属ナノ粒子をメソ構造化マトリクス中に捕捉されて有する無機材料
JP2012026993A (ja) * 2010-07-28 2012-02-09 Funai Electric Advanced Applied Technology Research Institute Inc 酵素電極及び当該酵素電極を用いた酵素センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483776B (zh) 2012-12-14 2015-05-11 Univ Ishou 沸石複合膜的製備方法
WO2025072258A1 (en) * 2023-09-26 2025-04-03 Nanovis, LLC Electrodeposition using ultrashort duration pulses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194298A (ja) * 1995-04-25 1997-07-29 Rikagaku Kenkyusho シリカ−界面活性剤ナノ複合体及びその製造方法
JP2003531083A (ja) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア メソ構造の無機酸化物材料のブロックポリマー処理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011390A2 (en) * 1990-01-25 1991-08-08 Mobil Oil Corp Synthetic porous crystalline material its synthesis and use
JPH08134697A (ja) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd 電気泳動を利用した抗菌性及び防カビ性のあるゼオライトのコーティング方法
EP0739856A2 (en) 1995-04-25 1996-10-30 The Institute Of Physical & Chemical Research A silica-surfactant nanocomposite and its production process
DE19639016A1 (de) * 1996-09-23 1998-03-26 Basf Ag Mesoporöses Siliciumdioxid, Verfahren zu seiner Herstellung und seiner Verwendung
JP3763117B2 (ja) * 1999-09-28 2006-04-05 独立行政法人科学技術振興機構 簡易でかつ再現性に富む自立ゼオライト膜の製造方法
JP3600856B2 (ja) * 2001-02-23 2004-12-15 独立行政法人産業技術総合研究所 メソポーラスSiO2薄膜を用いたSPV型(表面光電圧法)NOXガスセンサー
JP2002338229A (ja) * 2001-05-10 2002-11-27 Canon Inc シリカメソ構造体薄膜、メソポーラスシリカ薄膜、シリカメソ構造体薄膜の製造方法及びメソポーラスシリカ薄膜の製造方法
JP2003335516A (ja) * 2002-05-21 2003-11-25 Japan Fine Ceramics Center ポリケイ酸塩及びメソ多孔体並びにこれらの製造方法
JP4076799B2 (ja) * 2002-06-24 2008-04-16 株式会社アルバック 光触媒TiOxの成膜方法及びその装置
US7001669B2 (en) * 2002-12-23 2006-02-21 The Administration Of The Tulane Educational Fund Process for the preparation of metal-containing nanostructured films
JP2004345895A (ja) * 2003-05-21 2004-12-09 Ajinomoto Co Inc メソポーラスシリカ及びその製造方法
JP5093637B2 (ja) 2003-06-17 2012-12-12 独立行政法人産業技術総合研究所 ナノポーラス体及びその製造方法
KR100715296B1 (ko) * 2003-07-29 2007-05-08 가부시끼가이샤 도꾸야마 중세공성 실리카 미립자 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194298A (ja) * 1995-04-25 1997-07-29 Rikagaku Kenkyusho シリカ−界面活性剤ナノ複合体及びその製造方法
JP2003531083A (ja) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア メソ構造の無機酸化物材料のブロックポリマー処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAYAMA M. ET AL.: "Denki Eidoho ni oru Mesoporous Silica Biryushimaku Denkyoku no Sakusei to Denki Kagakuteki Tokusei", THE ELECTROCHEMICAL SOCIETY OF JAPAN TAIKAI KOEN YOSHISHU, vol. 67TH, 28 March 2000 (2000-03-28), pages 257, XP003004640 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047593A (ja) * 2007-08-21 2009-03-05 Sharp Corp 多孔質構造体を用いた特定ガス成分濃縮装置、及び特定ガス成分検出装置
JP2009107899A (ja) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology メソポーラスシリカ厚膜の製造方法
JP2011517439A (ja) * 2008-03-31 2011-06-09 イエフペ エネルジ ヌヴェル 特定のサイズの球状粒子から作られ、金属ナノ粒子をメソ構造化マトリクス中に捕捉されて有する無機材料
JP2010280121A (ja) * 2009-06-04 2010-12-16 Tokyo Univ Of Science セラミック系絶縁層と金属層との積層体及びその製造方法
JP2012026993A (ja) * 2010-07-28 2012-02-09 Funai Electric Advanced Applied Technology Research Institute Inc 酵素電極及び当該酵素電極を用いた酵素センサ

Also Published As

Publication number Publication date
US20090082201A1 (en) 2009-03-26
JPWO2006112505A1 (ja) 2008-12-11
JP5177378B2 (ja) 2013-04-03
US7781369B2 (en) 2010-08-24

Similar Documents

Publication Publication Date Title
Dong et al. Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes
JP5177378B2 (ja) メソポーラスシリカ厚膜及びその製造方法、吸着装置並びに吸着用膜
JP5621965B2 (ja) アルミナ複合分離膜及びその製造方法
Zhang et al. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation
Yu et al. Sono‐and Photochemical Routes for the Formation of Highly Dispersed Gold Nanoclusters in Mesoporous Titania Films
JP6203939B2 (ja) グラフェンを含む膜
JP6263387B2 (ja) カーボンナノホーンを含む緻密質材料及びその利用
Solodovnichenko et al. Carbon coated alumina nanofiber membranes for selective ion transport
Pinel et al. Preparation and utilization of molecularly imprinted silicas
CN101559951A (zh) 一种制备纳米级二氧化硅空心微球的方法
WO2003064081A1 (en) Micro-porous noble metal material and method for preparation thereof
JP6177132B2 (ja) カーボンナノホーンを含む多孔質材料及びその利用
KR20140046117A (ko) 금속착물형 탄소기공막 공기정화용 필터 및 그의 제조방법
Govan et al. Imogolite: a nanotubular aluminosilicate: synthesis, derivatives, analogues, and general and biological applications
El-Safty et al. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration
Meoto et al. Anodic alumina-templated synthesis of mesostructured silica membranes–current status and challenges
WO2006011616A1 (ja) 反応器
KR101276556B1 (ko) 고강도 탄소 나노 기공막 바이러스 필터 및 이의 제조방법
CN104418340B (zh) 一种分子筛膜的制备方法
Ding et al. An electrochemistry assisted approach for fast, low-cost and gram-scale synthesis of mesoporous silica nanoparticles
Lebedev et al. Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
JP5190925B2 (ja) メソポーラスシリカ厚膜の製造方法
Tan et al. Synthesis of inorganic and organic–inorganic hybrid hollow particles using a cationic surfactant with a partially fluorinated tail
Jeon et al. Colloids of holey Gd2O3 nanosheets converted from exfoliated gadolinium hydroxide layers
CN1262339C (zh) 一种新颖纳米SiO2分离膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528191

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11918894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745517

Country of ref document: EP

Kind code of ref document: A1