WO2006112093A1 - Planar lighting apparatus - Google Patents
Planar lighting apparatus Download PDFInfo
- Publication number
- WO2006112093A1 WO2006112093A1 PCT/JP2005/023764 JP2005023764W WO2006112093A1 WO 2006112093 A1 WO2006112093 A1 WO 2006112093A1 JP 2005023764 W JP2005023764 W JP 2005023764W WO 2006112093 A1 WO2006112093 A1 WO 2006112093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- guide plate
- light guide
- light
- planar
- Prior art date
Links
- 238000005286 illumination Methods 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 9
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/002—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
- G02B6/0021—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/003—Lens or lenticular sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0031—Reflecting element, sheet or layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
- H10H20/853—Encapsulations characterised by their shape
Definitions
- the present invention relates to a sidelight type planar illumination device, and more particularly to a planar illumination device that is used as an illumination means for a liquid crystal display device.
- Liquid crystal display devices are widely used as display means of today's electronic devices, but since this liquid crystal display device is not self-luminous, it is necessary to ensure visibility at night or in dark places.
- the lighting means is necessary.
- planar illumination devices have been used as such illumination means.
- a sidelight type planar lighting device is widely used.
- a sidelight type planar illumination device is composed of a light guide plate having translucency and a bar light source or one or more point light sources arranged on the side end face of the light guide plate.
- surface illumination devices in the form of a point light source capable of simplifying the drive circuit have been used due to an increase in applications to small electronic devices such as portable information terminals. Yes.
- FIG. 15 schematically shows the light guide plate 12 and a plurality of point light sources (LEDs) 14 arranged on the side end surfaces of the side light type planar illumination device 10.
- the planar illumination device 10 using the LED 14 shown in FIG. 15 has a light guide plate 12 illuminated by the LED 14 because the light emitted from the LED 14 to the light guide plate 12 has a certain directivity.
- the vicinity of the LED 14 is clearly divided into bright part A and buttocks B.
- An optical diffuse reflection pattern 12b is provided, or as shown in FIG.
- a semi-cylindrical recess 12c to be fitted is provided, and light from the LED chip 17 is emitted radially from a slit formed in the protrusion 16a (see, for example, Patent Document 1).
- LED18 like LED18 A lamp house 20 that covers the lamp 19 and controls the directivity of light by changing the height of the lamp house 20 and the inclination angle of the inclined surface 20a (for example, Patent Document 2). reference.).
- reference numeral 22 denotes a translucent resin for sealing the LED chip 19 in the lamp house 20.
- Patent Document 1 JP-A-10-199316 ([0023], [0026] to [0028])
- Patent Document 2 Japanese Patent Application Laid-Open No. 2002-217459 ([Claim 1], FIG. 8)
- FIGS. 19 (a) and 19 (b) show the locus of light rays emitted from the LED 14 when the reflectors 36 are provided on the upper and lower surfaces of the LED 14 in the planar illumination device 10 shown in FIG. .
- FIG. 19 (a) and 19 (b) show the locus of light rays emitted from the LED 14 when the reflectors 36 are provided on the upper and lower surfaces of the LED 14 in the planar illumination device 10 shown in FIG. .
- 19A shows the light guide plate 12 from the side surface 14b other than the surface 14a facing the light guide plate 12 of the LED 14 (hereinafter also referred to as “side surface in a direction parallel to the light guide plate” or simply “side surface”).
- the trajectory of the light beam emitted in the direction (hereinafter also referred to as “forward”) is schematically shown using the symbols LF1, LF2, and LF3.
- Each of these trajectories is a force with different emission angles from the side surface 14b of the LED.
- Light rays LF1 and LF2, whose emission angles are relatively gentle, are totally reflected by the surface of the light guide plate 12 and travel inside the light guide plate 12.
- the light beam LF3 having a relatively steep emission angle is reflected by the reflecting plate 36 and enters the light guide plate 12.
- FIG. 19 (b) shows the trajectory of light emitted from the side surface 14b of the LED in the direction opposite to the direction of the light guide plate 12 (hereinafter also referred to as “rear”).
- This is shown schematically using LR2.
- These loci LR1 and LR2 both reflect repeatedly between the reflector 36 and the side surfaces 14b and 14c of the LED, leak out to the rear of the LED 14, and do not enter the light guide plate 12. . Therefore, unless such leakage light is used effectively, it will be difficult to further increase the brightness and make the brightness uniform of the planar illumination device using LEDs.
- the light emitted forward as shown in FIG.
- the light beams LF2 and LF3 having a relatively steep emission angle have a relatively steep incident angle to the light guide plate 12.
- the percentage of light reaching the tip of the light guide plate 12 is low. It has been found that the planar lighting device using LEDs does not contribute sufficiently to further increasing the brightness and making the brightness uniform. .
- the present invention has been made in view of the above problems, and an object of the present invention is to further increase the luminance and make the luminance uniform in a planar lighting device in which a light guide plate is combined with an LED. There is.
- a planar illumination device is a planar illumination device including a plate-shaped light guide plate and an LED disposed on a side end surface of the light guide plate.
- a reflecting plate is disposed along a side surface in a direction parallel to the light guide plate, and a plurality of fine prisms having a triangular cross section with different inclination angles of the front and rear inclined surfaces are arranged on the surface of the reflecting plate facing the LED. It is characterized by being.
- a light beam emitted backward from the side surface of the LED can be reflected forward by the front inclined surface of the fine prism of the reflection plate and can enter the light guide plate.
- the incident angle to the light guide plate is relaxed and the percentage of light reaching the tip of the light guide plate is increased. be able to.
- the fine prism of the reflecting plate has a front inclined surface formed with a relatively gentle slope and a rear inclined surface formed with a relatively steep slope.
- the light beam emitted backward from the side surface of the LED is reflected forward by the relatively gently inclined front inclined surface, thereby reducing the incident angle to the light guide plate, and The ratio of light reaching the tip can be increased.
- an angle formed between the front inclined surface and a plane facing the surface on which the fine prisms of the reflector plate are formed is 20 ° or more and 50 ° or less, and the rear inclined surface and the opposite surface are formed.
- the angle formed with the plane of the shot plate is 70 ° or more and is not parallel to the front inclined surface. It is desirable that the angle is in the range.
- the productivity of the reflector is the highest.
- the ridge lines of the fine prism are formed concentrically, it is possible to cause the reflector to exhibit an optimum light beam angle conversion function over a wide angle in front of the LED.
- each ridgeline of the fine prism is formed in a concentric polygonal shape, it is possible to exert an effective angle conversion function of light rays on the reflector over a wide angle in front of the LED.
- the LED does not have a lamp house and the translucent resin that seals the LED chip is exposed, and the outer shape of the translucent resin is forward in the light emitting direction of the LED.
- a value obtained by dividing the protrusion height by the radius of the continuous curved surface is preferably in the range of 0.3 or more and 0.6 or less.
- the LED does not have a lamp house and the translucent resin that seals the LED chip is exposed, so that the thickness of the lamp house does not increase, and the surface illumination device can be made thinner. Will be promoted.
- the outer shape of the translucent resin since the outer shape of the translucent resin has the above-mentioned predetermined shape, it contributes to the uniformity of the luminance of the front illumination device and the luminance of the planar illumination device, which contributes to higher brightness of the planar illumination device. It is possible to balance the angle of the emitted light of the LED at a high level.
- the radius of the projecting portion constituted by the continuous curved surface is not less than a value obtained by multiplying the length when the LED chip is projected in a direction orthogonal to the light guide plate by 1.5. It is hoped that it will be formed to become.
- the LED chip is completely sealed in the translucent resin while the outer shape of the translucent resin has the predetermined shape.
- the present invention is configured as described above, it is possible to further increase the luminance and make the luminance uniform in the planar lighting device in which the light guide plate is combined with the LED.
- FIG. 1 is a perspective view showing an example in which a reflecting plate is arranged along a side surface in a direction parallel to an LED light guide plate in a planar lighting device according to an embodiment of the present invention; ) Is an exploded view, and (b) is a partially enlarged view of the reflector.
- FIG. 2 is a view A in FIG. 1 (b).
- FIG. 3 is a partially enlarged view of the reflector shown in FIGS. 1 and 2.
- FIG. 3 (a) shows a case where the angle formed between the rear inclined surface of the fine prism of the reflector and the plane of the reflector is a right angle.
- (B) shows the case where the angle is an obtuse angle.
- FIG. 4 is a diagram showing the trajectory of light emitted from the side surface of the LED in the planar illumination device of FIG. 1 and FIG. 2, (a) shows the trajectory of outgoing light, and (b) Indicates the trajectory of the outgoing light beam to the rear.
- FIG. 5 is a perspective view showing a state in which a reflector according to an application example is arranged along a side surface in a direction parallel to the LED light guide plate of the planar illumination device according to the embodiment of the present invention; a) is an exploded view, and (b) is a partially enlarged view of the reflector.
- FIG. 6 is an arrow C view of FIG. 5 (b).
- FIG. 7 shows a reflector according to still another example of the planar lighting device according to the embodiment of the present invention, together with a manufacturing procedure, (a) showing an initial step and (b) showing an intermediate step. , (C) shows the completed state.
- FIG. 8 is a schematic diagram showing an outer shape of a translucent resin for sealing an LED chip of an LED in the planar lighting device according to the embodiment of the present invention.
- FIG. 9 is an external perspective view showing a specific structural example of the LED shown in FIG.
- FIG. 10 is a cross-sectional view showing a specific structure example of the LED shown in FIG.
- FIG. 11 shows an LED chip sealed inside the LED shown in FIG. 8, where (a) is a plan view and (b) is a side view.
- FIG. 12 A table summarizing the half-value width ⁇ indicating the angle of emitted light and the forward emitted light quantity ratio ⁇ .
- FIG. 13 A graph based on the straight line in FIG.
- FIG. 14 is an explanatory diagram for explaining the full width at half maximum of FIGS. 12 and 13.
- FIG. 15 is a plan view showing a basic configuration of a planar illumination device using a conventional LED.
- FIG. 16 is a plan view showing a conventional planar lighting device in which measures are taken to obtain average brightness.
- FIG. 17 is a plan view showing a conventional planar lighting device in which measures are taken to obtain average brightness.
- FIG. 18 A plan view showing a conventional LED in which measures are taken to obtain an average brightness.
- FIG. 19 is a diagram showing a locus of light rays emitted from the side surface of the LED in the surface illumination device in the process of developing the surface illumination device according to the present invention.
- FIG. The trajectory is shown, and (b) shows the trajectory of the outgoing light beam backward.
- 10 planar illumination device
- 12 light guide plate
- 24 LED
- 24b side surface parallel to the light guide plate
- 38, 42, 46 reflector
- 38a facing surface of LED
- 38b Plane facing the surface on which the fine prism is formed
- 40, 44 fine prism
- 40a front inclined surface
- 40b rear inclined surface
- the planar illumination device includes a plate-shaped light guide plate 12 and LEDs 24 arranged on the side end surfaces of the light guide plate 12. It is. As shown in FIGS. 1 to 3, a reflector 38 is disposed along a side surface of the LED 24 in a direction parallel to the light guide plate 12. A plurality of fine prisms 40 having a triangular cross section with different inclination angles of the front and rear inclined surfaces are arranged on the surface 38a of the reflecting plate 38 facing the LED 24. The pitch of the fine prism 40 is within the range where there is no adverse effect due to light diffraction. Set as appropriate. In the example shown in FIGS. 1 and 2, each ridgeline of the fine prism 40 of the reflecting plate 38 is formed in parallel and linear.
- the LED 24 used here does not have a lamp house as shown in FIGS. 8 to 10 and has a structure exposed as a translucent resin force protrusion 26 that seals the LED chip 25. (Note that LED24 will be explained later.) Further, a notch portion 12d that follows the outer shape of the protruding portion 26 is formed on the side end surface 12a of the light guide plate 12 facing the LED 24.
- the fine prism 40 of the reflector 38 is formed such that the front inclined surface 40a has a relatively gentle inclination and the rear inclined surface 40b has a relatively steep inclination.
- the angle ⁇ 1 formed between the front inclined surface 40a and the plane 38b facing the surface 38a on which the fine prism 40 of the reflecting plate 38 is formed is preferably 20 ° or more and 50 ° or less.
- the angle ⁇ 2 formed by the rear inclined surface 40b and the flat surface 38b of the reflecting plate 38 is preferably 70 ° or more, and is formed in an angle that is not parallel to the front inclined surface 40a.
- FIG. 3A shows a case where ⁇ 2 is a right angle, and it becomes easy to form the fine prism 40 on the reflecting plate 38 using a mold.
- the example in Fig. 3 (b) shows the case where ⁇ 2 is an obtuse angle.
- the prism shape of Fig. 3 (b) is molded with a mold, the slide insert slides in the direction of arrow B, i.e., the direction in which the negatively inclined rear inclined surface 40b can be removed. It is possible to perform molding by using a mold with a metal plate or by using an elastically deformable material such as rubber as the material of the reflector 38 and by performing die cutting of the reflector 38 by so-called ⁇ reasoning '' It becomes.
- the base of the reflector 38 is made of PET (Polyethylene Terepht halate) and has a thickness of 0.05 mm.
- the fine prism 40 is a so-called 2p method (injecting a transparent liquid resin that can be controlled arbitrarily at room temperature, such as a UV curable resin, into a prism molding die and curing it integrally with the substrate. It can be formed by the manufacturing method. It is also possible to directly transfer the shape of the fine prism 40 to the thermoplastic resin film by a hot press mold in which the prism shape is formed.
- the anti-inclined surface of the reflecting plate 38 has a high anti-inclined surface such as aluminum or silver on the prism forming surface. It may also be configured by applying a white or milky white paint that may be formed by forming a metal thin film having a high emissivity. Furthermore, it is also possible to combine the above-described structures, in which the anti-inclined surface of the reflecting plate 38 may be formed by an increased reflection film formed by laminating a dielectric coating film. In any case, since the ridge lines of the fine prisms 40 of the reflector 38 are formed in parallel and straight lines (see FIG. 1 (b)), a reflector having a large area is formed in the manufacturing process. The reflector 38 can be mass-produced by cutting it out to a required size.
- the light guide plate 12 is made of polycarbonate, has a width of 30 mm, a length of 40 mm, and a thickness of 0.6 mm. (Scattering pattern) is formed. Further, the entire lower surface of the light guide plate 12 (the surface from which light is not emitted) is provided with a reflector made of a reflective material such as white resin or silver plating. Furthermore, the light diffusion plate and two brightness enhancement films with the prism directions orthogonal to each other are overlaid on the upper surface of the light guide plate 12 (the surface from which light is emitted), so that the backlight is Composed.
- the reflector 38 only needs to have at least an area that covers the side surfaces 24b and 24c of the LED 24, but may be formed into a simple rectangle as illustrated in consideration of productivity and the like.
- the reflector, diffuser, and brightness enhancement film stacked on the light guide plate 12 as described above may be installed on the reflector 38 if there is a demand to reduce the thickness of the entire planar lighting device 10. If the demand for power is eased, the notch is not formed in the installation part of the reflector 38, but it is installed on the reflector 38.
- FIG. 4 shows the locus of light rays emitted from the LED 24 in the planar illumination device 10 in which the reflectors 38 are provided on the upper and lower surfaces of the LED 24 according to the embodiment of the present invention.
- FIG. 19 corresponds to FIG. 19 showing a light reflection locus of the planar illumination device in the process of developing the planar illumination device according to the invention.
- the surface provided with the fine prism 40 is opposed to each of the side surfaces 24b and 24c of the LED 24.
- the reflection plate 38 is arranged so as to.
- the outgoing light beams LF4 and LF5 emitted from the side surface 24b of the LED 24 have a relatively steep angle.
- the angle of light incident on the light guide plate 12 becomes relatively gradual because the angle of the light beam is reflected by the inclined surface 40a (see FIG. 3) and converted.
- the forward angle light emitted from the side surface 24c of the LED 24 is also subjected to the same angle conversion action. It will also be understood that light rays emitted in a direction perpendicular to the side surfaces 24b and 24c of the LED 24 are subjected to the same angle conversion action.
- the light beam LR3 emitted backward from the side surface 24b of the LED 24 is also reflected by the front inclined surface 40a (see Fig. 3) of the fine prism 40, and The light is incident on the light guide plate 12 by changing the angle.
- illustration is omitted, it will be apparent that the backward angle rays emitted from the side surface 24c of the LED 24 are also subjected to the same angle conversion action.
- FIG. 5 and FIG. 6 show application examples of the reflector 38.
- the ridge line forces of the fine prisms 44 of the reflector 42 are formed concentrically.
- the relationship between the slanted front and back slopes of the fine prism 44 and the flat surface 42b of the reflector 42 is the same as that of the reflector 38 shown in FIGS. It is desirable that the center of the concentric circle of the fine prism 44 coincides with the LED chip 25 of the LED 24.
- FIG. 7 shows another application example of the reflector.
- the reflector 46 shown in FIG. 7 (c) is obtained by cutting out a plurality of triangular pieces 48 from the reflector 38 shown in FIG. 7 (a) as shown in FIG. 7 (b), as shown in FIG. 7 (c). In this manner, each triangular piece 48 is fixed in a fan shape, and each ridgeline of the fine prism 40 is formed in a concentric polygonal shape. Further, the reflector 46 in FIG. 7 (c) may be further cut into a rectangle if necessary.
- the relationship between the front and rear inclined surfaces of the fine prism 40 and the plane of the reflecting plate 46 is the same as that of the reflecting plate 38 shown in FIGS. 1 to 4, and detailed description thereof is omitted. Also in this example, it is desirable that the center of the concentric polygon of the fine prism 40 is coincident with the LED chip 25 of the LED 24.
- the outer shape of the translucent resin 26 has a protruding portion 28 formed of a continuous curved surface protruding forward in the light emitting direction of the LED 24. Also illustrated In this example, the protrusion 28 is perpendicular to the light guide plate in the direction parallel to the light guide plate (the direction parallel to the paper surface of the light guide plate 12 shown in FIG. 15) (the paper surface of the light guide plate 12 shown in FIG. 15). And a base 29 made of a rectangular parallelepiped translucent resin.
- the continuous curved surface constituting the protruding portion 28 has a constant radius R in the illustrated example.
- the protrusion height of the protrusion 28 protrusion height from the base 29
- the range is 0.3 ⁇ H /R ⁇ 0.6, more preferably 0.4 ⁇ H / R ⁇ 0 It is formed to be in the range of 5.
- the radius of the protrusion 28 is the length when the LED chip 25 is projected in a direction perpendicular to the light guide plate (the length in the direction parallel to the longitudinal direction of the LED 24. It is formed so that it is equal to or greater than 1.5 multiplied by 1.5 (1.5X ⁇ R).
- the translucent resin 26 has a peripheral force around the LED chip 25.
- a layer 30 mixed with yttrium-aluminum-garnet (YAG) fine particles activated by cerium, which is a phosphor emitting yellow light, in a hard silicone resin, and its surroundings. It has a structure in which a transparent hard silicone resin layer 32 is added to the (upper layer). Therefore, in the illustrated example, the protruding portion 28 is formed in the transparent hard silicone resin layer 32.
- the LED chip 25 has a light emitting layer 25b made of a nitride compound semiconductor such as GaN or GaAIN formed on a sapphire substrate 25a as shown in FIG. 11 (blue light emitting element). Is used. Then, as shown in FIG.
- the LED chip 25 is bonded onto a substrate (PCB) 34 having an electrode portion, and an anode, a force sword electrode formed on the LED chip 25 and a wiring pattern on the substrate 34 are connected.
- PCB substrate
- It has a structure connected with gold wire of ⁇ 20 / im. 9 to 11 show examples of specific dimensions of the LED 24 and the LED chip 25 (unit: mm).
- the LED 24 having the above structure, part of the blue light emission of the LED chip 25 is absorbed by the YAG fine particles (phosphor) of the YAG fine particle mixed layer 30 and converted to a longer wavelength than the light emission of the LED chip 25.
- the LED chip 25 emits a pseudo white light by causing a color mixture with the blue light emission.
- the YAG fine particle mixed layer 30 of the translucent resin 26 is not limited to the structure in which the transparent layer 32 is completely separated into two layers as shown in FIGS. 9 and 10, but at least around the blue light emitting LED chip 25. It is also possible to adopt a structure in which only the YAG fine particle mixed layer 30 is formed and the entire periphery is covered with the transparent layer 32.
- the translucent resin 26 may be a thermosetting transparent resin, such as a transparent epoxy resin, in addition to the hard silicone resin, as long as it is a transparent resin having heat resistance.
- a thermosetting transparent resin such as a transparent epoxy resin
- highly heat-resistant thermoplastic resins and inorganic materials such as glass can be applied as necessary.
- FIG. 12 shows a half-value width indicating the angle of the emitted light of the LED 24 by variously changing the H / R value of the LED 24 used in the planar lighting device according to the embodiment of the present invention.
- the changes in ⁇ and the forward emission light quantity ratio ⁇ are summarized in a chart.
- FIG. 13 is a graph based on the values in FIG.
- the angle of the emitted light when the emission intensity 1 / 2P is obtained is called the “half-value width” and is a value generally used as an index of the emitted light distribution.
- the “front emission light quantity ratio” contributes to higher brightness of the planar lighting device that is emitted in front of the LED (including the upper and lower spaces) out of the omnidirectional light emitted from the LED. This is a value that represents the ratio of the former when classified into light and light that is emitted behind (including the space above and below) the LED and does not contribute to the high brightness of the planar lighting device.
- the LED used in the planar illumination device according to the embodiment of the present invention is not limited to the LED 24 shown in FIG. 8 and FIG. It will be clear that the type of LED is also applicable.
- light guide plate 12 LED24 Needless to say, by providing a light incident prism (optical diffuse reflection pattern) on the opposite surface, the light emission distribution of light incident from the LED to the light guide plate can be controlled more precisely. That is.
- the light beam (LR3) emitted backward from the side surfaces 24b and 24c of the LED 24 is reflected by the front inclined surface 40a (FIG. 3) of the fine prism 40 of the reflector 38. It is possible to reflect the light forward and enter the light guide plate 12.
- the light beams (LF4, LF5) emitted forward from the side surfaces 24b, 24c of the LED 24 are also reflected to the front inclined surface 40a to the light guide plate 12.
- the light incident angle of the light guide plate 12 can be relaxed, and the proportion of light reaching the tip of the light guide plate 12 can be increased.
- the front inclined surface 40a has a relatively gentle inclination
- the rear inclined surface 40b has a relatively steep inclination, so that the side surfaces 24b, 24c of the LED 24 are formed.
- Force The light beam (LR3) emitted backward is reflected forward by the relatively gently inclined front inclined surface 40a, so that the light incident angle to the light guide plate 12 is relaxed, and the tip of the light guide plate 12 is The rate of light reaching up to can be increased.
- the light S emitted from the side surfaces 24b and 24c of the LED 24 forward is also a force S to increase the effect of relaxing the incident angle on the light guide plate 12.
- the reflecting plate is formed at an angular force of 20 ° or more and 50 ° or less between the front inclined surface 40a and the plane 38b facing the surface on which the fine prism 40 of the reflector 38 is formed, and the rear inclined surface 40b. Reflecting while considering the productivity of the reflecting plate, which is desired to be formed at an angle of 70 ° or more with respect to the flat surface 38b of the reflecting plate 38 and not parallel to the front inclined surface 40a. It becomes possible to exhibit the light beam angle conversion action required for the plate.
- each ridgeline of the fine prism 40 of the reflector 46 is formed in a concentric polygonal shape. It is possible to cause the reflecting plate 46 to exhibit an effective angle conversion effect of light over a wide angle in front.
- the LED 24 does not have a lamp house, and since the translucent resin 26 that seals the LED chip 25 is exposed, the thickness of the lamp house does not increase. Thinning of the equipment will be promoted.
- the outer shape of the translucent resin has a shape that satisfies 0.3 ⁇ H / R ⁇ 0.6, the ratio of the amount of light emitted from the front of the LED that contributes to higher brightness of the planar lighting device and Therefore, it is possible to balance the half-value width ⁇ of the LED, which contributes to uniform brightness of the planar lighting device, at a high level.
- the radius R force of the protruding portion 28 of the LED 24 is formed to satisfy 1.5X ⁇ R, so that the LED chip 25 is not exposed from the translucent resin 26. It is completely sealed. Therefore, it is possible to reliably increase the yield of LED24 and reduce the cost of the planar lighting device.
- a notch 12d is formed on the side end surface 12a of the light guide plate 12 facing the LED 24 so as to follow the outer shape of the projecting portion 28, the translucent resin 26 of the LED 24 and the light guide plate 12
- the light emission distribution of the light entering the light guide plate from the LED 24 can be made equal to the light emission distribution of the LED alone, contributing to the uniform brightness of the planar lighting device. That power S is said.
- the continuous curved surface constituting the protruding portion 28 of the LED 24 has a constant radius R as shown in the figure.
- the protruding portion 28 has a constant radius. Even if it is configured by a spherical surface or the radius R is gradually changed from the top part of the projecting part 28 toward the base part 29, the above-described effects can be obtained.
- planar illumination device according to the embodiment of the present invention can be applied to so-called backlights and front lights.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Abstract
Description
明 細 書 Specification
面状照明装置 Surface lighting device
技術分野 Technical field
[0001] 本発明は、サイドライト方式の面状照明装置に関し、特に、液晶表示装置の照明手 段として用レ、られる面状照明装置に関するものである。 TECHNICAL FIELD [0001] The present invention relates to a sidelight type planar illumination device, and more particularly to a planar illumination device that is used as an illumination means for a liquid crystal display device.
背景技術 Background art
[0002] 今日の電子機器の表示手段等には液晶表示装置が広く用いられているが、この液 晶表示装置は自発光型ではないことから、夜間や暗所での視認性を確保するための 照明手段が必要となる。かかる照明手段として、従来から、面状照明装置が用いられ ている。 [0002] Liquid crystal display devices are widely used as display means of today's electronic devices, but since this liquid crystal display device is not self-luminous, it is necessary to ensure visibility at night or in dark places. The lighting means is necessary. Conventionally, planar illumination devices have been used as such illumination means.
また、面状照明装置の一形態として、サイドライト方式の面状照明装置が広く用いら れている。サイドライト方式の面状照明装置は、透光性を有する導光板と、該導光板 の側端面に配置された棒状光源もしくは 1つないし複数の点状光源を基本要素とし て構成されている。そして、近年の傾向では、携帯情報端末等の小型の電子機器へ の応用例の増加から、駆動回路の簡略化を図ることが可能な点状光源を備える形式 の面状照明装置が用いられている。図 15には、サイドライト方式の面状照明装置 10 の、導光板 12と、導光板 12の側端面に配置された複数の点状光源 (LED) 14とを模 式的に示している。 Further, as one form of the planar lighting device, a sidelight type planar lighting device is widely used. A sidelight type planar illumination device is composed of a light guide plate having translucency and a bar light source or one or more point light sources arranged on the side end face of the light guide plate. In recent years, surface illumination devices in the form of a point light source capable of simplifying the drive circuit have been used due to an increase in applications to small electronic devices such as portable information terminals. Yes. FIG. 15 schematically shows the light guide plate 12 and a plurality of point light sources (LEDs) 14 arranged on the side end surfaces of the side light type planar illumination device 10.
[0003] ところで、図 15に示す LED14を用いた面状照明装置 10は、 LED14から導光板 1 2へと照射される光が一定の指向性を持っために、 LED14によって照らされる導光 板 12の LED14の近傍は、明部 Aと喑部 Bとに明確に分かれてしまう。この明部と喑 部との差を解消して平均的な明るさを得るための対策として、図 16に示すように、導 光板 12の LED14との対向面 12aに、微細なプリズム列等の光学的乱反射パターン 12bを設けたり、図 17に示すように、外装部材の一部が半円柱状の突出部 16aとな つた LED16を用レ、、かつ、導光板 12には、突出部 16aと嵌合する半円筒状の凹部 1 2cを設け、突出部 16aに形成したスリットから、 LEDチップ 17の光を放射状に出射す るもの(例えば、特許文献 1参照。)、さらには、図 18に示す LED18のように、 LEDチ ップ 19を覆うランプハウス 20を備え、ランプハウス 20の高さや、傾斜面 20aの傾斜角 度を変更することによって、光の指向性を制御するもの等が挙げられる(例えば、特 許文献 2参照。)。なお、図 18において、符号 22は、ランプハウス 20内に LEDチップ 19を封止するための透光性樹脂である。 By the way, the planar illumination device 10 using the LED 14 shown in FIG. 15 has a light guide plate 12 illuminated by the LED 14 because the light emitted from the LED 14 to the light guide plate 12 has a certain directivity. The vicinity of the LED 14 is clearly divided into bright part A and buttocks B. As a measure to eliminate the difference between the bright part and the bright part and to obtain an average brightness, as shown in FIG. 16, on the surface 12a of the light guide plate 12 facing the LED 14, there is a fine prism row or the like. An optical diffuse reflection pattern 12b is provided, or as shown in FIG. 17, the LED 16 in which a part of the exterior member is a semi-cylindrical protruding portion 16a is used, and the light guide plate 12 includes the protruding portion 16a. A semi-cylindrical recess 12c to be fitted is provided, and light from the LED chip 17 is emitted radially from a slit formed in the protrusion 16a (see, for example, Patent Document 1). LED18 like LED18 A lamp house 20 that covers the lamp 19 and controls the directivity of light by changing the height of the lamp house 20 and the inclination angle of the inclined surface 20a (for example, Patent Document 2). reference.). In FIG. 18, reference numeral 22 denotes a translucent resin for sealing the LED chip 19 in the lamp house 20.
[0004] 特許文献 1 :特開平 10— 199316号公報(〔0023〕、〔0026〕〜〔0028〕) [0004] Patent Document 1: JP-A-10-199316 ([0023], [0026] to [0028])
特許文献 2:特開 2002— 217459公報(〔請求項 1〕、図 8) Patent Document 2: Japanese Patent Application Laid-Open No. 2002-217459 ([Claim 1], FIG. 8)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 本発明者は、面状照明装置における、前述のごとき明部と暗部との差を解消して平 均的な明るさを得るための対策をさらに検討し、 LED14の上下面からの漏れ光を反 射する反射板を、 LEDの上下面の少なくとも一方に配置することにより、 LED14力、ら の出射光を余すことなく導光板 12へと入光させる手法を発明するに至った。そして、 その開発過程で、反射板を用いる場合の課題が明らかとなった。図 19 (a)、(b)には 、図 15に示す面状照明装置 10において、 LED14の上下面に反射板 36を設けた場 合における、 LED14から出射される光線の軌跡を示している。図 19 (a)は、 LED 14 の導光板 12と対向する面 14a以外の側面 14b (以下、「導光板と平行な方向の側面」 または、単に「側面」ともいう。)から、導光板 12の方向(以下、「前方」ともいう。)へと 出射された光線の軌跡を、符号 LF1、 LF2、 LF3を用いて模式的に示している。これ らの各軌跡は、 LEDの側面 14bからの出射角度は異なる力 出射角度が比較的緩 や力な光線 LF1、 LF2は、導光板 12の表面によって全反射されて導光板 12の内部 を進み、出射角度が比較的急な光線 LF3は、反射板 36によって反射されることによ り、導光板 12へと入光する。 [0005] The present inventor further studied a measure for obtaining an average brightness by eliminating the difference between the bright part and the dark part as described above in the planar lighting device, and from the upper and lower surfaces of the LED 14. The inventors have invented a method for allowing the LED 14 force and other light beams to enter the light guide plate 12 without leaving the reflectors by reflecting the leaking light on at least one of the upper and lower surfaces of the LED. In the course of its development, the challenges of using reflectors became clear. FIGS. 19 (a) and 19 (b) show the locus of light rays emitted from the LED 14 when the reflectors 36 are provided on the upper and lower surfaces of the LED 14 in the planar illumination device 10 shown in FIG. . FIG. 19A shows the light guide plate 12 from the side surface 14b other than the surface 14a facing the light guide plate 12 of the LED 14 (hereinafter also referred to as “side surface in a direction parallel to the light guide plate” or simply “side surface”). The trajectory of the light beam emitted in the direction (hereinafter also referred to as “forward”) is schematically shown using the symbols LF1, LF2, and LF3. Each of these trajectories is a force with different emission angles from the side surface 14b of the LED. Light rays LF1 and LF2, whose emission angles are relatively gentle, are totally reflected by the surface of the light guide plate 12 and travel inside the light guide plate 12. The light beam LF3 having a relatively steep emission angle is reflected by the reflecting plate 36 and enters the light guide plate 12.
[0006] 一方、図 19 (b)は、 LEDの側面 14bからから導光板 12の方向とは逆方向(以下、「 後方」ともいう。)へと出射された光線の軌跡を、符号 LR1、 LR2を用いて模式的に示 している。これらの軌跡 LR1、 LR2は、何れも、反射板 36と LEDの側面 14b、 14cと の間で反射を繰り返し、 LED14の後方へと漏れ出し、導光板 12へと入光することは なレ、。したがって、このような漏れ光を有効に活用しない限り、 LEDを用いた面状照 明装置の、更なる高輝度化、輝度の均一化を図ることは困難となる。 また、図 19 (a)に示す前方へと出射する光についても、出射角度が比較的急な光 線 LF2、 LF3は、導光板 12への入光角度が比較的急角度となることから、導光板 12 の先端部まで到達する光の割合は低ぐ LEDを用いた面状照明装置の、更なる高輝 度化、輝度の均一化に十分に貢献していないことが把握されるに至った。 [0006] On the other hand, FIG. 19 (b) shows the trajectory of light emitted from the side surface 14b of the LED in the direction opposite to the direction of the light guide plate 12 (hereinafter also referred to as “rear”). This is shown schematically using LR2. These loci LR1 and LR2 both reflect repeatedly between the reflector 36 and the side surfaces 14b and 14c of the LED, leak out to the rear of the LED 14, and do not enter the light guide plate 12. . Therefore, unless such leakage light is used effectively, it will be difficult to further increase the brightness and make the brightness uniform of the planar illumination device using LEDs. As for the light emitted forward as shown in FIG. 19 (a), the light beams LF2 and LF3 having a relatively steep emission angle have a relatively steep incident angle to the light guide plate 12. The percentage of light reaching the tip of the light guide plate 12 is low. It has been found that the planar lighting device using LEDs does not contribute sufficiently to further increasing the brightness and making the brightness uniform. .
[0007] 本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、 LED に導光板を組み合わせた面状照明装置の、更なる高輝度化、輝度の均一化を図る ことにある。 [0007] The present invention has been made in view of the above problems, and an object of the present invention is to further increase the luminance and make the luminance uniform in a planar lighting device in which a light guide plate is combined with an LED. There is.
課題を解決するための手段 Means for solving the problem
[0008] 上記課題を解決するための、本発明に係る面状照明装置は、板状の導光板と、該 導光板の側端面に配置される LEDとを備える面状照明装置において、 LEDの前記 導光板と平行な方向の側面に沿って、反射板が配置され、該反射板の前記 LEDと の対向面に、前後傾斜面の傾斜角度が異なる断面三角形状の微細プリズムが、複 数配列されていることを特徴とするものである。 [0008] In order to solve the above problems, a planar illumination device according to the present invention is a planar illumination device including a plate-shaped light guide plate and an LED disposed on a side end surface of the light guide plate. A reflecting plate is disposed along a side surface in a direction parallel to the light guide plate, and a plurality of fine prisms having a triangular cross section with different inclination angles of the front and rear inclined surfaces are arranged on the surface of the reflecting plate facing the LED. It is characterized by being.
本発明によれば、 LEDの側面から後方へと出射された光線を、反射板の微細プリ ズムの前方傾斜面によって前方へと反射させ、導光板へと入光させることが可能とな る。また、 LEDの側面から前方へと出射された光線についても、前方傾斜面に反射 させることで、導光板への入光角度を緩和し、導光板の先端部まで到達する光の割 合を高めることができる。 According to the present invention, a light beam emitted backward from the side surface of the LED can be reflected forward by the front inclined surface of the fine prism of the reflection plate and can enter the light guide plate. In addition, by reflecting the light emitted from the side of the LED forward to the front inclined surface, the incident angle to the light guide plate is relaxed and the percentage of light reaching the tip of the light guide plate is increased. be able to.
[0009] また、本発明においては、前記反射板の微細プリズムは、前方傾斜面が比較的緩 傾斜であり、後方傾斜面が比較的急傾斜に形成されていることが望ましい。 [0009] In the present invention, it is desirable that the fine prism of the reflecting plate has a front inclined surface formed with a relatively gentle slope and a rear inclined surface formed with a relatively steep slope.
この構成によれば、 LEDの側面から後方へと出射された光線を、比較的緩傾斜の 前方傾斜面によって前方へと反射させることにより、導光板への入光角度を緩和し、 導光板の先端部まで到達する光の割合を高めることができる。また、 LEDの側面から 前方へと出射された光線についても、導光板への入光角度の緩和作用をより大きく すること力 S可言 となる。 According to this configuration, the light beam emitted backward from the side surface of the LED is reflected forward by the relatively gently inclined front inclined surface, thereby reducing the incident angle to the light guide plate, and The ratio of light reaching the tip can be increased. In addition, for the light emitted forward from the side of the LED, it is a force S to increase the relaxation effect of the incident angle to the light guide plate.
[0010] また、前記前方傾斜面と、前記反射板の微細プリズムが形成された面に対向する 平面とのなす角度が、 20° 以上 50° 以下に形成され、前記後方傾斜面と、前記反 射板の平面とのなす角度が、 70° 以上でかつ前記前方傾斜面とは平行とならない 範囲の角度に形成されていることが望ましい。 [0010] In addition, an angle formed between the front inclined surface and a plane facing the surface on which the fine prisms of the reflector plate are formed is 20 ° or more and 50 ° or less, and the rear inclined surface and the opposite surface are formed. The angle formed with the plane of the shot plate is 70 ° or more and is not parallel to the front inclined surface. It is desirable that the angle is in the range.
この構成により、反射板の生産性を考慮しつつ、反射板に必要な光線の角度変換 作用を発揮させることが可能となる。 With this configuration, it is possible to exhibit the angle conversion action of the light beam necessary for the reflecting plate while considering the productivity of the reflecting plate.
[0011] なお、前記微細プリズムの各稜線が、平行かつ直線状に形成されている場合には [0011] In addition, when each ridgeline of the fine prism is formed in parallel and linear
、反射板の生産性が最も高レ、ものとなる。また、前記微細プリズムの各稜線が、同心 円状に形成されている場合には、 LEDの前方の広角度にわたり、反射板に最適の 光線の角度変換作用を発揮させることが可能となる。さらに、前記微細プリズムの各 稜線が、同心多角形状に形成されていることとしても、 LEDの前方の広角度にわたり 、反射板に有効な光線の角度変換作用を発揮させることが可能となる。 The productivity of the reflector is the highest. In addition, when the ridge lines of the fine prism are formed concentrically, it is possible to cause the reflector to exhibit an optimum light beam angle conversion function over a wide angle in front of the LED. Furthermore, even if each ridgeline of the fine prism is formed in a concentric polygonal shape, it is possible to exert an effective angle conversion function of light rays on the reflector over a wide angle in front of the LED.
[0012] なお、本発明において、前記 LEDはランプハウスを持たず LEDチップを封止する 透光性樹脂が露出しており、該透光性樹脂の外形が、該 LEDの光出射方向前方へ と突出する連続曲面で構成され、かつ、該連続曲面の半径でその突出高さを除した 値が、 0. 3以上 0. 6以下の範囲となるように形成されていることが望ましい。 [0012] In the present invention, the LED does not have a lamp house and the translucent resin that seals the LED chip is exposed, and the outer shape of the translucent resin is forward in the light emitting direction of the LED. And a value obtained by dividing the protrusion height by the radius of the continuous curved surface is preferably in the range of 0.3 or more and 0.6 or less.
本発明によれば、 LEDはランプハウスを持たず LEDチップを封止する透光性樹脂 が露出していることで、ランプハウス分の厚みの増加が生じず、面状照明装置の薄型 化が促進されることとなる。しかも、透光性樹脂の外形が上記所定の形状を有するこ とで、面状照明装置の高輝度化に寄与する LEDの前方出射光量比と、面状照明装 置の輝度の均一化に寄与する LEDの出射光の角度とを、高い次元でバランスさせる ことが可能となる。 According to the present invention, the LED does not have a lamp house and the translucent resin that seals the LED chip is exposed, so that the thickness of the lamp house does not increase, and the surface illumination device can be made thinner. Will be promoted. In addition, since the outer shape of the translucent resin has the above-mentioned predetermined shape, it contributes to the uniformity of the luminance of the front illumination device and the luminance of the planar illumination device, which contributes to higher brightness of the planar illumination device. It is possible to balance the angle of the emitted light of the LED at a high level.
[0013] また、本発明においては、前記連続曲面で構成される突出部の半径が、前記 LED チップを前記導光板と直交する方向に投影した場合の長さに 1. 5を乗じた値以上と なるように形成されてレ、ることが望ましレ、。 [0013] In the present invention, the radius of the projecting portion constituted by the continuous curved surface is not less than a value obtained by multiplying the length when the LED chip is projected in a direction orthogonal to the light guide plate by 1.5. It is hoped that it will be formed to become.
本発明によれば、透光性樹脂の外形が上記所定の形状を備えつつ、 LEDチップ が透光性樹脂内に完全に封止されたものとなる。 According to the present invention, the LED chip is completely sealed in the translucent resin while the outer shape of the translucent resin has the predetermined shape.
[0014] さらに、前記導光板の、前記 LEDと対向する側端面に、前記突出部の外形に倣つ た切欠き部が形成されていることとすれば、上記所定の外形形状を有する LEDの透 光性樹脂と導光板とが密着し、 LEDから導光板へと入光した光の発光分布を、 LED 単体での光の発光分布と同等にすることが可能となり、面状照明装置の輝度の均一 化に寄与することとなる。 [0014] Furthermore, if a notch portion is formed on the side end surface of the light guide plate facing the LED, the cutout portion following the outer shape of the projecting portion, the LED having the predetermined outer shape is formed. The translucent resin and the light guide plate are in close contact with each other, making it possible to make the light emission distribution of light entering the light guide plate from the LED equal to the light emission distribution of the LED alone. Uniform Will contribute.
発明の効果 The invention's effect
[0015] 本発明はこのように構成したので、 LEDに導光板を組み合わせた面状照明装置の 、更なる高輝度化、輝度の均一化を図ることが可能となる。 [0015] Since the present invention is configured as described above, it is possible to further increase the luminance and make the luminance uniform in the planar lighting device in which the light guide plate is combined with the LED.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]本発明の実施の形態に係る面状照明装置の、 LEDの導光板と平行な方向の 側面に沿って、反射板を配置した例を示す斜視図であり、(a)は分解図、(b)は反射 板の一部拡大図である。 FIG. 1 is a perspective view showing an example in which a reflecting plate is arranged along a side surface in a direction parallel to an LED light guide plate in a planar lighting device according to an embodiment of the present invention; ) Is an exploded view, and (b) is a partially enlarged view of the reflector.
[図 2]図 1 (b)の矢視 A図である。 FIG. 2 is a view A in FIG. 1 (b).
[図 3]図 1、図 2に示す反射板の部分拡大図であり、(a)は反射板の微細プリズムの後 方傾斜面と、反射板の平面とのなす角度が直角の場合を示しており、(b)は、前記角 度が鈍角の場合を示してレ、る。 FIG. 3 is a partially enlarged view of the reflector shown in FIGS. 1 and 2. FIG. 3 (a) shows a case where the angle formed between the rear inclined surface of the fine prism of the reflector and the plane of the reflector is a right angle. (B) shows the case where the angle is an obtuse angle.
[図 4]図 1、図 2の面状照明装置において、 LEDの側面から出射される光線の軌跡を 示した図であり、(a)は前方への出射光線の軌跡を示し、(b)は後方への出射光線の 軌跡を示している。 FIG. 4 is a diagram showing the trajectory of light emitted from the side surface of the LED in the planar illumination device of FIG. 1 and FIG. 2, (a) shows the trajectory of outgoing light, and (b) Indicates the trajectory of the outgoing light beam to the rear.
[図 5]本発明の実施の形態に係る面状照明装置の、 LEDの導光板と平行な方向の 側面に沿って、応用例に係る反射板を配置した状態を示す斜視図であり、(a)は分 解図、(b)は反射板の一部拡大図である。 FIG. 5 is a perspective view showing a state in which a reflector according to an application example is arranged along a side surface in a direction parallel to the LED light guide plate of the planar illumination device according to the embodiment of the present invention; a) is an exploded view, and (b) is a partially enlarged view of the reflector.
[図 6]図 5 (b)の矢視 C図である。 FIG. 6 is an arrow C view of FIG. 5 (b).
[図 7]本発明の実施の形態に係る面状照明装置の、更に別例に係る反射板を、製造 手順と共に示すものであり、(a)は初期工程を、(b)は中間工程を、(c)は完成状態を 示している。 FIG. 7 shows a reflector according to still another example of the planar lighting device according to the embodiment of the present invention, together with a manufacturing procedure, (a) showing an initial step and (b) showing an intermediate step. , (C) shows the completed state.
[図 8]本発明の実施の形態に係る面状照明装置の、 LEDの LEDチップを封止する 透光性樹脂の外形を示す模式図である。 FIG. 8 is a schematic diagram showing an outer shape of a translucent resin for sealing an LED chip of an LED in the planar lighting device according to the embodiment of the present invention.
[図 9]図 8に示す LEDの具体的構造例を示す外観斜視図である。 FIG. 9 is an external perspective view showing a specific structural example of the LED shown in FIG.
[図 10]図 8に示す LEDの具体的構造例を示す断面図である。 10 is a cross-sectional view showing a specific structure example of the LED shown in FIG.
[図 11]図 8に示す LEDの内部に封止された LEDチップを示すものであり、(a)は平 面図、(b)は側面図である。 [図 12]出射光の角度を示す半値幅 Θと、前方出射光量比 ξとをまとめた図表である [図 13]図 12のィ直に基くグラフである。 FIG. 11 shows an LED chip sealed inside the LED shown in FIG. 8, where (a) is a plan view and (b) is a side view. [FIG. 12] A table summarizing the half-value width Θ indicating the angle of emitted light and the forward emitted light quantity ratio ξ. [FIG. 13] A graph based on the straight line in FIG.
[図 14]図 12、図 13の半値幅について説明する解説図である。 FIG. 14 is an explanatory diagram for explaining the full width at half maximum of FIGS. 12 and 13.
[図 15]従来の LEDを用いた面状照明装置の基本構成を示す平面図である。 FIG. 15 is a plan view showing a basic configuration of a planar illumination device using a conventional LED.
[図 16]従来の、平均的な明るさを得るための対策が施された面状照明装置を示す平 面図である。 FIG. 16 is a plan view showing a conventional planar lighting device in which measures are taken to obtain average brightness.
[図 17]従来の、平均的な明るさを得るための対策が施された面状照明装置を示す平 面図である。 FIG. 17 is a plan view showing a conventional planar lighting device in which measures are taken to obtain average brightness.
[図 18]従来の、平均的な明るさを得るための対策が施された LEDを示す平面図であ る。 [FIG. 18] A plan view showing a conventional LED in which measures are taken to obtain an average brightness.
[図 19]本発明に係る面状照明装置の開発過程における面状照明装置において、 LE Dの側面から出射される光線の軌跡を示した図であり、(a)は前方への出射光線の 軌跡を示し、 (b)は後方への出射光線の軌跡を示している。 FIG. 19 is a diagram showing a locus of light rays emitted from the side surface of the LED in the surface illumination device in the process of developing the surface illumination device according to the present invention. FIG. The trajectory is shown, and (b) shows the trajectory of the outgoing light beam backward.
符号の説明 Explanation of symbols
[0017] 10 :面状照明装置、 12 :導光板、 24 : LED、 24b、 24c:導光板と平行な方向の 側面、 38、 42、 46 :反射板、 38a : LEDとの対向面、 38b :微細プリズムが形成され た面に対向する平面、 40、 44 :微細プリズム、 40a :前方傾斜面、 40b :後方傾斜面 発明を実施するための最良の形態 [0017] 10: planar illumination device, 12: light guide plate, 24: LED, 24b, 24c: side surface parallel to the light guide plate, 38, 42, 46: reflector, 38a: facing surface of LED, 38b : Plane facing the surface on which the fine prism is formed, 40, 44: fine prism, 40a: front inclined surface, 40b: rear inclined surface BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施の形態を添付図面に基づいて説明する。ここで、従来技術と 同一部分、若しくは相当する部分については同一符号で示し、詳しい説明を省略す る。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Here, parts that are the same as or equivalent to those of the prior art are denoted by the same reference numerals, and detailed description thereof is omitted.
本発明の実施の形態に係る面状照明装置は、図 15に示す従来の面状照明装置と 同様に、板状の導光板 12と、導光板 12の側端面に配置される LED24とを備えるも のである。そして、図 1から図 3に示すように、 LED24の導光板 12と平行な方向の側 面に沿って反射板 38が配置されている。そして、反射板 38の LED24との対向面 38 aに、前後傾斜面の傾斜角度が異なる断面三角形状の微細プリズム 40が複数配列さ れたものである。微細プリズム 40のピッチは、光の回折による悪影響が出ない範囲で 適宜設定される。なお、図 1、図 2に示す例では、反射板 38の微細プリズム 40の各稜 線は、平行かつ直線状に形成されている。 Similar to the conventional planar illumination device shown in FIG. 15, the planar illumination device according to the embodiment of the present invention includes a plate-shaped light guide plate 12 and LEDs 24 arranged on the side end surfaces of the light guide plate 12. It is. As shown in FIGS. 1 to 3, a reflector 38 is disposed along a side surface of the LED 24 in a direction parallel to the light guide plate 12. A plurality of fine prisms 40 having a triangular cross section with different inclination angles of the front and rear inclined surfaces are arranged on the surface 38a of the reflecting plate 38 facing the LED 24. The pitch of the fine prism 40 is within the range where there is no adverse effect due to light diffraction. Set as appropriate. In the example shown in FIGS. 1 and 2, each ridgeline of the fine prism 40 of the reflecting plate 38 is formed in parallel and linear.
[0019] また、ここで使用される LED24は、図 8から図 10に示すようにランプハウスを持たず 、 LEDチップ 25を封止する透光性樹脂力 突出部 26として露出した構造を有してい る(なお、 LED24については、追って説明する。)。また、導光板 12の、 LED24と対 向する側端面 12aには、突出部 26の外形に倣った切欠き部 12dが形成されている。 Further, the LED 24 used here does not have a lamp house as shown in FIGS. 8 to 10 and has a structure exposed as a translucent resin force protrusion 26 that seals the LED chip 25. (Note that LED24 will be explained later.) Further, a notch portion 12d that follows the outer shape of the protruding portion 26 is formed on the side end surface 12a of the light guide plate 12 facing the LED 24.
[0020] 反射板 38の微細プリズム 40は、図 3 (a)、 (b)に示すように、前方傾斜面 40aが比 較的緩傾斜であり、後方傾斜面 40bが比較的急傾斜に形成されている。そして、前 方傾斜面 40aと、反射板 38の微細プリズム 40が形成された面 38aに対向する平面 3 8bとのなす角度 θ 1が、好ましくは 20° 以上 50° 以下に形成されている。また、後 方傾斜面 40bと、反射板 38の平面 38bとのなす角度 Θ 2が、好ましくは 70° 以上で 、かつ、前方傾斜面 40aとは平行とならない範囲の角度に形成されている。 [0020] As shown in FIGS. 3 (a) and 3 (b), the fine prism 40 of the reflector 38 is formed such that the front inclined surface 40a has a relatively gentle inclination and the rear inclined surface 40b has a relatively steep inclination. Has been. The angle θ 1 formed between the front inclined surface 40a and the plane 38b facing the surface 38a on which the fine prism 40 of the reflecting plate 38 is formed is preferably 20 ° or more and 50 ° or less. Further, the angle Θ2 formed by the rear inclined surface 40b and the flat surface 38b of the reflecting plate 38 is preferably 70 ° or more, and is formed in an angle that is not parallel to the front inclined surface 40a.
なお、図 3 (a)の例は、 Θ 2を直角とした場合を示しており、金型を用いて反射板 38 に微細プリズム 40を成形することが容易となる。一方、図 3 (b)の例は、 Θ 2を鈍角と した場合を示している。図 3 (b)のプリズム形状を金型で成形する場合には、矢印 B 方向、すなわち、負角となっている後方傾斜面 40bの型抜きが可能となる方向にスラ イドする、スライド入子を備える金型を用いる力、若しくは、反射板 38の材料にゴム等 の弾性変形可能な材料を用い、いわゆる「無理抜き」によって反射板 38の型抜きを 行うことにより、成形を行うことが可能となる。 The example of FIG. 3A shows a case where Θ2 is a right angle, and it becomes easy to form the fine prism 40 on the reflecting plate 38 using a mold. On the other hand, the example in Fig. 3 (b) shows the case where Θ2 is an obtuse angle. When the prism shape of Fig. 3 (b) is molded with a mold, the slide insert slides in the direction of arrow B, i.e., the direction in which the negatively inclined rear inclined surface 40b can be removed. It is possible to perform molding by using a mold with a metal plate or by using an elastically deformable material such as rubber as the material of the reflector 38 and by performing die cutting of the reflector 38 by so-called `` reasoning '' It becomes.
[0021] ここで、図 3 (a)に例示する、後方傾斜面の傾斜角度が 70° ≤ Θ 2≤90° の範囲 にある反射板 38の具体 ί列を挙げると、 Θ 1 = 30。 、 Θ 2 = 80° 、微糸田プリズム 40の 配列ピッチは 0. 1mmである。また、反射板 38の基材は PET (Polyethylene Terepht halate)製で、厚さは 0. 05mmである。微細プリズム 40は、いわゆる 2p法(プリズム成 形用金型に、 UV硬化性樹脂等、常温で任意に硬化を制御することが可能な透明液 状樹脂を流し込み、基材と一体的に硬化させる製造方法。)によって成形することが 可能である。また、プリズム形状が形成された加熱プレス金型によって、熱可塑製樹 脂フィルムに微細プリズム 40の形状を、直接的に転写することも可能である。 Here, exemplarily shown in FIG. 3 (a), a specific column of the reflector 38 in which the inclination angle of the rear inclined surface is in the range of 70 ° ≤ Θ 2 ≤ 90 ° is given as Θ 1 = 30. , Θ 2 = 80 °, and the arrangement pitch of the fine yarn field prism 40 is 0.1 mm. The base of the reflector 38 is made of PET (Polyethylene Terepht halate) and has a thickness of 0.05 mm. The fine prism 40 is a so-called 2p method (injecting a transparent liquid resin that can be controlled arbitrarily at room temperature, such as a UV curable resin, into a prism molding die and curing it integrally with the substrate. It can be formed by the manufacturing method. It is also possible to directly transfer the shape of the fine prism 40 to the thermoplastic resin film by a hot press mold in which the prism shape is formed.
[0022] また、反射板 38の反斜面は、上記プリズム形成面上に、アルミニウム、銀等の高反 射率の金属薄膜を形成して構成しても良ぐ白色または乳白色の塗料を塗布して構 成しても良い。さらに、反射板 38の反斜面を、誘電体塗膜を積層することによって構 成される増反射膜により形成しても良ぐ上記各構造を複合させることも可能である。 何れの場合も、反射板 38の微細プリズム 40の各稜線は、平行かつ直線状に形成 されていることから(図 1 (b)参照)、その製造工程において、面積の大きな反射板を 成形し、これを必要な大きさに切り出すことにより、反射板 38を大量生産することが可 能となる。 [0022] Further, the anti-inclined surface of the reflecting plate 38 has a high anti-inclined surface such as aluminum or silver on the prism forming surface. It may also be configured by applying a white or milky white paint that may be formed by forming a metal thin film having a high emissivity. Furthermore, it is also possible to combine the above-described structures, in which the anti-inclined surface of the reflecting plate 38 may be formed by an increased reflection film formed by laminating a dielectric coating film. In any case, since the ridge lines of the fine prisms 40 of the reflector 38 are formed in parallel and straight lines (see FIG. 1 (b)), a reflector having a large area is formed in the manufacturing process. The reflector 38 can be mass-produced by cutting it out to a required size.
[0023] 併せて、導光板 12の一例を具体的に示すと、導光板 12はポリカーボネート製であ り、幅 30mm、長さ 40mm、厚さ 0. 6mmであり、上下面に光方向変換素子(散乱パ ターン)が形成されている。さらに、導光板 12の下面(光が出射しない面)全体には、 白色樹脂、銀メツキ等の反射性材料からなる反射板が与えられている。さらに、導光 板 12の上面(光が出射する面)には、光の拡散板と、プリズム方向を直交させた 2枚 の輝度増大フィルム(Brightness Enhancement Film)とが重ねられて、バックライトが 構成される。 [0023] In addition, one example of the light guide plate 12 is specifically shown. The light guide plate 12 is made of polycarbonate, has a width of 30 mm, a length of 40 mm, and a thickness of 0.6 mm. (Scattering pattern) is formed. Further, the entire lower surface of the light guide plate 12 (the surface from which light is not emitted) is provided with a reflector made of a reflective material such as white resin or silver plating. Furthermore, the light diffusion plate and two brightness enhancement films with the prism directions orthogonal to each other are overlaid on the upper surface of the light guide plate 12 (the surface from which light is emitted), so that the backlight is Composed.
なお、反射板 38は、最低限 LED24の側面 24b、 24cを覆う面積を有していればよ レ、が、生産性等を考慮して、図示のごとく単純な矩形に形成することとしても良い。ま た、上述のごとぐ導光板 12に重ねられる反射板、拡散板、輝度増大フィルムは、面 状照明装置 10全体の厚みをより薄くする要請がある場合には、反射板 38の設置部 分を切欠くこととし、力かる要請が緩和されている場合には、反射板 38の設置部分に 切欠きを形成せず、反射板 38に重ねて設置することとする。 Note that the reflector 38 only needs to have at least an area that covers the side surfaces 24b and 24c of the LED 24, but may be formed into a simple rectangle as illustrated in consideration of productivity and the like. . In addition, the reflector, diffuser, and brightness enhancement film stacked on the light guide plate 12 as described above may be installed on the reflector 38 if there is a demand to reduce the thickness of the entire planar lighting device 10. If the demand for power is eased, the notch is not formed in the installation part of the reflector 38, but it is installed on the reflector 38.
[0024] 図 4は、本発明の実施の形態に係る、 LED24の上下面に反射板 38を設けた面状 照明装置 10において、 LED24から出射される光線の軌跡を示したものであり、本発 明に係る面状照明装置の開発過程における面状照明装置の、光の反射軌跡を示す 図 19に対応するものである。 FIG. 4 shows the locus of light rays emitted from the LED 24 in the planar illumination device 10 in which the reflectors 38 are provided on the upper and lower surfaces of the LED 24 according to the embodiment of the present invention. FIG. 19 corresponds to FIG. 19 showing a light reflection locus of the planar illumination device in the process of developing the planar illumination device according to the invention.
本発明の実施の形態に係る面状照明装置 10は、図 4 (a)、(b)に示すように、 LED 24の側面 24b、 24cの各々に対し、微細プリズム 40を設けた面が対向するように反 射板 38が配置される。そして、図 4 (a)に示すように、 LED24の側面 24bからの出射 角度が比較的急な、前方への出射光線 LF4、 LF5は、何れも、微細プリズム 40の前 方傾斜面 40a (図 3参照)によって反射され、光線の角度が変換されることで、導光板 12への入光角度が比較的緩やかとなる。なお、図示は省略するが、 LED24の側面 24cから出射される前方への光線についても、同様の角度変換作用を受ける。また、 LED24の側面 24b、 24cに対し直角方向に出射される光線についても、同様の角 度変換作用を受けることも理解されるであろう。 In the planar lighting device 10 according to the embodiment of the present invention, as shown in FIGS. 4 (a) and 4 (b), the surface provided with the fine prism 40 is opposed to each of the side surfaces 24b and 24c of the LED 24. The reflection plate 38 is arranged so as to. As shown in FIG. 4 (a), the outgoing light beams LF4 and LF5 emitted from the side surface 24b of the LED 24 have a relatively steep angle. The angle of light incident on the light guide plate 12 becomes relatively gradual because the angle of the light beam is reflected by the inclined surface 40a (see FIG. 3) and converted. Although not shown in the drawing, the forward angle light emitted from the side surface 24c of the LED 24 is also subjected to the same angle conversion action. It will also be understood that light rays emitted in a direction perpendicular to the side surfaces 24b and 24c of the LED 24 are subjected to the same angle conversion action.
[0025] また、図 4 (b)に示すように、 LED24の側面 24bから後方へと出射された光線 LR3 についても、微細プリズム 40の前方傾斜面 40a (図 3参照)によって反射され、光線 の角度が変換されることで、導光板 12へと入光する。なお、図示は省略するが、 LE D24の側面 24cから出射される後方への光線についても、同様の角度変換作用を 受けることは明らかであろう。 [0025] As shown in Fig. 4 (b), the light beam LR3 emitted backward from the side surface 24b of the LED 24 is also reflected by the front inclined surface 40a (see Fig. 3) of the fine prism 40, and The light is incident on the light guide plate 12 by changing the angle. Although illustration is omitted, it will be apparent that the backward angle rays emitted from the side surface 24c of the LED 24 are also subjected to the same angle conversion action.
[0026] さて、図 5、図 6には、反射板 38の応用例を示している。この例では、反射板 42の 微細プリズム 44の各稜線力 同心円状に形成されている。微細プリズム 44の前後傾 斜面と反射板 42の平面 42bとの関係については、図 1から図 4に示した反射板 38と 同様であり、詳しい説明を省略する。なお、微細プリズム 44の同心円の中心を、 LED 24の LEDチップ 25に一致させることが望ましい。 FIG. 5 and FIG. 6 show application examples of the reflector 38. In this example, the ridge line forces of the fine prisms 44 of the reflector 42 are formed concentrically. The relationship between the slanted front and back slopes of the fine prism 44 and the flat surface 42b of the reflector 42 is the same as that of the reflector 38 shown in FIGS. It is desirable that the center of the concentric circle of the fine prism 44 coincides with the LED chip 25 of the LED 24.
[0027] また、図 7には、反射板の別の応用例を示している。図 7 (c)に示す反射板 46は、 図 7 (a)に示す反射板 38から、図 7 (b)に示すように複数の三角形ピース 48を切り出 し、図 7 (c)に示すように、各三角形ピース 48を扇状に固定することによって構成した ものであり、微細プリズム 40の各稜線が同心多角形状に形成されている。また、必要 に応じ、図 7 (c)の反射板 46をさらに矩形にカットすることとしても良い。 [0027] FIG. 7 shows another application example of the reflector. The reflector 46 shown in FIG. 7 (c) is obtained by cutting out a plurality of triangular pieces 48 from the reflector 38 shown in FIG. 7 (a) as shown in FIG. 7 (b), as shown in FIG. 7 (c). In this manner, each triangular piece 48 is fixed in a fan shape, and each ridgeline of the fine prism 40 is formed in a concentric polygonal shape. Further, the reflector 46 in FIG. 7 (c) may be further cut into a rectangle if necessary.
この例においても、微細プリズム 40の前後傾斜面と反射板 46の平面との関係は、 図 1から図 4に示した反射板 38と同様であり、詳しい説明を省略する。また、この例に おいても、微細プリズム 40の同心多角形の中心を、 LED24の LEDチップ 25に一致 させることが望ましい。 Also in this example, the relationship between the front and rear inclined surfaces of the fine prism 40 and the plane of the reflecting plate 46 is the same as that of the reflecting plate 38 shown in FIGS. 1 to 4, and detailed description thereof is omitted. Also in this example, it is desirable that the center of the concentric polygon of the fine prism 40 is coincident with the LED chip 25 of the LED 24.
[0028] 続いて、本発明の実施の形態に最適の LED24について説明する。 LED24は、図 [0028] Next, the LED 24 that is optimal for the embodiment of the present invention will be described. LED24 figure
8から図 10に示すようにランプハウスを持たず、 LEDチップ 25を封止する透光性樹 脂 26が露出した構造を有している。また、透光性樹脂 26の外形が、 LED24の光出 射方向前方へと突出する連続曲面で構成された突出部 28を有している。また、図示 の例では、突出部 28は、導光板と平行な方向(図 15に示す導光板 12の紙面と平行 な方向。)に長ぐ導光板と直交する方向(図 15に示す導光板 12の紙面と直交する 方向。)に短い、直方体状の透光性樹脂からなる基部 29と一体に形成されている。 さらに、突出部 28を構成する連続曲面は、図示の例では一定の半径 Rを有してい る。そして、突出部 28の突出高さ(基部 29からの突出高さ)を Hとしたとき、 0. 3≤H /R≤0. 6の範囲、より好ましくは 0. 4≤H/R≤0. 5の範囲となるように形成されて いる。また、突出部 28の半径が、 LEDチップ 25を導光板と直交する方向に投影した 場合の長さ(LED24の長手方向と平行な方向の長さであり、図 8、図 10に符号 Xで 示す。)に 1. 5を乗じた値以上(1. 5X≤R)となるように形成されている。 As shown in FIG. 8 to FIG. 10, it does not have a lamp house and has a structure in which a translucent resin 26 for sealing the LED chip 25 is exposed. In addition, the outer shape of the translucent resin 26 has a protruding portion 28 formed of a continuous curved surface protruding forward in the light emitting direction of the LED 24. Also illustrated In this example, the protrusion 28 is perpendicular to the light guide plate in the direction parallel to the light guide plate (the direction parallel to the paper surface of the light guide plate 12 shown in FIG. 15) (the paper surface of the light guide plate 12 shown in FIG. 15). And a base 29 made of a rectangular parallelepiped translucent resin. Further, the continuous curved surface constituting the protruding portion 28 has a constant radius R in the illustrated example. When the protrusion height of the protrusion 28 (protrusion height from the base 29) is H, the range is 0.3≤H /R≤0.6, more preferably 0.4≤H / R≤0 It is formed to be in the range of 5. Further, the radius of the protrusion 28 is the length when the LED chip 25 is projected in a direction perpendicular to the light guide plate (the length in the direction parallel to the longitudinal direction of the LED 24. It is formed so that it is equal to or greater than 1.5 multiplied by 1.5 (1.5X≤R).
[0029] LED24の、より詳細な構造として、透光性樹脂 26は、 LEDチップ 25の周囲力 図 [0029] As a more detailed structure of the LED 24, the translucent resin 26 has a peripheral force around the LED chip 25.
9、図 10に示すように、硬質シリコーン系樹脂中に黄色発光の蛍光体であるセリウム で付活されたイットリウム ·アルミニウム ·ガーネット (YAG)微粒子を混入した層 30で 封止され、さらにその周囲(上層)に透明の硬質シリコーン系樹脂層 32が付加された 構造を有している。したがって、図示の例では、透明の硬質シリコーン系樹脂層 32に 突出部 28が形成されている。また、 LEDチップ 25は、図 1 1に示すように、サフアイャ 基板 25a上に、 GaN、 GaAIN等の窒化物系化合物半導体の積層からなる発光層 2 5bが形成されたもの(青色発光の素子)が用いられている。そして、 LEDチップ 25は 、図 10に示すように、電極部を有する基板(PCB) 34上に接着され、 LEDチップ 25 上に形成されたアノード、力ソード電極と基板 34上の配線パターンとが、 φ 20 /i mの 金線で接続された構造を有している。なお、図 9〜図 1 1には、 LED24および LEDチ ップ 25の具体的寸法例を示している(単位は mm)。 9.As shown in Fig. 10, it is sealed with a layer 30 mixed with yttrium-aluminum-garnet (YAG) fine particles activated by cerium, which is a phosphor emitting yellow light, in a hard silicone resin, and its surroundings. It has a structure in which a transparent hard silicone resin layer 32 is added to the (upper layer). Therefore, in the illustrated example, the protruding portion 28 is formed in the transparent hard silicone resin layer 32. The LED chip 25 has a light emitting layer 25b made of a nitride compound semiconductor such as GaN or GaAIN formed on a sapphire substrate 25a as shown in FIG. 11 (blue light emitting element). Is used. Then, as shown in FIG. 10, the LED chip 25 is bonded onto a substrate (PCB) 34 having an electrode portion, and an anode, a force sword electrode formed on the LED chip 25 and a wiring pattern on the substrate 34 are connected. , It has a structure connected with gold wire of φ 20 / im. 9 to 11 show examples of specific dimensions of the LED 24 and the LED chip 25 (unit: mm).
[0030] 以上の構造を有する LED24は、 LEDチップ 25の青色発光の一部が YAG微粒子 混入層 30の YAG微粒子(蛍光体)に吸収され、 LEDチップ 25の発光よりも長波長 に変換されて、 LEDチップ 25の青色発光との混色を生じることにより、擬似的に白色 発光するものである。なお、透光性樹脂 26の YAG微粒子混入層 30は、図 9、図 10 に示すように、透明層 32と完全に 2層に分離した構成に限らず、少なくとも青色発光 LEDチップ 25の周囲にのみ YAG微粒子混入層 30が形成され、その周囲が全て透 明層 32で覆われている構造を採用することも可能である。 また、透光性樹脂 26は、耐熱性を有する透明樹脂であれば良ぐ前記硬質シリコ ーン系樹脂の他にも、例えば、透明エポキシ樹脂等の熱硬化性の透明樹脂が適用 可能である。また、高耐熱性の熱可塑性樹脂や、ガラス等の無機系材料も、必要に 応じ適用可能である。 [0030] In the LED 24 having the above structure, part of the blue light emission of the LED chip 25 is absorbed by the YAG fine particles (phosphor) of the YAG fine particle mixed layer 30 and converted to a longer wavelength than the light emission of the LED chip 25. The LED chip 25 emits a pseudo white light by causing a color mixture with the blue light emission. Note that the YAG fine particle mixed layer 30 of the translucent resin 26 is not limited to the structure in which the transparent layer 32 is completely separated into two layers as shown in FIGS. 9 and 10, but at least around the blue light emitting LED chip 25. It is also possible to adopt a structure in which only the YAG fine particle mixed layer 30 is formed and the entire periphery is covered with the transparent layer 32. Further, the translucent resin 26 may be a thermosetting transparent resin, such as a transparent epoxy resin, in addition to the hard silicone resin, as long as it is a transparent resin having heat resistance. . In addition, highly heat-resistant thermoplastic resins and inorganic materials such as glass can be applied as necessary.
[0031] 図 12は、本発明の実施の形態に係る面状照明装置に用いられる LED24の、 H/ Rの値を種々に変ィヒさせることによる、 LEDの出射光の角度を示す半値幅 Θと、前 方出射光量比 ξとの変化を図表にまとめたものである。また、図 13は、図 12の値に 基くグラフである。なお、「半値幅 Θ」は、図 14に示すように、出射光の出射強度のピ ーク値 Ρ (通常は、 LED24の正面方向である Θ = 0。 の近傍に現れる。)の半分の出 射強度 1/2Pが得られるときの出射光の角度を「半値幅」と称し、出射光分布の指標 として一般的に用いられる値である。図 14は、 R= 0. 9mm、 H = 0. 4mm、 H/R= 0. 44である LEDの、半値幅 Θを例示したものである。 FIG. 12 shows a half-value width indicating the angle of the emitted light of the LED 24 by variously changing the H / R value of the LED 24 used in the planar lighting device according to the embodiment of the present invention. The changes in Θ and the forward emission light quantity ratio ξ are summarized in a chart. FIG. 13 is a graph based on the values in FIG. As shown in FIG. 14, the “half-value width Θ” is half the peak value の of the emitted light intensity (usually, it appears in the vicinity of Θ = 0, which is the front direction of the LED 24). The angle of the emitted light when the emission intensity 1 / 2P is obtained is called the “half-value width” and is a value generally used as an index of the emitted light distribution. FIG. 14 exemplifies the half-value width Θ of an LED with R = 0.9 mm, H = 0.4 mm, and H / R = 0.44.
また、「前方出射光量比 」は、 LEDから出射される全方向の光のうち、 LEDよりも 前方(上下の空間も含まれる)に出射される、面状照明装置の高輝度化に貢献する 光と、 LEDよりも後方 (上下の空間も含まれる)に出射される、面状照明装置の高輝 度化に貢献しない光とに分類した場合の、前者の比率を表す値である。 In addition, the “front emission light quantity ratio” contributes to higher brightness of the planar lighting device that is emitted in front of the LED (including the upper and lower spaces) out of the omnidirectional light emitted from the LED. This is a value that represents the ratio of the former when classified into light and light that is emitted behind (including the space above and below) the LED and does not contribute to the high brightness of the planar lighting device.
[0032] これらの具体的数値例から明らかなように、 0. 3≤H/R≤0. 6の範囲では、半値 幅 Θ、前方出射光量比 ξ共に十分に良好な値が得られている。また、面状照明装置 の更なる高輝度化と、輝度の均一化とを実現するために、半値幅 Θおよび前方出射 光量比 ξをより高いレベルでバランスさせるためには、 0. 4≤H/R≤0. 5の範囲と することが望ましい。なお、 H/R= 0 (図 16に示すような、前方発光面がフラットな形 式の LED14)では、前方出射光量比 ξの値が最低レベルまで低下しており、面状照 明装置の高輝度化が困難であることが理解される。また、 H/R= l (図 17に示すよう な、半円柱状の突出部 16aから光を出射する形式の LED16)では、半値幅 Θの値 の低下が著しぐ面状照明装置の輝度の均一化が困難であることが理解される。 [0032] As is clear from these specific numerical examples, in the range of 0.3 ≤ H / R ≤ 0.6, sufficiently good values are obtained for both the full width at half maximum Θ and the forward emission light quantity ratio ξ. . In addition, in order to achieve higher brightness and uniform brightness of the planar lighting device, in order to balance the full width at half maximum Θ and the forward light intensity ratio ξ at a higher level, 0.4 ≤ H A range of /R≤0.5 is desirable. Note that in the case of H / R = 0 (the LED 14 with a flat front light emitting surface as shown in FIG. 16), the value of the front emission light quantity ratio ξ has decreased to the lowest level, and the surface illumination device It is understood that it is difficult to increase the brightness. In addition, in H / R = l (LED16 that emits light from a semi-cylindrical protrusion 16a as shown in Fig. 17), the brightness of the planar lighting device is markedly reduced by the half-value width Θ. It is understood that it is difficult to equalize.
[0033] なお、本発明の実施の形態に係る面状照明装置に用いられる LEDとしては、図 8 力 図 14に示した LED24に限定されるものではなぐ他の、側面に光が出射される 形式の LEDも適用可能であることは明らかであろう。また、導光板 12の LED24との 対向面に、入光プリズム(光学的乱反射パターン)を設けることにより、 LEDから導光 板へと入光した光の発光分布を、より精密に制御可能な構成としても良いことは言う までもないことである。 [0033] It should be noted that the LED used in the planar illumination device according to the embodiment of the present invention is not limited to the LED 24 shown in FIG. 8 and FIG. It will be clear that the type of LED is also applicable. In addition, with light guide plate 12 LED24 Needless to say, by providing a light incident prism (optical diffuse reflection pattern) on the opposite surface, the light emission distribution of light incident from the LED to the light guide plate can be controlled more precisely. That is.
[0034] 上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが 可能となる。まず、図 4 (b)に例示するように、 LED24の側面 24b、 24cから後方へと 出射された光線 (LR3)を、反射板 38の微細プリズム 40の前方傾斜面 40a (図 3)に よって前方へと反射させ、導光板 12へと入光させることが可能となる。また、図 4 (a) に例示するように、 LED24の側面 24b、 24cから前方へと出射された光線 (LF4、 L F5)についても、前方傾斜面 40aに反射させることで、導光板 12への入光角度を緩 和し、導光板 12の先端部まで到達する光の割合を高めることができる。 [0034] According to the embodiment of the present invention configured as described above, the following operational effects can be obtained. First, as illustrated in FIG. 4 (b), the light beam (LR3) emitted backward from the side surfaces 24b and 24c of the LED 24 is reflected by the front inclined surface 40a (FIG. 3) of the fine prism 40 of the reflector 38. It is possible to reflect the light forward and enter the light guide plate 12. In addition, as illustrated in FIG. 4 (a), the light beams (LF4, LF5) emitted forward from the side surfaces 24b, 24c of the LED 24 are also reflected to the front inclined surface 40a to the light guide plate 12. The light incident angle of the light guide plate 12 can be relaxed, and the proportion of light reaching the tip of the light guide plate 12 can be increased.
[0035] また、反射板 38の微細プリズム 40は、前方傾斜面 40aが比較的緩傾斜であり、後 方傾斜面 40bが比較的急傾斜に形成されていることから、 LED24の側面 24b、 24c 力 後方へと出射された光線 (LR3)を、比較的緩傾斜の前方傾斜面 40aによって前 方へと反射させることにより、導光板 12への入光角度を緩和し、導光板 12の先端部 まで到達する光の割合を高めることができる。また、 LED24の側面 24b、 24cから前 方へと出射された光線についても、導光板 12への入光角度の緩和作用をより大きく すること力 S可言 となる。 [0035] Further, in the fine prism 40 of the reflector 38, the front inclined surface 40a has a relatively gentle inclination, and the rear inclined surface 40b has a relatively steep inclination, so that the side surfaces 24b, 24c of the LED 24 are formed. Force The light beam (LR3) emitted backward is reflected forward by the relatively gently inclined front inclined surface 40a, so that the light incident angle to the light guide plate 12 is relaxed, and the tip of the light guide plate 12 is The rate of light reaching up to can be increased. In addition, the light S emitted from the side surfaces 24b and 24c of the LED 24 forward is also a force S to increase the effect of relaxing the incident angle on the light guide plate 12.
具体的には、前方傾斜面 40aと、反射板 38の微細プリズム 40が形成された面に対 向する平面 38bとのなす角度力 20° 以上 50° 以下に形成され、後方傾斜面 40b と、反射板 38の平面 38bとのなす角度力 70° 以上でかつ前方傾斜面 40aとは平 行とならない範囲の角度に形成されていることが望ましぐ反射板の生産性を考慮し つつ、反射板に必要な光線の角度変換作用を発揮させることが可能となる。 Specifically, it is formed at an angular force of 20 ° or more and 50 ° or less between the front inclined surface 40a and the plane 38b facing the surface on which the fine prism 40 of the reflector 38 is formed, and the rear inclined surface 40b. Reflecting while considering the productivity of the reflecting plate, which is desired to be formed at an angle of 70 ° or more with respect to the flat surface 38b of the reflecting plate 38 and not parallel to the front inclined surface 40a. It becomes possible to exhibit the light beam angle conversion action required for the plate.
[0036] なお、図 1、図 2に示すように、反射板 38の微細プリズム 40の各稜線が平行かつ直 線状に形成されている場合には、反射板 38の生産性が最も高いものとなる。また、図 5、図 6に示すように、反射板 42の微細プリズム 44の各稜線が同心円状に形成され ている場合には、 LED24の前方の広角度にわたり、反射板 42に最適の光線の角度 変換作用を発揮させることが可能となる。さらに、図 7 (c)に示すように、反射板 46の 微細プリズム 40の各稜線が同心多角形状に形成されていることとしても、 LED24の 前方の広角度にわたり、反射板 46に有効な光線の角度変換作用を発揮させることが 可能となる。 In addition, as shown in FIGS. 1 and 2, when the ridge lines of the fine prisms 40 of the reflector 38 are formed in parallel and straight lines, the reflector 38 with the highest productivity is obtained. It becomes. In addition, as shown in FIGS. 5 and 6, when the ridges of the fine prisms 44 of the reflector 42 are formed concentrically, the optimal light beam for the reflector 42 is spread over a wide angle in front of the LED 24. An angle conversion action can be exhibited. Furthermore, as shown in FIG. 7 (c), each ridgeline of the fine prism 40 of the reflector 46 is formed in a concentric polygonal shape. It is possible to cause the reflecting plate 46 to exhibit an effective angle conversion effect of light over a wide angle in front.
[0037] また、 LED24は、ランプハウスを持たず、 LEDチップ 25を封止する透光性樹脂 26 が露出していることで、ランプハウス分の厚みの増加が生じないことから、面状照明装 置の薄型化が促進されることとなる。し力、も、透光性樹脂の外形が 0. 3≤H/R≤0. 6を満たす形状を有することで、面状照明装置の高輝度化に寄与する LEDの前方出 射光量比 と、面状照明装置の輝度の均一化に寄与する LEDの半値幅 Θとを、高 い次元でバランスさせることが可能となる。 [0037] Further, the LED 24 does not have a lamp house, and since the translucent resin 26 that seals the LED chip 25 is exposed, the thickness of the lamp house does not increase. Thinning of the equipment will be promoted. However, since the outer shape of the translucent resin has a shape that satisfies 0.3 ≤ H / R ≤ 0.6, the ratio of the amount of light emitted from the front of the LED that contributes to higher brightness of the planar lighting device and Therefore, it is possible to balance the half-value width Θ of the LED, which contributes to uniform brightness of the planar lighting device, at a high level.
[0038] また、 LED24の突出部 28の半径 R力 1. 5X≤Rとなるように形成されていることで 、 LEDチップ 25が透光性樹脂 26から露出することなぐ透光性樹脂 26内に完全に 封止されたものとなる。よって、 LED24の歩留まりを確実に高め、面状照明装置のコ ストを低減させること力 Sできる。 [0038] Further, the radius R force of the protruding portion 28 of the LED 24 is formed to satisfy 1.5X≤R, so that the LED chip 25 is not exposed from the translucent resin 26. It is completely sealed. Therefore, it is possible to reliably increase the yield of LED24 and reduce the cost of the planar lighting device.
また、導光板 12の、 LED24と対向する側端面 12aに、突出部 28の外形に倣った 切欠き部 12dが形成されていることとすれば、 LED24の透光性樹脂 26と導光板 12 とが密着し、 LED24から導光板へと入光した光の発光分布を、 LED単体での光の 発光分布と同等にすることが可能となり、面状照明装置の輝度の均一化に、寄与す ること力 S可言 となる。 Further, if a notch 12d is formed on the side end surface 12a of the light guide plate 12 facing the LED 24 so as to follow the outer shape of the projecting portion 28, the translucent resin 26 of the LED 24 and the light guide plate 12 The light emission distribution of the light entering the light guide plate from the LED 24 can be made equal to the light emission distribution of the LED alone, contributing to the uniform brightness of the planar lighting device. That power S is said.
[0039] また、 LED24の突出部 28を構成する連続曲面は、図示のごとく一定の半径 Rを有 していることが、生産性の観点からは好ましいが、例えば、突出部 28を一定半径の球 面で構成したり、突出部 28の頂部から基部 29に向けて、半径 Rを徐変させることとし ても上記作用効果を得ることが可能となる。 [0039] In addition, it is preferable from the viewpoint of productivity that the continuous curved surface constituting the protruding portion 28 of the LED 24 has a constant radius R as shown in the figure. For example, the protruding portion 28 has a constant radius. Even if it is configured by a spherical surface or the radius R is gradually changed from the top part of the projecting part 28 toward the base part 29, the above-described effects can be obtained.
なお、本発明の実施の形態に係る面状照明装置は、いわゆるバックライトにもフロン トライトにも適用可能である。 The planar illumination device according to the embodiment of the present invention can be applied to so-called backlights and front lights.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-103444 | 2005-03-31 | ||
JP2005103444A JP2006286348A (en) | 2005-03-31 | 2005-03-31 | Surface lighting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006112093A1 true WO2006112093A1 (en) | 2006-10-26 |
Family
ID=37114835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/023764 WO2006112093A1 (en) | 2005-03-31 | 2005-12-26 | Planar lighting apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006286348A (en) |
TW (1) | TW200706804A (en) |
WO (1) | WO2006112093A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5277610B2 (en) | 2007-10-29 | 2013-08-28 | 日亜化学工業株式会社 | Light emitting device, surface light emitting device, and package for light emitting device |
JP5113594B2 (en) * | 2008-04-03 | 2013-01-09 | ミネベア株式会社 | Linear light source device and planar illumination device |
JP5646837B2 (en) * | 2009-11-24 | 2014-12-24 | ミネベア株式会社 | Light source device and planar illumination device |
US8746944B2 (en) | 2011-11-28 | 2014-06-10 | Blackberry Limited | Light guide apparatus having a light source and a reflector |
EP2597363A1 (en) * | 2011-11-28 | 2013-05-29 | Research In Motion Limited | Light guide apparatus |
KR101405046B1 (en) | 2012-11-20 | 2014-06-13 | 희성전자 주식회사 | Discrete type guide pannel and edge lighting type back light unit having that |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298008A (en) * | 1996-05-02 | 1997-11-18 | Rohm Co Ltd | Surface emitting lighting system |
JPH10247412A (en) * | 1997-03-03 | 1998-09-14 | Omron Corp | Surface light source device |
JPH1153919A (en) * | 1997-08-04 | 1999-02-26 | Sanken Electric Co Ltd | Semiconductor planar light source |
JPH11258600A (en) * | 1998-03-10 | 1999-09-24 | Denso Corp | Surface light source device for liquid crystal panel |
JP2000098384A (en) * | 1998-09-28 | 2000-04-07 | Mitsubishi Chemicals Corp | Surface light source device |
JP2002365629A (en) * | 2001-06-06 | 2002-12-18 | Seiko Instruments Inc | Liquid crystal display device |
-
2005
- 2005-03-31 JP JP2005103444A patent/JP2006286348A/en active Pending
- 2005-12-26 WO PCT/JP2005/023764 patent/WO2006112093A1/en not_active Application Discontinuation
-
2006
- 2006-03-17 TW TW095109188A patent/TW200706804A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298008A (en) * | 1996-05-02 | 1997-11-18 | Rohm Co Ltd | Surface emitting lighting system |
JPH10247412A (en) * | 1997-03-03 | 1998-09-14 | Omron Corp | Surface light source device |
JPH1153919A (en) * | 1997-08-04 | 1999-02-26 | Sanken Electric Co Ltd | Semiconductor planar light source |
JPH11258600A (en) * | 1998-03-10 | 1999-09-24 | Denso Corp | Surface light source device for liquid crystal panel |
JP2000098384A (en) * | 1998-09-28 | 2000-04-07 | Mitsubishi Chemicals Corp | Surface light source device |
JP2002365629A (en) * | 2001-06-06 | 2002-12-18 | Seiko Instruments Inc | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
TW200706804A (en) | 2007-02-16 |
JP2006286348A (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006087879A1 (en) | Planar illumination device | |
CN109416163B (en) | Lighting module | |
TWI426206B (en) | Light-emitting diode device | |
RU2512110C2 (en) | Light-emitting diode with moulded bi-directional optics | |
US8235556B2 (en) | Condensing element, array, and methods thereof | |
JP4988721B2 (en) | Lighting device | |
KR101227609B1 (en) | Electrically illuminating indicator needle and light guiding member | |
CN111025743B (en) | Light source module and display device | |
KR20080078845A (en) | LED emitter with radial prism light diverter | |
CN104696780A (en) | Backlight module and light source assembly thereof | |
WO2010044023A1 (en) | Light emitting device | |
US10197238B2 (en) | Lighting apparatus | |
CN111458925A (en) | Light source module and display device | |
US10678036B2 (en) | Optical device and light source module including the same | |
WO2009104793A1 (en) | Light guide body, backlight system and portable terminal | |
KR20120056016A (en) | Illuminating apparatus with reduced glare | |
KR20180039787A (en) | LED module with lens | |
KR102249863B1 (en) | Illuminating Member and Lighting Device Using the Same | |
WO2006112093A1 (en) | Planar lighting apparatus | |
JP2009134883A (en) | Light guide plate and plane lighting apparatus | |
KR20100108549A (en) | Side emitting device with hybrid top reflector | |
KR20150130809A (en) | Lighting Device | |
JP4720978B2 (en) | Surface lighting device | |
KR102288768B1 (en) | Lighting module and lighting apparatus | |
KR102288767B1 (en) | Lighting module and lighting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05820175 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5820175 Country of ref document: EP |