[go: up one dir, main page]

WO2006109645A1 - Solid electrolyte fuel cell and method for operating same - Google Patents

Solid electrolyte fuel cell and method for operating same Download PDF

Info

Publication number
WO2006109645A1
WO2006109645A1 PCT/JP2006/307213 JP2006307213W WO2006109645A1 WO 2006109645 A1 WO2006109645 A1 WO 2006109645A1 JP 2006307213 W JP2006307213 W JP 2006307213W WO 2006109645 A1 WO2006109645 A1 WO 2006109645A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
anode
membrane
solid oxide
Prior art date
Application number
PCT/JP2006/307213
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kobayashi
Shouji Sekino
Hideaki Sasaki
Satoshi Nagao
Takeshi Obata
Shin Nakamura
Tsutomu Yoshitake
Yoshimi Kubo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006538186A priority Critical patent/JP5103905B2/en
Publication of WO2006109645A1 publication Critical patent/WO2006109645A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane and using liquid fuel, and an operation method thereof.
  • Solid oxide fuel cells using liquid fuels are small and light-weight, so today, research and development as a power source for various electronic devices such as portable devices are being actively promoted. ing.
  • a solid electrolyte fuel cell includes an electrode electrolyte membrane assembly (MEA) having a structure in which a solid polymer electrolyte membrane is sandwiched between an anode and a force sword.
  • MEA electrode electrolyte membrane assembly
  • a type of fuel cell that supplies liquid fuel directly to the anode is called a direct fuel cell.
  • the supplied liquid fuel is decomposed on a catalyst supported on an anode to generate cations, electrons and intermediate products.
  • the generated cations permeate the solid polymer electrolyte membrane and move to the force sword side, and the generated electrons move to the force sword side through an external load.
  • the sword generates electricity by reacting with oxygen in the air.
  • DMFC direct methanol fuel cell
  • the reaction expressed by the following formula 1 occurs at the anode
  • the reaction expressed by the following formula 2 is powerful. It happens in swords.
  • 1 mol of methanol and 1 mol of water react theoretically at the anode to produce 1 mol of reaction product (diacid-carbon).
  • the theoretical concentration of methanol in the methanol aqueous solution, which is the fuel is about 70 vol% in volume%.
  • the above crossover mainly occurs when a methanol aqueous solution (methanol aqueous solution having a high concentration of about 70 vol% or more) having a molar ratio of methanol to water of more than 1 is used. This occurs not only when using, but also when using a low-concentration methanol aqueous solution with a methanol concentration of, for example, less than 10 vol%. Although it is easy to reduce crossover by using a low-concentration methanol aqueous solution, the use of such a low-concentration methanol aqueous solution as a liquid fuel reduces the amount of power generated per unit mass of the liquid fuel. The problem arises that the energy density of the electrolyte fuel cell cannot be increased. Therefore, in order to obtain a solid oxide fuel cell with a high energy density, it is desirable to use a liquid fuel with a high concentration of raw fuel, such as a high-concentration aqueous methanol solution, while suppressing crossover.
  • a methanol aqueous solution
  • Japanese Unexamined Patent Application Publication No. 2000-106201 (Document 1) includes a fuel vaporization layer that is stacked on an anode and supplies vaporized fuel.
  • a fuel cell including a fuel permeation layer that is laminated on the fuel vaporization layer and that supplies the supplied liquid fuel to the fuel vaporization layer is disclosed. According to the description in Patent Document 1,
  • the fuel permeable layer 106 for introducing liquid fuel into the cell by capillary force, and the anode 102 and the fuel permeable layer 106 are disposed between the fuel permeable layer 106 and the fuel permeable layer 106.
  • a fuel vaporization layer 107 for vaporizing the introduced liquid fuel and supplying the fuel in the form of gas to the anode is laminated.
  • the liquid fuel introduced into the liquid fuel introduction path 110 is supplied to the fuel permeation layer 106 by a capillary force from the side surface of the stack 109, further vaporized by the fuel vaporization layer 107, and supplied to the anode 102. Since the separator 105, the fuel permeation layer 106, and the fuel vaporization layer 107 also function as a current collector plate that conducts the generated electrons, for example, the fuel permeation layer 106 is formed of a carbon conductive material.
  • a 1: 1 mixture (molar ratio) of methanol and water is used as the fuel, and the fuel storage tank force is also supplied to the liquid fuel introduction path 110 by supplying the tank above the power generation unit. It may be configured such that the liquid fuel is pushed out by the natural fall caused by installation, the internal pressure in the tank, or the like, or the fuel can be drawn out by the capillary force of the liquid fuel introduction passage 110.
  • a 1: 1 mixture (molar ratio) of methanol and water is used, and liquid fuel can be supplied to the fuel vaporization layer 107 by an internal pressure in the tank or the like.
  • the present inventors have found that in the configuration of Patent Document 1, a stable fuel supply cannot be achieved by a product generated during a power generation operation.
  • the reaction of Formula 1 above occurs at the anode, and the force that generates diacid-carbon is generated.
  • the internal pressure on the anode side is increased by the generated diacid-carbon, and the supply of fuel with fuel vaporization strength is hindered. It is.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to generate power using a higher concentration fuel in a DMFC including vaporization supply, which is advantageous for suppressing crossover.
  • An object of the present invention is to provide a solid oxide fuel cell that can be made possible.
  • Another object of the present invention is to provide an efficient operation method of such a solid oxide fuel cell.
  • a solid oxide fuel cell includes a solid polymer electrolyte membrane, a force sword disposed on one surface of the solid polymer electrolyte membrane, and an anode disposed on the other surface.
  • a power sword current collector and an anode current collector disposed on the power sword and the anode, respectively, and a fuel that is disposed above the anode current collector and controls the supply of liquid fuel to the anode
  • the fuel supply control film is disposed on the anode current collector between the anode current collector and the perforated plate. It acts to suppress the amount of permeation and can supply an optimal amount of fuel to the anode.
  • the vent force is reduced. It can be discharged to the outside. Since the internal pressure does not increase due to the effective discharge of carbon dioxide, the fuel supply from the fuel supply suppression membrane to the anode can be prevented from being hindered.
  • the vent can take in oxygen into the anode
  • the taken-in oxygen can react with the catalyst supported on the anode and store water in the anode in advance.
  • the presence of this water has the remarkable effect that power generation is possible even when a 100% methanol solution is used as the liquid fuel.
  • a spacer having a sealing function and provided between the solid polymer electrolyte membrane and the anode current collector is provided. It is preferable that the vent hole is provided in the spacer.
  • a vent is provided in a spacer provided between the solid polymer electrolyte membrane and the anode current collector. It is convenient in terms of structure.
  • the solid oxide fuel cell preferably further includes an evaporation suppression layer provided on the force sword current collector.
  • the evaporation suppression layer is provided on the force sword current collector, evaporation of water generated in the cathode can be prevented.
  • the water whose evaporation is suppressed can be back-diffused to the anode side to cause a power generation reaction with a 100% methanol solution.
  • a gap is provided between the fuel supply suppressing membrane and the anode. Further, it is preferable that the vent hole is provided so as to communicate the gap and the outside!
  • the heat generated in the EA is less likely to be transferred to the fuel tank side, so the effect of preventing the fuel temperature from rising can be obtained.
  • the liquid fuel includes methanol and water.
  • the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is preferably MmZMw> 1.
  • the liquid fuel in which the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is MmZMw> 1 can be continuously used for the following reason. In other words, it was confirmed that if power generation is continued using 100% methanol, the initial generated water is consumed, but stable power generation is still possible. This is presumably because the water generated by the power generation reaction of the power sword is diffused back to the anode side, so that the water necessary for the anode reaction is sufficiently supplied even if water is not supplied as fuel.
  • a solid oxide fuel cell according to the present invention is an operation method of the solid oxide fuel cell.
  • water is sufficiently generated at the anode by supplying the oxidant and the fuel without first energizing.
  • stable power generation can be continued even if high concentration liquid fuel exceeding the theoretical value, such as 100% methanol, is supplied.
  • the fuel supply control membrane acts so as to suppress the fuel permeation amount to the anode, so that an optimum amount of fuel can be supplied to the anode and stable. Power generation can be continued. Furthermore, since the vents act to discharge carbon dioxide generated during power generation to the outside, carbon dioxide carbon dioxide is effectively discharged. As a result, it is possible to stabilize the fuel supply from the fuel supply suppression membrane to the anode while preventing an increase in internal pressure. In addition, since the oxygen can be taken into the anode through the vent hole, the taken-in oxygen reacts with the catalyst supported on the anode, so that water can be stored in the anode in advance. The presence of this water in the solid oxide fuel cell of the present invention has a remarkable effect that power generation is possible even when a 100% methanol solution is used as the liquid fuel.
  • FIG. 1 is a diagram showing an example of a conventional vaporization supply type DMFC.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cell structure of a solid oxide fuel cell of the present invention.
  • FIG. 3 is a schematic perspective view showing a structural arrangement from an MEA to a perforated plate.
  • FIG. 4A is a schematic diagram showing an example of a vent hole provided between a solid polymer electrolyte membrane and an anode current collector.
  • FIG. 4B is a schematic view showing an example of a vent hole provided between the solid polymer electrolyte membrane and the anode current collector.
  • FIG. 4C is a schematic view showing an example of a vent hole provided between the solid polymer electrolyte membrane and the anode current collector.
  • FIG. 5 is a graph showing the film thickness dependence on the methanol permeation rate of the fuel supply suppression membrane used in the examples.
  • FIG. 6 A one-hour change in potential was shown when power was generated for 10 hours using the DMFC structure of the present invention. It is a graph.
  • FIG. 7A is a plan view showing a spacer constituting the solid oxide fuel cell of Example 1.
  • FIG. 7B is a plan view showing a perforated plate constituting the solid oxide fuel cell of Example 1.
  • FIG. 2 is a schematic cross-sectional view showing an example of the cell structure of the solid oxide fuel cell of the present invention
  • FIG. 3 is a schematic oblique view showing an outline of the arrangement from the MEA to the perforated plate.
  • 4A to 4C are schematic views showing the form of vents provided between the solid polymer electrolyte membrane and the anode current collector. The present invention is not limited to these drawings and the embodiments described below.
  • the solid oxide fuel cell of the present invention includes a solid polymer electrolyte membrane 11, a force sword 12 disposed on one surface of the solid polymer electrolyte membrane 11 in contact with the surface, and a force sword 12 disposed on the other surface. At least a power sword 12 and a power sword current collector 14 and an anode current collector 15 disposed on and in contact with the anode 13, respectively, and are supplied with liquid fuel. It is a solid oxide fuel cell having a cell structure 10 (hereinafter simply referred to as “cell” or “cell structure”).
  • the solid polymer electrolyte membrane 11, the force sword 12 and the anode 13 constitute an MEA (electrode-electrolyte membrane assembly; Membrane and Electrode Assembly).
  • MEA electrode-electrolyte membrane assembly
  • an anode current collector 15 are pressed with spacers 21 and 22 sandwiched, respectively.
  • the solid polymer electrolyte membrane 11 is not particularly limited, but commercially available ones used in the examples described later can also be used.
  • Both the force sword 12 and the anode 13 sandwiching the solid polymer electrolyte membrane 11 from both sides are produced by applying a catalyst paste containing carbon particles carrying a catalyst onto, for example, carbon paper as a porous substrate. Is done.
  • the produced force sword 12 and the anode 13 are disposed and pressure-bonded so that the catalyst paste layer side is on the solid polymer electrolyte membrane 11 side, thereby producing the MEA.
  • the solid polymer electrolyte membrane 11, the force sword 12 and the anode 13 are denoted by reference numerals as constituting the MEA.
  • the layer on the solid polymer electrolyte membrane 11 side represents the catalyst paste layer (no symbol), and on the side away from the solid polymer electrolyte membrane 11 force.
  • a layer represents the porous substrate (no symbol).
  • the anode current collector 15 has a fuel supply suppressing membrane 17 disposed between the anode current collector 15 and the perforated plate 16, and a solid polymer electrolyte.
  • the vent hole 31 (see FIGS. 4A to C) is provided between the membrane 11 and the anode current collector 15.
  • a fuel supply suppression film 17 is provided between the anode current collector 15 and the perforated plate 16.
  • the fuel supply suppression film 17 is a control film that vaporizes the fuel and controls the supply thereof, and acts to suppress the fuel permeation amount to the anode 13. As a result, an optimal amount of fuel can be supplied to the anode 13, and stable power generation can be continued.
  • the fuel is supplied from the fuel tank 18 through the perforated plate 16 to the fuel supply suppressing film 17.
  • the fuel supply suppressing film 17 is sandwiched and fixed by an anode current collector 15 having an opening for supplying the anode 14 without interfering with fuel and a perforated plate 16 such as a punching sheet. Yes. For this reason, it is not necessary to pressurize and fix by a fuel holding layer called a wicking material or the like as in the prior art.Also, by setting the thickness according to the fuel concentration, the methanol permeation rate that permeates the fuel supply suppression membrane 17 is increased. It can be easily adjusted to supply the optimum amount of methanol.
  • an electrolyte membrane (styrene dibulebenzene membrane) is used. Further, the film thickness is set according to the fuel concentration to be used.
  • the styrene dibule benzene film is a sulfonated styrene dibule benzene copolymer.
  • the amount of fuel supplied to the fuel supply suppression membrane 17 must be equal to or greater than the amount of methanol consumed in the MEA (electrode-electrolyte membrane assembly). Determined by area. The opening area can be easily controlled by holding the fuel supply suppression membrane 17 between, for example, two perforated plates 16.
  • the perforated plate 16 is provided closer to the fuel tank 18 than the fuel supply suppressing film 17.
  • the perforated plate 16 has a plurality of holes for supplying the fuel solution to the fuel supply suppressing membrane 17.
  • the perforated plate 16 may be provided so as to sandwich the fuel supply suppressing film 17 as necessary.
  • the perforated plate 16, together with the anode current collector 15, prevents the membrane from being greatly deformed due to swelling of the fuel supply suppression membrane 17, an increase in internal pressure due to gas generation at the anode, and excessive stress is applied. Acts to prevent As the material of the perforated plate 16, as long as it has methanol resistance and has a certain degree of hardness, for example, SUS or the like is used.
  • a plurality of spacers having a sealing function are provided in each part of the cell structure 10.
  • a space between the solid polymer electrolyte membrane 11 and the force sword current collector 14 having a thickness approximately the same as the thickness of the force sword 12. Is provided at the periphery of the cell structure 10.
  • a spacer 22 having a thickness substantially the same as the thickness of the anode 13 is provided.
  • a spacer 23 having a sealing function is provided on the periphery of the cell structure 10 between the anode current collector 15 and the fuel supply suppressing film 17, and (iii) iv) A spacer 24 having a sealing function is provided on the periphery of the cell structure 10 between the fuel supply suppressing membrane 17 and the perforated plate 16, and (V) the perforated plate 16 and PP, for example, A spacer 25 with a sealing function is provided on the periphery of the cell structure 10 between the fuel tank 18 and the plastic material. Is. Note that each of these spacer scratch, typically is formed of a silicon rubber or plastic or the like having a sealing function.
  • the present invention is characterized in that a vent hole is provided between the solid polymer electrolyte membrane 11 and the anode current collector 15.
  • the vent hole communicates with the outside.
  • the air hole can achieve the effect of the present invention regardless of the form provided as long as it is provided between the solid polymer electrolyte membrane 11 and the anode current collector 15.
  • the spacer 22 provided between the polymer electrolyte membrane 11 and the anode current collector 15 is provided with a vent hole 31 which is a characteristic configuration of the present invention.
  • the vent hole 31 is provided in the spacer 22, and thereby, the two generated during power generation in the catalyst paste layer of the anode 13.
  • the carbon oxide passes through the porous substrate holding the catalyst paste layer directly or once after exiting the void 27, and is discharged from the air holes 31 of the spacer 22 arranged at the periphery of the anode 13. Is done.
  • this vent hole 31 effectively discharges carbon dioxide and carbon, so that an increase in internal pressure in the cell can be prevented, and the fuel supply suppression membrane 17 to the anode 13 It can prevent that the fuel supply to is interrupted.
  • the vent 31 can also take in oxygen into the external force anode 13. The taken-in oxygen and the supplied fuel react on the catalyst supported on the anode 13 as shown in the following formula 3, and water can be stored in advance in the anode. According to the experiments by the present inventors, it was confirmed that power generation was possible even when a 100% methanol solution was used as the liquid fuel.
  • the liquid fuel contains methanol, and the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is Mm ZMw. It is possible to suitably use those that are> l. In particular, as described above, even when a 100% methanol solution containing no water is used, power generation can occur and the power generation can be continued. It is preferable that the vent hole 31 is provided at a position where oxygen for generating water required at the initial stage in the anode is supplied and the generated by-product (carbon dioxide) can be efficiently removed. For example, as shown in FIGS.
  • the spacer 22 provided between the anode current collector 15 and the solid polymer electrolyte membrane 11 may be provided by fragmentation or the like (A).
  • the spacer 22 may be provided with a rectangular cut so that it is uneven! (B), or a form (C) with a through-hole that traverses the inside of the spacer 22 may be used.
  • Examples of the material of the spacer 22 forming the vent hole 31 include silicon rubber and plastic.
  • the air holes 31 may be provided on all four sides, showing an example in which the air holes 31 are formed on only two opposite sides.
  • the vent 31 can be opened and closed to prevent oxygen and water from reacting in the anode during storage in the initial state before operation or in the rest state when operation is stopped. It is preferable to do. Also, during storage, it is preferable to take measures such as providing a shutter mechanism or at least emptying the fuel flow path so that methanol does not permeate the fuel supply suppression membrane 17! /.
  • a moisturizing method using the evaporation suppression layer 19 for example, (0 a method of directly moisturizing an evaporation suppression layer made of a hydrophilic material on a force sword, (ii) closing the force sword with an evaporation suppression layer made of a water repellent material, (M)
  • the above method of moisturizing a combination of 0 and GO, etc.
  • the material for the evaporation suppression layer 19 suitable for the above method 0 is a fiber mat.
  • the material of the evaporation suppression layer 19 suitable for the above method (ii) includes meta-resistant plastic materials (PTFE, ET FE, polypropylene, polyethylene, etc.) ), Metal mats, etc.
  • the material of the evaporation suppression layer 19 preferably has resistance to methanol.
  • Such an evaporation suppression layer 19 has an effect of preventing moisture evaporation and keeping moisture.
  • a cover member 20 may be further provided on the evaporation suppression layer 19 (see FIG. 2).
  • the cover member 20 can take in air necessary for power generation by adopting a structure in which the side force air is taken in or a structure in which a hole is formed in the cover member 20 itself. As a result, it is possible to suppress excessive evaporation of the generated water from the force sword while restricting the vent hole 31 that is an air intake port to the necessary minimum.
  • FIG. 2 there is a space between the fuel supply suppression membrane 17 and the anode 13.
  • a gap 27 may be provided. Due to the presence of the air gap 27, oxygen from the vent hole 31 is supplied to the entire anode, and water can be efficiently generated. In addition, the heat generated by the MEA can be made difficult to transfer to the fuel tank, and the effect of preventing the fuel temperature from rising can be obtained.
  • An operation method of the solid oxide fuel cell of the present invention is an operation method of the solid oxide fuel cell according to the present invention, comprising: supplying an oxidizing agent to the fuel cell in an initial state or a resting state; It includes a step of starting fuel supply and a step of starting energization to an external load after the cell potential reaches a predetermined potential.
  • an oxidant is supplied to the fuel cell in the initial state or the resting state.
  • the oxidant is oxygen (including oxygen in the air; hereinafter referred to as air). If the air gap 27 is formed in advance, the air present in the air gap is supplied as the oxidant. . On the other hand, when no gap is formed, the air that has entered through the vent hole 31 is supplied as an oxidant.
  • fuel is supplied from the fuel cartridge device or the fuel tank 18.
  • the fuel supplied from the fuel tank 18 passes through the perforated plate 16 and is vaporized by the fuel supply suppressing film 17 to be supplied to the anode.
  • the oxidizing agent is already supplied to the anode before the fuel is supplied, when the fuel is supplied to the anode, the oxidant and the fuel are separated on the catalyst supported on the anode. The water reacts as shown in Equation 3 above.
  • the cell potential is confirmed, and energization to the external load is started after the cell potential reaches a predetermined potential.
  • the confirmation of the cell potential is to confirm that sufficient water is generated.
  • the cell potential is confirmed to confirm that the generated electromotive force reaches a predetermined value, and then energization to the external load is started.
  • 100% methanol is supplied as fuel
  • power generation proceeds without supplying water as fuel. Thought to be despread to the side. As a result, power generation proceeds even if water is not supplied.
  • stable power generation can be continued even when a high-concentration liquid fuel exceeding the theoretical value, such as 100% methanol, is supplied.
  • FIG. 5 is a graph showing the dependence of the fuel supply suppression membrane used in this example on the membrane permeation rate.
  • the fuel supply suppression membrane a styrene dibenzene-based membrane with a changed film thickness is used.
  • One of the fuel supply suppression membranes is on the methanol side and the other is open to the atmosphere. Asked.
  • the fuel consumption (methanol permeation rate) is known to be proportional to the current density. For example, in this example, when the MEA methanol permeation rate was 0. OlgZhZcm 2 , the fuel supply suppression membrane methanol permeation rate is desired is 0. 0 2 ⁇ 0. 03gZhZcm 2 is twice to three times the methanol permeation rate of MEA.
  • catalyst-supported carbon particles are prepared by supporting 50% by weight of white metal particles having a particle diameter in the range of 3 to 5 nm on carbon particles (Ketjen Black EC600JD manufactured by Rion Co., Ltd.).
  • An appropriate amount of 5% by weight Nafion solution (trade name; DE521, “Nafion” is a registered trademark of DuPont) manufactured by DuPont was added to the carbon fine particle lg and stirred to obtain a catalyst base for forming a force sword. .
  • This catalyst paste was applied to a carbon paper as a base material (TGP-H-120 manufactured by Torayen clay) at a coating amount of 8 mgZcm 2 and dried to prepare a 4 cm ⁇ 4 cm force sword sheet.
  • a carbon paper as a base material TGP-H-120 manufactured by Torayen clay
  • Ru platinum
  • Ru ratio is 50 at%) having a particle diameter in the range of 3 to 5 nm are used instead of platinum fine particles.
  • the catalyst paste for anode formation should be the same as the conditions for obtaining the paste. Obtained. Except for the use of this catalyst paste,
  • an 8 cm x 8 cm x 180 m thick membrane made of DuPont's Naphion 117 (number average molecular weight is 250000) was used as the solid polymer electrolyte membrane 11, and one side of the thickness direction of this membrane was The force sword was placed on the surface of the carbon paper so that the carbon paper faced outward, and the anode was placed on the other face of the carbon paper so that the carbon paper faced outward. The external force of each carbon paper was also hot pressed. As a result, the force sword 12 and the anode 13 were joined to the solid polymer electrolyte membrane 11 to obtain MEA (electrode-electrolyte membrane assembly).
  • MEA electrode-electrolyte membrane assembly
  • current collectors 14 and 15 made of stainless steel (SUS316) made of stainless steel (SUS316) having an outer dimension of 6 cm 2 , a thickness of 1 mm, and a width of 11 mm and having a rectangular frame shape are provided. Arranged. In addition, a vent 31 made of a rectangular frame-shaped frame plate made of silicon rubber and having an outer dimension of 6 cm, a thickness of 0.3 mm, and a width of 10 mm was formed between the solid polymer electrolyte membrane 11 and the anode current collector 15. Pacer 22 was placed.
  • a vent hole 31 for discharging carbon dioxide and carbon dioxide was used in which eight incisions with a width of 0.5 mm were provided at two locations on each side of the frame (see FIG. 7A). ). Further, a spacer 21 having a sealing function between the solid polymer electrolyte 11 and the force sword current collector 14 was disposed.
  • This spacer 21 and other spacers 23, 24, and 25 are made of silicon rubber and have a rectangular frame shape with an outer dimension of 6 cm 2 , a thickness of 0.3 mm, and a width of 10 mm. A spacer having a sealing function was used.
  • the fuel tank 18 is a container made of PP and having an outer dimension of 6 cm 2 , a height of 8 mm, an inner dimension of 44 mm 2 , and a depth of 3 mm.
  • a fuel supply port 18a for supplying fuel is provided on the side of the tank. Inside, there is a wicking material made of urethane as a fuel retention material.
  • an evaporation suppression layer 19 made of a fiber mat was provided above the force sword.
  • members other than the cover member 20 are screwed and integrated with the cell frame 29.
  • the screw used at this time is a screw made of grease to prevent leakage.
  • the MEA, the force sword current collector, the anode current collector, the fuel supply suppression film, the seal member, the evaporation suppression layer, etc. are integrated together by a predetermined number of screws, and the solid electrolyte type having the cross-sectional structure shown in FIG. A fuel cell was obtained.
  • FIG. 6 shows a solid oxide fuel cell obtained as described above, using pure methanol (100% methanol) as the fuel at room temperature (25 ° C.) and 0.3 A (about 19 mAZcm 2 ). It is the graph which showed the time change of the potential when generating electricity for 10 hours. Figure 6 shows that power generation is stable for 10 hours.
  • the fuel consumption at this time was 0.185 gZh (about 0.012 g ZhZcm 2 ), and the energy density per weight was 0.52 WhZg.
  • the reason why the fuel consumption is smaller than the value of the fuel supply suppression membrane alone (equivalent to 100 m) is that the amount of fuel permeation suppressed by MEA is included.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a solid electrolyte fuel cell comprising a solid polymer electrolyte membrane, a cathode arranged on one side of the solid polymer electrolyte membrane, an anode arranged on the other side of the solid polymer electrolyte membrane, a cathode collector and an anode collector respectively arranged on the cathode and anode, a fuel supply regulating membrane arranged on the anode collector for controlling supply of a liquid fuel to the anode, a perforated plate arranged on the fuel supply regulating membrane and having a plurality of holes for supplying the liquid fuel to the fuel supply regulating membrane, and an air vent formed between the fuel supply regulating membrane and the perforated plate.

Description

固体電解質型燃料電池及びその運転方法  Solid oxide fuel cell and method of operating the same
技術分野  Technical field
[0001] 本発明は、電解質膜として固体高分子電解質膜を用い、液体燃料を使用する固体 電解質型燃料電池及びその運転方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a solid electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane and using liquid fuel, and an operation method thereof.
背景技術  Background art
[0002] 液体燃料を使用した固体電解質型燃料電池は、小型、軽量ィ匕が容易であるために 、今日では携帯機器をはじめとした種々の電子機器用電源としての研究開発が活発 に進められている。  [0002] Solid oxide fuel cells using liquid fuels are small and light-weight, so today, research and development as a power source for various electronic devices such as portable devices are being actively promoted. ing.
[0003] 固体電解質型燃料電池は、固体高分子電解質膜をアノードと力ソードとで挟持した 構造の電極 電解質膜接合体(MEA; Membrane and Electrode Assembly )を備えている。液体燃料を直接アノードに供給するタイプの燃料電池は、直接型燃 料電池と呼ばれる。直接型燃料電池では、供給された液体燃料がアノードに担持さ れた触媒上で分解されて陽イオン、電子及び中間生成物を生成する。さら〖ここのタイ プの燃料電池は、生成した陽イオンが固体高分子電解質膜を透過して力ソード側に 移動し、生成した電子は外部負荷を経て力ソード側に移動し、これらが力ソードで空 気中の酸素と反応して発電する。例えば、液体燃料としてメタノール水溶液をそのま ま使用するダイレクトメタノール型燃料電池(以下、 DMFCという。)では、下式 1で表 される反応がアノードで起こり、下式 2で表される反応が力ソードで起こる。これらの式 1及び 2から明らかなように、 DMFCでは、理論上、アノードで 1モルのメタノールと 1 モルの水とが反応して 1モルの反応生成物(二酸ィ匕炭素)が生成される。このとき、水 素イオン及び電子も生成されるため、燃料であるメタノール水溶液中のメタノールの 理論濃度は体積%で約 70vol%となる。  [0003] A solid electrolyte fuel cell includes an electrode electrolyte membrane assembly (MEA) having a structure in which a solid polymer electrolyte membrane is sandwiched between an anode and a force sword. A type of fuel cell that supplies liquid fuel directly to the anode is called a direct fuel cell. In the direct fuel cell, the supplied liquid fuel is decomposed on a catalyst supported on an anode to generate cations, electrons and intermediate products. Furthermore, in this type of fuel cell, the generated cations permeate the solid polymer electrolyte membrane and move to the force sword side, and the generated electrons move to the force sword side through an external load. The sword generates electricity by reacting with oxygen in the air. For example, in a direct methanol fuel cell (hereinafter referred to as DMFC) that uses an aqueous methanol solution as a liquid fuel, the reaction expressed by the following formula 1 occurs at the anode, and the reaction expressed by the following formula 2 is powerful. It happens in swords. As is clear from these equations 1 and 2, in DMFC, 1 mol of methanol and 1 mol of water react theoretically at the anode to produce 1 mol of reaction product (diacid-carbon). The At this time, since hydrogen ions and electrons are also generated, the theoretical concentration of methanol in the methanol aqueous solution, which is the fuel, is about 70 vol% in volume%.
[化 1]  [Chemical 1]
CH3OH + H.0→ CO + 6H+ + 6e" + · + (1) 6H+ + 6e + 3 / 202→ 3H20 …(2) しかし、従来、アノードへのメタノールの供給量が水の供給量に比べて相対的に多 くなると、メタノールが上記式 1で表される反応に寄与することなく固体高分子電解質 膜を透過してしまう「クロスオーバー」が起こり、発電容量や発電電力が低下すること が知られている。クロスオーバーが大きくなると、(0出力(電位)が下がってしまう、 GO 燃料の消費効率が悪くなつてしまう、 Gii)発熱量が大きくなつて MEAの温度が上がる ため、燃料温度が必要以上に上昇してクロスオーバーがさらに加速され、更なる温度 上昇を引き起こしてしまう、等の問題が生じ易くなる。 CH 3 OH + H.0 → CO + 6H + + 6e "+ · + (1) 6H + + 6e + 3/20 2 → 3H 2 0 (2) Conventionally, however, when the amount of methanol supplied to the anode is relatively larger than the amount of water supplied, the methanol is expressed by the above equation 1. It is known that a “crossover” that permeates through the solid polymer electrolyte membrane without contributing to the reaction occurs, resulting in a decrease in power generation capacity and power generation. When the crossover increases, (0 output (potential) decreases, GO fuel consumption efficiency deteriorates, Gii) MEA temperature rises due to large calorific value, so fuel temperature rises more than necessary As a result, the crossover is further accelerated and a problem such as a further temperature rise is likely to occur.
[0004] 上記のクロスオーバーは、水に対するメタノールのモル比が 1を超えるメタノール水 溶液 (約 70vol%以上の高濃度メタノール水溶液)を用いたときに主に生じるが、同様 の問題は高濃度メタノールを用いたときのみならず、メタノール濃度が例えば lOvol %未満の低濃度メタノール水溶液を用いたときにも生じる。低濃度メタノール水溶液 を用いることによってクロスオーバーを低減することは容易になるが、このような低濃 度メタノール水溶液を液体燃料として用いると、液体燃料の単位質量当たりの発電量 が少なくなるため、固体電解質型燃料電池のエネルギー密度を高めることができなく なるという問題が生じる。したがって、エネルギー密度の高い固体電解質型燃料電池 を得るためには、高濃度メタノール水溶液のように原燃料の濃度が高 ヽ液体燃料を クロスオーバーを抑制して用いることが望まれる。  [0004] The above crossover mainly occurs when a methanol aqueous solution (methanol aqueous solution having a high concentration of about 70 vol% or more) having a molar ratio of methanol to water of more than 1 is used. This occurs not only when using, but also when using a low-concentration methanol aqueous solution with a methanol concentration of, for example, less than 10 vol%. Although it is easy to reduce crossover by using a low-concentration methanol aqueous solution, the use of such a low-concentration methanol aqueous solution as a liquid fuel reduces the amount of power generated per unit mass of the liquid fuel. The problem arises that the energy density of the electrolyte fuel cell cannot be increased. Therefore, in order to obtain a solid oxide fuel cell with a high energy density, it is desirable to use a liquid fuel with a high concentration of raw fuel, such as a high-concentration aqueous methanol solution, while suppressing crossover.
[0005] クロスオーバーを抑制するための DMFC技術として、例えば特開 2000— 106201 号公報 (文献 1)には、アノードに積層され、気化された燃料を供給する燃料気化層と [0005] As a DMFC technique for suppressing crossover, for example, Japanese Unexamined Patent Application Publication No. 2000-106201 (Document 1) includes a fuel vaporization layer that is stacked on an anode and supplies vaporized fuel.
、その燃料気化層に積層され、供給された液体燃料を前記燃料気化層に供給する 燃料浸透層とを備えた燃料電池が開示されて ヽる。この特許文献 1の記載によればA fuel cell including a fuel permeation layer that is laminated on the fuel vaporization layer and that supplies the supplied liquid fuel to the fuel vaporization layer is disclosed. According to the description in Patent Document 1,
、「このように燃料を気化して供給することで、燃料気化層内の気体燃料はほぼ飽和 状態に保たれるので、電池反応による燃料気化層中の気体燃料の消費分だけ燃料 浸透層から液体燃料が気化し、さらに気化分だけ液体燃料が毛管力によってセル内 に導入される。このように、燃料供給量は燃料消費量に連動しているため、未反応で 電池の外に排出される燃料は殆ど無ぐ従来の液体燃料電池のように、燃料出口側 の処理系を必要としな 、。」との効果がうたわれて!/、る。 "By vaporizing and supplying the fuel in this way, the gaseous fuel in the fuel vaporization layer is kept almost saturated, so the consumption of the gaseous fuel in the fuel vaporization layer due to the cell reaction is from the fuel permeation layer. The liquid fuel is vaporized and the liquid fuel is introduced into the cell by the capillary force, and the fuel supply amount is linked to the fuel consumption amount, so it is unreacted and discharged outside the battery. Like the conventional liquid fuel cell with almost no fuel Does not require a processing system. The effect is said to be!
[0006] つまり、図 1で示したように、液体燃料を毛管力で電池内に導入するための燃料浸 透層 106と、アノード 102と燃料浸透層 106との間に配置され、電池内に導入された 液体燃料を気化させて燃料を気体の形でアノードに供給するための燃料気化層 10 7とが積層される。燃料浸透層 106、燃料気化層 107及び起電部 104をセパレータ 1 05を介して複数積層することにより、電池本体となるスタック 109が構成される。液体 燃料導入路 110内に導入された液体燃料は、スタック 109の側面カゝら毛管力で燃料 浸透層 106に供給され、さらに燃料気化層 107で気化されてアノード 102に供給さ れる。セパレータ 105、燃料浸透層 106及び燃料気化層 107は、発生した電子を伝 導する集電板の機能も果たすため、例えば燃料浸透層 106はカーボン導電性材料 により形成される。  That is, as shown in FIG. 1, the fuel permeable layer 106 for introducing liquid fuel into the cell by capillary force, and the anode 102 and the fuel permeable layer 106 are disposed between the fuel permeable layer 106 and the fuel permeable layer 106. A fuel vaporization layer 107 for vaporizing the introduced liquid fuel and supplying the fuel in the form of gas to the anode is laminated. By stacking a plurality of fuel permeation layers 106, fuel vaporization layers 107, and electromotive units 104 via separators 105, a stack 109 serving as a battery body is formed. The liquid fuel introduced into the liquid fuel introduction path 110 is supplied to the fuel permeation layer 106 by a capillary force from the side surface of the stack 109, further vaporized by the fuel vaporization layer 107, and supplied to the anode 102. Since the separator 105, the fuel permeation layer 106, and the fuel vaporization layer 107 also function as a current collector plate that conducts the generated electrons, for example, the fuel permeation layer 106 is formed of a carbon conductive material.
[0007] この例では、燃料としてはメタノールと水の 1: 1 (モル比)混合液を用い、燃料貯蔵 タンク力も液体燃料導入路 110への液体燃料の供給は、タンクを発電部の上方に設 けることによる自然落下や、タンク内の内圧等で液体燃料を押し出すような構成として もよいし、また液体燃料導入路 110の毛細管力で燃料を引き出すような構成とするこ ともできるとしている。  [0007] In this example, a 1: 1 mixture (molar ratio) of methanol and water is used as the fuel, and the fuel storage tank force is also supplied to the liquid fuel introduction path 110 by supplying the tank above the power generation unit. It may be configured such that the liquid fuel is pushed out by the natural fall caused by installation, the internal pressure in the tank, or the like, or the fuel can be drawn out by the capillary force of the liquid fuel introduction passage 110.
発明の開示  Disclosure of the invention
[0008] 文献 1に開示されている構成について更なる検討を行ったところ、本発明者らは以 下のような問題が存在し、そのままでは安定した発電を行えないことを見出した。  [0008] Upon further investigation of the configuration disclosed in Document 1, the present inventors have found that the following problems exist and cannot be stably generated as they are.
[0009] つまり、文献 1における構成では、メタノールと水の 1: 1 (モル比)混合液を用い、タ ンク内の内圧等で液体燃料を燃料気化層 107に供給することができるとしているが、 本発明者らは特許文献 1の構成では、発電動作中に発生した生成物によって安定し た燃料供給ができなくなることを見出した。つまり、アノードでは上記式 1の反応が起 こって二酸ィ匕炭素が発生する力 発生した二酸ィ匕炭素によってアノード側の内圧が 高まり、燃料気化層力もの燃料の供給が妨げられてしまうのである。  In other words, in the configuration in Document 1, a 1: 1 mixture (molar ratio) of methanol and water is used, and liquid fuel can be supplied to the fuel vaporization layer 107 by an internal pressure in the tank or the like. The present inventors have found that in the configuration of Patent Document 1, a stable fuel supply cannot be achieved by a product generated during a power generation operation. In other words, the reaction of Formula 1 above occurs at the anode, and the force that generates diacid-carbon is generated. The internal pressure on the anode side is increased by the generated diacid-carbon, and the supply of fuel with fuel vaporization strength is hindered. It is.
[0010] さらに、文献 1における構成では、燃料としてメタノールと水の 1: 1 (モル比)混合液 以上に高濃度メタノール溶液を燃料として用いることが不可能であることもわ力つた。 すなわち、メタノールの気化供給量が必要量である水と比較して多いために、上記式 1のアノード反応が円滑に行われないのである。 [0010] Furthermore, in the configuration in Document 1, it was also surprising that it was impossible to use a high-concentration methanol solution as fuel more than a 1: 1 mixture (molar ratio) of methanol and water as fuel. That is, since the vaporization supply amount of methanol is larger than the required amount of water, the above formula The anodic reaction of 1 is not performed smoothly.
[0011] 本発明は、上記課題を解決するためになされたものであって、その目的は、クロス オーバーの抑制に有利である気化供給よりなる DMFCにおいて、より高濃度の燃料 を用いた発電を可能とした固体電解質型燃料電池を提供することにある。また、本発 明の他の目的は、そうした固体電解質型燃料電池の効率の良い運転方法を提供す ることにめる。 [0011] The present invention has been made to solve the above-described problems, and an object of the present invention is to generate power using a higher concentration fuel in a DMFC including vaporization supply, which is advantageous for suppressing crossover. An object of the present invention is to provide a solid oxide fuel cell that can be made possible. Another object of the present invention is to provide an efficient operation method of such a solid oxide fuel cell.
[0012] 本発明に係る固体電解質型燃料電池は、固体高分子電解質膜と、前記固体高分 子電解質膜の一方の面上に配された力ソードと、他方の面上に配されたアノードと、 前記力ソード及び前記アノード上に夫々配された力ソード集電体及びアノード集電体 と、前記アノード集電体の上側に配置され、前記アノードへの液体燃料の供給を制 御する燃料供給抑制膜と、前記燃料供給抑制膜の上側に配置され、前記燃料供給 抑制膜へ液体燃料を供給する為の複数の孔を有する有孔板と、前記燃料供給抑制 膜と前記有孔板との間に設けられた通気孔と、を具備する。  [0012] A solid oxide fuel cell according to the present invention includes a solid polymer electrolyte membrane, a force sword disposed on one surface of the solid polymer electrolyte membrane, and an anode disposed on the other surface. A power sword current collector and an anode current collector disposed on the power sword and the anode, respectively, and a fuel that is disposed above the anode current collector and controls the supply of liquid fuel to the anode A supply suppression membrane, a perforated plate disposed above the fuel supply suppression membrane and having a plurality of holes for supplying liquid fuel to the fuel supply suppression membrane, the fuel supply suppression membrane, and the perforated plate A vent hole provided between the two.
[0013] この発明によれば、アノード集電体上にそのアノード集電体と有孔板との間に配さ れた燃料供給抑制膜を有するので、この燃料供給制御膜はアノードへの燃料透過 量を抑制するように作用し、アノードに最適な量の燃料を供給することができる。さら に、この発明によれば、固体高分子電解質膜とアノード集電体との間に外部との通気 孔が設けられているので、その通気孔力 発電中に発生した二酸ィ匕炭素を外部に排 出することができる。二酸ィ匕炭素の排出が有効に行われることにより、内圧の上昇が 生じな!/、ので、燃料供給抑制膜からアノードへの燃料供給が妨げられるのを防ぐこと ができる。加えて、この通気孔は、アノードに酸素を取り込むことができるので、取り込 まれた酸素がアノードに担持した触媒と反応してアノード内に事前に水を蓄えること ができる。この水の存在により、液体燃料として 100%メタノール溶液を用いても発電 が可能になるという顕著な効果を奏する。  [0013] According to the present invention, the fuel supply control film is disposed on the anode current collector between the anode current collector and the perforated plate. It acts to suppress the amount of permeation and can supply an optimal amount of fuel to the anode. In addition, according to the present invention, since a vent hole for the outside is provided between the solid polymer electrolyte membrane and the anode current collector, the vent force is reduced. It can be discharged to the outside. Since the internal pressure does not increase due to the effective discharge of carbon dioxide, the fuel supply from the fuel supply suppression membrane to the anode can be prevented from being hindered. In addition, since the vent can take in oxygen into the anode, the taken-in oxygen can react with the catalyst supported on the anode and store water in the anode in advance. The presence of this water has the remarkable effect that power generation is possible even when a 100% methanol solution is used as the liquid fuel.
[0014] 上記の固体電解質型燃料電池にお!、て、更に、シール機能を有し、前記固体高分 子電解質膜と前記アノード集電体との間に設けられたスぺーサ一、を具備し、前記通 気孔は、前記スぺーサ一に設けられて 、ることが望ま 、。  [0014] In the above solid oxide fuel cell, a spacer having a sealing function and provided between the solid polymer electrolyte membrane and the anode current collector is provided. It is preferable that the vent hole is provided in the spacer.
[0015] 通気孔を固体高分子電解質膜とアノード集電体との間に設けられたスぺーサ一に 設けるのが構造上便利である。 [0015] A vent is provided in a spacer provided between the solid polymer electrolyte membrane and the anode current collector. It is convenient in terms of structure.
[0016] 上記の固体電解質型燃料電池は、更に、前記力ソード集電体上に設けられた蒸発 抑制層を具備することが好ましい。  [0016] The solid oxide fuel cell preferably further includes an evaporation suppression layer provided on the force sword current collector.
[0017] この発明によれば、力ソード集電体上に蒸発抑制層が設けられているので、カソー ドで発生した水の蒸発を防ぐことができる。なお、蒸発が抑制された水はアノード側に 逆拡散して、 100%メタノール溶液と発電反応を生じさせることができる。 [0017] According to the present invention, since the evaporation suppression layer is provided on the force sword current collector, evaporation of water generated in the cathode can be prevented. The water whose evaporation is suppressed can be back-diffused to the anode side to cause a power generation reaction with a 100% methanol solution.
[0018] 上記の固体電解質型燃料電池では、前記燃料供給抑制膜と前記アノードとの間に 空隙を有していることが好ましい。また、前記通気孔は、前記空隙と外部とを連通させ るように設けられて 、ることが好まし!/、。 [0018] In the above solid oxide fuel cell, it is preferable that a gap is provided between the fuel supply suppressing membrane and the anode. Further, it is preferable that the vent hole is provided so as to communicate the gap and the outside!
[0019] この発明によれば、燃料供給抑制膜とアノードとの間に空隙を有するので、通気孔 力もの酸素がアノード全体に供給されて効率よく水を生成することができる。また、 M[0019] According to the present invention, since there is a gap between the fuel supply suppression membrane and the anode, oxygen having a sufficient ventilation capacity is supplied to the entire anode, and water can be efficiently generated. M
EA (電極一電解質膜接合体)で発生した熱が燃料タンク側に伝わりにくくなるので、 燃料の温度上昇を防ぐ効果も得られる。 The heat generated in the EA (electrode-electrolyte membrane assembly) is less likely to be transferred to the fuel tank side, so the effect of preventing the fuel temperature from rising can be obtained.
[0020] 上記の固体電解質型燃料電池において、前記燃料供給抑制膜は、前記有孔板と 前記アノード集電体とによって挟まれて固定されて 、ることが望ま 、。 [0020] In the above-described solid oxide fuel cell, it is desirable that the fuel supply suppression membrane is sandwiched and fixed between the perforated plate and the anode current collector.
[0021] 上記の固体電解質型燃料電池にお!ヽて、前記液体燃料は、メタノールと水を含み[0021] In the above solid oxide fuel cell, the liquid fuel includes methanol and water.
、メタノールのモル数(Mm)と水のモル数(Mw)の比率が MmZMw> 1であること が好ましい。 The ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is preferably MmZMw> 1.
[0022] メタノールのモル数(Mm)と水のモル数(Mw)の比率が MmZMw> 1の液体燃 料を継続的に使用できるのは以下の理由による。すなわち、 100%メタノールを用い て発電を継続していくと初期の生成水が消費されるが、依然として安定した発電を行 うことが確認された。これは、力ソードの発電反応によって生成した水がアノード側に 逆拡散してくることにより、燃料として水が供給されなくてもアノード反応に必要となる 水が十分供給されるためと考えられる。  [0022] The liquid fuel in which the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is MmZMw> 1 can be continuously used for the following reason. In other words, it was confirmed that if power generation is continued using 100% methanol, the initial generated water is consumed, but stable power generation is still possible. This is presumably because the water generated by the power generation reaction of the power sword is diffused back to the anode side, so that the water necessary for the anode reaction is sufficiently supplied even if water is not supplied as fuel.
[0023] 本発明に係る固体電解質型燃料電池は、上記の固体電解質型燃料電池の運転方 法である。初期状態若しくは休止状態にある燃料電池に酸化剤を供給するステップ と、燃料供給を開始するステップと、セル電位が所定電位に達した後に外部負荷へ 通電を開始するステップと、を具備する。 [0024] この発明によれば、初期状態若しくは休止状態力も動作させる際に、まず通電せず に酸化剤と燃料とを供給することでアノードで十分に水を生成させる。その後に通電 し発電を開始するステップを経ることにより、例えば 100%メタノールのような理論値 を超える高濃度の液体燃料を供給しても、安定した発電を継続させることができる。 [0023] A solid oxide fuel cell according to the present invention is an operation method of the solid oxide fuel cell. A step of supplying an oxidant to the fuel cell in an initial state or a rest state, a step of starting fuel supply, and a step of starting energization to an external load after the cell potential reaches a predetermined potential. [0024] According to the present invention, when the initial state or the resting state force is operated, water is sufficiently generated at the anode by supplying the oxidant and the fuel without first energizing. By passing a subsequent step of energizing and starting power generation, stable power generation can be continued even if high concentration liquid fuel exceeding the theoretical value, such as 100% methanol, is supplied.
[0025] 本発明の固体電解質型燃料電池によれば、燃料供給制御膜がアノードへの燃料 透過量を抑制するように作用するので、アノードに最適な量の燃料を供給することが でき、安定した発電を継続することができる。さらに、通気孔が、発電中に発生した二 酸化炭素を外部に排出するように作用するので、二酸ィヒ炭素の排出が有効に行わ れる。これにより、内圧の上昇を防いで燃料供給抑制膜からアノードへの燃料供給を 安定させることができる。また、この通気孔は、アノードに酸素を取り込むことができる ので、取り込まれた酸素がアノードに担持した触媒と反応してアノード内に事前に水 を蓄えることができる。本発明の固体電解質型燃料電池は、この水の存在により、液 体燃料として 100%メタノール溶液を用いても発電が可能になるという顕著な効果を 奏する。  [0025] According to the solid oxide fuel cell of the present invention, the fuel supply control membrane acts so as to suppress the fuel permeation amount to the anode, so that an optimum amount of fuel can be supplied to the anode and stable. Power generation can be continued. Furthermore, since the vents act to discharge carbon dioxide generated during power generation to the outside, carbon dioxide carbon dioxide is effectively discharged. As a result, it is possible to stabilize the fuel supply from the fuel supply suppression membrane to the anode while preventing an increase in internal pressure. In addition, since the oxygen can be taken into the anode through the vent hole, the taken-in oxygen reacts with the catalyst supported on the anode, so that water can be stored in the anode in advance. The presence of this water in the solid oxide fuel cell of the present invention has a remarkable effect that power generation is possible even when a 100% methanol solution is used as the liquid fuel.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]従来の気化供給型 DMFCの一例を示した図である。 FIG. 1 is a diagram showing an example of a conventional vaporization supply type DMFC.
[図 2]本発明の固体電解質型燃料電池のセル構造の一例を示す模式断面図である  FIG. 2 is a schematic cross-sectional view showing an example of a cell structure of a solid oxide fuel cell of the present invention.
[図 3]MEAから有孔板までの構成配列を示す模式斜視図である。 FIG. 3 is a schematic perspective view showing a structural arrangement from an MEA to a perforated plate.
[図 4A]固体高分子電解質膜とアノード集電体との間に設けられた通気孔の例を示す 模式図である。  FIG. 4A is a schematic diagram showing an example of a vent hole provided between a solid polymer electrolyte membrane and an anode current collector.
[図 4B]固体高分子電解質膜とアノード集電体との間に設けられた通気孔の例を示す 模式図である。  FIG. 4B is a schematic view showing an example of a vent hole provided between the solid polymer electrolyte membrane and the anode current collector.
[図 4C]固体高分子電解質膜とアノード集電体との間に設けられた通気孔の例を示す 模式図である。  FIG. 4C is a schematic view showing an example of a vent hole provided between the solid polymer electrolyte membrane and the anode current collector.
[図 5]実施例で用いた燃料供給抑制膜のメタノール透過速度に対する膜厚依存性を 示すグラフである。  FIG. 5 is a graph showing the film thickness dependence on the methanol permeation rate of the fuel supply suppression membrane used in the examples.
[図 6]本発明の DMFC構造によって 10時間発電したときの電位一時間変化を示した グラフである。 [Fig. 6] A one-hour change in potential was shown when power was generated for 10 hours using the DMFC structure of the present invention. It is a graph.
[図 7A]実施例 1の固体電解質型燃料電池を構成するスぺーサーを示す平面図であ る。  FIG. 7A is a plan view showing a spacer constituting the solid oxide fuel cell of Example 1.
[図 7B]実施例 1の固体電解質型燃料電池を構成する有孔板を示す平面図である。 発明を実施するための最良の形態  FIG. 7B is a plan view showing a perforated plate constituting the solid oxide fuel cell of Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の固体電解質型燃料電池及びその運転方法について図面を参照し つつ説明する。図 2は、本発明の固体電解質型燃料電池のセル構造の一例を示す 模式断面図であり、図 3は、 MEAから有孔板までの構成配列の概略を示す模式斜 視図である。また、図 4A〜Cは、固体高分子電解質膜とアノード集電体との間に設 けられた通気孔の形態を示す模式図である。なお、本発明は、これらの図面及び以 下で説明する実施形態に限定されるものではない。  Hereinafter, the solid oxide fuel cell and the operation method thereof according to the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an example of the cell structure of the solid oxide fuel cell of the present invention, and FIG. 3 is a schematic oblique view showing an outline of the arrangement from the MEA to the perforated plate. 4A to 4C are schematic views showing the form of vents provided between the solid polymer electrolyte membrane and the anode current collector. The present invention is not limited to these drawings and the embodiments described below.
[0028] (固体電解質型燃料電池)  [0028] (Solid oxide fuel cell)
本発明の固体電解質型燃料電池は、固体高分子電解質膜 11と、固体高分子電解 質膜 11の一方の面上にその面に接して配された力ソード 12と、他方の面上にその面 に接して配されたアノード 13と、力ソード 12及びアノード 13上にそれぞれに接して配 された力ソード集電体 14及びアノード集電体 15とを少なくとも有し、液体燃料が供給 されるセル構造 10 (以下、単に「セル」又は「セル構造」という。)を有する固体電解質 型燃料電池である。  The solid oxide fuel cell of the present invention includes a solid polymer electrolyte membrane 11, a force sword 12 disposed on one surface of the solid polymer electrolyte membrane 11 in contact with the surface, and a force sword 12 disposed on the other surface. At least a power sword 12 and a power sword current collector 14 and an anode current collector 15 disposed on and in contact with the anode 13, respectively, and are supplied with liquid fuel. It is a solid oxide fuel cell having a cell structure 10 (hereinafter simply referred to as “cell” or “cell structure”).
[0029] 固体高分子電解質膜 11、力ソード 12及びアノード 13は、 MEA (電極—電解質膜 接合体; Membrane and Electrode Assembly)を構成している。その MEAの上下面に は、力ソード集電体 14とアノード集電体 15がスぺーサー 21, 22をそれぞれ挟んで圧 着されている。固体高分子電解質膜 11は特に限定されないが、後述の実施例でも 使用する市販のものを用いることができる。この固体高分子電解質膜 11を両面から 挟む力ソード 12とアノード 13は、いずれも、触媒を担持させた炭素粒子を含む触媒 ペーストを、例えば多孔質基材であるカーボンペーパー上に塗布して作製される。作 製された力ソード 12とアノード 13を、触媒ペースト層側が固体高分子電解質膜 11側 になるように配置して圧着することにより、 MEAが作製される。なお、図 2には、 MEA を構成するものとして固体高分子電解質膜 11、力ソード 12及びアノード 13を符号を 付して示している力 力ソード 12とアノード 13については、固体高分子電解質膜 11 側にある層が上記触媒ペースト層 (符号なし)を表しており、固体高分子電解質膜 11 力 離れる側にある層が上記多孔質基材 (符号なし)を表している。 [0029] The solid polymer electrolyte membrane 11, the force sword 12 and the anode 13 constitute an MEA (electrode-electrolyte membrane assembly; Membrane and Electrode Assembly). On the upper and lower surfaces of the MEA, a force sword current collector 14 and an anode current collector 15 are pressed with spacers 21 and 22 sandwiched, respectively. The solid polymer electrolyte membrane 11 is not particularly limited, but commercially available ones used in the examples described later can also be used. Both the force sword 12 and the anode 13 sandwiching the solid polymer electrolyte membrane 11 from both sides are produced by applying a catalyst paste containing carbon particles carrying a catalyst onto, for example, carbon paper as a porous substrate. Is done. The produced force sword 12 and the anode 13 are disposed and pressure-bonded so that the catalyst paste layer side is on the solid polymer electrolyte membrane 11 side, thereby producing the MEA. In FIG. 2, the solid polymer electrolyte membrane 11, the force sword 12 and the anode 13 are denoted by reference numerals as constituting the MEA. For the power sword 12 and anode 13 shown, the layer on the solid polymer electrolyte membrane 11 side represents the catalyst paste layer (no symbol), and on the side away from the solid polymer electrolyte membrane 11 force. A layer represents the porous substrate (no symbol).
[0030] 本発明の最大の特徴は、アノード集電体 15上に、アノード集電体 15と有孔板 16と の間に配された燃料供給抑制膜 17を有することと、固体高分子電解質膜 11とァノー ド集電体 15との間に通気孔 31 (図 4A〜Cを参照)が設けられていることにある。  [0030] The greatest feature of the present invention is that the anode current collector 15 has a fuel supply suppressing membrane 17 disposed between the anode current collector 15 and the perforated plate 16, and a solid polymer electrolyte. The vent hole 31 (see FIGS. 4A to C) is provided between the membrane 11 and the anode current collector 15.
[0031] 本発明の固体電解質型燃料電池には、アノード集電体 15と有孔板 16との間に燃 料供給抑制膜 17が設けられている。この燃料供給抑制膜 17は、燃料を気化しその 供給を制御する制御膜であり、アノード 13への燃料透過量を抑制するように作用す る。その結果、アノード 13に最適な量の燃料を供給することができ、安定した発電を 継続することができる。なお、この燃料供給抑制膜 17には、燃料タンク 18から有孔板 16を経て燃料が供給される。  In the solid oxide fuel cell of the present invention, a fuel supply suppression film 17 is provided between the anode current collector 15 and the perforated plate 16. The fuel supply suppression film 17 is a control film that vaporizes the fuel and controls the supply thereof, and acts to suppress the fuel permeation amount to the anode 13. As a result, an optimal amount of fuel can be supplied to the anode 13, and stable power generation can be continued. The fuel is supplied from the fuel tank 18 through the perforated plate 16 to the fuel supply suppressing film 17.
[0032] 燃料供給抑制膜 17は、燃料を妨げることなくアノード 14に供給するための開口部 を有したアノード集電体 15と、パンチングシート等の有孔板 16とにより挟まれて固定 されている。そのため、従来のようにゥイツキング材等と呼ばれる燃料保持層によって 加圧固定する必要がなぐまた、燃料濃度によってその厚さを設定することにより、そ の燃料供給抑制膜 17を透過するメタノール透過速度を調整し、容易に最適なメタノ 一ル量を供給することができる。  [0032] The fuel supply suppressing film 17 is sandwiched and fixed by an anode current collector 15 having an opening for supplying the anode 14 without interfering with fuel and a perforated plate 16 such as a punching sheet. Yes. For this reason, it is not necessary to pressurize and fix by a fuel holding layer called a wicking material or the like as in the prior art.Also, by setting the thickness according to the fuel concentration, the methanol permeation rate that permeates the fuel supply suppression membrane 17 is increased. It can be easily adjusted to supply the optimum amount of methanol.
[0033] 燃料供給抑制膜 17としては、電解質膜 (スチレンジビュルベンゼン系膜)が用いら れる。さらに使用する燃料濃度に応じてその膜厚が設定されて用いられる。なお、こ のスチレンジビュルベンゼン系膜とは、スチレンジビュルベンゼン共重合体をスルホ ン化処理したものである。燃料供給抑制膜 17への燃料供給量は、 MEA (電極ー電 解質膜接合体)におけるメタノールの消費量と同程度以上である必要があり、燃料供 給抑制膜 17におけるメタノール透過速度と開口面積によって決定される。開口面積 は、燃料供給抑制膜 17を例えば 2枚の有孔板 16で挟持することで容易に制御する ことちでさる。  [0033] As the fuel supply suppression membrane 17, an electrolyte membrane (styrene dibulebenzene membrane) is used. Further, the film thickness is set according to the fuel concentration to be used. The styrene dibule benzene film is a sulfonated styrene dibule benzene copolymer. The amount of fuel supplied to the fuel supply suppression membrane 17 must be equal to or greater than the amount of methanol consumed in the MEA (electrode-electrolyte membrane assembly). Determined by area. The opening area can be easily controlled by holding the fuel supply suppression membrane 17 between, for example, two perforated plates 16.
[0034] 有孔板 16は、燃料供給抑制膜 17よりも燃料タンク 18側に設けられている。有孔板 16は、燃料供給抑制膜 17に燃料溶液を供給するための複数の孔を有するものであ る。この有孔板 16は、上記のように、必要に応じて燃料供給抑制膜 17を挟むように 設けてもよい。この有孔板 16は、アノード集電体 15と共に、燃料供給抑制膜 17の膨 潤やアノードにおけるガスの発生による内圧の上昇等によって膜が大きく変形するの を防いだり、無理な応力が力かるのを防いだりするように作用する。有孔板 16の材質 としては、メタノール耐性を有し、ある程度の硬さを持つものであればよぐ例えば SU S等が用いられる。有孔板を用いることで燃料供給抑制膜 17とアノード 13との間に空 隙 27を有するような構造にすることができる。これにより、 MEA (電極一電解質膜接 合体)の発熱が燃料タンク 18側に伝わり難くなり、燃料温度の上昇を抑えることがで き、安定した発電が可能になる。 The perforated plate 16 is provided closer to the fuel tank 18 than the fuel supply suppressing film 17. The perforated plate 16 has a plurality of holes for supplying the fuel solution to the fuel supply suppressing membrane 17. The As described above, the perforated plate 16 may be provided so as to sandwich the fuel supply suppressing film 17 as necessary. The perforated plate 16, together with the anode current collector 15, prevents the membrane from being greatly deformed due to swelling of the fuel supply suppression membrane 17, an increase in internal pressure due to gas generation at the anode, and excessive stress is applied. Acts to prevent As the material of the perforated plate 16, as long as it has methanol resistance and has a certain degree of hardness, for example, SUS or the like is used. By using a perforated plate, it is possible to make a structure having a gap 27 between the fuel supply suppressing membrane 17 and the anode 13. This makes it difficult for the heat generated by the MEA (electrode-electrolyte membrane assembly) to be transmitted to the fuel tank 18 side, thereby suppressing an increase in fuel temperature and enabling stable power generation.
[0035] 本発明の固体電解質型燃料電池には、セル構造 10の各部にシール機能を有する スぺーサ一が複数設けられている。例えば、図 2及び図 3に示すように、(0固体高分 子電解質膜 11と力ソード集電体 14との間には、力ソード 12の厚さとほぼ同じ厚さから なるスぺーサー 21がセル構造 10の周縁に設けられており、 GO固体高分子電解質膜 11とアノード集電体 15との間には、アノード 13の厚さとほぼ同じ厚さからなるスぺー サー 22がセル構造 10の周縁に設けられており、(iii)アノード集電体 15と燃料供給抑 制膜 17との間には、シール機能を有するスぺーサー 23がセル構造 10の周縁に設け られており、(iv)燃料供給抑制膜 17と有孔板 16との間には、シール機能を有するス ぺーサ一 24がセル構造 10の周縁に設けられており、(V)有孔板 16と例えば PP等の プラスチック素材力もなる燃料タンク 18との間には、シール機能を有するスぺーサー 25がセル構造 10の周縁に設けられている。なお、これらの各スぺーサ一は、通常は シール機能を有するシリコンゴムやプラスチック等で形成されている。  In the solid oxide fuel cell of the present invention, a plurality of spacers having a sealing function are provided in each part of the cell structure 10. For example, as shown in FIGS. 2 and 3, (a space between the solid polymer electrolyte membrane 11 and the force sword current collector 14 having a thickness approximately the same as the thickness of the force sword 12. Is provided at the periphery of the cell structure 10. Between the GO solid polymer electrolyte membrane 11 and the anode current collector 15, a spacer 22 having a thickness substantially the same as the thickness of the anode 13 is provided. (Iii) A spacer 23 having a sealing function is provided on the periphery of the cell structure 10 between the anode current collector 15 and the fuel supply suppressing film 17, and (iii) iv) A spacer 24 having a sealing function is provided on the periphery of the cell structure 10 between the fuel supply suppressing membrane 17 and the perforated plate 16, and (V) the perforated plate 16 and PP, for example, A spacer 25 with a sealing function is provided on the periphery of the cell structure 10 between the fuel tank 18 and the plastic material. Is. Note that each of these spacer scratch, typically is formed of a silicon rubber or plastic or the like having a sealing function.
[0036] 本発明においては、固体高分子電解質膜 11とアノード集電体 15との間に通気孔 が設けられていることに特徴を有するものである。通気孔は、外部に連通している。 通気孔は、固体高分子電解質膜 11とアノード集電体 15との間であればどのような形 態で設けられていても本発明の効果を奏することができるが、具体的には、固体高分 子電解質膜 11とアノード集電体 15との間に設けられたスぺーサー 22に、本発明の 特徴的な構成である通気孔 31を設けることが好ま 、。通気孔 31がスぺーサー 22 に設けられて 、ることにより、アノード 13の触媒ペースト層内で発電中に発生した二 酸化炭素は、直接に又は一度空隙 27に出た後に、その触媒ペースト層を保持する 多孔質基材内を通過し、アノード 13の周縁に配置されたスぺーサー 22が有する通 気孔 31から排出される。本発明においては、この通気孔 31により、二酸ィ匕炭素の排 出が有効に行われることになるので、セル内の内圧の上昇を防ぐことができ、燃料供 給抑制膜 17からアノード 13への燃料供給が妨げられるのを防ぐことができる。加えて 、この通気孔 31は、外部力 アノード 13に酸素を取り込むこともできる。取り込まれた 酸素と供給された燃料とがアノード 13に担持した触媒上で下記式 3のように反応して アノード内に事前に水を蓄えることができる。本発明者らの実験によれば、液体燃料 として 100%メタノール溶液を用いても発電ができることが確認された。 The present invention is characterized in that a vent hole is provided between the solid polymer electrolyte membrane 11 and the anode current collector 15. The vent hole communicates with the outside. The air hole can achieve the effect of the present invention regardless of the form provided as long as it is provided between the solid polymer electrolyte membrane 11 and the anode current collector 15. It is preferable that the spacer 22 provided between the polymer electrolyte membrane 11 and the anode current collector 15 is provided with a vent hole 31 which is a characteristic configuration of the present invention. The vent hole 31 is provided in the spacer 22, and thereby, the two generated during power generation in the catalyst paste layer of the anode 13. The carbon oxide passes through the porous substrate holding the catalyst paste layer directly or once after exiting the void 27, and is discharged from the air holes 31 of the spacer 22 arranged at the periphery of the anode 13. Is done. In the present invention, this vent hole 31 effectively discharges carbon dioxide and carbon, so that an increase in internal pressure in the cell can be prevented, and the fuel supply suppression membrane 17 to the anode 13 It can prevent that the fuel supply to is interrupted. In addition, the vent 31 can also take in oxygen into the external force anode 13. The taken-in oxygen and the supplied fuel react on the catalyst supported on the anode 13 as shown in the following formula 3, and water can be stored in advance in the anode. According to the experiments by the present inventors, it was confirmed that power generation was possible even when a 100% methanol solution was used as the liquid fuel.
[化 3]  [Chemical 3]
1/2 CH3OH + 3/402→ 1/2 C02 + H20 …(3) 1/2 CH 3 OH + 3/40 2 → 1/2 C0 2 + H 2 0… (3)
[0037] 100%メタノール溶液を用いて発電を継続していくと、初期の生成水は消費される[0037] If power generation is continued using a 100% methanol solution, the initial generated water is consumed.
1S 依然として安定した発電を行うことが本発明者らの実験によって確認された。これ は、力ソードの発電反応によって生成した水がアノード側に逆拡散し、燃料として水 が供給されなくてもアノード反応に必要となる水が十分供給されるためと考えられる。 逆拡散する水は固体高分子電解質膜をも湿潤させるため、プロトン伝導性の低下を 防ぎ、安定運転に寄与することができる。 1S It has been confirmed by experiments by the present inventors that the power generation is still stable. This is presumably because the water generated by the power generation reaction of the power sword is diffused back to the anode side, and sufficient water necessary for the anode reaction is supplied even if water is not supplied as fuel. Since the reverse diffusing water also wets the solid polymer electrolyte membrane, it can prevent a decrease in proton conductivity and contribute to stable operation.
[0038] 本発明者らがこのような新たな発電メカニズムを見出したことによって、液体燃料と してメタノールを含み、メタノールのモル数(Mm)と水のモル数(Mw)の比率が Mm ZMw> lであるものを好適に用いることが可能となる。特に、上記のように、水を含 まない 100%メタノール溶液を用いても発電を起こし、またその発電を継続させること ができる。通気孔 31は、アノードで初期に必要となる水を生成させる酸素が供給され 、かつ発生した副生成物(二酸化炭素)が効率的に除去できる位置に設けることが好 ましい。例えば図 4A〜Cに示すように、アノード集電体 15と固体高分子電解質膜 11 との間に設けられたスぺーサー 22を断片化する等して設けてもよいし (A)、スぺーサ 一 22が凹凸となるように矩形状の切り込みを入れて設けてもよ!、し (B)、スぺーサー 22内を横断する貫通孔を設けた形態 (C)であってもよく、同様な作用を奏する構造 でれば特に限定されない。通気孔 31を形成するスぺーサー 22の材質としては、シリ コンゴムゃプラスチック等を挙げることができる。なお、図 4A〜Cにおいては、対向す る 2辺のみに通気孔 31を形成した例を示している力 4辺全てに通気孔 31を設けた ものであっても構わな ヽ。 [0038] As a result of the discovery of such a new power generation mechanism by the present inventors, the liquid fuel contains methanol, and the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is Mm ZMw. It is possible to suitably use those that are> l. In particular, as described above, even when a 100% methanol solution containing no water is used, power generation can occur and the power generation can be continued. It is preferable that the vent hole 31 is provided at a position where oxygen for generating water required at the initial stage in the anode is supplied and the generated by-product (carbon dioxide) can be efficiently removed. For example, as shown in FIGS. 4A to 4C, the spacer 22 provided between the anode current collector 15 and the solid polymer electrolyte membrane 11 may be provided by fragmentation or the like (A). The spacer 22 may be provided with a rectangular cut so that it is uneven! (B), or a form (C) with a through-hole that traverses the inside of the spacer 22 may be used. , Structure that has the same effect If it is, it will not specifically limit. Examples of the material of the spacer 22 forming the vent hole 31 include silicon rubber and plastic. 4A to 4C, the air holes 31 may be provided on all four sides, showing an example in which the air holes 31 are formed on only two opposite sides.
なお、運転を行う前の初期状態又は運転を止めた休止状態における保管時に、ァ ノード内での酸素と水の反応が起らな 、ようにするために、通気孔 31を開閉できる構 造とすることが好ましい。また、同様の保管時に、燃料供給抑制膜 17にメタノールが 透過しないように、シャッター機構を設けたり、少なくとも燃料流路内を空にしたりする 等の処置を行なうことが好まし!/、。  The vent 31 can be opened and closed to prevent oxygen and water from reacting in the anode during storage in the initial state before operation or in the rest state when operation is stopped. It is preferable to do. Also, during storage, it is preferable to take measures such as providing a shutter mechanism or at least emptying the fuel flow path so that methanol does not permeate the fuel supply suppression membrane 17! /.
[0039] また、従来、 DMFCでは、力ソード側において生成した水による漏水が問題となる ことが知られている力 本発明においては、力ソード側で発生した水はアノード側に 逆拡散することが望ましいため、力ソード 12における水の蒸発を防ぐ必要がある。そ のため、力ソード集電体 14上に蒸発抑制層 19を設けることが好ましい。 [0039] Conventionally, in DMFC, it is known that water leakage due to water generated on the force sword side is a problem. In the present invention, water generated on the force sword side is reversely diffused to the anode side. Therefore, it is necessary to prevent water evaporation in the force sword 12. Therefore, it is preferable to provide the evaporation suppression layer 19 on the force sword current collector 14.
蒸発抑制層 19による保湿方法としては、例えば、(0親水性材料からなる蒸発抑制 層を力ソードに直接貼り付けて保湿する方法、(ii)撥水性材料からなる蒸発抑制層で 力ソードを閉空間にして保湿する方法、(m)上記 (0と GOとを組み合わせで保湿する方 法、等を挙げることができる。上記 (0の方法に適した蒸発抑制層 19の材質としては、 繊維マット、親水性セルロース繊維、ガラス繊維等を挙げることができ、また、上記 (ii) の方法に適した蒸発抑制層 19の材質としては、メタ耐性プラスチック材 (PTFE、 ET FE、ポリポロピレン、ポロエチレン等)や、金属マット等を挙げることができる。こうした 蒸発抑制層 19の材質は、対メタノール耐性を有することが好ましい。  As a moisturizing method using the evaporation suppression layer 19, for example, (0 a method of directly moisturizing an evaporation suppression layer made of a hydrophilic material on a force sword, (ii) closing the force sword with an evaporation suppression layer made of a water repellent material, (M) The above (method of moisturizing a combination of 0 and GO, etc.), etc. (The material for the evaporation suppression layer 19 suitable for the above method 0 is a fiber mat. , Hydrophilic cellulose fibers, glass fibers, etc., and the material of the evaporation suppression layer 19 suitable for the above method (ii) includes meta-resistant plastic materials (PTFE, ET FE, polypropylene, polyethylene, etc.) ), Metal mats, etc. The material of the evaporation suppression layer 19 preferably has resistance to methanol.
[0040] こうした蒸発抑制層 19は、水の蒸発を防いで保湿させる効果がある。なお、この蒸 発抑制層 19上に、さらにカバー部材 20を設けてもよい(図 2を参照)。カバー部材 20 は、その側面力 空気を取り入れるような構造としたり、又はカバー部材 20自体に穴 を空けた構造としたりすることで、発電に必要な空気を取り込むことができる。その結 果、空気の取り込み口である上記通気孔 31を必要最小限に絞りつつ、力ソードから の過度な生成水の蒸発を抑制することができる。  [0040] Such an evaporation suppression layer 19 has an effect of preventing moisture evaporation and keeping moisture. A cover member 20 may be further provided on the evaporation suppression layer 19 (see FIG. 2). The cover member 20 can take in air necessary for power generation by adopting a structure in which the side force air is taken in or a structure in which a hole is formed in the cover member 20 itself. As a result, it is possible to suppress excessive evaporation of the generated water from the force sword while restricting the vent hole 31 that is an air intake port to the necessary minimum.
[0041] 本発明においては、図 2に示すように、燃料供給抑制膜 17とアノード 13との間に空 隙 27が設けられていてもよい。空隙 27が存在することによって、通気孔 31からの酸 素がアノード全体に供給されて効率よく水を生成することができる。また、 MEAで発 生した熱を燃料タンク側に伝え難くすることができ、燃料の温度上昇を防ぐ効果も得 られる。 In the present invention, as shown in FIG. 2, there is a space between the fuel supply suppression membrane 17 and the anode 13. A gap 27 may be provided. Due to the presence of the air gap 27, oxygen from the vent hole 31 is supplied to the entire anode, and water can be efficiently generated. In addition, the heat generated by the MEA can be made difficult to transfer to the fuel tank, and the effect of preventing the fuel temperature from rising can be obtained.
以上、本発明の固体電解質型燃料電池によれば、液体燃料として 100%メタノー ル溶液を用いた場合であっても発電が可能になるという顕著な効果を奏する。  As described above, according to the solid oxide fuel cell of the present invention, there is a remarkable effect that power generation is possible even when a 100% methanol solution is used as the liquid fuel.
[0042] (固体電解質型燃料電池の運転方法) [0042] (Operation Method of Solid Oxide Fuel Cell)
本発明の固体電解質型燃料電池の運転方法は、上記本発明に係る固体電解質型 燃料電池の運転方法であって、初期状態若しくは休止状態にある燃料電池に酸ィ匕 剤を供給するステップと、燃料供給を開始するステップと、セル電位が所定電位に達 した後に外部負荷へ通電を開始するステップと、を少なくともその順で含んでいる。 先ず、初期状態若しくは休止状態にある燃料電池に酸化剤が供給される。酸化剤 は、酸素(空気中の酸素を含む。以下、空気という。)であり、こうした空気は、空隙 27 が予め形成されている場合にはその空隙に存在する空気が酸化剤として供給される 。一方、空隙が形成されていない場合には、通気孔 31から侵入した空気が酸化剤と して供給される。  An operation method of the solid oxide fuel cell of the present invention is an operation method of the solid oxide fuel cell according to the present invention, comprising: supplying an oxidizing agent to the fuel cell in an initial state or a resting state; It includes a step of starting fuel supply and a step of starting energization to an external load after the cell potential reaches a predetermined potential. First, an oxidant is supplied to the fuel cell in the initial state or the resting state. The oxidant is oxygen (including oxygen in the air; hereinafter referred to as air). If the air gap 27 is formed in advance, the air present in the air gap is supplied as the oxidant. . On the other hand, when no gap is formed, the air that has entered through the vent hole 31 is supplied as an oxidant.
次に、燃料カートリッジ装置又は燃料タンク 18から燃料が供給される。燃料タンク 1 8から供給された燃料は、有孔板 16を通過して燃料供給抑制膜 17で気化してァノー ドに供給される。本発明においては、燃料が供給される以前に、既にアノードに酸ィ匕 剤が供給されているので、アノードに燃料が供給されると、アノードに担持された触媒 上で酸化剤と燃料とが上記式 3のように反応して水が生成される。  Next, fuel is supplied from the fuel cartridge device or the fuel tank 18. The fuel supplied from the fuel tank 18 passes through the perforated plate 16 and is vaporized by the fuel supply suppressing film 17 to be supplied to the anode. In the present invention, since the oxidizing agent is already supplied to the anode before the fuel is supplied, when the fuel is supplied to the anode, the oxidant and the fuel are separated on the catalyst supported on the anode. The water reacts as shown in Equation 3 above.
[0043] 次に、セル電位を確認し、セル電位が所定電位に達した後に外部負荷へ通電を開 始する。セル電位の確認は、十分な水が生成していることを確認するものである。そ のセル電位を確認して発電の起電力が所定の値に到達して 、るのを確認し、その後 、外部負荷へ通電を開始する。本発明においては、例えば 100%メタノールを燃料と して供給した場合のように、燃料としての水を供給しなくても発電が進行することから 、発電の進行により力ソードで生成した水がアノード側に逆拡散していると考えられた 。その結果、水が供給されなくても発電が進行する。 [0044] こうした運転方法によれば、例えば 100%メタノールのような理論値を超える高濃度 の液体燃料を供給しても、安定した発電を継続させることができる。 Next, the cell potential is confirmed, and energization to the external load is started after the cell potential reaches a predetermined potential. The confirmation of the cell potential is to confirm that sufficient water is generated. The cell potential is confirmed to confirm that the generated electromotive force reaches a predetermined value, and then energization to the external load is started. In the present invention, for example, when 100% methanol is supplied as fuel, power generation proceeds without supplying water as fuel. Thought to be despread to the side. As a result, power generation proceeds even if water is not supplied. [0044] According to such an operation method, stable power generation can be continued even when a high-concentration liquid fuel exceeding the theoretical value, such as 100% methanol, is supplied.
実施例  Example
[0045] 以下、実験例を示すことにより、本発明の固体電解質型燃料電池を具体的に説明 する。  [0045] The solid oxide fuel cell of the present invention will be specifically described below by showing experimental examples.
図 5は、本実施例で用いた燃料供給抑制膜のメタノール透過速度に対する膜厚依 存性を示すグラフである。燃料供給抑制膜として、膜厚を変化させたスチレンジビ- ルベンゼン系膜を用い、その燃料供給抑制膜の一方をメタノール側とし、他方を大気 開放側にして、燃料供給抑制膜の重量変化から透過速度を求めた。燃料消費量 (メ タノール透過速度)は、電流密度に比例することが知られているが、例えば本実施例 で MEAのメタノールの透過速度が 0. OlgZhZcm2であった場合、燃料供給抑制 膜のメタノール透過速度は MEAのメタノール透過速度の 2倍〜 3倍程度である 0. 0 2〜0. 03gZhZcm2であることが望まれる。メタノール透過速度が高すぎると、クロス オーバーを起こし、安定した発電ができなくなるば力りかエネルギー密度も低下して しまう。一方、メタノール透過速度が低すぎると、燃料供給量が不足するために発電 自身ができなくなってしまう。本実施例で用いたスチレンジビニルベンゼン系膜の場 合、図 5のメタノール透過速度を勘案すると、 100〜135 /ζ πιの範囲内が適当である FIG. 5 is a graph showing the dependence of the fuel supply suppression membrane used in this example on the membrane permeation rate. As the fuel supply suppression membrane, a styrene dibenzene-based membrane with a changed film thickness is used. One of the fuel supply suppression membranes is on the methanol side and the other is open to the atmosphere. Asked. The fuel consumption (methanol permeation rate) is known to be proportional to the current density. For example, in this example, when the MEA methanol permeation rate was 0. OlgZhZcm 2 , the fuel supply suppression membrane methanol permeation rate is desired is 0. 0 2~0. 03gZhZcm 2 is twice to three times the methanol permeation rate of MEA. If the methanol permeation rate is too high, crossover will occur, and if stable power generation cannot be achieved, the force or energy density will decrease. On the other hand, if the methanol permeation rate is too low, the amount of fuel supply is insufficient and power generation itself cannot be performed. In the case of the styrene divinylbenzene film used in this example, the range of 100 to 135 / ζ πι is appropriate considering the methanol permeation rate in FIG.
[0046] なお、この実施例で用いたセル構造について以下に説明する。先ず、炭素粒子 (ラ イオン社製のケッチェンブラック EC600JD)に粒子径が 3〜5nmの範囲内にある白 金微粒子を重量比で 50%担持させた触媒担持炭素微粒子を用意し、この触媒担持 炭素微粒子 lgにデュポン社製の 5重量%ナフイオン溶液(商品名; DE521、「ナフィ オン」はデュポン社の登録商標)を適量加え、攪拌して、力ソード形成用の触媒べ一 ストを得た。この触媒ペーストを基材としてのカーボンペーパー (東レネ土製の TGP— H— 120)上に 8mgZcm2の塗工量で塗布し、乾燥させて、 4cm X 4cmの力ソードシ ートを作製した。一方、白金微粒子に代えて粒子径が 3〜5nmの範囲内にある白金( Pt)—ルテニウム (Ru)合金微粒子 (Ruの割合は 50at%)を用いた以外は上記カソ ード形成用の触媒ペーストを得る条件と同じにしてアノード形成用の触媒ペーストを 得た。この触媒ペーストを用いた以外は上記力ソードの作製条件と同じ条件で、ァノ[0046] The cell structure used in this example will be described below. First, catalyst-supported carbon particles are prepared by supporting 50% by weight of white metal particles having a particle diameter in the range of 3 to 5 nm on carbon particles (Ketjen Black EC600JD manufactured by Rion Co., Ltd.). An appropriate amount of 5% by weight Nafion solution (trade name; DE521, “Nafion” is a registered trademark of DuPont) manufactured by DuPont was added to the carbon fine particle lg and stirred to obtain a catalyst base for forming a force sword. . This catalyst paste was applied to a carbon paper as a base material (TGP-H-120 manufactured by Torayen clay) at a coating amount of 8 mgZcm 2 and dried to prepare a 4 cm × 4 cm force sword sheet. On the other hand, the above catalyst for forming a cathode except that platinum (Pt) -ruthenium (Ru) alloy fine particles (Ru ratio is 50 at%) having a particle diameter in the range of 3 to 5 nm are used instead of platinum fine particles. The catalyst paste for anode formation should be the same as the conditions for obtaining the paste. Obtained. Except for the use of this catalyst paste,
—ドを作製した 0 - to prepare a de 0
[0047] 次に、デュポン社製のナフイオン 117 (数平均分子量は 250000)力 なる 8cm X 8 cm X厚さ 180 mの膜を固体高分子電解質膜 11として用い、この膜の厚さ方向の 一方の面に上記力ソードをカーボンペーパーが外側となる向きで配置し、他の面に 上記アノードをカーボンペーパーが外側となる向きで配置して、各カーボンペーパー の外側力もホットプレスした。これにより力ソード 12及びアノード 13が固体高分子電 解質膜 11に接合して、 MEA (電極 -電解質膜接合体)が得られた。  [0047] Next, an 8 cm x 8 cm x 180 m thick membrane made of DuPont's Naphion 117 (number average molecular weight is 250000) was used as the solid polymer electrolyte membrane 11, and one side of the thickness direction of this membrane was The force sword was placed on the surface of the carbon paper so that the carbon paper faced outward, and the anode was placed on the other face of the carbon paper so that the carbon paper faced outward. The external force of each carbon paper was also hot pressed. As a result, the force sword 12 and the anode 13 were joined to the solid polymer electrolyte membrane 11 to obtain MEA (electrode-electrolyte membrane assembly).
[0048] 次に、力ソード 12とアノード 13の上に、ステンレス鋼(SUS316)製で外寸法 6cm2 、厚さ lmm、幅 11mmの矩形枠状の枠板力 なる集電体 14, 15を配置した。また、 固体高分子電解質膜 11とアノード集電体 15との間に、シリコンゴム製の外寸法 6cm 厚さ 0. 3mm、幅 10mmの矩形枠状の枠板からなる通気孔 31を形成したスぺーサ 一 22を配置した。このスぺーサー 22においては、二酸ィ匕炭素を排出する通気孔 31 として、幅 0. 5mmの切り込みを枠の各辺に 2箇所ずつ計 8個設けたものを使用した( 図 7Aを参照)。また、固体高分子電解質 11と力ソード集電体 14との間のシール機能 を有するスぺーサー 21を配置した。このスぺーサー 21及びその他のスぺーサー 23 , 24, 25 (図 2を参照)として、シリコンゴム製の外寸法 6cm2、厚さ 0. 3mm、幅 10m mの矩形枠状の枠板カゝらなるシール機能を有するスぺーサーを使用した。 [0048] Next, on the force sword 12 and the anode 13, current collectors 14 and 15 made of stainless steel (SUS316) made of stainless steel (SUS316) having an outer dimension of 6 cm 2 , a thickness of 1 mm, and a width of 11 mm and having a rectangular frame shape are provided. Arranged. In addition, a vent 31 made of a rectangular frame-shaped frame plate made of silicon rubber and having an outer dimension of 6 cm, a thickness of 0.3 mm, and a width of 10 mm was formed between the solid polymer electrolyte membrane 11 and the anode current collector 15. Pacer 22 was placed. In this spacer 22, a vent hole 31 for discharging carbon dioxide and carbon dioxide was used in which eight incisions with a width of 0.5 mm were provided at two locations on each side of the frame (see FIG. 7A). ). Further, a spacer 21 having a sealing function between the solid polymer electrolyte 11 and the force sword current collector 14 was disposed. This spacer 21 and other spacers 23, 24, and 25 (see Fig. 2) are made of silicon rubber and have a rectangular frame shape with an outer dimension of 6 cm 2 , a thickness of 0.3 mm, and a width of 10 mm. A spacer having a sealing function was used.
[0049] 上述のスチレンジビュルベンゼン系膜 (イオン交換容量 1. 9mmolZg、含水率 13 %)からなる 8cm X 8cmX厚さ 125 /z mの燃料供給抑制膜 17を用意し、スぺーサー 23を介してアノード集電体 15側に配置した。さらに、 SUS316ステンレス鋼で外寸 法 6cm2、厚さ lmm、穴径 4mm、開口率 60%の有孔板 16 (図 7Bを参照)を用意し、 スぺーサー 24を介して燃料供給抑制膜 17側に配置した。さらに有孔板 16に隣接す るように燃料タンク 18を設けた。燃料タンク 18は、 PP製で外寸法 6cm2、高さ 8mm、 内寸法 44mm2、深さ 3mmの容器であり、その側面には、燃料供給のための燃料供 給口 18aが設けられ、その内部には、燃料保持材として、ウレタン素材からなるウイッ キング材が人っている。 [0049] An 8 cm x 8 cm x 125 / zm fuel supply suppression membrane 17 made of the above-mentioned styrene dibutene benzene membrane (ion exchange capacity 1.9 mmolZg, water content 13%) is prepared. Arranged on the anode current collector 15 side. In addition, a perforated plate 16 (see Fig. 7B) of SUS316 stainless steel with an outer dimension of 6 cm 2 , a thickness of 1 mm, a hole diameter of 4 mm, and an opening ratio of 60% is prepared. Arranged on the 17th side. Furthermore, a fuel tank 18 was provided adjacent to the perforated plate 16. The fuel tank 18 is a container made of PP and having an outer dimension of 6 cm 2 , a height of 8 mm, an inner dimension of 44 mm 2 , and a depth of 3 mm. A fuel supply port 18a for supplying fuel is provided on the side of the tank. Inside, there is a wicking material made of urethane as a fuel retention material.
[0050] 一方、力ソードの上方には、繊維マットからなる蒸発抑制層 19を設けた。この蒸発 抑制層 19は、保湿層として機能するものであり、 35mm2角に加工したセルロース繊 維シート (綿繊維ワイパー材ベンコット、旭化成株式会社製)を置き、その上にカバー 部材 20として、厚さ 0. 5mm、穴径 0. 75mmで開口率 60%の PTFE製パンチング シートを載せて、蒸発抑制層 19を固定した。 On the other hand, an evaporation suppression layer 19 made of a fiber mat was provided above the force sword. This evaporation Suppressing layer 19, which functions as a moisture retaining layer, cellulose was processed into 2 square 35mm textiles sheet (cotton fibers wiper member BEMCOT, manufactured by Asahi Kasei Corporation) Place, as the cover member 20 thereon, the thickness 0 A PTFE punching sheet having a hole diameter of 5 mm and a hole diameter of 0.75 mm and an opening ratio of 60% was placed thereon, and the evaporation suppression layer 19 was fixed.
[0051] これらの各部材のうち、カバー部材 20以外の部材は、セル枠体 29にネジ止めされ て一体化される。なお、このときに使用されるネジは、リーク防止のために榭脂製のネ ジが用いられる。こうして、 MEA、力ソード集電体、アノード集電体、燃料供給抑制膜 、シール部材、及び蒸発抑制層等を所定数のネジにより一体ィ匕し、図 2に示す断面 構造を持つ固体電解質型燃料電池を得た。  [0051] Of these members, members other than the cover member 20 are screwed and integrated with the cell frame 29. In addition, the screw used at this time is a screw made of grease to prevent leakage. In this way, the MEA, the force sword current collector, the anode current collector, the fuel supply suppression film, the seal member, the evaporation suppression layer, etc. are integrated together by a predetermined number of screws, and the solid electrolyte type having the cross-sectional structure shown in FIG. A fuel cell was obtained.
[0052] 図 6は、上述のようにして得られた固体電解質型燃料電池において、燃料として純 メタノール(100%メタノール)を用い、室温(25°C)、 0. 3A (約 19mAZcm2)で 10 時間発電したときの電位の時間変化を示したグラフである。図 6より、 10時間安定し て発電できていることが分かる。このときの燃料消費量は、 0. 185gZh (約 0. 012g ZhZcm2)で、重量当たりのエネルギー密度は 0. 52WhZgであった。燃料消費量 が燃料供給抑制膜単体の値(100 m相当)よりも小さくなつているのは、 MEAによ り燃料の透過が抑えられる分も含まれるためである。 FIG. 6 shows a solid oxide fuel cell obtained as described above, using pure methanol (100% methanol) as the fuel at room temperature (25 ° C.) and 0.3 A (about 19 mAZcm 2 ). It is the graph which showed the time change of the potential when generating electricity for 10 hours. Figure 6 shows that power generation is stable for 10 hours. The fuel consumption at this time was 0.185 gZh (about 0.012 g ZhZcm 2 ), and the energy density per weight was 0.52 WhZg. The reason why the fuel consumption is smaller than the value of the fuel supply suppression membrane alone (equivalent to 100 m) is that the amount of fuel permeation suppressed by MEA is included.

Claims

請求の範囲 The scope of the claims
[1] 固体高分子電解質膜と、  [1] a solid polymer electrolyte membrane;
前記固体高分子電解質膜の一方の面上に配された力ソードと、  A force sword disposed on one surface of the solid polymer electrolyte membrane;
他方の面上に配されたアノードと、  An anode disposed on the other surface;
前記力ソード及び前記アノード上に夫々配された力ソード集電体及びアノード集電 体と、  A force sword current collector and an anode current collector respectively disposed on the force sword and the anode;
前記アノード集電体の上側に配置され、前記アノードへの液体燃料の供給を制御 する燃料供給抑制膜と、  A fuel supply suppression membrane disposed above the anode current collector and controlling supply of liquid fuel to the anode;
前記燃料供給抑制膜の上側に配置され、前記燃料供給抑制膜へ液体燃料を供給 する為の複数の孔を有する有孔板と、  A perforated plate disposed above the fuel supply suppression membrane and having a plurality of holes for supplying liquid fuel to the fuel supply suppression membrane;
前記固体高分子電解質膜と前記有孔板との間に設けられた通気孔と、 を具備する  A vent hole provided between the solid polymer electrolyte membrane and the perforated plate,
固体電解質型燃料電池。  Solid electrolyte fuel cell.
[2] 請求の範囲 1に記載された固体電解質型燃料電池であって、  [2] A solid oxide fuel cell according to claim 1, comprising:
更に、  Furthermore,
シール機能を有し、前記固体高分子電解質膜と前記アノード集電体との間に設け られたスぺーサ一、  A spacer having a sealing function and provided between the solid polymer electrolyte membrane and the anode current collector;
を具備し、  Comprising
前記通気孔は、前記スぺーサ一に設けられている  The vent hole is provided in the spacer.
固体電解質型燃料電池。  Solid electrolyte fuel cell.
[3] 請求の範囲 1又は 2に記載された固体電解質型燃料電池であって、 [3] A solid oxide fuel cell according to claim 1 or 2, comprising:
更に、  Furthermore,
前記力ソード集電体上に設けられた蒸発抑制層  Evaporation suppression layer provided on the force sword current collector
を具備する  With
[4] 請求の範囲 1乃至 3のいずれかに記載された固体電解質型燃料電池であって、 前記燃料供給抑制膜と前記アノードとの間に空隙を有している  [4] The solid oxide fuel cell according to any one of claims 1 to 3, wherein a gap is provided between the fuel supply suppression membrane and the anode.
固体電解質型燃料電池。  Solid electrolyte fuel cell.
[5] 請求の範囲 4に記載された固体電解質型燃料電池であって、 前記通気孔は、前記空隙と外部とを連通させるように設けられて 、る 固体電解質型燃料電池。 [5] The solid oxide fuel cell according to claim 4, The air hole is provided so as to allow the air gap to communicate with the outside, and is a solid oxide fuel cell.
[6] 請求の範囲 1乃至 5のいずれかに記載された固体電解質型燃料電池であって、 前記燃料供給抑制膜は、前記有孔板と前記アノード集電体とによって挟まれて固 定されている  [6] The solid oxide fuel cell according to any one of claims 1 to 5, wherein the fuel supply suppression membrane is sandwiched and fixed between the perforated plate and the anode current collector. ing
固体電解質型燃料電池。  Solid electrolyte fuel cell.
[7] 請求の範囲 1乃至 6のいずれかに記載された固体電解質型燃料電池であって、 前記液体燃料は、メタノールと水を含み、 [7] The solid oxide fuel cell according to any one of claims 1 to 6, wherein the liquid fuel includes methanol and water,
メタノールのモル数(Mm)と水のモル数(Mw)の比率が MmZMw> 1である 固体電解質型燃料電池。  A solid oxide fuel cell in which the ratio of the number of moles of methanol (Mm) to the number of moles of water (Mw) is MmZMw> 1.
[8] 請求の範囲 1乃至 7のいずれかに記載された固体電解質型燃料電池の運転方法 であって、 [8] A method for operating a solid oxide fuel cell according to any one of claims 1 to 7,
初期状態若しくは休止状態にある燃料電池に酸化剤を供給するステップと、 燃料供給を開始するステップと、  Supplying an oxidant to the fuel cell in an initial state or a resting state; starting the fuel supply;
セル電位が所定電位に達した後に外部負荷へ通電を開始するステップと、 を具備する  Starting energization to an external load after the cell potential reaches a predetermined potential, and
固体電解質型燃料電池の運転方法。  Operation method of solid oxide fuel cell.
PCT/JP2006/307213 2005-04-08 2006-04-05 Solid electrolyte fuel cell and method for operating same WO2006109645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006538186A JP5103905B2 (en) 2005-04-08 2006-04-05 Solid oxide fuel cell and method of operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005111588 2005-04-08
JP2005-111588 2005-04-08

Publications (1)

Publication Number Publication Date
WO2006109645A1 true WO2006109645A1 (en) 2006-10-19

Family

ID=37086923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307213 WO2006109645A1 (en) 2005-04-08 2006-04-05 Solid electrolyte fuel cell and method for operating same

Country Status (2)

Country Link
JP (1) JP5103905B2 (en)
WO (1) WO2006109645A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095558A (en) * 2005-09-29 2007-04-12 Toshiba Corp Fuel cell
WO2007046231A1 (en) * 2005-10-20 2007-04-26 Nec Corporation Fuel cell system and fuel cell
JP2007123039A (en) * 2005-10-27 2007-05-17 Fujitsu Ltd Fuel cell
JPWO2005112172A1 (en) * 2004-05-14 2008-03-27 株式会社東芝 Fuel cell
WO2008062551A1 (en) * 2006-11-21 2008-05-29 Nec Corporation Solid polymer fuel cell
WO2008072363A1 (en) * 2006-12-11 2008-06-19 Nec Corporation Solid polymer fuel cell
JP2008218047A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel battery cell and fuel cell
JP2009026762A (en) * 2007-07-20 2009-02-05 Penn State Research Foundation Porous transportation structure for direct oxidization fuel cell system operated by enriched fuel
WO2009050852A1 (en) * 2007-10-19 2009-04-23 Nec Corporation Fuel cell
JP2009143731A (en) * 2007-12-11 2009-07-02 Dainippon Printing Co Ltd Reaction membrane, hydrogen production device and fuel cell
WO2010007818A1 (en) * 2008-07-16 2010-01-21 日本電気株式会社 Solid polymer fuel cell
US20130034798A1 (en) * 2010-04-19 2013-02-07 Utc Power Corporation Fuel cell water management arrangement
JP2014086207A (en) * 2012-10-22 2014-05-12 Fujikura Ltd Direct methanol fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461710B2 (en) 2017-10-02 2024-04-04 住友化学株式会社 Method for producing polyvinyl alcohol-based resin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353533A (en) * 1999-06-09 2000-12-19 Toshiba Corp Fuel cell
JP2003308871A (en) * 2002-04-15 2003-10-31 Sharp Corp Fuel supply cartridge for fuel cell and fuel cell provided therewith
WO2005112172A1 (en) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba Fuel cell
JP2006054082A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413111B2 (en) * 1998-09-30 2003-06-03 株式会社東芝 Fuel cell
JPWO2006112172A1 (en) * 2005-03-31 2008-12-04 パイオニア株式会社 Navigation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353533A (en) * 1999-06-09 2000-12-19 Toshiba Corp Fuel cell
JP2003308871A (en) * 2002-04-15 2003-10-31 Sharp Corp Fuel supply cartridge for fuel cell and fuel cell provided therewith
WO2005112172A1 (en) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba Fuel cell
JP2006054082A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005112172A1 (en) * 2004-05-14 2008-03-27 株式会社東芝 Fuel cell
JP2007095558A (en) * 2005-09-29 2007-04-12 Toshiba Corp Fuel cell
WO2007046231A1 (en) * 2005-10-20 2007-04-26 Nec Corporation Fuel cell system and fuel cell
JP2007123039A (en) * 2005-10-27 2007-05-17 Fujitsu Ltd Fuel cell
WO2008062551A1 (en) * 2006-11-21 2008-05-29 Nec Corporation Solid polymer fuel cell
US8546039B2 (en) 2006-11-21 2013-10-01 Nec Corporation Solid polymer fuel cell
US8148025B2 (en) 2006-12-11 2012-04-03 Nec Corporation Solid polymer fuel cell
WO2008072363A1 (en) * 2006-12-11 2008-06-19 Nec Corporation Solid polymer fuel cell
JP2008218047A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel battery cell and fuel cell
JP2009026762A (en) * 2007-07-20 2009-02-05 Penn State Research Foundation Porous transportation structure for direct oxidization fuel cell system operated by enriched fuel
WO2009050852A1 (en) * 2007-10-19 2009-04-23 Nec Corporation Fuel cell
JP5413196B2 (en) * 2007-10-19 2014-02-12 日本電気株式会社 Fuel cell
JP2009143731A (en) * 2007-12-11 2009-07-02 Dainippon Printing Co Ltd Reaction membrane, hydrogen production device and fuel cell
WO2010007818A1 (en) * 2008-07-16 2010-01-21 日本電気株式会社 Solid polymer fuel cell
US20130034798A1 (en) * 2010-04-19 2013-02-07 Utc Power Corporation Fuel cell water management arrangement
US9362577B2 (en) * 2010-04-19 2016-06-07 Audi Ag Fuel cell water management arrangement
JP2014086207A (en) * 2012-10-22 2014-05-12 Fujikura Ltd Direct methanol fuel cell

Also Published As

Publication number Publication date
JPWO2006109645A1 (en) 2008-11-13
JP5103905B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5103905B2 (en) Solid oxide fuel cell and method of operating the same
KR100824460B1 (en) Fuel cell
KR100877273B1 (en) Fuel cell
WO2006120958A1 (en) Fuel cell and fuel cell system
KR100837924B1 (en) Fuel cell
JP5182559B2 (en) Polymer electrolyte fuel cell
JP4149728B2 (en) Fuel cell fuel supply cartridge and fuel cell comprising the cartridge
JP5093640B2 (en) Solid oxide fuel cell and manufacturing method thereof
WO2001045189A1 (en) Passive air breathing direct methanol fuel cell
JP2008293856A (en) Fuel cell
WO2007034756A1 (en) Fuel cell
JP4984428B2 (en) Fuel cell system
JPWO2008050640A1 (en) Fuel cell
US7811718B2 (en) Fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP5028860B2 (en) Fuel cell
US20100098985A1 (en) Fuel cell and electronic device including the same
TW200836393A (en) Fuel battery
WO2008068887A1 (en) Fuel cell
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JP5413196B2 (en) Fuel cell
WO2011052650A1 (en) Fuel cell
JP2001185185A (en) Fuel cell and its operating method
JPWO2008062551A1 (en) Polymer electrolyte fuel cell
JP2011096468A (en) Fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006538186

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731161

Country of ref document: EP

Kind code of ref document: A1