[go: up one dir, main page]

WO2006104017A1 - 音声符号化装置および音声符号化方法 - Google Patents

音声符号化装置および音声符号化方法 Download PDF

Info

Publication number
WO2006104017A1
WO2006104017A1 PCT/JP2006/305871 JP2006305871W WO2006104017A1 WO 2006104017 A1 WO2006104017 A1 WO 2006104017A1 JP 2006305871 W JP2006305871 W JP 2006305871W WO 2006104017 A1 WO2006104017 A1 WO 2006104017A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude ratio
quantization
delay difference
prediction parameter
signal
Prior art date
Application number
PCT/JP2006/305871
Other languages
English (en)
French (fr)
Inventor
Koji Yoshida
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/909,556 priority Critical patent/US8768691B2/en
Priority to EP06729819.0A priority patent/EP1858006B1/en
Priority to JP2007510437A priority patent/JP4887288B2/ja
Priority to ES06729819.0T priority patent/ES2623551T3/es
Priority to CN2006800096953A priority patent/CN101147191B/zh
Publication of WO2006104017A1 publication Critical patent/WO2006104017A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components

Definitions

  • the present invention relates to a speech coding apparatus and speech coding method, and more particularly to a speech coding apparatus and speech coding method for stereo speech.
  • a voice coding scheme having a scalable configuration is desired in order to control traffic on the network and realize multicast communication.
  • a scalable configuration is a configuration in which speech data can be decoded even with a partial code and data power on the receiving side.
  • mono-rural stereo can be selected by allowing the receiving side to perform decoding of a stereo signal and decoding of a monaural signal using a part of the encoded data. Coding with a scalable configuration between them (monaural stereo 'scalable configuration) is desired.
  • a speech coding method having such a monaural, one-stereo, scalable configuration for example, prediction of signals between channels (hereinafter abbreviated as “ch” as appropriate) (from the 1st ch signal to the 2nd ch signal) Prediction or prediction from the 2nd channel signal to the 1st channel signal) is performed by pitch prediction between channels, that is, a code is performed using correlation between two channels (Non-Patent Document). 1).
  • Non-Special Terms 1 Ramprashad, SA, "Stereophonic CELP coding using cross channel p rediction", Proc. IEEE Workshop on Speech Coding, pp.136-138, Sep. 2000.
  • Non-Patent Document 1 the prediction parameters between channels (the delay and gain of pitch prediction between channels) are independently encoded, so The efficiency is not high.
  • An object of the present invention is to provide a speech encoding apparatus and speech encoding method that can efficiently encode stereo speech.
  • the speech coding apparatus includes a prediction parameter analysis unit that obtains a delay difference and an amplitude ratio between a first signal and a second signal as a prediction parameter, and between the delay difference and the amplitude ratio. And a quantization means for obtaining the prediction parameter force quantization prediction parameter based on the correlation.
  • stereo sound can be efficiently encoded.
  • FIG. 1 is a block diagram showing a configuration of a speech coding apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a second channel prediction unit according to Embodiment 1
  • FIG. 3 is a block diagram showing a configuration of a prediction parameter quantization unit according to Embodiment 1 (Configuration Example 1).
  • FIG. 4 is a characteristic diagram showing an example of a prediction parameter codebook according to Embodiment 1
  • FIG. 5 is a block diagram showing a configuration of a prediction parameter quantization unit according to Embodiment 1 (Configuration Example 2).
  • FIG. 6 is a characteristic diagram showing an example of a function used in the amplitude ratio estimation unit according to Embodiment 1.
  • FIG. 7 is a block diagram showing a configuration of a prediction parameter quantization unit according to Embodiment 2 (configuration example 3).
  • FIG. 8 is a characteristic diagram showing an example of a function used in the distortion calculation unit according to the second embodiment.
  • FIG. 9 is a block diagram showing a configuration of a prediction parameter quantization unit according to Embodiment 2 (configuration example 4).
  • FIG. 10 is a characteristic diagram showing an example of functions used in the amplitude ratio correction unit and the amplitude ratio estimation unit according to Embodiment 2.
  • FIG. 11 is a block diagram showing a configuration of a prediction parameter quantization unit according to Embodiment 2 (configuration example 5).
  • the configuration of the speech coding apparatus according to this embodiment is shown in FIG.
  • the speech encoding apparatus 10 shown in FIG. 1 includes an lch encoding unit 11, an lch decoding unit 12, a 2ch prediction unit 13, a subtractor 14, and a second channel prediction residual code input unit 15.
  • the operation is assumed on a frame basis.
  • the code signal data (the l-th channel code data) of the audio signal is output to the l-channel decoder 12. Further, the lch code data is multiplexed with the 2ch prediction parameter encoded data and the 2ch encoded data and transmitted to a speech decoding apparatus (not shown).
  • the lch decoding unit 12 generates an lch decoded signal from the lch encoded data and outputs the lch decoded signal to the second channel prediction unit 13.
  • the second channel prediction parameter code data obtained by encoding the second channel prediction parameter is output.
  • the second channel prediction parameter encoded data is multiplexed with other encoded data and transmitted to a speech decoding apparatus (not shown).
  • Second channel prediction residual encoding section 15 encodes the second channel prediction residual signal and outputs second channel encoded data.
  • the second channel code data is multiplexed with other code data and transmitted to the audio decoder.
  • FIG. 2 shows the configuration of the second channel prediction unit 13.
  • the second channel prediction unit 13 includes a prediction parameter analysis unit 21, a prediction parameter quantization unit 22, and a signal prediction unit 23.
  • the second channel prediction unit 13 uses parameters based on the delay difference D and the amplitude ratio g of the second channel audio signal with respect to the lch audio signal based on the correlation between the channel signals of the stereo signal.
  • the 1st ch audio signal strength predicts the 2nd ch audio signal.
  • the prediction parameter analysis unit 21 obtains the delay difference D and the amplitude ratio g of the second channel audio signal with respect to the first channel audio signal from the first channel decoded signal and the second channel audio signal as inter-channel prediction parameters, and calculates the prediction parameter quantum. To the conversion unit 22.
  • the prediction parameter quantization unit 22 quantizes the input prediction parameter (delay difference D, amplitude ratio g), and outputs the quantized prediction parameter and the second channel prediction parameter encoded data.
  • the quantized prediction parameter is input to the signal prediction unit 23.
  • Prediction parameter quantization part 2
  • the signal prediction unit 23 performs prediction of the second channel signal using the l-th channel decoded signal and the quantized prediction parameter, and outputs the prediction signal.
  • sp_ch2 (n) g ⁇ sd_chl (n-D)... (1)
  • the prediction parameter analysis unit 21 minimizes the distortion Dist represented by Equation (2), that is, the distortion Dist between the second channel audio signal s_ch2 (n) and the second channel prediction signal sp_ch2 (n).
  • the prediction parameters (delay difference D, amplitude ratio g) are obtained.
  • the prediction parameter analysis unit 21 The delay difference D that maximizes the cross-correlation between the voice signal and the l-th channel decoded signal or the ratio g of the average amplitude per frame may be obtained as the prediction parameter.
  • the prediction parameter quantization unit 22 uses this relationship to efficiently encode the inter-channel prediction parameters (delay difference D, amplitude ratio g), and with a smaller number of quantization bits. Realize equivalent quantization distortion.
  • the configuration of the prediction parameter quantization unit 22 according to the present embodiment is as shown in Fig. 3 ⁇ Configuration example 1> or Fig. 5 Configuration example 2>.
  • the delay difference D and the amplitude ratio g are represented as a two-dimensional vector, and vector quantization is performed on the two-dimensional vector.
  • Figure 4 is a characteristic diagram of the symbol vector that represents this two-dimensional vector with a dot ( ⁇ ).
  • the distortion calculation unit 31 applies each code vector of the prediction parameter codebook 33 to a prediction parameter represented by a two-dimensional vector (D, g) that also has a delay difference D, an amplitude ratio g, and a force. Calculate the distortion between and.
  • the minimum distortion search unit 32 searches for the code vector having the smallest distortion among all the code vectors, sends the search result to the prediction parameter codebook 33, and supports the code vector.
  • the index to be output is output as the 2nd channel prediction parameter code key data.
  • the prediction parameter codebook 33 outputs the code vector as a quantized prediction parameter based on the search result! /, With the least distortion! /.
  • wd and wg are weight constants that adjust the weight between the quantization distortion for the delay difference at the time of distortion calculation and the quantization distortion for the amplitude ratio.
  • a function for estimating the amplitude ratio g from the delay difference D is determined in advance, and after the delay difference D is quantized, its quantized power is predicted residual with respect to the amplitude ratio estimated using that function.
  • the delay difference quantization unit 51 performs quantization on the delay difference D of the prediction parameters, outputs the quantization delay difference Dq to the amplitude ratio estimation unit 52, and Output as prediction parameter. Also, the delay difference quantization unit 51 outputs the quantized delay difference index obtained by quantizing the delay difference D as the second channel prediction parameter code key data.
  • the amplitude ratio estimator 52 calculates an amplitude ratio estimate (estimated amplitude ratio) gp from the quantization delay difference Dq, and outputs it to the amplitude ratio estimation residual quantizer 53.
  • a function for estimating the amplitude ratio is also used for the quantization delay differential force prepared in advance. This function is quantized
  • a plurality of data indicating the correspondence between the delay difference Dq and the estimated amplitude ratio gp is obtained from the stereo audio signal for learning, and the correspondence is also prepared in advance by learning.
  • Amplitude ratio estimation residual quantization section 53 obtains estimated residual ⁇ g with respect to estimated amplitude ratio gp of amplitude ratio g according to equation (4).
  • the amplitude ratio estimation residual quantization unit 53 quantizes the estimated residual ⁇ g obtained by Equation (4), and outputs the quantization estimated residual as a quantization prediction parameter. .
  • the amplitude ratio estimation residual quantization unit 53 outputs a quantization estimation residual index obtained by quantization of the estimation residual ⁇ g as second channel prediction parameter code key data.
  • FIG. 6 shows an example of a function used in the amplitude ratio estimation unit 52.
  • the input prediction parameters (D, g) are shown as points on the coordinate plane in Fig. 6 as 2D vectors.
  • the amplitude ratio estimation residual quantization unit 53 obtains an estimated residual ⁇ g with respect to the estimated amplitude ratio gp of the amplitude ratio g of the input prediction parameter, and quantizes the estimated residual ⁇ g.
  • the quantization error can be reduced as compared with the case where the amplitude ratio is directly quantized, and as a result, the quantization efficiency can be improved.
  • the estimated amplitude ratio gp is obtained from the quantized delay difference Dq using a function for estimating the quantized delay differential force amplitude ratio, and the input amplitude ratio g relative to the estimated amplitude ratio gp is calculated.
  • the configuration for quantizing the estimated residual ⁇ g has been described, but the estimated delay difference is calculated from the quantized amplitude ratio gq using a function for quantizing the input amplitude ratio g and estimating the delay difference from the quantized amplitude ratio.
  • a configuration may be adopted in which Dp is obtained and the estimated residual ⁇ D of the input delay difference D relative to the estimated delay difference Dp is quantized.
  • the speech coding apparatus is different from Embodiment 1 in the configuration of prediction parameter quantization section 22 (FIGS. 2, 3, and 5). Quantization of prediction parameters in this embodiment Then, in the quantization of the delay difference and the amplitude ratio, quantization is performed so that the quantization errors of both parameters are audibly cancelled. In other words, when the quantization error of the delay difference occurs in the positive direction, the quantization error of the amplitude ratio is quantified to be larger, and conversely, when the quantization error of the delay difference occurs in the negative direction. Quantization is performed so that the quantization error of the amplitude ratio becomes smaller.
  • the delay difference and the amplitude ratio are quantized by adjusting the quantization error of the delay difference and the quantization error of the amplitude ratio so that the stereo localization does not change audibly.
  • the prediction parameter can be encoded more efficiently. That is, equivalent sound quality can be achieved at a lower code bit rate or higher sound quality at the same code bit rate.
  • the configuration of the prediction parameter quantization unit 22 according to the present embodiment is as shown in Fig. 7 ⁇ Configuration Example 3> or Fig. 9 Configuration Example 4>.
  • Configuration Example 3 differs from Configuration Example 1 (Fig. 3) in calculating the distortion.
  • FIG. 7 the same components as those in FIG.
  • the distortion calculation unit 71 performs each code vector of the prediction parameter codebook 33 on the prediction parameter represented by a two-dimensional vector (D, g) composed of the delay difference D and the amplitude ratio g. Calculate the distortion between.
  • the distortion calculation unit 71 is input.
  • the two-dimensional beta (D, g) of the prediction parameter is the nearest hearing-equivalent point (Dc '(k), gc' () to each code vector (Dc (k), gc (k))
  • w d and wg are weight constants for adjusting the weight between the quantization distortion for the delay difference at the time of distortion calculation and the quantization distortion for the amplitude ratio.
  • Dst (k) wd-((Dc '(k) -Dc (k)) 2 + wg * (gc, (k) -gc (k)) 2 ... (5)
  • the closest auditory equivalent point to each code vector (Dc (k), gc (k)) is, as shown in FIG. 8, from each code vector, the input prediction parameter vector (D , g) and stereo orientation correspond to the point where the perpendicular line is dropped to function 81 which is audibly equivalent.
  • This function 81 is a function in which the delay difference D and the amplitude ratio g are proportional to the positive direction. The larger the delay difference is, the larger the amplitude ratio is. On the other hand, the smaller the delay difference is, the smaller the amplitude ratio is. This is based on the audible characteristic, which gives an audible equivalent orientation.
  • the input prediction parameter vector is (D, g) as perceptually closest to each code vector (Dc (k), gc (k)) (ie, on the vertical line) on the function 81.
  • Dc code vector
  • gc gc vector
  • the code vector A quantization distortion A
  • the code vector B In the case of quantization distortion (B), the code vector C (quantization distortion C), which is closer to the auditory sense of stereo localization than the input prediction parameter vector, becomes the quantized value, and quantization can be performed with less auditory distortion.
  • the delay difference quantization unit 51 also outputs the quantization delay difference Dq to the amplitude ratio correction unit 91.
  • the amplitude ratio correction unit 91 corrects the amplitude ratio g to an audibly equivalent value based on the quantization error of the delay difference to obtain a corrected amplitude ratio g '.
  • the corrected amplitude ratio g ′ is input to the amplitude ratio estimation residual quantization unit 92.
  • Amplitude ratio estimation residual quantization section 92 obtains an estimation residual Sg with respect to estimated amplitude ratio gp of corrected amplitude ratio g 'according to equation (6).
  • the amplitude ratio estimation residual quantization unit 92 quantizes the estimated residual ⁇ g obtained by Equation (6), and outputs the quantization estimated residual as a quantization prediction parameter. . Further, the amplitude ratio estimation residual quantization unit 92 outputs a quantization estimation residual index obtained by quantization of the estimation residual ⁇ g as the second channel prediction parameter code key data.
  • FIG. 10 shows an example of functions used in the amplitude ratio correction unit 91 and the amplitude ratio estimation unit 52.
  • the function 81 used in the amplitude ratio correction unit 91 is the same function as the function 81 used in the configuration example 3, and the function 61 used in the amplitude ratio estimation unit 52 is used in the configuration example 2. This is the same function as function 61.
  • the function 81 is a function in which the delay difference D and the amplitude ratio g are proportional to the positive direction as described above, and the amplitude ratio correction unit 91 uses the function 81 to quantize the delay difference Dq.
  • a corrected amplitude ratio g ′ audibly equivalent to the amplitude ratio g based on the quantization error of the delay difference is obtained.
  • the amplitude ratio estimated residual quantization unit 92 obtains an estimated residual ⁇ g with respect to the estimated amplitude ratio gp of the corrected amplitude ratio g ′, and quantizes the estimated residual ⁇ g.
  • the estimated residual is obtained from the amplitude ratio (corrected amplitude ratio) corrected to an audibly equivalent value based on the quantization error of the delay difference, and the estimated residual is quantized. Quantization with small distortion and small quantization error can be performed.
  • the auditory characteristics relating to the delay difference and the amplitude ratio may be used as in the present embodiment.
  • the configuration of the prediction parameter quantization unit 22 in this case is as shown in FIG. In FIG. 11, the same components as those in Configuration Example 4 (FIG. 9) are denoted by the same reference numerals.
  • the amplitude ratio correction unit 91 corrects the amplitude ratio g to an audibly equivalent value based on the quantization error of the delay difference to obtain the corrected amplitude ratio g ′. .
  • the corrected amplitude ratio g ′ is input to the amplitude ratio quantization unit 1101. [0059]
  • the amplitude ratio quantization unit 1101 quantizes the corrected amplitude ratio g 'and outputs the quantized amplitude ratio as a quantization prediction parameter.
  • amplitude ratio quantization section 1101 outputs a quantized amplitude ratio index obtained by quantization of corrected amplitude ratio g ′ as second channel prediction parameter code data.
  • the prediction parameters (delay difference D and amplitude ratio g) have been described as scalar values (one-dimensional values), but over a plurality of time units (frames). Quantization similar to the above may be performed by combining a plurality of obtained prediction parameters into a vector of two or more dimensions.
  • each of the above embodiments can also be applied to a voice codec apparatus having a monaural-stereo's scalable configuration.
  • a monaural signal is generated from the input stereo signal (the lch and 2ch audio signals) and encoded
  • the lch is obtained from the monaural decoded signal by inter-channel prediction.
  • a (or 2nd ch) speech signal is predicted, and a prediction residual signal between this prediction signal and the lch (or 2nd ch) speech signal is encoded.
  • CELP codes are used for the monaural core layer and stereo enhancement layer codes, and inter-channel prediction is performed on the monaural driving sound source signal obtained by the mono core layer in the stereo enhancement layer. May be encoded with the CELP excitation code.
  • the inter-channel prediction parameter is a parameter for predicting the lch (or 2nd ch) speech signal with monaural signal power.
  • the delay difference Dml, Dm2 the amplitude ratio of the 1st channel audio signal and the 2nd channel audio signal relative to the monaural signal gml and gm2 may be combined for two channel signals and quantized in the same manner as in the second embodiment.
  • the speech coding apparatus is used in a mobile communication system! Installed in wireless communication devices such as wireless communication mobile station devices and wireless communication base station devices It is also possible to do.
  • Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. You may use an FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI.
  • FPGA Field Programmable Gate Array
  • the present invention can be applied to the use of a communication apparatus in a mobile communication system, a packet communication system using the Internet protocol, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 効率よくステレオ音声を符号化することができる音声符号化装置。この装置において、予測パラメータ分析部(21)は、第1ch復号信号と第2ch音声信号とから、第1ch音声信号に対する第2ch音声信号の遅延差Dおよび振幅比gをチャネル間予測パラメータとして求め、予測パラメータ量子化部(22)は、予測パラメータを量子化し、信号予測部(23)は、第1ch復号信号と量子化予測パラメータとを用いて第2ch信号を予測する。この際、予測パラメータ量子化部(22)は、信号の音源から受信地点までの空間的特性(距離等)に起因する遅延差Dと振幅比gとの間の関係性(相関性)を利用して、予測パラメータ(遅延差D、振幅比g)を符号化および量子化する。

Description

明 細 書
音声符号化装置および音声符号化方法
技術分野
[0001] 本発明は、音声符号化装置および音声符号化方法に関し、特に、ステレオ音声の ための音声符号化装置および音声符号化方法に関する。
背景技術
[0002] 移動体通信や IP通信での伝送帯域の広帯域化、サービスの多様化に伴 1、、音声 通信において高音質化、高臨場感化のニーズが高まっている。例えば、今後、テレ ビ電話サービスにおけるハンズフリー形態での通話、テレビ会議における音声通信、 多地点で複数話者が同時に会話を行うような多地点音声通信、臨場感を保持したま ま周囲の音環境を伝送できるような音声通信などの需要が増加すると見込まれる。そ の場合、モノラル信号より臨場感があり、また複数話者の発話位置が認識できるよう な、ステレオ音声による音声通信を実現することが望まれる。このようなステレオ音声 による音声通信を実現するためには、ステレオ音声の符号ィ匕が必須となる。
[0003] また、 IPネットワーク上での音声データ通信において、ネットワーク上のトラフィック 制御やマルチキャスト通信実現のために、スケーラブルな構成を有する音声符号ィ匕 が望まれている。スケーラブルな構成とは、受信側で部分的な符号ィ匕データ力もでも 音声データの復号が可能な構成を 、う。
[0004] よって、ステレオ音声を符号化し伝送する場合にも、ステレオ信号の復号と、符号 化データの一部を用いたモノラル信号の復号とを受信側にぉ 、て選択可能な、モノ ラルーステレオ間でのスケーラブル構成(モノラル ステレオ'スケーラブル構成)を 有する符号化が望まれる。
[0005] このような、モノラル一ステレオ'スケーラブル構成を有する音声符号ィ匕方法として は、例えば、チャネル (以下、適宜「ch」と略す)間の信号の予測(第 lch信号から第 2c h信号の予測、または、第 2ch信号から第 lch信号の予測)を、チャネル相互間のピッ チ予測により行う、すなわち、 2チャネル間の相関を利用して符号ィ匕を行うものがある (非特許文献 1参照)。 非特言午文献 1 : Ramprashad, S.A., "Stereophonic CELP coding using cross channel p rediction", Proc. IEEE Workshop on Speech Coding, pp.136- 138, Sep. 2000.
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記非特許文献 1記載の音声符号化方法では、チャネル間の予測 ノ ラメータ(チャネル間のピッチ予測の遅延およびゲイン)はそれぞれ独立に符号ィ匕 されるため、符号ィ匕効率が高くない。
[0007] 本発明の目的は、効率よくステレオ音声を符号化することができる音声符号化装置 および音声符号ィ匕方法を提供することである。
課題を解決するための手段
[0008] 本発明の音声符号化装置は、第 1信号と第 2信号との間の遅延差および振幅比を 予測パラメータとして求める予測パラメータ分析手段と、前記遅延差と前記振幅比と の間の相関性に基づいて前記予測パラメータ力 量子化予測パラメータを得る量子 化手段と、を具備する構成を採る。
発明の効果
[0009] 本発明によれば、効率よくステレオ音声を符号ィ匕することができる。
図面の簡単な説明
[0010] [図 1]実施の形態 1に係る音声符号ィ匕装置の構成を示すブロック図
[図 2]実施の形態 1に係る第 2ch予測部の構成を示すブロック図
[図 3]実施の形態 1に係る予測パラメータ量子化部の構成を示すブロック図 (構成例 1 )
[図 4]実施の形態 1に係る予測パラメータ符号帳の一例を示す特性図
[図 5]実施の形態 1に係る予測パラメータ量子化部の構成を示すブロック図 (構成例 2
)
[図 6]実施の形態 1に係る振幅比推定部で用いられる関数の一例を示す特性図
[図 7]実施の形態 2に係る予測パラメータ量子化部の構成を示すブロック図 (構成例 3 ) [図 8]実施の形態 2に係る歪み算出部で用いられる関数の一例を示す特性図
[図 9]実施の形態 2に係る予測パラメータ量子化部の構成を示すブロック図 (構成例 4
)
[図 10]実施の形態 2に係る振幅比補正部および振幅比推定部で用いられる関数の 一例を示す特性図
[図 11]実施の形態 2に係る予測パラメータ量子化部の構成を示すブロック図 (構成例 5)
発明を実施するための最良の形態
[0011] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
[0012] (実施の形態 1)
本実施の形態に係る音声符号化装置の構成を図 1に示す。図 1に示す音声符号 化装置 10は、第 lch符号化部 11、第 lch復号部 12、第 2ch予測部 13、減算器 14、 および、第 2ch予測残差符号ィ匕部 15を備える。なお、以下の説明では、フレーム単 位での動作を前提にして説明する。
[0013] 第 lch符号ィ匕部 11は、入力ステレオ信号のうち第 lch音声信号 s_Chl(n) (n=0〜NF- 1 ;NFはフレーム長)に対する符号ィ匕を行い、第 lch音声信号の符号ィ匕データ (第 lch 符号ィ匕データ)を第 lch復号部 12に出力する。また、この第 lch符号ィ匕データは、第 2ch予測パラメータ符号化データおよび第 2ch符号化データと多重されて音声復号 装置(図示せず)へ伝送される。
[0014] 第 lch復号部 12は、第 lch符号化データから第 lch復号信号を生成して第 2ch予測 部 13に出力する。
[0015] 第 2ch予測部 13は、第 lch復号信号と入力ステレオ信号のうちの第 2ch音声信号 s_ ch2(n) (n=0〜NF-l; NFはフレーム長)とから第 2ch予測パラメータを求め、この第 2ch 予測パラメータを符号ィ匕した第 2ch予測パラメータ符号ィ匕データを出力する。この第 2 ch予測パラメータ符号化データは、他の符号化データと多重されて音声復号装置( 図示せず)へ伝送される。また、第 2ch予測部 13は、第 lch復号信号と第 2ch音声信 号とから第 2ch予測信号 Sp_ch2(n)を合成し、その第 2ch予測信号を減算器 14に出力 する。第 2ch予測部 13の詳細につ 、ては後述する。 [0016] 減算器 14は、第 2ch音声信号 S_ch2(n)と第 2ch予測信号 Sp_ch2(n)との差、すなわち
、第 2ch音声信号に対する第 2ch予測信号の残差成分の信号 (第 2ch予測残差信号
)を求め、第 2ch予測残差符号化部 15に出力する。
[0017] 第 2ch予測残差符号化部 15は、第 2ch予測残差信号を符号化して第 2ch符号化デ ータを出力する。この第 2ch符号ィ匕データは他の符号ィ匕データと多重されて音声復 号装置へ伝送される。
[0018] 次いで、第 2ch予測部 13の詳細について説明する。図 2に、第 2ch予測部 13の構 成を示す。この図に示すように、第 2ch予測部 13は、予測パラメータ分析部 21、予測 パラメータ量子化部 22、および、信号予測部 23を備える。
[0019] 第 2ch予測部 13では、ステレオ信号の各チャネル信号間の相関性に基づき、第 lc h音声信号に対する第 2ch音声信号の遅延差 Dおよび振幅比 gを基本とするパラメ一 タを用いることで、第 lch音声信号力 第 2ch音声信号を予測する。
[0020] 予測パラメータ分析部 21は、第 lch復号信号と第 2ch音声信号とから、第 lch音声 信号に対する第 2ch音声信号の遅延差 Dおよび振幅比 gをチャネル間予測パラメータ として求め、予測パラメータ量子化部 22に出力する。
[0021] 予測パラメータ量子化部 22は、入力された予測パラメータ (遅延差 D、振幅比 g)を 量子化し、量子化予測パラメータおよび第 2ch予測パラメータ符号化データを出力す る。量子化予測パラメータは信号予測部 23に入力される。予測パラメータ量子化部 2
2の詳細については後述する。
[0022] 信号予測部 23は、第 lch復号信号と量子化予測パラメータとを用いて第 2ch信号 の予測を行い、その予測信号を出力する。信号予測部 23で予測される第 2ch予測信 号 sp_ch2(n) (n=0〜NF-l; NFはフレーム長)は、第 lch復号信号 sd_chl(n)を用いて式(
1)より表される。
[数 1]
sp_ch2 (n) = g · sd_chl (n - D) … ( 1 )
[0023] なお、予測パラメータ分析部 21では、式(2)で表される歪み Dist、すなわち、第 2ch 音声信号 s_ch2(n)と第 2ch予測信号 sp_ch2(n)との歪み Distを最小とするように予測パ ラメータ (遅延差 D、振幅比 g)を求める。また、予測パラメータ分析部 21は、第 2ch音 声信号と第 lch復号信号との間の相互相関を最大にするような遅延差 Dや、フレーム 単位の平均振幅の比 gを求めて予測パラメータとしてもよい。
[数 2]
Dist = ∑ { s— ch2 (n) - sp_ch2 (n) } 2 … ( 2 )
[0024] 次いで、予測パラメータ量子化部 22の詳細について説明する。
[0025] 予測パラメータ分析部 21において得られた遅延差 Dと振幅比 gとの間には、信号の 音源力も受信地点までの空間的特性 (距離等)に起因する関係性湘関性)がある。 すなわち、遅延差 D(〉0)が大きい (正方向(遅れ方向)に大きい)ほど振幅比 g (く 1.0)は 小さぐ逆に、遅延差 D (く 0)が小さい (負方向(進み方向)に大きい)ほど振幅比 g(〉1.0 )は大きくなる、という関係性がある。そこで、予測パラメータ量子化部 22では、この関 係性を利用して、チャネル間予測パラメータ (遅延差 D、振幅比 g)を効率的に符号ィ匕 し、より少な!、量子化ビット数で同等の量子化歪みを実現する。
[0026] 本実施の形態に係る予測パラメータ量子化部 22の構成は図 3<構成例 1 >または 図 5く構成例 2 >に示すようになる。
[0027] <構成例 1 >
構成例 1 (図 3)では、遅延差 Dと振幅比 gを 2次元ベクトルとして表し、その 2次元べ タトルに対してベクトル量子化を行う。図 4は、この 2次元ベクトルを点(〇)で表した符 号ベクトルの特性図である。
[0028] 図 3において、歪み算出部 31は、遅延差 Dと振幅比 gと力もなる 2次元ベクトル (D,g) で表された予測パラメータに対して、予測パラメータ符号帳 33の各符号ベクトルとの 間の歪みを算出する。
[0029] 最小歪み探索部 32は、すべての符号ベクトルのうち、歪みが最も小さ 、符号べタト ルを探索し、その探索結果を予測パラメータ符号帳 33に送るとともに、その符号べク トルに対応するインデクスを第 2ch予測パラメータ符号ィ匕データとして出力する。
[0030] 予測パラメータ符号帳 33は、探索結果に基づ!/、て、歪みが最も小さ!/、符号ベクトル を量子化予測パラメータとして出力する。
[0031] ここで、予測パラメータ符号帳 33の第 k番目の符号ベクトルを (Dc(k),gc(k》 (k=0〜N cb-1, Ncb :符号帳サイズ)とすると、歪み算出部 31で算出される、第 k番目の符号べ タトルに対する歪み Dst(k)は式(3)により表される。式(3)において、 wdおよび wgは、 歪み算出時の遅延差に対する量子化歪みと、振幅比に対する量子化歪みとの間の 重みを調整する重み定数である。
[数 3]
Dst (k) = wd - (D-Dc (k) )2 + wg · (g-gc (k) )2 … ( 3 )
[0032] 予測パラメータ符号帳 33は、予め、遅延差 Dと振幅比 gとの対応関係を示す複数の データ(学習データ)を学習用のステレオ音声信号から取得しておき、その対応関係 力 学習により予め用意しておく。予測パラメータである遅延差と振幅比との間には 上記の関係性があるため、学習用データはその関係性に従って取得される。よって、 学習から得られる予測パラメータ符号帳 33は、図 4に示すように、遅延差 Dと振幅比 g 力 (D,g)=(0, 1.0)となる点を中心に、負の比例関係にある符号ベクトルの集合の密度 が高ぐそれ以外は疎になると考えられる。図 4に示すような特性を有する予測パラメ ータ符号帳を用いることで、遅延差と振幅比との対応関係を表す予測パラメータの中 で、発生頻度の高いものの量子化誤差を小さくでき、その結果、量子化効率を向上 することができる。
[0033] <構成例 2>
構成例 2 (図 5)では、遅延差 Dから振幅比 gを推定する関数を予め定め、遅延差 D を量子化後、その量子化値力 その関数を用いて推定した振幅比に対する予測残 差を量子化する。
[0034] 図 5において、遅延差量子化部 51は、予測パラメータのうちの遅延差 Dに対して量 子化を行い、この量子化遅延差 Dqを振幅比推定部 52に出力するとともに、量子化 予測パラメータとして出力する。また、遅延差量子化部 51は、遅延差 Dの量子化によ り得られる量子化遅延差インデクスを第 2ch予測パラメータ符号ィ匕データとして出力 する。
[0035] 振幅比推定部 52は、量子化遅延差 Dqから振幅比の推定値 (推定振幅比) gpを求 めて、振幅比推定残差量子化部 53に出力する。振幅比の推定には、予め用意され た、量子化遅延差力も振幅比を推定するための関数を用いる。この関数は、量子化 遅延差 Dqと推定振幅比 gpとの対応関係を示す複数のデータを学習用のステレオ音 声信号から求めておき、その対応関係力も学習により予め用意しておく。
[0036] 振幅比推定残差量子化部 53は、振幅比 gの推定振幅比 gpに対する推定残差 δ g を式 (4)に従って求める。
画 δ g = g - gp · · ' ( 4 )
[0037] そして、振幅比推定残差量子化部 53は、式 (4)で得られた推定残差 δ gに対して 量子化を行い、量子化推定残差を量子化予測パラメータとして出力する。また、振幅 比推定残差量子化部 53は、推定残差 δ gの量子化により得られる量子化推定残差 インデクスを第 2ch予測パラメータ符号ィ匕データとして出力する。
[0038] 図 6に、振幅比推定部 52で用いられる関数の一例を示す。入力される予測パラメ ータ (D,g)は、 2次元ベクトルとして図 6の座標平面上の点で示される。図 6に示すよう に、遅延差力も振幅比を推定するための関数 61は、(D,g)=(0,1.0)またはその付近を 通るような負の比例関係にある関数である。そして、振幅比推定部 52では、この関数 を用いて、量子化遅延差 Dqから推定振幅比 gpを求める。また、振幅比推定残差量子 化部 53では、入力予測パラメータの振幅比 gの推定振幅比 gpに対する推定残差 δ g を求め、この推定残差 δ gを量子化する。このようにして推定残差を量子化することで 、振幅比を直接量子化するよりも量子化誤差を小さくすることができ、その結果、量子 化効率を向上することができる。
[0039] なお、上記説明では、量子化遅延差力 振幅比を推定するための関数を用いて量 子化遅延差 Dqから推定振幅比 gpを求め、その推定振幅比 gpに対する入力振幅比 g の推定残差 δ gを量子化する構成について説明したが、入力振幅比 gを量子化し、量 子化振幅比から遅延差を推定するための関数を用いて量子化振幅比 gqから推定遅 延差 Dpを求め、その推定遅延差 Dpに対する入力遅延差 Dの推定残差 δ Dを量子化 する構成としてちよい。
[0040] (実施の形態 2)
本実施の形態に係る音声符号化装置は、実施の形態 1と、予測パラメータ量子化 部 22 (図 2、 3、 5)の構成が異なる。本実施の形態における予測パラメータの量子化 では、遅延差および振幅比の量子化において、双方のパラメータの量子化誤差が聴 感的に相互に打ち消しあう方向に生じるような量子化を行う。すなわち、遅延差の量 子化誤差が正の方向に生じる場合は振幅比の量子化誤差がより大きくなるように量 子化し、逆に、遅延差の量子化誤差が負の方向に生じる場合は振幅比の量子化誤 差がより小さくなるように量子化する。
[0041] ここで、人間の聴覚特性として、同じステレオ音の定位感を得るように、遅延差と振 幅比を相互に調整することが可能である。すなわち、遅延差が実際より大きくなつた 場合には、振幅比を大きくすれば、同等の定位感が得られる。この聴覚特性に基づ き、聴感的にステレオの定位感が変わらないように、遅延差の量子化誤差と振幅比 の量子化誤差とを相互に調整して遅延差および振幅比を量子化することで、予測パ ラメータをより効率よく符号ィ匕することができる。つまり、同等の音質をより低符号ィ匕ビ ットレートで、または、同一の符号ィ匕ビットレートでより高音質を実現することができる。
[0042] 本実施の形態に係る予測パラメータ量子化部 22の構成は図 7<構成例 3 >または 図 9く構成例 4 >に示すようになる。
[0043] <構成例 3 >
構成例 3 (図 7)は、歪みの算出において構成例 1 (図 3)と異なる。なお、図 7におい ては、図 3と同一の構成部分には同一符号を付し説明を省略する。
[0044] 図 7において、歪み算出部 71は、遅延差 Dと振幅比 gからなる 2次元ベクトル (D,g) で表された予測パラメータに対して、予測パラメータ符号帳 33の各符号ベクトルとの 間の歪みを算出する。
[0045] 予測パラメータ符号帳 33の第 k番目の符号ベクトル (Dc(k),gc(k)) (k=0〜Ncb, Ncb: 符号帳サイズ)とすると、歪み算出部 71は、入力される予測パラメータの 2次元べタト ル (D,g)を、各符号ベクトル (Dc(k),gc(k))に最も近 ヽ聴感的に等価な点 (Dc' (k),gc' (k)) に移動をさせた後、式(5)に従って歪み Dst(k)を算出する。なお、式(5)において、 w dおよび wgは、歪み算出時の遅延差に対する量子化歪みと、振幅比に対する量子化 歪みとの間の重みを調整する重み定数である。
[数 5]
Dst (k) = wd - ( (Dc' (k) -Dc (k) )2 + wg * (gc, (k) -gc (k) )2 … (5 ) [0046] ここで、各符号ベクトル (Dc(k),gc(k))に最も近い聴感的に等価な点とは、図 8に示す ように、各符号ベクトルから、入力予測パラメータベクトル (D,g)とステレオ定位感が聴 感的に等価な関数 81へ垂線を下ろした点に相当する。この関数 81は、遅延差 Dと振 幅比 gとが正の方向に比例する関数であり、遅延差が大きいほど振幅比も大きぐ逆 に、遅延差が小さいほど振幅比も小さくすることで聴感的に等価な定位感を得られる t 、う聴感的特性に基づくものである。
[0047] なお、入力予測パラメータベクトルを (D,g)を、関数 81上において、各符号ベクトル( Dc(k),gc(k))に最も近 ヽ(すなわち、垂線上)の聴感的に等価な点 (Dc, (k),gc, (k》へ 移動させる際には、所定以上大きく離れた点への移動に対しては歪みを大きくして ペナルティを課す。
[0048] このようにして求めた歪みを用いてベクトル量子化を行うと、例えば図 8においては 、入力予測パラメータベクトル力 の距離が近い符号ベクトル A (量子化歪み A)ゃ符 号ベクトル B (量子化歪み B)ではなぐ入力予測パラメータベクトルにステレオ定位感 が聴感的により近い符号ベクトル C (量子化歪み C)が量子化値となり、より聴感的な 歪みの小さ 、量子化を行うことができる。
[0049] <構成例 4>
構成例 4 (図 9)は、遅延差の量子化誤差を踏まえて聴感的に等価な値へと補正し た振幅比 (補正振幅比)に対する推定残差を量子化する点において、構成例 2 (図 5 )と異なる。なお、図 9においては、図 5と同一の構成部分には同一符号を付し説明を 省略する。
[0050] 図 9において、遅延差量子化部 51は、量子化遅延差 Dqを振幅比補正部 91にも出 力する。
[0051] 振幅比補正部 91は、遅延差の量子化誤差を踏まえて振幅比 gを聴感的に等価な 値へと補正し、補正振幅比 g'を得る。この補正振幅比 g'は、振幅比推定残差量子化 部 92に入力される。
[0052] 振幅比推定残差量子化部 92は、補正振幅比 g'の推定振幅比 gpに対する推定残 差 S gを式 (6)に従って求める。
[数 6] δ g = g, - gp … ( 6 )
[0053] そして、振幅比推定残差量子化部 92は、式 (6)で得られた推定残差 δ gに対して 量子化を行い、量子化推定残差を量子化予測パラメータとして出力する。また、振幅 比推定残差量子化部 92は、推定残差 δ gの量子化により得られる量子化推定残差 インデクスを第 2ch予測パラメータ符号ィ匕データとして出力する。
[0054] 図 10に、振幅比補正部 91および振幅比推定部 52で用いられる関数の一例を示 す。振幅比補正部 91で用 、る関数 81は構成例 3にお 、て用 、た関数 81と同一の 関数であり、振幅比推定部 52で用 、る関数 61は構成例 2において用 、た関数 61と 同一の関数である。
[0055] 関数 81は、上記のように、遅延差 Dと振幅比 gとが正の方向に比例する関数であり、 振幅比補正部 91では、この関数 81を用いて、量子化遅延差 Dqから、遅延差の量子 化誤差を踏まえた、振幅比 gと聴感的に等価な補正振幅比 g'を得る。また、関数 61 は、上記のように、(D,g)=(0,1.0)またはその付近を通るような負の比例関係にある関 数であり、振幅比推定部 52では、この関数 61を用いて、量子化遅延差 Dqから推定 振幅比 gpを求める。そして、振幅比推定残差量子化部 92では、補正振幅比 g'の推 定振幅比 gpに対する推定残差 δ gを求め、この推定残差 δ gを量子化する。
[0056] このように、遅延差の量子化誤差を踏まえて聴感的に等価な値へと補正した振幅 比 (補正振幅比)から推定残差を求め、その推定残差を量子化することで、聴感的に 歪みが小さぐかつ、量子化誤差の小さい量子化を行うことができる。
[0057] <構成例 5 >
遅延差 Dと振幅比 gとをそれぞれ独立に量子化する場合においても、本実施の形態 のように、遅延差と振幅比に関する聴感的特性を利用するようにしてもよい。この場合 の予測パラメータ量子化部 22の構成は、図 11に示すようになる。なお、図 11におい て、構成例 4 (図 9)と同一の構成部分には同一符号を付す。
[0058] 図 11において、振幅比補正部 91は、構成例 4同様、遅延差の量子化誤差を踏ま えて振幅比 gを聴感的に等価な値へと補正し、補正振幅比 g'を得る。この補正振幅 比 g'は、振幅比量子化部 1101に入力される。 [0059] 振幅比量子化部 1101は、補正振幅比 g'に対して量子化を行い、量子化振幅比を 量子化予測パラメータとして出力する。また、振幅比量子化部 1101は、補正振幅比 g'の量子化により得られる量子化振幅比インデクスを第 2ch予測パラメータ符号ィ匕デ ータとして出力する。
[0060] なお、上記各実施の形態では、予測パラメータ (遅延差 Dおよび振幅比 g)をそれぞ れスカラー値(1次元の値)として説明したが、複数の時間単位 (フレーム)に渡って得 られた複数の予測パラメータをまとめて 2次元以上のベクトルとして上記同様の量子 化を行ってもよい。
[0061] また、上記各実施の形態を、モノラル—ステレオ'スケーラブル構成を有する音声符 号ィ匕装置に適用することもできる。この場合、モノラルコアレイヤにおいて、入力ステ レオ信号 (第 lchおよび第 2ch音声信号)からモノラル信号を生成して符号ィ匕し、ステ レオ拡張レイヤにおいて、モノラル復号信号から、チャネル間予測により第 lch (また は第 2ch)音声信号を予測し、この予測信号と第 lch (または第 2ch)音声信号との予 測残差信号を符号化する。さらに、モノラルコアレイヤおよびステレオ拡張レイヤの符 号ィ匕に CELP符号ィ匕を用い、ステレオ拡張レイヤにて、モノラルコアレイヤで得られ たモノラル駆動音源信号に対するチャネル間予測を行 ヽ、予測残差を CELP音源符 号ィ匕により符号ィ匕するようにしてもよい。なお、スケーラブル構成の場合は、チャネル 間予測パラメータは、モノラル信号力もの第 lch (または第 2ch)音声信号の予測に対 するノ ラメータとなる。
[0062] また、上記各実施の形態を、モノラル—ステレオ'スケーラブル構成を有する音声符 号化装置に適用する場合、モノラル信号に対する第 lchおよび第 2ch音声信号の遅 延差 Dml,Dm2、振幅比 gml,gm2を 2チャネル信号分まとめて、実施の形態 2と同様に して量子化するようにしてもよい。この場合、各チャネルの遅延差間(Dmlと Dm2との 間)および振幅比間(gmlと gm2との間)にも相関性があり、その相関性を利用すること で、モノラル ステレオ'スケーラブル構成にお 、て予測パラメータの符号ィ匕効率を 向上することができる。
[0063] また、上記各実施の形態に係る音声符号化装置を、移動体通信システムにお!/、て 使用される無線通信移動局装置や無線通信基地局装置等の無線通信装置に搭載 することも可會である。
[0064] また、上記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって 説明したが、本発明はソフトウェアで実現することも可能である。
[0065] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部又は全 てを含むように 1チップィ匕されてもよい。
[0066] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレ卜ラ LSIと呼称されることちある。
[0067] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Program mable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギユラブル'プロセッサーを利用してもよい。
[0068] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよい。バイオ技術の適応等が可能性としてありえる。
[0069] 本明細書は、 2005年 3月 25曰出願の特願 2005— 088808に基づくものである。
この内容はすべてここに含めておく。
産業上の利用可能性
[0070] 本発明は、移動体通信システムやインターネットプロトコルを用いたパケット通信シ ステム等における通信装置の用途に適用できる。

Claims

請求の範囲
[1] 第 1信号と第 2信号との間の遅延差および振幅比を予測パラメータとして求める予 測パラメータ分析手段と、
前記遅延差と前記振幅比との間の相関性に基づいて前記予測パラメータから量子 化予測パラメータを得る量子化手段と、
を具備する音声符号化装置。
[2] 前記量子化手段は、前記振幅比の、前記遅延差から推定される振幅比に対する残 差を量子化して前記量子化予測パラメータを得る、
請求項 1記載の音声符号化装置。
[3] 前記量子化手段は、前記遅延差の、前記振幅比から推定される遅延差に対する残 差を量子化して前記量子化予測パラメータを得る、
請求項 1記載の音声符号化装置。
[4] 前記量子化手段は、前記遅延差の量子化誤差と前記振幅比の量子化誤差とが聴 感的に相互に打ち消しあう方向に生じる量子化を行って前記量子化予測パラメータ を得る、
請求項 1記載の音声符号化装置。
[5] 前記量子化手段は、前記遅延差と前記振幅比とからなる 2次元ベクトルを用いて前 記量子化予測パラメータを得る、
請求項 1記載の音声符号化装置。
[6] 請求項 1記載の音声符号化装置を具備する無線通信移動局装置。
[7] 請求項 1記載の音声符号化装置を具備する無線通信基地局装置。
[8] 第 1信号と第 2信号との間の遅延差および振幅比を予測パラメータとして求め、 前記遅延差と前記振幅比との間の相関性に基づいて前記予測パラメータから量子 化予測パラメータを得る、
音声符号化方法。
PCT/JP2006/305871 2005-03-25 2006-03-23 音声符号化装置および音声符号化方法 WO2006104017A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/909,556 US8768691B2 (en) 2005-03-25 2006-03-23 Sound encoding device and sound encoding method
EP06729819.0A EP1858006B1 (en) 2005-03-25 2006-03-23 Sound encoding device and sound encoding method
JP2007510437A JP4887288B2 (ja) 2005-03-25 2006-03-23 音声符号化装置および音声符号化方法
ES06729819.0T ES2623551T3 (es) 2005-03-25 2006-03-23 Dispositivo de codificación de sonido y procedimiento de codificación de sonido
CN2006800096953A CN101147191B (zh) 2005-03-25 2006-03-23 语音编码装置和语音编码方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005088808 2005-03-25
JP2005-088808 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006104017A1 true WO2006104017A1 (ja) 2006-10-05

Family

ID=37053274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305871 WO2006104017A1 (ja) 2005-03-25 2006-03-23 音声符号化装置および音声符号化方法

Country Status (6)

Country Link
US (1) US8768691B2 (ja)
EP (1) EP1858006B1 (ja)
JP (1) JP4887288B2 (ja)
CN (1) CN101147191B (ja)
ES (1) ES2623551T3 (ja)
WO (1) WO2006104017A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090970A1 (ja) * 2007-01-26 2008-07-31 Panasonic Corporation ステレオ符号化装置、ステレオ復号装置、およびこれらの方法
JP2013148682A (ja) * 2012-01-18 2013-08-01 Fujitsu Ltd オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007332508B2 (en) * 2006-12-13 2012-08-16 Iii Holdings 12, Llc Encoding device, decoding device, and method thereof
JP4871894B2 (ja) 2007-03-02 2012-02-08 パナソニック株式会社 符号化装置、復号装置、符号化方法および復号方法
JP4708446B2 (ja) 2007-03-02 2011-06-22 パナソニック株式会社 符号化装置、復号装置およびそれらの方法
US8983830B2 (en) 2007-03-30 2015-03-17 Panasonic Intellectual Property Corporation Of America Stereo signal encoding device including setting of threshold frequencies and stereo signal encoding method including setting of threshold frequencies
KR101428487B1 (ko) * 2008-07-11 2014-08-08 삼성전자주식회사 멀티 채널 부호화 및 복호화 방법 및 장치
WO2011128138A1 (en) * 2010-04-13 2011-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio or video encoder, audio or video decoder and related methods for processing multi-channel audio or video signals using a variable prediction direction
EP3723085B1 (en) 2016-03-21 2022-11-16 Huawei Technologies Co., Ltd. Adaptive quantization of weighted matrix coefficients
CN107358959B (zh) * 2016-05-10 2021-10-26 华为技术有限公司 多声道信号的编码方法和编码器
CN110709925B (zh) * 2017-04-10 2023-09-29 诺基亚技术有限公司 用于音频编码或解码的方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509365A (ja) * 2000-09-15 2004-03-25 テレフオンアクチーボラゲツト エル エム エリクソン 複数チャネル信号の符号化及び復号化

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116103A (en) * 1976-03-26 1977-09-29 Kokusai Denshin Denwa Co Ltd Multistage selection dpcm system
US5651090A (en) * 1994-05-06 1997-07-22 Nippon Telegraph And Telephone Corporation Coding method and coder for coding input signals of plural channels using vector quantization, and decoding method and decoder therefor
JP3180762B2 (ja) * 1998-05-11 2001-06-25 日本電気株式会社 音声符号化装置及び音声復号化装置
US7644003B2 (en) * 2001-05-04 2010-01-05 Agere Systems Inc. Cue-based audio coding/decoding
US7583805B2 (en) * 2004-02-12 2009-09-01 Agere Systems Inc. Late reverberation-based synthesis of auditory scenes
DE60230925D1 (de) * 2001-12-25 2009-03-05 Ntt Docomo Inc Signalcodierung
KR101016982B1 (ko) 2002-04-22 2011-02-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 디코딩 장치
US8498422B2 (en) * 2002-04-22 2013-07-30 Koninklijke Philips N.V. Parametric multi-channel audio representation
US7542896B2 (en) * 2002-07-16 2009-06-02 Koninklijke Philips Electronics N.V. Audio coding/decoding with spatial parameters and non-uniform segmentation for transients
US7181019B2 (en) * 2003-02-11 2007-02-20 Koninklijke Philips Electronics N. V. Audio coding
JP4603485B2 (ja) * 2003-12-26 2010-12-22 パナソニック株式会社 音声・楽音符号化装置及び音声・楽音符号化方法
BRPI0509113B8 (pt) * 2004-04-05 2018-10-30 Koninklijke Philips Nv codificador de multicanal, método para codificar sinais de entrada, conteúdo de dados codificados, portador de dados, e, decodificador operável para decodificar dados de saída codificados
US8843378B2 (en) * 2004-06-30 2014-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-channel synthesizer and method for generating a multi-channel output signal
CA2572805C (en) * 2004-07-02 2013-08-13 Matsushita Electric Industrial Co., Ltd. Audio signal decoding device and audio signal encoding device
CN1922655A (zh) * 2004-07-06 2007-02-28 松下电器产业株式会社 音频信号编码装置、音频信号解码装置、方法及程序
US7391870B2 (en) * 2004-07-09 2008-06-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E V Apparatus and method for generating a multi-channel output signal
KR100672355B1 (ko) * 2004-07-16 2007-01-24 엘지전자 주식회사 음성 코딩/디코딩 방법 및 그를 위한 장치
US7720230B2 (en) * 2004-10-20 2010-05-18 Agere Systems, Inc. Individual channel shaping for BCC schemes and the like
SE0402651D0 (sv) * 2004-11-02 2004-11-02 Coding Tech Ab Advanced methods for interpolation and parameter signalling
KR20070085532A (ko) * 2004-11-30 2007-08-27 마츠시타 덴끼 산교 가부시키가이샤 스테레오 부호화 장치, 스테레오 복호 장치 및 그 방법
JP5046653B2 (ja) * 2004-12-28 2012-10-10 パナソニック株式会社 音声符号化装置および音声符号化方法
MY145282A (en) * 2005-01-11 2012-01-13 Agency Science Tech & Res Encoder, decoder, method for encoding/decoding, computer readable media and computer program elements
US7573912B2 (en) * 2005-02-22 2009-08-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschunng E.V. Near-transparent or transparent multi-channel encoder/decoder scheme
US7751572B2 (en) * 2005-04-15 2010-07-06 Dolby International Ab Adaptive residual audio coding
RU2376655C2 (ru) * 2005-04-19 2009-12-20 Коудинг Текнолоджиз Аб Зависящее от энергии квантование для эффективного кодирования пространственных параметров звука

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509365A (ja) * 2000-09-15 2004-03-25 テレフオンアクチーボラゲツト エル エム エリクソン 複数チャネル信号の符号化及び復号化

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EBARA H. ET AL.: "Shosu Pulse Kudo Ongen o Mochiiru Tei-Bit Rate Onsei Fugoka Hoshiki no Hinshitsu Kaizen", IEICE TECHNICAL REPORT USPEECH, vol. 99, no. 299, 16 September 1999 (1999-09-16), pages 15 - 21, XP008122101 *
See also references of EP1858006A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090970A1 (ja) * 2007-01-26 2008-07-31 Panasonic Corporation ステレオ符号化装置、ステレオ復号装置、およびこれらの方法
JP2013148682A (ja) * 2012-01-18 2013-08-01 Fujitsu Ltd オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラム

Also Published As

Publication number Publication date
US20090055172A1 (en) 2009-02-26
JPWO2006104017A1 (ja) 2008-09-04
CN101147191B (zh) 2011-07-13
US8768691B2 (en) 2014-07-01
CN101147191A (zh) 2008-03-19
EP1858006A1 (en) 2007-11-21
JP4887288B2 (ja) 2012-02-29
ES2623551T3 (es) 2017-07-11
EP1858006A4 (en) 2011-01-26
EP1858006B1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP4887288B2 (ja) 音声符号化装置および音声符号化方法
US7945447B2 (en) Sound coding device and sound coding method
CN101167126B (zh) 语音编码装置和语音编码方法
JP4850827B2 (ja) 音声符号化装置および音声符号化方法
US8311810B2 (en) Reduced delay spatial coding and decoding apparatus and teleconferencing system
JP5153791B2 (ja) ステレオ音声復号装置、ステレオ音声符号化装置、および消失フレーム補償方法
US8457319B2 (en) Stereo encoding device, stereo decoding device, and stereo encoding method
JP5046653B2 (ja) 音声符号化装置および音声符号化方法
US20080126082A1 (en) Scalable Decoding Apparatus and Scalable Encoding Apparatus
JPWO2007116809A1 (ja) ステレオ音声符号化装置、ステレオ音声復号装置、およびこれらの方法
JPWO2009057327A1 (ja) 符号化装置および復号装置
WO2009122757A1 (ja) ステレオ信号変換装置、ステレオ信号逆変換装置およびこれらの方法
JP4555299B2 (ja) スケーラブル符号化装置およびスケーラブル符号化方法
KR20070061847A (ko) 스케일러블 부호화 장치, 스케일러블 복호 장치 및 이들의방법
JPWO2008090970A1 (ja) ステレオ符号化装置、ステレオ復号装置、およびこれらの方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009695.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006729819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006729819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007510437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909556

Country of ref document: US

Ref document number: 1506/MUMNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729819

Country of ref document: EP