WO2006073148A1 - Illumination optical system and projection-type display device - Google Patents
Illumination optical system and projection-type display device Download PDFInfo
- Publication number
- WO2006073148A1 WO2006073148A1 PCT/JP2006/300010 JP2006300010W WO2006073148A1 WO 2006073148 A1 WO2006073148 A1 WO 2006073148A1 JP 2006300010 W JP2006300010 W JP 2006300010W WO 2006073148 A1 WO2006073148 A1 WO 2006073148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- unit
- light beam
- illumination optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 142
- 238000005286 illumination Methods 0.000 title claims abstract description 95
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000004907 flux Effects 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 26
- 238000004088 simulation Methods 0.000 description 19
- 201000009310 astigmatism Diseases 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0994—Fibers, light pipes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/16—Cooling; Preventing overheating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/208—Homogenising, shaping of the illumination light
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
- H04N9/3105—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
- H04N5/7416—Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
- H04N5/7458—Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]
Definitions
- the present invention relates to an illumination optical system, and more particularly to a projection display device using the illumination optical system.
- DLP method Digital Light Processing (registered trademark) method
- DMD digital micro mirror device
- An illumination optical system using a field lens is used in a single-plate DLP projection display device (projector), which is the most compact type of DLP.
- FIG. 10A shows a conventional single-plate DLP-type projection display device and a conventional illumination optical system using a field lens used in the conventional projection-type display device.
- the conventional projection display device 100A includes a light source unit 101 in which a lamp that emits white light, such as an ultra-high pressure mercury lamp, that emits white light is arranged at one focal point of an elliptical reflector 102, an illumination optical system 100B, and an image on a screen. And a projection lens 109 for enlarging projection.
- the illumination optical system 100B is disposed near the exit surface of the integrator unit 103 and the integrator unit 103 that takes in the luminous flux emitted from the light source unit 101 and reduces unevenness of illuminance on the exit surface, and emits white light from the light source unit.
- the color wheel 104 that time-divides the light into the three primary colors of light, red, blue, and green, and the first lens part of the relay lens part that is designed so that the exit surface and the imaging surface of the integrator part 103 are conjugated.
- the light beam incident from the second relay lens unit 105b is emitted in parallel with the optical axis (hereinafter referred to as “telecentric”), and the light beam incident from the DMD unit 108 serving as a reflective display element unit is emitted from the optical axis.
- telecentric the optical axis
- DMD unit 108 serving as a reflective display element unit
- Exit in the direction converged A field lens unit 107 as a third lens unit, and a DMD unit 108 that controls the amount of main light beam emitted to the projection lens 109 by swinging the angle of a fine micromirror at high speed (for example, Non-Patent Document 1). reference).
- Fig 10 In the illumination optical system 100B shown in FIG.
- 10B is a side view of the color wheel 104.
- the panel size of the DMD part has been reduced due to the improvement of the manufacturing technology of the image display element, and it is necessary to make the imaging magnification of the illumination optical system smaller (that is, close to the same magnification) as before. Has occurred.
- Non-Patent Document 1 Usio Electric Co., Ltd. “New and Present Status and Trends of Projectors with Display Devices (Figure 3-32, Figure 3-33)” Usio Technical Information Magazine Life Edge July 2000 [online] [Heisei 16] Search on October 22, 2011], Internet, URL: http://wwwl.ushio.co.jp/tech/le/lel9 / 19— 03— 05.html>
- the three lenses (the incident side force of the light beam, the first lens 111, the first In an illumination optical system in which the optical path is formed by two lenses 112 and a third lens 113), the integrator part (not shown in FIG. 11) side and the DMD part (not shown in FIG. 11) side are telecentric.
- System hereinafter referred to as “bilateral telecentric”
- the second lens 11 2 is arranged such that the distance L between the first lens 111 and the second lens 112 is substantially equal to the focal length f of the first lens. So that the distance L between the third lens 113 and the third lens 113 is substantially equal to the focal length f of the third lens 113.
- the image magnification is f / ⁇ .
- the imaging magnification is close to the ratio L / L of the distance L between the first lens 111 and the second lens 112 and the distance L between the second lens 112 and the third lens 113. Approaches the same size
- a lens is arranged near the center of the optical system.
- L1 is the distance between the first lens and the second lens
- L2 is the distance between the second lens and the third lens
- fl is the focal length of the first lens
- f3 is This is the focal length of the third lens.
- the distance L also becomes longer as it approaches the same magnification, and the size of the illumination optical system 1A in the direction of the optical axis becomes longer, resulting in a larger apparatus.
- LED single color light emitting diode
- R RED
- G GREEN
- B BLUE
- Proposals have been made for illumination optical systems that use light beams that have been supplied with devices and LED light source components.
- the brightness of LEDs is inferior to that of ultra-high pressure mercury lamps, etc., so to illuminate the screen with sufficient brightness, the area of the light emitting surface of each LED must be increased, and the light source section is inevitably required. Some size is required. Therefore, even if an LED is used as the light source unit in the projection illumination device 1A and the illumination optical system 1B shown in FIGS. 10A and 10B, the problem that the device becomes large cannot be solved if the imaging magnification is reduced.
- the present invention has been made in view of the above problems, and the object of the present invention is to provide an illumination optical system and a projection display device that can be formed in a small size and can obtain a small imaging magnification. To do.
- An illumination optical system having a reflective display element unit having an irradiation surface that receives irradiation of the emitted light beam guided by the optical system, and the optical system includes a plurality of lens units, At least one lens portion of the plurality of lens portions includes a reflecting means for reflecting the light beam incident from the front surface side on the back surface side, and a mirror lens portion for emitting the light beam reflected by the reflecting means to the surface side force Is achieved by the illumination optics.
- the lens surface force is reflected on the lens back surface by reflecting the light beam incident on a part of an optical path for guiding the light beam emitted from the light source unit and the light source unit. This is achieved by a projection type display device having an optical system provided with a mirror lens part to be emitted, and a reflective display element part having an irradiation surface for receiving the light beam guided by the optical system.
- the optical system constituting the projection display device can shorten the optical path while reducing the imaging magnification.
- the size of the illumination optical system itself can be reduced, and a small imaging magnification can be obtained.
- FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
- FIG. 2A is a schematic configuration diagram of an upper surface of an illumination optical system according to an embodiment of the present invention.
- FIG. 2B is a schematic configuration diagram of the right side surface of the illumination optical system according to one embodiment of the present invention.
- FIG. 3 is a partially enlarged view showing an outline of a DMD portion of the illumination optical system.
- FIG. 4 is an enlarged view of a light source unit of a projection display device according to an embodiment of the present invention.
- FIG. 5 is a simulation diagram of the lens surface of the second relay lens unit and the shape of the lens surface and the optical path of the light beam incident on and emitted from the second relay lens unit in the illumination optical system according to the embodiment of the present invention.
- Fig. 5 (a) is a diagram when R2> R1>
- Fig. 5 (b) is a diagram when-R2> R1>
- FIG. 6A is a simulation diagram showing the image formation positions of the meridional surface and the sagittal surface with respect to the lens shape of the second relay lens unit in the illumination optical system, and is a diagram in the case of R2> R1> 0.
- FIG. 6B is a simulation diagram showing the image formation positions of the meridional surface and the sagittal surface with respect to the lens shape of the second relay lens unit in the illumination optical system same as above, and is a diagram in the case of -R2> R1> 0. .
- FIG. 7 is a simulation diagram showing an in-plane illuminance distribution of an image formed on the surface portion of the DMD portion with respect to the lens shape in the illumination optical system.
- FIG. 8 is a diagram showing simulation results of the optical path length with respect to the imaging magnification of the illumination optical system according to the present invention and the optical path length with respect to the imaging magnification in the conventional illumination optical system.
- FIG. 9 is a schematic diagram of the configuration when the second relay lens of the illumination optical system according to the present invention is formed on a complex curved surface.
- FIG. 10A is a schematic configuration diagram of a conventional projection illumination apparatus and a conventional illumination optical system.
- FIG. 10B is a schematic configuration diagram of a conventional projection illumination device and a conventional illumination optical system, and is a side view of the color wheel of FIG. 1 OA.
- FIG. 11 is a principle diagram of the relationship between the focal length and the imaging magnification in the lens of the optical system.
- FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
- the projection display device 1A includes a light source unit 1, an illumination optical system 1B according to the present invention, and a projection lens 7.
- FIGS. 2A and 2B are schematic configuration diagrams of a top view and a right side view of the illumination optical system 1B according to the embodiment of the present invention.
- the illumination optical system 1B includes a rod integrator 2 as an integrator unit, a first relay lens unit 3 as a first lens unit, and a second lens unit as a second lens unit. It has a relay lens unit 4, a field lens unit 5 as a third lens unit, and a DMD unit 6 as a reflective display element unit.
- the first relay lens unit 3, the second relay lens unit 4, and the field lens unit 5 form an optical system in the illumination optical system 1B shown in FIGS. 2A and 2B.
- the light source section 1 shown in FIG. 1 is an LED light source, which emits light in red (R), which is the three primary colors of light, on three sides of the cubic cross prism 12, and also emits light in green (G). G LED 10 and B LED 11 emitting blue (B) are also provided.
- R red
- G LED 10 and B LED 11 emitting blue (B) are also provided.
- FIG. 4 shows an enlarged view of the light source unit 1 shown in FIG.
- the cross prism 12 of the light source unit 1 has a first inclined surface 12a provided on the other end side of the surface facing the LED 11 of the one end side force B of the surface facing the R LED 9 and the surface facing the R LED 9
- a second inclined surface 12b provided from the other end of the LED to the one end of the surface facing the LED 11 of B is provided inside, and an emitting portion 12c from which a light beam is emitted to the outside on the surface facing the LED 10 of G is provided.
- the first inclined surface 12a is coated with an R-reflecting dielectric multi-layer film which is composed of alternating films of a plurality of dielectrics and reflects light having an R wavelength
- the second inclined surface 12b is coated with a plurality of alternating films of dielectrics. This is coated with a B reflective dielectric multilayer that reflects light of B wavelength.
- the rod integrator 2 has a structure in which a rectangular columnar cylindrical inner surface is formed on a reflection surface, and is provided on one end surface of the light source unit 1 facing the light beam output unit 12c. It has an incident surface 2a on which a light flux is incident, and an exit surface 2b that emits a light beam on the other end surface.
- the first relay lens unit 3 is a convex lens having a convex surface formed by a transparent body such as transparent glass, and is provided in a state in which the optical axis is substantially aligned with the center of the exit surface 2b of the rod integrator 2. It has been. Both surfaces of the first relay lens unit 3 may have the shape of a spherical lens (hereinafter referred to as “spherical lens”) formed on a curved surface formed by cutting out a part of a sphere, or a curved surface other than a spherical surface.
- the shape of the lens hereinafter referred to as “aspherical lens” formed in (1) may be used.
- the second relay lens unit 4 is located on the optical axis of the first relay lens unit 3 so that the lens surface 4b substantially coincides with the focal position of the first relay lens unit 3. It is provided with the direction oriented in the direction of the gap between the first relay lens unit 3 and the field lens unit 5! /.
- the second relay lens unit 4 is formed of a transparent body such as transparent glass and has a lens surface.
- the surface 4a is formed in a convex curved surface shape
- the lens back surface 4b is formed in a concave curved surface shape.
- the lens back surface 4b of the second relay lens unit 4 is formed on a mirror surface on which a metal such as aluminum, chromium, or silver is deposited.
- the lens surface 4a of the second relay lens unit 4 is inclined with respect to the optical axis of the first relay lens unit 3 or the field lens unit 5 and the influence of the convergence tends to be large, the aberration is reduced. It is desirable to have an aspherical lens shape that can be deterred.
- the lens surface b has a function of an aperture stop in the optical illumination system 1B according to the present embodiment.
- the field lens unit 5 is provided in a state in which the normal direction of the lens surface that is the optical axis is oriented in a direction perpendicular to the extension lines of the rod integrator 2 and the first relay lens unit 3.
- the field lens unit 5 is formed of a transparent body such as transparent glass, the lens surface 5a is formed in a convex curved surface shape, and the lens back surface 5b is formed in a flat surface, and the lens surface 5a or the lens back surface The incident light beam is also converged by the 5b force and emitted from the lens back surface 5b or the lens surface 5a.
- the lens front surface 5a and the lens back surface 5b may be either an open shape of a spherical lens or an aspheric lens shape.
- the DMD unit 6 is an image display element that reflects an incident light beam in a predetermined direction.
- FIG. 3 is a partially enlarged view showing an outline of a state in which the DMD portion 6 is viewed from the side.
- the right side is the front side of the DMD portion 6, and the left side is the back side of the DMD portion 6.
- the DMD section 6 is the number of resolutions that require a micromirror with a corner of 13.7 m or 16.2 / zm pivotally supported by a hinge on the surface of the memory semiconductor section 6a formed of CMOS or the like. It is only arranged in two dimensions.
- FIG. 3 shows only two micromirrors 60 and 61 for illustration.
- each of the micromirrors 60 and 61 is between 12 ° (or ⁇ 10 °) from the horizontal position. Swings at an angle.
- the projection lens 7 rotates, for example, a plurality of lens groups, a cam cylinder that cams the lens groups and relatively varies the distance between the lenses, and a cam cylinder.
- the driving motor is built into the lens barrel. By changing the distance between the lenses, the focal position of the emitted light beam and the magnification of the image projected on the screen (not shown) can be adjusted.
- the light absorbing plate 8 is provided around the optical path from the DMD unit 6 to the projection lens 7 and is formed of a material that absorbs the light beam incident on the surface.
- the light source unit 1 forming the projection display device 1A of FIG. 1 reflects the light beam emitted from the R LED 9 on the first inclined surface 12a and moves in the direction of the light beam output unit 12c.
- the light beam emitted from the B LED 10 is reflected by the second inclined surface 12b and travels in the direction of the light beam emitting portion 12c, and the light beam emitted from the G LED 11 flows to the first inclined surface 12a and the second inclined surface 12b. Is transmitted and proceeds in the direction of the light beam emitting part 12c.
- a light beam emitting unit 12c of the light source unit 1 emits a white light beam in which RGB light is mixed.
- the light beam emitted from the light beam emitting unit 12 c of the light source unit 1 is incident on the incident surface 2 a of the rod integrator 2.
- the rod integrator 2 reflects the light beam incident from the incident surface 2a several times on the inner surface.
- the luminous intensity distribution is uniform and the luminous flux with uniform illuminance is emitted toward a certain angle range.
- the light beam emitted from the emission surface 2 b of the lot integrator 2 is incident on the first relay lens unit 3.
- the first relay lens unit 3 refracts the incident off-axis principal ray in the optical axis direction and emits it as a convergent light beam.
- the light beam emitted from the first relay lens unit 3 enters the second relay lens unit 4.
- the second relay lens unit 4 transmits the light beam incident from the lens surface 4a through the inside of the lens and reflects it to the mirror surface of the lens back surface 4b, and transmits the reflected light beam through the inside of the lens again, and from the lens surface 4a to the field lens.
- the light is emitted as divergent light in the direction of part 5.
- the light beam emitted from the second relay lens unit 4 is incident on the lens surface 5 a of the field lens unit 5.
- the field lens unit 5 converges off-axis light incident from the lens surface 5a in the optical axis direction and emits the light from the lens back surface 5b.
- the beam emitted from the lens back surface 5b of the field lens unit 5 must be telecentric so that the angles of the beams incident on the micromirrors 60 and 61 of the DMD unit 6 are substantially uniform and the contrast unevenness on the beam irradiation surface is eliminated. Is desirable.
- the light beam emitted from the lens back surface 5b of the field lens unit 5 enters the DMD unit 6, and the micromirrors 60 and 61 provided on the surface of the DMD unit 6 include the output surface 2b of the rod integrator 2. Is formed, and the luminous flux is reflected.
- the mirror mirrors 60 and 61 provided on the surface of the CMOS memory semiconductor part 6a of the DMD part 6 have a swing angle of +12 degrees (inclined state of the micro mirror 60 in FIG. 3).
- the incident light beam incident from the field lens unit 5 is regulated by the angle of the microphone mirror 60 shown in FIG. 3 and reflected in the normal direction, and the reflected light beam is taken into the projection lens 7 shown in FIG.
- the swing angle is 112 degrees (the tilted state of the micromirror 61 in FIG. 3)
- the incident light beam is reflected by the angle of the micromirror 61 shown in FIG. It is reflected outside and absorbed by the light absorbing plate 8 shown in FIG.
- the amount of light beam incident on the projection lens 7 is controlled by operating the micromirrors 60 and 61 at high speed to change the amount of light beam reflected in the normal direction.
- the light beam reflected in the normal direction is incident on the lens back surface 5 b of the field lens unit 5.
- the field lens unit 5 converges the off-axis light beam that has entered the lens back surface 5b force in the direction of the optical axis and emits it from the lens surface 5a, and enters the projection lens 7 shown in FIG.
- the light beam incident on the projection lens 7 passes through an internal lens group (not shown) and is emitted to the outside.
- the light beam emitted from the projection lens 7 shown in FIG. 1 is projected on a screen (not shown). Since the brightness of the image on the screen (not shown) changes depending on the amount of light reflected by the micromirrors 60 and 61 of the DMD section 6 in the direction of the projection lens 7, gradation expression is possible.
- the radius of curvature of the lens surface 4a and the lens surface 4b of the second relay lens unit 4 constituting the illumination optical system 1B according to the present embodiment will be examined.
- a surface including an optical axis and a principal ray is referred to as a meridional surface
- a surface including the principal ray and perpendicular to the meridional surface is referred to as a sagittal surface.
- the difference in the image position between the meridional surface and the sagittal surface is called astigmatism.
- One image does not converge on one point, but converges on two focal points.
- I is the incident angle to the curved surface, is the exit angle of the curved force
- n is the refractive index of the medium between the object surface and the curved surface
- n is the curved surface and the image surface The refractive index of the medium between and.
- the second relay lens unit 4 receives a light beam incident from an oblique direction with respect to the optical axis, and the incident light beam is directed in a direction of approximately 90 degrees. Because it is a structure that reflects and emits light obliquely, the values of I and ⁇ in Eqs. (1) and (2) do not become zero. Therefore, astigmatism is likely to occur in the image formed based on the light flux emitted from the second relay lens unit 4. When astigmatism occurs, imaging blur occurs, the in-plane illuminance in the image formed becomes non-uniform, and the light utilization efficiency decreases, so in this embodiment as well, the second relay lens unit 4 It is necessary to reduce astigmatism.
- the second relay lens unit 4 needs to have a power (hereinafter referred to as “power”) as a positive light condensing power as a whole lens.
- power a power
- the lens surface 4b has a large positive power
- a large astigmatism occurs in the second relay lens unit 4.
- the curvature radius R of the lens back surface 4b of the second relay lens unit 4 is increased, and the second relay lens portion 4 is increased.
- one lens unit 4 is basically made to greatly depend on the radius of curvature R of the lens surface 4a, which is the incident surface of the light beam, large astigmatism will not occur.
- the radius of curvature R may require some power.
- the astigmatism and the illuminance distribution of the image plane imaged on the surface portion of the DMD portion 6 are shown.
- FIG. 5 (a) Force Until Fig. 5 (c), the shape of the lens surface 4a and the lens back surface 4b when the lens back surface 4b of the second relay lens unit 4 is formed on the mirror surface, and the second relay FIG. 4 is a simulation diagram of the optical path of a light beam entering and exiting a lens unit 4.
- the lens surface 4a of the second relay lens part 4 is formed in a convex shape and the lens back surface 4b is formed in a flat shape
- the curvature radius R of the lens surface 4a hereinafter simply referred to as “R”)> 0 and the radius of curvature R of the lens back 4b
- the first end surface portion 41 is a schematic view of the surface from which the light beam incident on the second relay lens portion 4 is emitted
- the second end surface portion 42 is This is a schematic view of the surface irradiated with the light beam emitted from the second relay lens unit 4. That is, the first end face 41 shown in FIGS. 5 (a) to 5 (c) corresponds to the exit surface 2b of the rod integrator 2 in FIG. 1, and the first end face 41 shown in FIG. 5 (a) is shown in FIG. 5 (c). 2
- the end face part 42 corresponds to the surface part of the DMD part 6 in FIG.
- the emitted light beam 43 is emitted from the three points on the first end surface portion 41 toward the second relay lens portion 4, and is reflected by the second relay lens portion 4 on the four points on the second end surface portion 42.
- the incident light flux 44 enters. Since the thickness direction of the second relay lens portion 4 in FIGS. 5 (a) to 5 (c) (the left-right direction from FIG. 5 (a) to FIG. 5 (c)) has been optimized, The thickness of the relay lens part 4 and the distance between the first end face part 41 and the second end face part 42 are displayed in different states.
- FIG. 5 (a) Force When comparing Fig. 5 (c), in Fig. 5 (a), all of the incident light beam 44 converges to a substantially single point on the second end face portion 42. 5 (b) and FIG. 5 (c), the incident light beam 44 is not converged to substantially one point on the second end face portion 42 (particularly, the incident light beam 44 is notably conspicuous in the third incident light beam 44 from the bottom and bottom). Be looked at.;). Therefore, in the simulation results shown in FIGS. 5 (a) to 5 (c), it can be seen that the state of FIG. 5 (a) hardly causes astigmatism in the second end face portion 42.
- FIG. 6A shows the meridional surface and sagittal when the radius of curvature of the second relay lens unit 4 is R> R> 0, as in FIG. 6A.
- FIG. 6 is a simulation diagram showing an imaging position on a sagittal surface.
- the V and X-axis (horizontal axis) parameters indicate the distance of the second relay lens unit 4 in the optical axis direction.
- the y-axis (vertical) parameter represents the distance perpendicular to the optical axis of the second relay lens unit 4.
- FIG. 7 shows the shape of the lens surface 4 a and the lens back surface 4 b when the lens back surface 4 b of the second relay lens unit 4 is formed on the mirror surface, and the image formed on the surface of the DMD unit 6. It is a simulation figure which shows in-plane illumination distribution.
- the thick solid line indicates the surface of the DMD section 6 when the second relay lens section 4 has R> R> 0 as in the case shown in FIGS. 5 (a) and 6A.
- the internal illuminance distribution is shown, and the dotted line shows the in-plane illuminance distribution of the DMD part 6 when the second relay lens part 4 is as shown in FIG. 5 (b) and FIG.
- the thin solid line is the first
- the horizontal axis indicates a value obtained by normalizing the distance from the reference point (substantially central portion of the DMD portion 6 where the light beam is irradiated) between 1 ⁇ ⁇ 1, and the vertical axis indicates the DMD portion 6.
- the normalized illuminance between 0 ⁇ y ⁇ 1 is shown.
- the line indicating the in-plane illuminance distribution indicates that the nearer the rise and fall of the line is, the closer the in-plane illuminance distribution is and the unevenness in illuminance occurs.
- FIG. 8 shows the optical path length with respect to the imaging magnification of the illumination optical system 1B according to the embodiment of the present invention shown in FIG. 1, and the connection in the conventional illumination optical system 100B shown in FIGS. 10A and 10B.
- the simulation results with the optical path length for the image magnification are shown.
- the horizontal axis indicates the imaging magnification
- the vertical axis indicates the optical path length
- the dotted line graph indicates the simulation result of the conventional illumination optical system 100B
- the solid line graph indicates the illumination optical according to the present invention.
- the simulation results for system 1B are shown.
- the simulation results for system 1B are shown.
- the illumination optical system 1B according to the present invention has an optical path length shorter than that of the conventional illumination optical system 100B when ⁇ ⁇ 1.5 when the imaging magnification is j8. Yes. Therefore, it can be seen that the size of the illumination optical system 1B according to the present invention can be made smaller than the conventional illumination optical system 100B when the imaging magnification is
- the illumination optical system 1B includes the three lenses of the first relay lens unit 3, the second relay lens unit 4, and the field lens unit 5, of which the second in the optical path.
- the second relay lens part 4 as the mirror lens part as a mirror lens part, even if the imaging magnification from the rod integrator 2 to the surface part of the DMD part 6 is low, The focal length can be shortened, and the projection illumination device 1A and the illumination optical system IB device can be made compact.
- the optical path length of the illumination optical system 1B is shorter than that of the conventional illumination optical system 100B by setting the imaging magnification
- the size of the illumination optical system 1B and the projection illumination device 1A in the optical path length direction can be reduced.
- the focal position between the lenses is reduced by providing the stop position in the vicinity of the second relay lens unit 4 which is the second lens on the optical path.
- the illumination optical system 1B and the projection illumination device 1A can be formed in a small size.
- the force formed on the lens surface 4a of the second relay lens unit 4 to have the same radius of curvature is not limited to this.
- the incident position of the luminous flux and the outgoing position of the luminous flux in the second relay lens unit 4 are completely separated, and the surface shape of the lens surface 4a is changed to the luminous flux incident surface 4c on which the luminous flux is incident and the luminous flux is emitted. It is also possible to form a composite curved surface having a different radius of curvature from the light exit surface 4d.
- the second relay lens unit 4 can suppress various aberrations such as astigmatism by making the curvature radius of the lens surface 4a different between the light incident surface 4c and the light exit surface 4d. Can be increased.
- the material forming the second relay lens unit 4 can have a single range of selection. . Note that in the projection display device 1A according to the present embodiment shown in FIG. 1, the force using a light source using an LED as the light source unit 1 is not limited to this, and the conventional one shown in FIGS. 2A and 2B As in the example, an ultra-high pressure mercury lamp that emits white light may be used for the light source section.
- the mirror surface of the second lens unit is made of metal on the lens back surface 4b of the second relay lens unit 4. Although formed by vapor deposition, the mirror surface does not need to be joined to the second relay lens unit 4, and the mirror surface is provided separately from the second relay lens unit 4, and the second relay lens unit 4 The light beam incident from the lens surface 4a may be emitted from the lens back surface 4b and reflected on the mirror surface.
- an RGB color wheel is not provided on the exit surface 2b of the rod integrator 2. Similar to the conventional example shown in FIGS. 2A and 2B, a color wheel may be provided. In particular, when white light is used for the light source unit, it is desirable to provide a power wheel as in the conventional example shown in FIGS. 2A and 2B because the amount of light flux and gradation for each RGB can be easily controlled. .
- the present invention can be used for a projection display device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Lenses (AREA)
Abstract
An illumination optical system and a projection-type display device, which can be formed in a small size and is capable of achieving small imaging magnification. An optical system of an illumination optical system (1B) that constitutes the projection-type illumination device has, along a light path, a first relay lens (3), a second relay lens (4), and a field lens (5) having an aperture function. A lens rear surface (4b) of the second relay lens (4) is formed as a mirror surface. A light flux emitted from a light source section transmits through a rod integrator (2) and the first relay lens (3), enters a lens front surface (4a) of the second relay lens (3), is reflected at the lens rear surface (4b), and then emitted from the lens front surface (4a). The light flux emitted from the second relay lens (4) transmits through the field lens section (5) and enters a surface section of a DMD section (6). Since the lens rear surface (4b) of the second relay lens is the reflection surface, the light path between the second relay lens (4) and the field lens section (5) can be reduced in length, and as a result, even if imaging magnification is reduced, the illumination optical system (1B) and the projection-type illumination device can be reduced in size.
Description
明 細 書 Specification
照明光学系、投射型表示装置 Illumination optical system, projection display
技術分野 Technical field
[0001] 本発明は、照明光学系に関し、特に照明光学系を用いた投射型表示装置に関す る。 [0001] The present invention relates to an illumination optical system, and more particularly to a projection display device using the illumination optical system.
背景技術 Background art
[0002] 現在、反射型表示素子である Digital Micro Mirror Device (以下、 DMDと称 する。)を用いた Digital Light Processing (登録商標)方式 (以下、「DLP方式」と 称する。)プロジェクタが普及している。 DLP方式の中でも最もコンパクトなタイプであ る単板式 DLP方式の投射型表示装置(プロジェクタ)において、フィールドレンズを 用いた照明光学系が用いられている。 [0002] At present, projectors of the Digital Light Processing (registered trademark) method (hereinafter referred to as “DLP method”) using a digital micro mirror device (hereinafter referred to as DMD) which is a reflective display element have become widespread. ing. An illumination optical system using a field lens is used in a single-plate DLP projection display device (projector), which is the most compact type of DLP.
[0003] 図 10Aに、従来の単板式 DLP方式の投射型表示装置、および従来の投射型表示 装置に用いられる、フィールドレンズを用いた従来の照明光学系を示す。従来の投 射型表示装置 100Aは、楕円リフレタター 102の一方の焦点部に白色光を発する超 高圧水銀ランプ等力もなるランプを配置した光源部 101と、照明光学系 100Bと、画 像をスクリーンに拡大投射する投射レンズ 109とを有する。照明光学系 100Bは、光 源部 101から発せられた光束を取り込み射出面での照度ムラを低減させるインテグレ ータ部 103と、インテグレータ部 103の出射面近傍に配置され、光源部からの白色光 を光の 3原色である赤、青、緑に時分割するカラーホイール 104と、インテグレータ部 103の出射面と結像面が共役になるように設計されるリレーレンズ部の第 1レンズ部と しての第 1リレーレンズ部 105a、第 2レンズ部としての第 2リレーレンズ部 105bと、光 束の進行方向を変更するミラー部 106と、リレーレンズ部の 1部であり、第 1リレーレン ズ部 105a、第 2リレーレンズ部 105bから入射した光束を光軸と該平行 (以下「テレセ ントリック」と称する。 )にして出射させ、反射型表示素子部としての DMD部 108から 入射した光束を光軸方向に収束させて出射する第 3レンズ部としてのフィールドレン ズ部 107と、微細なマイクロミラーの角度を高速揺動し投射レンズ 109に出射される 主光束量を制御する DMD部 108とを有する(たとえば、非特許文献 1参照)。図 10
に示す照明光学系 100Bにおいては、インテグレータ部 103の出射面の像に対する DMD部 108の表面に結像する像の倍率を結像倍率とした場合、光の利用効率を高 くするために結像倍率を等倍よりも大きくする (通常 3倍程度)のが一般的であった。 尚、図 10Bはカラーホイール 104側面図である。 FIG. 10A shows a conventional single-plate DLP-type projection display device and a conventional illumination optical system using a field lens used in the conventional projection-type display device. The conventional projection display device 100A includes a light source unit 101 in which a lamp that emits white light, such as an ultra-high pressure mercury lamp, that emits white light is arranged at one focal point of an elliptical reflector 102, an illumination optical system 100B, and an image on a screen. And a projection lens 109 for enlarging projection. The illumination optical system 100B is disposed near the exit surface of the integrator unit 103 and the integrator unit 103 that takes in the luminous flux emitted from the light source unit 101 and reduces unevenness of illuminance on the exit surface, and emits white light from the light source unit. The color wheel 104 that time-divides the light into the three primary colors of light, red, blue, and green, and the first lens part of the relay lens part that is designed so that the exit surface and the imaging surface of the integrator part 103 are conjugated. The first relay lens unit 105a, the second relay lens unit 105b as the second lens unit, the mirror unit 106 for changing the traveling direction of the light flux, and the relay lens unit, the first relay lens unit. 105a, the light beam incident from the second relay lens unit 105b is emitted in parallel with the optical axis (hereinafter referred to as “telecentric”), and the light beam incident from the DMD unit 108 serving as a reflective display element unit is emitted from the optical axis. Exit in the direction converged A field lens unit 107 as a third lens unit, and a DMD unit 108 that controls the amount of main light beam emitted to the projection lens 109 by swinging the angle of a fine micromirror at high speed (for example, Non-Patent Document 1). reference). Fig 10 In the illumination optical system 100B shown in FIG. 2, when the magnification of the image formed on the surface of the DMD unit 108 with respect to the image of the exit surface of the integrator unit 103 is set as the imaging magnification, the image is formed in order to increase the light use efficiency. It was common to make the magnification larger than the same magnification (usually about 3 times). 10B is a side view of the color wheel 104. FIG.
[0004] 一方、近年は画像表示素子の製造技術の向上により DMD部のパネルサイズの小 型化が進み、照明光学系の結像倍率を従来よりも小さく(すなわち等倍に近く)する 必要が生じている。 On the other hand, in recent years, the panel size of the DMD part has been reduced due to the improvement of the manufacturing technology of the image display element, and it is necessary to make the imaging magnification of the illumination optical system smaller (that is, close to the same magnification) as before. Has occurred.
非特許文献 1:ゥシォ電機株式会社"新し 、表示デバイスによるプロジェクタの現状と 動向(図 3-32,図 3-33) " ゥシォ技術情報誌 ライフエッジ 2000年 7月 [online] [平成 1 6年 10月 22日検索]、インターネット、く URL: http://wwwl.ushio.co.jp/tech/le/lel9 /19— 03— 05.html> Non-Patent Document 1: Usio Electric Co., Ltd. “New and Present Status and Trends of Projectors with Display Devices (Figure 3-32, Figure 3-33)” Usio Technical Information Magazine Life Edge July 2000 [online] [Heisei 16] Search on October 22, 2011], Internet, URL: http://wwwl.ushio.co.jp/tech/le/lel9 / 19— 03— 05.html>
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] し力しながら、図 11の光学系のレンズにおける焦点距離と結像倍率との関係の原 理図に示すように、 3枚のレンズ (光束の入射側力 第 1レンズ 111、第 2レンズ 112、 第 3レンズ 113とする)で光路を形成する照明光学系においては、インテグレータ部( 図 11に図示せず)側も DMD部(図 11に図示せず)側もテレセントリックである光学系 (以下「両側テレセントリック」と称する。)とした場合、第 1レンズ 111と第 2レンズ 112 との距離 Lが第 1レンズの焦点距離 f にほぼ等しくなるように配置され、第 2レンズ 11 2と第 3レンズ 113との距離 Lが第 3レンズ 113の焦点距離 f にほぼ等しくなるように [0005] As shown in the principle diagram of the relationship between the focal length and the imaging magnification in the lens of the optical system in FIG. 11, the three lenses (the incident side force of the light beam, the first lens 111, the first In an illumination optical system in which the optical path is formed by two lenses 112 and a third lens 113), the integrator part (not shown in FIG. 11) side and the DMD part (not shown in FIG. 11) side are telecentric. System (hereinafter referred to as “bilateral telecentric”), the second lens 11 2 is arranged such that the distance L between the first lens 111 and the second lens 112 is substantially equal to the focal length f of the first lens. So that the distance L between the third lens 113 and the third lens 113 is substantially equal to the focal length f of the third lens 113.
2 3 twenty three
配置される。第 1レンズ 111に光束を入射するインテグレータ部(図 11に図示せず) の光束出射面における像と第 3レンズ 113から出射する光束を受光する DMD部(図 11に図示せず)の表面に結像する像との倍率を結像倍率とすると、結像倍率は f /ί Be placed. On the surface of the DMD section (not shown in FIG. 11) that receives the image on the light exit surface of the integrator section (not shown in FIG. 11) that enters the first lens 111 and the light flux emitted from the third lens 113. If the magnification with the image to be formed is defined as the image magnification, the image magnification is f / ί.
3 であり、結像倍率は第 1レンズ 111と第 2レンズ 112との距離 L、および第 2レンズ 11 2と第 3レンズ 113との距離 Lの比 L /Lに近くなるため、結像倍率が等倍に近づく The imaging magnification is close to the ratio L / L of the distance L between the first lens 111 and the second lens 112 and the distance L between the second lens 112 and the third lens 113. Approaches the same size
2 2 1 2 2 1
と光学系の中心付近にレンズが配置されることとなる。尚、図 11において、 L1は第 1 レンズと第 2レンズとの距離であり、 L2は、第 2レンズと第 3レンズとの距離であり、 fl は第 1レンズの焦点距離であり、 f3は第 3レンズの焦点距離である。
[0006] そして、図 10A、図 10Bに示す照明光学系 100Bにおいては第 2リレーレンズ部 10 5b (図 11の第 2レンズ 112に対応)とフィールドレンズ部 107 (図 11の第 3レンズ 113 に対応)との間にミラー部 106を設けるため、距離 Lが長くなり、結像倍率を小さくし A lens is arranged near the center of the optical system. In FIG. 11, L1 is the distance between the first lens and the second lens, L2 is the distance between the second lens and the third lens, fl is the focal length of the first lens, and f3 is This is the focal length of the third lens. [0006] In the illumination optical system 100B shown in FIGS. 10A and 10B, the second relay lens unit 105b (corresponding to the second lens 112 in FIG. 11) and the field lens unit 107 (into the third lens 113 in FIG. ), The distance L becomes longer and the imaging magnification is reduced.
2 2
て等倍に近づけると距離 Lも長くなり、照明光学系 1Aの光軸方向の大きさが長大化 して装置が大型化してしまう。 The distance L also becomes longer as it approaches the same magnification, and the size of the illumination optical system 1A in the direction of the optical axis becomes longer, resulting in a larger apparatus.
[0007] また、近年は光源部に RED (以下 Rと記載)、 GREEN (以下 Gと記載)、 BLUE (以下 Bと 記載)の単色の発光ダイオード (以下 LEDと記載)を用いた投射型表示装置や、 LED の光源部力も供給された光束を用いる照明光学系が提案されている。し力 一般に L EDの輝度は超高圧水銀ランプ等よりも劣るので、スクリーンを十分な明るさで照らす ためには各 LEDの発光面の面積を大きくしなければならず、光源部は必然的にある 程度の大きさが必要になる。したがって、図 10A、図 10Bに示す投射型照明装置 1A および照明光学系 1Bにおいて光源部に LEDを用いても、結像倍率を小さくすれば 装置が大型化する問題を解消することはできない。 [0007] Further, in recent years, a projection display using a single color light emitting diode (hereinafter referred to as LED) of RED (hereinafter referred to as R), GREEN (hereinafter referred to as G), BLUE (hereinafter referred to as B) in the light source section. Proposals have been made for illumination optical systems that use light beams that have been supplied with devices and LED light source components. In general, the brightness of LEDs is inferior to that of ultra-high pressure mercury lamps, etc., so to illuminate the screen with sufficient brightness, the area of the light emitting surface of each LED must be increased, and the light source section is inevitably required. Some size is required. Therefore, even if an LED is used as the light source unit in the projection illumination device 1A and the illumination optical system 1B shown in FIGS. 10A and 10B, the problem that the device becomes large cannot be solved if the imaging magnification is reduced.
[0008] 本発明は上記課題に鑑みてなされたものであり、本発明の上記目的は、小型に形 成でき、かつ小さい結像倍率を得ることができる照明光学系および投射型表示装置 を提供するものである。 The present invention has been made in view of the above problems, and the object of the present invention is to provide an illumination optical system and a projection display device that can be formed in a small size and can obtain a small imaging magnification. To do.
課題を解決するための手段 Means for solving the problem
[0009] 本発明の上記課題は、光源部から発せられた光束を受け入射した前記光束の光 量分布を均一化させて出射するインテグレータ部と、前記インテグレータ部から出射 された前記光束を導光する光学系と、前記光学系により導光された前記出射光束の 照射を受ける照射面を備えた反射型表示素子部とを有する照明光学系において、 前記光学系は複数のレンズ部を備え、前記複数のレンズ部のうち少なくとも 1つのレ ンズ部は、表面側から入射した前記光束を反射する反射手段を裏面側に備え、前記 反射手段により反射された前記光束を表面側力 出射するミラーレンズ部である照明 光学系によって達成される。 [0009] The above-described problem of the present invention is that an integrator unit that receives a light beam emitted from a light source unit and emits it with a uniform light amount distribution of the incident light beam, and guides the light beam emitted from the integrator unit. An illumination optical system having a reflective display element unit having an irradiation surface that receives irradiation of the emitted light beam guided by the optical system, and the optical system includes a plurality of lens units, At least one lens portion of the plurality of lens portions includes a reflecting means for reflecting the light beam incident from the front surface side on the back surface side, and a mirror lens portion for emitting the light beam reflected by the reflecting means to the surface side force Is achieved by the illumination optics.
[0010] そして、照明光学系を形成する複数のレンズ部のうち 1つのレンズ部をミラーレンズ によって形成することにより、レンズ部と別個にミラー部を設ける必要がなくなって、結 像倍率を小さくした場合であっても光学系における光路を短くすることができる。
[0011] また、本発明の上記課題は、光源部と、前記光源部から発せられた光束を導光す る光路の一部にレンズ表面力 入射した光束をレンズ裏面で反射し前記レンズ表面 力 出射させるミラーレンズ部を設けた光学系と、前記光学系により導光された前記 光束の照射を受ける照射面を備えた反射型表示素子部とを有する投射型表示装置 によって達成される。 [0010] Then, by forming one lens part of the plurality of lens parts forming the illumination optical system with a mirror lens, it is not necessary to provide a mirror part separately from the lens part, and the image magnification is reduced. Even in this case, the optical path in the optical system can be shortened. [0011] Further, the above-described problem of the present invention is that the lens surface force is reflected on the lens back surface by reflecting the light beam incident on a part of an optical path for guiding the light beam emitted from the light source unit and the light source unit. This is achieved by a projection type display device having an optical system provided with a mirror lens part to be emitted, and a reflective display element part having an irradiation surface for receiving the light beam guided by the optical system.
[0012] そして、投射型表示装置にミラーレンズを用いた照明光学系を用いることにより、投 射型表示装置を構成する光学系を、結像倍率を小さくしつつ光路を短くすることがで きる。 [0012] Then, by using an illumination optical system using a mirror lens for the projection display device, the optical system constituting the projection display device can shorten the optical path while reducing the imaging magnification. .
発明の効果 The invention's effect
[0013] 本発明によれば、照明光学系自体の大きさを小さく形成し、かつ小さい結像倍率を 得ることができる。 [0013] According to the present invention, the size of the illumination optical system itself can be reduced, and a small imaging magnification can be obtained.
図面の簡単な説明 Brief Description of Drawings
[0014] [図 1]本発明の一実施の形態に係る投射型表示装置の構成概略図である。 FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
[図 2A]本発明の一実施の形態に係る照明光学系の上面の概略構成図である。 FIG. 2A is a schematic configuration diagram of an upper surface of an illumination optical system according to an embodiment of the present invention.
[図 2B]本発明の一実施の形態に係る照明光学系の右側面の概略構成図である。 FIG. 2B is a schematic configuration diagram of the right side surface of the illumination optical system according to one embodiment of the present invention.
[図 3]同上照明光学系の DMD部の概略を示す部分拡大図である。 FIG. 3 is a partially enlarged view showing an outline of a DMD portion of the illumination optical system.
[図 4]本発明の一実施の形態に係る投射型表示装置の光源部の拡大図である。 FIG. 4 is an enlarged view of a light source unit of a projection display device according to an embodiment of the present invention.
[図 5]本発明の一実施の形態に係る照明光学系において、第 2リレーレンズ部のレン ズ表面およびレンズ表面の形状と、第 2リレーレンズ部に入射および出射する光束の 光路のシミュレーション図であり、図 5 (a)は、 R2>R1 >0の場合の図であり、図 5 (b) は- R2>R1 >0の場合の図であり、図 5 (c)は- R2く 0、R1 =∞の場合の図である。 FIG. 5 is a simulation diagram of the lens surface of the second relay lens unit and the shape of the lens surface and the optical path of the light beam incident on and emitted from the second relay lens unit in the illumination optical system according to the embodiment of the present invention. Fig. 5 (a) is a diagram when R2> R1> 0, Fig. 5 (b) is a diagram when-R2> R1> 0, and Fig. 5 (c) is-R2. It is a figure in the case of 0 and R1 = ∞.
[図 6A]同上照明光学系において、第 2リレーレンズ部のレンズ形状に対する、メリジ ォナル面およびサジタル面の結像位置とを示すシミュレーション図であり、 R2>R1 >0の場合の図である。 FIG. 6A is a simulation diagram showing the image formation positions of the meridional surface and the sagittal surface with respect to the lens shape of the second relay lens unit in the illumination optical system, and is a diagram in the case of R2> R1> 0.
[図 6B]同上照明光学系において、第 2リレーレンズ部のレンズ形状に対する、メリジ ォナル面およびサジタル面の結像位置とを示すシミュレーション図であり、 -R2>R1 >0の場合の図である。 FIG. 6B is a simulation diagram showing the image formation positions of the meridional surface and the sagittal surface with respect to the lens shape of the second relay lens unit in the illumination optical system same as above, and is a diagram in the case of -R2> R1> 0. .
[図 6C]同上照明光学系において、第 2リレーレンズ部のレンズ形状に対する、メリジ
ォナル面およびサジタル面の結像位置とを示すシミュレーション図であり、 -R2< 0、 Rl =∞の場合の図である。 [Fig. 6C] In the illumination optical system, the merit of the lens shape of the second relay lens FIG. 6 is a simulation diagram showing the imaging positions of the initial surface and sagittal surface, and is a diagram in the case of −R2 <0 and Rl = ∞.
[図 7]同上照明光学系において、レンズ形状に対する、 DMD部の表面部に結像する 像の面内照度分布を示すシミュレーション図である。 FIG. 7 is a simulation diagram showing an in-plane illuminance distribution of an image formed on the surface portion of the DMD portion with respect to the lens shape in the illumination optical system.
[図 8]本発明に係る照明光学系の結像倍率に対する光路長と、従来の照明光学系に おける結像倍率に対する光路長とのシミュレーション結果を示す図である。 FIG. 8 is a diagram showing simulation results of the optical path length with respect to the imaging magnification of the illumination optical system according to the present invention and the optical path length with respect to the imaging magnification in the conventional illumination optical system.
[図 9]本発明に係る照明光学系の第 2リレーレンズを複合曲面に形成した場合の構成 概略図である。 FIG. 9 is a schematic diagram of the configuration when the second relay lens of the illumination optical system according to the present invention is formed on a complex curved surface.
[図 10A]従来の投射型照明装置および従来の照明光学系の構成概略図である。 FIG. 10A is a schematic configuration diagram of a conventional projection illumination apparatus and a conventional illumination optical system.
[図 10B]従来の投射型照明装置および従来の照明光学系の構成概略図であり、図 1 OAのカラーホイールの側面図である。 FIG. 10B is a schematic configuration diagram of a conventional projection illumination device and a conventional illumination optical system, and is a side view of the color wheel of FIG. 1 OA.
[図 11]光学系のレンズにおける焦点距離と結像倍率との関係の原理図である。 FIG. 11 is a principle diagram of the relationship between the focal length and the imaging magnification in the lens of the optical system.
符号の説明 Explanation of symbols
[0015] 1Α···投射型表示装置、 100Β···照明光学系、 1···光源部、 [0015] 1Α ··· Projection type display device, 100Β ··· Illumination optical system, 1 ··· Light source unit,
2…ロッドインテグレータ (インテグレータ部)、 2b…出射面、 3···第 1リレーレンズ( 第 1レンズ部)、 4· · '第 2リレーレンズ (第 2レンズ部)、 4a · · ·レンズ表面、 4b' · ·レン ズ裏面、 4c' · ·光束入射面、 4d- · ·光束出射面、 5·· 'フィールドレンズ部(第 3レンズ 部)、 6 '''DMD部 (反射型表示素子部)、 7···投射レンズ、 100Α···投射型表示 装置、 1Β···照明光学系、 101···光源部、 103···インテグレータ部、 105"'第1リ レーレンズ部(第 1レンズ部)、 106···第 2リレーレンズ部(第 2レンズ部)、 107···フ ィールドレンズ部(第 3レンズ部) , 108·· 'DMD部 (反射型表示素子部)。 2 ... Rod integrator (integrator part), 2b ... Outgoing surface, 3rd relay lens (first lens part), 4 ... 'Second relay lens (second lens part), 4a ... Lens surface 4b '· Lens rear surface, 4c' · Light flux entrance surface, 4d- · Light flux exit surface, 5 '' Field lens part (third lens part), 6 '' 'DMD part (reflection display element ), 7 ··· projection lens, 100 Α ··· projection display device, 1 Β ··· illumination optics, 101 ··· light source portion, 103 ··· integrator portion, 105 "'1st relay lens portion ( 1st lens part), 106 ··· 2nd relay lens part (2nd lens part), 107 ··· Field lens part (3rd lens part), 108 ... 'DMD part (reflection display element part) .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の一実施の形態を、図面を参照して説明する。図 1に、本発明の一実 施の形態に係る投射型表示装置の構成概略図を示す。投射型表示装置 1Aは、光 源部 1と、本発明に係る照明光学系 1Bと、投射レンズ 7とを有している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention. The projection display device 1A includes a light source unit 1, an illumination optical system 1B according to the present invention, and a projection lens 7.
[0017] 図 2A、図 2Bに、本発明の一実施の形態に係る照明光学系 1Bの上面図および右 側面図の構成概略図を示す。照明光学系 1Bは、インテグレータ部としてのロッドイン テグレータ 2と、第 1レンズ部としての第 1リレーレンズ部 3と、第 2レンズ部としての第 2
リレーレンズ部 4と、第 3レンズ部としてのフィールドレンズ部 5と、反射型表示素子部 としての DMD部 6とを有している。第 1リレーレンズ部 3および第 2リレーレンズ部 4お よびフィールドレンズ部 5は、図 2A,図 2Bに示す照明光学系 1Bにおいて光学系を 形成している。 FIGS. 2A and 2B are schematic configuration diagrams of a top view and a right side view of the illumination optical system 1B according to the embodiment of the present invention. The illumination optical system 1B includes a rod integrator 2 as an integrator unit, a first relay lens unit 3 as a first lens unit, and a second lens unit as a second lens unit. It has a relay lens unit 4, a field lens unit 5 as a third lens unit, and a DMD unit 6 as a reflective display element unit. The first relay lens unit 3, the second relay lens unit 4, and the field lens unit 5 form an optical system in the illumination optical system 1B shown in FIGS. 2A and 2B.
[0018] 図 1に示す光源部 1は LED光源であって、立方体形状のクロスプリズム 12の三方 に光の 3原色である赤(R)に発光する Rの LED9、同じく緑(G)に発光する Gの LED1 0、同じく青(B)に発光する Bの LED 11が設けられている。 [0018] The light source section 1 shown in FIG. 1 is an LED light source, which emits light in red (R), which is the three primary colors of light, on three sides of the cubic cross prism 12, and also emits light in green (G). G LED 10 and B LED 11 emitting blue (B) are also provided.
[0019] 図 4に、図 1に示す光源部 1の拡大図を示す。光源部 1のクロスプリズム 12は、 Rの L ED9との対向面の一端側力 Bの LED11との対向面の他端側にかけて設けられた第 1傾斜面 12aと、 Rの LED9との対向面の他端側から Bの LED11との対向面の一端側 にかけて設けられた第 2傾斜面 12bとを内部に設け、 Gの LED10の対向面に光束が 外部に向けて出射される出射部 12cを設けて 、る。第 1傾斜面 12aには複数の誘電 体の交互膜で構成され Rの波長の光を反射する R反射の誘電体多層膜がコートされ 、第 2傾斜面 12bには複数の誘電体の交互膜で構成され Bの波長の光を反射する B 反射の誘電体多層膜がコートされている。 FIG. 4 shows an enlarged view of the light source unit 1 shown in FIG. The cross prism 12 of the light source unit 1 has a first inclined surface 12a provided on the other end side of the surface facing the LED 11 of the one end side force B of the surface facing the R LED 9 and the surface facing the R LED 9 A second inclined surface 12b provided from the other end of the LED to the one end of the surface facing the LED 11 of B is provided inside, and an emitting portion 12c from which a light beam is emitted to the outside on the surface facing the LED 10 of G is provided. Establish. The first inclined surface 12a is coated with an R-reflecting dielectric multi-layer film which is composed of alternating films of a plurality of dielectrics and reflects light having an R wavelength, and the second inclined surface 12b is coated with a plurality of alternating films of dielectrics. This is coated with a B reflective dielectric multilayer that reflects light of B wavelength.
[0020] 図 1および図 2A,図 2Bに示すとおり、ロッドインテグレータ 2は、四角柱状の筒内面 を反射面に形成した構造を有し、光源部 1の光束出射部 12cに対向する一端面に光 束を入射する入射面 2aを有し、他端面に光束を出射する出射面 2bを有する。 [0020] As shown in Fig. 1 and Figs. 2A and 2B, the rod integrator 2 has a structure in which a rectangular columnar cylindrical inner surface is formed on a reflection surface, and is provided on one end surface of the light source unit 1 facing the light beam output unit 12c. It has an incident surface 2a on which a light flux is incident, and an exit surface 2b that emits a light beam on the other end surface.
[0021] 第 1リレーレンズ部 3は透明ガラスなどの透明体によって形成された両面が凸状の 凸レンズであり、光軸をロッドインテグレータ 2の出射面 2bの中心部にほぼ一致させ た状態に設けられている。第 1リレーレンズ部 3の両面は表面を球の一部を切り取つ て形成した曲面に形成した球面レンズ (以下「球面レンズ」と称する。)の形状であつ てもよいし、球面以外の曲面に形成したレンズ (以下「非球面レンズ」と称する。)の形 状であってもよい。 [0021] The first relay lens unit 3 is a convex lens having a convex surface formed by a transparent body such as transparent glass, and is provided in a state in which the optical axis is substantially aligned with the center of the exit surface 2b of the rod integrator 2. It has been. Both surfaces of the first relay lens unit 3 may have the shape of a spherical lens (hereinafter referred to as “spherical lens”) formed on a curved surface formed by cutting out a part of a sphere, or a curved surface other than a spherical surface. The shape of the lens (hereinafter referred to as “aspherical lens”) formed in (1) may be used.
[0022] 第 2リレーレンズ部 4は、第 1リレーレンズ部 3の光軸上であってレンズ表面 4bが第 1 リレーレンズ部 3の焦点位置とほぼ一致する位置に、レンズ表面 4aの光軸方向を第 1 リレーレンズ部 3とフィールドレンズ部 5との間隙方向に向けた状態で設けられて!/、る 。第 2リレーレンズ部 4は透明ガラスなどの透明体によって形成されており、レンズ表
面 4aが凸状の曲面形状に形成され、レンズ裏面 4bが凹状の曲面形状に形成されて いる。第 2リレーレンズ部 4のレンズ裏面 4bは、アルミニウムやクロムや銀などの金属 を蒸着したミラー面に形成されている。なお、第 2リレーレンズ部 4はレンズ表面 4aが 第 1リレーレンズ部 3やフィールドレンズ部 5の光軸に対して斜め方向に向いており収 差の影響が大きくあらわれる傾向があるので、収差を抑止できる形状である非球面レ ンズの形状とすることが望まし 、。また上記レンズ表面 bは本実施の形態に係る光学 照明系 1Bにおいて開口絞りの機能を有する。 [0022] The second relay lens unit 4 is located on the optical axis of the first relay lens unit 3 so that the lens surface 4b substantially coincides with the focal position of the first relay lens unit 3. It is provided with the direction oriented in the direction of the gap between the first relay lens unit 3 and the field lens unit 5! /. The second relay lens unit 4 is formed of a transparent body such as transparent glass and has a lens surface. The surface 4a is formed in a convex curved surface shape, and the lens back surface 4b is formed in a concave curved surface shape. The lens back surface 4b of the second relay lens unit 4 is formed on a mirror surface on which a metal such as aluminum, chromium, or silver is deposited. Since the lens surface 4a of the second relay lens unit 4 is inclined with respect to the optical axis of the first relay lens unit 3 or the field lens unit 5 and the influence of the convergence tends to be large, the aberration is reduced. It is desirable to have an aspherical lens shape that can be deterred. The lens surface b has a function of an aperture stop in the optical illumination system 1B according to the present embodiment.
[0023] フィールドレンズ部 5は、光軸であるレンズ面の法線方向がロッドインテグレータ 2お よび第 1リレーレンズ部 3の延長線と該直角方向に向いた状態で設けられている。 The field lens unit 5 is provided in a state in which the normal direction of the lens surface that is the optical axis is oriented in a direction perpendicular to the extension lines of the rod integrator 2 and the first relay lens unit 3.
[0024] フィールドレンズ部 5は、透明ガラス等の透明体によって形成され、レンズ表面 5aが 凸状の曲面形状に形成されるとともにレンズ裏面 5bが平面に形成されており、レンズ 表面 5aまたはレンズ裏面 5b力も入射した光束を収束させてレンズ裏面 5bまたはレン ズ表面 5aから出射する。レンズ表面 5a、レンズ裏面 5bは、球面レンズの开状であつ ても非球面レンズの形状であってもよ 、。 [0024] The field lens unit 5 is formed of a transparent body such as transparent glass, the lens surface 5a is formed in a convex curved surface shape, and the lens back surface 5b is formed in a flat surface, and the lens surface 5a or the lens back surface The incident light beam is also converged by the 5b force and emitted from the lens back surface 5b or the lens surface 5a. The lens front surface 5a and the lens back surface 5b may be either an open shape of a spherical lens or an aspheric lens shape.
[0025] DMD部 6は、入射した光束を所定の方向に反射する画像表示素子である。 The DMD unit 6 is an image display element that reflects an incident light beam in a predetermined direction.
[0026] 図 3に DMD部 6を側面から見た状態の概略を示す部分拡大図を示す。図 3におい ては、右側が DMD部 6の表面側であり、左側が DMD部 6の裏面側である。 DMD部 6は、 CMOS等で形成されたメモリ半導体部 6aの表面部に、ヒンジで回転可能に軸 支された角 13. 7 mあるいは角 16. 2 /z mのマイクロミラーが必要な解像度の数だ け 2次元方向に並べられている。図 3には例示のため 2枚のマイクロミラー 60、 61の みを示してある。 CMOSメモリ半導体部 6aに導電するとマイクロミラー 60、 61と基板 部 6aとの間には静電引力が働きマイクロミラー 60、 61はそれぞれ水平位置から士 1 2° (または ± 10° )の間の角度に揺動する。 FIG. 3 is a partially enlarged view showing an outline of a state in which the DMD portion 6 is viewed from the side. In FIG. 3, the right side is the front side of the DMD portion 6, and the left side is the back side of the DMD portion 6. The DMD section 6 is the number of resolutions that require a micromirror with a corner of 13.7 m or 16.2 / zm pivotally supported by a hinge on the surface of the memory semiconductor section 6a formed of CMOS or the like. It is only arranged in two dimensions. FIG. 3 shows only two micromirrors 60 and 61 for illustration. When conducting electricity to the CMOS memory semiconductor part 6a, electrostatic attraction works between the micromirrors 60 and 61 and the substrate part 6a, and each of the micromirrors 60 and 61 is between 12 ° (or ± 10 °) from the horizontal position. Swings at an angle.
[0027] 図 1に戻り、投射レンズ 7は、例えば、複数のレンズ群や、レンズ群にカム作用を及 ぼしてレンズ相互間の距離を相対的に変動させるカム筒や、カム筒を回転駆動する モータなどをレンズ鏡胴に内蔵した構成である。レンズ相互間の距離が変動すること により、出射される光束の焦点位置やスクリーン(図示せず)に投影される画像の倍 率などを調整できる。
[0028] 光吸収板 8は DMD部 6から投射レンズ 7にいたる光路の周辺に設けられており、表 面に入射した光束を吸収する素材により形成されている。 [0027] Returning to FIG. 1, the projection lens 7 rotates, for example, a plurality of lens groups, a cam cylinder that cams the lens groups and relatively varies the distance between the lenses, and a cam cylinder. The driving motor is built into the lens barrel. By changing the distance between the lenses, the focal position of the emitted light beam and the magnification of the image projected on the screen (not shown) can be adjusted. The light absorbing plate 8 is provided around the optical path from the DMD unit 6 to the projection lens 7 and is formed of a material that absorbs the light beam incident on the surface.
[0029] 図 1に示す本実施の形態における投射型表示装置 1A、および図 2A,図 2Bに示 す本実施の形態に係る照明光学系 1Bの光学的な作用を説明する。説明には図 3お よび図 4も使用する。 The optical action of the projection display device 1A in the present embodiment shown in FIG. 1 and the illumination optical system 1B according to the present embodiment shown in FIGS. 2A and 2B will be described. Figure 3 and Figure 4 are also used for explanation.
[0030] 図 1の投射型表示装置 1Aを形成する光源部 1は、図 4に示すとおり、 Rの LED9か ら発せられた光束が第 1傾斜面 12aで反射して光束出射部 12c方向に進み、 Bの LE D 10から発せられた光束が第 2傾斜面 12bで反射して光束出射部 12c方向に進み、 Gの LED11から発せられた光束が第 1傾斜面 12aおよび第 2傾斜面 12bを透過して 光束出射部 12c方向に進む。光源部 1の光束出射部 12cからは RGBの光が混色さ れた白色光の光束が出射される。 As shown in FIG. 4, the light source unit 1 forming the projection display device 1A of FIG. 1 reflects the light beam emitted from the R LED 9 on the first inclined surface 12a and moves in the direction of the light beam output unit 12c. The light beam emitted from the B LED 10 is reflected by the second inclined surface 12b and travels in the direction of the light beam emitting portion 12c, and the light beam emitted from the G LED 11 flows to the first inclined surface 12a and the second inclined surface 12b. Is transmitted and proceeds in the direction of the light beam emitting part 12c. A light beam emitting unit 12c of the light source unit 1 emits a white light beam in which RGB light is mixed.
[0031] 図 1に示すとおり、光源部 1の光束出射部 12cから出射した光束は、ロッドインテグ レータ 2の入射面 2aに入射する。ロッドインテグレータ 2は、入射面 2aから入射した光 束を内面で複数回反射させる。ロットインテグレータ 2の出射面 2bでは、照度分布が 均一となり照度が均一となった光束が一定角度範囲に向けて出射される。 As shown in FIG. 1, the light beam emitted from the light beam emitting unit 12 c of the light source unit 1 is incident on the incident surface 2 a of the rod integrator 2. The rod integrator 2 reflects the light beam incident from the incident surface 2a several times on the inner surface. On the exit surface 2b of the lot integrator 2, the luminous intensity distribution is uniform and the luminous flux with uniform illuminance is emitted toward a certain angle range.
[0032] 図 2A,図 2Bに示すとおり、ロットインテグレータ 2の出射面 2bから出射された光束 は第 1リレーレンズ部 3に入射する。第 1リレーレンズ部 3は入射した軸外主光線を光 軸方向に屈折させて、収束する光束として出射する。 As shown in FIGS. 2A and 2B, the light beam emitted from the emission surface 2 b of the lot integrator 2 is incident on the first relay lens unit 3. The first relay lens unit 3 refracts the incident off-axis principal ray in the optical axis direction and emits it as a convergent light beam.
[0033] 第 1リレーレンズ部 3から出射された光束は第 2リレーレンズ部 4に入射する。第 2リ レーレンズ部 4は、レンズ表面 4aから入射した光束をレンズ内部を透過させてレンズ 裏面 4bのミラー面に反射させ、反射した光束を再びレンズ内部を透過させ、レンズ表 面 4aからフィールドレンズ部 5方向に発散光として出射させる。 The light beam emitted from the first relay lens unit 3 enters the second relay lens unit 4. The second relay lens unit 4 transmits the light beam incident from the lens surface 4a through the inside of the lens and reflects it to the mirror surface of the lens back surface 4b, and transmits the reflected light beam through the inside of the lens again, and from the lens surface 4a to the field lens. The light is emitted as divergent light in the direction of part 5.
[0034] 第 2リレーレンズ部 4から出射した光束はフィールドレンズ部 5のレンズ表面 5aに入 射する。フィールドレンズ部 5は、レンズ表面 5aから入射した軸外光線を光軸方向に 収束させてレンズ裏面 5bから出射する。なお、 DMD部 6のマイクロミラー 60、 61に あたる光束の角度をほぼ均一とし、光束照射面におけるコントラストムラを排除するた め、フィールドレンズ部 5のレンズ裏面 5bから出射する光束はテレセントリックであるこ とが望ましい。
[0035] フィールドレンズ部 5のレンズ裏面 5bから出射された光束は DMD部 6に入射し、 D MD部 6の表面部に設けられたマイクロミラー 60、 61には、ロッドインテグレータ 2の 出射面 2bの像が結像し、光束が反射される。 The light beam emitted from the second relay lens unit 4 is incident on the lens surface 5 a of the field lens unit 5. The field lens unit 5 converges off-axis light incident from the lens surface 5a in the optical axis direction and emits the light from the lens back surface 5b. Note that the beam emitted from the lens back surface 5b of the field lens unit 5 must be telecentric so that the angles of the beams incident on the micromirrors 60 and 61 of the DMD unit 6 are substantially uniform and the contrast unevenness on the beam irradiation surface is eliminated. Is desirable. [0035] The light beam emitted from the lens back surface 5b of the field lens unit 5 enters the DMD unit 6, and the micromirrors 60 and 61 provided on the surface of the DMD unit 6 include the output surface 2b of the rod integrator 2. Is formed, and the luminous flux is reflected.
[0036] 図 3に示すとおり、 DMD部 6の CMOSメモリ半導体部 6aの表面に設けられたマイ クロミラー 60、 61の揺動角度が + 12度の場合(図 3におけるマイクロミラー 60の傾斜 状態)においては、フィールドレンズ部 5から入射した入射光束は、図 3に示すマイク 口ミラー 60の角度に規制されて法線方向に反射し、反射した光束は図 1に示す投射 レンズ 7に取り込まれる。揺動角度が一 12度の場合(図 3におけるマイクロミラー 61の 傾斜状態)においては、入射光束は図 3に示すマイクロミラー 61の角度に規制されて 反射し、反射した光束は投射レンズ 7の外に反射され図 3に示す光吸収板 8に吸収さ れる。 [0036] As shown in FIG. 3, when the mirror mirrors 60 and 61 provided on the surface of the CMOS memory semiconductor part 6a of the DMD part 6 have a swing angle of +12 degrees (inclined state of the micro mirror 60 in FIG. 3). In FIG. 3, the incident light beam incident from the field lens unit 5 is regulated by the angle of the microphone mirror 60 shown in FIG. 3 and reflected in the normal direction, and the reflected light beam is taken into the projection lens 7 shown in FIG. When the swing angle is 112 degrees (the tilted state of the micromirror 61 in FIG. 3), the incident light beam is reflected by the angle of the micromirror 61 shown in FIG. It is reflected outside and absorbed by the light absorbing plate 8 shown in FIG.
[0037] したがって、マイクロミラー 60、 61を高速動作させて法線方向に反射する光束の量 を変えることにより、投射レンズ 7に入射する光束の量が制御される。 [0037] Therefore, the amount of light beam incident on the projection lens 7 is controlled by operating the micromirrors 60 and 61 at high speed to change the amount of light beam reflected in the normal direction.
[0038] 図 3に示すとおり、 DMD部 6のマイクロミラー 60、 61が反射した光束のうち、法線方 向に反射された光束はフィールドレンズ部 5のレンズ裏面 5bに入射する。フィールド レンズ部 5は、レンズ裏面 5b力も入射した軸外光線を光軸方向に収束させてレンズ 表面 5aから出射し、図 1に示す投射レンズ 7に入射させる。投射レンズ 7に入射した 光束は、内部のレンズ郡(図示せず)を透過して外部に射出される。 As shown in FIG. 3, among the light beams reflected by the micromirrors 60 and 61 of the DMD unit 6, the light beam reflected in the normal direction is incident on the lens back surface 5 b of the field lens unit 5. The field lens unit 5 converges the off-axis light beam that has entered the lens back surface 5b force in the direction of the optical axis and emits it from the lens surface 5a, and enters the projection lens 7 shown in FIG. The light beam incident on the projection lens 7 passes through an internal lens group (not shown) and is emitted to the outside.
[0039] 図 1に示す投射レンズ 7から外部に出射された光束は、スクリーン(図示せず)にて 投射される。スクリーン(図示せず)上の画像の明るさは、 DMD部 6のマイクロミラー 6 0、 61が投射レンズ 7方向に反射した光束の量に依存して変化するため階調表現が 可能となる。 The light beam emitted from the projection lens 7 shown in FIG. 1 is projected on a screen (not shown). Since the brightness of the image on the screen (not shown) changes depending on the amount of light reflected by the micromirrors 60 and 61 of the DMD section 6 in the direction of the projection lens 7, gradation expression is possible.
[0040] ここで、本実施の形態に係る照明光学系 1Bを構成する第 2リレーレンズ部 4のレン ズ表面 4aおよびレンズ表面 4bの曲率半径につ!ヽて検討する。 Here, the radius of curvature of the lens surface 4a and the lens surface 4b of the second relay lens unit 4 constituting the illumination optical system 1B according to the present embodiment will be examined.
[0041] 一般に光学系にお ヽて、光軸と主光線を含む面をメリジォナル面、主光線を含みメ リジォナル面に垂直な面をサジタル面という。メリジォナル面、サジタル面の結像位 置が異なることを非点収差といい、 1点の像が 1点に集まらず 2焦点に集まってしまう。 [0041] Generally, in an optical system, a surface including an optical axis and a principal ray is referred to as a meridional surface, and a surface including the principal ray and perpendicular to the meridional surface is referred to as a sagittal surface. The difference in the image position between the meridional surface and the sagittal surface is called astigmatism. One image does not converge on one point, but converges on two focal points.
[0042] メリジォナル面での物体距離 tと像距離 t'との間には式(1)の関係が成立する。
式 1 [0042] The relationship of Expression (1) is established between the object distance t on the meridional surface and the image distance t '. Formula 1
[0043] [0043]
n' cos2 /' «' cos2 /' \ f , , n 'cos 2 /'«'cos 2 /' \ f ,,
= - {n cos / - n cos /) - - - ( 1 ) =-(n cos /-n cos /)---(1)
t t r また、サジタル面での物体距離 sと像距離 s'との間には式 (2)の関係が成立する。 式 2 t t r Also, the relationship of the equation (2) is established between the object distance s and the image distance s ′ on the sagittal plane. Formula 2
[0044] [0044]
n' n' I . . n 'n' I..
=— (« cos / —n cos /)■ · · ( 2 ) = — («Cos / —n cos /) ■ · · (2)
s' s r 式(1)および式(2)において、 Iは曲面への入射角度、 は曲面力もの射出角度、 n は物体面と曲面との間の媒質の屈折率、 nは曲面と像面との間の媒質の屈折率を 示す。式( 1)および式(2)にお!/、て、 I = Γ = 0のときに上 2式は同一式となるため、サ ジタル像距離とメリジォナル像距離が同一となり、非点収差が発生しないことが分か る。 s' sr In equations (1) and (2), I is the incident angle to the curved surface, is the exit angle of the curved force, n is the refractive index of the medium between the object surface and the curved surface, and n is the curved surface and the image surface The refractive index of the medium between and. In equation (1) and equation (2), when I = Γ = 0, the above two equations are the same, so the sagittal image distance and the meridional image distance are the same, and astigmatism is reduced. You can see that it does not occur.
[0045] ここで、本実施の形態に係る照明光学系 1Bにおいては、第 2リレーレンズ部 4には 光軸に対して斜め方向から入射した光束を受け、入射した光束を略 90度方向に反 射して光束に対して斜め方向に出射する構造であるため、上記(1)式および(2)式 の Iおよび Γの値は 0にはならない。したがって第 2リレーレンズ部 4から出射する光束 に基づ!/、て結像した像には非点収差が発生しやす 、。非点収差が生ずると結像ボ ケが発生し、結像した画像における面内照度が不均一となり、光の利用効率も低下 するので、本実施の形態においても、第 2リレーレンズ部 4の非点収差を低減する必 要がある。 Here, in the illumination optical system 1B according to the present embodiment, the second relay lens unit 4 receives a light beam incident from an oblique direction with respect to the optical axis, and the incident light beam is directed in a direction of approximately 90 degrees. Because it is a structure that reflects and emits light obliquely, the values of I and Γ in Eqs. (1) and (2) do not become zero. Therefore, astigmatism is likely to occur in the image formed based on the light flux emitted from the second relay lens unit 4. When astigmatism occurs, imaging blur occurs, the in-plane illuminance in the image formed becomes non-uniform, and the light utilization efficiency decreases, so in this embodiment as well, the second relay lens unit 4 It is necessary to reduce astigmatism.
[0046] 上記するように非点収差を低減するためには、レンズの曲面に対する入射角度、射 出角度をなるベく小さくするのが良い。 [0046] As described above, in order to reduce astigmatism, it is preferable to reduce the incident angle and the incident angle with respect to the curved surface of the lens.
[0047] 本実施の形態においては、図 1および図 2A,図 2Bに示すように第 2リレーレンズ部 4の光束入射面であるレンズ表面 4aの曲率半径 Rを R >0としたほうが光束の入射 角度が小さくなる、また、第 2リレーレンズ部 4においてミラー蒸着が施されるレンズ裏 面 4bの曲率半径 Rも R >0とした方が光束の入射角度が小さくなる。
[0048] しかし、第 2リレーレンズ部 4はレンズ全体として正の集光力としてのパワー(以下「 パワー」と称する。)を有する必要がある。一方、レンズ表面 4bに大きな正のパワーを 持たせると第 2リレーレンズ部 4に大きな非点収差が発生してしまう。 In this embodiment, as shown in FIG. 1, FIG. 2A, and FIG. 2B, when the radius of curvature R of the lens surface 4a that is the light incident surface of the second relay lens unit 4 is R> 0, The incident angle becomes smaller as the incident angle becomes smaller, and the curvature radius R of the lens back surface 4b on which mirror deposition is performed in the second relay lens unit 4 is also set to R> 0. However, the second relay lens unit 4 needs to have a power (hereinafter referred to as “power”) as a positive light condensing power as a whole lens. On the other hand, when the lens surface 4b has a large positive power, a large astigmatism occurs in the second relay lens unit 4.
[0049] したがって、第 2リレーレンズ部 4のレンズ裏面 4bの曲率半径 Rを大きくし、第 2リレ [0049] Accordingly, the curvature radius R of the lens back surface 4b of the second relay lens unit 4 is increased, and the second relay lens portion 4 is increased.
2 2
一レンズ部 4の正のパワーは基本的には光束の入射面であるレンズ表面 4aの曲率 半径 Rに大きく依存するようにすれば、大きな非点収差は発生しない。 If the positive power of one lens unit 4 is basically made to greatly depend on the radius of curvature R of the lens surface 4a, which is the incident surface of the light beam, large astigmatism will not occur.
[0050] これより、曲率半径 Rと曲率半径 Rとの間には [0050] From this, between the radius of curvature R and the radius of curvature R
1 2 1 2
R >R〉0 · · · (3) R> R> 0 (3)
2 1 twenty one
という関係が成立することが必要になる。 It is necessary to establish the relationship.
[0051] ただし設計によっては、曲率半径 Rにややパワーが必要となる場合がある。その場 However, depending on the design, the radius of curvature R may require some power. On the spot
2 2
合には曲率半径 Rに負のパワーを持たせ、 If the radius of curvature R has negative power,
2 2
I R I R
2 I >R〉0 · · · (4) 2 I> R> 0 (4)
1 1
となるように曲率半径 R、曲率半径 Rを決定すれば、大きな非点収差を生ずることな If the radius of curvature R and the radius of curvature R are determined so that
1 2 1 2
く曲率半径 Rにパワーを持たせることが可能になる。 It is possible to give power to the radius of curvature R.
2 2
[0052] 以上により、本実施の形態に係る照明光学系 1Bを構成する第 2リレーレンズ部 4の レンズ表面 4aの曲率半径 Rおよびレンズ裏面 4bの曲率半径 Rの間には、上記(4) [0052] As described above, between the curvature radius R of the lens surface 4a and the curvature radius R of the lens back surface 4b of the second relay lens unit 4 constituting the illumination optical system 1B according to the present embodiment, the above (4)
1 2 1 2
式の関係が成立することが望ましい。 It is desirable that the relationship of the formula is established.
[0053] 図 5から図 7に、焦点距離を同一にして曲率半径 R、曲率半径 Rを変化させたとき [0053] In FIGS. 5 to 7, the curvature radius R and the curvature radius R are changed with the same focal length.
1 2 1 2
の、非点収差と、 DMD部 6の表面部に結像した像面の照度分布を示す。 The astigmatism and the illuminance distribution of the image plane imaged on the surface portion of the DMD portion 6 are shown.
[0054] 図 5 (a)力 図 5 (c)までは第 2リレーレンズ部 4のレンズ裏面 4bをミラー面に形成し たときの、レンズ表面 4aおよびレンズ裏面 4bの形状、および第 2リレーレンズ部 4に 入射および出射する光束の光路のシミュレーション図である。図 5 (a)は第 2リレーレ ンズ部 4のレンズ表面 4aを凸状に、レンズ裏面 4bを平面状に开成し、レンズ表面 4a の曲率半径 R (以下単に「R」と称する。) >0かつレンズ裏面 4bの曲率半径 R (以 [0054] Fig. 5 (a) Force Until Fig. 5 (c), the shape of the lens surface 4a and the lens back surface 4b when the lens back surface 4b of the second relay lens unit 4 is formed on the mirror surface, and the second relay FIG. 4 is a simulation diagram of the optical path of a light beam entering and exiting a lens unit 4. In FIG. 5 (a), the lens surface 4a of the second relay lens part 4 is formed in a convex shape and the lens back surface 4b is formed in a flat shape, and the curvature radius R of the lens surface 4a (hereinafter simply referred to as “R”)> 0 and the radius of curvature R of the lens back 4b
1 1 2 下単に「R」と称する。) =∞、すなわち R >R >0である場合の光路のシミュレーシ 1 1 2 Below simply called “R”. ) = ∞, that is, simulation of optical path when R> R> 0
2 2 1 2 2 1
ヨン図である。図 5 (b)は第 2リレーレンズ部 4のレンズ表面 4aとレンズ表面 4bが同一 の曲率半径である凸レンズに形成し、 R =R >0である場合の光路のシミュレーシ It is a Yon diagram. Figure 5 (b) shows a simulation of the optical path when R = R> 0 when the lens surface 4a and the lens surface 4b of the second relay lens unit 4 are formed on a convex lens having the same radius of curvature.
2 1 twenty one
ヨン図である。図 5 (c)は、第 2リレーレンズ部 4のレンズ裏面を凸状に、レンズ表面 4a
を平面状に形成し、 R =∞かつ Rく 0の場合の光路のシミュレーション図である。図 It is a Yon diagram. Fig. 5 (c) shows the lens surface 4a, with the rear surface of the second relay lens unit 4 convex. Is a simulation diagram of the optical path when R = ∞ and R く 0. Figure
1 2 1 2
5 (a)から(c)までにお 、て、第 1端面部 41は第 2リレーレンズ部 4に入射する光束の 出射される面を模式ィ匕したものであり、第 2端面部 42は第 2リレーレンズ部 4から出射 される光束の照射される面を模式ィ匕したものである。すなわち図 5 (a)から図 5 (c)ま でに示す第 1端面部 41は図 1におけるロッドインテグレータ 2の出射面 2bに対応し、 図 5 (a)力 図 5 (c)まで示す第 2端面部 42は図 1における DMD部 6の表面部に対 応する。また、第 1端面部 41上の 3点からは第 2リレーレンズ部 4に向けて出射光束 4 3が出射され、第 2端面部 42上の 4点には第 2リレーレンズ部 4で反射された入射光 束 44が入射する。なお、図 5 (a)から図 5 (c)の第 2リレーレンズ部 4の厚み方向(図 5 (a)から図 5 (c)までの左右方向)は最適化されているため、第 2リレーレンズ部 4の厚 さおよび第 1端面部 41と第 2端面部 42との間隔はそれぞれ異なった状態で表示され ている。 5 From (a) to (c), the first end surface portion 41 is a schematic view of the surface from which the light beam incident on the second relay lens portion 4 is emitted, and the second end surface portion 42 is This is a schematic view of the surface irradiated with the light beam emitted from the second relay lens unit 4. That is, the first end face 41 shown in FIGS. 5 (a) to 5 (c) corresponds to the exit surface 2b of the rod integrator 2 in FIG. 1, and the first end face 41 shown in FIG. 5 (a) is shown in FIG. 5 (c). 2 The end face part 42 corresponds to the surface part of the DMD part 6 in FIG. In addition, the emitted light beam 43 is emitted from the three points on the first end surface portion 41 toward the second relay lens portion 4, and is reflected by the second relay lens portion 4 on the four points on the second end surface portion 42. The incident light flux 44 enters. Since the thickness direction of the second relay lens portion 4 in FIGS. 5 (a) to 5 (c) (the left-right direction from FIG. 5 (a) to FIG. 5 (c)) has been optimized, The thickness of the relay lens part 4 and the distance between the first end face part 41 and the second end face part 42 are displayed in different states.
[0055] 図 5 (a)力 図 5 (c)を対比すると、図 5 (a)においては、入射光束 44はいずれも第 2 端面部 42上で略一点にほぼ収束しているのに対し、図 5 (b)および図 5 (c)において は、入射光束 44は第 2端面部 42上で略一点に収束していない(特に一番下および 下から 3番目の入射光束 44に顕著にみられる。;)。したがって、図 5 (a)から図 5 (c)ま でに示すシミュレーション結果においては、図 5 (a)の状態が第 2端面部 42における 非点収差が生じにく 、ことが判る。 [0055] Fig. 5 (a) Force When comparing Fig. 5 (c), in Fig. 5 (a), all of the incident light beam 44 converges to a substantially single point on the second end face portion 42. 5 (b) and FIG. 5 (c), the incident light beam 44 is not converged to substantially one point on the second end face portion 42 (particularly, the incident light beam 44 is notably conspicuous in the third incident light beam 44 from the bottom and bottom). Be looked at.;). Therefore, in the simulation results shown in FIGS. 5 (a) to 5 (c), it can be seen that the state of FIG. 5 (a) hardly causes astigmatism in the second end face portion 42.
[0056] 図 6Aから図 6Cまでは、第 2リレーレンズ部 4のレンズ裏面 4bをミラー面に形成した ときの、レンズ表面 4aおよびレンズ裏面 4bの形状と、メリジォナル面およびサジタル 面の結像位置とを示すシミュレーション図である。図 6Aは、第 2リレーレンズ部 4の曲 率半径が図 6Aの場合と同じく R >R >0である場合のメリジォナル面およびサジタ [0056] From FIG. 6A to FIG. 6C, when the lens back surface 4b of the second relay lens unit 4 is formed on the mirror surface, the shape of the lens surface 4a and the lens back surface 4b, and the image formation positions of the meridional surface and the sagittal surface FIG. 6A shows the meridional surface and sagittal when the radius of curvature of the second relay lens unit 4 is R> R> 0, as in FIG. 6A.
2 1 twenty one
ル面の結像位置を示すシミュレーション図であり、図 6Bは第 2リレーレンズ部 4の曲率 半径が図 5 (b)の場合と同じく一 R =R >0である場合のメリジォナル面およびサジ FIG. 6B shows the meridional surface and sagittal when the radius of curvature of the second relay lens unit 4 is one R = R> 0, as in FIG. 5 (b).
2 1 twenty one
タル面の結像位置を示すシミュレーション図であり、図 6Cは第 2リレーレンズ部 4の曲 率半径が図 5 (c)の場合と同じく R =∞かつ R < 0である場合のメリジォナル面およ Fig. 6C shows the meridional plane when the radius of curvature of the second relay lens unit 4 is R = ∞ and R <0, as in Fig. 5 (c). Yo
1 2 1 2
びサジタル面の結像位置を示すシミュレーション図である。図 6Aから図 6Cまでにお V、ては、 X軸 (横軸)のパラメータは第 2リレーレンズ部 4の光軸方向の距離をあらわし
、 y軸 (縦軸)のパラメータは第 2リレーレンズ部 4の光軸に対し垂直方向の距離をあら わしている。図 6Aから図 6Cにおいて、メリジォナル面の値とサジタル面の値とがー 致していれば、結像した像には非点収差が発生しないことを示し、メリジォナル面の 値とサジタル面の値との間にずれが生じていれば、結像した像にはずれの大きさに 依存した非点収差が生じて 、ることを示して 、る。 FIG. 6 is a simulation diagram showing an imaging position on a sagittal surface. From Fig. 6A to Fig. 6C, the V and X-axis (horizontal axis) parameters indicate the distance of the second relay lens unit 4 in the optical axis direction. The y-axis (vertical) parameter represents the distance perpendicular to the optical axis of the second relay lens unit 4. In Fig. 6A to Fig. 6C, if the value of the meridional surface and the value of the sagittal surface match, it indicates that astigmatism does not occur in the formed image, and the value of the meridional surface and the value of the sagittal surface If there is a deviation between the two, it indicates that the image formed has astigmatism depending on the magnitude of the deviation.
[0057] 図 6Aから図 6Cまでを対比すると、図 6Aにおいてはメリジォナル面の曲線とサジタ ル面の曲線とはほぼ同一の形状であってほぼ完全に重なっているのに対し、図 6B および図 6Cにおいてはメリジォナル面の曲線とサジタル面の曲線とは X軸方向およ び y軸方向の値の大きさに依存してずれが生じ曲線同士が徐々に離間していく形状 を呈している。したがって、図 6Aから図 6Cに示すシミュレーション結果においては、 図 6Aの状態が最もメリジォナル面とサジタル面との光束のずれが少なぐ非点収差 が少ないことが判る。 [0057] When comparing FIG. 6A to FIG. 6C, in FIG. 6A, the curve of the meridional surface and the curve of the sagittal surface have almost the same shape and almost completely overlap, whereas FIG. 6B and FIG. In 6C, the meridional curve and the sagittal curve have a shape that depends on the magnitude of the values in the X- and y-axes, and the curves gradually move away from each other. Therefore, in the simulation results shown in FIGS. 6A to 6C, it can be seen that the state of FIG. 6A has the least astigmatism with the least deviation of the luminous flux between the meridional surface and the sagittal surface.
[0058] 図 7は、第 2リレーレンズ部 4のレンズ裏面 4bをミラー面に形成したときの、レンズ表 面 4aおよびレンズ裏面 4bの形状と、 DMD部 6の表面部に結像する像の面内照度分 布とを示すシミュレーション図である。図 7において、太い実線は第 2リレーレンズ部 4 が図 5 (a)および図 6Aに示す場合と同様に R >R >0である場合の DMD部 6の面 FIG. 7 shows the shape of the lens surface 4 a and the lens back surface 4 b when the lens back surface 4 b of the second relay lens unit 4 is formed on the mirror surface, and the image formed on the surface of the DMD unit 6. It is a simulation figure which shows in-plane illumination distribution. In FIG. 7, the thick solid line indicates the surface of the DMD section 6 when the second relay lens section 4 has R> R> 0 as in the case shown in FIGS. 5 (a) and 6A.
2 1 twenty one
内照度分布を示し、点線は第 2リレーレンズ部 4が図 5 (b)および図 6Bに示す場合と 同様に— R =R >0である場合の DMD部 6の面内照度分布を示し、細い実線は第 The internal illuminance distribution is shown, and the dotted line shows the in-plane illuminance distribution of the DMD part 6 when the second relay lens part 4 is as shown in FIG. 5 (b) and FIG. The thin solid line is the first
2 1 twenty one
2リレーレンズ部 4が図 5 (c)および図 6Cに示す場合と同様に R < 0かつ R =∞であ (2) As in the case where the relay lens unit 4 is shown in Fig. 5 (c) and Fig. 6C, R <0 and R = ∞.
2 1 る場合の DMD部 6の面内照度分布を示している。図 7においては、横軸が基準点( 光束が照射される DMD部 6の略中央部分)からの距離を 1 <χ< 1の間で正規ィ匕 した値を示し、縦軸が DMD部 6における照度を 0<y< 1の間で正規化した値を示し ている。面内照度分布を示す線は、線の立ち上がりと立ち下がりが垂直に近いほど 面内照度分布が均一に近く、照度ムラが生じて 、な 、ことを示して 、る。 2 shows the in-plane illuminance distribution of the DMD section 6 in the case of 2 1. In FIG. 7, the horizontal axis indicates a value obtained by normalizing the distance from the reference point (substantially central portion of the DMD portion 6 where the light beam is irradiated) between 1 <χ <1, and the vertical axis indicates the DMD portion 6. The normalized illuminance between 0 <y <1 is shown. The line indicating the in-plane illuminance distribution indicates that the nearer the rise and fall of the line is, the closer the in-plane illuminance distribution is and the unevenness in illuminance occurs.
[0059] 図 7においては、 R >R >0の場合の面内照度分布の曲線力 最も立ち上がりと立 [0059] In Fig. 7, the curve power of the in-plane illuminance distribution when R> R> 0
2 1 twenty one
ち下がりが垂直に近ぐ R =R〉0である場合、 R =∞かつ R < 0である場合の When R = R> 0 when the fall is close to vertical, R = ∞ and R <0
2 1 1 2 2 1 1 2
順に立ち上がりと立ち下がりが垂直でなくなつている。図 7に示すシミュレーション結 果により、第 2リレーレンズ部 4が R >R >0の場合すなわち(4)式の関係を満たす
場合に DMD部 6の面内照度分布が最も均一化し、照度ムラが生じないことが判る。 In order, the rise and fall are not vertical. Based on the simulation results shown in Fig. 7, when the second relay lens unit 4 is R>R> 0, that is, the relationship of equation (4) is satisfied. In this case, it can be seen that the in-plane illuminance distribution of the DMD portion 6 is most uniform, and uneven illuminance does not occur.
[0060] 図 5から図 7までの結果力らも、第 2リレーレンズ部 4において上記 (4)式の関係が 成立するように曲率半径 R、 Rを決定したほうが、非点収差の影響が少なぐかつ D [0060] As for the resultant forces from FIG. 5 to FIG. 7, the astigmatism is more affected by determining the curvature radii R and R so that the relationship of the above equation (4) is established in the second relay lens unit 4. Nagatsu and D
1 2 1 2
MD部 6の表面部における像面の照度分布が良くなることが確認できる。 It can be confirmed that the illuminance distribution on the image plane on the surface of the MD section 6 is improved.
[0061] なお、上記 (4)式は光学的見地のみに基づく結果であり、実際の光学照明系にお いては光学系以外の要因が加味され上記 (4)式が修正されて適用される場合もある 。たとえば第 2リレーレンズ部 4のレンズ裏面 4bにダイクロイツクミラーを蒸着してミラー 面を形成する場合には、蒸着面にカーブがあるよりも平面である方が膜厚ムラなどの 問題が生じることなく高品位のミラー面を形成できるため、 R =∞かつ R >0であるこ [0061] It should be noted that the above equation (4) is a result based only on the optical viewpoint, and in the actual optical illumination system, factors other than the optical system are taken into account and the above equation (4) is modified and applied. In some cases . For example, when a mirror surface is formed by vapor-depositing a dichroic mirror on the lens back surface 4b of the second relay lens unit 4, problems such as film thickness unevenness occur when the vapor deposition surface is flat rather than curved. R = ∞ and R> 0 because a high-quality mirror surface can be formed.
2 1 とが品質の高い照明光学系を形成するうえで最適となる。 2 1 is optimal for forming a high-quality illumination optical system.
[0062] ここで、本実施の形態に係る照明光学系 1Bの結像倍率と光路長との関係について 検討する。 Here, the relationship between the imaging magnification and the optical path length of the illumination optical system 1B according to the present embodiment will be examined.
[0063] 図 8に、図 1に示す本発明の本実施の形態に係る照明光学系 1Bの結像倍率に対 する光路長と、図 10A、図 10Bに示す従来の照明光学系 100Bにおける結像倍率に 対する光路長とのシミュレーション結果を示す。図 8においては、横軸が結像倍率を 示し、縦軸が光路長を示し、点線のグラフは従来の照明光学系 100Bのシミュレーシ ヨン結果を示し、実線のグラフは本発明に係る照明光学系 1Bのシミュレーション結果 を示している。なお、図 8においては、両グラフは図 10A,図 10Bに示す従来の照明 光学系 100Bの結像倍率 β = 1のときの光路長を 1に規格ィ匕した値として示されて!/ヽ る。 FIG. 8 shows the optical path length with respect to the imaging magnification of the illumination optical system 1B according to the embodiment of the present invention shown in FIG. 1, and the connection in the conventional illumination optical system 100B shown in FIGS. 10A and 10B. The simulation results with the optical path length for the image magnification are shown. In FIG. 8, the horizontal axis indicates the imaging magnification, the vertical axis indicates the optical path length, the dotted line graph indicates the simulation result of the conventional illumination optical system 100B, and the solid line graph indicates the illumination optical according to the present invention. The simulation results for system 1B are shown. In FIG. 8, both graphs are shown as values obtained by standardizing the optical path length to 1 when the imaging magnification β = 1 of the conventional illumination optical system 100B shown in FIGS. 10A and 10B. The
[0064] 図 8のシミュレーション結果によると、本発明に係る照明光学系 1Bは、結像倍率を j8としたとき、 β≤1.5のときに従来の照明光学系 100Bよりも光路長が短くなつている 。したがって、本発明に係る照明光学系 1Bの装置の大きさは、結像倍率 |8≤1.5のと きに従来の照明光学系 100Bよりも小型に形成できることがわ力る。 According to the simulation results of FIG. 8, the illumination optical system 1B according to the present invention has an optical path length shorter than that of the conventional illumination optical system 100B when β ≦ 1.5 when the imaging magnification is j8. Yes. Therefore, it can be seen that the size of the illumination optical system 1B according to the present invention can be made smaller than the conventional illumination optical system 100B when the imaging magnification is | 8≤1.5.
[0065] 以上、本実施の形態に係る照明光学系 1Bにおいては、第 1リレーレンズ部 3、第 2 リレーレンズ部 4、フィールドレンズ部 5の 3枚のレンズから構成し、そのうち光路上 2 番目のレンズである第 2リレーレンズ部 4をミラーレンズ部とすることにより、ロッドイン テグレータ 2から DMD部 6の表面部に対する結像倍率が低くても、レンズ相互間の
焦点距離を短く形成することができ、投射型照明装置 1Aや照明光学系 IBの装置を 小型に形成することができる。 [0065] As described above, the illumination optical system 1B according to the present embodiment includes the three lenses of the first relay lens unit 3, the second relay lens unit 4, and the field lens unit 5, of which the second in the optical path. By using the second relay lens part 4 as the mirror lens part as a mirror lens part, even if the imaging magnification from the rod integrator 2 to the surface part of the DMD part 6 is low, The focal length can be shortened, and the projection illumination device 1A and the illumination optical system IB device can be made compact.
[0066] 本実施の形態に係る照明光学系 1Bにおいては、第 2リレーレンズ部 4のレンズ表面 4aの曲率半径を Rとし、レンズ裏面 4bの曲率半径を Rとしたとき、 | R | >R >0と [0066] In the illumination optical system 1B according to the present embodiment, when the radius of curvature of the lens surface 4a of the second relay lens unit 4 is R and the radius of curvature of the lens back surface 4b is R, | R | > 0 and
1 2 2 1 することにより、非点収差の発生を防止し、輝度ムラやコントラストムラの発生を防止し て DMD部 6の表面部やスクリーンなど光束照射面における照度ムラの発生を防止 することができる。また、 I R 1 2 2 1 to prevent the generation of astigmatism, the occurrence of uneven brightness and contrast, and the occurrence of uneven illumination on the surface of the DMD 6 and the light flux irradiation surface such as the screen. it can. I R
2 I >R >0とすることにより、少ないレンズ枚数でも結像 1 2 I> R> 0 makes it possible to image even with a small number of lenses 1
性能を向上させることができるので、照明光学系 1Bや投射型照明装置 1Aの装置を 小型化するために有利になる。 Since the performance can be improved, it is advantageous for downsizing the illumination optical system 1B and the projection illumination device 1A.
[0067] 本実施の形態に係る照明光学系 1Bにおいては、結像倍率 |8を |8≤ 1.5とすること により、照明光学系 1Bの光路長を従来の照明光学系 100Bよりも短く形成することが でき、照明光学系 1Bや投射型照明装置 1Aの装置の光路長方向の大きさを小型に 形成することができる。 In the illumination optical system 1B according to the present embodiment, the optical path length of the illumination optical system 1B is shorter than that of the conventional illumination optical system 100B by setting the imaging magnification | 8 to | 8≤1.5. In addition, the size of the illumination optical system 1B and the projection illumination device 1A in the optical path length direction can be reduced.
[0068] 本実施の形態に係る照明光学系 1Bにおいては、絞り位置を光路上 2番目のレンズ である第 2リレーレンズ部 4の近傍に設けることにより、レンズ相互間の焦点距離を短 く形成し照明光学系 1Bおよび投射型照明装置 1Aを小型に形成することが可能にな る。 [0068] In the illumination optical system 1B according to the present embodiment, the focal position between the lenses is reduced by providing the stop position in the vicinity of the second relay lens unit 4 which is the second lens on the optical path. Thus, the illumination optical system 1B and the projection illumination device 1A can be formed in a small size.
[0069] なお、図 1に示す本実施の形態に係る照明光学系 1Bにおいては、第 2リレーレンズ 部 4のレンズ表面 4aをすベて同一の曲率半径に形成した力 これに限定されず、図 9に示すように、第 2リレーレンズ部 4における光束の入射位置と光束の出射位置とを 完全に分離し、レンズ表面 4aの表面形状を、光束が入射する光束入射面 4cと光束 が出射する光束出射面 4dとが異なる曲率半径を有する複合曲面に形成することもで きる。 [0069] In the illumination optical system 1B according to the present embodiment shown in FIG. 1, the force formed on the lens surface 4a of the second relay lens unit 4 to have the same radius of curvature is not limited to this. As shown in FIG. 9, the incident position of the luminous flux and the outgoing position of the luminous flux in the second relay lens unit 4 are completely separated, and the surface shape of the lens surface 4a is changed to the luminous flux incident surface 4c on which the luminous flux is incident and the luminous flux is emitted. It is also possible to form a composite curved surface having a different radius of curvature from the light exit surface 4d.
[0070] 図 9に示すように、レンズ表面 4aの曲率半径を光束入射面 4cと光束出射面 4dとで 異ならせることにより、第 2リレーレンズ部 4における非点収差などの各種収差の抑止 効果を高めることができる。また、レンズ表面が均等な曲率半径である場合よりも光を 集光するパワーを自由に調整できるので、第 2リレーレンズ部 4を形成する材料に一 層の選択の幅を持たせることができる。
[0071] なお、図 1に示す、本実施の形態に係る投射型表示装置 1Aにおいては光源部 1に LEDを用いた光源を用いた力 これに限定されず、図 2A,図 2Bに示す従来例と同 様に、白色光を発する超高圧水銀ランプ等を光源部に用いてもよい。 [0070] As shown in FIG. 9, the second relay lens unit 4 can suppress various aberrations such as astigmatism by making the curvature radius of the lens surface 4a different between the light incident surface 4c and the light exit surface 4d. Can be increased. In addition, since the power for condensing light can be adjusted more freely than when the lens surface has a uniform radius of curvature, the material forming the second relay lens unit 4 can have a single range of selection. . Note that in the projection display device 1A according to the present embodiment shown in FIG. 1, the force using a light source using an LED as the light source unit 1 is not limited to this, and the conventional one shown in FIGS. 2A and 2B As in the example, an ultra-high pressure mercury lamp that emits white light may be used for the light source section.
[0072] また、図 1および図 2,図 2Bに示す、本実施の形態に係る照明光学系 1Bにおいて は、第 2レンズ部のミラー面は第 2リレーレンズ部 4のレンズ裏面 4bに金属を蒸着して 形成したが、ミラー面は第 2リレーレンズ部 4に接合されていなくてもよぐ第 2リレーレ ンズ部 4と別個にミラー面が設けられた構成とし、第 2リレーレンズ部 4のレンズ表面 4 aから入射した光束がレンズ裏面 4bから出射してミラー面に反射するものとしてもよい [0072] In the illumination optical system 1B according to the present embodiment shown in FIGS. 1, 2 and 2B, the mirror surface of the second lens unit is made of metal on the lens back surface 4b of the second relay lens unit 4. Although formed by vapor deposition, the mirror surface does not need to be joined to the second relay lens unit 4, and the mirror surface is provided separately from the second relay lens unit 4, and the second relay lens unit 4 The light beam incident from the lens surface 4a may be emitted from the lens back surface 4b and reflected on the mirror surface.
[0073] また、図 1および図 2A,図 2Bに示す、本実施の形態に係る照明光学系 1Bにおい ては、ロッドインテグレータ 2の出射面 2bに RGBのカラーホイールを設けない構成と したが、図 2A,図 2Bに示す従来例と同様にカラーホイールを設けた構成としてもよ い。特に光源部に白色光を用いる場合には、図 2A,図 2Bに示す従来例と同様に力 ラーホイールを設けた方が光束の量や RGBごとの階調の制御を容易に行える点で 望ましい。 Further, in the illumination optical system 1B according to the present embodiment shown in FIGS. 1, 2A, and 2B, an RGB color wheel is not provided on the exit surface 2b of the rod integrator 2. Similar to the conventional example shown in FIGS. 2A and 2B, a color wheel may be provided. In particular, when white light is used for the light source unit, it is desirable to provide a power wheel as in the conventional example shown in FIGS. 2A and 2B because the amount of light flux and gradation for each RGB can be easily controlled. .
産業上の利用可能性 Industrial applicability
[0074] 本発明は、投射型表示装置に利用可能である。
The present invention can be used for a projection display device.
Claims
[1] 光源部から発せられた光束を導光する光路の一部にレンズ表面から入射した光束 をレンズ裏面で反射し前記レンズ表面から出射させるミラーレンズ部を設けた光学系 と、 [1] An optical system provided with a mirror lens unit that reflects a light beam incident from the lens surface to a part of an optical path that guides the light beam emitted from the light source unit and emits the light from the lens surface;
前記光学系により導光された前記光束の照射を受ける反射型表示素子と を有することを特徴とする照明光学系。 An illumination optical system, comprising: a reflective display element that receives irradiation of the light beam guided by the optical system.
[2] 光源部力 発せられた光束の照度分布を均一化させて出射するインテグレータ部 と、 [2] Light source unit power An integrator unit that emits light with uniform illuminance distribution.
前記インテグレータ部から出射された前記光束を導光する光学系と、 An optical system for guiding the light beam emitted from the integrator unit;
前記光学系により導光された前記光束の照射を受ける反射型表示素子部と、 を有する照明光学系において、 A reflective display element that receives irradiation of the light beam guided by the optical system, and an illumination optical system comprising:
前記光学系は複数のレンズ部を備え、前記複数のレンズ部のうち少なくとも 1のレン ズ部は、レンズ表面カゝら入射した前記光束を反射する反射手段をレンズ裏面に備え 、前記反射手段により反射された前記光束を前記レンズ表面から出射させるミラーレ ンズ部を有することを特徴とする照明光学系。 The optical system includes a plurality of lens portions, and at least one lens portion of the plurality of lens portions includes a reflecting means for reflecting the incident light beam from the lens surface cover on the lens back surface. An illumination optical system comprising a mirror lens portion for emitting the reflected light flux from the lens surface.
[3] 前記光学系は前記光源部から発せられる前記光束の光路に沿って順番に第 1レン ズ部、第 2レンズ部、第 3レンズ部を備え、前記第 2レンズ部は前記ミラーレンズ部で あることを特徴とする請求項 1又は 2に記載の照明光学系。 [3] The optical system includes a first lens unit, a second lens unit, and a third lens unit in order along an optical path of the light beam emitted from the light source unit, and the second lens unit is the mirror lens unit. The illumination optical system according to claim 1 or 2, wherein:
[4] 前記レンズ表面における曲率半径を Rとし、前記レンズ裏面における曲率半径を R としたとき、 I R I >R >0であることを特徴とする請求項 1から 3までのいずれか 1[4] Any one of claims 1 to 3, wherein I R I> R> 0, where R is a radius of curvature on the lens surface and R is a radius of curvature on the back surface of the lens.
2 2 1 2 2 1
項に記載の照明光学系。 The illumination optical system according to Item.
[5] 前記インテグレータ部の出射面での照明サイズに対する前記反射型表示素子の表 面部における照明サイズの比である結像倍率を としたとき、 β≤ 1.5であることを特 徴とする請求項 2から 4までのいずれ力 1項に記載の照明光学系。 [5] The aspect of the present invention is characterized in that β ≦ 1.5, where is an imaging magnification which is a ratio of an illumination size on the surface of the reflective display element to an illumination size on the exit surface of the integrator. 2. The illumination optical system according to any one of items 2 to 4,
[6] 前記第 2レンズ部は絞り機能を有するミラーレンズ部であることを特徴とする請求項 1から 5までのいずれか 1項に記載の照明光学系。 [6] The illumination optical system according to any one of claims 1 to 5, wherein the second lens unit is a mirror lens unit having a diaphragm function.
[7] 前記ミラーレンズ部の前記レンズ表面又は前記レンズ裏面のうち少なくとも一方の 面は非球面に形成したことを特徴とする請求項 3から 6までのいずれか 1項に記載の
照明光学系。 [7] The method according to any one of [3] to [6], wherein at least one of the lens front surface and the lens back surface of the mirror lens portion is formed as an aspherical surface. Illumination optical system.
[8] 前記ミラーレンズ部の前記レンズ表面と前記レンズ裏面とが異なる曲率を有する複 合曲面を形成することを特徴とする請求項 7に記載の照明光学系。 8. The illumination optical system according to claim 7, wherein the lens surface of the mirror lens part and the lens back surface form a compound curved surface having different curvatures.
[9] 光源部と、 [9] a light source unit;
前記光源部から発せられた光束を導光する光路の一部にレンズ表面から入射した 光束をレンズ裏面で反射し前記レンズ表面から出射させるミラーレンズ部を設けた光 学系と、 An optical system provided with a mirror lens unit that reflects a light beam incident from the lens surface to a part of an optical path that guides the light beam emitted from the light source unit and is emitted from the lens surface;
前記光学系により導光された前記光束の照射を受けて結像する照射面を備えた反 射型表示素子と、 A reflective display element having an irradiation surface that forms an image upon irradiation with the light beam guided by the optical system;
を有することを特徴とする投射型表示装置。
A projection type display device comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-000191 | 2005-01-04 | ||
JP2005000191A JP2006189538A (en) | 2005-01-04 | 2005-01-04 | Illuminating optical system and projection type display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006073148A1 true WO2006073148A1 (en) | 2006-07-13 |
Family
ID=36647624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/300010 WO2006073148A1 (en) | 2005-01-04 | 2006-01-04 | Illumination optical system and projection-type display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2006189538A (en) |
WO (1) | WO2006073148A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2284590A1 (en) * | 2009-07-31 | 2011-02-16 | Samsung Electronics Co., Ltd. | Optical System |
EP1962516A3 (en) * | 2007-02-20 | 2012-02-15 | Samsung Electronics Co., Ltd. | Projection optical system |
EP3339445A1 (en) | 2006-09-08 | 2018-06-27 | AbbVie Bahamas Ltd. | Interleukin -13 binding proteins |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000121998A (en) * | 1998-10-21 | 2000-04-28 | Mitsubishi Electric Corp | Optical device as well as projector device, rear projector device and multiprojector device using the same |
JP2001337394A (en) * | 2000-05-30 | 2001-12-07 | Matsushita Electric Ind Co Ltd | Illumination optical device and projection display device |
JP2004029043A (en) * | 2002-05-20 | 2004-01-29 | Mitsubishi Electric Corp | Projection type display device |
JP2004045718A (en) * | 2002-07-11 | 2004-02-12 | Nec Viewtechnology Ltd | Illumination optical system and magnified projection display device |
JP2004138667A (en) * | 2002-10-15 | 2004-05-13 | Minolta Co Ltd | Projection type display device |
-
2005
- 2005-01-04 JP JP2005000191A patent/JP2006189538A/en active Pending
-
2006
- 2006-01-04 WO PCT/JP2006/300010 patent/WO2006073148A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000121998A (en) * | 1998-10-21 | 2000-04-28 | Mitsubishi Electric Corp | Optical device as well as projector device, rear projector device and multiprojector device using the same |
JP2001337394A (en) * | 2000-05-30 | 2001-12-07 | Matsushita Electric Ind Co Ltd | Illumination optical device and projection display device |
JP2004029043A (en) * | 2002-05-20 | 2004-01-29 | Mitsubishi Electric Corp | Projection type display device |
JP2004045718A (en) * | 2002-07-11 | 2004-02-12 | Nec Viewtechnology Ltd | Illumination optical system and magnified projection display device |
JP2004138667A (en) * | 2002-10-15 | 2004-05-13 | Minolta Co Ltd | Projection type display device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3339445A1 (en) | 2006-09-08 | 2018-06-27 | AbbVie Bahamas Ltd. | Interleukin -13 binding proteins |
EP3524685A1 (en) | 2006-09-08 | 2019-08-14 | AbbVie Bahamas Ltd. | Interleukin -13 binding proteins |
EP3910065A1 (en) | 2006-09-08 | 2021-11-17 | AbbVie Bahamas Ltd. | Interleukin -13 binding proteins |
EP1962516A3 (en) * | 2007-02-20 | 2012-02-15 | Samsung Electronics Co., Ltd. | Projection optical system |
US8182098B2 (en) | 2007-02-20 | 2012-05-22 | Samsung Electronics Co., Ltd. | Projection optical system |
EP2284590A1 (en) * | 2009-07-31 | 2011-02-16 | Samsung Electronics Co., Ltd. | Optical System |
Also Published As
Publication number | Publication date |
---|---|
JP2006189538A (en) | 2006-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8511837B2 (en) | Projection optical system and image projector | |
CN110632747B (en) | Projection optical system and projector apparatus | |
JP4274766B2 (en) | LIGHTING DEVICE AND IMAGE PROJECTION DEVICE USING THE LIGHTING DEVICE | |
CN100514121C (en) | Projection type display apparatus | |
KR101542825B1 (en) | Projection optical system and image projection device | |
JP4286271B2 (en) | Illumination device and image projection device | |
US10372028B2 (en) | Light source device and projection type display apparatus | |
CN103852960B (en) | Projection device and spotlight module | |
JP3972680B2 (en) | Lighting optical unit, liquid crystal projector | |
US20190212640A1 (en) | Light source device and projection type display apparatus | |
JP4705852B2 (en) | Light source device | |
WO2006073148A1 (en) | Illumination optical system and projection-type display device | |
JP6679854B2 (en) | Projection device and image display device | |
JPWO2018030157A1 (en) | Projection display | |
CN111433673B (en) | Projector with a light source | |
JP3980036B2 (en) | Illumination device and projection-type image display device using the same | |
JP6642298B2 (en) | Projection display device | |
JP4066773B2 (en) | Projection display device | |
JP7540477B2 (en) | Optical lens and light source device | |
JP5311880B2 (en) | Light source device and image display device using the same | |
JP2009294428A (en) | Light source unit and projector equipped with the same | |
JP2006267530A (en) | Illuminator and projection type display device | |
JP6698873B2 (en) | Illumination optical system and projection type image display device | |
WO2012114423A1 (en) | Projection display device | |
JP5609158B2 (en) | Light source device and projection display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06702112 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6702112 Country of ref document: EP |