WO2006068702A2 - Environmentally friendly demulsifiers for crude oil emulsions - Google Patents
Environmentally friendly demulsifiers for crude oil emulsions Download PDFInfo
- Publication number
- WO2006068702A2 WO2006068702A2 PCT/US2005/039629 US2005039629W WO2006068702A2 WO 2006068702 A2 WO2006068702 A2 WO 2006068702A2 US 2005039629 W US2005039629 W US 2005039629W WO 2006068702 A2 WO2006068702 A2 WO 2006068702A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- demulsifier
- poly
- glycol
- coupling agent
- carbon atoms
- Prior art date
Links
- 239000000839 emulsion Substances 0.000 title claims description 30
- 239000010779 crude oil Substances 0.000 title description 10
- -1 poly(tetramethylene glycol) Polymers 0.000 claims abstract description 177
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 56
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000007822 coupling agent Substances 0.000 claims abstract description 40
- 229920001577 copolymer Polymers 0.000 claims abstract description 35
- 150000001412 amines Chemical class 0.000 claims description 31
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 238000006065 biodegradation reaction Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 17
- 239000001361 adipic acid Substances 0.000 claims description 12
- 235000011037 adipic acid Nutrition 0.000 claims description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 9
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 8
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 239000012948 isocyanate Substances 0.000 claims description 8
- 150000002513 isocyanates Chemical class 0.000 claims description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 150000002334 glycols Chemical class 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 4
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 claims description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 239000007859 condensation product Substances 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 2
- 229920005628 alkoxylated polyol Polymers 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 2
- 150000003871 sulfonates Chemical class 0.000 claims description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 2
- 239000007762 w/o emulsion Substances 0.000 claims description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 11
- 239000003208 petroleum Substances 0.000 abstract description 8
- 238000009472 formulation Methods 0.000 abstract description 6
- 231100000419 toxicity Toxicity 0.000 abstract description 4
- 230000001988 toxicity Effects 0.000 abstract description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 229920000728 polyester Polymers 0.000 description 13
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 239000003921 oil Substances 0.000 description 11
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 10
- 229920001451 polypropylene glycol Polymers 0.000 description 9
- 239000002253 acid Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 241000963673 Acartia tonsa Species 0.000 description 3
- 0 CCC(C)(CCOC(C)(C)N)*OC(C)CC(C)C(C)(*)OCCC(C)O Chemical compound CCC(C)(CCOC(C)(C)N)*OC(C)CC(C)C(C)(*)OCCC(C)O 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000512310 Scophthalmus maximus Species 0.000 description 3
- 241000206732 Skeletonema costatum Species 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 231100000048 toxicity data Toxicity 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 241000117098 Corophium volutator Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 229920000464 Poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 231100000507 endocrine disrupting Toxicity 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 230000002352 nonmutagenic effect Effects 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 231100001260 reprotoxic Toxicity 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/04—Breaking emulsions
- B01D17/047—Breaking emulsions with separation aids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/16—Cyclic ethers having four or more ring atoms
- C08G65/20—Tetrahydrofuran
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
Definitions
- the present invention generally relates to water-in-oil demulsification formulations that are biodegradable and low in toxicity.
- Demulsifiers are typically composed of one or more surfactants dispersed in a solvent system and may be derived from alcohols, fatty acids, fatty amines, glycols and alkylphenol condensation products, for example.
- the ecological impact of offshore crude oil extraction has been subject to increasing scrutiny.
- demulsifiers containing nonylphenol alkoxylates and related compounds have a deleterious effect on the marine environment.
- conventional demulsifier chemicals typically do not meet a biodegradation level of greater than 20% as established by these regulatory agencies. Consequently, the likelihood exists that a vast majority of conventional demulsifiers will be banned from offshore use in the near future.
- the present invention is directed to environmentally friendly demulsifiers for the break down of hydrocarbon-water emulsions encountered in crude oil production and other petroleum applications.
- the demulsification formulations of the present invention meet or exceed regulatory standards for biodegradability and aquatoxicity (i.e., the present demulsifiers are non-mutagenic, non-reprotoxic or endocrine disrupting).
- the present invention provides a water-in-oil demulsifier that includes a poly(tetramethylene glycol) and an alkylene glycol copolymer linked to the poly(tetramethylene glycol) by a difunctional coupling agent.
- the demulsifier may have the following formula:
- A is the poly(tetramethylene glycol)
- B is the difunctional coupling agent
- C is the alkylene glycol copolymer
- m is from about 0.01 to about 100
- n is an integer from 1 to about 100.
- the difunctional coupling agent may be a carboxylic diacid or a difunctional isocyanate.
- a carboxylic diacid coupling agent produces a polyester demulsifier whereas a difunctional isocyanate coupling agent produces a polyurethane demulsifier.
- the alkylene glycol copolymer may be composed of polyethylene glycol), polypropylene glycol) and/or poly(butylene glycol).
- the poly(tetramethylene glycol) is a poly(tetrahydrofuran).
- the alkylene glycol copolymer is a block copolymer composed of poly(ethylene glycol) and poly(propylene glycol).
- the alkylene glycol copolymer may include an alkoxylated amine, the alkoxylated amine having the formula:
- the demulsifier includes a poly(tetramethylene glycol) and an alkoxylated amine linked to the poly(tetramethylene glycol) by a difunctional coupling agent.
- the demulsifier has the following formula:
- A is the poly(tetramethylene glycol)
- B is the difunctional coupling agent
- D is the alkoxylated amine
- m is in the range from about 0.01 to about 100
- n is an integer in the range from 1 to about 100.
- the difunctional coupling agent may be a carboxylic diacid.
- the alkoxylated amine has the same formula as set forth above.
- the present invention provides a method for resolving or breaking an emulsion comprising oil and water.
- the method includes contacting the emulsion with any of the demulsifiers described herein.
- the present invention contemplates a method that contacts an emulsion with a demulsifier composed of 1) a poly(tetramethylene glycol) and an alkylene glycol copolymer linked thereto by a difunctional coupling agent; 2) a poly(tetramethylene glycol) and an alkylene glycol copolymer that includes an alkoxylated amine, the alkylene glycol copolymer- alkoxylated amine linked to the poly(tetramethylene glycol) by a difunctional coupling agent; and 3) a poly(tetramethylene glycol) and an alkoxylated amine linked to the poly(tetramethylene glycol) by a difunctional coupling agent.
- the method includes dispersing the demulsifier in a suitable solvent or liquid carrier including, for example, aromatic hydrocarbons, aliphatic hydrocarbons such as kerosene, glycols, glycol ethers, alcohols, water, fatty acid methyl esters, and combinations thereof.
- a suitable solvent or liquid carrier including, for example, aromatic hydrocarbons, aliphatic hydrocarbons such as kerosene, glycols, glycol ethers, alcohols, water, fatty acid methyl esters, and combinations thereof.
- the liquid carrier is then applied to the emulsion.
- the emulsion is a water-in-oil emulsion.
- the demulsifiers of the present invention advantageously demonstrate biodegradation of at least 20% in the marine environment. In an embodiment, the demulsifier exhibits a biodegradation of from about 25% to about 55%.
- the demulsifiers of the present invention are also low in toxicity.
- the demulsifiers in the present invention demonstrate toxicity levels (EC50) of greater than 10 mgL -1 in tests with various marine species.
- the present invention generally relates to a petroleum demulsifier (also known as emulsion breakers) for resolving or otherwise "breaking" emulsions that typically form during crude petroleum extraction and/or refinement.
- emulsions include water-in-oil emulsions and oil-in-water emulsions.
- the demulsifier is a polyester (or polyester polyether) including a poly(tetramethylene glycol) and an alkylene glycol copolymer linked to the poly(tetramethylene glycol) by a difunctional coupling agent.
- the demulsifier may have the formula:
- A is the ⁇ oly(tetramethylene glycol)
- B is the difunctional coupling agent
- C is the alkylene glycol copolymer.
- the value for m may range from about 0.01 to about 100 and n may be an integer from 1 to about 100.
- the poly(tetramethylene glycol) A may be present from about 5% to about 90% by weight of the demulsifier
- the difunctional coupling agent B may be present from about 1% to about 50% by weight of the demulsifier
- the alkylene glycol copolymer C may be present from about 5% to about 90% by weight of the demulsifier.
- A is present from about 35% to about 71% by weight
- B is present from about 5% to about 18% by weight
- C is present from about 5% to about 53% by weight of the demulsifier.
- the poly(tetramethylene glycol) of the present invention may be any linear tetramethylene glycol polymer or linear 4-carbon oxide polymer as is commonly known in the art.
- suitable poly(tetramethylene glycol) include poly(tetramethylene oxide), poly(oxytetramethylene), poly(oxytetramethylene) glycol, poly(tetramethylene ether), and poly(tetrahydrofi ⁇ ran).
- the poly(tetramethylene glycol) may be furan tetrahydro polymer or poly(oxy-l,4-butanediyl)- ⁇ -hydro- ⁇ -hydroxyl.
- furan tetrahydro polymer or poly(oxy-l,4-butanediyl)- ⁇ -hydro- ⁇ -hydroxyl.
- Such compounds are commonly known as poly(tetrahydro furan) or poly(THF).
- a suitable poly(THF) is known under the trademark TERATHANE® and is manufactured by DuPont.
- TERATHANE® is a blend of linear diols in which the hydroxyl groups are separated by repeating tetramethylene ether groups:
- n may be from about 1 to about 100. In an embodiment, n may be from about 9 to about 30.
- the molecular weight of the poly(tetramethylene glycol) may vary with chain length as is commonly known in the art, with the molecular weigh ranging from about 100 to about 10,000. In an embodiment, the average molecular weight of the poly(tetramethylene glycol) may be from about 600 to about 3000. In a further embodiment, the average molecular weight of the poly(THF) is about 2000.
- alkylene glycol copolymer or poly(alkylene glycol) copolymer, is a copolymer derived from two or more alkylene glycol monomers.
- Alkylene glycol monomers are olefin oxides and form polymers having the general formula:
- R is an H, CH 3 or CH 2 CH 3 radical.
- the alkylene glycol copolymer is composed of monomers selected from ethylene glycol, propylene glycol, and combinations thereof.
- the monomers may be copolymerized to form a random, an alternating, or a block alkylene glycol copolymer as is commonly known in the art.
- Nonlimiting examples of suitable alkylene glycol block copolymers include poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol), poly(propylene glycol)-block- poly(tetrahydrofiiran)-block-poly(propylene glycol), and poly(ethylene glycol)-block- poly(tetrahydrofuran)-block-poly(ethylene glycol).
- the formula for each respective alkylene glycol block copolymer is set forth below.
- the alkylene glycol copolymer is a poly(ethylene glycoi)-block-poly(propylene g ⁇ yco ⁇ )-block- poly(ethylene glycol).
- the alkylene glycol copolymer is a block copolymer of formula:
- the values for x, y, and z may vary independently and may range from 1 to about 150. In an embodiment, the values for x and z are the same.
- the values for x, y, and z may be adjusted to alter the molecular weight of the alkylene glycol copolymer which concomitantly alters or varies the oxygen content of the alkylene glycol copolymer as is commonly known in the art. For example, an increase in the molecular weight of the poly(ethylene glycol) moiety typically increases the polarity of the demulsifier.
- the poly(propylene glycol) is present in an amount from about 50% to about 90% by weight of the alkylene glycol copolymer.
- the poly(propylene glycol) is present in about 50% by weight of the alkylene glycol copolymer.
- the alkylene glycol polymer is a poly(ethylene glycol) (see Example 3) and contains 0% PO.
- Block EO/PO copolymers are commonly known under the trademark PLURONIC®, manufactured by BASF.
- the difunctional coupling agent contains two functional groups.
- the difunctional coupling agent may be a carboxylic diacid (i.e., two carbonyl groups) or a difunctional isocyanate.
- the difunctional coupling agent is an aliphatic or aromatic carboxylic diacid having from 1 to about 20 carbon atoms.
- the carboxylic diacid is selected from the group consisting of adipic acid, succinic acid, glutaric acid, and terephthalic acid.
- the acid may be a poly-acid such as a tri-acid or a tetra-acid, for example.
- suitable poly-acids include the tri-acid nitrilotriacetic acid, N(CH 2 CO 2 H) 3 and the tetra-acid EDTA, ethylenediamine tetraacetic acid.
- the difunctional coupling agent may be adipic acid and the demulsifier may have the following formula:
- f ranges from about 1 to about 100
- m ranges from 1 to about 100
- n ranges from 1 to about 100
- x ranges from 1 to about 150
- y ranges from 0 to about 150
- z ranges from 0 to about 150.
- the molecular weight of the poly(tetramethylene glycol) may range from about 100 to about 10,000 and the molecular weight of the alkylene glycol copolymer may range from about 100 to about 10,000.
- the difunctional coupling agent may be an aliphatic or an aromatic difunctional isocyanate having from 1 to about 20 carbon atoms to produce a polyurethane demulsifier.
- the difunctional coupling agent may be toluene diisocyanate or hexamethylenediisocyanate.
- the demulsifier may have the following formula:
- the alkylene glycol copolymer may also include an alkoxylated amine.
- the alkoxylated amine may have the following formula:
- R 1 is selected from the group consisting of an alkyl radical having from 1 to about 23 carbon atoms and an alkenyl radical having from 2 to about 23 carbon atoms
- R 2 is H or CH 3 and may take both meanings so that the alkylene glycol moieties may be either poly(ethylene glycol), poly(propylene glycol) or a combination of both.
- the values for a and b may independently range from 1 to about 50.
- R 1 may be from about 16 to about 18 carbon atoms
- the demulsifier includes the poly(tetramethylene glycol) and the alkoxylated amine is linked to the poly(tetramethylene glycol) by the difunctional coupling agent.
- the demulsifier has the formula:
- A is the poly(tetramethylene glycol)
- B is the difunctional coupling agent
- D is the alkoxylated amine.
- the value for m may range from about 0.01 to about 100, and n may be an integer in the range from 1 to about 100.
- the formula for the alkoxylated amine may be as previously discussed herein.
- the alkylene glycol moiety may be incorporated within an alkoxylated acceptor/polyol, such as an alkoxylated glycerol or sorbitol, for example.
- the difunctional coupling agent may be an aliphatic or aromatic carboxylic diacid having from 1 to about 20 carbon atoms.
- the carboxylic diacid may be adipic acid, succinic acid, glutaric acid and terephthalic acid with adipic acid being preferred.
- a poly acid such as a tri-acid or a tetra- acid may be used as the coupling agent.
- the coupling agent may be adipic acid and the demulsifier has the following formula:
- f ranges from about 1 to about 100
- m ranges from 1 to about 100
- n ranges from 1 to about 100.
- the molecular weight of the poly(tetramethylene glycol) may range from about 100 to about 10,000 and the molecular weight of the alkoxylated amine may range from about 100 to about 10,000.
- the demulsif ⁇ er formulations of the present invention demonstrate improved biodegradation characteristics. The skilled artisan will appreciate that biodegradation of a formulation may be determined by such non-limiting testing procedures as OECD 301, 302, or 306 protocols, EU, ISO, EPA, ASTM, and OSPAR. OECD 306 protocol is an accepted method to assess biodegradation of a chemical substance in sea- water.
- biodegradation as herein described is biodegradation as determined by OECD protocol 306.
- the demulsifiers of the present invention are at least 20% biodegradable in accordance with OECD 306 protocol, hi an embodiment, the demulsifier may have a biodegradation from about 25% to about 55% in accordance with OECD 306.
- the present invention further contemplates a method for breaking an emulsion comprising oil and water. The method includes contacting the emulsion with any of the demulsifiers as herein described.
- the method may include contacting an emulsion with a demulsifier composed of a poly(tetramethylene glycol) and an alkylene glycol copolymer linked thereto by a difunctional coupling agent as previously described.
- the method may also include contacting the emulsion with the demulsifier composed of the poly(tetramethylene glycol), and the alkylene glycol copolymer-alkoxylated amine linked to the poly(tetramethylene glycol) by the difunctional coupling agent.
- the method may include contacting the emulsion with a demulsifier having the poly(tetramethylene glycol), and the alkoxylated amine linked thereto by the difunctional coupling agent.
- the method includes dispersing the demulsifier in a suitable solvent or liquid carrier.
- suitable solvents and carriers include aromatic hydrocarbons, aliphatic hydrocarbons such as kerosene, glycols, glycol ethers, alcohols, water, fatty acid methyl esters, and the like or a combination thereof.
- the liquid carrier may then be applied to the emulsion by any suitable process as is commonly known in the art.
- the demulsifier may be used alone or in combination with any of a number of additional demulsifiers known in the art including, but not limited to alkylphenol formaldehyde condensation products such as alkylphenol formaldehyde resin alkoxylates (AFRA), polyalkylene glycols (PAG) including polypropylene glycols (PPG) and cross-linked PPG's, organic sulfonates, alkoxylated alcohols, alkoxylated polyols, fatty acids, complex resin esters, alkoxylated fatty amines, alkoxylated polymeric amines, and the like.
- the demulsifier may also be used in combination with corrosion inhibitors, viscosity reducers and other chemical treatments used in crude oil production, refining and chemical processing.
- the demulsifying formulations of the present invention may be used to prevent, break, or resolve water-in-oil or oil-in-water type emulsions and crude petroleum oil emulsions in particular.
- the present demulsifiers may also be used to break hydrocarbon emulsions derived from refined mineral oil, gasoline, kerosene, etc.
- the present demulsifiers may be applied at any point during the petroleum oil extraction and/or production process as is commonly known in the art. For instance, the present demulsifiers may be introduced at the well head, via downhole injection, either continuously or periodically, or at any point between the wellhead and the final oil storage.
- the reactor was purged with nitrogen gas under heated at about 170°C. The temperature was maintained at about 170°C for about 5 hours. The reactor was then cooled to 70°C and 0.5 g of triethylamine was charged to the reactor. The resultant polyester product was cooled and transferred from the reactor. Biodegradation by OECD 306: 22%. Toxicity data:
- Corophium volutator EC50 > 2500 mgL -1 Scopthalmus maximus EC50 > 1000 mgL -1
- EXAMPLE 2 71.02 grams ("g") of poly(tetrahydrofuran) was charged into a suitable reactor and maintained at greater than 70°C. The number average molecular weight of the poly(tetrahydrofuran) was about 640. Next, 105.6 g of poly(ethylene glyco ⁇ )-block- poly(propylene glycol)-block-poly(ethylene glycol) was charged into the reactor. The block copolymer had a molecular weight of about 1900 at about 50% by weight of ethylene oxide ("EO"). Next, 20.28 g of adipic acid was charged into the reactor while stirring vigorously. Then, 2.0 g of p-toluene sulfonic acid was charged into the reactor.
- EO ethylene oxide
- EXAMPLE 4 142.4 grams ("g") of poly(tetrahydrofuran) was charged into a suitable reactor and maintained at greater than 70°C. The number average molecular weight of the poly(tetrahydrofuran) was about 2000. Next, 10.4 g of poly(ethylene glycol) was charged into the reactor. The poly(ethylene glycol) had a molecular weight of about 600. Next, 32.8 g of poly(ethylene glycoi)-Z>/oc&-poly(propylene glyco ⁇ )-block- poly(ethylene glycol) was charged into the reactor. The block copolymer had a molecular weight of about 1900 at about 50% by weight of ethylene oxide ("EO").
- EO ethylene oxide
- EXAMPLE 5 124.4 grams ("g") of poly(tetrahydrofuran) was charged into a suitable reactor and maintained at greater than 70°C. The number average molecular weight of the poly(tetrahydrofuran) was about 640. Next, 33.94 g of oxyalkylated tallow amine was charged into the reactor. The oxyalkylated primary tallow amine had a molecular weight of about 1000 at about 70% ethylene oxide ("EO"). Next, 35.04 g of adipic acid was charged into the reactor while stirring vigorously. Then, 3.6 g of p-toluene sulfonic acid was charged into the reactor. The reactor was purged with nitrogen gas under heated at about 170°C.
- the temperature was maintained at about 170 °C for about 5 hours.
- the reactor was then cooled to 70°C and 1.87 g of triethylamine was charged to the reactor.
- the resultant polyester product was cooled and transferred from the reactor. Biodegradation by OECD 306: 52%.
- Samples of a crude oil emulsion were placed in graduated prescription bottles and heated to 63 °C in a water bath.
- the heated samples were treated with 200 ppm by weight of the polyester composition made pursuant to each of Example 1-5 as discussed above.
- the treated crude samples were then shaken 150 times to mix the additive (i.e., polyester composition) into the crude oil.
- the samples were then returned to the water bath at 63°C. After 5 minutes, the samples were removed from the water bath. Any free water that has separated from the crude emulsion was then recorded. The sample was then returned to the hot water bath. Free water readings were repeatedly taken at 15 and 60 minutes. After 60 minutes, a 5 niL sample of the crude oil was taken from a point approximately 15 mL above the level of the free water.
- the crude sample was diluted with 5 mL hydrocarbon solvent in a graduated centrifuge tube and shaken vigorously. The diluted sample was placed in a centrifuge at high speed for 10 minutes. The centrifuged sample was removed and free water (W) and residual emulsion (BS) levels were then recorded.
- W free water
- BS residual emulsion
- the polyester composition made pursuant to an embodiment of the present invention displayed effective demulsifier properties based on the Bottle Test.
- crude oil Samples 1-5 were treated with a polyester composition made pursuant to Examples 1-5, respectively.
- the Bottle Test was also conducted on a blank sample and a comparative crude oil sample that was treated with a commercially available demulsifier.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Polyethers (AREA)
- Biological Depolymerization Polymers (AREA)
- Lubricants (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Surgical Instruments (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2591450A CA2591450C (en) | 2004-12-20 | 2005-11-02 | Environmentally friendly demulsifiers for crude oil emulsions |
EA200701317A EA014161B1 (ru) | 2004-12-20 | 2005-11-02 | Деэмульгатор (варианты) и способ разрушения эмульсии, содержащей нефть и воду |
BRPI0517206A BRPI0517206B1 (pt) | 2004-12-20 | 2005-11-02 | desemulsificante do tipo água-em-óleo, e método para decompor uma emulsão que compreende óleo e água |
NO20072956A NO343001B1 (no) | 2004-12-20 | 2007-06-11 | Miljøvennlige demulgatorer for råolje emulsjoner. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/017,390 US7566744B2 (en) | 2004-12-20 | 2004-12-20 | Environmentally friendly demulsifiers for crude oil emulsions |
US11/017,390 | 2004-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006068702A2 true WO2006068702A2 (en) | 2006-06-29 |
WO2006068702A3 WO2006068702A3 (en) | 2007-01-04 |
Family
ID=36596919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/039629 WO2006068702A2 (en) | 2004-12-20 | 2005-11-02 | Environmentally friendly demulsifiers for crude oil emulsions |
Country Status (6)
Country | Link |
---|---|
US (2) | US7566744B2 (ru) |
BR (1) | BRPI0517206B1 (ru) |
CA (1) | CA2591450C (ru) |
EA (1) | EA014161B1 (ru) |
NO (1) | NO343001B1 (ru) |
WO (1) | WO2006068702A2 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106335968A (zh) * | 2016-10-19 | 2017-01-18 | 中国石油化工股份有限公司 | 一种高含聚稠油污水破乳剂及制备方法 |
WO2019099400A1 (en) | 2017-11-14 | 2019-05-23 | Dow Global Technologies Llc | Method of using high molecular weight aromatic polyol diesters as demulsifiers for crude oil treatment |
WO2019099403A1 (en) | 2017-11-14 | 2019-05-23 | Dow Global Technologies Llc | Composition and synthesis of high molecular weight aromatic polyol polyesters |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100778532B1 (ko) * | 2007-04-13 | 2007-11-28 | 최홍윤 | 폐유 처리방법 |
US8133924B2 (en) * | 2007-08-13 | 2012-03-13 | Rhodia Operations | Demulsifiers and methods for use in pharmaceutical applications |
CA2696312C (en) * | 2007-08-13 | 2015-10-06 | Rhodia, Inc. | Method for separating crude oil emulsions |
US7671099B2 (en) * | 2007-08-13 | 2010-03-02 | Rhodia Inc. | Method for spearation crude oil emulsions |
US20090197978A1 (en) * | 2008-01-31 | 2009-08-06 | Nimeshkumar Kantilal Patel | Methods for breaking crude oil and water emulsions |
AU2010268009B2 (en) | 2009-07-03 | 2013-08-01 | Akzo Nobel Chemicals International B.V. | Polymeric corrosion inhibitors |
WO2012028542A1 (en) | 2010-08-30 | 2012-03-08 | Akzo Nobel Chemicals International B.V. | Use of polyester polyamine and polyester polyquaternary ammonium compounds as corrosion inhibitors |
MX340805B (es) | 2011-04-18 | 2016-06-24 | Inst Mexicano Del Petróleo | Formulaciones sinergicas de copolimeros funcionalizados y liquidos ionicos para el deshidratado y desalado de aceites crudos medianos, pesados y extrapesados. |
US9701888B2 (en) | 2012-03-27 | 2017-07-11 | Ecolab Usa Inc. | Microemulsion flowback aid composition and method of using same |
US9353261B2 (en) | 2012-03-27 | 2016-05-31 | Nalco Company | Demulsifier composition and method of using same |
CA2867595C (en) * | 2012-04-20 | 2017-01-10 | Nalco Company | Demulsifier composition and method of using same |
MX378418B (es) | 2013-02-26 | 2025-03-10 | Inst Mexicano Del Petroleo | Copolìmeros en bloques sintesis y uso como agentes deshidratantes y desalantes de crudos pesados. |
MX2013002359A (es) | 2013-02-28 | 2014-09-03 | Inst Mexicano Del Petróleo | Composiciones deshidratantes y desalantes de crudos a base de copolimeros tribloques a, o bifuncionalizados con aminas. |
AU2016222831B2 (en) | 2015-02-27 | 2020-11-19 | Championx Usa Inc. | Compositions for enhanced oil recovery |
US10072217B2 (en) | 2015-03-04 | 2018-09-11 | Ecolab Usa Inc. | Reverse emulsion breaker polymers |
US9914882B2 (en) | 2015-03-06 | 2018-03-13 | Ecolab Usa Inc. | Reverse emulsion breaker polymers |
US10808165B2 (en) | 2016-05-13 | 2020-10-20 | Championx Usa Inc. | Corrosion inhibitor compositions and methods of using same |
US11203709B2 (en) | 2016-06-28 | 2021-12-21 | Championx Usa Inc. | Compositions for enhanced oil recovery |
US11162053B2 (en) | 2017-06-09 | 2021-11-02 | Ecolab Usa Inc. | Nonylphenol ethoxylate-free oil dispersant formulation |
CN113648685A (zh) * | 2021-08-18 | 2021-11-16 | 唐山华油微生物科技开发有限公司 | 高效复合微生物破乳剂及其应用 |
US11981871B1 (en) * | 2023-03-13 | 2024-05-14 | Baker Hughes Oilfield Operations Llc | Methods of designing green demulsifiers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3594393A (en) * | 1968-12-18 | 1971-07-20 | Petrolite Corp | Use of polyurethanes as demulsifiers |
US5936045A (en) * | 1995-02-16 | 1999-08-10 | Basf Aktiengesellschaft | Biodegradable polymers, the preparation thereof, and the use thereof for producing biodegradable moldings |
US6399735B1 (en) * | 1992-12-17 | 2002-06-04 | Henkel Kommanditgesellschaft Auf Aktien | Hydrophilic polyurethanes |
US20040147407A1 (en) * | 2003-01-24 | 2004-07-29 | Hahn Carl W. | Polyether polyesters having anionic functionality |
US6787628B2 (en) * | 2000-11-08 | 2004-09-07 | Avecia Limited | Polyether/polyurethane association thickeners |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE823493A (fr) * | 1974-01-16 | 1975-06-18 | Produits de polyaddition d'oxydes d'alkylene a base de tetrahydrofuranne | |
US4202957A (en) * | 1974-09-09 | 1980-05-13 | The Upjohn Company | Thermoplastic polyurethane elastomers from polyoxypropylene polyoxyethylene block copolymers |
GB1567310A (en) * | 1975-12-29 | 1980-05-14 | Ici Ltd | Demulsification of water-in-oil emulsions |
US4183821A (en) * | 1978-05-26 | 1980-01-15 | Basf Wyandotte Corporation | Heteric/block polyoxyalkylene compounds as crude oil demulsifiers |
DE3136213A1 (de) * | 1981-09-12 | 1983-03-31 | Hoechst Ag, 6230 Frankfurt | Bisester aus alkenylbernsteinsaeuren und ethylenoxid-propylenoxid-blockpolymeren und deren verwendung |
JPH0739457B2 (ja) * | 1986-05-14 | 1995-05-01 | タキロン株式会社 | 両親媒性セグメントポリウレタン |
US5153259A (en) * | 1987-11-18 | 1992-10-06 | Imperial Chemical Industries Plc | Aqueous dispersions |
DE3921554A1 (de) * | 1989-06-30 | 1991-01-17 | Henkel Kgaa | Klebestift mit verbesserter klebkraft |
DE3938061A1 (de) | 1989-11-16 | 1991-05-23 | Bayer Ag | Verknuepfte, aminmodifizierte polyalkylenoxide, deren herstellung und deren verwendung als emulsionsspalter |
US20040176537A1 (en) * | 2001-10-16 | 2004-09-09 | Armentrout Rodney Scott | Inherently electrostatic dissipating block copolymer compositions |
-
2004
- 2004-12-20 US US11/017,390 patent/US7566744B2/en not_active Expired - Fee Related
-
2005
- 2005-11-02 EA EA200701317A patent/EA014161B1/ru not_active IP Right Cessation
- 2005-11-02 CA CA2591450A patent/CA2591450C/en not_active Expired - Fee Related
- 2005-11-02 BR BRPI0517206A patent/BRPI0517206B1/pt not_active IP Right Cessation
- 2005-11-02 WO PCT/US2005/039629 patent/WO2006068702A2/en active Application Filing
-
2007
- 2007-06-11 NO NO20072956A patent/NO343001B1/no not_active IP Right Cessation
-
2009
- 2009-06-22 US US12/489,079 patent/US8802740B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3594393A (en) * | 1968-12-18 | 1971-07-20 | Petrolite Corp | Use of polyurethanes as demulsifiers |
US6399735B1 (en) * | 1992-12-17 | 2002-06-04 | Henkel Kommanditgesellschaft Auf Aktien | Hydrophilic polyurethanes |
US5936045A (en) * | 1995-02-16 | 1999-08-10 | Basf Aktiengesellschaft | Biodegradable polymers, the preparation thereof, and the use thereof for producing biodegradable moldings |
US6787628B2 (en) * | 2000-11-08 | 2004-09-07 | Avecia Limited | Polyether/polyurethane association thickeners |
US20040147407A1 (en) * | 2003-01-24 | 2004-07-29 | Hahn Carl W. | Polyether polyesters having anionic functionality |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106335968A (zh) * | 2016-10-19 | 2017-01-18 | 中国石油化工股份有限公司 | 一种高含聚稠油污水破乳剂及制备方法 |
CN106335968B (zh) * | 2016-10-19 | 2020-05-19 | 中国石油化工股份有限公司 | 一种高含聚稠油污水破乳剂及制备方法 |
WO2019099400A1 (en) | 2017-11-14 | 2019-05-23 | Dow Global Technologies Llc | Method of using high molecular weight aromatic polyol diesters as demulsifiers for crude oil treatment |
WO2019099403A1 (en) | 2017-11-14 | 2019-05-23 | Dow Global Technologies Llc | Composition and synthesis of high molecular weight aromatic polyol polyesters |
CN111511801A (zh) * | 2017-11-14 | 2020-08-07 | 陶氏环球技术有限责任公司 | 高分子量芳族多元醇聚酯的组合物与合成 |
US11124712B2 (en) | 2017-11-14 | 2021-09-21 | Dow Global Technologies Llc | Method of using high molecular weight aromatic polyol polyesters as demulsifiers for crude oil treatment |
Also Published As
Publication number | Publication date |
---|---|
US8802740B2 (en) | 2014-08-12 |
BRPI0517206B1 (pt) | 2017-05-09 |
US20090259004A1 (en) | 2009-10-15 |
CA2591450A1 (en) | 2006-06-29 |
EA014161B1 (ru) | 2010-10-29 |
US20060135628A1 (en) | 2006-06-22 |
CA2591450C (en) | 2012-05-08 |
NO343001B1 (no) | 2018-09-24 |
NO20072956L (no) | 2007-06-11 |
US7566744B2 (en) | 2009-07-28 |
BRPI0517206A (pt) | 2008-09-30 |
EA200701317A1 (ru) | 2007-12-28 |
WO2006068702A3 (en) | 2007-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8802740B2 (en) | Environmentally friendly demulsifiers for crude oil emulsions | |
CA2696312C (en) | Method for separating crude oil emulsions | |
CA1108190A (en) | Heteric/block polyoxyalkylene compounds as crude oil demulsifiers | |
EP0696631B1 (en) | Demulsifier for water-in-oil emulsions and method of use | |
EP0985722B1 (en) | Method of inhibiting the formation of oil and water emulsions | |
NO340189B1 (no) | Alkoksylert alkylfenol-formaldehyd-diaminpolymer | |
SG188095A1 (en) | Methods for breaking crude oil and water emulsions | |
US7041707B2 (en) | Polyether polyesters having anionic functionality | |
EP3066155A1 (en) | Demulsifiers for oil soluble polyalkylene glycol lubricants | |
WO2008089130A1 (en) | Lubricant compositions and methods of making same | |
CA2127303C (en) | Method of demulsifying water-in-oil emulsions | |
EP0641853B1 (en) | Method of demulsifying water-in-oil emulsions | |
US3244770A (en) | Surface active agents derived from polycarboxylic acids esterified with oxyalkylated phenolics and polyoxy-alkylene glycol | |
WO2013165701A1 (en) | Incorporation of lactones into crosslinked-modified polyols for demulsification | |
US20230348707A1 (en) | Random bipolymers of controlled molecular mass based on hydroxyacrylates and their use as destabilizers of water/oil emulsions in crude oils | |
US20060025324A1 (en) | Method of using a defoamer | |
GB2346378A (en) | Demulsification of water-in-oil emulsions using high molecular weight polyurethanes | |
US20230256359A1 (en) | Supplemental demulsifier additive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2591450 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200701317 Country of ref document: EA |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05851304 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: PI0517206 Country of ref document: BR |