[go: up one dir, main page]

WO2006059495A1 - Ice making device - Google Patents

Ice making device Download PDF

Info

Publication number
WO2006059495A1
WO2006059495A1 PCT/JP2005/021203 JP2005021203W WO2006059495A1 WO 2006059495 A1 WO2006059495 A1 WO 2006059495A1 JP 2005021203 W JP2005021203 W JP 2005021203W WO 2006059495 A1 WO2006059495 A1 WO 2006059495A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice making
ice
cold air
conducting member
air conducting
Prior art date
Application number
PCT/JP2005/021203
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Takagi
Masahiro Nishiyama
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006059495A1 publication Critical patent/WO2006059495A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/02Freezing surface state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means

Definitions

  • the present invention relates to an ice making device that can rapidly and efficiently produce ice with high transparency, and that can be stored while maintaining high quality.
  • this ice making device 169 is connected to an evaporation pipe (refrigerant pipe; a refrigerant of approximately ⁇ 15 ° C. to ⁇ 25 ° C. is flowing) of a refrigeration cycle (not shown).
  • the ice making plate 101 arranged vertically is sprinkling (flowing down) the ice making water through the water sprinkling hole 144.
  • the ice making device 169 of Patent Document 1 supplies water for deicing (for deicing) to the ice making plate 101 via the ice removing pipe 171, thereby generating one piece of generated ice. The part is melted and the ice is deiced.
  • an ice making device 169 as shown in FIG. 23 (perspective view), FIG. 24A (front view of FIG. 23) and FIG. 24B (side view of FIG. 23) is considered.
  • This ice making device 169 has a low thermal conductivity (refrigerant)
  • the meandering refrigerant pipe 102 is attached by welding or the like on the ice-making plate 101 made of stainless steel or the like. Further, the ice making device 169 is erected on the ice making plate 101 such that a plurality of ribs 111 extending in one direction (vertical direction) are arranged.
  • an ice making plate 101 having a low thermal conductivity and stainless steel is used in the ice making device 169 shown in FIG. 23, FIG. 24, and FIG. 24B. By using it, only the vicinity of the refrigerant pipe 102 is made below the freezing point. Therefore, the ice-making water flowing from the sprinkling hole 144 flows down into the groove (flowing groove 121) on the ice-making plate 101 formed by the ribs 111. Ice).
  • the ice making device 169 shown in FIG. 23, FIG. 24, and FIG. 24B heats the ice making plate 101 by causing the hot gas immediately after compression in the refrigeration cycle to flow into the refrigerant pipe 102, and thereby Thaw the part and let the ice come off.
  • Patent Document 1 Japanese Patent Laid-Open No. 55-53668 (see Fig. 1)
  • the ice making device 169 shown in Fig. 23, Fig. 24, and Fig. 24B described above has a thermal conductivity that prevents the entire area on the ice making plate 101 from cooling efficiently in order to generate separated ice.
  • the ice making plate 101 is made of a low material. Therefore, there is a problem that a part of the refrigeration capacity due to the cold air of the refrigerant is wasted.
  • ice is made by melting (thermal melting) a part of the generated ice in the de-icing process.
  • the ice is getting away from 101.
  • the inside of the BOX storing the ice is kept at about 0 ° C to 5 ° C only by the latent heat of the ice which itself prevents the formation of the ice having the above-described continuous shape, and the ice is reused.
  • the ice is slightly melted and stored. Therefore, long-term (long-term) storage is difficult.
  • ice containing pure water as a main component contains a very small amount of components such as chlorine. For this reason, if the ice melted out gradually is stored for a long time, there will be a problem that germs and the like will propagate.
  • the above-mentioned deicing method has a fundamental problem when a part of the refrigeration capacity used for ice making is wasted, and it is an efficient deicing method. Nare ,.
  • the present invention has been made to solve the above-described problems, and is capable of generating ice by effectively utilizing the refrigerating capacity, and also capable of preserving ice while maintaining high quality. Therefore, an object of the present invention is to provide an ice making device that does not allow moisture to adhere to the surface of ice that has been deiced. Means for solving the problem
  • the present invention is an ice making device that generates ice by adhering water onto a cooled ice making unit, wherein the ice making unit is composed of a first member and a second member. It is characterized by.
  • the first member and the second member are a first cold air conducting member (first heat conducting member) and a second cold air conducting member (second heat conducting member) having different thermal conductivities. You can do it. In addition, the first member and the second member become the first cold air conductive member and the second cold air conductive member having different thermal conductivities depending on the presence or absence of the heat insulation treatment.
  • the present invention is an ice making device that generates ice by adhering water onto, for example, an ice making part that is cooled by a refrigerant.
  • the ice making part has a conductivity (heat It is characterized by being composed of a first cold air conducting member and a second cold air conducting member having different conductivities.
  • the first cold air conducting member has a cold conductivity that maintains a temperature below the freezing point by a refrigerant or the like, while the second cold air conducting member has a temperature exceeding the freezing point by the refrigerant or the like. Maintaining the conductivity of the cold air.
  • the first cold air conducting member capable of solidifying water into ice, and the second cold air conducting member which does not drop in temperature to the solidifying temperature (ie, freezing point). are mixed. Therefore, when water is attached to the ice making part, a part where ice is generated and a part where ice cannot be generated are generated. In other words, ice is not generated over the entire ice making area. As a result, a plurality of separated lump ice is formed in the ice making section.
  • the second cold air conducting member does not become below the freezing point due to the cold air or cold heat of the refrigerant.
  • the first cold air conducting member is rapidly cooled by cold air or cold heat.
  • the refrigeration capacity can be sufficiently effectively utilized while generating a plurality of separated ice (lump ice). (For example, improving ice-making efficiency and shortening ice-making time).
  • the ice making device of the present invention does not require the ice making part to be composed of only a material having low thermal conductivity at the expense of the refrigerating capacity in order to generate separated lump ice as in the prior art.
  • the ice making unit is configured by alternately arranging the first cold air conducting member and the second cold air conducting member, and preferably, alternately in the direction in which the water adhering to the ice making unit flows down. It is good to be arranged.
  • the ice making device of the present invention can guide the flowing-down water onto the first cold air conducting member that is efficient.
  • ice is generated by arranging a plurality of them along the direction in which the water flows down.
  • the first cold air conducting member and the second cold air conducting member are alternately arranged.
  • the second cold air conducting member separated at a constant interval is overlaid on at least a part of the base member including the first cold air conducting member, and the first cold air conducting member is placed on the first cold air conducting member. It may be configured to be exposed from the gap between the two cold air conducting members. This is because in the ice making unit, the first cold air conducting member and the second cold air conducting member that are exposed are arranged alternately.
  • the ice making unit has a second cold air conducting member having an opening superimposed on a base material part including at least a part of the first cold air conducting member, and the first cold air conducting member is opened. It may be configured to be expressed from This is because the first ice-cooling member and the second cold-air conducting member that are exposed are arranged alternately in the strong ice making unit. [0026] Of course, in these ice making apparatuses as well, the first cold air conducting member and the second cold air conducting member are alternately arranged in the direction in which the water adhering to the ice making part flows down, as described above. It is preferable.
  • the surface of at least one member to which water adheres in the ice making section composed of the first cold air conducting member and the second cold air conducting member (for example, the first cold air conducting member and the second cold air conducting member arranged alternately) It is preferable that the surface to which water adheres in the ice making part made of the cold air conducting member, or at least the surface of the first cold air conducting member constituting the ice making part) is a smooth surface. This is because resistance can be prevented from flowing down by doing so. In addition, if the first cold air conducting member to which water adheres has a smooth surface, there is an advantage that ice is easily generated and that it is easy to deice.
  • a partition part is provided so as to rise from a smooth surface of the ice making part (for example, from the second cold air conducting member constituting the ice making part). ing. And preferably, the extending direction of the partition (longitudinal direction of the partition) is the same as the direction in which water flows down. It should be noted that at least one partition is provided (if the partition is a plate, it may be expressed that one or more are provided).
  • the generated ice is also divided.
  • the extending direction of the partition portion is the same as the direction in which water flows down (for example, the vertical direction), so that the ice generated and sectioned in the ice making portion is arranged in a horizontal direction.
  • the ice generated and divided in the ice making section has a relationship such that the ice is aligned horizontally and vertically (ice is positioned in a matrix).
  • the partition part (for example, at least a part of the partition part) is made of the same material as that of the second cold air conducting member, so there is a situation in which the partition part and the generated ice are fixed. I don't get it.
  • the partition portion is slidable along the surface constituting the ice making portion.
  • the partition portion is formed integrally with the second cold air conduction member, and the partition portion slides along the direction in which the second cold air conduction member is displaced with respect to the first cold air conduction member. It can be moved.
  • a drive unit serving as a power source for sliding the partition unit is provided, and a transmission unit that receives power from the drive unit is provided in the partition unit. Upon receiving power from the power source, the second cold air conducting member slides away from the first cold air conducting member.
  • the sliding movement of the partition portion in this way means that the ice generated in the ice making portion (specifically, on the first cold air conducting member) comes into strong contact with the sliding partition portion.
  • a shearing force is applied to the ice stuck on the first cold air conducting member, the sticking between the ice and the first cold conducting member is released, and the ice is separated from the force of the first cold air conducting member.
  • the ice making device of the present invention does not need to deliberately melt the ice surface in order to release the ice from the first cold air conducting member.
  • an ice storage unit for storing the ice generated in the ice making unit is provided, and if the inside of the ice storage unit is maintained below the freezing point, a support due to melting of ice is provided. Size reduction can be prevented. In addition, since it does not melt, water no longer exists, and it is possible to prevent the propagation of germs and the like in the ice reservoir.
  • the first cold conducting member to which water adheres is subjected to a peeling process that makes it easy to peel off the generated ice. It is preferable.
  • a fluororesin may be coated on the first cold air conducting member.
  • the adhesion strength between the first cold air conducting member and ice does not increase relatively, the slide moving distance of the partition part is lengthened, and the driving force of the drive part that slides the partition part is increased. There is no need to do this.
  • cooling by a refrigerant cooling using a refrigerant; for example, cooling by cold air cooled by a refrigerant or cooling by cold refrigerant
  • other cooling methods may be used.
  • cooling by a refrigerant cooling using a refrigerant; for example, cooling by cold air cooled by a refrigerant or cooling by cold refrigerant
  • other cooling methods may be used.
  • an ice making unit where ice is generated is combined with members having different cold air conductivities (thermal conductivities) (first cold air conducting member ⁇ second cold air conducting member), The area where the refrigerant is efficiently transmitted and below the freezing point, and that the refrigerant is not transmitted efficiently and exceeds the freezing point. It is made to mix with the area which became. Therefore, the ice making device of the present invention can generate a plurality of pieces of ice separated on the ice making unit (that is, can generate ice only on the first cold air conducting member). .
  • the ice making device of the present invention uses the refrigerant's refrigeration capacity effectively because the ice making unit does not form the entire ice making part with low heat conductivity as in the prior art, in order to generate separated ice. Ice can be generated.
  • FIG. 1 is a schematic perspective view mainly showing an ice making plate unit “icing unit” and the like in an ice making device of the present invention.
  • FIG. 2A is a front view of FIG.
  • FIG. 2B is a side view of FIG.
  • FIG. 3 is a side view illustrating an ice making plate unit included in an ice making apparatus, a watering unit in addition to an ice removing unit.
  • FIG. 4 is a schematic perspective view of an ice making plate unit used in the ice making device of the present invention.
  • FIG. 5 A table showing the thermal conductivity of the material constituting the ice making plate of the ice making plate unit or the bottom plate portion of the ice removing unit.
  • FIG. 6 is a schematic perspective view of an ice removal unit used in the ice making device of the present invention.
  • FIG. 7 is a three-sided view including a front view, a side view, and a bottom view of the ice removal unit.
  • FIG. 8 is a block diagram related to a control unit.
  • FIG. 9 is a perspective view showing a process (assembly process) for assembling the ice making plate unit and the ice removing unit.
  • FIG. 10 is a plan view showing a process (assembly process) for assembling the ice making plate unit and the ice removing unit.
  • FIG. 11 is a flowchart showing an ice making process.
  • FIG. 12 is a schematic perspective view of the ice making device of the present invention showing another example of FIG. 1.
  • FIG. 13A is a front view of FIG.
  • FIG. 13B is a side view of FIG.
  • FIG. 14 is a schematic perspective view of an ice making plate unit showing another example of FIG.
  • FIG. 15 is a schematic perspective view of an ice removal unit showing another example of FIG. 6.
  • FIG. 16 is a three-sided view including a front view, a side view, and a bottom view of the ice removal unit showing another example of FIG.
  • FIG. 17 is a schematic side view of the ice making device of the present invention after completion of the ice making process.
  • FIG. 18 is a schematic side view of an ice making device of the present invention performing an ice removal step.
  • FIG. 19 is a schematic perspective view of the ice making device of the present invention showing another example of FIGS. 1 and 12.
  • FIG. 20 is a schematic side view of the ice making device of the present invention showing another example of FIG. 1, FIG. 12 and FIG.
  • FIG. 21 is a schematic perspective view of an ice removing unit showing another example of FIGS. 6 and 15.
  • FIG. 22 is a schematic view showing a conventional ice making device.
  • FIG. 23 is a perspective view of a conventional ice making device showing another example of FIG.
  • FIG. 24A is a front view of FIG.
  • FIG. 24B is a side view of FIG.
  • Tubular body (second member, second cold air conduction member, second cold heat member)
  • the ice making device of the present invention generates ice using the refrigerant supplied by the refrigeration cycle.
  • the specific configuration is as shown in FIGS.
  • the ice making device 69 of the present invention includes an ice making plate unit 7 (see FIG. 4), an ice removing unit 17 (see FIG. 6), an ice removing unit drive motor (RU motor) 31, and water spraying. It includes a unit 47, an ice making completion detection sensor 51 (see Fig. 8), a control unit 52 (see Fig. 8), and an ice storage BOX (ice storage unit) 53.
  • FIG. 1 is a perspective view mainly showing the ice making plate unit 7 and the ice removing unit 17 in the ice making device 69 of the present invention.
  • FIG. 2 (a) is a front view of FIG. b) is a side view of Fig. 1.
  • FIG. 3 is a side view illustrating the ice making plate unit 7 and the ice removing unit 17 as well as the watering unit 47 and the like.
  • the ice making plate unit 7 includes a refrigerant pipe 2 and an ice making plate 1 (first member, first cold air conducting member, first cold heat conducting member) attached to the refrigerant pipe 2. It is summer.
  • the ice making plate 1 is provided with a mesh line.
  • the refrigerant pipe 2 is a pipe through which refrigerant (refrigerant gas, refrigerant liquid) flows in the refrigeration cycle.
  • the refrigeration cycle (not shown) includes at least a compressor that compresses refrigerant at high temperature and high pressure, a condenser that condenses and liquefies the compressed refrigerant, an expansion valve that expands the condensed liquefied refrigerant, and a refrigerant
  • an accumulator that sends only gas to the compressor is included.
  • the refrigerant pipe 2 is configured to connect these constituent members (at least a compressor, a condenser, an expansion valve, and an accumulator) to form a circulation path (cycle). These components are expressed as refrigeration cycle unit 10 (see FIG. 8).
  • the ice making plate 1 has a plate having a high thermal conductivity (conductivity of refrigerant cold air) such as copper (Cu) or aluminum (A1). It is.
  • An ice film (ice film) is laminated on the ice making plate 1. Specifically, an ice film is stacked on the entire surface of the ice making plate 1 near the refrigerant pipe 2 by vaporization of the refrigerant flowing through the refrigerant pipe 2.
  • the ice making plate 1 is connected to the refrigerant pipe 2 that has become meandering by welding or the like in order to maintain high thermal conductivity.
  • a plurality of ice making plates 1 ⁇ 1 are attached to the meandering refrigerant pipe 2 so that the extending directions (longitudinal direction of the ice making plate 1) are parallel to each other and separated from each other so as not to contact each other. It has become.
  • the ice removal unit 17 has a standing rib (partition part) 11, a bottom plate part (second cold air conducting member) 12, and a ball screw part (transmission) Part) 13 is included.
  • the opening portion (opening 22) is shown filled in.
  • the standing rib 11 is provided so as to rise from the bottom plate portion 12.
  • the ribs are provided (stand up) so as to stand up from the bottom plate portion 12 which is arranged so that one surface is perpendicular to the horizontal plane (ground).
  • the standing ribs 11 are arranged on the surface of the bottom plate portion 12 so as to be separated from each other and aligned in one direction.
  • the standing ribs 11 and 11 and the bottom plate portion 12 ( Bottom plate piece 12a) ⁇ Groove (flowing groove) 21 is formed with ice making plate 1.
  • the flow-down groove (ice making part) 21 extends in a direction perpendicular to the horizontal plane (ground) in order to allow ice-making water to flow down.
  • the one direction (the direction in which the standing ribs 11 are arranged) is a horizontal direction.
  • the bottom plate portion 12 is composed of a plurality of bottom plate pieces (second member, second cold air conducting member, second cold heat conducting member) 12a.
  • the plurality of bottom plate pieces 12a are arranged so as to be separated from each other and arranged in the vertical direction with respect to the arrangement direction (horizontal direction) of the standing ribs 11.
  • the extending direction of the upright ribs 11 (longitudinal direction of the upright ribs 11) and the arrangement direction of the upright ribs 11 intersect (intersect) at approximately 90 °.
  • an opening 22 (see the filled portion in FIG. 7) delimited by the standing rib 11 is formed between the bottom plate pieces 12a '12a, and this opening 22 is connected in the horizontal direction.
  • a fitting groove 23 is also formed.
  • the ice making device 69 of the present invention ice is generated in the downflow groove 21. Then, it is necessary to release the ice from the descending groove 21. Therefore, in order to prevent the ice and the standing rib 11 and the bottom plate 12 from sticking more than necessary (for example, to the extent that it cannot be deiced), ceramics, resin, stainless steel, etc. with low thermal conductivity (see Fig. 5). ), It is preferable that the standing rib 11 and the bottom plate portion 12 are configured.
  • the ball screw portion 13 shown in FIG. 1 and FIG. 2 includes a force with a male screw 13a and a female screw 13b.
  • the female screw 13b is attached to the standing rib 11 corresponding to, for example, the outermost part of the ice removing unit 17.
  • the male screw 13a rotates
  • the female screw 13b It can be reciprocated in the axial direction of the screw 13a (for example, reciprocating with a few millimeters). That is, the ball screw part 13 enables the ice removing unit 17 to move (reciprocate) with respect to the ice making plate unit 7.
  • the RU motor (drive unit) 31 rotates the male screw 13a of the ball screw unit 13. Specifically, the rotating shaft 31a of the RU motor 31 and the male screw 13a of the ball screw portion 13 are engaged with each other, and the male screw 13a rotates according to the rotation of the rotating shaft 31a. ing.
  • the watering unit (water supply unit) 47 shown in FIG. 3 is used to flow ice-making water into the ditch 21 and connects the ice-making water tank 41 for storing ice-making water and the ice-making water tank 41 to the inlet of the ditch 21.
  • a circulation pipe 42 and a pump 43 that is provided in the circulation pipe 42 and sends ice-making water to the inlet of the flow-down groove 21 through the circulation pipe 42 are included.
  • the extending direction (groove flow direction) of the flow groove 21 is perpendicular to the horizontal plane (ground). Therefore, the inlet of the downflow groove 21 is the upper part of the downflow groove 21.
  • a water spray hole 4 is provided in the circulation pipe 42 located near the inlet of the downflow groove 21, in order to cause the ice-making water sent out by the pump 43 to flow down (fall) into the downflow groove 21, a water spray hole 4 is provided. 4 is now available (see Figure 1).
  • the watering holes 44 are preferably provided so as to correspond to the respective downflow grooves 21 so that a uniform amount of water flows down for each of the plurality of downflow grooves 21.
  • the ice making completion detection sensor 51 (not shown in FIGS. 1 to 3, etc., see FIG. 8) is a sensor that can detect the temperature, for example, and detects the temperature near the ice film stacking point (that is, on the ice making plate 1). It is supposed to be. If the ice making completion detection sensor 51 force S that can detect the temperature in this way can detect the temperature (threshold temperature) at which it can be determined that the ice has grown to be usable, for example, by stacking ice films.
  • this threshold temperature is stored in the control unit 52 (see Fig. 8) described later, and temperature information (detection temperature) of the ice making completion detection sensor 51 can be acquired.
  • the ice making device 69 of the present invention can grasp the state of ice [whether or not usable ice (blocked ice) is formed or not).
  • control unit 52 includes at least a refrigeration cycle unit 10, an RU motor 3
  • the ice storage BOX (ice storage part) 53 stores ice that has deiced (falled) from the downflow groove 21. Therefore, as shown in FIG. 3, it is preferable that the ice is disposed below the ice making plate unit 7 and the ice removing unit 17 as shown in FIG.
  • an inclined surface 41b is provided in a part of the ice making water tank 41, and the falling ice force is inclined.
  • the surface 41b may be rolled to be led to the ice storage BOX 53.
  • the ice storage BOX 53 is managed below the freezing point by using, for example, a refrigerant, and the ice that has been deiced can be stored below the freezing point.
  • FIG. 9 Figure for assembly of ice making equipment with ice making plate unit 7 and ice removing unit 17 10 will be used for explanation.
  • the ice making plate unit 7 is indicated by a dotted line.
  • the ice making device 69 of the present invention includes an ice making plate unit 7 including an ice making plate 1 made of a material having a high thermal conductivity, and a standing rib 11 and a bottom plate portion 12 having a material force having a low thermal conductivity. It is configured by combining with ice unit 17.
  • FIG. 9 perspective view showing the assembly process
  • FIGS. 9 and 10 there is a method of fitting by sliding along the extending direction of the fitting groove 23.
  • the size of the fitting groove 23 'the depth of the groove and the size of the ice making plate 1'the plate thickness substantially match. It is preferable that In this way, the bottom of the downflow groove 21 (that is, the bottom made up of the ice making plate 1 and the bottom plate portion 12) is in a flush state (smooth surface) and does not give resistance to the flowing down water. Because, it can be.
  • the ice making plate 1 and the bottom plate pieces 12a are alternately arranged in the flow-down groove 21. More specifically, the ice making plates 1 and the bottom plate pieces 12a are alternately arranged in the direction in which the water adhering to the downflow grooves 21 flows down.
  • the ice making process / icing process by the ice making device 69 of the present invention will be described with reference to the flow chart of FIG. 11, the block diagram of FIG. In the following explanation, the operation step in the flow chart is indicated as S. Also, the process from S1 to S6 is expressed as the ice making process, and the process from S7'S8 is expressed as the ice removal process.
  • the control unit 52 drives the refrigeration cycle unit 10 so that the refrigerant flows through the refrigerant pipe 2 (Sl).
  • This refrigerant is controlled by the control unit 52 so as to be about -15 ° C to -25 ° C (refrigerant temperature), and the ice making plate 1 is cooled by the heat of vaporization. As a result, the ice making plate 1 is rapidly cooled to the same level as the refrigerant temperature. It has become so.
  • control unit 52 drives the pump 43 in the watering unit 47 to circulate the ice making water in the ice making water tank 41 in the circulation pipe 42 (S2). Then, the ice making water flowing through the circulation pipe 42 flows from the sprinkling hole 44 to the flow down groove 21 composed of the ice making plate 1, the standing rib 11, and the bottom plate portion 12 (S3).
  • a thin ice film is formed on the ice making plate 1 (S4).
  • the ice making plate 1 is continuously cooled by the cooling medium, the ice films are gradually laminated (S5).
  • the ice-making plate 1 is cooled down to a certain temperature (threshold temperature) by the refrigerant, the stacked (grown) ice film becomes usable ice (bulk ice). S6).
  • the ice-making water flowing down is an ice film on the way (it is solidified in the shape of the middle of the flowing-down water), and a new ice film is formed on the ice film of pure water. Are stacked. For this reason, when the ice film continues to be stacked and becomes lump ice, it has a semi-circular cross-sectional shape with high transparency and ice is completed.
  • the bottom of the flow-down groove 21 is arranged so that the ice making plates 1 and the bottom plate pieces 12a are alternately arranged. Therefore, a joint is formed between the ice making plate 1 and the bottom plate piece 12a. And the vicinity of this joint is easily affected by the cold caused by the refrigerant. Therefore, an ice film is formed to cover the joint. Therefore, even if there is a gap at the joint, the ice film formed to cover as described above plays a role of a seal (that is, prevents water leakage near the joint). Such a sealing member is unnecessary). It should be noted that the determination as to whether or not lump ice has been formed is made by comparing the detection temperature of the ice making completion detection sensor 51 with the threshold temperature as described above.
  • the control unit 52 determines that a block of ice is formed, but the detected temperature is lower than the threshold temperature. If it is high, it is judged that it is still necessary to continue to stack the ice film.
  • a threshold temperature for example, ⁇ 20 ° C. to ⁇ 25 ° C.
  • the RU motor 31 drives the RU motor 31 to rotate forward (S7). Specifically, the RU motor 31 moves (slides) the ice removal unit 17 by several millimeters in a direction away from the stationary ice making plate unit 7 (X direction; slide direction).
  • the standing ribs 11 and 11 positioned so as to sandwich the lump ice fixed on the ice making plate 1 move in the X direction (horizontal direction). Become. In other words, the standing ribs 11 and 11 try to shift the X-direction (forward direction) by forcibly pushing the lump ice fixed on the ice-making plate 1. Therefore, a shearing force is applied to the lump ice, and the lump ice and the ice making plate 1 are not fixed, and the lump ice is separated from the ice making plate 1.
  • the ice making device 69 of the present invention supplies water on the flow-down groove 21 cooled by the refrigerant (specifically, on the smooth surface area (ice making part) formed of the ice making plate 1 and the bottom plate part 12). By attaching it, ice is generated.
  • the downflow groove 21 (also referred to as an ice making unit) includes an ice making plate 1 having a high cold air conductivity by the refrigerant, a lower cold air conductivity than the ice making plate 1, and a bottom plate 12 of the ice removing unit 17. It is made up of 11 ribs.
  • the ice making plate 1 has a cold air conductivity (thermal conductivity) that maintains a temperature below the freezing point by the refrigerant, while the bottom plate portion 12 and the standing rib 11 have the freezing point also by the refrigerant. It has cold conductivity that maintains temperatures above.
  • the ice making plate 1 is connected to a refrigerant pipe 2 for refrigerant.
  • the ice making plate 1 that can solidify water into ice, and the bottom plate portion 12 ⁇ that does not drop to the solidifying temperature (ie, freezing point; 0 ° C).
  • the solidifying temperature ie, freezing point; 0 ° C.
  • the ice making plate 1 is made of a material having a high thermal conductivity, while it does not fall below the freezing point due to the cold air of the refrigerant. Since it is configured, it is rapidly cooled by cold air. Therefore, the ice making device 69 of the present invention can fully utilize the refrigeration capacity while generating a plurality of separated lump ice (the refrigerant can be fully used; for example, improvement of ice making efficiency and ice making time). Lead to shortening).
  • the ice making plate 1 is made of a material having a low thermal conductivity (for example, stainless steel) at the expense of the refrigerating capacity in order to generate the lump ice separated as in the prior art. It is not necessary to configure all of the above.
  • the flow down groove 21 is configured by alternately arranging the ice making plates 1 and the bottom plate pieces 12a. Specifically, the ice making plates 1 and the bottom plate pieces 12a are alternately arranged in the direction in which the water adhering to the downflow groove 21 flows down (that is, the direction in which the water flows down and the ice making plates 1 and the bottom plate pieces 12a The alignment direction is the same direction).
  • the flow-down groove 21 is delimited by a standing rib 11 that also rises a smooth surface force composed of the ice making plate 1 and the bottom plate portion 12 (bottom plate piece 12a).
  • the area (ice making part) composed of the ice making plate 1 and the bottom plate part 12 is divided (partitioned) by the standing rib 11.
  • the extending direction of the standing rib 11 (longitudinal direction of the standing rib 11) is the same direction as the direction in which water flows down (the arrangement direction of the ice making plate 1 and the bottom plate piece 12a). . for that reason
  • the standing rib 11 vertically separates the ice film (ice) formed in the area (ice making part) composed of the ice making plate 1 and the bottom plate part 12 (that is, the separated ice is It ’s like a horizontal alignment).
  • the standing rib 11 is formed integrally with the bottom plate portion 12, and the standing rib 11 extends along a direction in which the bottom plate portion 12 is displaced from the ice making plate 1. 11, slide movement is possible.
  • a power source for slidingly moving the standing rib 11 (however, since it is integrated with the standing rib 11 and also includes the bottom plate portion 12; that is, the ice removing unit 17)
  • the RU motor 31 is provided, and a ball screw portion 13 that receives the power of the RU motor 31 is provided on the standing rib 11. Then, the standing rib 11 receives the power transmitted from the RU motor 31 and slides along with the bottom plate portion 12 so as to deviate from the ice making plate 1.
  • the sliding movement of the standing rib 11 in this way means that the ice (lumped ice) generated in the downflow groove 21 (specifically, on the ice making plate 1) is slid and moves up and down. You will come into strong contact. Therefore, a shearing force is applied to the lump ice stuck on the ice making plate 1, the lump ice and the ice making plate 1 are released from sticking, and the lump ice is separated from the ice making plate 1.
  • the ice making device 69 of the present invention it is not necessary to melt the ice surface in order to release the ice from the ice making plate 1. Therefore, when ice is stored in the ice storage BOX 53 managed below the freezing point, due to the water on the melting ice surface, It is possible to prevent the ice floe from refreezing. In addition, size reduction due to melting of lump ice can be prevented. In addition, since water does not exist (that is, ice remains), it is possible to prevent the propagation of germs and the like in the ice storage BOX 53.
  • Embodiment 2 of the present invention will be described. Note that members having the same functions as the members used in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the ice making device 69 of the first embodiment generates ice on the ice making plate 1 in the flow down groove 21 while sliding at least the standing ribs 11 in the flow down groove 21 to make the ice on the ice making plate 1
  • the fixed ice is forcibly de-iced.
  • a coating (coating) made of a non-adhesive material may be applied on the ice making plate 1 (on the surface to which water is attached) of the downflow groove 21.
  • a coating made of a non-adhesive material
  • An example of such a material is a fluororesin.
  • the fluororesin is a resin obtained by polymerization or copolymerization of an olefin monomer containing fluorine (F), and is a resin strongly bonded (C—F) to carbon (C). For this reason, a densely covered fluorine atom protects the carbon chain.
  • fluorine fluorine
  • C—F resin strongly bonded
  • C carbon
  • a densely covered fluorine atom protects the carbon chain.
  • the polarization of charge is extremely small.
  • the intermolecular cohesive force is extremely small and the surface energy is extremely small. have. [0105] ⁇ Excellent non-stickiness, non-wetting
  • the fluororesin has excellent cold resistance, and is therefore extremely effective when used under low temperature conditions such as the ice making device 69.
  • the water repellency is high, the fluororesin on the ice making plate 1 can not be an obstacle to the water flowing down the downflow groove 21.
  • it since it has abrasion resistance, even if ice is repeatedly generated and peeled off repeatedly on the fluororesin coating, the coating itself cannot deteriorate.
  • the thermal conductivity of the fluororesin is very low [approximately 0.:! To about 0.5 WZ (m * K)]. Therefore, the thickness of the fluororesin coating is preferably a thin film of about several zm. This is because if the coating is made into a thin film, it is possible to avoid a situation in which the thermal conductivity of the ice generating surface on the ice making plate 1 deteriorates (decreases).
  • the coating of the fluororesin is performed by powder coating by heat melting, bonding by an adhesive or the like.
  • the fluororesin include, for example, tetrafluoroethylene, tetrafluoroethylene / hexafluoroethylene, tetrafluoroethylene / perfluoroalkoxyethylene copolymer, ethylene trifluoride chloride, Examples include ethylene. Tetrafluoroethylene copolymer.
  • Embodiment 3 of the present invention will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 12 is a perspective view mainly showing the ice making plate unit 7 and the ice removing unit 17 in the ice making device 69 of the present invention
  • FIG. 13A is a front view of FIG. 12
  • FIG. 13B is a side view of FIG. It has become.
  • FIG. 14 is a perspective view illustrating the ice making plate unit 7
  • FIG. 15 is a perspective view of the ice removing unit 17.
  • FIG. 16 is a three-sided view of the ice removal unit 17.
  • guide pieces 8b (described later) are omitted for convenience.
  • the RU motor (drive unit) 31 is omitted for convenience.
  • the ice making plate unit 7 includes a refrigerant pipe 2, an ice making plate 1, an auxiliary plate 8a, and a guide piece 8b.
  • the ice making plate unit 7 in FIG. 14 has the same configuration as that of the first embodiment (see FIG. 4) except that the auxiliary plate 8a and the guide piece 8b are provided. Further, the ice making plate 1 is preferably subjected to the above-described peeling treatment.
  • the auxiliary plate 8a is a plate that is provided so as to fit in a gap between the ice making plates 1 that are spaced apart from each other at a constant interval. Further, the surface of the combined body (plate-shaped combined body; base material portion) that is a force between the ice making plate 1 and the auxiliary plate 8a is in a flush state.
  • the auxiliary plate 8a is preferably made of a material similar to that of the bottom plate portion 12, for example, a material having a relatively low thermal conductivity such as a ceramic resin stainless steel.
  • the guide piece 8b regulates the sliding direction of the ice removing unit 17, and is erected so as to sandwich the base material portion. Specifically, one guide piece 8b is provided upright from each of both ends of the surface of the base material portion so that the guide pieces 8b ′ 8b sandwich the base material portion. In addition, the extending direction of the guide piece 8b (perpendicular to the rising direction of the guide piece 8b) and the longitudinal direction of the ice making plate 1 and auxiliary plate 8a constituting the base portion should be perpendicular to each other. It has become.
  • this Guide piece 8b is preferably made of a material having a relatively low thermal conductivity, such as ceramic resin or stainless steel, like the bottom plate portion 12.
  • the ice removing unit 17 includes standing ribs (partition portions) 11, a bottom plate portion 12, and a ball screw portion 13.
  • the opening is filled and illustrated.
  • the standing ribs 11 are arranged so as to be arranged in one direction while being spaced apart at a constant interval.
  • the bottom plate pieces 12a are arranged so as to be arranged in a direction perpendicular to the arrangement direction of the standing ribs 11 and spaced apart from each other at a constant interval. Yes.
  • the bottom plate piece 12a overlaps the auxiliary plate 8a of the ice making plate unit 7 (that is, the bottom plate piece 12a ' Ice making plate 1 is exposed through the gap between 12a (opening 22)).
  • the ball screw portion 13 moves the deicing unit 17 in the extending direction of the downflow groove 21 (perpendicular to the horizontal plane). For this reason, the axial direction of the male screw 13a ′ and the female screw 13b of the ball screw portion 13 is the same as the extending direction of the flow down groove 21.
  • the installation position of the ball screw portion 13 is not particularly limited. For example, the start point side or the end point side in the extending direction of the downflow groove 21 (the end portion of the deicing unit 17 orthogonal to the extending direction of the downflow groove 21). ).
  • the ice making device 69 of the present invention is configured by combining the ice making plate unit 7 and the ice removing unit 17. Specifically, as shown in FIG. 12 and FIG. 13, the deicing unit 17 is arranged so that the surface of the bottom plate piece 12a faces the surface of the base material portion sandwiched between the guide pieces 8b. It is supposed to fit. Therefore, the distance between the guide pieces 8b '8b and the distance between the outer ribs 11 and 11 (specifically, the distance between the inner surfaces of the guide pieces 8b and 8b and the outermost It is preferable that the distance between the outer surfaces of the ribs 11 ⁇ 11 is almost the same.
  • the bottom of the downflow groove 21 has a step. However, at least the surface of the ice making plate 1 that is exposed from the gap between the bottom plate portions 12 (between the bottom plate pieces 12a; the opening 22) is a smooth surface. In addition, even if there is a step, since it is a very low step (because the thickness of the bottom plate piece 12a is extremely thin), resistance to water flowing through the downflow groove 21 does not occur.
  • the end of the bottom plate piece 12a located in the vicinity of the boundary between the bottom plate piece 12a and the ice making plate 1 has an inclination (an inclination etc. that does not block the flowing ice making water). May be.
  • the angle between the exposed surface of the ice making plate 1 and the end surface of the bottom plate piece 12a (side surface of the bottom plate piece 12a) may be an obtuse angle. This is because resistance to the water flowing through the downflow groove 21 does not occur.
  • FIGS. 12 and 13 will be described with reference to FIG. 11 (flow chart) and FIGS. 17 and 18.
  • S1 to S6 ice making process
  • S7'S8 deicing process
  • the bottom plate piece 12a tries to shift in the V direction (forward direction) by forcibly pushing the lump ice fixed on the ice making plate 1.
  • a shearing force is applied to the lump ice, and the fixation between the lump ice and the ice making plate 1 is released.
  • the lump ice moves away from the ice making plate 1.
  • the flow-down groove 21 has a gap (opening 22; see Fig. 16) force between the bottom plate pieces 12a'12a.
  • the ice making plate 1 and the bottom plate portion 12a stacked on the auxiliary plate 8a are alternately arranged.
  • the bottom plate pieces 12a spaced apart at regular intervals are overlaid on a base material including at least a part of the ice making plate 1, and the ice making plate 1 is placed on the bottom plate piece 12a. It can be said that it is configured to be exposed from the gap. In such a case, the exposed ice making plates 1 and the bottom plate pieces 12a are alternately arranged.
  • the ice making device 69 of the third embodiment exhibits the same operational effects as the ice making device 69 of the present invention described above (the ice making device 69 described in the first and second embodiments).
  • Embodiment 4 of the present invention will be described.
  • symbol is attached and the description is abbreviate
  • the ice making device 69 of the present invention can be assumed to have still another configuration.
  • an ice making device 69 as shown in FIG. [0133] [Configuration of ice making device]
  • the ice making plate unit 7 includes a refrigerant pipe 2 meandering in a coil shape, and a cylindrical (for example, cylindrical) ice making plate 1 (cylindrical ice making plate lb) attached to the refrigerant pipe 2. ).
  • the cylindrical ice-making plate lb is preferably subjected to the above-described peeling process.
  • a cylindrical base material portion constituted by the ice making plate 1 and the auxiliary plate 8a may be used instead of the cylindrical ice making plate 1 and the auxiliary plate 8a.
  • the ice removing unit 17 includes a cylindrical body 12b, a standing rib (partition portion) 11, and a ball screw portion (not shown in FIG. 19).
  • the cylindrical body 12b has a cylinder (for example, a cylinder) having an inner circumference sufficient to fit the cylindrical ice-making plate lb, and is dotted with exposed openings 12bc on the surface of the cylinder. ing.
  • the cylindrical body 12b is preferably made of a material having a relatively low thermal conductivity, such as ceramic resin or stainless steel, like the bottom plate portion 12.
  • the standing ribs 11 are disposed so as to rise in the radial direction from the surface of the cylindrical body 12b while being spaced apart at a constant interval.
  • the extending direction of the standing rib 11 (perpendicular to the radial direction; the longitudinal direction of the standing rib 11) is a straight direction.
  • the exposed openings 12bc are arranged in the same direction as the extending direction of the standing ribs 11 while being spaced apart at regular intervals.
  • the configuration of the ball screw part is not particularly limited, but the cylindrical body 12b covering the circumference of the cylindrical ice making plate lb is rotated.
  • the ice making device 69 of the present invention is a combination of the ice making plate unit 7 and the ice removing unit 17. It is composed by. Specifically, the cylindrical ice making plate lb is fitted into the cylindrical body 12b. Therefore, it is preferable that the outer diameter of the cylindrical ice-making plate lb and the inner diameter of the cylindrical body 12b are substantially matched.
  • a groove (flowing groove) 21 is formed between the standing ribs 11 and 11 by the standing ribs 11 and 11 and the cylindrical body 12b 'cylindrical ice making plate lb.
  • the bottom of the downflow groove 21 has a step.
  • at least the surface of the cylindrical ice-making plate lb exposed from the exposed hole 12bc is a smooth surface.
  • the inner peripheral edge of the surface opening 12bc is inclined or the like (inclination that does not block the flowing ice making water; for example, the surface of the cylindrical ice making plate lb and the surface of the inner peripheral edge of the surface opening 12bc The angle may be obtuse. If this is done, the resistance to the water flowing through the downflow groove 21 will not be reached.
  • ice is generated on the cylindrical ice making plate lb exposed from the cylindrical body 12b. Then, if the control unit 52 determines in S6 in the ice making process that the lump ice has been formed, the control unit 52 drives the RU motor 31 to rotate forward (S7). Specifically, the cylindrical body 12b and the cylindrical ice making plate lb are displaced from each other by rotating (sliding) the cylindrical body 12b.
  • the cylindrical body 12b positioned around the lump ice fixed on the cylindrical ice making plate lb. Will slide. That is, the cylindrical body 12b tries to forcibly push the lump ice fixed on the ice making plate 1. As a result, a shearing force is applied to the lump ice, and the lump ice and the cylindrical ice making The fixation with the rate lb is released and the lump ice is separated from the cylindrical ice plate lb. Further, when the cylindrical body 12b continues to rotate, the standing rib 11 comes into contact with the lump ice, and the lump ice is surely detached from the ice making plate 1.
  • the lump ice rolls down toward the ice storage BOX 53 (S8).
  • the RU motor 31 is driven in reverse rotation to move the standing rib 11 in the original direction (slide direction) (ie If the cylindrical body 12 is rotated in the reverse direction and returned to the original position), new ice making water can be solidified into ice (the ice making device 69 is put into a state where ice making is possible).
  • the cylindrical body 12b having the exposed opening 12bc is stacked on the cylindrical ice making plate lb, and the cylindrical ice making plate lb is exposed from the exposing opening 12bc.
  • the flow-down groove 21 is configured by alternately arranging the cylindrical ice-making plate lb and the cylindrical body 12b that are exposed from the exposed opening 12bc. Become.
  • the ice making device 69 of the fourth embodiment exhibits the same effects as the ice making device 69 of the present invention described above (the ice making device 69 described in the first to third embodiments).
  • the ice making device 69 shown in FIG. 19 since ice is generated on the cylindrical ice making plate lb having a curved surface, ice having a curved surface is generated. It can be said that ice has a beautiful shape compared to simple square ice.
  • the ice making plate unit 7 includes a base material portion in which the ice making plate 1 and the auxiliary plate 8a are mixed.
  • the present invention is not limited to this, and the ice making device 69 of the present invention may be configured such that the ice removing unit 17 is placed on the single ice making plate 1. In such a case, the configuration of the ice making plate unit 7 can be simplified. Become.
  • an ice making device 69 in which an ice-making plate 1 having a curved surface and a standing rib 11 having a curved surface 11 ⁇ a bottom plate portion 12 (bottom plate piece 12a) having an ice removing unit 17 having a force is attached. But it ’s okay. In such a case, the vertical dimension can be reduced, and the ice making device 69 becomes compact.
  • an ice making device 69 provided with a plurality of ice removing units 17 as shown in FIG.
  • this ice removing unit 17 two standing ribs 11 are arranged so as to be arranged in one direction while being spaced apart at a fixed interval, and between them (between the standing ribs 11 and 11), a bottom plate piece 12a is arranged.
  • a bottom plate piece 12a is arranged.
  • the ice making device 69 having a plurality of such ice removing units 17 can be slid and moved for each ice removing unit 17 by optimally combining the ball screw portion 13 and the RU motor 31. In such a case, it can be said that the sliding force of the ice removing unit 17 becomes smaller.
  • the extending direction of the downflow groove 21 is preferably a vertical direction, but the present invention is not limited to this. Ice detaching unit 17 ⁇ Ice making plate Unit 7 may be tilted so that the extending direction of the flow-down groove 21 is tilted.
  • the sliding direction of the ice removing unit 17 is not particularly limited as long as it is a direction that can be displaced with respect to the ice making plate unit 7 (if it can slide).
  • it may be a vertical direction or a circumferential direction.
  • it may be moved in the direction of drawing a spiral trajectory.
  • the ice making device 69 of the present invention uses, for example, the ball screw portion 13'RU motor 31 (sliding mechanism) to shift the standing rib 11 (icing unit 17) from the ice making plate 1 ( (Slide movement) Let's do it, but it's not limited to this.
  • a sliding mechanism using a worm gear wheel a sliding mechanism using a rack rail and a pinion gear, or a sliding mechanism using an electromagnetic solenoid actuator may be used.
  • the gap may be curbed with an adhesive or the like interposed in the gap (that is, the gap between the bottom plate piece 12a constituting the fitting groove 23 and the ice making plate 1).
  • the force for determining whether or not lump ice has been generated based on the detection temperature of the ice making completion detection sensor 51 is not limited to this. For example, it may be determined that lump ice has been generated when a certain time has elapsed, and the ice removal operation may be performed. In short, any determination means may be used as long as it can be determined whether or not lump ice has been generated.
  • the inside of the ice storage BOX 53 is managed below the freezing point, but various methods for creating a temperature state below the freezing point are conceivable.
  • the refrigerant pipe 2 connected to the ice making plate 1 may be extended and connected to the ice storage BOX 53, or may be installed separately in, for example, a freezer compartment.
  • the ice making device 69 of the present invention is adapted to be used for various electrical appliances. For example, it has come to be used in household refrigerator-freezers, large commercial ice makers, and cup-type drinking water vending machines.
  • the ice making device 69 using the refrigeration cycle unit 10 has been described as an example.
  • an ice making device using a Stirling engine may be used.
  • Various cooling methods for the ice making unit can be envisaged.
  • the ice making unit may be cooled by cold air whose temperature has been lowered by a refrigerant, or may be cooled (heat exchange) by direct or indirect contact with a cooling fluid (refrigerant). Further, it may be an ice making unit that cools only with cold air without using a refrigerant.
  • any cooling system that can cool to a temperature that can produce ice is acceptable. Therefore, in the case of heat exchange, the ice making plate bottom plate portion may be expressed as a member that transmits cold heat (cold heat conduction member).
  • the ice making plate and the bottom plate portion may be made of a material having the same thermal conductivity (for example, copper nickel).
  • a heat insulating paint or the like is applied to the bottom plate portion (so long as a heat treatment is performed). With such a heat insulating paint, it has the same thermal conductivity. This is because even the ice making plate and the bottom plate portion having the material force to be used become the ice making plate and the bottom plate portion having different thermal conductivities as described above. That is, the ice making plate and the bottom plate portion may have different thermal conductivities depending on the presence or absence of heat insulation treatment.
  • the ice making device of the present invention can also be expressed as follows.
  • the present invention is an ice making device that cools a plate-like body (ice-making plate 1) by a refrigeration cycle or a cooling means that can cool below the freezing point, and circulates water through the low-temperature plate-like body to make ice.
  • the ice making part (the area including at least the ice making plate 1 and the bottom plate part 12) is made up of a combination of a high thermal conductivity member and a low thermal conductivity member, and the ice making part has a low temperature part below the freezing point ( It is characterized by the formation of multiple high-temperature parts (high-temperature areas) exceeding the freezing point and low-temperature areas.
  • the ice making unit is configured in multiple stages by dividing the high thermal conductivity member, and the low thermal conductivity member is configured in the same way by dividing into gaps that can be divided. It is characterized by the fact that it is configured by inserting
  • one surface which becomes the ice making surface in a state where the high heat conductive member and the low heat conductive member are combined is formed into a smooth plate shape.
  • a partition portion (standing rib 11) made up of a plurality of rows of low thermal conductivity members is formed vertically on the surface formed on the surface.
  • the low thermal conductivity members configured in multiple stages and multiple rows in the ice making section are characterized in that they are provided with mechanically movable means about several millimeters left and right (horizontal direction) after ice making.
  • the surface that becomes the ice making surface of the high thermal conductivity member divided in multiple stages in the ice making portion is subjected to non-adhesive surface treatment or coating, and is characterized in that it is characterized in that.
  • the ice making device of the present invention is an ice making device that generates ice by flowing water in an ice making part that is cooled by a refrigeration cycle or a cooling means that can be cooled below the freezing point. It is characterized by being composed of a combination of an ice making part and an slidable partition part that are arranged so as to cover the smooth surface.
  • the ice making device of the present invention is provided with means for sliding the partition.
  • the slidable partitioning portion is along the smooth surface of the ice making portion. It is characterized by being composed of a plate-like body consisting of a plane and having a single or a plurality of apertures.
  • the ice making device of the present invention comprises a single or a plurality of partition plates installed so as to stand up from the plate-like body.
  • the present invention relates to an ice making device that solidifies ice making water to be dripped as ice on an ice making plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

An ice making device (69) for producing ice by causing water to attach on flow-down grooves (21) cooled by a refrigerant. The flow-down grooves (21) are constructed from an ice making plate (1) with high cool-air conductivity and from a bottom plate section (12) and upright ribs (11) of an ice separation unit (17) with lower cool-air conductivity than the ice making plate (1).

Description

明 細 書  Specification
製氷装置  Ice making equipment
技術分野  Technical field
[0001] 本発明は、透明度の高い氷を急速かつ効率的に生成するとともに、品質を高度に 維持しながら保存できる製氷装置に関するものである。  [0001] The present invention relates to an ice making device that can rapidly and efficiently produce ice with high transparency, and that can be stored while maintaining high quality.
背景技術  Background art
[0002] 従来から、透明度の高い氷を生成する製氷装置が種々開発されている。その一例 として、特許文献 1のような製氷装置が挙げられる。図 22に示すように、この製氷装 置 169では、不図示の冷凍サイクルの蒸発パイプ (冷媒パイプ;およそ— 15°C〜― 2 5°Cの冷媒が流れている)に接続されるとともに一面を垂直に配設した製氷プレート 1 01が、散水孔 144を介して製氷水を散水(流下)させている。  Conventionally, various ice making apparatuses that generate ice with high transparency have been developed. As an example, there is an ice making device as disclosed in Patent Document 1. As shown in FIG. 22, this ice making device 169 is connected to an evaporation pipe (refrigerant pipe; a refrigerant of approximately −15 ° C. to −25 ° C. is flowing) of a refrigeration cycle (not shown). The ice making plate 101 arranged vertically is sprinkling (flowing down) the ice making water through the water sprinkling hole 144.
[0003] このように製氷水が流下(流下循環)されると、水に溶存する空気等のガス成分 (不 純物)が拡散する。そのため、純水のみが冷媒パイプに密接する製氷プレート 101上 で、氷の膜 (氷膜)となり、その結果、透明度の高い氷が生成されるようになる。特に、 この氷膜は、徐々に積層するように成長していき、最終的に、ほぼ半円の断面形状を 有する透明度の高い氷となる。そして、この生成された氷を製氷プレート 101から取り 除くことで (離氷させることで)、使用可能な氷が完成するようになっている。  [0003] When ice making water flows down (circulates down) in this way, gas components (impurities) such as air dissolved in water diffuse. Therefore, only pure water forms an ice film (ice film) on the ice making plate 101 in close contact with the refrigerant pipe, and as a result, highly transparent ice is generated. In particular, this ice film grows so as to be gradually laminated, and finally becomes highly transparent ice having a semicircular cross-sectional shape. Then, by removing the generated ice from the ice making plate 101 (by removing the ice), usable ice is completed.
[0004] そこで、例えば特許文献 1の製氷装置 169は、離氷用(除氷用)の水を離氷パイプ 171を介して、製氷プレート 101上に供給することで、生成された氷の一部を融解さ せて、氷を離氷させるようになつている。  Therefore, for example, the ice making device 169 of Patent Document 1 supplies water for deicing (for deicing) to the ice making plate 101 via the ice removing pipe 171, thereby generating one piece of generated ice. The part is melted and the ice is deiced.
[0005] ところで、このような特許文献 1の製氷装置は、製氷プレート 101上において、形状 を整えながらも、分離した氷を複数生成させることは難しい。なぜなら、効率よく冷気 を利用するために、例えば冷気の伝導率 (熱伝導率)の高い材料で製氷プレート 10 1を構成させると、製氷プレート 101全域に渡って連なった氷が生成されるためである  [0005] By the way, it is difficult for such an ice making device of Patent Document 1 to generate a plurality of separated ice on the ice making plate 101 while adjusting the shape. This is because, in order to efficiently use cold air, for example, if the ice making plate 101 is made of a material having a high cold air conductivity (thermal conductivity), ice is formed over the entire ice making plate 101. is there
[0006] そこで、図 23 (斜視図)'図 24A (図 23の正面図)'図 24B (図 23の側面図)に示す ような製氷装置 169が考えられている。この製氷装置 169は、熱伝導率の低い(冷媒 の伝導率の低レ、)ステンレス等から成る製氷プレート 101上に、蛇行させた冷媒パイ プ 102を溶接等で取り付けている。さらに、この製氷装置 169は、一方向(垂直方向) に延びたリブ 111を複数並べるようにして、製氷プレート 101上に立設させている。 Therefore, an ice making device 169 as shown in FIG. 23 (perspective view), FIG. 24A (front view of FIG. 23) and FIG. 24B (side view of FIG. 23) is considered. This ice making device 169 has a low thermal conductivity (refrigerant The meandering refrigerant pipe 102 is attached by welding or the like on the ice-making plate 101 made of stainless steel or the like. Further, the ice making device 169 is erected on the ice making plate 101 such that a plurality of ribs 111 extending in one direction (vertical direction) are arranged.
[0007] つまり、このような水平方向の仕切板を設けることのなレ、、図 23 ·図 24Α·図 24Bの 製氷装置 169では、熱伝導率の低レ、ステンレス等力も成る製氷プレート 101を用いる ことで、冷媒パイプ 102近傍のみ氷点以下にしている。そのため、リブ 111によって形 成された製氷プレート 101上の溝 (流下溝 121)には、散水孔 144から流れてくる製 氷水が流下していき、この流下溝 121において、部分的に氷(分離した氷)が生成す るようになる。 In other words, in the ice making device 169 shown in FIG. 23, FIG. 24, and FIG. 24B, an ice making plate 101 having a low thermal conductivity and stainless steel is used. By using it, only the vicinity of the refrigerant pipe 102 is made below the freezing point. Therefore, the ice-making water flowing from the sprinkling hole 144 flows down into the groove (flowing groove 121) on the ice-making plate 101 formed by the ribs 111. Ice).
[0008] そして、この図 23 ·図 24Α·図 24Bに示す製氷装置 169は、冷凍サイクルの圧縮直 後のホットガスを冷媒パイプ 102に流入させることで、製氷プレート 101を加熱し、氷 の一部を融解させて、氷を離氷させるようになってレ、る。  [0008] The ice making device 169 shown in FIG. 23, FIG. 24, and FIG. 24B heats the ice making plate 101 by causing the hot gas immediately after compression in the refrigeration cycle to flow into the refrigerant pipe 102, and thereby Thaw the part and let the ice come off.
特許文献 1 :特開昭 55— 53668号公報 (第 1図参照)  Patent Document 1: Japanese Patent Laid-Open No. 55-53668 (see Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上記の図 23 ·図 24Α·図 24Bに示す製氷装置 169は、分離した氷を生成させるた めに、あえて、製氷プレート 101上全域が効率よく冷えないようにすベぐ熱伝導率の 低い材料で、製氷プレート 101を構成している。そのため、冷媒の冷気による冷凍能 力の一部を無駄にするという問題を抱えている。 [0009] The ice making device 169 shown in Fig. 23, Fig. 24, and Fig. 24B described above has a thermal conductivity that prevents the entire area on the ice making plate 101 from cooling efficiently in order to generate separated ice. The ice making plate 101 is made of a low material. Therefore, there is a problem that a part of the refrigeration capacity due to the cold air of the refrigerant is wasted.
[0010] また、特許文献 1および図 23 ·図 24Α·図 24Bの製氷装置 169のいずれにおいて も、離氷の工程で、生成された氷の一部を融解 (熱融解)させることで、製氷プレート[0010] Further, in any of the ice making apparatuses 169 of Patent Document 1 and FIGS. 23, 24, and 24B, ice is made by melting (thermal melting) a part of the generated ice in the de-icing process. plate
101から氷が離れるようになつている。 The ice is getting away from 101.
[0011] そのため、融解により離氷した氷の表面には、水が付着することになり、例えば氷点 以下(0°C以下)の環境で氷を保存する場合、複数の氷同士が、再凍結して連なった 形状となり、使用に適さないものになってしまうという問題が生じていた。 [0011] For this reason, water adheres to the surface of ice that has been deiced due to melting. For example, when ice is stored in an environment below the freezing point (0 ° C or below), a plurality of ice pieces are re-frozen. As a result, there is a problem that the shape becomes a continuous shape and becomes unsuitable for use.
[0012] なお、上記のような連なった形状の氷の生成を防止すベぐ氷自身の潜熱のみで、 氷を貯留する BOX内を約 0°C〜5°Cに保つようにして、再凍結を防ぐようにした保存 方法もある。し力しながら、この保存方法では、やや氷を融カ ながら保存してレ、くた め、長時間(長期間)の保存は難しい。その上、純水を主成分とした氷には、塩素等 の成分の含有量が極めて微量となっている。そのため、徐々に融け出した氷を長時 間保存すると、雑菌等が繁殖してしまうという問題も生じる。 [0012] It should be noted that the inside of the BOX storing the ice is kept at about 0 ° C to 5 ° C only by the latent heat of the ice which itself prevents the formation of the ice having the above-described continuous shape, and the ice is reused. There is also a storage method that prevents freezing. However, with this storage method, the ice is slightly melted and stored. Therefore, long-term (long-term) storage is difficult. In addition, ice containing pure water as a main component contains a very small amount of components such as chlorine. For this reason, if the ice melted out gradually is stored for a long time, there will be a problem that germs and the like will propagate.
[0013] そしてなによりも、上記の離氷方式は、製氷に用いた冷凍能力の一部を無駄にする とレ、う根本的な問題を抱えており、効率的な離氷方式とはいえなレ、。  [0013] Above all, the above-mentioned deicing method has a fundamental problem when a part of the refrigeration capacity used for ice making is wasted, and it is an efficient deicing method. Nare ,.
[0014] 本発明は、上記の問題点を解決するためになされたものであって、冷凍能力を有 効利用して氷を生成させるとともに、品質を高度に維持しながら氷を保存できるように するために、離氷した氷表面に水分を付着させない製氷装置を提供することにある。 課題を解決するための手段  [0014] The present invention has been made to solve the above-described problems, and is capable of generating ice by effectively utilizing the refrigerating capacity, and also capable of preserving ice while maintaining high quality. Therefore, an object of the present invention is to provide an ice making device that does not allow moisture to adhere to the surface of ice that has been deiced. Means for solving the problem
[0015] 本発明は、冷却される製氷部上に、水を付着させることで、氷を生成する製氷装置 であって、製氷部は、第 1部材と第 2部材とから構成されていることを特徴としている。  [0015] The present invention is an ice making device that generates ice by adhering water onto a cooled ice making unit, wherein the ice making unit is composed of a first member and a second member. It is characterized by.
[0016] なお、第 1部材および第 2部材は、互いに異なった熱伝導率を有する第 1冷気伝導 部材 (第 1熱伝導部材)および第 2冷気伝導部材 (第 2熱伝導部材)になっていてもよ レ、。また、第 1部材および第 2部材は、断熱処理の有無によって異なった熱伝導率を 有する第 1冷気伝導部材および第 2冷気伝導部材になってレ、てもよレ、。  [0016] The first member and the second member are a first cold air conducting member (first heat conducting member) and a second cold air conducting member (second heat conducting member) having different thermal conductivities. You can do it. In addition, the first member and the second member become the first cold air conductive member and the second cold air conductive member having different thermal conductivities depending on the presence or absence of the heat insulation treatment.
[0017] 要するに、本発明は、例えば冷媒によって冷却される製氷部上に、水を付着させる ことで、氷を生成する製氷装置であって、製氷部は、冷媒等による冷気の伝導率 (熱 伝導率)の異なる第 1冷気伝導部材と第 2冷気伝導部材とから構成されていることを 特徴としている。  In short, the present invention is an ice making device that generates ice by adhering water onto, for example, an ice making part that is cooled by a refrigerant. The ice making part has a conductivity (heat It is characterized by being composed of a first cold air conducting member and a second cold air conducting member having different conductivities.
[0018] そして特に、第 1冷気伝導部材は、冷媒等によって氷点以下の温度を維持する冷 気の伝導率を有している一方、第 2冷気伝導部材は、冷媒等によっても氷点を超える 温度を維持する冷気の伝導率を有してレ、る。  [0018] In particular, the first cold air conducting member has a cold conductivity that maintains a temperature below the freezing point by a refrigerant or the like, while the second cold air conducting member has a temperature exceeding the freezing point by the refrigerant or the like. Maintaining the conductivity of the cold air.
[0019] これによると、製氷部において、水を氷へと固化させることのできる第 1冷気伝導部 材と、固化させる温度(すなわち氷点)にまで温度の下がることのない第 2冷気伝導部 材とが混在するようになっている。そのため、製氷部に水を付着させたとき、氷の生成 される部分と、氷の生成され得ない部分とが生じるようになる。つまり、氷が製氷部全 域に渡って生成されることがなくなる。その結果、製氷部において、分離した塊氷が 複数できることになる。 [0020] 特に、第 1冷気伝導部材と第 2冷気伝導部材との熱伝導率の違いから、第 2冷気伝 導部材は冷媒の冷気や冷熱等によって氷点以下にならない。一方、第 1冷気伝導部 材は、冷気や冷熱等によって急激に冷やされるようになつている。そして、例えばこの 急激に降温する第 1冷気伝導部材に冷媒の供給管が連結されると、分離した氷 (塊 氷)を複数生成しながらも、冷凍能力を十分に有効利用できる (冷媒の冷気を十分に 禾用できる;例えば製氷効率が向上や、製氷時間の短縮化につながる)。 [0019] According to this, in the ice making unit, the first cold air conducting member capable of solidifying water into ice, and the second cold air conducting member which does not drop in temperature to the solidifying temperature (ie, freezing point). Are mixed. Therefore, when water is attached to the ice making part, a part where ice is generated and a part where ice cannot be generated are generated. In other words, ice is not generated over the entire ice making area. As a result, a plurality of separated lump ice is formed in the ice making section. [0020] In particular, due to the difference in thermal conductivity between the first cold air conducting member and the second cold air conducting member, the second cold air conducting member does not become below the freezing point due to the cold air or cold heat of the refrigerant. On the other hand, the first cold air conducting member is rapidly cooled by cold air or cold heat. For example, when the refrigerant supply pipe is connected to the first cold air conducting member that rapidly drops in temperature, the refrigeration capacity can be sufficiently effectively utilized while generating a plurality of separated ice (lump ice). (For example, improving ice-making efficiency and shortening ice-making time).
[0021] つまり、本発明の製氷装置は、従来のように分離した塊氷を生成させるために冷凍 能力を犠牲にして、熱伝導率の低い材料のみで製氷部を構成する必要がなくなる。  [0021] In other words, the ice making device of the present invention does not require the ice making part to be composed of only a material having low thermal conductivity at the expense of the refrigerating capacity in order to generate separated lump ice as in the prior art.
[0022] また、製氷部は、第 1冷気伝導部材および第 2冷気伝導部材が交互に配設されて 構成されており、好ましくは、製氷部上に付着した水の流れ落ちる方向において、交 互に配設されているとよい。  [0022] Further, the ice making unit is configured by alternately arranging the first cold air conducting member and the second cold air conducting member, and preferably, alternately in the direction in which the water adhering to the ice making unit flows down. It is good to be arranged.
[0023] これによると、製氷部に付着した水の流れ落ちる過程で、最初に第 1冷気伝導部材 に付着した水が氷膜となる。一方、氷膜となり得なかった水は、そのまま、流れていき 、第 2冷気伝導部材を経て、次の第 1冷気伝導部材に到達する。そして、到達した水 は、その第 1冷気伝導部材上で氷膜になる。この流れ落ちる過程が繰り返されること で、本発明の製氷装置は、流れ落ちる水を効率よぐ第 1冷気伝導部材上に導けるよ うになつている。その上、製氷部において、第 1冷気伝導部材が交互に位置すると、 水の流れ落ちる方向に沿って複数並べるようにして氷が生成されるようになる。  [0023] According to this, in the process of flowing down the water adhering to the ice making part, the water adhering to the first cold air conducting member first becomes an ice film. On the other hand, the water that could not become an ice film flows as it is, and reaches the next first cold air conducting member through the second cold air conducting member. Then, the reached water becomes an ice film on the first cold air conducting member. By repeating this process of flowing down, the ice making device of the present invention can guide the flowing-down water onto the first cold air conducting member that is efficient. In addition, when the first cold air conducting members are alternately positioned in the ice making section, ice is generated by arranging a plurality of them along the direction in which the water flows down.
[0024] なお、第 1冷気伝導部材と第 2冷気伝導部材とを交互に配設させた製氷部は、種 々考えられる。例えば、製氷部は、一定間隔で離間させた第 2冷気伝導部材を、少な くとも一部に第 1冷気伝導部材を含んで成る基材部に重ね、かつ、第 1冷気伝導部 材を第 2冷気伝導部材の間隙から表出させる構成になっていてもよい。かかる製氷 部では、表出した第 1冷気伝導部材と第 2冷気伝導部材とが、交互に配設するように なるためである。  [0024] Various ice making parts in which the first cold air conducting member and the second cold air conducting member are alternately arranged are conceivable. For example, in the ice making unit, the second cold air conducting member separated at a constant interval is overlaid on at least a part of the base member including the first cold air conducting member, and the first cold air conducting member is placed on the first cold air conducting member. It may be configured to be exposed from the gap between the two cold air conducting members. This is because in the ice making unit, the first cold air conducting member and the second cold air conducting member that are exposed are arranged alternately.
[0025] また、製氷部は、開孔を有する第 2冷気伝導部材を、少なくとも一部に第 1冷気伝 導部材を含んで成る基材部に重ね、かつ、第 1冷気伝導部材を開孔から表出させる 構成になっていてもよい。力かる製氷部も、表出した第 1冷気伝導部材と第 2冷気伝 導部材とが、交互に配設するようになるためである。 [0026] もちろん、これらのような製氷装置でも、上記同様、製氷部上に付着した水の流れ 落ちる方向において、第 1冷気伝導部材および第 2冷気伝導部材が、交互に配設さ れていることが好ましい。 [0025] Further, the ice making unit has a second cold air conducting member having an opening superimposed on a base material part including at least a part of the first cold air conducting member, and the first cold air conducting member is opened. It may be configured to be expressed from This is because the first ice-cooling member and the second cold-air conducting member that are exposed are arranged alternately in the strong ice making unit. [0026] Of course, in these ice making apparatuses as well, the first cold air conducting member and the second cold air conducting member are alternately arranged in the direction in which the water adhering to the ice making part flows down, as described above. It is preferable.
[0027] なお、第 1冷気伝導部材および第 2冷気伝導部材から成る製氷部で、水の付着す る少なくとも一方の部材の面は(例えば交互に配設された第 1冷気伝導部材および 第 2冷気伝導部材から成る製氷部において水の付着する面や、製氷部を構成する 少なくとも第 1冷気伝導部材の面等は)、平滑面になっていることが好ましい。このよう にしておけば、流れ落ちる水に対して抵抗を与えないようにできるためである。また、 水の付着する第 1冷気伝導部材が平滑面になっていれば、氷は生成されやすい上 に、離氷しやすいという利点も生じる。  [0027] It should be noted that the surface of at least one member to which water adheres in the ice making section composed of the first cold air conducting member and the second cold air conducting member (for example, the first cold air conducting member and the second cold air conducting member arranged alternately) It is preferable that the surface to which water adheres in the ice making part made of the cold air conducting member, or at least the surface of the first cold air conducting member constituting the ice making part) is a smooth surface. This is because resistance can be prevented from flowing down by doing so. In addition, if the first cold air conducting member to which water adheres has a smooth surface, there is an advantage that ice is easily generated and that it is easy to deice.
[0028] また、本発明の製氷装置の製氷部では、その製氷部の平滑面から(例えば、製氷 部を構成する第 2冷気伝導部材から)立ち上がるようにして、仕切部が設けられるよう になっている。そして、好ましくは、この仕切部の延び方向(仕切部の長手方向)が、 水の流れ落ちる方向と同方向になっている。なお、仕切部は、少なくとも 1個以上備 えられるようになつている(仕切部が板状体であれば、 1枚以上備えられていると表現 してもよい)。  [0028] Further, in the ice making part of the ice making device of the present invention, a partition part is provided so as to rise from a smooth surface of the ice making part (for example, from the second cold air conducting member constituting the ice making part). ing. And preferably, the extending direction of the partition (longitudinal direction of the partition) is the same as the direction in which water flows down. It should be noted that at least one partition is provided (if the partition is a plate, it may be expressed that one or more are provided).
[0029] これによると、製氷部は、例えば複数の並べられた (例えば水平方向に並べられた) 仕切部によって区分けされるようになっているので、生成される氷も区分けされること になる。特に、仕切部の延び方向は、水の流れ落ちる方向(例えば垂直方向)と同方 向のために、製氷部において生成され区分けされた氷が水平方向に並ぶような関係 になる。つまり、製氷部において生成され、区分けされた氷は、水平方向かつ垂直方 向に並ぶような関係になる(氷がマトリックス状に位置するようになる)。  [0029] According to this, since the ice making unit is divided by, for example, a plurality of arranged (for example, horizontally arranged) partition units, the generated ice is also divided. . In particular, the extending direction of the partition portion is the same as the direction in which water flows down (for example, the vertical direction), so that the ice generated and sectioned in the ice making portion is arranged in a horizontal direction. In other words, the ice generated and divided in the ice making section has a relationship such that the ice is aligned horizontally and vertically (ice is positioned in a matrix).
[0030] なお、仕切部は(例えば、仕切部の少なくとも一部は)、第 2冷気伝導部材と同じ材 料から構成されているので、仕切部と生成された氷とが固着する事態はあり得ない。  [0030] It should be noted that the partition part (for example, at least a part of the partition part) is made of the same material as that of the second cold air conducting member, so there is a situation in which the partition part and the generated ice are fixed. I don't get it.
[0031] また、本発明の製氷装置では、仕切部が、製氷部を構成する面に沿って、スライド 移動可能になっている。例えば、仕切部は、第 2冷気伝導部材と一体的に形成され るようになっており、この仕切部は、第 1冷気伝導部材に対して第 2冷気伝導部材の ずれる方向に沿って、スライド移動可能になっている。 [0032] 具体的には、仕切部をスライド移動させるための動力源となる駆動部が設けられる とともに、この駆動部の動力を受ける伝達部が仕切部に備えられており、仕切部は、 駆動源の動力の伝達を受けて、第 2冷気伝導部材とともに、第 1冷気伝導部材から ずれるようにスライド移動するようになってレ、る。 [0031] Further, in the ice making device of the present invention, the partition portion is slidable along the surface constituting the ice making portion. For example, the partition portion is formed integrally with the second cold air conduction member, and the partition portion slides along the direction in which the second cold air conduction member is displaced with respect to the first cold air conduction member. It can be moved. Specifically, a drive unit serving as a power source for sliding the partition unit is provided, and a transmission unit that receives power from the drive unit is provided in the partition unit. Upon receiving power from the power source, the second cold air conducting member slides away from the first cold air conducting member.
[0033] このように仕切部がスライド移動するということは、製氷部(具体的には第 1冷気伝導 部材上)において生成された氷が、スライド移動する仕切部と強く接触することになる 。そのため、第 1冷気伝導部材上に固着した氷に対して、せん断力が働くようになり、 氷と第 1冷気伝導部材との固着が解除され、氷は第 1冷気伝導部材力ら離れるように なる。つまり、本発明の製氷装置は、第 1冷気伝導部材から氷を離氷させるために、 あえて、氷表面を融解させるような必要がなくなる。  [0033] The sliding movement of the partition portion in this way means that the ice generated in the ice making portion (specifically, on the first cold air conducting member) comes into strong contact with the sliding partition portion. As a result, a shearing force is applied to the ice stuck on the first cold air conducting member, the sticking between the ice and the first cold conducting member is released, and the ice is separated from the force of the first cold air conducting member. Become. In other words, the ice making device of the present invention does not need to deliberately melt the ice surface in order to release the ice from the first cold air conducting member.
[0034] そして、製氷部で生成された氷を貯留する氷貯留部が設けられるようにするとともに 、この氷貯留部の内部が、氷点以下を維持するようにしておけば、氷の融解によるサ ィズの縮小化を防止できる。その上、融解しないことから水が存在しなくなり、氷貯留 部内において、雑菌等の繁殖を防止することもできる。  [0034] Then, an ice storage unit for storing the ice generated in the ice making unit is provided, and if the inside of the ice storage unit is maintained below the freezing point, a support due to melting of ice is provided. Size reduction can be prevented. In addition, since it does not melt, water no longer exists, and it is possible to prevent the propagation of germs and the like in the ice reservoir.
[0035] なお、第 1冷気伝導部材から効率よく氷を離氷させるために、水の付着する第 1冷 気伝導部材上には、生成された氷を剥落させやすくする剥落処理が施されているこ とが好ましい。例えば、第 1冷気伝導部材上にフッ素樹脂を被覆させることが挙げら れる。  [0035] It should be noted that in order to efficiently remove ice from the first cold air conducting member, the first cold conducting member to which water adheres is subjected to a peeling process that makes it easy to peel off the generated ice. It is preferable. For example, a fluororesin may be coated on the first cold air conducting member.
[0036] これによると、第 1冷気伝導部材と氷との固着強度が比較的増加せず、仕切部のス ライド移動距離を長くしたり、仕切部をスライド移動させる駆動部の駆動力を大きくし たりする必要が生じない。  [0036] According to this, the adhesion strength between the first cold air conducting member and ice does not increase relatively, the slide moving distance of the partition part is lengthened, and the driving force of the drive part that slides the partition part is increased. There is no need to do this.
[0037] なお、本発明の冷却方式は、種々想定できる。例えば冷媒による冷却(冷媒を利用 した冷却;例えば冷媒によって低温化した冷気による冷却や冷媒の冷熱による冷却) やそれ以外の冷却方式であってもよい。 [0037] Various cooling methods of the present invention can be envisaged. For example, cooling by a refrigerant (cooling using a refrigerant; for example, cooling by cold air cooled by a refrigerant or cooling by cold refrigerant) or other cooling methods may be used.
発明の効果  The invention's effect
[0038] 本発明の製氷装置は、氷の生成される製氷部を、冷気の伝導率 (熱伝導率)の異 なる部材 (第 1冷気伝導部材 ·第 2冷気伝導部材)を組み合わせることで、冷媒が効 率よく伝わって氷点以下となる領域と、冷媒が効率よく伝わらずに氷点を超えるように なった領域とが混在するようにしている。そのため、本発明の製氷装置は、製氷部上 に分離するようになった氷を複数生成できるようになつている(つまり、第 1冷気伝導 部材上にのみ氷を生成できるようになっている)。つまり、本発明の製氷装置は、分離 した氷を生成させるために、従来のように熱伝導率の低レ、材料で製氷部全域を形成 していないために、冷媒の冷凍能力を有効利用して氷を生成させることができる。 図面の簡単な説明 [0038] In the ice making device of the present invention, an ice making unit where ice is generated is combined with members having different cold air conductivities (thermal conductivities) (first cold air conducting member · second cold air conducting member), The area where the refrigerant is efficiently transmitted and below the freezing point, and that the refrigerant is not transmitted efficiently and exceeds the freezing point. It is made to mix with the area which became. Therefore, the ice making device of the present invention can generate a plurality of pieces of ice separated on the ice making unit (that is, can generate ice only on the first cold air conducting member). . In other words, the ice making device of the present invention uses the refrigerant's refrigeration capacity effectively because the ice making unit does not form the entire ice making part with low heat conductivity as in the prior art, in order to generate separated ice. Ice can be generated. Brief Description of Drawings
[図 1]本発明の製氷装置における製氷プレートユニット '離氷ユニット等を主体的に図 示した概略斜視図である。 FIG. 1 is a schematic perspective view mainly showing an ice making plate unit “icing unit” and the like in an ice making device of the present invention.
[図 2A]図 1の正面図である。 FIG. 2A is a front view of FIG.
[図 2B]図 1の側面図である。 FIG. 2B is a side view of FIG.
[図 3]製氷装置に含まれる製氷プレートユニット '離氷ユニットに加え、散水ユニット等 も図示した側面図である。  FIG. 3 is a side view illustrating an ice making plate unit included in an ice making apparatus, a watering unit in addition to an ice removing unit.
[図 4]本発明の製氷装置において用いられる製氷プレートユニットの概略斜視図であ る。  FIG. 4 is a schematic perspective view of an ice making plate unit used in the ice making device of the present invention.
[図 5]製氷プレートユニットの製氷プレート、あるいは離氷ユニットの底板部'立設リブ を構成する材料の熱伝導率を示したテーブルである。  [FIG. 5] A table showing the thermal conductivity of the material constituting the ice making plate of the ice making plate unit or the bottom plate portion of the ice removing unit.
[図 6]本発明の製氷装置において用いられる離氷ユニットの概略斜視図である。  FIG. 6 is a schematic perspective view of an ice removal unit used in the ice making device of the present invention.
[図 7]離氷ユニットの正面図、側面図、底面図からなる三面図である。 FIG. 7 is a three-sided view including a front view, a side view, and a bottom view of the ice removal unit.
[図 8]制御部に関するブロック図である。 FIG. 8 is a block diagram related to a control unit.
[図 9]製氷プレートユニットと離氷ユニットとを組み立てるときの工程 (組立工程)を示 す斜視図である。  FIG. 9 is a perspective view showing a process (assembly process) for assembling the ice making plate unit and the ice removing unit.
[図 10]製氷プレートユニットと離氷ユニットとを組み立てるときの工程 (組立工程)を示 す平面図である。  FIG. 10 is a plan view showing a process (assembly process) for assembling the ice making plate unit and the ice removing unit.
[図 11]製氷工程.離氷工程を示すフローチャートである。  FIG. 11 is a flowchart showing an ice making process.
[図 12]図 1の他の一例を示す本発明の製氷装置の概略斜視図である。  FIG. 12 is a schematic perspective view of the ice making device of the present invention showing another example of FIG. 1.
[図 13A]図 12の正面図である。  FIG. 13A is a front view of FIG.
[図 13B]図 12の側面図である。  FIG. 13B is a side view of FIG.
[図 14]図 4の他の一例を示す製氷プレートユニットの概略斜視図である。 [図 15]図 6の他の一例を示す離氷ユニットの概略斜視図である。 FIG. 14 is a schematic perspective view of an ice making plate unit showing another example of FIG. FIG. 15 is a schematic perspective view of an ice removal unit showing another example of FIG. 6.
[図 16]図 7の他の一例を示す離氷ユニットの正面図、側面図、底面図からなる三面図 である。  FIG. 16 is a three-sided view including a front view, a side view, and a bottom view of the ice removal unit showing another example of FIG.
[図 17]製氷工程の完了後の本発明の製氷装置の概略側面図である。  FIG. 17 is a schematic side view of the ice making device of the present invention after completion of the ice making process.
[図 18]離氷工程を行っている本発明の製氷装置の概略側面図である。  FIG. 18 is a schematic side view of an ice making device of the present invention performing an ice removal step.
[図 19]図 1 ·図 12の他の一例を示す本発明の製氷装置の概略斜視図である。  FIG. 19 is a schematic perspective view of the ice making device of the present invention showing another example of FIGS. 1 and 12.
[図 20]図 1 .図 12 ·図 19の他の一例を示す本発明の製氷装置の概略側面図である。  FIG. 20 is a schematic side view of the ice making device of the present invention showing another example of FIG. 1, FIG. 12 and FIG.
[図 21]図 6 ·図 15の他の一例を示す離氷ユニットの概略斜視図である。  FIG. 21 is a schematic perspective view of an ice removing unit showing another example of FIGS. 6 and 15.
[図 22]従来の製氷装置を示す概略図である。  FIG. 22 is a schematic view showing a conventional ice making device.
[図 23]図 22の他の一例を示す従来の製氷装置の斜視図である。  FIG. 23 is a perspective view of a conventional ice making device showing another example of FIG.
[図 24A]図 22の正面図である。  FIG. 24A is a front view of FIG.
[図 24B]図 22の側面図である。  FIG. 24B is a side view of FIG.
符号の説明 Explanation of symbols
1 製氷プレート (第 1部材、第 1冷気伝導部材、第 1冷熱部材)  1 Ice making plate (first member, first cold air conduction member, first cold heat member)
lb 筒型製氷プレート (第 1部材、第 1冷気伝導部材、第 1冷熱部材)  lb Cylindrical ice making plate (first member, first cold air conduction member, first cold member)
2 冷媒パイプ  2 Refrigerant pipe
7 製氷プレートユニット  7 Ice making plate unit
8a 補助プレート  8a Auxiliary plate
8b ガイド片  8b Guide piece
11 立設リブ (仕切部)  11 Standing rib (partition)
12 底板部(第 2部材、第 2冷気伝導部材、第 2冷熱部材)  12 Bottom plate (second member, second cold air conduction member, second cold heat member)
12a 底板片 (第 2部材、第 2冷気伝導部材、第 2冷熱部材)  12a Bottom plate piece (second member, second cold air conduction member, second cold heat member)
12b 筒状体 (第 2部材、第 2冷気伝導部材、第 2冷熱部材)  12b Tubular body (second member, second cold air conduction member, second cold heat member)
12bc 表出開孔(開孔)  12bc exposed hole (opening)
13 ボールネジ部(伝達部)  13 Ball screw part (transmission part)
17 離氷ユニット  17 De-icing unit
21 流下溝 (製氷部)  21 Downflow ditch (ice making part)
31 RUモーター(駆動部) 41 氷貯留 BOX (氷貯留部) 31 RU motor (drive unit) 41 Ice storage BOX (Ice storage part)
42 循環パイプ  42 Circulation pipe
43 ポンプ  43 Pump
44 散水孔  44 Watering hole
X スライド方向  X Slide direction
Y スライド方向  Y Slide direction
V スライド方向  V Slide direction
w スライド方向  w Slide direction
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] [実施の形態 1]  [0041] [Embodiment 1]
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである  An embodiment of the present invention will be described below with reference to the drawings.
[0042] 〔製氷装置の構成について〕 [Configuration of ice making device]
本発明の製氷装置は、冷凍サイクルによって供給される冷媒を利用して氷を生成 するようになつている。そして、具体的構成は、図 1〜図 3に示すようになつている。こ れら図に示すように、本発明の製氷装置 69は、製氷プレートユニット 7 (図 4参照)、 離氷ユニット 17 (図 6参照)、離氷ユニット用駆動モーター(RUモーター) 31、散水ュ ニット 47、製氷完了検知センサー 51 (図 8参照)、制御部 52 (図 8参照)、および氷貯 留 BOX (氷貯留部) 53を含むようになつている。  The ice making device of the present invention generates ice using the refrigerant supplied by the refrigeration cycle. The specific configuration is as shown in FIGS. As shown in these drawings, the ice making device 69 of the present invention includes an ice making plate unit 7 (see FIG. 4), an ice removing unit 17 (see FIG. 6), an ice removing unit drive motor (RU motor) 31, and water spraying. It includes a unit 47, an ice making completion detection sensor 51 (see Fig. 8), a control unit 52 (see Fig. 8), and an ice storage BOX (ice storage unit) 53.
[0043] なお、図 1は本発明の製氷装置 69における製氷プレートユニット 7 ·離氷ユニット 17 を主体的に図示した斜視図であり、図 2 (a)は図 1の正面図、図 2 (b)は図 1の側面図 となっている。図 3は、製氷プレートユニット 7 ·離氷ユニット 17に加え、散水ユニット 4 7等も図示した側面図になっている。  FIG. 1 is a perspective view mainly showing the ice making plate unit 7 and the ice removing unit 17 in the ice making device 69 of the present invention. FIG. 2 (a) is a front view of FIG. b) is a side view of Fig. 1. FIG. 3 is a side view illustrating the ice making plate unit 7 and the ice removing unit 17 as well as the watering unit 47 and the like.
[0044] 〈製氷プレートユニットについて〉  <About the ice making plate unit>
製氷プレートユニット 7は、図 4に示すように、冷媒パイプ 2、およびこの冷媒パイプ 2 に取り付けられた製氷プレート 1 (第 1部材、第 1冷気伝導部材、第 1冷熱伝導部材) を含むようになつている。なお、便宜上、製氷プレート 1の部分には、網線を施すよう にしている。 [0045] 《冷媒パイプについて》 As shown in FIG. 4, the ice making plate unit 7 includes a refrigerant pipe 2 and an ice making plate 1 (first member, first cold air conducting member, first cold heat conducting member) attached to the refrigerant pipe 2. It is summer. For convenience, the ice making plate 1 is provided with a mesh line. [0045] <Regarding refrigerant pipe>
冷媒パイプ 2は、冷凍サイクルにおける冷媒 (冷媒ガス、冷媒液)の流れるパイプで ある。なお、不図示の冷凍サイクルは、少なくとも、高温'高圧で冷媒を圧縮する圧縮 機、圧縮された冷媒を凝縮させて液化させる凝縮機、凝縮液化された冷媒を膨張さ せる膨張バルブ、および、冷媒がそのまま圧縮機に戻って、非常に大きな負荷を与 える液圧縮の発生を防止するために、気体だけを圧縮機に送るアキュムレータ一等 を含むようになつている。  The refrigerant pipe 2 is a pipe through which refrigerant (refrigerant gas, refrigerant liquid) flows in the refrigeration cycle. The refrigeration cycle (not shown) includes at least a compressor that compresses refrigerant at high temperature and high pressure, a condenser that condenses and liquefies the compressed refrigerant, an expansion valve that expands the condensed liquefied refrigerant, and a refrigerant In order to prevent the occurrence of liquid compression that gives a very large load to the compressor as it is, an accumulator that sends only gas to the compressor is included.
[0046] そして、冷媒パイプ 2は、これらの構成部材 (少なくとも圧縮機 ·凝縮機 ·膨張バルブ •アキュムレーター)をつなげて循環路 (サイクル)を形成するようになっている。なお、 これら構成部材を冷凍サイクルユニット 10 (図 8参照)と表現する。  [0046] The refrigerant pipe 2 is configured to connect these constituent members (at least a compressor, a condenser, an expansion valve, and an accumulator) to form a circulation path (cycle). These components are expressed as refrigeration cycle unit 10 (see FIG. 8).
[0047] 《製氷プレートについて》  [0047] <About ice making plate>
製氷プレート 1は、図 5 (熱伝導率を示すテーブル)に示すように、熱導電率 (冷媒 の冷気の伝導率)の高い、例えば銅 (Cu)やアルミニウム (A1)から構成されたプレー トである。そして、この製氷プレート 1上に、氷の膜 (氷膜)が積層するようになっている 。具体的には、冷媒パイプ 2を流れる冷媒の気化によって、冷媒パイプ 2近傍の製氷 プレート 1一面に、氷膜が積層するようになっている。  As shown in Fig. 5 (a table showing the thermal conductivity), the ice making plate 1 has a plate having a high thermal conductivity (conductivity of refrigerant cold air) such as copper (Cu) or aluminum (A1). It is. An ice film (ice film) is laminated on the ice making plate 1. Specifically, an ice film is stacked on the entire surface of the ice making plate 1 near the refrigerant pipe 2 by vaporization of the refrigerant flowing through the refrigerant pipe 2.
[0048] なお、製氷プレート 1は、高い熱伝導率を維持するために、溶接等で蛇行形状とな つた冷媒パイプ 2に接続されるようになっている。特に、複数の製氷プレート 1 · 1同士 において、延び方向(製氷プレート 1の長手方向)が平行関係になるようにし、かつ、 互いに接触しないよう離間させて、蛇行する冷媒パイプ 2上に取り付けられるようにな つている。  [0048] Note that the ice making plate 1 is connected to the refrigerant pipe 2 that has become meandering by welding or the like in order to maintain high thermal conductivity. In particular, a plurality of ice making plates 1 · 1 are attached to the meandering refrigerant pipe 2 so that the extending directions (longitudinal direction of the ice making plate 1) are parallel to each other and separated from each other so as not to contact each other. It has become.
[0049] 〈離氷ユニットについて〉  [0049] <Ice unit>
離氷ユニット 17は、図 6 (斜視図) ·図 7 (三面図)に示すように、立設リブ (仕切部) 1 1、底板部(第 2冷気伝導部材) 12、およびボールネジ部(伝達部) 13を含むようにな つている。なお、図 7では、便宜上、開口部分(開口 22)を塗りつぶして図示している  As shown in FIG. 6 (perspective view) and FIG. 7 (three-sided view), the ice removal unit 17 has a standing rib (partition part) 11, a bottom plate part (second cold air conducting member) 12, and a ball screw part (transmission) Part) 13 is included. In FIG. 7, for the sake of convenience, the opening portion (opening 22) is shown filled in.
[0050] 《立設リブについて》 [0050] 《About standing ribs》
立設リブ 11は、底板部 12から立ち上がるようにして設けられている。具体的には、 水平面(地面)に対して一面が垂直になるように配設されることになる底板部 12から、 立ち上がるように設けられた(立設された)リブになっている。特に、立設リブ 11は、底 板部 12の面上において互いに離間するようにし、かつ一方向に並ぶようにして配設 されている。 The standing rib 11 is provided so as to rise from the bottom plate portion 12. In particular, The ribs are provided (stand up) so as to stand up from the bottom plate portion 12 which is arranged so that one surface is perpendicular to the horizontal plane (ground). In particular, the standing ribs 11 are arranged on the surface of the bottom plate portion 12 so as to be separated from each other and aligned in one direction.
[0051] そのため、後述の製氷プレートユニット 7と離氷ユニット 17との組立が行われた場合 、立設リブ 11 · 11同士の間には、これら立設リブ 11 · 11と、底板部 12 (底板片 12a) · 製氷プレート 1とで溝 (流下溝) 21が形成されるようになる。なお、この流下溝 (製氷部 ) 21は、製氷水を流下させるために、延び方向が、水平面(地面)に対して垂直方向 になっている。そして、上記の一方向(立設リブ 11の並び方向)は水平方向になって いる。  [0051] Therefore, when an ice making plate unit 7 and an ice removing unit 17 which will be described later are assembled, the standing ribs 11 and 11 and the bottom plate portion 12 ( Bottom plate piece 12a) · Groove (flowing groove) 21 is formed with ice making plate 1. Note that the flow-down groove (ice making part) 21 extends in a direction perpendicular to the horizontal plane (ground) in order to allow ice-making water to flow down. The one direction (the direction in which the standing ribs 11 are arranged) is a horizontal direction.
[0052] 《底板部について》  [0052] <About the bottom plate>
底板部 12は、複数の底板片(第 2部材、第 2冷気伝導部材、第 2冷熱伝導部材) 12 aから構成されている。そして、この複数の底板片 12aが、互いに離間するようにし、 かつ立設リブ 11の並び方向(水平方向)に対して垂直方向で並べるようにして配設さ れている。そして特に、立設リブ 11の延び方向(立設リブ 11の長手方向)と立設リブ 1 1の並び方向とがほぼ 90° で交わるように(交差するように)なっている。  The bottom plate portion 12 is composed of a plurality of bottom plate pieces (second member, second cold air conducting member, second cold heat conducting member) 12a. The plurality of bottom plate pieces 12a are arranged so as to be separated from each other and arranged in the vertical direction with respect to the arrangement direction (horizontal direction) of the standing ribs 11. In particular, the extending direction of the upright ribs 11 (longitudinal direction of the upright ribs 11) and the arrangement direction of the upright ribs 11 intersect (intersect) at approximately 90 °.
[0053] そのため、底板片 12a ' 12a同士の間には、立設リブ 11で区切られる開口 22 (図 7 の塗りつぶし部分参照)が生じるようになるとともに、この開口 22が水平方向に連なつ て成る嵌合溝 23も形成されるようになっている。  [0053] Therefore, an opening 22 (see the filled portion in FIG. 7) delimited by the standing rib 11 is formed between the bottom plate pieces 12a '12a, and this opening 22 is connected in the horizontal direction. A fitting groove 23 is also formed.
[0054] なお、詳細については後述するが、本発明の製氷装置 69では、流下溝 21中に氷 が生成される。そして、この氷を流下溝 21から離氷させる必要がある。そこで、必要 以上に (例えば離氷不可能なほどに)、氷と立設リブ 11 ·底板部 12とが固着しないよ うにするため、熱伝導率の低いセラミックスや樹脂、ステンレス等(図 5参照)で、立設 リブ 11 ·底板部 12が構成されていることが好ましい。  Although details will be described later, in the ice making device 69 of the present invention, ice is generated in the downflow groove 21. Then, it is necessary to release the ice from the descending groove 21. Therefore, in order to prevent the ice and the standing rib 11 and the bottom plate 12 from sticking more than necessary (for example, to the extent that it cannot be deiced), ceramics, resin, stainless steel, etc. with low thermal conductivity (see Fig. 5). ), It is preferable that the standing rib 11 and the bottom plate portion 12 are configured.
[0055] 《ボールネジ部について》  [0055] <Ball screw part>
図 1 ·図 2に示すボールネジ部 13は、雄ネジ 13aと雌ネジ 13bと力も構成されている 。そして、雌ネジ 13bは、離氷ユニット 17の例えば最外部に該当する立設リブ 1 1に取 り付けられるようになつている。そして、雄ネジ 13aの回転に応じて、雌ネジ 13bが雄 ネジ 13aの軸方向で往復移動(例えば数 mm程度で往復移動)できるようになつてい る。つまり、ボールネジ部 13によって、離氷ユニット 17が、製氷プレートユニット 7に対 して、移動 (往復移動)できるようになつている。 The ball screw portion 13 shown in FIG. 1 and FIG. 2 includes a force with a male screw 13a and a female screw 13b. The female screw 13b is attached to the standing rib 11 corresponding to, for example, the outermost part of the ice removing unit 17. As the male screw 13a rotates, the female screw 13b It can be reciprocated in the axial direction of the screw 13a (for example, reciprocating with a few millimeters). That is, the ball screw part 13 enables the ice removing unit 17 to move (reciprocate) with respect to the ice making plate unit 7.
[0056] 〈離氷ユニット用駆動モーター(RUモーター)につレ、て〉  [0056] <Take the drive motor (RU motor) for the ice release unit>
RUモーター(駆動部) 31は、ボールネジ部 13の雄ネジ 13aを回転させるものであ る。具体的には、 RUモーター 31の回転軸 31aと、ボールネジ部 13の雄ネジ 13aとが 嚙み合うようになっており、回転軸 31aの回転に応じて、雄ネジ 13aが回転するように なっている。  The RU motor (drive unit) 31 rotates the male screw 13a of the ball screw unit 13. Specifically, the rotating shaft 31a of the RU motor 31 and the male screw 13a of the ball screw portion 13 are engaged with each other, and the male screw 13a rotates according to the rotation of the rotating shaft 31a. ing.
[0057] 〈散水ユニットについて〉  [0057] <About the watering unit>
図 3に示す散水ユニット(給水ユニット) 47は、流下溝 21に製氷水を流下させるもの であり、製氷水を貯留する製氷水タンク 41、製氷水タンク 41から流下溝 21の入口ま でをつなぐ循環パイプ 42、および、循環パイプ 42に設けられ、この循環パイプ 42を 通じて製氷水を流下溝 21の入口へと送り出すポンプ 43を含むようになつている。  The watering unit (water supply unit) 47 shown in FIG. 3 is used to flow ice-making water into the ditch 21 and connects the ice-making water tank 41 for storing ice-making water and the ice-making water tank 41 to the inlet of the ditch 21. A circulation pipe 42 and a pump 43 that is provided in the circulation pipe 42 and sends ice-making water to the inlet of the flow-down groove 21 through the circulation pipe 42 are included.
[0058] なお、製氷水を流下(落下)させるために、流下溝 21の延び方向(溝流れ方向)は、 水平面(地面)に対して垂直方向になっている。そのため、流下溝 21の入口は、その 流下溝 21の上方部分となる。  [0058] In order to flow down (fall) the ice making water, the extending direction (groove flow direction) of the flow groove 21 is perpendicular to the horizontal plane (ground). Therefore, the inlet of the downflow groove 21 is the upper part of the downflow groove 21.
[0059] そこで、流下溝 21の入口近傍に位置する循環パイプ 42には、ポンプ 43によって送 り出されてきた製氷水を流下溝 21に流れ落ちる(落下)ようにするために、散水開孔 4 4が設けられるようになつている(図 1参照)。なお、この散水開孔 44は、複数ある流下 溝 21毎に均一の水量が流下されるようにするために、各流下溝 21に対応するように 、設けられていることが好ましい。  [0059] Therefore, in the circulation pipe 42 located near the inlet of the downflow groove 21, in order to cause the ice-making water sent out by the pump 43 to flow down (fall) into the downflow groove 21, a water spray hole 4 is provided. 4 is now available (see Figure 1). The watering holes 44 are preferably provided so as to correspond to the respective downflow grooves 21 so that a uniform amount of water flows down for each of the plurality of downflow grooves 21.
[0060] また、流下溝 21を流れる製氷水は、一部は氷膜となる一方、氷膜に成り得なかった 残りの水は、流下溝 21をったつて、その流下溝 21外部へと流れ出てしまうことになる そこで、この流れ出る水 (未氷結水)を再度、製氷水として利用できるようにするため 、製氷水タンク 41に回収開口 41aを設けるようにしている。具体的には、この回収開 口 41aと流下溝 21の出口(すなわち、流下溝 21の下方部分)とを、例えば近接する ように配設することで、未氷結水が、回収開口 41aを通じて製氷水タンク 41に回収さ れるようにしている。なお、より効率よく未氷結水を回収するために、回収開口 41aと 流下溝 21の出口とをつなぐ導入部(例えば、未氷結水がつたうような部材)を設けて も構わない。 [0060] In addition, the ice-making water flowing through the downflow groove 21 partially becomes an ice film, while the remaining water that could not be formed into an ice film travels down the downflow groove 21 to the outside of the downflow groove 21. Therefore, the recovery opening 41a is provided in the ice making water tank 41 so that the flowing water (unfreezing water) can be used again as ice making water. Specifically, by arranging the recovery opening 41a and the outlet of the flow-down groove 21 (that is, the lower part of the flow-down groove 21) so as to be close to each other, for example, uniced water is formed through the recovery opening 41a. It is collected in the water tank 41. In order to collect unfrozen water more efficiently, the collection opening 41a You may provide the introduction part (for example, the member which non-freezing water leads) which connects with the exit of the descent | fall groove | channel 21.
[0061] 〈製氷完了検知センサーについて〉 [0061] <About ice making completion detection sensor>
製氷完了検知センサー 51 (図 1〜図 3等では不図示、図 8参照)は、例えば温度を 検知できるセンサーであって、氷膜の積層点近傍 (すなわち製氷プレート 1上)の温 度を検知するようになっている。このように温度検知できる製氷完了検知センサー 51 力 Sあれば、例えば氷膜の積層によって、氷が使用可能なまでに成長したと判断できる 温度(閾温度)を検知できる。  The ice making completion detection sensor 51 (not shown in FIGS. 1 to 3, etc., see FIG. 8) is a sensor that can detect the temperature, for example, and detects the temperature near the ice film stacking point (that is, on the ice making plate 1). It is supposed to be. If the ice making completion detection sensor 51 force S that can detect the temperature in this way can detect the temperature (threshold temperature) at which it can be determined that the ice has grown to be usable, for example, by stacking ice films.
[0062] 例えば、後述する制御部 52 (図 8参照)にこの閾温度を記憶させるとともに、製氷完 了検知センサー 51の温度情報 (検知温度)を取得できるようにし、その温度情報と閾 温度とを比較することで、本発明の製氷装置 69は、氷の状態〔使用可能な氷 (塊氷) が形成されてレ、るか否力〕を把握できるようになってレ、る。 [0062] For example, this threshold temperature is stored in the control unit 52 (see Fig. 8) described later, and temperature information (detection temperature) of the ice making completion detection sensor 51 can be acquired. By comparing the above, the ice making device 69 of the present invention can grasp the state of ice [whether or not usable ice (blocked ice) is formed or not).
[0063] 〈制御部について〉 <Regarding Control Unit>
制御部 52は、図 8に示すように、少なくとも冷凍サイクルユニット 10、 RUモーター 3 As shown in FIG. 8, the control unit 52 includes at least a refrigeration cycle unit 10, an RU motor 3
1、ポンプ 43、および製氷完了検知センサー 51を制御管理するものである。なお、制 御部 52の機能についての詳細は、後述するものとする。 1. Controls and manages the pump 43 and the ice making completion detection sensor 51. Details of the function of the control unit 52 will be described later.
[0064] 〈氷貯留 BOXについて〉 [0064] <About ice storage BOX>
氷貯留 BOX (氷貯留部) 53は、流下溝 21から離氷(落下)してきた氷を貯留させる ものである。そのために、氷の落下先において配設されていることが好ましぐ図 3に 示すように、製氷プレートユニット 7 ·離氷ユニット 17よりも下方に配設されるようになつ ている。  The ice storage BOX (ice storage part) 53 stores ice that has deiced (falled) from the downflow groove 21. Therefore, as shown in FIG. 3, it is preferable that the ice is disposed below the ice making plate unit 7 and the ice removing unit 17 as shown in FIG.
[0065] また、図 3に示すように、氷貯留 BOX53へ効率よく氷が導かれるようにするために、 製氷水タンク 41の一部に傾斜面 41bを設け、落下してくる氷力 その傾斜面 41bを 転がるようにして、氷貯留 BOX53へと導かれるようにしても構わない。  [0065] Further, as shown in FIG. 3, in order to efficiently guide ice to the ice storage BOX 53, an inclined surface 41b is provided in a part of the ice making water tank 41, and the falling ice force is inclined. The surface 41b may be rolled to be led to the ice storage BOX 53.
[0066] なお、この氷貯留 BOX53は、例えば冷媒を利用することで氷点以下の状態で管理 されるようになつており、離氷してきた氷を氷点以下で保存できるようになつている。  [0066] It should be noted that the ice storage BOX 53 is managed below the freezing point by using, for example, a refrigerant, and the ice that has been deiced can be stored below the freezing point.
[0067] 〔製氷プレートユニット '離氷ユニットによる製氷装置の組立について〕  [0067] [Ice making plate unit 'Assembly of ice making device by ice removing unit]
製氷プレートユニット 7と離氷ユニット 17とによる製氷装置の組立について、図 9 ·図 10を用いて説明する。なお、便宜上、製氷プレートユニット 7は点線にて図示してい る。 Figure 9 · Figure for assembly of ice making equipment with ice making plate unit 7 and ice removing unit 17 10 will be used for explanation. For convenience, the ice making plate unit 7 is indicated by a dotted line.
[0068] 本発明の製氷装置 69では、熱伝導率の高い材料から成る製氷プレート 1を含む製 氷プレートユニット 7と、熱伝導率の低い材料力 成る立設リブ 11 ·底板部 12を含む 離氷ユニット 17とが組み合わさることで構成されるようになっている。  [0068] The ice making device 69 of the present invention includes an ice making plate unit 7 including an ice making plate 1 made of a material having a high thermal conductivity, and a standing rib 11 and a bottom plate portion 12 having a material force having a low thermal conductivity. It is configured by combining with ice unit 17.
[0069] 具体的には、図 9 (組立工程を示す斜視図) '図 10 (組立工程を示す平面図)に示 すように、離氷ユニット 17に形成される嵌合溝 23 (図 7参照)と、製氷プレートユニット 7の製氷プレート 1とを嵌め合わすようになつている。この嵌め合わせかたは、特に限 定されるものではないが、図 9 ·図 10に示すように、嵌合溝 23の延び方向に沿って、 スライドさせるようにして嵌め合わせる方法が挙げられる。  [0069] Specifically, as shown in Fig. 9 (perspective view showing the assembly process) 'Fig. 10 (plan view showing the assembly process), the fitting groove 23 (Fig. 7 And the ice making plate 1 of the ice making plate unit 7 are fitted together. This fitting method is not particularly limited, but as shown in FIGS. 9 and 10, there is a method of fitting by sliding along the extending direction of the fitting groove 23.
[0070] なお、隙間なく嵌合溝 23と製氷プレート 1とが嵌り合うようにするために、嵌合溝 23 のサイズ'溝の深さと、製氷プレート 1のサイズ'プレート厚とがほぼ合致するようにな つていることが好ましい。このようにしておけば、流下溝 21における底(すなわち、製 氷プレート 1と底板部 12とから成る底)が面一状態(平滑面)となり、流下する水に対 して抵抗を与えなレ、ようにできるためである。  [0070] In order to fit the fitting groove 23 and the ice making plate 1 with no gap, the size of the fitting groove 23 'the depth of the groove and the size of the ice making plate 1'the plate thickness substantially match. It is preferable that In this way, the bottom of the downflow groove 21 (that is, the bottom made up of the ice making plate 1 and the bottom plate portion 12) is in a flush state (smooth surface) and does not give resistance to the flowing down water. Because, it can be.
[0071] このように嵌合溝 23と製氷プレート 1とを嵌め合わせると、図 1に示すように、流下溝 21は、製氷プレート 1および底板片 12aが交互に配設されるようになる。より具体的に は、製氷プレート 1および底板片 12aは、流下溝 21上に付着した水の流れ落ちる方 向において、交互に配設されるようになる。  When the fitting groove 23 and the ice making plate 1 are fitted together in this way, as shown in FIG. 1, the ice making plate 1 and the bottom plate pieces 12a are alternately arranged in the flow-down groove 21. More specifically, the ice making plates 1 and the bottom plate pieces 12a are alternately arranged in the direction in which the water adhering to the downflow grooves 21 flows down.
[0072] 〔製氷装置の製氷工程'離氷工程について〕  [An ice making process of an ice making device]
ここで、本発明の製氷装置 69による製氷工程 ·離氷工程について、図 11のフロー チャートおよび図 8のブロック図等を用いて説明する。なお、以降の説明では、フロー チャートでの動作ステップを Sと表示して説明する。また、 S1〜S6までの工程を製氷 工程、 S7 ' S8の工程を離氷工程と表現する。  Here, the ice making process / icing process by the ice making device 69 of the present invention will be described with reference to the flow chart of FIG. 11, the block diagram of FIG. In the following explanation, the operation step in the flow chart is indicated as S. Also, the process from S1 to S6 is expressed as the ice making process, and the process from S7'S8 is expressed as the ice removal process.
[0073] まず、制御部 52が、冷凍サイクルユニット 10を駆動させることで、冷媒パイプ 2中に 冷媒を流すようにする(Sl)。この冷媒は、制御部 52によって、 _ 15°C〜― 25°C程 度(冷媒温度)になるように管理されており、製氷プレート 1を気化熱で冷やすように なっている。その結果、この製氷プレート 1上は、冷媒温度と同程度までに、急冷され るようになっている。 First, the control unit 52 drives the refrigeration cycle unit 10 so that the refrigerant flows through the refrigerant pipe 2 (Sl). This refrigerant is controlled by the control unit 52 so as to be about -15 ° C to -25 ° C (refrigerant temperature), and the ice making plate 1 is cooled by the heat of vaporization. As a result, the ice making plate 1 is rapidly cooled to the same level as the refrigerant temperature. It has become so.
[0074] 次に、制御部 52は、散水ユニット 47におけるポンプ 43を駆動させることで、循環パ イブ 42中に、製氷水タンク 41の製氷水を循環させるようにする(S2)。すると、循環パ イブ 42を流れる製氷水が、散水開孔 44から製氷プレート 1 ·立設リブ 11 ·底板部 12 力 成る流下溝 21へと流れるようになる(S3)。  Next, the control unit 52 drives the pump 43 in the watering unit 47 to circulate the ice making water in the ice making water tank 41 in the circulation pipe 42 (S2). Then, the ice making water flowing through the circulation pipe 42 flows from the sprinkling hole 44 to the flow down groove 21 composed of the ice making plate 1, the standing rib 11, and the bottom plate portion 12 (S3).
[0075] このように製氷水力 流下溝 21をったつて流下していくとき、熱伝導率 (冷媒の伝 導率)の高い製氷プレート 1上のみが冷媒温度と同程度になる一方、熱伝導率の低 ぃ立設リブ 11 ·底板部 12は、冷媒温度よりも高い温度で維持されるようになっている  [0075] When the ice making hydropower downflow groove 21 flows down in this way, only the ice making plate 1 having a high thermal conductivity (conductivity of the refrigerant) has the same temperature as the refrigerant temperature, while the heat conduction. The low-rise standing rib 11 and the bottom plate part 12 are maintained at a temperature higher than the refrigerant temperature.
[0076] そのため、製氷プレート 1上に、薄い氷膜が形成されるようになる(S4)。そして、冷 媒によって、継続的に製氷プレート 1が冷やされていくと、徐々に (連続的に)、氷膜 が積層していく(S5)。そして、冷媒によって、ある一定の温度(閾温度)まで、製氷プ レート 1が冷やされるまでになると、積層(成長)していた氷膜が使用可能な大きさの 氷(塊氷)となる(S6)。 Therefore, a thin ice film is formed on the ice making plate 1 (S4). When the ice making plate 1 is continuously cooled by the cooling medium, the ice films are gradually laminated (S5). When the ice-making plate 1 is cooled down to a certain temperature (threshold temperature) by the refrigerant, the stacked (grown) ice film becomes usable ice (bulk ice). S6).
[0077] このように、製氷水が流下(流下循環)されることで氷を形成する製氷工程では、水 に溶存する空気等のガス成分 (不純物)が拡散するようになっている。そのため、純 水のみが製氷プレート 1上で氷膜となる。  As described above, in the ice making process in which ice is formed by flowing down (circulating down) the ice making water, gas components (impurities) such as air dissolved in the water are diffused. Therefore, only pure water forms an ice film on the ice making plate 1.
[0078] また、流下する製氷水が途中で氷膜になっている上(流れ落ちる水の中途の形状 で固化されるようになっている上)、純水の氷膜上に、新たな氷膜が積層されるように なっている。そのため、氷膜が積層し続けて塊氷になるころには、半円の断面形状を 有する透明度の高レ、氷が完成されるようになってレ、る。  [0078] In addition, the ice-making water flowing down is an ice film on the way (it is solidified in the shape of the middle of the flowing-down water), and a new ice film is formed on the ice film of pure water. Are stacked. For this reason, when the ice film continues to be stacked and becomes lump ice, it has a semi-circular cross-sectional shape with high transparency and ice is completed.
[0079] ところで、流下溝 21の底は、製氷プレート 1と底板片 12aとが交互に並ぶように配設 されている。そのため、製氷プレート 1と底板片 12aとには繋ぎ目が生じるようになって いる。そして、この繋ぎ目付近は、冷媒による冷気の影響を受けやすくなつている。そ のため、繋ぎ目を覆うようにして氷膜が形成されるようになる。したがって、繋ぎ目に隙 間が生じたとしても、上記のように覆うように形成された氷膜がシールのような役割を 果たすようになつている(つまり、繋ぎ目近傍に水漏れを防止するようなシール部材は 不要となっている)。 [0080] なお、塊氷が形成されたか否かについての判断は、上記したように、製氷完了検知 センサー 51の検知温度と閾温度との比較によって判断される。具体的には、検知温 度が閾温度(例えば— 20°C〜― 25°C)に到達した場合、制御部 52は、塊氷が形成 されているものと判断する一方、閾温度よりも高い場合、まだ継続して氷膜を積層さ せていく必要があるものと判断するようになっている。 Incidentally, the bottom of the flow-down groove 21 is arranged so that the ice making plates 1 and the bottom plate pieces 12a are alternately arranged. Therefore, a joint is formed between the ice making plate 1 and the bottom plate piece 12a. And the vicinity of this joint is easily affected by the cold caused by the refrigerant. Therefore, an ice film is formed to cover the joint. Therefore, even if there is a gap at the joint, the ice film formed to cover as described above plays a role of a seal (that is, prevents water leakage near the joint). Such a sealing member is unnecessary). It should be noted that the determination as to whether or not lump ice has been formed is made by comparing the detection temperature of the ice making completion detection sensor 51 with the threshold temperature as described above. Specifically, when the detected temperature reaches a threshold temperature (for example, −20 ° C. to −25 ° C.), the control unit 52 determines that a block of ice is formed, but the detected temperature is lower than the threshold temperature. If it is high, it is judged that it is still necessary to continue to stack the ice film.
[0081] また、 S4〜S6において、氷膜と成り得なかった製氷水は、流下溝 21をったつて製 氷水タンク 41へと回収され、再度、循環パイプ 42から流下溝 21へと導かれるように なっている(S4' S5 ' S6→S3)。  [0081] In S4 to S6, the ice making water that could not become an ice film is recovered through the flow-down groove 21 to the ice-making water tank 41, and is guided again from the circulation pipe 42 to the flow-down groove 21. (S4 'S5' S6 → S3).
[0082] そして次に、 S6にて、塊氷が形成されたものと、制御部 52が判断できれば、制御部  [0082] Then, in S6, if the control unit 52 can determine that the lump ice has been formed, the control unit
52は、 RUモーター 31を正回転駆動させる(S7)。具体的には、 RUモーター 31は、 離氷ユニット 17を不動の製氷プレートユニット 7から離間する方向(X方向;スライド方 向)へと、数 mm程度移動 (スライド移動)させる。  52 drives the RU motor 31 to rotate forward (S7). Specifically, the RU motor 31 moves (slides) the ice removal unit 17 by several millimeters in a direction away from the stationary ice making plate unit 7 (X direction; slide direction).
[0083] このように、離氷ユニット 17が移動すると、製氷プレート 1上に固着している塊氷を 挟み込むように位置する立設リブ 11 · 11が X方向(水平方向)に移動することになる。 つまり、立設リブ 11 · 11は、製氷プレート 1上に固着した塊氷を強引に、 X方向(正方 向)へずらそうとする。そのため、塊氷に対して、せん断力が働くようになり、塊氷と製 氷プレート 1との固着が解除され、塊氷は製氷プレート 1から離れるようになる。  [0083] As described above, when the ice removing unit 17 moves, the standing ribs 11 and 11 positioned so as to sandwich the lump ice fixed on the ice making plate 1 move in the X direction (horizontal direction). Become. In other words, the standing ribs 11 and 11 try to shift the X-direction (forward direction) by forcibly pushing the lump ice fixed on the ice-making plate 1. Therefore, a shearing force is applied to the lump ice, and the lump ice and the ice making plate 1 are not fixed, and the lump ice is separated from the ice making plate 1.
[0084] すると、重力による自然落下によって、塊氷は、氷貯留 ΒΟΧ53へ向かって転がり落 ちるようになる(S8)。なお、 S7にて、塊氷が製氷プレート 1から離氷した後、 RUモー ター 31を逆回転駆動させることで、立設リブ 11を Y方向(スライド方向;)へと移動させ て、元の位置に戻すようにしておけば、新たな製氷水を氷へと固化させることができる (製氷装置 69が製氷可能状態にスタンバイされる)。  [0084] Then, due to the natural fall due to gravity, the lump ice rolls down toward the ice storage trough 53 (S8). In S7, after the lump ice is removed from the ice making plate 1, the RU motor 31 is driven in reverse rotation to move the standing rib 11 in the Y direction (sliding direction; By returning to the position, new ice making water can be solidified into ice (the ice making device 69 is put into a state where ice making is possible).
[0085] 〔製氷装置の有する種々の特徴について〕  [Various features of the ice making device]
以上のように、本発明の製氷装置 69は、冷媒によって冷却される流下溝 21上に〔 具体的には製氷プレート 1 ·底板部 12から成る平滑面の領域 (製氷部)に〕、水を付 着させることで、氷を生成するようになっている。そして、この流下溝 21 (製氷部ともい える)は、冷媒による冷気の伝導率の高い製氷プレート 1と、製氷プレート 1よりも冷気 の伝導率の低レ、離氷ユニット 17の底板部 12 ·立設リブ 11とから構成されてレ、る。 [0086] そして、製氷プレート 1は、冷媒によって氷点以下の温度を維持する冷気の伝導率 (熱伝導率)を有している一方、底板部 12 ·立設リブ 11は、冷媒によっても氷点を超 える温度を維持する冷気の伝導率を有している。なお、製氷プレート 1には、冷媒の 冷媒パイプ 2が、連結されるようになっている。 As described above, the ice making device 69 of the present invention supplies water on the flow-down groove 21 cooled by the refrigerant (specifically, on the smooth surface area (ice making part) formed of the ice making plate 1 and the bottom plate part 12). By attaching it, ice is generated. The downflow groove 21 (also referred to as an ice making unit) includes an ice making plate 1 having a high cold air conductivity by the refrigerant, a lower cold air conductivity than the ice making plate 1, and a bottom plate 12 of the ice removing unit 17. It is made up of 11 ribs. [0086] The ice making plate 1 has a cold air conductivity (thermal conductivity) that maintains a temperature below the freezing point by the refrigerant, while the bottom plate portion 12 and the standing rib 11 have the freezing point also by the refrigerant. It has cold conductivity that maintains temperatures above. The ice making plate 1 is connected to a refrigerant pipe 2 for refrigerant.
[0087] このように、流下溝 21において、水を氷へと固化させることのできる製氷プレート 1と 、固化させる温度(すなわち氷点; 0°C)にまで温度の下がることのない底板部 12 ·立 設リブ 11とが混在するようになると、流下溝 21に氷の生成される部分と、氷の生成さ れ得ない部分とが生じるようになる。つまり、氷が流下溝 21全域に渡って生成される ことがなくなり、流下溝 21において、分離した塊氷が複数できることになる。  [0087] In this way, in the downflow groove 21, the ice making plate 1 that can solidify water into ice, and the bottom plate portion 12 · that does not drop to the solidifying temperature (ie, freezing point; 0 ° C). When the standing ribs 11 are mixed, a part where ice is generated and a part where ice cannot be generated are generated in the downflow groove 21. That is, ice is not generated over the entire downstream groove 21, and a plurality of separated lump ice is formed in the downstream groove 21.
[0088] 特に、底板部 12 ·立設リブ 11は、熱伝導率の低い材料力 構成されているため、 冷媒の冷気によって氷点以下にならない一方、製氷プレート 1は、熱伝導率の高い 材料から構成されているため、冷気によって急激に冷やされるようになっている。その ため、本発明の製氷装置 69は、分離した塊氷を複数生成しながらも、冷凍能力を十 分に有効利用できる (冷媒の冷気を十分に利用できる;例えば製氷効率の向上や、 製氷時間の短縮化につながる)。  [0088] In particular, since the bottom plate portion 12 and the standing rib 11 are configured with a material force having a low thermal conductivity, the ice making plate 1 is made of a material having a high thermal conductivity, while it does not fall below the freezing point due to the cold air of the refrigerant. Since it is configured, it is rapidly cooled by cold air. Therefore, the ice making device 69 of the present invention can fully utilize the refrigeration capacity while generating a plurality of separated lump ice (the refrigerant can be fully used; for example, improvement of ice making efficiency and ice making time). Lead to shortening).
[0089] つまり、本発明の製氷装置 69では、従来のように分離した塊氷を生成させるために 冷凍能力を犠牲にして、熱伝導率の低い材料 (例えばステンレス等)で、製氷プレー ト 1の全てを構成する必要がなくなる。  That is, in the ice making device 69 of the present invention, the ice making plate 1 is made of a material having a low thermal conductivity (for example, stainless steel) at the expense of the refrigerating capacity in order to generate the lump ice separated as in the prior art. It is not necessary to configure all of the above.
[0090] また、本発明の製氷装置 69では、流下溝 21は、製氷プレート 1および底板片 12a が交互に配設して構成されている。具体的には、流下溝 21に付着した水の流れ落ち る方向において、製氷プレート 1および底板片 12aが交互に配設されている(つまり、 水の流れ落ちる方向と、製氷プレート 1および底板片 12aの並び方向とが同じ方向と なっている)。  [0090] Further, in the ice making device 69 of the present invention, the flow down groove 21 is configured by alternately arranging the ice making plates 1 and the bottom plate pieces 12a. Specifically, the ice making plates 1 and the bottom plate pieces 12a are alternately arranged in the direction in which the water adhering to the downflow groove 21 flows down (that is, the direction in which the water flows down and the ice making plates 1 and the bottom plate pieces 12a The alignment direction is the same direction).
[0091] そのため、流下溝 21の入口力 出口に至るまでの水(製氷水)の流れ落ちる過程 で、最初に製氷プレート 1に付着した水が氷膜となる。一方、氷膜となり得なかった水 は、そのまま、流下溝 21に沿って流れていき、底板片 12aを経て、次の製氷プレート 1に到達する。そして、到達した水は、その製氷プレート 1上で氷膜になる。この流れ 落ちる過程が繰り返されることで、本発明の製氷装置 69は、流下溝 21に沿って、流 れ落ちる水を効率よぐ製氷プレート 1上に導けるようになっているとともに、塊氷を流 下溝 21に沿って、複数並べるようにして形成できる。 [0091] Therefore, in the process of water (ice-making water) flowing down to the inlet force outlet of the flow-down groove 21, the water first attached to the ice-making plate 1 becomes an ice film. On the other hand, the water that could not become an ice film flows along the falling groove 21 as it is, and reaches the next ice making plate 1 through the bottom plate piece 12a. The reached water becomes an ice film on the ice making plate 1. By repeating this flow-down process, the ice making device 69 of the present invention flows along the flow-down groove 21. The falling water can be guided onto the ice making plate 1 which is efficient, and a plurality of lump ice can be formed along the flow groove 21.
[0092] なお、流下溝 21は、製氷プレート 1および底板部 12 (底板片 12a)から成る平滑面 力も立ち上げるようになった立設リブ 11によって区切られるようになつている。つまり、 製氷プレート 1および底板部 12から成る領域 (製氷部)は、立設リブ 11によって区分 けされるようになつている(仕切られるようになっている)。 [0092] The flow-down groove 21 is delimited by a standing rib 11 that also rises a smooth surface force composed of the ice making plate 1 and the bottom plate portion 12 (bottom plate piece 12a). In other words, the area (ice making part) composed of the ice making plate 1 and the bottom plate part 12 is divided (partitioned) by the standing rib 11.
[0093] そして特に、この立設リブ 11の延び方向(立設リブ 11の長手方向)は、水の流れ落 ちる方向(製氷プレート 1と底板片 12aの並び方向)と同方向となっている。そのため[0093] In particular, the extending direction of the standing rib 11 (longitudinal direction of the standing rib 11) is the same direction as the direction in which water flows down (the arrangement direction of the ice making plate 1 and the bottom plate piece 12a). . for that reason
、立設リブ 11は、製氷プレート 1および底板部 12から成る領域 (製氷部)において生 成される氷膜 (氷)を垂直方向に区分けするようになっている(すなわち、区分けされ た氷が水平方向に並ぶような関係になっている)。 The standing rib 11 vertically separates the ice film (ice) formed in the area (ice making part) composed of the ice making plate 1 and the bottom plate part 12 (that is, the separated ice is It ’s like a horizontal alignment).
[0094] その上、立設リブ 11は、底板部 12と一体的に形成されるようになっており、この底 板部 12が、製氷プレート 1に対してずれる方向に沿って、立設リブ 11は、スライド移 動可能になっている。 In addition, the standing rib 11 is formed integrally with the bottom plate portion 12, and the standing rib 11 extends along a direction in which the bottom plate portion 12 is displaced from the ice making plate 1. 11, slide movement is possible.
[0095] 具体的には、立設リブ 11 (ただしこの立設リブ 11と一体構造となっていることから底 板部 12も含む;すなわち離氷ユニット 17)をスライド移動させるための動力源となる R Uモーター 31が設けられるとともに、この RUモーター 31の動力を受けるボールネジ 部 13が立設リブ 11に備えられるようになつている。そして、立設リブ 11は、 RUモータ 一 31の動力の伝達を受けて、底板部 12とともに、製氷プレート 1からずれるようにスラ イド移動するようになっている。  [0095] Specifically, a power source for slidingly moving the standing rib 11 (however, since it is integrated with the standing rib 11 and also includes the bottom plate portion 12; that is, the ice removing unit 17) The RU motor 31 is provided, and a ball screw portion 13 that receives the power of the RU motor 31 is provided on the standing rib 11. Then, the standing rib 11 receives the power transmitted from the RU motor 31 and slides along with the bottom plate portion 12 so as to deviate from the ice making plate 1.
[0096] このように立設リブ 11がスライド移動するということは、流下溝 21 (具体的には製氷 プレート 1上)において生成された氷 (塊氷)が、スライド移動する立設リブ 11と強く接 触することになる。そのため、製氷プレート 1上に固着した塊氷に対して、せん断力が 働くようになり、塊氷と製氷プレート 1との固着が解除され、塊氷は製氷プレート 1から 離れるようになる。  [0096] The sliding movement of the standing rib 11 in this way means that the ice (lumped ice) generated in the downflow groove 21 (specifically, on the ice making plate 1) is slid and moves up and down. You will come into strong contact. Therefore, a shearing force is applied to the lump ice stuck on the ice making plate 1, the lump ice and the ice making plate 1 are released from sticking, and the lump ice is separated from the ice making plate 1.
[0097] つまり、本発明の製氷装置 69では、製氷プレート 1から氷を離氷させるために、あえ て、氷表面を融解させるような必要がなくなる。そのため、氷点以下で管理された氷 貯留 BOX53にて、氷が貯留されている場合、融解している氷表面の水に起因して、 塊氷同士が再凍結する事態を防止できる。その上、塊氷の融解によるサイズの縮小 化も防止できる。また、水が存在しないことから(すなわち氷のままであることから)、氷 貯留 BOX53内において、雑菌等の繁殖を防止することもできる。 That is, in the ice making device 69 of the present invention, it is not necessary to melt the ice surface in order to release the ice from the ice making plate 1. Therefore, when ice is stored in the ice storage BOX 53 managed below the freezing point, due to the water on the melting ice surface, It is possible to prevent the ice floe from refreezing. In addition, size reduction due to melting of lump ice can be prevented. In addition, since water does not exist (that is, ice remains), it is possible to prevent the propagation of germs and the like in the ice storage BOX 53.
[0098] また、従来であれば、氷表面の融解に伴う水を氷貯留 BOXから排出させるための 排水口を設ける必要があった力 本発明の製氷装置 69における氷貯留 BOX53で は、そのような排水口を設ける必要がなくなる。  [0098] Further, conventionally, it was necessary to provide a drain for discharging water accompanying the melting of the ice surface from the ice storage BOX. In the ice storage BOX 53 in the ice making device 69 of the present invention, There is no need to provide a separate drain.
[0099] [実施の形態 2]  [0099] [Embodiment 2]
本発明の実施の形態 2について説明する。なお、実施の形態 1で用いた部材と同 様の機能を有する部材については、同一の符号を付記し、その説明を省略する。  Embodiment 2 of the present invention will be described. Note that members having the same functions as the members used in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
[0100] 実施の形態 1の製氷装置 69は、流下溝 21における製氷プレート 1上に氷を生成さ せる一方、流下溝 21における少なくとも立設リブ 11をスライド移動させることで、製氷 プレート 1上の固着した氷を強引に離氷させるようにしている。  [0100] The ice making device 69 of the first embodiment generates ice on the ice making plate 1 in the flow down groove 21 while sliding at least the standing ribs 11 in the flow down groove 21 to make the ice on the ice making plate 1 The fixed ice is forcibly de-iced.
[0101] 確かにこのような製氷装置 69であれば、氷表面を融解させることなぐ製氷プレート  [0101] Certainly, with such an ice making device 69, an ice making plate that melts the ice surface
1から離氷させることが可能である。しかし、製氷プレート 1と氷との固着強度が高けれ ば高いほど、立設リブ 11をスライド移動させて、氷に与えるせん断力を大きくしなけれ ばならない場合もある。そのため、立設リブ 11のスライド移動距離を長くしたり、 RUモ 一ター 31の駆動力を大きくしたりする必要が生じてしまうこともある。  It is possible to de-ice from 1. However, the higher the adhesion strength between the ice making plate 1 and the ice, the more the shearing force applied to the ice must be increased by sliding the standing rib 11 in some cases. For this reason, it may be necessary to increase the sliding distance of the standing rib 11 or increase the driving force of the RU motor 31.
[0102] そこで、本実施の形態では、製氷プレート 1から氷をより容易に離氷させるための処 理(剥落処理)について説明していく。  Therefore, in the present embodiment, a process (descending process) for more easily deicing ice from ice making plate 1 will be described.
[0103] 剥落処理の一例としては、流下溝 21の製氷プレート 1上(水の付着面上)に、例え ば非粘着性の材料から成るコーティング (被覆)を施すことが挙げられる。このような 材料としては、例えばフッ素樹脂がある。  [0103] As an example of the exfoliation treatment, for example, a coating (coating) made of a non-adhesive material may be applied on the ice making plate 1 (on the surface to which water is attached) of the downflow groove 21. An example of such a material is a fluororesin.
[0104] フッ素樹脂は、フッ素(F)を含むォレフィンの単量体の重合や共重合によって得ら れる樹脂であり、炭素(C)と強力に結合 (C— F)した樹脂である。そのため、緻密に 覆ったフッ素原子が炭素鎖を保護するようになっている。また、分子内の原子の配列 が緊密かつ対照的であることにより電荷の分極が極めて小さ さらに、分子間凝集 力が極めて小さく表面エネルギーが極めて小さくなつている等に起因し、少なくとも以 下の特長を有している。 [0105] ·優れた非粘着性、非濡れ性 [0104] The fluororesin is a resin obtained by polymerization or copolymerization of an olefin monomer containing fluorine (F), and is a resin strongly bonded (C—F) to carbon (C). For this reason, a densely covered fluorine atom protects the carbon chain. In addition, due to the close and contrasting arrangement of atoms in the molecule, the polarization of charge is extremely small.In addition, the intermolecular cohesive force is extremely small and the surface energy is extremely small. have. [0105] · Excellent non-stickiness, non-wetting
•優れた潤滑性 (低摩擦係数)  • Excellent lubricity (low coefficient of friction)
•優れた耐寒性  • Excellent cold resistance
•優れた撥水性  • Excellent water repellency
•優れた耐磨耗性  • Excellent wear resistance
[0106] そこで、このフッ素樹脂を製氷プレート 1上に、コーティングしておくと、非粘着性. 潤滑性という性質から、氷が強力に製氷プレート 1上に固着する事態を防止できる。 そのため、立設リブ 11のわずかなスライド移動のみによって〔わずかなせん断力(トル ク)によって〕、製氷プレート 1から氷を離氷(剥落)させることができる。つまり、製氷プ レート 1上にフッ素樹脂のコーティングが施されている場合のほうが、コーティングの ない場合に比べて、わずかな力(トルク;およそ 15分の 1程度のトルク)で、離氷させる こと力 Sできる。その結果、駆動系の省力化、あるいはコンパクトィ匕を図ることができる。  [0106] Therefore, if this fluororesin is coated on the ice making plate 1, it is possible to prevent a situation where the ice is strongly fixed on the ice making plate 1 due to the non-adhesive property and lubricity. Therefore, the ice can be removed from the ice making plate 1 by only a slight sliding movement of the standing rib 11 (by a slight shearing force (torque)). In other words, when ice coating plate 1 is coated with fluororesin, it should be deiced with a slight force (torque; approximately 1 / 15th of the torque) compared to the case without coating. Power S can be. As a result, it is possible to save the driving system or achieve compactness.
[0107] なお、フッ素樹脂は、優れた耐寒性を有することから、製氷装置 69のような低温状 況下において使用する場合に、極めて有効である。その上、撥水性も高いことから、 流下溝 21中を流れ落ちる水に対して、製氷プレート 1上のフッ素樹脂が障害となり得 ることはない。また、耐摩耗性も有しているので、フッ素樹脂のコーティング上で、何 度も氷が生成されて剥落することが繰り返されたとしても、コーティング自体が劣化す るという事態は起こりえない。  [0107] Note that the fluororesin has excellent cold resistance, and is therefore extremely effective when used under low temperature conditions such as the ice making device 69. In addition, since the water repellency is high, the fluororesin on the ice making plate 1 can not be an obstacle to the water flowing down the downflow groove 21. In addition, since it has abrasion resistance, even if ice is repeatedly generated and peeled off repeatedly on the fluororesin coating, the coating itself cannot deteriorate.
[0108] ただし、フッ素樹脂の熱伝導率は極めて低レ、〔およそ、 0.:!〜 0. 5WZ (m*K)程 度〕。そのため、フッ素樹脂のコーティングの厚みは、およそ数 z m程度の薄膜状に しておくことが好ましい。このように、コーティングを薄膜状にしておけば、製氷プレー ト 1上における氷生成面の熱伝導率が劣化(低下)するような事態を回避できるため である。  [0108] However, the thermal conductivity of the fluororesin is very low [approximately 0.:! To about 0.5 WZ (m * K)]. Therefore, the thickness of the fluororesin coating is preferably a thin film of about several zm. This is because if the coating is made into a thin film, it is possible to avoid a situation in which the thermal conductivity of the ice generating surface on the ice making plate 1 deteriorates (decreases).
[0109] なお、フッ素樹脂のコーティングは、熱溶融による粉体塗装や、接着剤等による貼り 合わせ等によって行われるようになつている。また、フッ素樹脂としては、例えば、四 フッ化工チレン樹脂、四フッ化工チレン'六フッ化工チレン共重合体、四フッ化工チレ ン.パーフルォロアルコキシエチレン共重合体、三フッ化塩化エチレン、エチレン.四 フッ化工チレン共重合体等が挙げられる。 [0110] [実施の形態 3] [0109] The coating of the fluororesin is performed by powder coating by heat melting, bonding by an adhesive or the like. Examples of the fluororesin include, for example, tetrafluoroethylene, tetrafluoroethylene / hexafluoroethylene, tetrafluoroethylene / perfluoroalkoxyethylene copolymer, ethylene trifluoride chloride, Examples include ethylene. Tetrafluoroethylene copolymer. [0110] [Embodiment 3]
本発明の実施の形態 3について説明する。なお、実施の形態 1 · 2で用いた部材と 同様の機能を有する部材については、同一の符号を付記し、その説明を省略する。  Embodiment 3 of the present invention will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0111] 図 12〜図 16を用いて、実施の形態 1 · 2に対応する別の製氷装置 69について説明 していく。図 12は、本発明の製氷装置 69における製氷プレートユニット 7 ·離氷ュニッ ト 17を主体的に図示した斜視図であり、図 13Aは図 12の正面図、図 13Bは図 12の 側面図になっている。また、図 14は製氷プレートユニット 7を図示した斜視図であり、 図 15は離氷ユニット 17の斜視図である。また、図 16は離氷ユニット 17の三面図であ る。  [0111] Another ice making device 69 corresponding to the first and second embodiments will be described with reference to Figs. 12 is a perspective view mainly showing the ice making plate unit 7 and the ice removing unit 17 in the ice making device 69 of the present invention, FIG. 13A is a front view of FIG. 12, and FIG. 13B is a side view of FIG. It has become. FIG. 14 is a perspective view illustrating the ice making plate unit 7, and FIG. 15 is a perspective view of the ice removing unit 17. FIG. 16 is a three-sided view of the ice removal unit 17.
[0112] なお、図 13Bは、便宜上、ガイド片 8b (後述)を省略している。また、図 16では、便 宜上、 RUモーター(駆動部) 31を省略している。  Note that in FIG. 13B, guide pieces 8b (described later) are omitted for convenience. In FIG. 16, the RU motor (drive unit) 31 is omitted for convenience.
[0113] 〔製氷装置の構成にっレ、て〕 [0113] [Structure of ice making device]
〈製氷プレートユニットについて〉  <About the ice making plate unit>
製氷プレートユニット 7は、図 14に示すように、冷媒パイプ 2、製氷プレート 1、補助 プレート 8a、およびガイド片 8bを含むようになっている。なお、この図 14の製氷プレ ートユニット 7は、補助プレート 8a 'ガイド片 8bを設けた以外は、実施の形態 1 (図 4参 照)と同様な構成になっている。また、製氷プレート 1には、上記の剥落処理が施され ていることが好ましい。  As shown in FIG. 14, the ice making plate unit 7 includes a refrigerant pipe 2, an ice making plate 1, an auxiliary plate 8a, and a guide piece 8b. The ice making plate unit 7 in FIG. 14 has the same configuration as that of the first embodiment (see FIG. 4) except that the auxiliary plate 8a and the guide piece 8b are provided. Further, the ice making plate 1 is preferably subjected to the above-described peeling treatment.
[0114] 補助プレート 8aは、一定間隔で離間して配設されている製氷プレート 1の間隙に、 嵌るようにして設けられたプレートである。そして、製氷プレート 1と補助プレート 8aと 力 成る結合体 (プレート状の結合体;基材部)の面は、面一状態になっている。なお 、この補助プレート 8aは、底板部 12と同様の材料、例えばセラミック樹脂ゃステンレ ス等の比較的熱伝導率の低レ、材料から構成されてレ、ることが好ましレ、。  [0114] The auxiliary plate 8a is a plate that is provided so as to fit in a gap between the ice making plates 1 that are spaced apart from each other at a constant interval. Further, the surface of the combined body (plate-shaped combined body; base material portion) that is a force between the ice making plate 1 and the auxiliary plate 8a is in a flush state. The auxiliary plate 8a is preferably made of a material similar to that of the bottom plate portion 12, for example, a material having a relatively low thermal conductivity such as a ceramic resin stainless steel.
[0115] ガイド片 8bは、離氷ユニット 17のスライド方向を規制するものであり、基材部を挟持 するように立設している。具体的には、基材部の面における両端の各々から 1つずつ ガイド片 8bが立設することで、このガイド片 8b ' 8bは、基材部を挟持するようになって いる。また、ガイド片 8bの延び方向(ガイド片 8bの立ち上がり方向に対して垂直方向 )と基材部を構成する製氷プレート 1 ·補助プレート 8aの長手方向とは、直交するよう になっている。 [0115] The guide piece 8b regulates the sliding direction of the ice removing unit 17, and is erected so as to sandwich the base material portion. Specifically, one guide piece 8b is provided upright from each of both ends of the surface of the base material portion so that the guide pieces 8b ′ 8b sandwich the base material portion. In addition, the extending direction of the guide piece 8b (perpendicular to the rising direction of the guide piece 8b) and the longitudinal direction of the ice making plate 1 and auxiliary plate 8a constituting the base portion should be perpendicular to each other. It has become.
[0116] そのため、製氷プレート 1 ·補助プレート 8aの長手方向に沿って、かつ、両ガイド片 8b ' 8bの長手方向(延び方向)に対して垂直方向な断面(縦断面)をみると、このガイ ド片 8b '基材部の結合体 (製氷プレートユニット 7)は、凹状になっている。そこで、こ の凹状部分に、離氷ユニット 17が嵌められることで製氷装置 69が完成するようになつ ている。なお、ガイド片 8bは、底板部 12同様に、セラミック樹脂やステンレス等の比較 的熱伝導率の低レ、材料から構成されてレ、ることが好ましレ、。  [0116] Therefore, when the cross section (longitudinal section) perpendicular to the longitudinal direction (extending direction) of both guide pieces 8b '8b is observed along the longitudinal direction of the ice making plate 1 and the auxiliary plate 8a, this Guide piece 8b 'The base body combined body (ice making plate unit 7) has a concave shape. Therefore, the ice making device 69 is completed by fitting the ice removing unit 17 into the concave portion. The guide piece 8b is preferably made of a material having a relatively low thermal conductivity, such as ceramic resin or stainless steel, like the bottom plate portion 12.
[0117] 〈離氷ユニットについて〉  [0117] <About the de-icing unit>
離氷ユニット 17は、図 15 (斜視図)'図 16 (三面図)に示すように、立設リブ (仕切部 ) 11、底板部 12、およびボールネジ部 13を含むようになつている。なお、図 16では、 便宜上、開口部分(開口 22)を塗りつぶして図示してレ、る。  As shown in FIG. 15 (perspective view) and FIG. 16 (three views), the ice removing unit 17 includes standing ribs (partition portions) 11, a bottom plate portion 12, and a ball screw portion 13. In FIG. 16, for the sake of convenience, the opening (opening 22) is filled and illustrated.
[0118] 立設リブ 11は、一定間隔で離間しながら、一方向に並べるようにして配設されてい る。そして、この間(立設リブ 11 · 11の間)には、底板片 12aが、立設リブ 11の並び方 向に対して垂直方向で、かつ一定間隔で離間しながら、並ぶように配設されている。 なお、底板片 12aは、製氷プレートユニット 7と離氷ユニット 17とを組立た場合 (詳細 は後述)、製氷プレートユニット 7の補助プレート 8aと重なり合うようになっている(つま り、底板片 12a ' 12a同士の間隙(開口 22)から、製氷プレート 1が表出するようになつ ている)。  [0118] The standing ribs 11 are arranged so as to be arranged in one direction while being spaced apart at a constant interval. During this period (between the standing ribs 11 and 11), the bottom plate pieces 12a are arranged so as to be arranged in a direction perpendicular to the arrangement direction of the standing ribs 11 and spaced apart from each other at a constant interval. Yes. When the ice making plate unit 7 and the ice removing unit 17 are assembled (details will be described later), the bottom plate piece 12a overlaps the auxiliary plate 8a of the ice making plate unit 7 (that is, the bottom plate piece 12a ' Ice making plate 1 is exposed through the gap between 12a (opening 22)).
[0119] ボールネジ部 13は、流下溝 21の延び方向に(水平面に対して鉛直方向に)、離氷 ユニット 17を移動させるようになつている。そのため、ボールネジ部 13の雄ネジ 13a ' 雌ネジ 13bの軸方向力 流下溝 21の延び方向と同方向になっている。なお、ボール ネジ部 13の設置位置は特に限定されるものではないが、例えば、流下溝 21の延び 方向における始点側または終点側(流下溝 21の延び方向と直交する離氷ユニット 17 の端部)に設けることができる。  [0119] The ball screw portion 13 moves the deicing unit 17 in the extending direction of the downflow groove 21 (perpendicular to the horizontal plane). For this reason, the axial direction of the male screw 13a ′ and the female screw 13b of the ball screw portion 13 is the same as the extending direction of the flow down groove 21. The installation position of the ball screw portion 13 is not particularly limited. For example, the start point side or the end point side in the extending direction of the downflow groove 21 (the end portion of the deicing unit 17 orthogonal to the extending direction of the downflow groove 21). ).
[0120] 〔製氷プレートユニット '離氷ユニットによる製氷装置の組立について〕  [0120] [Assembly of ice making unit by ice making plate unit]
本発明の製氷装置 69は、製氷プレートユニット 7と、離氷ユニット 17とを組み合わせ ることで構成される。具体的には、図 12 ·図 13に示すように、ガイド片 8bにて挟持さ れている基材部の面上に、底板片 12aの面を対向させるようにして離氷ユニット 17が 嵌るようになつている。そのため、両ガイド片 8b ' 8b同士の間隔と、最外端の両立設リ ブ 11 · 11同士の間隔(具体的にはガイド片 8b · 8bの内側面同士の間隔と、最外の両 立設リブ 11 · 11の外側面同士の間隔)と力 ほぼ合致するようなっていることが好まし レ、。 The ice making device 69 of the present invention is configured by combining the ice making plate unit 7 and the ice removing unit 17. Specifically, as shown in FIG. 12 and FIG. 13, the deicing unit 17 is arranged so that the surface of the bottom plate piece 12a faces the surface of the base material portion sandwiched between the guide pieces 8b. It is supposed to fit. Therefore, the distance between the guide pieces 8b '8b and the distance between the outer ribs 11 and 11 (specifically, the distance between the inner surfaces of the guide pieces 8b and 8b and the outermost It is preferable that the distance between the outer surfaces of the ribs 11 · 11 is almost the same.
[0121] このように離氷ユニット 17が、基材部の面上に取り付けられた場合、立設リブ 11 · 1 1同士の間には、これら立設リブ 11 · 11と、底板部 12 (底板片 12a) ·製氷プレート 1と で溝 (流下溝) 21が形成されるようになる。  [0121] When the ice removing unit 17 is mounted on the surface of the base member in this manner, the standing ribs 11 · 11 and the bottom plate portion 12 ( Bottom plate piece 12a) · Groove (flowing groove) 21 is formed with ice making plate 1.
[0122] なお、流下溝 21における底は、段差を有した状態になる。しかし、少なくとも、底板 部 12の間隙 (底板片 12a同士の間;開口 22)から表出してレ、る製氷プレート 1の面上 は、平滑面になっている。また、段差があるといっても、極めて低い段であるため(底 板片 12aの厚みが極めて薄いため)、流下溝 21を流れる水に対する抵抗が生じるま でには至らない。  [0122] The bottom of the downflow groove 21 has a step. However, at least the surface of the ice making plate 1 that is exposed from the gap between the bottom plate portions 12 (between the bottom plate pieces 12a; the opening 22) is a smooth surface. In addition, even if there is a step, since it is a very low step (because the thickness of the bottom plate piece 12a is extremely thin), resistance to water flowing through the downflow groove 21 does not occur.
[0123] なお、底板片 12aと製氷プレート 1との境目近傍に位置する底板片 12aの端部が、 傾斜等(流れれてくる製氷水をせき止めないような傾斜等)を持つようになつていても よい。例えば、製氷プレート 1の表出面と、底板片 12aの端部の面(底板片 12aの側 面)との角度が鈍角にしておけばよい。このようにしておけば、流下溝 21を流れる水 に対する抵抗が生じるまでには至らないためである。  [0123] The end of the bottom plate piece 12a located in the vicinity of the boundary between the bottom plate piece 12a and the ice making plate 1 has an inclination (an inclination etc. that does not block the flowing ice making water). May be. For example, the angle between the exposed surface of the ice making plate 1 and the end surface of the bottom plate piece 12a (side surface of the bottom plate piece 12a) may be an obtuse angle. This is because resistance to the water flowing through the downflow groove 21 does not occur.
[0124] 〔製氷装置の製氷工程'離氷工程について〕 [The ice making process of the ice making apparatus]
ここで、図 12 ·図 13に示す本発明の製氷装置 69による製氷工程 .離氷工程にっレヽ て図 11 (フローチャート)、および図 17 ·図 18を参照しながら説明する。ただし、この フローチャートの S1〜S6 (製氷工程)は、上記の説明と同様のため、 S7 ' S8 (離氷ェ 程)を重点的に説明していく。また、図 17 ·図 18では、便宜上、ガイド片 8bを省略し ている。  Here, the ice making process and the deicing process by the ice making device 69 of the present invention shown in FIGS. 12 and 13 will be described with reference to FIG. 11 (flow chart) and FIGS. 17 and 18. However, since S1 to S6 (ice making process) in this flowchart are the same as the above description, S7'S8 (deicing process) will be explained mainly. In FIG. 17 and FIG. 18, the guide piece 8b is omitted for convenience.
[0125] 図 17 (側面図)に示すように、製氷工程の完了後、基材部における製氷プレート 1 上には、氷が生成される。そして、製氷工程での S6にて、塊氷が形成されたものと、 制御部 52が判断できれば、制御部 52は、 RUモーター 31を正回転駆動させる(S7) 。具体的には、離氷ユニット 17を不動の製氷プレートユニット 7から離間する方向(V 方向;スライド方向)へと、数 mm程度移動 (スライド移動)させる。 [0126] このように、離氷ユニット 17が移動すると、塊氷同士の間に位置する底板片 12aが 、スライドすることになる。つまり、底板片 12aは、製氷プレート 1上に固着した塊氷を 強引に、 V方向(正方向)へずらそうとする。そのため、塊氷に対して、せん断力が働 くようになり、塊氷と製氷プレート 1との固着が解除される。その結果、塊氷は製氷プ レート 1から離れるようになる。 [0125] As shown in FIG. 17 (side view), after the ice making process is completed, ice is generated on the ice making plate 1 in the base material portion. If the control unit 52 determines in S6 in the ice making process that the lump ice has been formed, the control unit 52 drives the RU motor 31 to rotate forward (S7). Specifically, the ice removing unit 17 is moved (sliding) by about several mm in a direction (V direction; sliding direction) away from the stationary ice making plate unit 7. [0126] Thus, when the ice removing unit 17 moves, the bottom plate piece 12a located between the lump ice pieces slides. In other words, the bottom plate piece 12a tries to shift in the V direction (forward direction) by forcibly pushing the lump ice fixed on the ice making plate 1. As a result, a shearing force is applied to the lump ice, and the fixation between the lump ice and the ice making plate 1 is released. As a result, the lump ice moves away from the ice making plate 1.
[0127] すると、図 18に示すように、重力による自然落下によって、塊氷は、氷貯留 BOX53 へ向かって転がり落ちるようになる(S8)。なお、 S7にて、塊氷が製氷プレート 1から 離氷した後、 RUモーター 31を逆回転駆動させることで、立設リブ 11を W方向(スライ ド方向;)へと移動させて、元の位置に戻すようにしておけば、新たな製氷水を氷へと 固ィ匕させることができる(製氷装置 69が製氷可能状態にスタンバイされる)。  Then, as shown in FIG. 18, due to the natural fall due to gravity, the lump ice rolls down toward the ice storage BOX 53 (S8). In S7, after the lump ice is removed from the ice making plate 1, the RU motor 31 is driven in the reverse direction to move the standing rib 11 in the W direction (sliding direction). By returning to the position, new ice-making water can be solidified into ice (ice-making device 69 is put into a state where ice-making is possible).
[0128] 〔製氷装置の有する種々の特徴について〕  [Various features of ice making equipment]
図 12に示すように、製氷プレートユニット 7と離氷ユニット 17とを組立てることで完成 した製氷装置 69では、流下溝 21は、底板片 12a' 12aの間隙(開口 22 ;図 16参照) 力も表出した製氷プレート 1と、補助プレート 8a上に積重した底板部片 12aとを交互 に配設して構成されていることになる。  As shown in Fig. 12, in the ice making device 69 completed by assembling the ice making plate unit 7 and the ice removing unit 17, the flow-down groove 21 has a gap (opening 22; see Fig. 16) force between the bottom plate pieces 12a'12a. Thus, the ice making plate 1 and the bottom plate portion 12a stacked on the auxiliary plate 8a are alternately arranged.
[0129] つまり、このような流下溝 21は、一定間隔で離間させた底板片 12aを、少なくとも一 部に製氷プレート 1を含んで成る基材上に重ね、かつ、製氷プレート 1を底板片 12a の間隙から表出させる構成になっているといえる。そして、かかる場合、この表出した 製氷プレート 1と底板片 12aとが、交互に配設することになる。  [0129] That is, in such a flow-down groove 21, the bottom plate pieces 12a spaced apart at regular intervals are overlaid on a base material including at least a part of the ice making plate 1, and the ice making plate 1 is placed on the bottom plate piece 12a. It can be said that it is configured to be exposed from the gap. In such a case, the exposed ice making plates 1 and the bottom plate pieces 12a are alternately arranged.
[0130] そのため、上記の実施の形態と同様に、氷が流下溝 21全域に渡って生成されるこ とがなくなり、流下溝 21において、分離した塊氷が複数できることになる。その結果、 実施形態 3の製氷装置 69は、上記した本発明の製氷装置 69 (実施の形態 1 · 2で説 明した製氷装置 69)と同様の作用効果を発揮する。  [0130] Therefore, as in the above embodiment, ice is not generated over the entire downstream groove 21, and a plurality of separated ice blocks can be formed in the downstream groove 21. As a result, the ice making device 69 of the third embodiment exhibits the same operational effects as the ice making device 69 of the present invention described above (the ice making device 69 described in the first and second embodiments).
[0131] [実施の形態 4]  [0131] [Embodiment 4]
本発明の実施の形態 4について説明する。なお、実施の形態 1〜3で用いた部材と 同様の機能を有する部材については、同一の符号を付記し、その説明を省略する。  Embodiment 4 of the present invention will be described. In addition, about the member which has the same function as the member used in Embodiment 1-3, the same code | symbol is attached and the description is abbreviate | omitted.
[0132] 本発明の製氷装置 69は、さらなる別の構成も想定できる。例えば図 19のような製 氷装置 69である。 [0133] 〔製氷装置の構成にっレ、て〕 [0132] The ice making device 69 of the present invention can be assumed to have still another configuration. For example, an ice making device 69 as shown in FIG. [0133] [Configuration of ice making device]
〈製氷プレートユニットについて〉  <About the ice making plate unit>
製氷プレートユニット 7は、図 19に示すように、コイル状に蛇行した冷媒パイプ 2、お よび、この冷媒パイプ 2に取り付けられた筒状 (例えば円筒状)の製氷プレート 1 (筒 型製氷プレート lb)を含むようになつている。なお、筒型製氷プレート lbには、上記 の剥落処理が施されていることが好ましい。また、この筒型製氷プレート lbに代えて 、実施の形態 3のように、製氷プレート 1 ·補助プレート 8aから構成された筒状の基材 部であってもよい。  As shown in FIG. 19, the ice making plate unit 7 includes a refrigerant pipe 2 meandering in a coil shape, and a cylindrical (for example, cylindrical) ice making plate 1 (cylindrical ice making plate lb) attached to the refrigerant pipe 2. ). The cylindrical ice-making plate lb is preferably subjected to the above-described peeling process. Further, instead of the cylindrical ice making plate lb, as in the third embodiment, a cylindrical base material portion constituted by the ice making plate 1 and the auxiliary plate 8a may be used.
[0134] 〈離氷ユニットについて〉  [0134] <Ice unit>
離氷ユニット 17は、筒状体 12b、立設リブ (仕切部) 11、およびボールネジ部(図 19 では不図示)を含むようになってレ、る。  The ice removing unit 17 includes a cylindrical body 12b, a standing rib (partition portion) 11, and a ball screw portion (not shown in FIG. 19).
[0135] 筒状体 12bは、筒型製氷プレート lbを嵌め込める程度の内周を有した筒(例えば 円筒)を有しており、かつ、筒の面に表出開孔 12bcを点在させている。なお、筒状体 12bは、底板部 12同様、セラミック樹脂やステンレス等の比較的熱伝導率の低い材 料から構成されてレ、ることが好ましレ、。  [0135] The cylindrical body 12b has a cylinder (for example, a cylinder) having an inner circumference sufficient to fit the cylindrical ice-making plate lb, and is dotted with exposed openings 12bc on the surface of the cylinder. ing. The cylindrical body 12b is preferably made of a material having a relatively low thermal conductivity, such as ceramic resin or stainless steel, like the bottom plate portion 12.
[0136] 立設リブ 11は、一定間隔で離間しながら、筒状体 12bの表面から放射方向で立ち 上がるように配設されている。そして、立設リブ 11の延び方向(放射方向に対して垂 直方向;立設リブ 11の長手方向)は、 直方向になっている。なお、この間(立設リブ l l ' l l同士の間)に、表出開孔 12bcが一定間隔で離間しながら、立設リブ 11の延 び方向と同方向で、並ぶようになつている。  [0136] The standing ribs 11 are disposed so as to rise in the radial direction from the surface of the cylindrical body 12b while being spaced apart at a constant interval. The extending direction of the standing rib 11 (perpendicular to the radial direction; the longitudinal direction of the standing rib 11) is a straight direction. During this period (between the standing ribs l l ′ l l), the exposed openings 12bc are arranged in the same direction as the extending direction of the standing ribs 11 while being spaced apart at regular intervals.
[0137] なお、製氷プレートユニット 7と離氷ユニット 17とを組立た場合、すなわち筒状体 12 bに筒型製氷プレート lbを嵌め込んだ場合、筒型製氷プレート lbと筒状体 12bとは 重なり合う。そのため、筒状体 12bの表出開孔 12bcから筒型製氷プレート lbの表面 が表出するようになっている。  [0137] When the ice making plate unit 7 and the ice removing unit 17 are assembled, that is, when the cylindrical ice making plate lb is fitted into the cylindrical body 12b, the cylindrical ice making plate lb and the cylindrical body 12b are overlap. Therefore, the surface of the cylindrical ice making plate lb is exposed from the exposed opening 12bc of the cylindrical body 12b.
[0138] ボールネジ部の構成は、特に限定するものではなレ、が、筒型製氷プレート lbの周 囲を覆う筒状体 12bを回転させるようになってレ、る。  [0138] The configuration of the ball screw part is not particularly limited, but the cylindrical body 12b covering the circumference of the cylindrical ice making plate lb is rotated.
[0139] 〔製氷プレートユニット '離氷ユニットによる製氷装置の組立について〕  [Assembly of ice making device by ice making plate unit 'Ice-making unit]
本発明の製氷装置 69は、製氷プレートユニット 7と、離氷ユニット 17とを組み合わせ ることで構成される。具体的には、筒型製氷プレート lbが筒状体 12bに嵌まるように なっている。そのため、筒型製氷プレート lbの外径と、筒状体 12bの内径と力 ほぼ 合致するようなっていることが好ましい。 The ice making device 69 of the present invention is a combination of the ice making plate unit 7 and the ice removing unit 17. It is composed by. Specifically, the cylindrical ice making plate lb is fitted into the cylindrical body 12b. Therefore, it is preferable that the outer diameter of the cylindrical ice-making plate lb and the inner diameter of the cylindrical body 12b are substantially matched.
[0140] そして、筒型製氷プレート lbが筒状体 12bに嵌まると、筒型製氷プレート lbと筒状 体 12bとは重なり合う。そのため、立設リブ 11 · 11同士の間は、これら立設リブ 11 · 11 と、筒状体 12b '筒型製氷プレート lbとで溝 (流下溝) 21が形成されるようになる。  [0140] When the cylindrical ice making plate lb fits into the cylindrical body 12b, the cylindrical ice making plate lb and the cylindrical body 12b overlap. Therefore, a groove (flowing groove) 21 is formed between the standing ribs 11 and 11 by the standing ribs 11 and 11 and the cylindrical body 12b 'cylindrical ice making plate lb.
[0141] なお、流下溝 21における底は、段差を有した状態になる。しかし、少なくとも、表出 開孔 12bcから表出している筒型製氷プレート lbの面は、平滑面になっている。また 、段差があるといっても、極めて低い段であるため(筒状体 12bの厚みが極めて薄い ため)、流下溝 21を流れる水に対する抵抗が生じるまでには至らない。また、表出開 孔 12bcの内周端は、傾斜等(流れてくる製氷水をせき止めないような傾斜等;例えば 筒型製氷プレート lbの面と表出開孔 12bcの内周端の面との角度が鈍角)を持つよう になっていてもよい。このようにしておけば、流下溝 21を流れる水に対する抵抗が生 じるまでには至らなレ、ためである。  [0141] Note that the bottom of the downflow groove 21 has a step. However, at least the surface of the cylindrical ice-making plate lb exposed from the exposed hole 12bc is a smooth surface. In addition, even if there is a step, since it is a very low step (because the thickness of the cylindrical body 12b is extremely thin), resistance to the water flowing through the downflow groove 21 does not occur. In addition, the inner peripheral edge of the surface opening 12bc is inclined or the like (inclination that does not block the flowing ice making water; for example, the surface of the cylindrical ice making plate lb and the surface of the inner peripheral edge of the surface opening 12bc The angle may be obtuse. If this is done, the resistance to the water flowing through the downflow groove 21 will not be reached.
[0142] 〔製氷装置の製氷工程'離氷工程について〕  [0142] [Ice making process of ice making equipment]
ここで、図 19に示す本発明の製氷装置 69による製氷工程.離氷工程について図 1 1 (フローチャート)を参照しながら説明する。ただし、このフローチャートの S1〜S6 ( 製氷工程)は、上記の説明と同様のため、 S7 ' S8 (離氷工程)を重点的に説明してい <。  Here, the ice making process and the deicing process by the ice making device 69 of the present invention shown in FIG. 19 will be described with reference to FIG. 11 (flow chart). However, since S1 to S6 (ice making process) in this flowchart are the same as described above, S7'S8 (ice removal process) is mainly described.
[0143] 製氷工程の完了後、筒状体 12bから表出した筒型製氷プレート lbには、氷が生成 される。そして、製氷工程での S6にて、塊氷が形成されたものと、制御部 52が判断 できれば、制御部 52は、 RUモーター 31を正回転駆動させる(S7)。具体的には、筒 状体 12bを回転移動 (スライド移動)させることで、筒状体 12bと筒型製氷プレート lb とが互いにずれるようにする。  [0143] After the ice making process is completed, ice is generated on the cylindrical ice making plate lb exposed from the cylindrical body 12b. Then, if the control unit 52 determines in S6 in the ice making process that the lump ice has been formed, the control unit 52 drives the RU motor 31 to rotate forward (S7). Specifically, the cylindrical body 12b and the cylindrical ice making plate lb are displaced from each other by rotating (sliding) the cylindrical body 12b.
[0144] このように、離氷ユニット 17 (筒状体 12b)が回転移動(例えば正回転移動)すると、 筒型製氷プレート lb上に固着している塊氷の周囲に位置する筒状体 12bがスライド することになる。つまり、筒状体 12bは、製氷プレート 1上に固着した塊氷を強引にず らそうとする。そのため、塊氷に対して、せん断力が働くようになり、塊氷と筒型製氷プ レート lbとの固着が解除され、塊氷は筒型製氷プレート lbから離れるようになる。ま た、さらなる筒状体 12bの回転が継続すると、立設リブ 11が塊氷に接触するようにな つて、確実に塊氷を製氷プレート 1から離氷させる。 [0144] As described above, when the ice removing unit 17 (cylindrical body 12b) rotates and moves (for example, forward rotation), the cylindrical body 12b positioned around the lump ice fixed on the cylindrical ice making plate lb. Will slide. That is, the cylindrical body 12b tries to forcibly push the lump ice fixed on the ice making plate 1. As a result, a shearing force is applied to the lump ice, and the lump ice and the cylindrical ice making The fixation with the rate lb is released and the lump ice is separated from the cylindrical ice plate lb. Further, when the cylindrical body 12b continues to rotate, the standing rib 11 comes into contact with the lump ice, and the lump ice is surely detached from the ice making plate 1.
[0145] すると、重力による自然落下によって、塊氷は、氷貯留 BOX53へ向かって転がり落 ちるようになる(S8)。なお、 S7にて、塊氷が筒型製氷プレート lbから離氷した後、 R Uモーター 31を逆回転駆動させることで、立設リブ 11を元の方向(スライド方向)へと 移動させて(すなわち、筒状体 12を逆回転させて元の位置に戻すようにして)おけば 、新たな製氷水を氷へと固化させることができる(製氷装置 69が製氷可能状態にスタ ンバイされる)。  [0145] Then, due to the natural fall due to gravity, the lump ice rolls down toward the ice storage BOX 53 (S8). In S7, after the lump ice is removed from the cylindrical ice making plate lb, the RU motor 31 is driven in reverse rotation to move the standing rib 11 in the original direction (slide direction) (ie If the cylindrical body 12 is rotated in the reverse direction and returned to the original position), new ice making water can be solidified into ice (the ice making device 69 is put into a state where ice making is possible).
[0146] 〔製氷装置の有する種々の特徴について〕  [Various features of ice making equipment]
図 19に示すように、表出開孔 12bcを有する筒状体 12bを、筒型製氷プレート lbに 重ね、かつ、筒型製氷プレート lbを表出開孔 12bcから表出させるようになった流下 溝 21を備えた製氷装置 69では、流下溝 21は、表出開孔 12bcから表出した筒型製 氷プレート lbと、筒状体 12bとを交互に配設して構成されていることになる。  As shown in FIG. 19, the cylindrical body 12b having the exposed opening 12bc is stacked on the cylindrical ice making plate lb, and the cylindrical ice making plate lb is exposed from the exposing opening 12bc. In the ice making device 69 provided with the groove 21, the flow-down groove 21 is configured by alternately arranging the cylindrical ice-making plate lb and the cylindrical body 12b that are exposed from the exposed opening 12bc. Become.
[0147] そのため、上記の実施の形態と同様に、氷が流下溝 21全域に渡って生成されるこ とがなくなり、流下溝 21において、分離した塊氷が複数できることになる。その結果、 実施形態 4の製氷装置 69は、上記した本発明の製氷装置 69 (実施の形態 1〜3で説 明した製氷装置 69)と同様の作用効果を発揮する。また特に、図 19に示す製氷装置 69の場合、氷は曲面を有する筒型製氷プレート lb上に生成されることから、曲面を 備えた氷が生成されることになる、このような曲面を有する氷は、単純な四角状の氷 に比べて、美しい形状を有しているといえる。  [0147] Therefore, as in the above embodiment, ice is not generated over the entire downstream groove 21, and a plurality of separated ice blocks can be formed in the downstream groove 21. As a result, the ice making device 69 of the fourth embodiment exhibits the same effects as the ice making device 69 of the present invention described above (the ice making device 69 described in the first to third embodiments). Particularly, in the case of the ice making device 69 shown in FIG. 19, since ice is generated on the cylindrical ice making plate lb having a curved surface, ice having a curved surface is generated. It can be said that ice has a beautiful shape compared to simple square ice.
[0148] [その他の実施の形態]  [Other Embodiments]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲 で、種々の変更が可能である。  The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0149] 例えば、実施の形態 3では、製氷プレートユニット 7は、製氷プレート 1 ·補助プレー ト 8aを混在させた基材部を含むようになつている。しかし、これに限定されるものでは なぐ本発明の製氷装置 69は、 1枚状の製氷プレート 1上に離氷ユニット 17を載置さ せるような構成であってもよい。かかる場合、製氷プレートユニット 7の構成が簡単に なる。 [0149] For example, in Embodiment 3, the ice making plate unit 7 includes a base material portion in which the ice making plate 1 and the auxiliary plate 8a are mixed. However, the present invention is not limited to this, and the ice making device 69 of the present invention may be configured such that the ice removing unit 17 is placed on the single ice making plate 1. In such a case, the configuration of the ice making plate unit 7 can be simplified. Become.
[0150] また、図 20のように、曲面を有する製氷プレート 1上に、曲面を有する立設リブ 11 · 底板部 12 (底板片 12a)力も成る離氷ユニット 17を取り付けたような製氷装置 69でも よい。かかる場合、天地方向の寸法を縮小することができ、製氷装置 69がコンパクト になる。  Further, as shown in FIG. 20, an ice making device 69 in which an ice-making plate 1 having a curved surface and a standing rib 11 having a curved surface 11 · a bottom plate portion 12 (bottom plate piece 12a) having an ice removing unit 17 having a force is attached. But it ’s okay. In such a case, the vertical dimension can be reduced, and the ice making device 69 becomes compact.
[0151] また、図 21に示すような離氷ユニット 17を複数備えるようにした製氷装置 69でもよ レ、。この離氷ユニット 17は、 2枚の立設リブ 11を、一定間隔で離間しながら、一方向 に並べるようにして配設し、この間(立設リブ 11 · 11の間)に、底板片 12aを、一定間 隔で離間しながら、並ぶように配設させている。そして、このような離氷ユニット 17を複 数備えた製氷装置 69は、ボールネジ部 13と RUモーター 31とを最適に組み合わせ ることで、各離氷ユニット 17毎に、スライド移動できる。かかる場合、離氷ユニット 17を スライドさせる力がより小さくなるといえる。  [0151] Also, an ice making device 69 provided with a plurality of ice removing units 17 as shown in FIG. In this ice removing unit 17, two standing ribs 11 are arranged so as to be arranged in one direction while being spaced apart at a fixed interval, and between them (between the standing ribs 11 and 11), a bottom plate piece 12a is arranged. Are arranged so as to be lined up while being spaced apart at regular intervals. The ice making device 69 having a plurality of such ice removing units 17 can be slid and moved for each ice removing unit 17 by optimally combining the ball screw portion 13 and the RU motor 31. In such a case, it can be said that the sliding force of the ice removing unit 17 becomes smaller.
[0152] また、製氷水を効率よく流すために、流下溝 21の延び方向は、鉛直方向になって レ、ることが好ましいが、これに限定されるものではなレ、。離氷ユニット 17 ·製氷プレート ユニット 7を傾けることで、流下溝 21の延び方向を傾斜させるようにしてもよい。  [0152] In order to flow ice-making water efficiently, the extending direction of the downflow groove 21 is preferably a vertical direction, but the present invention is not limited to this. Ice detaching unit 17 · Ice making plate Unit 7 may be tilted so that the extending direction of the flow-down groove 21 is tilted.
[0153] また、離氷ユニット 17のスライド方向は、製氷プレートユニット 7に対してずれるよう な方向であれば (スライドできる方向であれば)、特に限定されるものではなレ、。例え ば、鉛直方向であってもよいし、円周方向であってもよい。あるいはらせん状の軌跡 を描く方向等に移動させてもよい。ただし、いずれの移動方向においても、流下溝 21 における製氷水の流れが問題ないようにする点と、および製氷装置の大型化を防止 する点については留意する必要がある。  [0153] The sliding direction of the ice removing unit 17 is not particularly limited as long as it is a direction that can be displaced with respect to the ice making plate unit 7 (if it can slide). For example, it may be a vertical direction or a circumferential direction. Alternatively, it may be moved in the direction of drawing a spiral trajectory. However, it should be noted that in any direction of movement, there is no problem with the flow of ice-making water in the downflow groove 21 and that the size of the ice-making device is prevented from becoming large.
[0154] また、本発明の製氷装置 69は、例えば、ボールネジ部 13 'RUモーター 31 (スライ ド機構)を用いて、立設リブ 11 (離氷ユニット 17)を製氷プレート 1からずらすように (ス ライド移動)させてレ、るが、これに限定されることはなレ、。  [0154] Further, the ice making device 69 of the present invention uses, for example, the ball screw portion 13'RU motor 31 (sliding mechanism) to shift the standing rib 11 (icing unit 17) from the ice making plate 1 ( (Slide movement) Let's do it, but it's not limited to this.
[0155] 例を挙げるなら、ウォームギア ·ホイールを用いたスライド機構や、ラックレールとピ 二オンギアを用いたスライド機構、電磁ソレノイド式ァクチユエ一ターを用いたスライド 機構であっても構わない。  [0155] For example, a sliding mechanism using a worm gear wheel, a sliding mechanism using a rack rail and a pinion gear, or a sliding mechanism using an electromagnetic solenoid actuator may be used.
[0156] また、嵌合溝 23と製氷プレート 1とが、より強固につながるようにするために、両者の 隙間 (すなわち、嵌合溝 23を構成する底板片 12aと製氷プレート 1との隙間)に接着 剤等を介在させるようにしてぉレ、ても構わなレ、。 [0156] Further, in order to connect the fitting groove 23 and the ice making plate 1 more firmly, The gap may be curbed with an adhesive or the like interposed in the gap (that is, the gap between the bottom plate piece 12a constituting the fitting groove 23 and the ice making plate 1).
[0157] また、本発明の製氷装置 69では、製氷完了検知センサー 51の検知温度によって、 塊氷が生成されたか否かについて判断するようになっている力 これに限定されるこ とはない。例えば、一定時間経過したときに、塊氷が生成がされたものと判断して、離 氷動作を行うようにしていてもよい。要は、塊氷が生成されたか否かが判断できれば、 その判断手段は何であっても構わない。  [0157] Further, in the ice making device 69 of the present invention, the force for determining whether or not lump ice has been generated based on the detection temperature of the ice making completion detection sensor 51 is not limited to this. For example, it may be determined that lump ice has been generated when a certain time has elapsed, and the ice removal operation may be performed. In short, any determination means may be used as long as it can be determined whether or not lump ice has been generated.
[0158] また、本発明の製氷装置 69では、氷貯留 BOX53の内部が、氷点以下に管理され るようになっているが、その氷点以下の温度状態を作り出す方法は種々考えられる。 例えば、製氷プレート 1につながる冷媒パイプ 2を延長させて、氷貯留 BOX53に連 結するようにしてもょレ、し、別途の例えば冷凍室内に配設するようにしてぉレ、てもよレヽ  [0158] Further, in the ice making device 69 of the present invention, the inside of the ice storage BOX 53 is managed below the freezing point, but various methods for creating a temperature state below the freezing point are conceivable. For example, the refrigerant pipe 2 connected to the ice making plate 1 may be extended and connected to the ice storage BOX 53, or may be installed separately in, for example, a freezer compartment.
[0159] なお、本発明の製氷装置 69は、種々の電化製品に利用されるようになっている。例 えば、家庭用の冷凍冷蔵庫や、業務用の大型製氷機、カップ式の飲料水販売機等 に利用されるようになってレ、る。 [0159] It should be noted that the ice making device 69 of the present invention is adapted to be used for various electrical appliances. For example, it has come to be used in household refrigerator-freezers, large commercial ice makers, and cup-type drinking water vending machines.
[0160] また、上記の説明では、冷凍サイクルユニット 10を用いた製氷装置 69を例に挙げ て説明してきたが、これに限定されるものではない。例えばスターリングエンジンを利 用した製氷装置であってもよい。また、製氷部の冷却方式も種々想定できる。製氷部 は、例えば、冷媒によって低温化された冷気によって冷却されてもよいし、冷却流体( 冷媒)との直接または間接の接触による冷却 (熱交換)であってもよい。また、冷媒を 利用せずに冷気のみで冷却する製氷部であってもよい。要は、氷の生成できる温度 までに冷却可能な冷却方式であればよい。そのため、熱交換の場合は、製氷プレー ト底板部は、冷熱の伝わる部材 (冷熱伝導部材)と表現してもよい。  [0160] In the above description, the ice making device 69 using the refrigeration cycle unit 10 has been described as an example. However, the present invention is not limited to this. For example, an ice making device using a Stirling engine may be used. Various cooling methods for the ice making unit can be envisaged. The ice making unit may be cooled by cold air whose temperature has been lowered by a refrigerant, or may be cooled (heat exchange) by direct or indirect contact with a cooling fluid (refrigerant). Further, it may be an ice making unit that cools only with cold air without using a refrigerant. In short, any cooling system that can cool to a temperature that can produce ice is acceptable. Therefore, in the case of heat exchange, the ice making plate bottom plate portion may be expressed as a member that transmits cold heat (cold heat conduction member).
[0161] また、製氷プレートおよび底板部を同一の熱伝導率を有する材料 (例えば、銅ゃァ ルミ二ゥム)で構成してもよい。但し、かかる構成の場合、上記してきた本発明の効果 を発揮させるために、底板部の過剰な低温化(例えば氷点以下)を防止する必要が ある。そこで、かかる構成の場合、断熱塗料等が底板部に塗布されているとよい(断 熱処理が施されていればよい)。このような断熱塗料があれば、同一の熱伝導率を有 する材料力 成る製氷プレートおよび底板部であっても、上記同様、異なる熱伝導率 を有する製氷プレートおよび底板部になるためである。すなわち、断熱処理の有無に よって、製氷プレートおよび底板部が、異なった熱伝導率を有するようになつていても よい。 [0161] Further, the ice making plate and the bottom plate portion may be made of a material having the same thermal conductivity (for example, copper nickel). However, in the case of such a configuration, it is necessary to prevent an excessively low temperature (for example, below the freezing point) of the bottom plate portion in order to exert the above-described effects of the present invention. Therefore, in such a configuration, it is preferable that a heat insulating paint or the like is applied to the bottom plate portion (so long as a heat treatment is performed). With such a heat insulating paint, it has the same thermal conductivity. This is because even the ice making plate and the bottom plate portion having the material force to be used become the ice making plate and the bottom plate portion having different thermal conductivities as described above. That is, the ice making plate and the bottom plate portion may have different thermal conductivities depending on the presence or absence of heat insulation treatment.
[0162] また、本発明の製氷装置は、下記のように表現することもできる。  [0162] Further, the ice making device of the present invention can also be expressed as follows.
[0163] 本発明は、冷凍サイクルまたは,氷点以下に冷却できる冷却手段によって板状体( 製氷プレート 1)を冷却し、低温の板状体に水を流下循環させて製氷する製氷装置で あって、製氷を行う製氷部(少なくとも製氷プレート 1および底板部 12を含む領域)を 高熱伝導性部材と低熱伝導性部材との組み合わせで構成し、製氷部内にぉレ、て、 氷点以下の低温部 (低温領域)と氷点を超える高温部(高温領域)を複数形成するよ うにしたことを特徴としている。  [0163] The present invention is an ice making device that cools a plate-like body (ice-making plate 1) by a refrigeration cycle or a cooling means that can cool below the freezing point, and circulates water through the low-temperature plate-like body to make ice. The ice making part (the area including at least the ice making plate 1 and the bottom plate part 12) is made up of a combination of a high thermal conductivity member and a low thermal conductivity member, and the ice making part has a low temperature part below the freezing point ( It is characterized by the formation of multiple high-temperature parts (high-temperature areas) exceeding the freezing point and low-temperature areas.
[0164] また、本発明の製氷装置では、製氷部が、高熱伝導性部材を分割して多段に構成 され、分割してできる間隙に、同じく分割して多段多列に構成した低熱伝導性部材を 挿入して構成されるようになってレ、ることを特徴としてレ、る。  [0164] Further, in the ice making device of the present invention, the ice making unit is configured in multiple stages by dividing the high thermal conductivity member, and the low thermal conductivity member is configured in the same way by dividing into gaps that can be divided. It is characterized by the fact that it is configured by inserting
[0165] また、本発明の製氷装置では、製氷部において、高熱伝導性部材と低熱伝導性部 材とが組み合わされた状態で製氷面となる一面が平滑な板状に形成され、この板状 に形成された面に、垂直に多列の低熱伝導性部材から成る仕切部(立設リブ 11)が 形成されるようになってレヽることを特徴としてレ、る。  [0165] Further, in the ice making device of the present invention, in the ice making part, one surface which becomes the ice making surface in a state where the high heat conductive member and the low heat conductive member are combined is formed into a smooth plate shape. A partition portion (standing rib 11) made up of a plurality of rows of low thermal conductivity members is formed vertically on the surface formed on the surface.
[0166] 製氷部の多段多列に構成した低熱伝導性部材には、製氷後、左右 (水平方向)に 数 mm程度、機械的に可動する手段が設けられていることを特徴としている。  [0166] The low thermal conductivity members configured in multiple stages and multiple rows in the ice making section are characterized in that they are provided with mechanically movable means about several millimeters left and right (horizontal direction) after ice making.
[0167] 製氷部の多段に分割された高熱伝導性部材の製氷面となる面には、非粘着性の 表面処理または塗装が施されてレ、ることを特徴としてレ、る。  [0167] The surface that becomes the ice making surface of the high thermal conductivity member divided in multiple stages in the ice making portion is subjected to non-adhesive surface treatment or coating, and is characterized in that it is characterized in that.
[0168] また、本発明の製氷装置では、冷凍サイクルまたは、氷点以下に冷却できる冷却手 段によって冷却される製氷部で、水を流動させて氷を生成する製氷装置であって、 平滑面を有する製氷部と、この平滑面を覆うように重ねて配置され、摺動可能な仕切 部の組み合わせで構成されることを特徴としている。なお、本発明の製氷装置では、 仕切部を摺動させる手段が備えられてレ、る。  [0168] In addition, the ice making device of the present invention is an ice making device that generates ice by flowing water in an ice making part that is cooled by a refrigeration cycle or a cooling means that can be cooled below the freezing point. It is characterized by being composed of a combination of an ice making part and an slidable partition part that are arranged so as to cover the smooth surface. The ice making device of the present invention is provided with means for sliding the partition.
[0169] また、本発明の製氷装置では、摺動可能な仕切部が、製氷部の平滑面に沿うような 面からなり、単一または複数の開孔を持つ板状体によって構成されることを特徴とし ている。 [0169] Further, in the ice making device of the present invention, the slidable partitioning portion is along the smooth surface of the ice making portion. It is characterized by being composed of a plate-like body consisting of a plane and having a single or a plurality of apertures.
[0170] また、本発明の製氷装置では、上記板状体から立設するように設置される単一また は複数の仕切板を備えてレ、ることを特徴としてレ、る。  [0170] Further, the ice making device of the present invention comprises a single or a plurality of partition plates installed so as to stand up from the plate-like body.
産業上の利用可能性  Industrial applicability
[0171] 本発明は、滴下させる製氷水を製氷プレート上にて、氷として固化させる製氷装置 The present invention relates to an ice making device that solidifies ice making water to be dripped as ice on an ice making plate
(いわゆるプレート式の製氷装置)に有用である。  It is useful for (so-called plate type ice making equipment).

Claims

請求の範囲 The scope of the claims
[1] 冷却される製氷部上に、水を付着させることで、氷を生成する製氷装置において、 上記製氷部は、第 1部材と第 2部材とから構成されていることを特徴とする製氷装置  [1] In an ice making device that produces ice by adhering water onto a cooled ice making unit, the ice making unit is composed of a first member and a second member. Equipment
[2] 上記の第 1部材および第 2部材は、互いに異なった熱伝導率を有する第 1冷気伝 導部材および第 2冷気伝導部材になっていることを特徴とする請求項 1に記載の製 氷装置。 [2] The product according to claim 1, wherein the first member and the second member are a first cold air conductive member and a second cold air conductive member having different thermal conductivities. Ice equipment.
[3] 上記の第 1部材および第 2部材は、断熱処理の有無によって異なった熱伝導率を 有する第 1冷気伝導部材および第 2冷気伝導部材になっていることを特徴とする請 求項 1に記載の製氷装置。  [3] The first member and the second member are a first cold air conducting member and a second cold air conducting member having different thermal conductivities depending on the presence or absence of heat insulation treatment. Claim 1 The ice making device described in 1.
[4] 上記製氷部は、冷媒を利用して冷却されていることを特徴とする請求項 1〜3のい ずれか 1項に記載の製氷装置。 [4] The ice making device according to any one of claims 1 to 3, wherein the ice making unit is cooled using a refrigerant.
[5] 冷媒によって冷却される製氷部上に、水を付着させることで、氷を生成する製氷装 置において、 [5] In an ice making device that produces ice by adhering water onto an ice making part cooled by a refrigerant,
上記製氷部は、冷媒による冷気の熱伝導率の異なる第 1冷気伝導部材と第 2冷気 伝導部材とから構成されていることを特徴とする製氷装置。  The ice making device is composed of a first cold air conducting member and a second cold air conducting member having different thermal conductivity of the cold air by the refrigerant.
[6] 上記第 1冷気伝導部材は、氷点以下の温度を維持する熱伝導率を有している一方 上記第 2冷気伝導部材は、氷点を超える温度を維持する熱伝導率を有してレ、ること を特徴とする請求項 2、 3、または 5のいずれ力 4項に記載の製氷装置。  [6] The first cold air conductive member has a thermal conductivity that maintains a temperature below the freezing point, while the second cold air conductive member has a thermal conductivity that maintains a temperature above the freezing point and The ice making device according to claim 4, wherein the force is any one of claims 2, 3, and 5.
[7] 上記第 1冷気伝導部材は、冷媒によって氷点以下の温度を維持する熱伝導率を有 している一方、 [7] While the first cold air conducting member has a thermal conductivity that maintains a temperature below the freezing point by the refrigerant,
上記第 2冷気伝導部材は、冷媒によっても氷点を超える温度を維持する熱伝導率 を有していることを特徴とする請求項 2、 3、または 5のいずれ力 1項に記載の製氷装 置。  The ice making device according to any one of claims 2, 3, and 5, wherein the second cold air conducting member has a thermal conductivity that maintains a temperature exceeding a freezing point even by a refrigerant. .
[8] 上記製氷部は、上記の第 1冷気伝導部材および第 2冷気伝導部材が交互に配設 することで構成されていることを特徴とする請求項 2、 3、または 5のいずれ力 1項に記 載の製氷装置。 [8] The ice making part according to any one of claims 2, 3, and 5, wherein the first cold air conducting member and the second cold air conducting member are alternately arranged. The ice making device described in the section.
[9] 上記製氷部は、 [9] The ice making part is
一定間隔で離間させた上記第 2冷気伝導部材を、少なくとも一部に上記第 1冷気伝 導部材を含んで成る基材部に重ね、かつ、第 1冷気伝導部材を第 2冷気伝導部材の 間隙から表出させる構成になっており、  The second cold air conducting member separated at a constant interval is overlaid on the base material part including at least a part of the first cold air conducting member, and the first cold air conducting member is placed between the second cold air conducting members. It is structured to be expressed from
この表出した第 1冷気伝導部材と第 2冷気伝導部材とが、交互に配設していること を特徴とする請求項 2、 3、または 5のいずれ力 4項に記載の製氷装置。  6. The ice making device according to claim 2, wherein the first cold air conducting member and the second cold air conducting member that are exposed are alternately arranged.
[10] 上記製氷部は、 [10] The ice making section is
開孔を有する第 2冷気伝導部材を、少なくとも一部に第 1冷気伝導部材を含んで成る 基材部に重ね、かつ、第 1冷気伝導部材を上記開孔から表出させる構成になってお り、  A second cold air conducting member having an opening is stacked on a base material part including at least a part of the first cold air conducting member, and the first cold air conducting member is exposed from the opening. The
この表出した第 1冷気伝導部材と第 2冷気伝導部材とが、交互に配設していること を特徴とする請求項 2、 3、または 5のいずれ力 1項に記載の製氷装置。  6. The ice making apparatus according to claim 2, wherein the first cold air conducting member and the second cold air conducting member that are exposed are alternately arranged.
[11] 上記の第 1冷気伝導部材および第 2冷気伝導部材は、上記製氷部上に付着した水 の流れ落ちる方向において、交互に配設されていることを特徴とする請求項 2、 3、ま たは 5のレ、ずれか 1項に記載の製氷装置。 [11] The first cold air conducting member and the second cold air conducting member are alternately arranged in the direction in which the water adhering to the ice making part flows down. The ice making device according to item 1 or 5.
[12] 上記の第 1冷気伝導部材および第 2冷気伝導部材から成る製氷部で、水の付着す る少なくとも一方の部材の面は、平滑面になっていることを特徴とする請求項 2、 3、ま たは 5のレ、ずれか 1項に記載の製氷装置。 [12] The ice making part comprising the first cold air conducting member and the second cold air conducting member, wherein the surface of at least one member to which water adheres is a smooth surface, The ice making device according to item 1 or 3 or 5.
[13] 上記の交互に配設された第 1冷気伝導部材および第 2冷気伝導部材から成る製氷 部の水の付着する面は、平滑面になっていることを特徴とする請求項 8に記載の製 氷装置。 [13] The water-adhering surface of the ice making unit composed of the first cold air conducting member and the second cold air conducting member arranged alternately is a smooth surface. Ice making equipment.
[14] 上記製氷部には、その製氷部の上記平滑面から立設するようにして、仕切部が設 けられてレ、ることを特徴とする請求項 12に記載の製氷装置。  14. The ice making device according to claim 12, wherein the ice making portion is provided with a partition portion so as to stand from the smooth surface of the ice making portion.
[15] 上記製氷部には、その製氷部を構成する第 2冷気伝導部材から立ち上がるようにし て、仕切部が設けられていることを特徴とする請求項 12に記載の製氷装置。 15. The ice making device according to claim 12, wherein the ice making part is provided with a partition part so as to rise from a second cold air conducting member constituting the ice making part.
[16] 上記仕切部の延び方向は、上記の水の流れ落ちる方向と同方向となっていることを 特徴とする請求項 15に記載の製氷装置。 16. The ice making device according to claim 15, wherein the extending direction of the partition portion is the same as the direction in which the water flows down.
[17] 上記仕切部は、少なくとも 1個以上備えられるようになつていることを特徴とする請求 項 14に記載の製氷装置。 [17] The partition is characterized in that at least one partition is provided. Item 15. The ice making device according to item 14.
[18] 上記仕切部の少なくとも一部は、第 2冷気伝導部材と同じ材料力 構成されている ことを特徴とする請求項 14に記載の製氷装置。 [18] The ice making device according to [14], wherein at least a part of the partition portion has the same material force as that of the second cold air conducting member.
[19] 上記仕切部は、上記製氷部を構成する面に沿って、スライド移動可能になっている ことを特徴とする請求項 14項に記載の製氷装置。 [19] The ice making device according to [14], wherein the partition part is slidable along a surface constituting the ice making part.
[20] 上記仕切部は、上記第 2冷気伝導部材と一体的に形成されるようになっており、 この仕切部は、上記第 1冷気伝導部材に対して第 2冷気伝導部材のずれる方向に 沿って、スライド移動可能になってレ、ることを特徴とする請求項 14に記載の製氷装置 [20] The partition portion is formed integrally with the second cold air conducting member, and the partition portion is arranged in a direction in which the second cold air conducting member is displaced with respect to the first cold air conducting member. 15. The ice making device according to claim 14, wherein the ice making device is slidable along the slide.
[21] 上記仕切部をスライド移動させるための動力源となる駆動部が設けられるとともに、 上記駆動部の動力を受ける伝達部が上記仕切部に備えられており、 [21] A drive unit serving as a power source for sliding the partition unit is provided, and a transmission unit that receives the power of the drive unit is provided in the partition unit,
上記仕切部は、上記駆動源の動力の伝達を受けて、上記第 2冷気伝導部材ととも に、上記第 1冷気伝導部材からずれるようにスライド移動するようになっていることを 特徴とする請求項 19に記載の製氷装置。  The partition part is configured to slide and move together with the second cold air conducting member so as to deviate from the first cold air conducting member upon receiving the transmission of power from the drive source. Item 20. The ice making device according to Item 19.
[22] 上記製氷部で生成された氷を貯留する氷貯留部が設けられるとともに、この氷貯留 部の内部が、氷点以下を維持するようになっていることを特徴とする請求項 1、 2、 3、 または 5のいずれ力 1項に記載の製氷装置。 [22] The ice storage section for storing the ice generated in the ice making section is provided, and the inside of the ice storage section is maintained below the freezing point. The ice making device according to any one of items 1 to 3, 5 or 5.
[23] 水の付着する上記第 1冷気伝導部材上には、生成された氷を剥落させやすくする 剥落処理が施されていることを特徴とする請求項 1、 2、 3、または 5のいずれか 1項に 記載の製氷装置。 [23] The first cold air conducting member to which water adheres is subjected to a peeling process for facilitating the peeling of the generated ice. Or the ice making apparatus according to item 1.
[24] 上記剥落処理として、上記第 1冷気伝導部材上にフッ素樹脂が被覆されていること を特徴とする請求項 23に記載の製氷装置。  24. The ice making device according to claim 23, wherein as the peeling process, a fluororesin is coated on the first cold air conducting member.
[25] 請求項 2、 3、または 5のいずれ力 4項に記載の製氷装置において、第 1冷気伝導 部材および第 2冷気伝導部材が、冷熱の伝わる第 1冷熱伝導部材および第 2冷熱伝 導部材になっていることを特徴とする製氷装置。 [25] The ice making device according to any one of claims 2, 3, and 5, wherein the first cold air conducting member and the second cold air conducting member are the first cold heat conducting member and the second cold heat conducting member through which cold energy is transmitted. An ice making device characterized by being a member.
PCT/JP2005/021203 2004-12-01 2005-11-18 Ice making device WO2006059495A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004348331 2004-12-01
JP2004-348331 2004-12-01
JP2005-140263 2005-05-12
JP2005140263A JP3810423B2 (en) 2004-12-01 2005-05-12 Ice making equipment

Publications (1)

Publication Number Publication Date
WO2006059495A1 true WO2006059495A1 (en) 2006-06-08

Family

ID=36564930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021203 WO2006059495A1 (en) 2004-12-01 2005-11-18 Ice making device

Country Status (2)

Country Link
JP (1) JP3810423B2 (en)
WO (1) WO2006059495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015150A1 (en) * 2016-07-19 2018-01-25 Arcelik Anonim Sirketi A freezer device comprising an ice unit producing clear ice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426860Y2 (en) * 1986-02-25 1992-06-26
JPH0727457A (en) * 1993-05-14 1995-01-27 Osaka Gas Co Ltd Ice making plate
JPH09126606A (en) * 1995-11-01 1997-05-16 Chubu Electric Power Co Inc Heat exchanger for ice making
JP2005233457A (en) * 2004-02-17 2005-09-02 Hoshizaki Electric Co Ltd Ice making machine and method of making ice making plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426860Y2 (en) * 1986-02-25 1992-06-26
JPH0727457A (en) * 1993-05-14 1995-01-27 Osaka Gas Co Ltd Ice making plate
JPH09126606A (en) * 1995-11-01 1997-05-16 Chubu Electric Power Co Inc Heat exchanger for ice making
JP2005233457A (en) * 2004-02-17 2005-09-02 Hoshizaki Electric Co Ltd Ice making machine and method of making ice making plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015150A1 (en) * 2016-07-19 2018-01-25 Arcelik Anonim Sirketi A freezer device comprising an ice unit producing clear ice

Also Published As

Publication number Publication date
JP2006183984A (en) 2006-07-13
JP3810423B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
CA2570986C (en) Pulse systems and methods for detaching ice
US7638735B2 (en) Pulse electrothermal and heat-storage ice detachment apparatus and methods
TWI335407B (en) Automatic ice making machine
CN101120217B (en) Pulse electric heating and heat storage deicing device and method
CN102221276B (en) Ice making device for refrigerator and refrigerator with same
JPWO2008026292A1 (en) Flowing ice machine
JP5186688B2 (en) Ice making equipment using ammonia
KR20200128592A (en) Heat exchange system and method for freezing phase change material
JP2005180823A (en) Automatic ice making machine
US4922723A (en) Apparatus and method for making ice cubes without a defrost cycle
WO2006059495A1 (en) Ice making device
US20070101752A1 (en) Ice-making device utilizing pulse electric devices to harvest ice
CN115388589B (en) Ice making module and ice making equipment
JP2005180824A (en) Automatic ice making machine
JP5253944B2 (en) Automatic ice machine
CN100475650C (en) ice making system
RU2383827C2 (en) Devices and method to remove ice by pulsed electrothermal and heat-retaining effects
WO2006098061A1 (en) Ice-making device and refrigerator having the ice-making device
JP2003194444A (en) Automatic ice making machine
JP2001074345A (en) Defrosting method for ice machine
JPH01239358A (en) Ice making machine and cold heat accumulating using said machine
CA2561514A1 (en) Ice maker circuit
JPH0510558A (en) Liquid ice type insulated device
JP2004012053A (en) Cooling device for food
JP2004239482A (en) Ice making machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807069

Country of ref document: EP

Kind code of ref document: A1