[go: up one dir, main page]

WO2006042524A1 - Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs - Google Patents

Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs Download PDF

Info

Publication number
WO2006042524A1
WO2006042524A1 PCT/DE2005/001864 DE2005001864W WO2006042524A1 WO 2006042524 A1 WO2006042524 A1 WO 2006042524A1 DE 2005001864 W DE2005001864 W DE 2005001864W WO 2006042524 A1 WO2006042524 A1 WO 2006042524A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
measuring
analyzer
wavelengths
auxiliary
Prior art date
Application number
PCT/DE2005/001864
Other languages
German (de)
English (en)
Inventor
Siegfried Kaufmann
Hannes Schache
Uwe Detlef Zeitner
Original Assignee
Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. filed Critical Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority to DE112005003251T priority Critical patent/DE112005003251A5/de
Publication of WO2006042524A1 publication Critical patent/WO2006042524A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics

Definitions

  • the invention relates to a method for fast, automatic, non-contact, calibration-friendly and lichtstar ⁇ ken measurement of high path differences R of birefringent and transparent optical media or samples according to Senarmont with simultaneous or temporally successive digital Fourier analysis with multiple wavelengths, especially fibers, Filaments, films and other fabrics, both in the
  • the measurement of the path difference R of the mentioned samples is important because it results in the birefringence with the aid of the thickness D of these samples
  • ⁇ n max is the maximum possible birefringence
  • the birefringence ⁇ n in the case of the fibers is always the difference of the refractive indices parallel and perpendicular to the fiber longitudinal axis, i.
  • the path difference R is the difference of the optical paths n ⁇ * D and m * D 7 ie
  • Patents with several wavelengths do not deal with the convergence of the different orders at different wavelengths (US Pat. No. 4,973,163). Only by the constancy of the optical order in very small wavelength ranges, which can be up to 10 nm and smaller, in part, as shown below, false colors can be detected. Although the possibility of varying the wavelengths is present in US Pat. No. 5,406,371, it can not at the same time be realized for the quantities designated as measuring and auxiliary wavelengths in the present patent.
  • the patented method and apparatus (DE 103 10 837 A1) for the automatic measurement of stress birefringence on transparent bodies is unsuitable for the determination of optical path differences R> ⁇ , since measurements are carried out at only one measuring wavelength.
  • the analyzer is mechanically rotated in this case.
  • Kompensationseinreichtung (DE 40 32 212 Al) is used to measure optical path differences of optically anisotropic objects in an extended spectral range with significantly reduced systematic measurement error. In this case, it is possible to measure at different measuring light wavelengths by means of a rotatable analyzer, but no possibility of determining optical path differences R> ⁇ is described.
  • a more recent patent (DE 102 45 407) describes a method in which the Senarmont method is carried out simultaneously or chronologically successively using discrete Fourier analysis (DFA) with preferably three angular positions and at least two measuring wavelengths. In the Senarmont method with simultaneous DFA are used for scanning coming from the object to be measured
  • DFA discrete Fourier analysis
  • Signal preferably three angular positions simultaneously realized and requires at least three optical fiber with upstream ⁇ / 4 plate and three polarizers.
  • Senarmont method with time-successive DFA, only one light control cable, a photoreceiver and an electrical amplifier.
  • the light intensity with respect to the above-mentioned Senarmont method increases with very many angles of the analyzer.
  • the former variant is faster than the second variant (temporally successive DFA). In the latter case, however, the material cost is lower, the light intensity higher and the calibration requirements are particularly minimal.
  • a device in which the birefringent sample is in the direction of light between a polarizer and a ⁇ / 4 plate.
  • Polarizer, sample and ⁇ / 4 plate are irradiated by a white light source with monochromate filter or a laser.
  • the available light intensity is preferably divided into three channels with three polarizers in three angular positions (e.g., 0 °, 60 ° and 120 °) and then with a CCD line, CCD
  • the analyzer is rotated into preferably three different angular positions by means of pulse-controlled and rapidly rotating miniature servo drive and the resulting intensities are measured with or without optical cable and photoreceiver and from the results both the Senarmont angle as well as the path difference calculated.
  • the assignment of the angular position and the light intensity takes place via the characteristic pulse belonging to each angular position.
  • the distance of the two wavelengths of the two-wavelength Senarmont method could well be again greater than 10 nra, which would increase the security (accuracy and uniqueness) and speed of the process several times. Due to the rigid specification of the wavelength spacing of 10 nm, this is not the case. Here it would be favorable if the wavelength distance is variable.
  • the wavelength spacing of 10 nm can again be too large. Then, e.g. the false colors are clearly identified only at a wavelength distance of 5 nm. Only then are the results clear. At the fixed distance of 10 nm, the measurement would be wrong.
  • the object of the invention is the further development of the Senarmont method for the automatic, contactless and rapid measurement of high path differences R of double-break and transparent samples or objects in online operation, in particular of fibers, filaments, films and
  • the wavelength spacing is not constant, but can be made variable.
  • the integration times should be in the order of seconds or seconds.
  • the object is achieved by introducing a variable auxiliary wavelength ⁇ 2 in addition to the actual constant measurement wavelength ⁇ i.
  • the last-mentioned auxiliary wavelength ⁇ 2 is as long as the measuring wavelength ⁇ i angegli ⁇ chen until the same order is present for both wavelengths (the same N + l).
  • the distance between the two wavelengths may be greater than 10 nm, and the safety (accuracy and uniqueness) and speed of the method increase.
  • the distance between the two wavelengths can even be made smaller than 10 nm, so that the false colors can be detected correctly.
  • the method and apparatus can be used for the automatic, non-contact and rapid measurement of the path difference of birefringent samples without ambiguity of the results, whereby the safety (accuracy and uniqueness) and speed (short period) of the method can be regulated depending on the properties of the sample ,
  • the method and the device are suitable for measurement in laboratory operation, for fast (simultaneous measurement) and slowly variable processes (time-successive measurement) with an integration time in the ms and seconds range and for tracking the change in the transition difference of microscopically small Samples with false color.
  • Fig. 1 the scheme of the method is shown, after which the monochromatic radiation of the two light sources (1) and (2) with the two wavelengths ⁇ x and ⁇ 2 on the Tei ⁇ leroirefel (4) together on the polarizer (5) ,
  • the light source (1) characterizes the measuring wavelength ⁇ i.
  • the light source (2) characterizes the auxiliary wavelength X 2 .
  • the essence of the method is expressed in that the radiation of the auxiliary wavelength ⁇ 2 on the way to the Generaler ⁇ cube (4) passes through a device that can vary the Hilfswellen ⁇ length as required.
  • the distance to the measurement wavelength can be increased in the sense of increasing safety (accuracy and uniqueness) and speed of the measurement.
  • the distance of the auxiliary wavelength to the measurement wavelength can be reduced to less than 10 nm, so that the uniqueness of the measurement is ensured.
  • the birefringent sample (6) to be measured is illuminated via the polarizer (5) and fed to the ⁇ / 4 plate (7). This converts the elliptically polarized light generated by the sample to be measured into linearly polarized light.
  • the subsequent diffuser (8) is used to homogenize the light beam over the entire bundle cross-section. This is important because the subsequent analyzer (9) is equipped for three polarization directions in which the incident light intensities must be the same (polarization filter array or analyzer array). The position of the polarization directions is shown in Fig.
  • the sample (6) meant n ⁇ , the ⁇ / 4 plate (7) and the analyzer (9) are shown (In Fig. 2, the position of the analyzer (9) means the home position).
  • FIG. 3 The specific three polarization directions (including the basic position) of the analyzer (9) are shown in FIG. 3, where additionally the polarization positions of the polarizer (5), the ⁇ / 4 plate (7) and the basic position of the analyzer (9) are indicated (Ii). In the "box" of Fig. 3 are still the other two analyzer positions (I 2 and I 3 ) can be seen.
  • the now six existing radiations with the intensities I 1 , I 2 and I 3 for the measuring wavelength ⁇ 1 and the auxiliary wavelength ⁇ 2 are transmitted to the photodetectors and amplifiers via a divider cube (10) without changing the polarization state. 12).
  • the measuring radiation passes through the filter (11), which is tuned to the wavelength ⁇ i of the measuring radiation.
  • Auxiliary wavelength ⁇ 2 is changed until the same orders are present for both wavelengths [X 1 and X 2 ].
  • Table 1 summarizes the intensities Ii to I 3 that result in the experiment at the different wavelengths and angular positions of the analyzer, which have been determined simultaneously (device according to FIGS. 1-5), and the calculated gear differences.
  • Table 1 Compilation of the measured values and results for the 2-1 / 4- ⁇ plate (without false colors) for the different measuring and auxiliary wavelengths and the corresponding angular positions (0 °, 60 ° and 120 ° )
  • the distance between the measuring and auxiliary wavelengths is 40 nm (550 and 590 nm).
  • the distance is 20 nm (550 and 570 nm) and in the last example 10 nm (550 and 560 nm).
  • the measurement is preferably carried out at 40 nm, because this can increase the safety (accuracy and uniqueness) and the speed of the method, as has been explained above.
  • the change of the auxiliary wavelength can be carried out with any wavelength-dispersive device, e.g. B. with a prism spectrometer, an optical grating or a metal interference filter.
  • a metal interference filter (21) whose surface normal lies in the optical axis (20).
  • the metal interference filter rotates to the changed auxiliary wavelength at which a redetermination of the optical order (N + 1) is made.
  • the change of the position of the metal interference filter takes place until there is no change in the optical order (N + 1) repeatedly for the measuring and the auxiliary wavelength. Then only clear and therefore usable results will follow (see example 1 or 2).
  • the time for determining the optical order is greater than Is. If the optical order lies after variation of the auxiliary
  • the detection channel can be set up in a very uncomplicated manner, ie the measuring channel following the sample to be measured can be kept very small for measurements under production conditions (positions 7 to 12 in FIG. 1).
  • the optical order (N + 1) can be entered and it is only necessary to evaluate three intensities at the set measuring wavelength.
  • the ⁇ / 4 plate (7) is behind a lens (13a), which is a spatial filter with the other lenses (13b) and (13c) and the slit (14), so that stray light (ZB room light) excluded can be.
  • the responsible for the homogenization diffuser has been omitted in Fig. 5 for clarity.
  • the polarization filter array (9) is arranged, which is imaged with the lenses (13a) and (13b) on the CCD chip (16), all on the thread (15). are compiled.
  • the CCD chip (16) is connected to the computer and the evaluation unit. The type of evaluation was described in Examples 2 and 3.
  • FIG. 6 Another variant of the device with a known optical order (N + 1) simplified to FIG. 5 is indicated in FIG. 6, where the slit diaphragm has been removed to achieve higher intensities for poorly permeable media, in contrast to FIG.
  • the lens (13a) was placed behind the ⁇ / 4
  • Platelets (7) arranged, followed by the polarization grid array (9) follows.
  • the lenses (13a) and (13b) image the array (9) onto the CCD chip (16).
  • DMSV Discrete Multicolor Senarmont Method
  • the arrangement described in item 4 can also be modified for threads and filaments. It must be noted that it is not possible to use a direct and straight beam path, as is the case with foils. To avoid extraneous light, the beam path must be angled. Because of the existing conditions in the spinning shaft, the entire arrangement must be accommodated in a thin measuring plate (6 - 8 mm), which is shown in gray in Fig. 7. In this case, we distinguish between an illumination beam path ((17) to (18)) and a measurement beam path ((13) to (19)). In between is the thread not drawn in and to be measured. From a base plate located outside with the monochromatic light source, the polarized radiation (position of the polarization direction see FIG.
  • Platelets (7) passed and there linearly polarized again, but with a different polarization direction.
  • the diffuser (8) and the multimode fiber array (19) serve to uniformly detect the three light intensities with different polarization direction.
  • the light signals are conducted via ferrules to the photoreceivers with the computer-based evaluation.
  • Single-mode illumination fiber 18. Cylindrical lenses as expansion optics
  • Metal interference filter whose surface normal lies in the direction of the optical axis 22.
  • Stepping motor whose drive axis is once perpendicular to the optical axis and at the same time represents the drive axis of the metal interference filter with which it is rigidly connected.
  • 23. Direction of rotation of the metal interference filter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif pouvant être utilisés pour la mesure automatique, rapide et sans contact d'importantes différences de chemins optiques dans des échantillons biréfringents sans ambiguïté des résultats. L'objectif de cette invention est de pouvoir obtenir la fiabilité (précision et univocité) et la rapidité (période courte) voulues pour le procédé en fonction des propriétés de l'échantillon même en présence de fausses couleurs. A cet effet, outre la longueur d'onde de mesure constante propre ?1, une longueur d'onde auxiliaire variable ?2 est utilisée. Cette longueur d'onde auxiliaire ?2 est alignée sur la longueur d'onde de mesure ?1, jusqu'à ce que le même ordre soit obtenu pour les deux longueurs d'onde de manière simultanée et répétée (même N+1). Ainsi, il est possible, dans un cas, de régler l'écart entre les deux longueurs d'onde à une valeur supérieure à 10 nm pour certains échantillons, tout en augmentant la fiabilité (précision et univocité) et la rapidité du procédé. Dans l'autre cas, lorsque des échantillons présentent une luminosité très intense avec des fausses couleurs très 'difficiles', il est même possible de régler l'écart entre les deux longueurs d'onde à une valeur inférieure à 10 nm, de sorte que les différences des chemins peuvent être détectées de façon univoque.
PCT/DE2005/001864 2004-10-20 2005-10-18 Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs WO2006042524A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005003251T DE112005003251A5 (de) 2004-10-20 2005-10-18 Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051247.7 2004-10-20
DE200410051247 DE102004051247B3 (de) 2004-10-20 2004-10-20 Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben durch simultane Kombination des Mehrfarben-Senarmont-Verfahrens mit der diskreten Fourier-Analyse

Publications (1)

Publication Number Publication Date
WO2006042524A1 true WO2006042524A1 (fr) 2006-04-27

Family

ID=35745951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001864 WO2006042524A1 (fr) 2004-10-20 2005-10-18 Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs

Country Status (2)

Country Link
DE (1) DE102004051247B3 (fr)
WO (1) WO2006042524A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474637A (zh) * 2018-11-29 2021-10-01 乐卓博大学 鉴定结构的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285871A (ja) * 2006-04-17 2007-11-01 Fujifilm Corp 複屈折測定装置
DE102006062157B4 (de) * 2006-12-22 2008-09-04 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Gleichzeitige Messung hoher Gangunterschiede und der Verdrehung der optischen Achse von doppelbrechenden Medien

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH342768A (de) * 1953-11-03 1959-11-30 Ici Ltd Verfahren zum Überwachen der Konstanz physikalischer Eigenschaften endloser Fäden während des Spinnens
DE4306050A1 (en) * 1992-02-29 1993-09-02 Kanzaki Paper Mfg Co Ltd Measuring double refraction to measure foil thickness - by applying phase plate to sample, measuring intensity of light momentarily passing through, etc.
DE4235065A1 (de) * 1992-10-17 1994-04-21 Thueringisches Inst Textil Verfahren zum automatischen und berührungslosen Messen der Doppelbrechung von bewegten Folien und Filamenten
DE19819670A1 (de) * 1998-05-02 1998-11-26 Thueringisches Inst Textil Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont
DE10245407A1 (de) * 2002-09-28 2004-04-08 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH337340A (de) * 1955-09-28 1959-03-31 Licencia Talalmanyokat Optisches Verfahren zum Klassifizieren von das Licht doppeltbrechenden Fasern, insbesondere von Baumwolle, und Vorrichtung zur Ausführung des Verfahrens
DD154039B5 (de) * 1980-10-29 1996-02-08 Zeiss Carl Jena Gmbh Vorrichtung zum messen von gangunterschieden in polarisiertem Licht
DE3543632A1 (de) * 1985-12-11 1987-06-19 Hoechst Ag Verfahren und vorrichtung zur bestimmung von dicken- und/oder orientierungsaenderungen innerhalb einer optisch aktiven materialbahn
US4973163A (en) * 1988-10-08 1990-11-27 Kanzaki Paper Manufacturing Co., Ltd. Method for measuring birefringence
DE4032212A1 (de) * 1990-10-11 1992-05-14 Jenoptik Jena Gmbh Achromatische senarmont-kompensationseinrichtung
DE4123936A1 (de) * 1991-07-19 1993-01-21 Thueringische Faser Ag Schwarz Pruefverfahren und vorrichtung zur automatischen und beruehrungslosen messung derdoppelbrechung von faeden mit kleinen gangunterschieden
DE4123935A1 (de) * 1991-07-19 1993-01-21 Thueringische Faser Ag Schwarz Pruefverfahren zur automatischen und beruehrungslosen messung der doppelbrechung von faeden mit beliebigen gangunterschieden
JPH0534273A (ja) * 1991-07-29 1993-02-09 Kanzaki Paper Mfg Co Ltd レターデーシヨン測定装置
JPH06147986A (ja) * 1992-11-12 1994-05-27 Sadao Nakai 複屈折分布測定方法
DE19529899A1 (de) * 1995-08-14 1996-03-07 Thueringisches Inst Textil Verfahren zur automatischen und berührungslosen Messung der Doppelbrechung von Filamenten in Kleinsträumen
US5929993A (en) * 1998-03-03 1999-07-27 J.A. Woollam Co. Inc. Total film retardance monitoring system, and method of use
DE19953528B4 (de) * 1999-11-05 2010-10-07 Schott Ag Vorrichtung und Verfahren zur automatischen Messung der Spannungsdoppelbrechung mit feststehendem Analysator
GB0100819D0 (en) * 2001-01-12 2001-02-21 Hewlett Packard Co Optical characterization of retarding devices
DE10310837B4 (de) * 2002-10-25 2006-05-18 Ilis Gmbh Verfahren und Vorrichtung zur automatischen Messung der Spannungsdoppelbrechung an transparenten Körpern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH342768A (de) * 1953-11-03 1959-11-30 Ici Ltd Verfahren zum Überwachen der Konstanz physikalischer Eigenschaften endloser Fäden während des Spinnens
DE4306050A1 (en) * 1992-02-29 1993-09-02 Kanzaki Paper Mfg Co Ltd Measuring double refraction to measure foil thickness - by applying phase plate to sample, measuring intensity of light momentarily passing through, etc.
DE4235065A1 (de) * 1992-10-17 1994-04-21 Thueringisches Inst Textil Verfahren zum automatischen und berührungslosen Messen der Doppelbrechung von bewegten Folien und Filamenten
DE19819670A1 (de) * 1998-05-02 1998-11-26 Thueringisches Inst Textil Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont
DE10245407A1 (de) * 2002-09-28 2004-04-08 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474637A (zh) * 2018-11-29 2021-10-01 乐卓博大学 鉴定结构的方法

Also Published As

Publication number Publication date
DE102004051247B3 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
EP0534166B1 (fr) Procédé et dispositif pour la détermination quantitatif des substances optiquement actif
EP1152236B1 (fr) Dispositif de mesure optique avec un ellipsomètre
DE112010001378B4 (de) Filmdickenmessgerät und Messverfahren
EP3347687B1 (fr) Spectromètre miniature et procédé spectroscopique
DE102012104874B4 (de) Optisches Messsystem mit Polarisationskompensation, sowie entsprechendes Verfahren
EP0561015A1 (fr) Mesure de phase interferométrique
EP3056934A1 (fr) Tete de mesure d'un dispositif endoscopique et procede d'inspection et mesure d'un objet
DE112012001415T5 (de) Verfahren und Gerät zur Brechungsindexmessung
DE112016006185T5 (de) System und Verfahren zur Inspektion unnd Metrologie von Halbleiterwafern
DE3541165C2 (fr)
DE2338305C3 (de) Verfahren und Vorrichtung zur Ermittlung der linearen Doppelbrechung eines Materials
DE4033912C2 (de) Optischer Sensor
DE102004051247B3 (de) Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben durch simultane Kombination des Mehrfarben-Senarmont-Verfahrens mit der diskreten Fourier-Analyse
EP0427996A2 (fr) Procédé et appareil pour déterminer qualitativement et quantitativement des composés organiques
DE102011087978A1 (de) Verfahren und Anordnung zur Bestimmung des Brechzahlgradienten eines Materials
DE102015201909B4 (de) Verfahren und System zum Ermitteln eines optischen Gangunterschieds zwischen in einem doppelbrechenden Objekt entstehenden Teillichtwellen
DE102006062157B4 (de) Gleichzeitige Messung hoher Gangunterschiede und der Verdrehung der optischen Achse von doppelbrechenden Medien
DE10245407A1 (de) Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont
DE19819670A1 (de) Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont
DE3816950A1 (de) Vorrichtung zur optischen messung einer weglaenge oder einer weglaengenaenderung
DE2922163A1 (de) Optische vorrichtung zur bestimmung der guete einer oberflaeche
DE4209537A1 (de) Verfahren und vorrichtung zur messung von polarisiertem licht
DE102010041814A1 (de) Ellipsometer
DD276734A1 (de) Verfahren zur gangunterschiedsmessung an anisotropen transparenten objekten
WO2008067938A1 (fr) Procédé de mesure de la biréfringence et/ou du retard, en particulier sur des feuilles au moins partiellement transparentes et dispositif associé

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050032515

Country of ref document: DE

REF Corresponds to

Ref document number: 112005003251

Country of ref document: DE

Date of ref document: 20070920

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05809924

Country of ref document: EP

Kind code of ref document: A1