WO2006042524A1 - Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs - Google Patents
Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs Download PDFInfo
- Publication number
- WO2006042524A1 WO2006042524A1 PCT/DE2005/001864 DE2005001864W WO2006042524A1 WO 2006042524 A1 WO2006042524 A1 WO 2006042524A1 DE 2005001864 W DE2005001864 W DE 2005001864W WO 2006042524 A1 WO2006042524 A1 WO 2006042524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- measuring
- analyzer
- wavelengths
- auxiliary
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 37
- 239000003086 colorant Substances 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 56
- 230000003287 optical effect Effects 0.000 claims description 38
- 230000010287 polarization Effects 0.000 claims description 24
- 239000000835 fiber Substances 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 7
- -1 filaments Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 4
- 108091008695 photoreceptors Proteins 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000005021 gait Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012372 quality testing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013306 transparent fiber Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/23—Bi-refringence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/442—Resins; Plastics
Definitions
- the invention relates to a method for fast, automatic, non-contact, calibration-friendly and lichtstar ⁇ ken measurement of high path differences R of birefringent and transparent optical media or samples according to Senarmont with simultaneous or temporally successive digital Fourier analysis with multiple wavelengths, especially fibers, Filaments, films and other fabrics, both in the
- the measurement of the path difference R of the mentioned samples is important because it results in the birefringence with the aid of the thickness D of these samples
- ⁇ n max is the maximum possible birefringence
- the birefringence ⁇ n in the case of the fibers is always the difference of the refractive indices parallel and perpendicular to the fiber longitudinal axis, i.
- the path difference R is the difference of the optical paths n ⁇ * D and m * D 7 ie
- Patents with several wavelengths do not deal with the convergence of the different orders at different wavelengths (US Pat. No. 4,973,163). Only by the constancy of the optical order in very small wavelength ranges, which can be up to 10 nm and smaller, in part, as shown below, false colors can be detected. Although the possibility of varying the wavelengths is present in US Pat. No. 5,406,371, it can not at the same time be realized for the quantities designated as measuring and auxiliary wavelengths in the present patent.
- the patented method and apparatus (DE 103 10 837 A1) for the automatic measurement of stress birefringence on transparent bodies is unsuitable for the determination of optical path differences R> ⁇ , since measurements are carried out at only one measuring wavelength.
- the analyzer is mechanically rotated in this case.
- Kompensationseinreichtung (DE 40 32 212 Al) is used to measure optical path differences of optically anisotropic objects in an extended spectral range with significantly reduced systematic measurement error. In this case, it is possible to measure at different measuring light wavelengths by means of a rotatable analyzer, but no possibility of determining optical path differences R> ⁇ is described.
- a more recent patent (DE 102 45 407) describes a method in which the Senarmont method is carried out simultaneously or chronologically successively using discrete Fourier analysis (DFA) with preferably three angular positions and at least two measuring wavelengths. In the Senarmont method with simultaneous DFA are used for scanning coming from the object to be measured
- DFA discrete Fourier analysis
- Signal preferably three angular positions simultaneously realized and requires at least three optical fiber with upstream ⁇ / 4 plate and three polarizers.
- Senarmont method with time-successive DFA, only one light control cable, a photoreceiver and an electrical amplifier.
- the light intensity with respect to the above-mentioned Senarmont method increases with very many angles of the analyzer.
- the former variant is faster than the second variant (temporally successive DFA). In the latter case, however, the material cost is lower, the light intensity higher and the calibration requirements are particularly minimal.
- a device in which the birefringent sample is in the direction of light between a polarizer and a ⁇ / 4 plate.
- Polarizer, sample and ⁇ / 4 plate are irradiated by a white light source with monochromate filter or a laser.
- the available light intensity is preferably divided into three channels with three polarizers in three angular positions (e.g., 0 °, 60 ° and 120 °) and then with a CCD line, CCD
- the analyzer is rotated into preferably three different angular positions by means of pulse-controlled and rapidly rotating miniature servo drive and the resulting intensities are measured with or without optical cable and photoreceiver and from the results both the Senarmont angle as well as the path difference calculated.
- the assignment of the angular position and the light intensity takes place via the characteristic pulse belonging to each angular position.
- the distance of the two wavelengths of the two-wavelength Senarmont method could well be again greater than 10 nra, which would increase the security (accuracy and uniqueness) and speed of the process several times. Due to the rigid specification of the wavelength spacing of 10 nm, this is not the case. Here it would be favorable if the wavelength distance is variable.
- the wavelength spacing of 10 nm can again be too large. Then, e.g. the false colors are clearly identified only at a wavelength distance of 5 nm. Only then are the results clear. At the fixed distance of 10 nm, the measurement would be wrong.
- the object of the invention is the further development of the Senarmont method for the automatic, contactless and rapid measurement of high path differences R of double-break and transparent samples or objects in online operation, in particular of fibers, filaments, films and
- the wavelength spacing is not constant, but can be made variable.
- the integration times should be in the order of seconds or seconds.
- the object is achieved by introducing a variable auxiliary wavelength ⁇ 2 in addition to the actual constant measurement wavelength ⁇ i.
- the last-mentioned auxiliary wavelength ⁇ 2 is as long as the measuring wavelength ⁇ i angegli ⁇ chen until the same order is present for both wavelengths (the same N + l).
- the distance between the two wavelengths may be greater than 10 nm, and the safety (accuracy and uniqueness) and speed of the method increase.
- the distance between the two wavelengths can even be made smaller than 10 nm, so that the false colors can be detected correctly.
- the method and apparatus can be used for the automatic, non-contact and rapid measurement of the path difference of birefringent samples without ambiguity of the results, whereby the safety (accuracy and uniqueness) and speed (short period) of the method can be regulated depending on the properties of the sample ,
- the method and the device are suitable for measurement in laboratory operation, for fast (simultaneous measurement) and slowly variable processes (time-successive measurement) with an integration time in the ms and seconds range and for tracking the change in the transition difference of microscopically small Samples with false color.
- Fig. 1 the scheme of the method is shown, after which the monochromatic radiation of the two light sources (1) and (2) with the two wavelengths ⁇ x and ⁇ 2 on the Tei ⁇ leroirefel (4) together on the polarizer (5) ,
- the light source (1) characterizes the measuring wavelength ⁇ i.
- the light source (2) characterizes the auxiliary wavelength X 2 .
- the essence of the method is expressed in that the radiation of the auxiliary wavelength ⁇ 2 on the way to the Generaler ⁇ cube (4) passes through a device that can vary the Hilfswellen ⁇ length as required.
- the distance to the measurement wavelength can be increased in the sense of increasing safety (accuracy and uniqueness) and speed of the measurement.
- the distance of the auxiliary wavelength to the measurement wavelength can be reduced to less than 10 nm, so that the uniqueness of the measurement is ensured.
- the birefringent sample (6) to be measured is illuminated via the polarizer (5) and fed to the ⁇ / 4 plate (7). This converts the elliptically polarized light generated by the sample to be measured into linearly polarized light.
- the subsequent diffuser (8) is used to homogenize the light beam over the entire bundle cross-section. This is important because the subsequent analyzer (9) is equipped for three polarization directions in which the incident light intensities must be the same (polarization filter array or analyzer array). The position of the polarization directions is shown in Fig.
- the sample (6) meant n ⁇ , the ⁇ / 4 plate (7) and the analyzer (9) are shown (In Fig. 2, the position of the analyzer (9) means the home position).
- FIG. 3 The specific three polarization directions (including the basic position) of the analyzer (9) are shown in FIG. 3, where additionally the polarization positions of the polarizer (5), the ⁇ / 4 plate (7) and the basic position of the analyzer (9) are indicated (Ii). In the "box" of Fig. 3 are still the other two analyzer positions (I 2 and I 3 ) can be seen.
- the now six existing radiations with the intensities I 1 , I 2 and I 3 for the measuring wavelength ⁇ 1 and the auxiliary wavelength ⁇ 2 are transmitted to the photodetectors and amplifiers via a divider cube (10) without changing the polarization state. 12).
- the measuring radiation passes through the filter (11), which is tuned to the wavelength ⁇ i of the measuring radiation.
- Auxiliary wavelength ⁇ 2 is changed until the same orders are present for both wavelengths [X 1 and X 2 ].
- Table 1 summarizes the intensities Ii to I 3 that result in the experiment at the different wavelengths and angular positions of the analyzer, which have been determined simultaneously (device according to FIGS. 1-5), and the calculated gear differences.
- Table 1 Compilation of the measured values and results for the 2-1 / 4- ⁇ plate (without false colors) for the different measuring and auxiliary wavelengths and the corresponding angular positions (0 °, 60 ° and 120 ° )
- the distance between the measuring and auxiliary wavelengths is 40 nm (550 and 590 nm).
- the distance is 20 nm (550 and 570 nm) and in the last example 10 nm (550 and 560 nm).
- the measurement is preferably carried out at 40 nm, because this can increase the safety (accuracy and uniqueness) and the speed of the method, as has been explained above.
- the change of the auxiliary wavelength can be carried out with any wavelength-dispersive device, e.g. B. with a prism spectrometer, an optical grating or a metal interference filter.
- a metal interference filter (21) whose surface normal lies in the optical axis (20).
- the metal interference filter rotates to the changed auxiliary wavelength at which a redetermination of the optical order (N + 1) is made.
- the change of the position of the metal interference filter takes place until there is no change in the optical order (N + 1) repeatedly for the measuring and the auxiliary wavelength. Then only clear and therefore usable results will follow (see example 1 or 2).
- the time for determining the optical order is greater than Is. If the optical order lies after variation of the auxiliary
- the detection channel can be set up in a very uncomplicated manner, ie the measuring channel following the sample to be measured can be kept very small for measurements under production conditions (positions 7 to 12 in FIG. 1).
- the optical order (N + 1) can be entered and it is only necessary to evaluate three intensities at the set measuring wavelength.
- the ⁇ / 4 plate (7) is behind a lens (13a), which is a spatial filter with the other lenses (13b) and (13c) and the slit (14), so that stray light (ZB room light) excluded can be.
- the responsible for the homogenization diffuser has been omitted in Fig. 5 for clarity.
- the polarization filter array (9) is arranged, which is imaged with the lenses (13a) and (13b) on the CCD chip (16), all on the thread (15). are compiled.
- the CCD chip (16) is connected to the computer and the evaluation unit. The type of evaluation was described in Examples 2 and 3.
- FIG. 6 Another variant of the device with a known optical order (N + 1) simplified to FIG. 5 is indicated in FIG. 6, where the slit diaphragm has been removed to achieve higher intensities for poorly permeable media, in contrast to FIG.
- the lens (13a) was placed behind the ⁇ / 4
- Platelets (7) arranged, followed by the polarization grid array (9) follows.
- the lenses (13a) and (13b) image the array (9) onto the CCD chip (16).
- DMSV Discrete Multicolor Senarmont Method
- the arrangement described in item 4 can also be modified for threads and filaments. It must be noted that it is not possible to use a direct and straight beam path, as is the case with foils. To avoid extraneous light, the beam path must be angled. Because of the existing conditions in the spinning shaft, the entire arrangement must be accommodated in a thin measuring plate (6 - 8 mm), which is shown in gray in Fig. 7. In this case, we distinguish between an illumination beam path ((17) to (18)) and a measurement beam path ((13) to (19)). In between is the thread not drawn in and to be measured. From a base plate located outside with the monochromatic light source, the polarized radiation (position of the polarization direction see FIG.
- Platelets (7) passed and there linearly polarized again, but with a different polarization direction.
- the diffuser (8) and the multimode fiber array (19) serve to uniformly detect the three light intensities with different polarization direction.
- the light signals are conducted via ferrules to the photoreceivers with the computer-based evaluation.
- Single-mode illumination fiber 18. Cylindrical lenses as expansion optics
- Metal interference filter whose surface normal lies in the direction of the optical axis 22.
- Stepping motor whose drive axis is once perpendicular to the optical axis and at the same time represents the drive axis of the metal interference filter with which it is rigidly connected.
- 23. Direction of rotation of the metal interference filter
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112005003251T DE112005003251A5 (de) | 2004-10-20 | 2005-10-18 | Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004051247.7 | 2004-10-20 | ||
DE200410051247 DE102004051247B3 (de) | 2004-10-20 | 2004-10-20 | Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben durch simultane Kombination des Mehrfarben-Senarmont-Verfahrens mit der diskreten Fourier-Analyse |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006042524A1 true WO2006042524A1 (fr) | 2006-04-27 |
Family
ID=35745951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001864 WO2006042524A1 (fr) | 2004-10-20 | 2005-10-18 | Mesure rapide d'importantes differences de chemins optiques dans des milieux birefringents sans et avec fausses couleurs |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102004051247B3 (fr) |
WO (1) | WO2006042524A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113474637A (zh) * | 2018-11-29 | 2021-10-01 | 乐卓博大学 | 鉴定结构的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285871A (ja) * | 2006-04-17 | 2007-11-01 | Fujifilm Corp | 複屈折測定装置 |
DE102006062157B4 (de) * | 2006-12-22 | 2008-09-04 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Gleichzeitige Messung hoher Gangunterschiede und der Verdrehung der optischen Achse von doppelbrechenden Medien |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH342768A (de) * | 1953-11-03 | 1959-11-30 | Ici Ltd | Verfahren zum Überwachen der Konstanz physikalischer Eigenschaften endloser Fäden während des Spinnens |
DE4306050A1 (en) * | 1992-02-29 | 1993-09-02 | Kanzaki Paper Mfg Co Ltd | Measuring double refraction to measure foil thickness - by applying phase plate to sample, measuring intensity of light momentarily passing through, etc. |
DE4235065A1 (de) * | 1992-10-17 | 1994-04-21 | Thueringisches Inst Textil | Verfahren zum automatischen und berührungslosen Messen der Doppelbrechung von bewegten Folien und Filamenten |
DE19819670A1 (de) * | 1998-05-02 | 1998-11-26 | Thueringisches Inst Textil | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont |
DE10245407A1 (de) * | 2002-09-28 | 2004-04-08 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH337340A (de) * | 1955-09-28 | 1959-03-31 | Licencia Talalmanyokat | Optisches Verfahren zum Klassifizieren von das Licht doppeltbrechenden Fasern, insbesondere von Baumwolle, und Vorrichtung zur Ausführung des Verfahrens |
DD154039B5 (de) * | 1980-10-29 | 1996-02-08 | Zeiss Carl Jena Gmbh | Vorrichtung zum messen von gangunterschieden in polarisiertem Licht |
DE3543632A1 (de) * | 1985-12-11 | 1987-06-19 | Hoechst Ag | Verfahren und vorrichtung zur bestimmung von dicken- und/oder orientierungsaenderungen innerhalb einer optisch aktiven materialbahn |
US4973163A (en) * | 1988-10-08 | 1990-11-27 | Kanzaki Paper Manufacturing Co., Ltd. | Method for measuring birefringence |
DE4032212A1 (de) * | 1990-10-11 | 1992-05-14 | Jenoptik Jena Gmbh | Achromatische senarmont-kompensationseinrichtung |
DE4123936A1 (de) * | 1991-07-19 | 1993-01-21 | Thueringische Faser Ag Schwarz | Pruefverfahren und vorrichtung zur automatischen und beruehrungslosen messung derdoppelbrechung von faeden mit kleinen gangunterschieden |
DE4123935A1 (de) * | 1991-07-19 | 1993-01-21 | Thueringische Faser Ag Schwarz | Pruefverfahren zur automatischen und beruehrungslosen messung der doppelbrechung von faeden mit beliebigen gangunterschieden |
JPH0534273A (ja) * | 1991-07-29 | 1993-02-09 | Kanzaki Paper Mfg Co Ltd | レターデーシヨン測定装置 |
JPH06147986A (ja) * | 1992-11-12 | 1994-05-27 | Sadao Nakai | 複屈折分布測定方法 |
DE19529899A1 (de) * | 1995-08-14 | 1996-03-07 | Thueringisches Inst Textil | Verfahren zur automatischen und berührungslosen Messung der Doppelbrechung von Filamenten in Kleinsträumen |
US5929993A (en) * | 1998-03-03 | 1999-07-27 | J.A. Woollam Co. Inc. | Total film retardance monitoring system, and method of use |
DE19953528B4 (de) * | 1999-11-05 | 2010-10-07 | Schott Ag | Vorrichtung und Verfahren zur automatischen Messung der Spannungsdoppelbrechung mit feststehendem Analysator |
GB0100819D0 (en) * | 2001-01-12 | 2001-02-21 | Hewlett Packard Co | Optical characterization of retarding devices |
DE10310837B4 (de) * | 2002-10-25 | 2006-05-18 | Ilis Gmbh | Verfahren und Vorrichtung zur automatischen Messung der Spannungsdoppelbrechung an transparenten Körpern |
-
2004
- 2004-10-20 DE DE200410051247 patent/DE102004051247B3/de not_active Expired - Fee Related
-
2005
- 2005-10-18 WO PCT/DE2005/001864 patent/WO2006042524A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH342768A (de) * | 1953-11-03 | 1959-11-30 | Ici Ltd | Verfahren zum Überwachen der Konstanz physikalischer Eigenschaften endloser Fäden während des Spinnens |
DE4306050A1 (en) * | 1992-02-29 | 1993-09-02 | Kanzaki Paper Mfg Co Ltd | Measuring double refraction to measure foil thickness - by applying phase plate to sample, measuring intensity of light momentarily passing through, etc. |
DE4235065A1 (de) * | 1992-10-17 | 1994-04-21 | Thueringisches Inst Textil | Verfahren zum automatischen und berührungslosen Messen der Doppelbrechung von bewegten Folien und Filamenten |
DE19819670A1 (de) * | 1998-05-02 | 1998-11-26 | Thueringisches Inst Textil | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont |
DE10245407A1 (de) * | 2002-09-28 | 2004-04-08 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113474637A (zh) * | 2018-11-29 | 2021-10-01 | 乐卓博大学 | 鉴定结构的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102004051247B3 (de) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0534166B1 (fr) | Procédé et dispositif pour la détermination quantitatif des substances optiquement actif | |
EP1152236B1 (fr) | Dispositif de mesure optique avec un ellipsomètre | |
DE112010001378B4 (de) | Filmdickenmessgerät und Messverfahren | |
EP3347687B1 (fr) | Spectromètre miniature et procédé spectroscopique | |
DE102012104874B4 (de) | Optisches Messsystem mit Polarisationskompensation, sowie entsprechendes Verfahren | |
EP0561015A1 (fr) | Mesure de phase interferométrique | |
EP3056934A1 (fr) | Tete de mesure d'un dispositif endoscopique et procede d'inspection et mesure d'un objet | |
DE112012001415T5 (de) | Verfahren und Gerät zur Brechungsindexmessung | |
DE112016006185T5 (de) | System und Verfahren zur Inspektion unnd Metrologie von Halbleiterwafern | |
DE3541165C2 (fr) | ||
DE2338305C3 (de) | Verfahren und Vorrichtung zur Ermittlung der linearen Doppelbrechung eines Materials | |
DE4033912C2 (de) | Optischer Sensor | |
DE102004051247B3 (de) | Schnelle Messung hoher Gangunterschiede von doppelbrechenden Medien ohne und mit Falschfarben durch simultane Kombination des Mehrfarben-Senarmont-Verfahrens mit der diskreten Fourier-Analyse | |
EP0427996A2 (fr) | Procédé et appareil pour déterminer qualitativement et quantitativement des composés organiques | |
DE102011087978A1 (de) | Verfahren und Anordnung zur Bestimmung des Brechzahlgradienten eines Materials | |
DE102015201909B4 (de) | Verfahren und System zum Ermitteln eines optischen Gangunterschieds zwischen in einem doppelbrechenden Objekt entstehenden Teillichtwellen | |
DE102006062157B4 (de) | Gleichzeitige Messung hoher Gangunterschiede und der Verdrehung der optischen Achse von doppelbrechenden Medien | |
DE10245407A1 (de) | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von durchsichtigen und optisch doppelbrechenden Medien ohne und mit Falschfarben in Kleinsträumen nach Senarmont | |
DE19819670A1 (de) | Verfahren und Vorrichtung zur schnellen Messung hoher Gangunterschiede von doppelbrechenden Proben nach Senarmont | |
DE3816950A1 (de) | Vorrichtung zur optischen messung einer weglaenge oder einer weglaengenaenderung | |
DE2922163A1 (de) | Optische vorrichtung zur bestimmung der guete einer oberflaeche | |
DE4209537A1 (de) | Verfahren und vorrichtung zur messung von polarisiertem licht | |
DE102010041814A1 (de) | Ellipsometer | |
DD276734A1 (de) | Verfahren zur gangunterschiedsmessung an anisotropen transparenten objekten | |
WO2008067938A1 (fr) | Procédé de mesure de la biréfringence et/ou du retard, en particulier sur des feuilles au moins partiellement transparentes et dispositif associé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1120050032515 Country of ref document: DE |
|
REF | Corresponds to |
Ref document number: 112005003251 Country of ref document: DE Date of ref document: 20070920 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05809924 Country of ref document: EP Kind code of ref document: A1 |