[go: up one dir, main page]

WO2006025130A1 - 高変倍率ズームレンズ - Google Patents

高変倍率ズームレンズ Download PDF

Info

Publication number
WO2006025130A1
WO2006025130A1 PCT/JP2005/004464 JP2005004464W WO2006025130A1 WO 2006025130 A1 WO2006025130 A1 WO 2006025130A1 JP 2005004464 W JP2005004464 W JP 2005004464W WO 2006025130 A1 WO2006025130 A1 WO 2006025130A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focal length
lens group
zoom
wide
Prior art date
Application number
PCT/JP2005/004464
Other languages
English (en)
French (fr)
Inventor
Akio Arakawa
Original Assignee
Tamron Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co., Ltd. filed Critical Tamron Co., Ltd.
Priority to EP05720732A priority Critical patent/EP1791013A4/en
Priority to JP2006531254A priority patent/JPWO2006025130A1/ja
Publication of WO2006025130A1 publication Critical patent/WO2006025130A1/ja
Priority to US11/713,103 priority patent/US7573649B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Definitions

  • the present invention relates to a high-magnification zoom lens that covers from wide angle to telephoto. More specifically, the present invention relates to a high-magnification zoom lens used for APS size film, electronic still camera, and broadcasting power camera having an image height of 14.5 mm. This is a high-magnification zoom lens consisting of four groups.
  • zoom lenses covering wide-angle to telephoto lenses used for single-lens reflex cameras for 35mm film, etc. in order from the object side, the first group with positive refractive power, the first group with negative refractive power.
  • a high-magnification zoom lens composed of two groups, a third group having a positive refractive power, and a fourth group having a positive refractive power has been put into practical use.
  • the conventional 4-group high-magnification zoom lens for 35mm film is a positive, negative, positive, and positive 4-group zoom system with a shooting angle of view of about 75 degrees at the wide-angle end and a wide-angle.
  • a compact, lightweight high zoom ratio zoom lens with an end F-number of about 3-4, a telephoto end F-number of about 6-7, a zoom ratio of about 10 times, and a zoom ratio (for example, see Patent Document 1).
  • This high magnification zoom lens has a first lens group with positive refractive power, a second lens group with negative refractive power, a third lens group with positive refractive power, and a fourth lens with positive refractive power in order from the object side.
  • the air distance between the first lens group and the second lens group is widened, and the air distance between the second lens group and the third lens group is narrowed.
  • the air space between the third lens group and the fourth lens group is narrowed, and the first lens group, the third lens group, and the fourth lens group move toward the object, and only the second lens group moves during force-thinning. Configured to do.
  • the photographic lens has an ultra-high magnification ratio of about 12x, but it is capable of inner focusing on short-distance objects.
  • a high-magnification anti-vibration zoom lens having an anti-vibration function and good performance has been proposed (see, for example, Patent Document 2). This is because the third lens group performs focusing on positive, negative, positive, positive, positive, positive, negative, positive, positive lens types. Anti-vibration is performed with the fifth lens group. The power of the anti-vibration group and the power of the focus group at the time of super high magnification are taken as conditions.
  • Another conventional high-magnification zoom lens with a four-group configuration for 35mm film is a high-performance and compact anti-vibration zoom lens suitable for photographs and videos.
  • the fifth lens group G5 has a refractive power, and the anti-vibration zoom lens in which the distance between the adjacent lens groups G1, G2, G3, G4, and G5 all changes during zooming to the wide-angle end state and telephoto end state.
  • the third lens group G3 has a plurality of lenses including a lens L3A, which is a combination of a negative lens L3AN and a positive lens L3AP, and only the shell-dividing lens L3A is used as an anti-vibration lens with respect to the optical axis. Proposed a configuration that corrects image blur by moving almost vertically. That (for example, see Patent Document 3).
  • Patent Document 1 JP 2003-241097
  • Patent Document 2 JP 2003-329933
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-212611
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-69768
  • Patent Document 5 JP-A-2004-126522
  • the high-magnification zoom lenses disclosed in Patent Documents 2 and 3 also have an angle of view of an APS size while maintaining the focal length, and the angle of view becomes smaller and is no longer a wide-angle zoom lens.
  • the present invention has been made in view of the above-described problems of the conventional four-group high-magnification zoom lens, and ensures the flange back, that is, the back focus required for a general 35 mm film camera.
  • An object of the present invention is to provide a high magnification zoom lens having an angle of view including a wide angle in an APS screen size smaller than 35 mm. Means for solving the problem
  • first lens unit L1 having a positive refractive power
  • second lens unit L2 having a negative refractive power
  • third lens having a positive refractive power
  • zoom lens composed of a lens unit L3 and a fourth lens unit L4 having a positive refractive power
  • This zoom lens has a high zoom ratio.
  • an entire optical system is configured by combining a large number of lens groups having predetermined positive and negative refractive powers in order from the object side.
  • the ratio of the focal length f2 of the second lens unit L2 to the focal length fW on the wide angle side is approximately in the range of 0.6-0.73,
  • the ratio of the focal length f3 of the third lens unit L3 to the focal length fW on the wide-angle side is approximately within the range of 2.2-3.
  • a zoom lens having a high zoom ratio characterized in that each lens optical system is set to [0013]
  • Embodiments of the first invention and the second invention are as follows.
  • the fourth lens group has a concave shape with a substantially concave surface facing the object side, and a substantially convex surface facing the image surface side. It is characterized by including a lens configuration that is substantially convex.
  • the fourth lens group includes a fourth lens group L4, and the fourth lens group includes a cemented lens in which a substantially convex lens and a substantially concave lens are cemented.
  • a fourth lens group L4 is provided, and the fourth lens group includes a cemented lens in which a convex lens and a concave meniscus lens are cemented.
  • the cemented lens included in the fourth lens group L4 is disposed in front of the lens group.
  • the imaging magnification on the wide-angle side is ⁇ 4w
  • the imaging magnification on the telephoto side is ⁇ 4t
  • the imaging magnification on the wide-angle side is ⁇ 4w
  • the imaging magnification on the telephoto side is ⁇ 4t
  • the focal length of the second lens group is f2
  • the focal length of the third lens group L3 is f3
  • the focal length on the wide angle side is fW
  • the focal length of the second lens group is f2
  • the focal length of the third lens group L3 is f3
  • the focal length on the wide angle side is fW
  • I f2 I / fW 0. 674 (9)
  • the third invention is a camera device having an image height of APS size and a 35mm full-size flange back, which is composed of at least the first to fourth lens units in order from the object side, and has a wide-angle force and a focal length from the telephoto end.
  • the first lens unit L1 includes a low-dispersion convex lens having a convex surface facing the object side, and a convex meniscus lens having the highest refractive index in the lens group. Configured
  • the second lens unit L2 includes at least an aspheric lens in which the refractive power with the aspheric convex surface (r6) facing the object side is restricted,
  • the third lens group L3 includes at least one of an aspheric lens having a convex surface (rl6) facing at least the object side and a low dispersion lens,
  • the fourth lens unit L4 includes at least a cemented lens or a cemented lens composed of a concave lens having a concave surface facing the object side and a convex lens cemented, and an aspheric lens having an aspheric convex surface (r31) facing the object side. Configured,
  • a lens group optical system that reduces the distortion and aberration and adjusts the refractive index power in the combined configuration of the first, first, and fourth lens groups to adapt the knock focus to the APS size and achieve compactness.
  • This is a high magnification zoom lens characterized by the following.
  • the refractive power of the second lens group In order to reduce the focal length of the four groups of high magnification zoom lenses, it is necessary to increase the bending power of each group. On the other hand, in order to increase the back focus, the refractive power of the second lens group must be increased, or the refractive power of the third lens group and the fourth lens group must be decreased.
  • the focal length is reduced without increasing the refractive power of the second lens so as to balance these conditions, and the back focus, that is, the flange back is lengthened. Then, the lens material, material and type are selected so that the conditional expressions (1) and (2) described in claim 1 are satisfied.
  • Conditional expressions (1) and (2) of the present invention regulate the refractive power of the second lens group. If the lower limit of conditional expression (1) is exceeded, the focal length will be reduced, and a common 35mm film will be used for knock focus. It can be long until it can be attached to the camera body. However, it is difficult to correct the distortion difference generated in the second lens group. In addition, the lens diameter of the first lens unit becomes large despite the small focal length.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, it will be difficult to ensure knock focus.
  • Conditional expression (2) regulates the refractive power of the third lens group. If the lower limit of conditional expression (2) is exceeded, the focal length of the fourth lens group will increase, making it difficult to correct aberrations occurring in the third lens group with the fourth lens group. In particular, coma becomes worse. If the upper limit of conditional expression (2) is exceeded, on the contrary, the focal length of the fourth lens group becomes small, and it becomes difficult to ensure knock focus. In addition, the curvature of field increases, and the image surface falls to the over side.
  • the second lens in the fourth lens unit L4 is composed of a convex lens
  • the third lens is composed of a concave lens. It is desirable to cement them. Because the focal length of the second lens group is small, the force that the image plane tends to fall to the top. By joining this second lens and the third lens, it is possible to easily correct the Petzval sum. .
  • the Petzval sum can also be corrected by using this cemented lens as the last lens in the fourth lens group. Therefore, by using the rearmost lens in the fourth lens group, the principal point position of the fourth lens group moves greatly inside the lens, so this cemented lens is located in front of the fourth lens group that is behind the last lens. It is desirable to place them in
  • conditional expressions (3) and (4) are satisfied simultaneously, the focal length of the third lens unit becomes long and the refractive power becomes weak. As a result, the peripheral coma aberration is well corrected in the wide angle or middle range. In addition, since the refractive power of the second lens group can be weakened because the refractive power of the third lens group is weak, field curvature is well corrected. If conditional expressions (3) and (4) are not satisfied at the same time, the focal length of the third lens group will be shortened, the amount of zoom movement and the total lens length at the telephoto end will be shortened, and in order to ensure back focus on the wide side, It is necessary to shorten the focal length of the second lens group or increase the distance between the second lens group and the third lens group.
  • the focal length of the second lens group When the focal length of the second lens group is shortened, it becomes difficult to correct the curvature of field, and the image surface falls over. If the distance between the second lens group and the third lens group is increased, the total lens length at the wide end becomes longer, resulting in an increase in the diameter of the filter and a decrease in the amount of peripheral light. If conditional expressions (3) and (4) are satisfied at the same time, the imaging magnification of the fourth lens group in the intermediate range will be 1x. In a 4-group zoom lens, the total lens length is shortened when the image forming magnification of the correction group is 1.
  • the flange back that is, the back focus necessary for a general 35mm film camera is secured, and further, an image including a wide angle in an APS screen size smaller than 35mm. This has the effect that a high-magnification zoom lens having a corner can be constructed.
  • the specifications of the high variable magnification zoom lens according to the first embodiment of the present invention are shown below.
  • the first column NS is the surface number of the lens surface from the object side
  • the second column R is the radius of curvature of each lens
  • the third column D is the surface spacing of each lens surface
  • fifth column V represents the Abé number of each lens.
  • STOP represents the aperture.
  • Focal length f 18.5 One 50.3 One 194.0
  • NS r6, rl6, r31 are aspheric surfaces, and the surface shape of the aspheric surface is expressed by the following equation.
  • FIG. 1 shows a cross-sectional optical diagram of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 2 shows the spherical convergence and sine condition at the wide-angle end in the infinite focus of the high magnification zoom lens according to the first embodiment.
  • FIG. 3 shows the chromatic aberration of magnification at the wide angle end of the high magnification zoom lens of the first embodiment.
  • FIG. 4 shows astigmatism at the wide-angle end of the high zoom lens according to the first embodiment.
  • FIG. 5 shows the distortion aberration at the wide-angle end of the high zoom lens according to the first embodiment.
  • FIG. 6 shows the spherical aberration and the sine condition at the intermediate zoom position of the high magnification zoom lens according to the first embodiment.
  • FIG. 1 shows a cross-sectional optical diagram of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 2 shows the spherical convergence and sine condition at the wide-angle end in the infinite
  • FIG. 7 shows the chromatic aberration of magnification at the intermediate zoom position of the high magnification zoom lens of the first embodiment.
  • FIG. 8 shows astigmatism at the intermediate zoom position of the high magnification zoom lens according to the first embodiment.
  • FIG. 9 shows the distortion aberration at the first intermediate zoom position of the high magnification zoom lens according to the first embodiment.
  • FIG. 10 shows the spherical aberration and the sine condition at the telephoto end at the infinity position of the zoom lens according to the first embodiment.
  • FIG. 11 shows chromatic aberration of magnification at the telephoto end of the high variable magnification zoom lens according to the first embodiment.
  • FIG. 12 shows astigmatism at the telephoto end of the high variable magnification zoom lens according to the first embodiment.
  • FIG. 13 shows distortion at an intermediate position of the high zoom lens according to the first embodiment.
  • Fno indicates the F number si
  • 1 indicates the d-line (587.56nm)
  • 2 indicates the g-line (435.83nm).
  • the dotted line indicates the sine condition.
  • Y represents the image height
  • 2 represents the lateral chromatic aberration of the g-line with respect to the d-line.
  • Y indicates the image height
  • 1 indicates the astigmatism of the d-line.
  • the solid line shows astigmatism in the spherical direction
  • the dotted line shows astigmatism in the meridian direction.
  • Y indicates the image height
  • 1 indicates the distortion of the d-line.
  • NS r6, rl6, and r31 are aspherical surfaces, and the surface shape of the aspherical surfaces is the same as that in the formula (3).
  • FIG. 14 shows a cross-sectional optical diagram of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 15 shows the spherical convergence and sine condition at the wide-angle end in the infinite focus of the high zoom lens according to the second embodiment.
  • FIG. 16 shows the chromatic aberration of magnification at the wide-angle end of the high variable magnification zoom lens according to the second embodiment.
  • FIG. 17 shows astigmatism at the wide-angle end of the high-magnification zoom lens according to the second embodiment.
  • FIG. 18 shows the distortion aberration at the wide-angle end of the high zoom lens according to the second embodiment.
  • FIG. 19 shows the spherical aberration and the sine condition at the intermediate zoom position of the high magnification zoom lens according to the second embodiment.
  • FIG. 15 shows the spherical convergence and sine condition at the wide-angle end in the infinite focus of the high zoom lens according to the second embodiment.
  • FIG. 16 shows the chromatic aberration of magnification at
  • FIG. 20 shows the chromatic aberration of magnification at the intermediate zoom position of the high magnification zoom lens according to the second embodiment.
  • FIG. 21 shows astigmatism at the intermediate zoom position of the zoom lens according to the second embodiment.
  • FIG. 22 shows the distortion aberration at the first intermediate zoom position of the high zoom ratio zoom lens according to the second embodiment.
  • FIG. 23 shows the spherical aberration and the sine condition at the telephoto end at the infinity position of the high magnification zoom lens according to the second embodiment.
  • FIG. 24 shows chromatic aberration of magnification at the telephoto end of the high variable magnification zoom lens according to the second embodiment.
  • FIG. 25 shows astigmatism at the telephoto end of the high variable magnification zoom lens according to the second embodiment.
  • FIG. 26 shows the distortion aberration at the intermediate position of the high magnification zoom lens according to the second embodiment.
  • Figs. 15, 19, and 23 show! /, Fnoi and F, respectively, si, 1 ⁇ and d-line (587.56nm), 2 indicates g-line (435.83nm). The dotted line indicates the sine condition.
  • Y represents the image height
  • 2 represents the lateral chromatic aberration of the g-line with respect to the d-line.
  • Y indicates the image height
  • 1 indicates the astigmatism of the d-line.
  • the solid line is The astigmatism in the spheroid direction is shown, and the dotted line shows the astigmatism in the meridian direction.
  • Y indicates the image height
  • 1 indicates the distortion of the d-line.
  • the imaging magnification of the fourth lens group is ⁇ 4t
  • the focal length of group 3 becomes longer and the refractive power becomes weaker.
  • the peripheral coma aberration is corrected well in the wide-angle middle region.
  • the spherical aberration correction on the wide side becomes insufficient (under tendency). This can be improved.
  • the focal length f2 of the second lens group is not limited to these lens configurations.
  • the focal length f3 of the third lens group and the focal length fW at the wide-angle end of the entire optical system is not limited to these lens configurations.
  • the ratio of the focal length f2 of the second lens unit L2 and the focal length fW on the wide angle side is within the range of about 0.6 to 0.73, the focal length f3 of the third lens unit L3 and the focal length on the wide angle side Specific power with fW Roughly 2. 2-3. Any lens configuration (material, material, type) may be used as long as each lens optical system is set within the range of 7.
  • FIG. 1 is a cross-sectional optical diagram of a high variable magnification zoom lens according to a first embodiment of the present invention.
  • FIG. 2 is an aberration diagram of spherical aberration at the wide angle end and sine condition in focusing on infinity of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 3 is an aberration diagram of chromatic aberration of magnification at the wide-angle end in infinity focusing of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 4 is an aberration diagram of astigmatism at the wide-angle end when focusing on infinity of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 5 is an aberration diagram of distortion at the wide-angle end when focusing on infinity of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 6 is an aberration diagram of a spherical aberration and a sine condition at an intermediate zoom position in infinity focusing of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 7 is an aberration diagram of chromatic aberration of magnification at an intermediate zoom position in infinity focusing of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 8 is an aberration diagram of astigmatism at an intermediate zoom position in infinity focusing of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 9 is an aberration diagram of a distortion aberration at the intermediate zoom position in infinity focusing of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing spherical aberrations at the telephoto end and sine condition aberrations at the infinite focus of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 11 is an aberration diagram of lateral chromatic aberration at the telephoto end in infinite focus of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 12 is an aberration diagram of astigmatism at the telephoto end in focusing on infinity of the high variable magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 13 is an aberration diagram of distortion at the telephoto end when focusing on infinity of the high magnification zoom lens according to the first embodiment of the present invention.
  • FIG. 14 is a cross-sectional optical diagram of a high variable magnification zoom lens according to a second embodiment of the present invention.
  • FIG. 15 shows a wide angle at the infinite focus of the high magnification zoom lens according to the second embodiment of the present invention. It is an aberration diagram of the spherical aberration at the end and the sine condition.
  • FIG. 16 is an aberration diagram of lateral chromatic aberration at the wide-angle end in infinity focusing of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 17 is an aberration diagram of astigmatism at the wide-angle end when focusing on infinity of the high magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 18 is an aberration diagram of distortion at the wide angle end at the infinite focus of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 19 is an aberration diagram of the spherical aberration and the sine condition at the intermediate zoom position in the infinite focus of the high magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 20 is an aberration diagram of the lateral chromatic aberration at the intermediate zoom position in infinity focusing of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 21 is an aberration diagram of astigmatism at the intermediate zoom position in infinity focusing of the high magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 22 is an aberration diagram of a distortion aberration at the intermediate zoom position in infinity focusing of the high magnification zoom lens according to the second embodiment of the invention.
  • FIG. 23 is an aberration diagram of the spherical aberration and sine condition at the telephoto end when focusing on infinity of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 24 is an aberration diagram of lateral chromatic aberration at the telephoto end at the infinite focus of the high variable magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 25 is an aberration diagram of astigmatism at the telephoto end when focusing on infinity of the high magnification zoom lens according to the second embodiment of the present invention.
  • FIG. 26 is an aberration diagram of distortion at the telephoto end in focusing at infinity of the zoom lens according to the second embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 一般的な35mmフィルムカメラに必要なフランジバックすなわちバックフォーカスを確保し、さらに、35mmより小さいAPS画面サイズにおいて広角を含む画角を有する高変倍率ズームレンズを提供すること。  物体側から順に、正の屈折力を持つ第1群レンズ群L1、負の屈折力をもつ第2レンズ群L2、正の屈折力を持つ第3レンズ群L3、正の屈折力を持つ第4群レンズ群L4であり、第2レンズ群の焦点距離をf2、全光学系の広角端における焦点距離をfwとした時、0.6≦ |f2|/ fw ≦ 0.73  第3レンズ群の焦点距離をf3とした時、2.2≦ f3/fw ≦ 3.7であることを特徴とする高変倍率ズームレンズ。

Description

高変倍率ズームレンズ
技術分野
[0001] 本発明は、広角から望遠までをカバーする高変倍率ズームレンズに関し、さらに詳 しくは、像高が 14. 5mmの APSサイズフィルムや電子スチルカメラ、そして放送用力 メラ等に用いる高変倍率ズームレンズであって、 4群で構成された高変倍率ズームレ ンズに関する。
背景技術
[0002] 従来、 35mmフィルム用一眼レフカメラ等に使用される広角から望遠までをカバー するズームレンズでは、物体側より順に、正の屈折力をもつ第 1群、負の屈折力を持 つ第 2群、正の屈折力を持つ第 3群、及び正の屈折力を持つ第 4群で構成される高 変倍率ズームレンズが実用化されて 、る。
[0003] 従来の 35mmフィルム用の 4群構成の高変倍率ズームレンズとしては、正、負、正、 正の 4群ズーム方式であって、広角端での撮影画角が約 75度、広角端 Fナンバーが 約 3— 4、望遠端 Fナンバーが約 6— 7、変倍比が約 10倍で、かつ小型軽量の高変倍 率ズームレンズが提案されている(例えば、特許文献 1参照)。この高変倍率ズームレ ンズは、物体側より順に正の屈折力の第 1レンズ群、負の屈折力の第 2レンズ群、正 の屈折力の第 3レンズ群、正の屈折力の第 4レンズ群とを有し、広角端から望遠端へ の変倍に際し、第 1レンズ群と第 2レンズ群との空気間隔が広がり、第 2レンズ群と第 3 レンズ群との空気間隔が狭まり、第 3レンズ群と第 4レンズ群との空気間隔が狭まり、 且つ第 1レンズ群と第 3レンズ群および第 4レンズ群は物体方向へ移動し、フォー力 シングの際は第 2レンズ群のみを移動して行うように構成される。
[0004] 従来の他の 35mmフィルム用の 4群構成の高変倍率ズームレンズとしては、写真用 レンズにおいて変倍比約 12倍という超高倍でありながら、近距離物体に対しインナ 一フォーカシングが可能であり、かつ防振機能を備えるとともに良好な性能を有した 高変倍防振ズームレンズが提案されている (例えば、特許文献 2参照)。これは、正負 負正負正又は正負負正正のレンズタイプにおいてフォーカシングを第 3群で行い、 防振を第 5レンズ群で行う。超高倍となったときの防振群のパワー及びフォーカス群 のパワーを条件にとる。
[0005] 従来の他の 35mmフィルム用の 4群構成の高変倍率ズームレンズとしては、写真や ビデオ等に好適な、高性能でコンパクトな防振ズームレンズであって、物体側より順 に、正屈折力を有する第 1レンズ群 G1と、負屈折力を有する第 2レンズ群 G2と、正屈 折力を有する第 3レンズ群 G3と、負屈折力を有する第 4レンズ群 G4と、正屈折力を 有する第 5レンズ群 G5とからなり、広角端状態力 望遠端状態へのズーミングの際に 、隣接する各レンズ群 Gl, G2, G3, G4, G5の間隔が全て変化する防振ズームレン ズにおいて、第 3レンズ群 G3は、負レンズ L3ANと正レンズ L3APとの貼り合わせレ ンズ L3Aを含む複数のレンズを有し、貝占り合わせレンズ L3Aのみ力 防振レンズとし て光軸に対してほぼ垂直に移動することによって像ブレを補正する構成が提案され ている(例えば、特許文献 3参照)。
[0006] 従来、 4群構成ではな 、が、デジタルカメラ用の焦点距離が 10mmの魚眼レンズが 提案されている(例えば、特許文献 4及び 5参照)。
[0007] 特許文献 1 :特開 2003— 241097号
特許文献 2:特開 2003— 329933号
特許文献 3:特開 2004— 212611号
特許文献 4:特開 2004— 69768号
特許文献 5 :特開 2004-126522号
発明の開示
発明が解決しょうとする課題
[0008] 従来使われているズームレンズは、 35mmフィルム用の一眼レフカメラに使用され た場合に広角から望遠までをカバーする焦点距離になっている。電子スチルカメラす なわちデジタルスチルカメラの一部には、 35mmフィルムより小さい画面サイズ、例え ば APSのカメラが開発されて 、る。特許文献 1に開示された高変倍率ズームレンズ 等の場合には、その焦点距離を維持して画角を小さくすると、画角が小さくなりもはや 広角ズームレンズにならなくなってしまう。他方、従来のズームレンズの曲率、間隔等 を比例縮小させることにより画面サイズを小さくすると、画面サイズの縮小に比例して 焦点距離が短くなる。その結果、ノ ックフォーカスが短くなり、 35mmフィルムカメラと 同等なフランジバックをもつカメラボディには装着できなくなってしまう。
[0009] 特許文献 2及び 3に開示された高変倍率ズームレンズも、焦点距離を維持して AP Sサイズの画角にすると、画角が小さくなり、もはや広角ズームレンズでなくなってしま
[0010] (発明の目的)
本発明は、従来の 4群の高変倍率ズームレンズの上述した問題点に鑑みてなされ たものであって、一般的な 35mmフィルムカメラに必要なフランジバックすなわちバッ クフォーカスを確保し、さらに、 35mmより小さい APS画面サイズにおいて広角を含 む画角を有する高変倍率ズームレンズを提供することを目的とする。 課題を解決するための手段
[0011] 第 1発明は、物体側から順に、少なくとも、正の屈折力を有する第 1レンズ群 L1と、 負の屈折力をも第 2レンズ群 L2と、正の屈折力を持つ第 3レンズ群 L3と、正の屈折 力を持つ第 4レンズ群 L4と、で構成されたズームレンズであって、
前記第 2レンズ群の焦点距離 f2、前記第 3レンズ群の焦点距離 f3、全光学系の広 角端における焦点距離 fWの場合に、
0. 6≤ I f2 I /fW ≤ 0. 73 (1)
2. 2≤ f3 /fW ≤ 3. 7 (2)
を満足することを特徴とする高変倍率ズームレンズである。
[0012] 第 2発明は、物体側から順に、所定の正、負の屈折力を有する多数のレンズ群が組 み合わされて全光学系が構成され、前記レンズ群のうち、物体側から第 2番目の第 2 レンズ群 L2の焦点距離 f2、第 3番目の第 3レンズ群 L3の焦点距離 f3、全光学系の 広角側における焦点距離 fWの場合に、
前記第 2レンズ群 L2の焦点距離 f2と広角側における焦点距離 fWとの比が、略 0. 6—0. 73の範囲内、
前記第 3レンズ群 L3の焦点距離 f3と広角側における焦点距離 fWとの比が、略 2. 2—3. 7の範囲内、
に夫々設定されたレンズ光学系であることを特徴とする高変倍率ズームレンズである [0013] 第 1発明及び第 2発明の実施態様は以下のとおりである。
前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、物体側 に略凹面を向けた凹状であって、対する像面側に略凸状面を向けた略凸状であるレ ンズ構成を含むことを特徴とする。
前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、略凸状 レンズと略凹状レンズとが接合された接合レンズを含むことを特徴とする。
前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、凸レン ズと凹メニスカスレンズとが接合された接合レンズを含むことを特徴とする。
前記第 4レンズ群 L4に含まれる前記接合レンズは、そのレンズ群の前方に配置さ れることを特徴とする。
[0014] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、広角側における結像倍率 を β 4w、望遠側における結像倍率を β 4tとするとき、
Figure imgf000005_0001
の少なくともいずれかを満足することを特徴とする。
前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、前記広角側における結像 倍率を β 4w、望遠側における結像倍率を β 4tとするとき、
Figure imgf000005_0002
の少なくとも 、ずれかに設定されて!、ることを特徴とする。
前記レンズ群のうち、前記第 2レンズ群の焦点距離を f2、前記第 3レンズ群 L3の焦 点距離を f3、広角側における焦点距離を fWとするとき、
I f2 I /fW = 0. 662 (7)
f3 /fW = 3. 468 (8)
の少なくとも 、ずれかに設定されて!、ることを特徴とする。
前記レンズ群のうち、前記第 2レンズ群の焦点距離を f2、前記第 3レンズ群 L3の焦 点距離を f3、広角側における焦点距離を fWとするとき、 I f2 I /fW = 0. 674 (9)
f3 /fW = 2. 432 (10)
の少なくとも 、ずれかに設定されて!、ることを特徴とする。
[0015] 第 3発明は、像高が APSサイズで 35mmフルサイズのフランジバックを有するカメラ 装置に用いられる、少なくとも物体側から順に第 1から第 4のレンズ群で構成され広角 力も望遠まで焦点距離をズーミング可能とする高変倍率ズームレンズにおいて、 前記第 1レンズ群 L1は、前記物体側に凸面を向けた低分散凸レンズ、及び前記レン ズ群中で最も高屈折率の凸メニスカスレンズを有して構成され、
前記第 2レンズ群 L2は、物体側に非球面の凸面 (r6)を向けた屈折力が規制され た少なくとも非球面レンズを有して構成され、
前記第 3レンズ群 L3は、少なくとも物体側に凸面 (rl6)を向けた非球面レンズと低 分散レンズとの少なくともいずれか一方を有して構成され、
前記第 4レンズ群 L4は、少なくとも物体側に凹面を向けた凹レンズと接合された凸 レンズとで成る合わせレンズ又は接合レンズ、物体側に非球面の凸面 (r31)を向け た非球面レンズを有して構成され、
歪み、収差を低減すると共に、前記第 1一第 4レンズ群の組合わせ構成における屈 折率パワー調整により、ノ ックフォーカスを前記 APSサイズに適合させコンパクトィ匕を 図ったレンズ群光学系を得ることを特徴とする高変倍率ズームレンズである。
[0016] (発明の作用)
4群の高変倍率ズームレンズにおいて、焦点距離を小さくするためには、各群の屈 折力を強くする必要がある。一方、バックフォーカスを長くするためには、第 2レンズ 群の屈折力を強くするか、または第 3レンズ群及び第 4レンズ群の屈折力を弱くしな ければならない。本発明の高変倍率ズームレンズでは、これらの条件のバランスをと つて、第 2レンズの屈折力をあまり強くすることなく焦点距離を小さくし、かつバックフ オーカスすなわちフランジバックが長くなるようにした。そして、請求項 1に記載の条件 式(1) (2)を満たすようレンズの材料、材質、種類を選択する。
[0017] 本発明の条件式(1) (2)は、第 2レンズ群の屈折力を規制する。条件式(1)の下限 を超えると、焦点距離が小さくなり、ノ ックフォーカスも一般的な 35mmフィルムを用 いるカメラボディに装着できるまで長くできる。しかし、第 2レンズ群で発生する歪曲収 差の補正が困難となる。また、焦点距離が小さいにもかかわらず、第 1レンズ群のレン ズ径が大きくなつてしまう。
条件式(1)の上限を超えると、ノ ックフォーカスの確保が難しくなる。
[0018] 条件式 (2)は、第 3レンズ群の屈折力を規制する。条件式 (2)の下限を超えると、第 4レンズ群の焦点距離が大きくなるため、第 3レンズ群で発生する収差を第 4レンズ群 で補正することが困難となる。特に、コマ収差が悪化する。条件式 (2)の上限を超え ると、逆に第 4レンズ群の焦点距離は小さくなるため、ノックフォーカスを確保すること が困難となる。さらに、像面湾曲が大きくなり、像面がオーバー側に倒れるようになる
[0019] 第 4レンズ群 L4内の第 2レンズは凸レンズ、第 3レンズは凹レンズで構成され、それ らを接合することが望ましい。第 2レンズ群の焦点距離が小さいため、像面がオーバ 一に倒れがちである力 この第 2レンズと第 3レンズを接合することによって、ペッツバ 一ル和を容易に補正することが可能となる。この接合レンズを第 4レンズ群の最後方 レンズとすることによつても、ペッツバール和は補正可能である。し力し、第 4レンズ群 の最後方レンズとすることにより、第 4レンズ群の主点位置が大きくレンズ内部に移動 するため、この接合レンズは、最後方レンズでなぐ第 4レンズ群の前方に配置するこ とが望ましい。
[0020] 条件式 (3) (4)を同時に満たすと、第 3レンズ群の焦点距離は長くなり、屈折力は弱 くなる。これによつて、広角ないし中間域において周辺のコマ収差がよく補正される。 また、第 3レンズ群の屈折力が弱いことにより、第 2レンズ群の屈折力を弱めることが できるため、像面湾曲がよく補正される。条件式 (3) (4)が同時に満たされない場合、 第 3レンズ群の焦点距離が短くなり、ズームによる移動量及びテレ端におけるレンズ 全長が短くなり、ワイド側におけるバックフォーカスを確保するために、第 2レンズ群の 焦点距離を短くするか、又は第 2レンズ群と第 3レンズ群の間隔を広げる必要がある。 第 2レンズ群の焦点距離を短くした場合、像面湾曲の補正が困難になり、像面がォー バー側に倒れる。第 2レンズ群と第 3レンズ群の間隔を広げた場合、ワイド端における レンズ全長が長くなり、フィルタ一径の増大及び周辺光量の低下を招く。 条件式 (3) (4)を同時に満たすと、また、中間域での第 4レンズ群の結像倍率は 1 倍となる。 4群ズームレンズにおいて、補正群の結像倍率が 1倍の場合、レンズ全長 が短くなる。
発明の効果
[0021] 本発明の高変倍率ズームレンズによれば、一般的な 35mmフィルムカメラに必要な フランジバックすなわちバックフォーカスを確保し、さらに、 35mmより小さい APS画 面サイズにお 、て広角を含む画角を有する高変倍率ズームレンズを構成することが できる効果を有する。
発明を実施するための最良の形態
[0022] 以下に発明を実施するための最良の形態について説明する。
(第 1実施態様)
以下に、本発明の第 1実施形態の高変倍率ズームレンズの諸元を示す。第 1カラム NSは物体側からのレンズ面の面番号、第 2カラム Rは各レンズの曲率半径、第 3カラ ム Dは各レンズ面の面間隔、第 4カラム Ndは各レンズの d線(λ =587.6nm)に対する 屈折率、第 5カラム Vは各レンズのアッペ数を表す。また、 STOPは絞りを表す。 焦点距離 f= 18.5 一 50.3 一 194.0
Fナンバー Fno = 3.49
条件式(1) I f2 I /fw=0
条件式(2) f3/fw
[0023] NS =r6、 rl6、 r31は非球面であり、該非球面の面形状は次式で表される。
+ A x H4 + B x H6 + C x Hs + D x H10
Figure imgf000008_0001
[0024] 面番号 NS (r)、曲率半径 R、面間隔 D、屈折率 Nd、アッベ数 v ^ [ oo]
Figure imgf000009_0001
Figure imgf000009_0002
8
i^ o/soozdf/ェ:) d 0CTSZ0/900Z OAV
Figure imgf000010_0001
[0027] 本発明の第 1実施形態の高変倍率ズームレンズの断面光学図を図 1に示す。図 2 は、第 1実施形態の高変倍率ズームレンズの無限遠合焦における広角端の球面収 差及び正弦条件を示す。図 3は、第 1実施形態の高変倍率ズームレンズの広角端の 倍率色収差を示す。図 4は、第 1実施形態の高変倍率ズームレンズの広角端の非点 収差を示す。図 5は、第 1実施形態の高変倍率ズームレンズの広角端の歪曲収差を 示す。図 6は、第 1実施形態の高変倍率ズームレンズの中間ズーム位置における球 面収差及び正弦条件を示す。図 7は、第 1実施形態の高変倍率ズームレンズの中間 ズーム位置の倍率色収差を示す。図 8は、第 1実施形態の高変倍率ズームレンズの 中間ズーム位置の非点収差を示す。図 9は、第 1実施形態の高変倍率ズームレンズ の第 1中間ズーム位置の歪曲収差を図 9に示す。図 10は、第 1実施形態の高変倍率 ズームレンズの無限遠位置における望遠端の球面収差及び正弦条件を図 10に示 す。図 11は、第 1実施形態の高変倍率ズームレンズの望遠端の倍率色収差を示す。 図 12は、第 1実施形態の高変倍率ズームレンズの望遠端の非点収差を示す。図 13 は、第 1実施形態の高変倍率ズームレンズの中間位置の歪曲収差を示す。
[0028] 図 2、図 6、図 10において、 Fnoは Fナンバーを示 si, 1は d線(587. 56nm) , 2は g 線 (435. 83nm)を示す。点線は正弦条件を示す。
図 3、図 7、図 11において、 Yは像高を示し、 2は d線に対する g線の倍率色収差を 示す。
図 4、図 8、図 12において、 Yは像高を示し、 1は d線の非点収差を示す。実線は球 欠方向の非点収差を示し、点線は子午方向の非点収差を示す。
図 5、図 9、図 13において、 Yは像高を示し、 1は d線の歪曲収差を示す。
[0029] (第 2実施態様)
本発明の第 2実施形態の高変倍率ズームレンズの諸元を以下に示す。符号等は、 第 1実施形態と同一であるので、その説明を省略する。
焦点距離 f= 18.5 一 50.3 一 194.0 Fナンバー Fno = 3.62 一 5.03 一 6.35
条件式(1) I f2 I /fw= 0.674
条件式(2) f3/fw=2.432
[0030] NS=r6、 rl6、 r31は非球面であり、該非球面の面形状は、前記式(3)と同一であ る。
[0031] 面番号 NS(r)、曲率半径 R、面間隔 D、屈折率 Nd、アッベ数 v
NS(r) R D Nd V
r1 115.6820 1.5 1.84666 23.78
r2 62.4605 7.5 1.497 81.61
r3 -532.3234 0.2
r4 57.4173 4.6 1.7725 49.6
r5 189.5960 D(5)
r6 125.0000 0.2 1.5146 49.96
r7 70.0000 1.2 1.883 40.78
r8 14.0000 5.2
r9 -28.9926 1 1.804 46.58
rO 36.1741 0.8
r11 31.9554 4.6 1.84666 23.78
r12 -25.7238 0.3785
r13 -20.2555 1 1.83481 42.72
r14 -99.6449 D(14)
r15 STOP 0.9
r16 32.4468 0.2 1.5146 49.96
r17 32.4468 4 1.48749 70.21
r18 -65.8700 0.2
r19 23.0159 3.6604 1.497 81.61
r20 243.4030 1.3256
r21 -31.4792 1 1.834 37.17
r22 -283.0519 D(22)
r23 20.0273 5 1.48749 70.21
r24 -27.1833 0.2
r25 -72.2206 3.5 1.48749 70.21
r26 -17.7337 1 1.7725 49.6
r27 61.9241 1.5848
r28 -38.2812 1 1.804 46.58
r29 -142.8859 0.4337
r30 51.8443 0.2 1.5146 49.96
r31 51.8443 4 1.48749 70.21
r32 -27.1700 [0032] 非球面係数
Figure imgf000012_0001
[0033] 間隔変化
Figure imgf000012_0002
[0034] 本発明の第 2実施形態の高変倍率ズームレンズの断面光学図を図 14に示す。図 1 5は、第 2実施形態の高変倍率ズームレンズの無限遠合焦における広角端の球面収 差及び正弦条件を示す。図 16は、第 2実施形態の高変倍率ズームレンズの広角端 の倍率色収差を示す。図 17は、第 2実施形態の高変倍率ズームレンズの広角端の 非点収差を示す。図 18は、第 2実施形態の高変倍率ズームレンズの広角端の歪曲 収差を示す。図 19は、第 2実施形態の高変倍率ズームレンズの中間ズーム位置に おける球面収差及び正弦条件を示す。図 20は、第 2実施形態の高変倍率ズームレ ンズの中間ズーム位置の倍率色収差を示す。図 21は、第 2実施形態の高変倍率ズ ームレンズの中間ズーム位置の非点収差を示す。図 22は、第 2実施形態の高変倍 率ズームレンズの第 1中間ズーム位置の歪曲収差を示す。図 23は、第 2実施形態の 高変倍率ズームレンズの無限遠位置における望遠端の球面収差及び正弦条件を示 す。図 24は、第 2実施形態の高変倍率ズームレンズの望遠端の倍率色収差を示す。 図 25は、第 2実施形態の高変倍率ズームレンズの望遠端の非点収差を示す。図 26 は、第 2実施形態の高変倍率ズームレンズの中間位置の歪曲収差を示す。
[0035] 図 15、図 19、図 23にお!/、て、 Fnoiま Fナンノ ーを示 si, 1ίま d線(587. 56nm) , 2 は g線 (435. 83nm)を示す。点線は正弦条件を示す。
図 16、図 20、図 24において、 Yは像高を示し、 2は d線に対する g線の倍率色収差 を示す。
図 17、図 21、図 25において、 Yは像高を示し、 1は d線の非点収差を示す。実線は 球欠方向の非点収差を示し、点線は子午方向の非点収差を示す。
図 18、図 22、図 26において、 Yは像高を示し、 1は d線の歪曲収差を示す。
図 1、図 14に示す第 4レンズ群において、広角側である広角端での無限遠状態に おける第 4レンズ群の結像倍率 β 4w、望遠側である望遠端での無限遠状態におけ る第 4レンズ群の結像倍率 β 4tの場合、
I j8 4w I ≤ 1. 0 、 I j8 4t I ≥ 1. 0
に規定することにより、以下の効果が得られる。まず、第 1に、広角端において、
Figure imgf000013_0001
とすると、 3群の焦点距離は長くなり、屈折力は弱くなる。これによつて、広角一中間 域で周辺のコマ収差がよく補正されることになる。
また、第 2に、逆に、
Figure imgf000013_0002
以外の場合には、ワイド側における球面収差の補正が不十分 (アンダー傾向)となる 力 これを改善することができる。
更に、図 1における第 1実施例のレンズ構成によれば、上記の理由から、
I j8 4w | = 0. 480、 I j8 4t | = 1. 811、
に設定することが、コマ収差及び球面収差の補正がバランスよく最適に行われること が見出せた。
尚、本実施例においては、図 1、図 14に示すレンズ構成を適用した場合の例を説 明したが、これらレンズ構成のみに限定されるものではなぐ前記第 2レンズ群の焦点 距離 f2、前記第 3レンズ群の焦点距離 f3、全光学系の広角端における焦点距離 fW の場合に、
0. 6≤ I f2 I /fW ≤ 0. 73、 2. 2≤ f3 /fW ≤3. 7、
の条件式を満足すること、或いは、
前記第 2レンズ群 L2の焦点距離 f2と広角側における焦点距離 fWとの比が、略 0. 6 一 0. 73の範囲内、 前記第 3レンズ群 L3の焦点距離 f3と広角側における焦点距離 fWとの比力 略 2. 2-3. 7の範囲内に、夫々設定されたレンズ光学系であれば、ど の様なレンズ構成 (材料、材質、種類)でも良いものである。 図面の簡単な説明
[図 1]本発明の第 1実施形態の高変倍率ズームレンズの断面光学図である。
[図 2]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における広角端 の球面収差及び正弦条件の収差図である。
[図 3]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における広角端 の倍率色収差の収差図である。
[図 4]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における広角端 の非点収差の収差図である。
[図 5]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における広角端 の歪曲収差の収差図である。
[図 6]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における中間ズ ーム位置の球面収差及び正弦条件の収差図である。
[図 7]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における中間ズ ーム位置の倍率色収差の収差図である。
[図 8]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における中間ズ ーム位置の非点収差の収差図である。
[図 9]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における中間ズ ーム位置の歪曲収差の収差図である。
[図 10]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の球面収差及び正弦条件の収差図である。
[図 11]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の倍率色収差の収差図である。
[図 12]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の非点収差の収差図である。
[図 13]本発明の第 1実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の歪曲収差の収差図である。
[図 14]本発明の第 2実施形態の高変倍率ズームレンズの断面光学図である。
[図 15]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における広角 端の球面収差及び正弦条件の収差図である。
圆 16]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における広角 端の倍率色収差の収差図である。
圆 17]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における広角 端の非点収差の収差図である。
圆 18]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における広角 端の歪曲収差の収差図である。
圆 19]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における中間 ズーム位置の球面収差及び正弦条件の収差図である。
圆 20]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における中間 ズーム位置の倍率色収差の収差図である。
圆 21]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における中間 ズーム位置の非点収差の収差図である。
圆 22]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における中間 ズーム位置の歪曲収差の収差図である。
圆 23]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の球面収差及び正弦条件の収差図である。
圆 24]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の倍率色収差の収差図である。
圆 25]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の非点収差の収差図である。
圆 26]本発明の第 2実施態様の高変倍率ズームレンズの無限遠合焦における望遠 端の歪曲収差の収差図である。
符号の説明
STOP 絞り
o 光軸
rl 第 1面
r2 第 2面 r3 第 3面 r4 第 4面 r5 第 5面 r6 第 6面 て 7 第 7面 r8 第 8面 r9 第 9面 rlO 第 10面 rll 第 11面 rl2 第 12面 rl3 第 13面 rl4 第 14面

Claims

請求の範囲
[1] 物体側力も順に、少なくとも、正の屈折力を有する第 1レンズ群 L1と、負の屈折力を も第 2レンズ群 L2と、正の屈折力を持つ第 3レンズ群 L3と、正の屈折力を持つ第 4レ ンズ群 L4と、で構成されたズームレンズであって、
前記第 2レンズ群の焦点距離 f2、前記第 3レンズ群の焦点距離 f3、全光学系の広 角端における焦点距離 fWの場合に、
0. 6≤ I f2 I /fW ≤ 0. 73
2. 2≤ f3 /fW ≤ 3. 7
を満足することを特徴とする高変倍率ズームレンズ。
[2] 物体側力 順に、所定の正、負の屈折力を有する多数のレンズ群が組み合わされ て全光学系が構成され、前記レンズ群のうち、物体側力ゝら第 2番目の第 2レンズ群 L2 の焦点距離 f2、第 3番目の第 3レンズ群 L3の焦点距離 f 3、全光学系の広角側にお ける焦点距離 fWの場合に、
前記第 2レンズ群 L2の焦点距離 f2と広角側における焦点距離 fWとの比が、略 0. 6—0. 73の範囲内、
前記第 3レンズ群 L3の焦点距離 f3と広角側における焦点距離 fWとの比が、略 2. 2—3. 7の範囲内、
に夫々設定されたレンズ光学系であることを特徴とする高変倍率ズームレンズ。
[3] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、物体側 に略凹面を向けた凹状であって、対する像面側に略凸状面を向けた略凸状であるレ ンズ構成を含むことを特徴とする請求項 1、 2記載の高変倍率ズームレンズ。
[4] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、略凸状 レンズと略凹状レンズとが接合された接合レンズを含むことを特徴とする請求項 1、 2 記載の高変倍率ズームレンズ。
[5] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、該第 4レンズ群に、凸レン ズと凹メニスカスレンズとが接合された接合レンズを含むことを特徴とする請求項 1、 2 記載の高変倍率ズームレンズ。
[6] 前記第 4レンズ群 L4に含まれる前記接合レンズは、そのレンズ群の前方に配置さ れることを特徴とする請求項 1、 2、 4、 5記載の高変倍率ズームレンズ。
[7] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、広角側における結像倍率 を β 4w、望遠側における結像倍率を β 4tとするとき、
Figure imgf000018_0001
の少なくともいずれかを満足することを特徴とする請求項 1、 2、 3、 4、 5、 6記載の高 変倍率ズームレンズ。
[8] 前記レンズ群のうち、第 4番目の第 4レンズ群 L4を有し、前記広角側における結像 倍率を β 4w、望遠側における結像倍率を β 4tとするとき、
Figure imgf000018_0002
の少なくともいずれかに設定されていることを特徴とする請求項 1、 2、 3、 4、 5、 6、 7 、記載の高変倍率ズームレンズ。
[9] 前記レンズ群のうち、前記第 2レンズ群の焦点距離を f2、前記第 3レンズ群 L3の焦 点距離を f3、広角側における焦点距離を fWとするとき、
I f2 I /fW = 0. 662
f3 /fW = 3. 468
の少なくともいずれかに設定されていることを特徴とする請求項 1、 2、 3、 4、 5、 6、 7 、 8記載の高変倍率ズームレンズ。
[10] 前記レンズ群のうち、前記第 2レンズ群の焦点距離を f2、前記第 3レンズ群 L3の焦 点距離を f3、広角側における焦点距離を fWとするとき、
I f2 I /fW = 0. 674
f3 /fW = 2. 432
の少なくともいずれかに設定されていることを特徴とする請求項 1、 2、 3、 4、 5、 6、 7 、 8、 9記載の高変倍率ズームレンズ。
[11] 像高が APSサイズで 35mmフルサイズのフランジバックを有するカメラ装置に用いら れる、少なくとも物体側力 順に第 1から第 4のレンズ群で構成され広角力 望遠まで 焦点距離をズーミング可能とする高変倍率ズームレンズにおいて、 前記第 1レンズ群 LIは、前記物体側に凸面を向けた低分散凸レンズ、及び前記レン ズ群中で最も高屈折率の凸メニスカスレンズを有して構成され、
前記第 2レンズ群 L2は、物体側に非球面の凸面 (r6)を向けた屈折力が規制され た少なくとも非球面レンズを有して構成され、
前記第 3レンズ群 L3は、少なくとも物体側に凸面 (rl6)を向けた非球面レンズと低 分散レンズとの少なくともいずれか一方を有して構成され、
前記第 4レンズ群 L4は、少なくとも物体側に凹面を向けた凹レンズと接合された凸 レンズとで成る合わせレンズ又は接合レンズ、物体側に非球面の凸面 (r31)を向け た非球面レンズを有して構成されたことを特徴とする高変倍率ズームレンズ。
PCT/JP2005/004464 2004-09-02 2005-03-14 高変倍率ズームレンズ WO2006025130A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05720732A EP1791013A4 (en) 2004-09-02 2005-03-14 ZOOM LENS WITH A HIGH ZOOM RATIO
JP2006531254A JPWO2006025130A1 (ja) 2004-09-02 2005-03-14 高変倍率ズームレンズ
US11/713,103 US7573649B2 (en) 2004-09-02 2007-03-02 High variable power zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-255791 2004-09-02
JP2004255791 2004-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/713,103 Continuation US7573649B2 (en) 2004-09-02 2007-03-02 High variable power zoom lens

Publications (1)

Publication Number Publication Date
WO2006025130A1 true WO2006025130A1 (ja) 2006-03-09

Family

ID=35999794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004464 WO2006025130A1 (ja) 2004-09-02 2005-03-14 高変倍率ズームレンズ

Country Status (4)

Country Link
US (1) US7573649B2 (ja)
EP (2) EP1791013A4 (ja)
JP (1) JPWO2006025130A1 (ja)
WO (1) WO2006025130A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198800A (ja) * 2008-02-21 2009-09-03 Sony Corp 沈胴ズームレンズ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151904A (ja) * 2006-12-15 2008-07-03 Olympus Corp 広角光学系
US8049968B2 (en) * 2008-01-11 2011-11-01 Tamron Co., Ltd. Zoom lens
US8238038B2 (en) * 2008-08-08 2012-08-07 Tamron Co., Ltd. High variable power zoom lens
CN110703422B (zh) * 2019-11-15 2025-04-22 湖北久之洋红外系统股份有限公司 超大变倍比50×连续变焦中波红外光学系统
CN112835187B (zh) * 2021-02-25 2024-11-22 中山联合光电科技股份有限公司 变焦镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241097A (ja) * 2002-02-20 2003-08-27 Tamron Co Ltd 高変倍率ズームレンズ
JP2003315676A (ja) 2002-04-19 2003-11-06 Pentax Corp ズームレンズ系
JP2004109559A (ja) * 2002-09-19 2004-04-08 Minolta Co Ltd ズームレンズ系
JP2004212611A (ja) 2002-12-27 2004-07-29 Nikon Corp 防振ズームレンズ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224323A (ja) * 1982-06-23 1983-12-26 Asahi Optical Co Ltd ズ−ムレンズ
JPH0782151B2 (ja) * 1986-09-13 1995-09-06 旭光学工業株式会社 広角を包括する高変倍ズ−ムレンズ
JPH03235908A (ja) * 1990-02-13 1991-10-21 Canon Inc ズームレンズ
JP3072533B2 (ja) * 1990-09-21 2000-07-31 オリンパス光学工業株式会社 全長の短いズームレンズ
JP3033274B2 (ja) * 1991-09-12 2000-04-17 松下電器産業株式会社 非球面ズームレンズとそれを用いたビデオカメラ
DE69306645T2 (de) * 1992-04-17 1997-06-12 Matsushita Electric Ind Co Ltd Zoomlinsenanordnung
JPH06337354A (ja) * 1993-05-27 1994-12-06 Nikon Corp ズームレンズ
JPH10333035A (ja) * 1997-05-30 1998-12-18 Nikon Corp ズームレンズ
JP4227360B2 (ja) 2002-05-15 2009-02-18 キヤノン株式会社 ズームレンズ
US6844991B2 (en) 2002-08-01 2005-01-18 Nikon Corporation Fisheye lens
JP4565262B2 (ja) 2002-08-01 2010-10-20 株式会社ニコン 魚眼レンズ
JP4337314B2 (ja) 2002-08-01 2009-09-30 株式会社ニコン 魚眼レンズ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241097A (ja) * 2002-02-20 2003-08-27 Tamron Co Ltd 高変倍率ズームレンズ
JP2003315676A (ja) 2002-04-19 2003-11-06 Pentax Corp ズームレンズ系
JP2004109559A (ja) * 2002-09-19 2004-04-08 Minolta Co Ltd ズームレンズ系
JP2004212611A (ja) 2002-12-27 2004-07-29 Nikon Corp 防振ズームレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1791013A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198800A (ja) * 2008-02-21 2009-09-03 Sony Corp 沈胴ズームレンズ

Also Published As

Publication number Publication date
EP1791013A1 (en) 2007-05-30
US7573649B2 (en) 2009-08-11
US20080158689A1 (en) 2008-07-03
EP1791013A4 (en) 2009-09-30
EP2287651B1 (en) 2012-05-09
EP2287651A1 (en) 2011-02-23
JPWO2006025130A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4923764B2 (ja) ズームレンズとこれを有する光学装置
US7319562B2 (en) Zoom lens system and image pickup apparatus including the zoom lens system
JP4356040B2 (ja) 防振機能を備えたバックフォーカスの長いズームレンズ
JP2004258240A (ja) 可変焦点距離レンズ系
US20110085250A1 (en) Zoom lens and image pickup apparatus having the same
JPH11223771A (ja) 可変焦点距離レンズ系
JP3988214B2 (ja) ズームレンズ
CN110389430B (zh) 变焦透镜和包括该变焦透镜的图像拾取装置
JP2019060918A (ja) 撮像レンズ及び撮像装置
CN105785559A (zh) 广角变焦镜头及摄像装置
JP6797768B2 (ja) ズームレンズおよび撮像装置
US20070223107A1 (en) Zoom optical system and imaging apparatus using the same
JP5403315B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
JP5403316B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
CN105408795B (zh) 变焦镜头、光学设备以及变焦镜头的制造方法
CN109952524A (zh) 变倍光学系统、使用了该变倍光学系统的光学设备和摄像设备、以及该变倍光学系统的制造方法
JP5395495B2 (ja) 変倍結像光学系
US20100033821A1 (en) High variable power zoom lens
JP6758640B2 (ja) ズームレンズ
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
JP4227360B2 (ja) ズームレンズ
WO2006025130A1 (ja) 高変倍率ズームレンズ
JP4333151B2 (ja) ズームレンズ
JP2004258516A (ja) ズームレンズ
JP2004226563A (ja) 可変焦点距離レンズ系

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531254

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720732

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005720732

Country of ref document: EP