[go: up one dir, main page]

WO2006006545A1 - Dust core and its manufacturing method - Google Patents

Dust core and its manufacturing method Download PDF

Info

Publication number
WO2006006545A1
WO2006006545A1 PCT/JP2005/012717 JP2005012717W WO2006006545A1 WO 2006006545 A1 WO2006006545 A1 WO 2006006545A1 JP 2005012717 W JP2005012717 W JP 2005012717W WO 2006006545 A1 WO2006006545 A1 WO 2006006545A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnetic
dust core
insulating layer
coating
Prior art date
Application number
PCT/JP2005/012717
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Sugiyama
Toshiya Yamaguchi
Hidefumi Kishimoto
Shin Tajima
Takeshi Hattori
Guofeng Zhang
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Finesinter Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Finesinter Co., Ltd. filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2006006545A1 publication Critical patent/WO2006006545A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Definitions

  • the present invention relates to a dust core having low loss and excellent magnetic properties, and a method for producing the same.
  • iron loss the high-frequency loss regardless of the material of the magnetic core is reduced.
  • This iron loss includes eddy current loss, hysteresis loss and residual loss, but the main problems are eddy current loss and hysteresis loss.
  • coercive force is small in order for the magnetic core to follow the alternating magnetic field and quickly reach a high magnetic flux density. By reducing this coercive force, it is possible to improve both (initial) permeability and hysteresis loss.
  • Patent Document 1 Patent Document 2
  • Patent Documents 3 to 13 Patent Documents 3 to 13
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-97624
  • Patent Document 4 Japanese Patent Laid-Open No. 2003 03 03711
  • Patent Document 5 Japanese Patent No. 2710 1 5 2
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2000-3 0924
  • Patent Document 7 Japanese Patent Laid-Open No. 11-54314
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2002-43113
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2002-1 41213
  • Patent Document 10 Japanese Patent Publication No. 7-1 5 124
  • Patent Document 1 1 Japanese Unexamined Patent Publication No. 2003-272909
  • Patent Document 12 Japanese Patent Application Laid-Open No. 2003-105403
  • Patent Document 13 Japanese Patent Laid-Open No. 2001-102207 Disclosure of Invention
  • the high magnetic flux density of the powder magnetic core is used for reactors used in the high frequency range around 20 to 100 kHz. Most of them were designed to reduce the loss and loss. Such high frequency In order to reduce the iron loss of dust cores used in several regions, it was important to reduce the eddy current loss, which increases in proportion to the square of the frequency.
  • the present invention has been made in view of such circumstances, and on the premise that it is used in a relatively low frequency range, a high magnetic property (high magnetic flux density) and a low loss dust core and its manufacture It aims to provide a method.
  • the present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, the present inventor is suitable for increasing the magnetic flux density and reducing the loss of the dust core used in the low frequency range.
  • the inventors have newly found the particle form and composition of the magnetic powder and have completed the present invention.
  • the powder magnetic core of the present invention is a powder magnetic core obtained by pressure-molding a magnetic core powder in which a magnetic powder mainly composed of iron (F e) is coated with an insulating film.
  • the magnetic powder contains 1.5% by mass or less of silicon (S i), has a volume average particle size of 80 to 300 ⁇ m, and has a powder magnetic core with respect to the true density (p.) Of the magnetic powder. It is characterized by being used in an alternating magnetic field having a density ratio (/.:/.), Which is a ratio of bulk density (P), of 96% or more and a frequency of 100 to 2000 Hz.
  • the dust core of the present invention has not only excellent magnetic properties but also very low iron loss when used in an alternating magnetic field of a relatively low frequency range of 100 to 2000 Hz.
  • the reason why the dust core of the present invention exhibits such excellent characteristics is not necessarily clear.
  • the current situation is considered as follows.
  • the magnetic powder composing the powder magnetic core of the present invention is mainly composed of Fe exhibiting ferromagnetism and has a small content of Si, which is paramagnetic. Furthermore, the density ratio of the dust core is very high, 96% or more. It is considered that by the fusion of both, the dust core of the present invention has developed excellent magnetic properties.
  • the magnetic powder constituting the dust core of the present invention has a relatively large particle size, the coercive force of the magnetic powder is reduced. As a result, the hysteresis loss of the dust core can be reduced.
  • the magnetic powder is atomized powder, the larger the grain size, the larger the crystal grain size, which facilitates the movement of the domain wall when magnetized, further reducing the coercive force and thus reducing the hysteresis loss.
  • Increasing the particle size of the magnetic powder lowers the volume resistivity (hereinafter simply referred to as “resistivity” as appropriate) and increases eddy current loss.
  • resistivity volume resistivity
  • the dust core of the present invention is premised on the use in the low frequency range described above, its influence on the total iron loss is small. That is, according to the dust core of the present invention, by setting the particle size of the magnetic powder within the above-described range, the hysteresis loss is greatly reduced, and as a result, the iron loss is sufficiently reduced as a whole.
  • the present invention can be grasped not only as the dust core but also as a manufacturing method thereof. That is, the present invention provides a magnetic core powder in which a magnetic powder having Fe as a main component and having Si of 1.5% by mass or less and having a volume average particle size of 80 to 300 ⁇ m is coated with an insulating coating.
  • a powder magnetic core comprising: a filling step of filling a powder into a mold; and a molding step of pressure-molding a powder for a magnetic core in the mold, wherein the above-described dust core of the present invention is obtained. It is good also as a manufacturing method.
  • Figure 1 is a graph showing the relationship between the particle size of magnetic powder and iron loss.
  • Figure 2 is a graph showing the relationship between the particle size of magnetic powder and eddy current loss.
  • Fig. 3 is a draft showing the relationship between the crystal grain size of magnetic powder and the coercive force.
  • the magnetic powder according to the present invention is composed of a powder containing Fe as a main component and containing 1.5% by mass or less of Si.
  • Si is an element that increases the electrical resistivity of the powder particles.
  • a dust core made of magnetic powder containing Si has a high specific resistance and reduces eddy current loss.
  • the Si content in the magnetic powder is suppressed to increase the magnetic flux density of the dust core.
  • the Si content in the magnetic powder is reduced, the magnetic powder itself is covered with the insulating coating, so that the eddy current loss of the dust core increases rapidly. There is no.
  • the eddy current loss increases in proportion to the square of the frequency (f) of the alternating magnetic field (f 2 ).
  • the operating frequency range is low, so the eddy current loss itself is In the first place, the ratio of the total iron loss is low.
  • the Si content in the magnetic powder is 1.5% by mass or less, 1.2% by mass or less, 1.0% by mass or less, 0.8% by mass, or 0.5% by mass with respect to 100% by mass of the entire magnetic powder. % Is preferred.
  • the magnetic powder is preferably pure iron powder with a purity of 99.5% or more, 99.7% or more, and 99.8% or more.
  • the magnetic powder may be composed of Si, the balance being Fe and inevitable impurities, and may contain a magnetic property improving element or an iron loss reducing element as appropriate. Examples of such elements include aluminum (A 1), nickel (N i), and cobalt (Co).
  • the magnetic powder of the present invention comprises particles having a volume average particle size of 80 to 300 ⁇ m. This makes it possible to significantly reduce the hysteresis loss while suppressing the eddy current loss of the dust core used in the low frequency range. If the volume average particle size is too small, it is difficult to reduce the hysteresis loss. On the other hand, an excessive volume average particle size is not preferable because the specific resistance value decreases and eddy current loss increases.
  • the lower limit of the volume average particle diameter is preferably 100 ⁇ , 120 im, and further preferably 150 ⁇ .
  • the upper limit of the volume average particle diameter is preferably 280 ⁇ , 250 ⁇ , or even 200 ⁇ .
  • p. Is the true density determined from the composition of the magnetic powder.
  • the particle shape of the magnetic powder is not particularly limited, but it is preferably composed of flat particles having an average thickness of 20 to 100 m, more preferably 20 to 50 m. This is because, when magnetic powder made of flat particles is used, eddy current generation can be suppressed with respect to the magnetic flux flowing in the longitudinal direction of the flat powder of the dust core, and eddy current loss can be further reduced.
  • the flat particles can be produced, for example, by crushing substantially spherical powder particles by rolling, forging, or the like.
  • the two-dimensional average particle size is 80 to 1 500 ⁇ . It will be about.
  • the major axis is the longest diameter of the constituent particles, and the minor axis is the length measured in the direction perpendicular to the major axis direction through the midpoint of the major axis.
  • the measurement surface for the two-dimensional particle diameter is the plane perpendicular to the thickness direction of the flat particles.
  • Magnetic powder is flat Hitoshihi surface area obtained by averaging the specific surface area is the surface area per unit mass of constituent particles 5 X 1 0 one 3 In the following, it is preferable that it is 3 X 10 ⁇ 3 m 2 Z g or less.
  • the average specific surface area is excessive, the total amount of the insulating coating covering the surface of the constituent particles increases with respect to the film thickness, and the magnetic properties of the dust core are deteriorated. If the total amount of the insulating film is considered constant, the film thickness becomes relatively thin. As a result, the specific resistance of the dust core decreases and eddy current loss increases. In any case, an increase in the average specific surface area is not preferable.
  • the specific surface area is determined by ( ⁇ S. ') ZN.
  • An example of such magnetic powder is atomized powder.
  • water gas atomized powder having a low cooling rate and gas atomized powder are more preferable than water atomized powder having a high cooling rate because particles having a nearly spherical shape can be obtained.
  • the magnetic powder preferably has an average crystal grain size of the constituent particles of 50 / m or more, further 200 Xm or more.
  • the crystal grain size of the constituent particles of the magnetic powder is larger as the crystal grows easily.
  • water gas atomized powder having a low cooling rate and gas atomized powder are more preferable than water atomized powder having a large cooling rate.
  • the magnetic powder is made of gastomized powder.
  • the magnetic powder is not necessarily in the form at the time of gas atomization. That is, the magnetic powder may be a powder composed of the above-described flat particles obtained by rolling a gas atomized powder.
  • the specific surface area of the constituent particles can be slightly increased compared to the gas atomized powder before the treatment.
  • the specific surface area of the constituent particles made of gas atomized powder is much smaller than that of water atomized powder with a distorted particle surface.
  • eddy current loss and hysteresis loss can be further reduced by using smooth particles with a surface shape such as gasified powder. Therefore, it is preferable. This is because, when the magnetic powder is pressed, if the surface of the constituent particles is smooth, the aggression between the particles in contact with each other decreases. For example, it is possible to avoid a situation in which a projection or the like of a certain particle pierces another adjacent particle, and the insulating coating formed on the surface of each particle is destroyed. As a result, it is easy to obtain the originally designed specific resistance, and it is easy to reduce the eddy current loss of the dust core.
  • the surface of the constituent particles is smooth, it is possible to suppress large strain and stress from being applied only to a part of the constituent particles, so that the increase in coercive force and hysteresis loss due to residual strain and residual stress is reduced. . Such a situation is the same even when the magnetic powder is composed of the above-described flat particles.
  • Gas atomized powder can be obtained by a gas spray atomization method in which gas is sprayed onto a molten metal stream having a predetermined composition to make a atomized powder.
  • Water atomized powder is obtained by a water spray atomization method in which water is sprayed onto the molten metal stream to atomize it.
  • a powder other than the atomized powder described above may be used as the magnetic powder.
  • powdered powder obtained by grinding an alloy ingot with a ball mill or the like may be used.
  • the crystal grain size can be increased by subsequent heat treatment (for example, heat treatment at 800 ° C or higher in an inert atmosphere (N 2 gas, Ar gas, etc.))
  • heat treatment for example, heat treatment at 800 ° C or higher in an inert atmosphere (N 2 gas, Ar gas, etc.)
  • the insulating coating covering the surface of the magnetic powder increases the specific resistance of the dust core and reduces its eddy current loss.
  • the thicker the insulation film the greater the specific resistance of the dust core.
  • the film thickness is preferably 10 to 100 nm, more preferably 10 to 50 nm.
  • the insulating coating film is preferably 0.1 to 0.3 mass% when the entire powder magnetic core is 10 mass%. Converting this to volume%, the insulating coating is 1 to 3 volume when the entire powder magnetic core is 100 volume%.
  • the insulating coating is originally formed for each powder particle.
  • the insulating coating is originally formed for each powder particle.
  • Insulating coatings include oxide coatings, phosphate coatings, and resin coatings (coating of silicone resin, amide resin, imide resin, phenol resin, etc.). Any of the insulating coatings of the present invention may be used, but an oxide coating or a phosphate coating is preferable in view of heat resistance. [0038]
  • the oxide coating includes A 1 2 0 3 coating, T i 0 2 coating, Z r 0 2 , and these complex oxide insulating coatings (F e S i 0 3 , F eA l 2 0 4 , Ni F e 2 0 4 etc.).
  • the S i O 2 coating can also be formed by surface oxidation of the magnetic powder.
  • Ru a silicone resin.
  • Silicone resin is a synthetic resin having a siloxane bond.
  • the silicone resin coating itself functions as an insulating coating. When it is heated to a high temperature (700-900 ° C), it changes to an S i O 2 coating with excellent heat resistance.
  • the silicone resin is preferably heated after the dust core is formed.
  • the magnetic powder contains 0.8 mass% or more of Si. The reason is not clear, but it seems that the silicone resin is easy to chemisorb to Si atoms on the surface of the magnetic powder.
  • the Si content in the magnetic powder is low (when the magnetic powder is pure iron powder, for example), the sio 2 coating that directly coats the surface of the magnetic powder has durability (not only aged deterioration) Durability not to be broken during molding) is not always sufficient.
  • the case where the amount of Si is small is specifically the case where the amount of 3 i is 0.8 mass% or less and further 0.5 mass% or less when the entire magnetic powder is 100 mass%.
  • the present inventor In order to stably form a silicone resin coating (or Si02 coating) on the surface of the magnetic powder, the present inventor has used a phosphate coating on the surface of the magnetic powder as a base treatment. It was newly found that it is preferable to provide. Therefore, the insulating coating of the present invention has a first insulating layer composed of a phosphate coating and a silicone resin covering the first insulating layer when the Si amount in the magnetic powder is 0.8% or less. Preferably, it is formed of two insulating layers.
  • the insulating film composed of the first insulating layer and the second insulating layer is very excellent in heat resistance. Even when a powder magnetic core made of magnetic powder coated with this insulating film is annealed at a high temperature of 400 ° C. or higher, 45 ° C. or higher, or even 500 ° C. or higher, the insulating coating exists. Even if it can change its form, it will not be completely destroyed. In other words, the dust core exhibits sufficient specific resistance even after annealing.
  • the heat resistance of such an insulating film is very important even in a dust core used in a relatively low frequency region as in the present invention.
  • the insulation coating is greatly destroyed during annealing. If the specific resistance decreases rapidly, the iron loss increases even though it is a dust core used in the low frequency range. Therefore, even in the case of a dust core used in a relatively low frequency region as in the present invention, the higher the heat resistance of the insulating film, the better. If the heat resistance of the insulating coating is high, annealing can be performed at a higher temperature while suppressing a decrease in specific resistance. This is because residual strain and the like accumulated inside the dust core can be more easily removed, and hysteresis loss can be further reduced.
  • the present inventor has newly developed an insulating film having excellent heat resistance, in which oxide particles are combined with the first insulating layer and the second insulating layer.
  • the following combinations of oxide particles can be considered.
  • One is a case where the second insulating layer is formed of a composite insulating layer in which oxide particles are dispersed in the silicone resin.
  • the other is a case where a third insulating layer mainly composed of oxide particles is further provided on the second insulating layer made of the silicone resin coating alone or a composite insulating layer thereof.
  • what is important is not the structure or form of the insulating coating itself, but that the specific resistance of the dust core is stably maintained even after heating, and eddy current loss is suppressed. .
  • the film thickness of the insulation film covering the surface of magnetic powder around 10 ° ⁇ m is very thin, around 100 nm, so it is difficult to clearly identify the structure of the insulation film. is there.
  • the presence of the insulating coating covering the magnetic powder is expected to change significantly from the initial state. The From this point of view, the structure and form of the insulating film itself is not meaningful, and as a result, an insulating film that can ensure a sufficient specific resistance is sufficient.
  • the first insulating layer, second insulating layer, third insulating layer, and oxide particles described above will be described in more detail.
  • the type of the phosphate coating that is the first insulating layer is not limited.
  • the first insulating layer may be a phosphate coating formed by bringing a magnetic powder into contact with a predetermined concentration of phosphoric acid to form iron phosphate on the surface of the magnetic powder.
  • an Mg- (F e) —B—P—O-based insulating layer as described in Patent Document 6 may be used.
  • This first insulating layer has a 6-coordinate ion radius of 0.07 3 nm defined by a first element group consisting of at least phosphorus (P) and oxygen (O) and Shannon (Shannon, R, D). And a second element capable of producing a cation having a valence of 2 or more.
  • This first insulating layer may contain Fe dissolved from the magnetic powder.
  • a borophosphate coating containing boron (B) (in this specification, such a coating is also included in the “phosphate coating”) is more excellent in heat resistance than a simple phosphate coating.
  • the first insulating layer in this case is considered to be an amorphous phosphate glass coating. Therefore, network formers (network-forming ions) that make up glass and network modifications
  • the second element should be extracted and selected appropriately according to the Zacca Raisen rule, which is the law for the body (network-modified ions).
  • An amorphous glass-like insulating layer composed of a network forming body consisting of the first element group and a network modification body, which is the second element having a large ionic radius, is difficult to crystallize, increases in viscosity, and burns. Condensation is less likely to occur.
  • the reason why the cation of the second element is divalent or higher is that monovalent cations (eg, Na + , K + ) are easy to react with water, and it is preferable that they do not exist in consideration of long-term stability. It is.
  • the reason why Shannon's ionic radius is used as the ionic radius of the second element is that it is currently most widely used. Among them, the 6-coordinate ion radius was chosen because the ion radius differs depending on the coordination number, so that the comparison object is clear.
  • the present inventor examined various elements and found that when the ion radius of the second element was 0.073 nm or more, the coating exhibited excellent heat resistance.
  • the ionic radius is less than 0.073 nm, the heat resistance is at a conventional level, and the heat resistance cannot be improved.
  • the ion radius is preferably 0.075 nm or more, and more preferably 0.08 nm or more.
  • the upper limit of the ion radius is preferably 0.170 nm or less in consideration of handling properties.
  • Such a second element include alkaline earth metal elements and rare earth elements (RE).
  • Alkaline earth metal elements include beryllium (B e), Mg, C a, S r, barium (B a), and radium (R a), but Be eop Mg is 6-coordinated Is excluded because the ionic radius of is less than 0.073 nm.
  • Ca or Sr is preferable as the second element from the alkaline earth metal element.
  • the rare earth elements include scandium (Sc), Y, lanthanide elements, and lactide elements. Similarly, in consideration of handling properties, soot is preferable.
  • lanthanoids La to Lu
  • bismuth Bi
  • Table 6 shows the ionic radii of each of these elements together with their valences. Needless to say, these second elements may be not only one kind of element but also plural kinds of elements.
  • an insulating film (first insulating layer) excellent in heat resistance constituting the first layer of the present invention was obtained. [0 0 4 9]
  • the second insulating layer is formed on the first insulating layer and is made of silicone resin. Due to the presence of the second insulating layer, the insulating coating of the present invention exhibiting higher heat resistance than the first insulating layer alone was obtained. Although the detailed mechanism for realizing this excellent effect is unknown at present, the heat resistance is not improved by mere duplication of the insulating layer, but the insulation is achieved by the synergistic effect of the first insulating layer and the second insulating layer. It is thought that the heat resistance of the coating was further improved.
  • the silicone resin is preferably contained in a proportion of from 0.05 to 0.8 mass%, more preferably from 0.1 to 0.3 mass%, based on 100 mass% of the entire magnetic powder. This is because if the silicone resin is too small, the effect of improving the heat resistance of the insulating coating is small, and if the silicone resin is excessive, the magnetic flux density of the dust core is reduced, which is not preferable.
  • the amount of the silicone resin is almost the same even in the case of containing the oxide particles to be described later, but the ratio may be slightly changed depending on the presence or absence of the oxide particles.
  • Silicone resin is a polyorganosiloxane containing monofunctional (M units), bifunctional (D units), 3 functional (T units), or tetrafunctional (Q units) siloxane units in the molecule. Sure. This silicone resin is characterized by a higher crosslink density than silicone oil and silicone rubber, and is hard when cured. Silicone resins are roughly classified into straight silicone resins whose components are composed solely of silicones, and silicone-modified organic resins that are copolymers of silicone components and organic resins. Either is fine.
  • Straight silicone resins can be broadly classified into MQ resin and DT resin, and either can be used.
  • silicone-modified organic resin include alkyd modification, epoxy modification, polyester modification, acrylic modification, and phenol modification.
  • silicone resins There are two types of silicone resins: a type that cures by heating (heat curing type) and a type that cures even at room temperature (room temperature curing type).
  • the curing mechanisms of heat-curing silicone resins can be broadly divided into dehydration condensation reaction, addition reaction, peroxide reaction, etc.
  • the curing mechanisms of room temperature-curing silicone resin are deoximation reaction, dealcoholization. Some are due to reactions. Any silicone resin may be used in the present invention.
  • silicone resins include, for example, SH 805, SH 806A, SH 840, SH 997, SR 620, SR 2306, SR 2309, SR 2310, SR 2316, DC12577, manufactured by Toray Dow Co., Ltd. SR2400, SR2402, SR2404, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420, SR2107, SR2115, SR2145, SH6018, DC-2230, DC3037, QP8-5314, etc.
  • silicone resins other than these brands may be used.
  • the silicone resin used in the present invention may be a finely divided silicone resin dispersed in a solvent to form a colloidal shape, or may be a silicone resin obtained by modifying the raw material. Furthermore, a silicone resin in which two or more types of silicone resins having different types, molecular weights, and functional groups are mixed at an appropriate ratio may be used.
  • silicone resin solution into fine oxide particles was ⁇ Ka ⁇ treatment liquid, the fluidity becomes higher than the silicone resin solution alone .
  • the second insulating layer was easily formed on the surface of the magnetic powder on which the first insulating layer was formed. This is considered to have contributed to the uniformity of the second insulating layer formed on the first insulating layer, and consequently the uniformity of the insulating film.
  • the uniformity of the insulation coating is necessary because, for example, if the coating state by the insulation coating is non-uniform, for example, a thin part is attacked preferentially, and particles of magnetic powder are This is because the specific resistance value of the powder magnetic core decreases due to direct contact of the powder and further sintering.
  • Oxide particles are extremely excellent in heat resistance (high temperature insulation).
  • the oxide particles are present uniformly on the surface of the magnetic powder, and the direct contact between these particles is positively suppressed, and the heat resistance of the insulating coating of the present invention is further improved. It is done.
  • the oxide constituting the oxide particles is not limited as long as it has high insulation and heat resistance.
  • oxides include Si 0 2 , A 12 O 3, Zr 0 2 , Mg 2 O, composite oxide spinel, and garnet.
  • one or more oxides of Si, Zr, Mg or A 1 are suitable for the oxide particles.
  • the oxide particles may be an oxide obtained by alloying two or more metals.
  • a colloidal oxide may be used.
  • the average particle size of the oxide particles is preferably 100 nm or less, more preferably 70 nm or less.
  • the lower limit of the particle size is preferably 50 nm or even 30 nm.
  • the particle size ratio (dZD) between the volume average particle size (D) of the magnetic powder and the particle size (d) of the oxide particles is lZl 0 ⁇ : ⁇ 00000 or even 1 Z100 ⁇ : L / 10000 preferable.
  • the mixing ratio of the oxide particles to the silicone resin is preferably 0.1 to 10 and more preferably 0.3 to 3 by weight.
  • the average particle diameter of the acid particles referred to in the present invention is the number average particle diameter of the fixed direction diameter observed with a microscope.
  • a third insulating layer mainly composed of the above-described oxide particles is formed on the second insulating layer.
  • the second insulating layer which is the lower layer of the third insulating layer, may be an insulating layer made only of a silicone resin, or a composite insulating layer in which oxide particles are dispersed in the silicone resin.
  • the reason why the heat resistance of the insulating film of the present invention is improved is not necessarily clear, but at present, it is considered to be almost the same as the reason described above.
  • the third insulating layer mainly composed of oxide particles on the second insulating layer As a method of forming the third insulating layer mainly composed of oxide particles on the second insulating layer, mechanical mixing, a method of adding oxide particles to various coating liquids in advance, and the like can be considered.
  • the oxide particles comprise 100 mass% of the entire magnetic powder. As a content of 0.05 to 0.5% by mass, further 0.08 to 0.3% by mass is preferable. If the amount of oxide particles is too small, the effect of improving the heat resistance of the insulating coating is small.
  • the amount of silicone resin at this time is as described above.
  • the insulating coating according to the present invention may have the first insulating layer and the second insulating layer described above at the time of coating. Furthermore, from the stage of coating, both layers may be integrated together to form a single insulating film as a whole. In any case, the insulating coating does not necessarily maintain the initial state of the coating.
  • the insulating coating may be one in which the first insulating layer and the second insulating layer are changed, altered or transformed by subsequent heating or the like.
  • the dust core obtained as such a product is also included in the scope of the present invention.
  • the above-described insulating coating is not premised on the assumption that it is exposed to a high temperature state by annealing or the like. It may be used in an unheated state or a room temperature range. In that case, needless to say, the insulating coating of the present invention stably exhibits a very high insulating property (high resistance value).
  • the insulating film is formed on the surface of the magnetic powder by an appropriate method according to the type.
  • a silicone resin coating it is formed by adding a silicone resin solution to magnetic powder and stirring, kneading, or the like.
  • a magnetic core powder in which the surface of the magnetic powder is coated with a silicone resin is obtained.
  • the magnetic powder coated with the silicone resin is formed by heating at a high temperature.
  • an oxide film can be formed on the surface.
  • Such a method for forming an insulating film is conventionally well known. In the following, a method for forming an insulating film composed of the first insulating layer, the second insulating layer, and the third insulating layer will be described.
  • This method of forming an insulating film basically comprises a first insulating layer forming step and a second insulating layer forming step.
  • the insulating coating includes the third insulating layer
  • a third insulating layer forming step of forming the third insulating layer on the second insulating layer of magnetic powder is provided.
  • the first insulating layer forming step includes a contact step in which the first coating treatment liquid is brought into contact with the magnetic powder, and a drying step in which the magnetic powder is subsequently dried.
  • the first coating treatment liquid is a solution containing phosphoric acid and the second element referred to in the present invention.
  • This is not limited to an aqueous solution, but may be a solution using an organic solvent such as ethanol, methanol, isopropyl alcohol, acetone, or glycerin.
  • the first coating solution is prepared by mixing phosphoric acid in these solvents, It dissolves compounds and salts of elements and rare earth elements.
  • Other, magnetic powder for example,
  • Surfactant effective for improving wettability with Fe powder and forming a uniform film, and anti-mold agent for preventing oxidation of magnetic powder (eg Fe powder) are added as appropriate. You may do it.
  • the contact process includes various methods (processes) such as a solution spraying method (spraying process) in which the first coating treatment liquid is sprayed on the material to be treated and a solution immersion method (immersion process) in which the first coating treatment liquid is immersed in the first coating treatment liquid.
  • a solution spraying method spraying process
  • a solution immersion method immersion process
  • the solution spraying method and the solution dipping method can be processed in large quantities and are industrially effective.
  • a thin and uniform insulating film may be formed on the surface of the material to be processed using an electrochemical reaction such as plating.
  • the uncoated surface part (exposed part) force naturally reacts with the first coating treatment liquid preferentially. .
  • the surface of the material to be treated (magnetic powder) is sequentially coated, and the entire surface of the material to be treated is uniformly coated without pinholes.
  • a thick insulating film can be obtained, and a thin insulating film can be obtained when the film is thinned.
  • a thin insulating film may be formed as a whole by forming thin film thicknesses.
  • the contact time between the material to be treated and the first coating treatment liquid may also affect the film thickness. However, in reality, the reaction time between the two may be short, and once the surface of the material to be treated is covered, the change in film thickness is small even if the contact time is increased.
  • the drying process is a process of diverging excess first coating treatment liquid and its solvent adhering to the material to be treated.
  • This drying step may be natural drying as well as heat drying. However, in order to stably and quickly fix the insulating film on the surface of the material to be treated, heat drying
  • Heating drying step is preferable.
  • the heating temperature is preferably about 80 to 35 ° C., and the heating time is preferably about 10 to 18 O min.
  • the heating atmosphere may be during vacuum degassing, nitrogen, or air.
  • the second insulating layer forming step is a step of forming a second insulating layer made of silicone resin on the first insulating layer of the material to be processed.
  • a second coating treatment liquid in which silicone resin is dissolved or dispersed in a solvent or the like.
  • solvents include alcohol solvents such as ethanol and methanol, ketone solvents such as acetone and methyl ethyl ketone, and fragrances such as benzene, toluene, xylene, phenol, and benzoic acid.
  • an aromatic solvent that easily dissolves the silicone resin is preferable. If the silicone resin is soluble or dispersible, water may be used as a solvent.
  • Treatment liquid in which silicone resin is dissolved in a solvent include alcohol solvents such as ethanol and methanol, ketone solvents such as acetone and methyl ethyl ketone, and fragrances such as benzene,
  • the concentration of the (second coating treatment liquid) may be determined in consideration of ease of construction and drying time.
  • the second insulating layer forming step also includes the contact step of bringing the second coating treatment liquid into contact with the magnetic powder on which the first insulating layer is formed, and the subsequent drying step of drying it. This is the same as the layer forming step.
  • the contents of the contact process and the drying process are almost the same.
  • a volatile solvent such as ethanol
  • the solvent will naturally volatilize and the drying process will be substantially completed, without needing to heat dry. Become.
  • the oxide particles may be added to the solvent together with the silicone resin and stirred and mixed.
  • the third insulating layer forming step is a step of forming a third insulating layer made of oxide particles on the second insulating layer of the material to be processed.
  • the third insulating layer forming step also includes the contact step of bringing the third coating treatment liquid into contact with the magnetic powder on which the second insulating layer is formed, and the subsequent drying step of drying it. This is the same as the first insulating layer forming step and the second insulating layer forming step. The contents of the contact process and the drying process can be made almost the same as those cases.
  • the method for manufacturing a dust core is basically based on a filling process in which the above-described magnetic core powder is filled in a molding die (simply referred to as “mold”) and a molding process in which the filled magnetic core powder is pressure-molded. Become.
  • This molding process may be performed in a magnetic field or in a non-magnetic field, but in any case, it greatly affects the magnetic properties of the dust core.
  • the molding pressure greatly affects the increase in the density of the dust core and the accompanying increase in the magnetic flux density of the dust core.
  • galling is likely to occur between the inner surface of the mold and the magnetic core powder, the release pressure is excessive, and the mold life is extremely reduced. For this reason, in the conventional molding method, it was actually difficult to increase the molding pressure.
  • the filling step is a step of filling a metal mold coated with a higher fatty acid-based lubricant with a magnetic core powder, and the molding step is performed between the magnetic core powder and the inner surface of the mold.
  • This is a warm high pressure forming process in which a metal sarcophagus film is formed.
  • the magnetic powder is a powder containing Fe as a main component and the higher fatty acid lubricant is lithium stearate
  • the outer surface of the powder magnetic core in contact with the inner surface of the mold has lubricity.
  • a metal sarcophagus film composed of excellent iron stearate is formed. Due to the presence of this iron stearate film, no galling or the like occurs, and the dust core is removed from the mold with a very low pressure. In addition, the tool life can be extended.
  • the higher fatty acid lubricant to be applied is preferably a metal salt of a higher fatty acid in addition to the higher fatty acid itself.
  • higher fatty acid metal salts include lithium salts, calcium salts, and zinc salts.
  • lithium stearate, calcium stearate, and zinc stearate are preferable.
  • barium stearate, lithium palmitate, lithium oleate, calcium palmitate, calcium oleate, and the like can also be used.
  • This coating step is preferably a step of spraying a higher fatty acid-based lubricant dispersed in water or an aqueous solution into a heated mold.
  • the higher fatty acid lubricant When the higher fatty acid lubricant is dispersed in water or the like, it becomes easy to uniformly spray the higher fatty acid lubricant on the inner surface of the mold. Furthermore, when it is sprayed into the heated mold, the water quickly evaporates, and the higher fatty acid lubricant can be uniformly adhered to the inner surface of the mold.
  • the heating temperature of the mold at that time needs to take into account the temperature of the molding process described later. For example, it is sufficient to heat to 10 ° C. or higher. However, in order to form a uniform film of a higher fatty acid-based lubricant, it is preferable that the heating temperature be lower than the melting point of the higher fatty acid-based lubricant. For example, when lithium stearate is used as the higher fatty acid-based lubricant, the heating temperature should be less than 220 ° C.
  • the higher fatty acid-based lubricant When the higher fatty acid-based lubricant is dispersed in water or the like, the higher fatty acid-based lubricant is from 0.1 to 5% by mass, and more preferably from 0. When included in a ratio of 5 to 2% by mass, a uniform lubricating film is preferably formed on the inner surface of the mold.
  • a surfactant when a higher fatty acid lubricant is dispersed in water or the like, if a surfactant is added to the water, the higher fatty acid lubricant can be uniformly dispersed.
  • surfactants include alkylphenol-based surfactants, polyoxyethylene nonenophenolatenore (EO) 6, polyoxyethylene noninorephenyl etherenole (EO) 10, and cation-based nonionics.
  • Type surfactant, borate ester Emulbon T -80, etc. can be used. Two or more of these may be used in combination.
  • lithium stearate when lithium stearate is used as a higher fatty acid-based lubricant, polyoxyethylene noninorephenolatenore (EO) 6, polyoxyethylene nonenolephenyletherenore (EO) 10 and borate ester emulbon T 1 8 It is preferable to use three types of surfactants at the same time. This is because the dispersion of lithium stearate in water or the like is further activated when it is added in combination as compared with the case where only one of them is added.
  • the ratio of the surfactant is 1.5 to 15% by volume. preferable.
  • antifoaming agent for example, silicon-based antifoaming agent
  • silicon-based antifoaming agent may be added. This is because when the foaming of the aqueous solution is intense, it is difficult to form a uniform higher fatty acid-based lubricant film on the inner surface of the mold when it is fogged.
  • the defoamer addition ratio is 100 volume of the total volume of the aqueous solution. / 0 and the when, for example, 0. 1 have good be about 1% by volume.
  • the higher fatty acid-based lubricant particles dispersed in water or the like preferably have a maximum particle size of less than 30 ⁇ .
  • the maximum particle size is 30 m or more, the particles of the higher fatty acid lubricant are likely to settle in the aqueous solution, and it becomes difficult to uniformly apply the higher fatty acid lubricant to the inner surface of the mold. .
  • aqueous solution in which the higher fatty acid-based lubricant is dispersed can be performed using, for example, a spray gun for coating or an electrostatic gun.
  • the metal sarcophagus film is formed by mechanochemical reaction.
  • the reaction causes the magnetic core powder (especially the insulating coating) to chemically bond with the higher fatty acid-based lubricant, and the metal sarcophagus coating (for example, the higher fatty acid iron salt coating) forms the magnetic core powder. Formed on the body surface.
  • This metal sarcophagus coating is firmly bonded to the surface of the powder compact and exhibits a lubricating performance far superior to that of higher fatty acid lubricants adhering to the inner surface of the mold.
  • the frictional force between the contact surface between the inner surface of the mold and the outer surface of the powder compact is remarkably reduced, and high pressure molding is possible.
  • Each particle of the magnetic core powder is coated with an insulating coating, but an element that promotes the formation of a metal sarcophagus coating in the insulating coating (for example, Fe as the main component of the magnetic powder or the first mentioned in the present invention). 2 elements) as the main components, it is considered that a metal salt coating (metal sarcophagus coating) of higher fatty acids is formed based on them.
  • “Warm” in the molding process means that the molding process is performed under appropriate heating conditions according to each situation. However, in order to promote the reaction between the magnetic core powder and the higher fatty acid-based lubricant, it is generally preferable that the molding temperature is 10 ° C. or higher. Also, in order to prevent the breakdown of the insulating coating and the alteration of the higher fatty acid lubricant, the molding temperature is generally reduced.
  • the temperature is 200 ° C. or lower. It is more preferable that the molding temperature is 120 to 180 ° C.
  • the degree of "pressurization” in the molding process is also appropriately determined according to the desired properties of the powder magnetic core, the magnetic core powder, the insulation coating, the type of higher fatty acid lubricant, the material of the mold and the internal surface properties, etc.
  • the molding pressure is 70 OMPa or more, 7 85MPa or higher, lOO OMPa or higher, or 2000MPa.
  • the molding pressure should be 200 OMPa or less, more preferably 150 OMPa or less.
  • the present inventor confirmed by experiments that when this warm high-pressure molding method is used, the extraction pressure becomes maximum when the molding pressure is about 600 MPa, and the extraction pressure decreases rather than that. ing. Even when the molding pressure was changed in the range of 900 to 200 OMPa, the extraction pressure remained at a very low value of about 5 MPa.
  • This also shows how the metal sarcophagus film formed by the warm high pressure forming method, which is one of the production methods of the present invention, is excellent in lubricity. It can be seen that this warm high-pressure forming method is optimal as a method for manufacturing a dust core that requires high density by high-pressure forming. Such a phenomenon can occur not only when lithium stearate is used as the higher fatty acid-based lubricant, but also when calcium stearate or zinc stearate is used.
  • the method for producing a dust core according to the present invention preferably further includes a heating step or an annealing temperature for heating the powder compact obtained after the molding step.
  • the heating temperature and heating time of the heating process and annealing temperature may be appropriately selected according to the specifications of the powder magnetic core. In this respect, there is no essential difference between the heating process and the annealing temperature, but both have different purposes.
  • Heating step when the insulating coating was a silicone resin film, by heating the Tokura powder molded body after the molding step is a step for the silicone resin coating and s io 2 coating.
  • the annealing process is a process for removing the strain (residual strain) and stress (residual stress) accumulated in the powder compact obtained after the molding process for the purpose of reducing coercive force and hysteresis loss. is there.
  • the heating process may also serve as the annealing temperature by appropriately selecting the heating temperature, heating time, and heating atmosphere. The degree may also serve as a heating step.
  • the insulating film having a multilayer structure including the first insulating layer made of the phosphate film and the second insulating layer made of the silicone resin covering the first insulating layer is extremely excellent in heat resistance as described above. It is preferable to perform an annealing step on the powder compact provided with this insulating film, since hysteresis loss is sufficiently reduced while suppressing reduction of eddy current loss.
  • the composition of the magnetic powder on which the insulating coating is formed is not particularly limited, but as described above, it is particularly effective in the case of pure iron powder having an Si content of 0.8% or less.
  • the heating and annealing step it is preferable to heat at 300 to 900 ° C, more preferably 50000 to 700 ° C for 0.:! To 10 hours, and further 0.5 to 2.0 hours. .
  • the atmosphere at this time is preferably an inert atmosphere.
  • the dust core of the present invention is a high-density molding of the above-described magnetic core powder.
  • the density ratio ( P ) is the ratio of the bulk density ( P ) of the dust core to the true density ( p .) Of the magnetic powder. / po) is 96% or more.
  • Such a high-density powder magnetic core generates a very high magnetic flux density. This is equivalent to or better than conventional electromagnetic steel sheets used in high performance motors.
  • the higher the density ratio is 97% or more, 98% or more, and 99% or more, it is preferable because a higher magnetic flux density can be obtained.
  • the magnetic powder constituting the dust core of the present invention has a relatively small amount of Si contained. Accordingly, the dust core of the present invention exhibits a higher magnetic flux density than a dust core using a magnetic powder such as general Fe-3% Si.
  • the magnetic properties of the dust core are indirectly indicated by the density ratio.
  • the magnetic density of the dust core is determined by the magnetic flux density when placed in a magnetic field of a specific strength. The characteristics may be specified directly.
  • the magnetic permeability is not constant as can be seen from a general BH curve.
  • the magnetic properties of the dust core are evaluated by the magnetic flux density.
  • the specific magnetic field may be appropriately selected from 1 to 20 kA / m.
  • B 2k , B 5k , B 8k , B 10 k, B 16k , B 2 are the magnetic flux densities that can be generated when the dust core is placed in the magnetic field.
  • the dust core of the present invention can be evaluated by expressing k and the like. In the case of the dust core of the present invention, for example, B 2 .
  • High magnetic flux density such as k ⁇ l. 7T, 1.8 ⁇ , 1.9 2. or even 2.0 T, B iok ⁇ 1.5 ⁇ , 1. 6 ⁇ , 1. 7 ⁇ or even 1.8 ⁇ .
  • the saturation magnetization Ms is small, a large magnetic flux density cannot be obtained in a high magnetic field.
  • the saturation magnetization Ms ⁇ 1.9 T in a magnetic field of 1.6 MAZm 2. Since it is over 0T, a stable high magnetic flux density can be obtained even in a high magnetic field.
  • the coercive force b H c can be 150 A / m or less, 130 A / m or less, or even 100 AZm or less.
  • the coercive force b He referred to in this specification is defined as a value measured from a magnetization curve with a maximum magnetic field of 2 kAZm.
  • the Si amount of the magnetic powder according to the present invention is preferably 0.8 to 1.5 mass%.
  • the specific resistance is, in principle, an eigenvalue for each dust core that does not depend on the shape. For a dust core having the same shape, the larger the specific resistance, the lower the eddy current loss.
  • the specific resistance varies depending on the type of insulating coating, the amount of insulating coating (film thickness), and the presence or absence of annealing, but the specific resistance is 50 ⁇ or more, ⁇ ⁇ ⁇ ⁇ or more, 300 ⁇ m or more, and 1000 ⁇ If it is ⁇ m or more, eddy current loss can be sufficiently reduced.
  • the relationship between the specific resistance of the dust core and the magnetic flux density varies depending on the amount of insulation coating on the entire dust core. Specifically, as the amount of insulating film increases, the specific resistance increases and the magnetic flux density decreases. Conversely, as the amount of insulating film decreases, the specific resistance decreases and the magnetic flux density increases. This tendency is basically the same even with an annealed powder magnetic core. By using the above-described insulating film excellent in durability, heat resistance, etc. and reducing the amount of use, a dust core excellent in both magnetic characteristics and electrical characteristics can be obtained.
  • the mechanical properties (particularly strength) of the dust core are also important when considering actual use.
  • a dust core is composed only of mechanically bonded constituent particles covered with an insulating film mainly by plastic deformation, and its strength is not high.
  • the density ratio of the dust core of the present invention is as high as 96% or more, it has practically sufficient strength. For example, it has a 4 point bending strength ⁇ of 5 OMPa or higher, or 10 OMPa or higher. This four-point bending strength ⁇ is not specified in JIS, but can be determined by the green compact test method.
  • the dust core of the present invention can be used for various electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, and rear tuttles. Among them, it is preferable to be used for an electromagnetic device that operates in a low frequency range of 2000 Hz or less (for example, 100 to 2000 Hz). When used in such a low frequency range, the dust core of the present invention exhibits high magnetic properties while significantly suppressing iron loss. As an electromagnetic device used in such a low frequency range, an electric motor (motor) or power generation There is a machine. That is, the dust core of the present invention is preferably an iron core constituting a field or an armature of an electric motor or a generator.
  • the dust core of the present invention is suitable for a drive motor that requires low loss and high output (high magnetic flux density).
  • a drive motor is used in, for example, a hybrid vehicle or an electric vehicle.
  • An example of the iron loss of the dust core of the present invention will be given.
  • the iron loss is as small as 55 W / kg or less, 53 WZkg or less, or 38 W / kg or less. This iron loss is much smaller than the conventional dust core, and is equivalent to or less than the high-performance electrical steel sheet (20 J NEH 1200 (manufactured by JFE Schinole)) used in motors.
  • the hysteresis loss is sufficiently low, 37W / kg or less, 34W / kg or less, and 32W / kg or less.
  • the eddy current loss is 21 W / kg or less, 16 WZkg or less, and further 6 W / kg or less.
  • Magnetic powder As raw material powder (magnetic powder), commercially available with a composition of pure Fe (purity: 99.8%, ABC 100.30 from Heganes), Fe—l% S i and Fe—3 %% Si Atomized powder was prepared. The unit is mass% (hereinafter the same). The brand name and production of each powder are as follows.
  • the volume average particle diameter of each powder was pure iron powder 80 m, Fe-1% Si powder 80 ⁇ m, and Fe-3% Si powder 80 ⁇ m.
  • silicone resin Toray 'Dow Corning' manufactured by Silicone, “SR-2 400 ” was dissolved in 5 times the organic solvent (toluene) to prepare a coating treatment solution. This coating solution was added to the magnetic powder, mixed and stirred, and then dried at 150 ° C. for 2 hours. Thus, a magnetic powder (magnetic core powder) whose surface was covered with a silicone resin coating was obtained. The coating treatment solution was added so that the amount of the silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. In addition, since the mass% of the silicone resin is very small, the above ratio hardly changes even if the entire coated magnetic core powder (or powder magnetic core) is considered to be 100 mass% (the same applies hereinafter). Incidentally, the silicone resin decomposes when heated to 750 ° C., and forms a SiO 2 oxide film (insulating film) on the surface of the magnetic powder.
  • the mold lubrication warm high pressure molding method was performed as follows.
  • a cemented carbide mold having a cavity corresponding to each test piece shape was prepared. This mold was preheated to 150 ° C. with a band heater. In addition, the inner peripheral surface of this mold was pre-treated with TiN coating, and the surface roughness was set to 0.4 Z.
  • Lithium stearate dispersed in an aqueous solution was uniformly applied at a rate of about 10 cm 3 / min to the inner peripheral surface of the heated mold with a spray gun (application process).
  • the aqueous solution used here is obtained by adding a surfactant and an antifoaming agent to water.
  • the surface active agent include polyoxyethylene Roh loose phenyl ether (EO) 6, with respect to (EO) 10 using ⁇ Pi borate Emar Bonn T one 80, respectively entire solution (100 body product 0/0) It was added in increments of 1% by volume.
  • FS Antifoam Using 80, 0.2% by volume was added to the whole aqueous solution (100% by volume).
  • lithium stearate having a melting point of about 225 ° C and a particle size of 20 ⁇ was used.
  • the amount of dispersion was 25 g with respect to 100 cm 3 of the aqueous solution.
  • this was further refined with a ball mill type powder mill (Teflon-coated steel balls: 100 hours), and the resulting stock solution was diluted 20 times to give an aqueous solution having a final concentration of 1% for the application step. did.
  • the above-described Fe-1% Si magnetic powder (volume average particle size: 80 ⁇ m) was coated with a silicone resin film (insulating film) in the same manner as in the first example.
  • the amount of the silicone resin was 0.1% by mass, 0.2% by mass and 0.5% by mass with respect to 100% by mass of the magnetic powder. In this way, three types of magnetic core powders with different amounts of insulating coating were obtained.
  • each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and each of the obtained powder compacts was subjected to the heat treatment described above (7500 ° Cx 3 in nitrogen atmosphere). 0 minutes).
  • Fe-1% Si magnetic powder classified into 8 stages by sieving method was prepared. Specifically, (a) 4 5 ⁇ 6 3 ⁇ ⁇ (b) 6 3 ⁇ 74 ⁇ ⁇ , (c) 7 4 ⁇ 1 0 5 ⁇ ⁇ , (d) 1 0 5 ⁇ 1 5 0 ⁇ ⁇ , (e) 1 5 0 to 2 1 2 ⁇ ⁇ , (f) 2 1 2 to 2 5 0 ⁇ ⁇ , (g) 2 5 0 to 3 0 0, (h) 3 0 0 to 3 5 5 ⁇ ⁇ Classified.
  • volume average particle diameter (a) 5 0 to 60 ⁇ ⁇ (1)) 6 5 to 70 ⁇ m, (c) 8 0 to 100 ⁇ , ( d) 1 2 0 to 1 4 0 / m, (e) 1 7 0 to: 1 9 0 ⁇ ⁇ , (f) 2 2 0 to 24 0 ⁇ , (g) 2 7 0 to 2 9 0 ⁇ , ( h) 3 2 0 to 3 4 0 ⁇ ⁇ .
  • the Fe 1% Si magnetic powder used was the same atomized powder as in the first example.
  • a silicone resin film was formed on each of these magnetic powders in the same manner as in the first example.
  • the amount of silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. In this way, eight kinds of magnetic core powders having different particle diameters were obtained.
  • Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and each of the obtained powder compacts was subjected to the heat treatment described above (7500 ° Cx 3 in nitrogen atmosphere). 0 minutes).
  • F e-1% Si magnetic powder classified into 11 steps by a sieving method was prepared. These classifications are the 8-stage classifications shown in the third embodiment.
  • the Fe-1% Si magnetic powder used is the same atomized powder as in the first example.
  • Each of these powders was rolled to a thickness of 0.05 mm and 0.1 mm with a small rolling mill (DBR-50 S (manufactured by Daito Seisakusho)). About) In this way, oblate flat particles having different particle sizes or thicknesses were obtained.
  • the classification before rolling can be divided into 8 stages, and the thickness after rolling can be divided into 2 stages. Therefore, a total of 22 types of magnetic powder were obtained.
  • a silicone resin film was formed on each of these magnetic powders in the same manner as in the first example.
  • the amount of silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder.
  • the first insulating layer was coated on the magnetic powder by the following method.
  • Sr C0 3 alkaline earth metal oxide
  • H 3 B0 3 boric acid
  • H 3 P0 4 phosphoric acid
  • ⁇ ⁇ 19 g was added to 200 ml of ion-exchanged water and dissolved by stirring to obtain a coating solution (first coating treatment solution).
  • Sr: B: P 1.5: 1: 4 in molar ratio.
  • the second insulating layer was coated on the magnetic powder (hereinafter simply referred to as “first magnetic powder”) on which the first insulating layer was formed by the following method.
  • Silicone resin solution (E Redaukoyungu Co. SR 2400), silica oxide particles (S I_ ⁇ 2) particles (Admatechs Co., 50 nm particle size) were prepared and.
  • the silicone resin solution (SR2400) is a solution in which a silicone resin is dissolved at a ratio of 50% by mass in toluene as a solvent.
  • the second insulating layer (or third insulating layer) is formed on the first magnetic powder as follows.
  • the silicone resin solution was added so that the amount of silicone resin reached the ratio shown in Table 2 (second contact step).
  • the silicone resin solution was further added, and then the silicon force particles were added to the ratio shown in Table 2 (No. 1). 2 contact process).
  • the second insulating layer composed of the silicone resin or the second composed of the silicone resin op-silica particles.
  • Two insulating layers were formed (second insulating layer forming step).
  • various magnetic core powders coated with the first insulating layer and the second insulating layer were obtained.
  • the specific resistance was measured using a plate-shaped test piece.
  • the specific resistance was measured by a four-terminal method using a micro-ohm meter (manufacturer: Hyuetsu Packard (HP), model number: 3442 OA) (hereinafter the same).
  • the static magnetic field characteristics were measured with a DC self-recording magnetometer (manufacturer: Toei Kogyo, model number: MO DEL-TRF).
  • the AC magnetic field characteristics were measured with an AC B-H curve tracer (manufacturer: Iwasaki Tsushinki Co., Ltd., model number: SY-8232).
  • the AC magnetic field characteristics in each table are the measured iron loss when the dust core is placed in a magnetic field of 1.0T at 400Hz or 800Hz. Ph in the table is hysteresis loss, Pe is eddy current loss, Pc is iron loss (Pe + Ph), and Pcm is iron loss by weight.
  • the magnetic flux density in a static magnetic field indicates the magnetic flux density that can be generated when the magnetic field strength is changed sequentially to 2, 5, 8, 10, 16, and 20 kA / m.
  • B 2 k, B sk, B sk, Bi respectively.
  • ⁇ in the table is the maximum permeability.
  • the coercive force b He is a value measured from a magnetization curve at a maximum magnetic field of 2 kA / m. The density was measured by the Archimedes method.
  • Table 1 shows the results of the first example
  • Table 2 shows the results of the second example
  • Table 3 shows the results of the third example
  • Table 4 shows the results of the fourth example
  • Table 5 shows the results of the fifth example. Show.
  • the coercive force b He decreases and the hysteresis loss Ph also decreases.
  • the specific resistance increases and the eddy current loss Pe decreases. Therefore, the iron loss decreases as the test piece with a larger amount of Si in the magnetic powder.
  • the magnetic flux density decreases as the Si amount increases. Therefore, in order to achieve a high balance between low iron loss and high magnetic flux density, it is preferable that Si is contained in the magnetic powder at about 1% by mass (1.5% by mass or less).
  • the amount of silicone resin increases, the specific resistance increases and the eddy current loss Pe decreases. At this time, the coercive force bHc and the hysteresis loss Ph are almost constant. As a result, the iron loss decreases as the amount of silicone resin increases. On the other hand, as the amount of silicone resin increases, the magnetic flux density decreases as a whole. Accordingly, in order to achieve a high balance between low iron loss and high magnetic flux density, the amount of silicone resin is preferably 0.1 to 0.3% by mass.
  • Figure 2 shows the effect of the particle shape and composition of the magnetic powder on the relationship between particle size and eddy current loss. It was found that the eddy current loss becomes smaller as the magnetic powder is made of flat particles and the thickness is smaller.
  • the specific resistance of the specimen showed a sufficiently high value not only after annealing at 500 ° C but also after annealing at 600 ° C.
  • the test piece made of gas atomized powder generally had a higher specific resistance than the test piece made of water atomized powder, despite the small amount of the first insulating layer. Therefore, gas at It has been found that a powder core having a low magnetic loss and a high magnetic flux density can be obtained while using a small amount of insulating coating while reducing the amount of insulating coating.
  • the coercive force decreased as the crystal grain size increased. Therefore, hysteresis loss can be further reduced by using a magnetic powder having a large crystal grain size (for example, a gas atomized powder having a relatively low cooling rate). As a result, when the crystal grain size exceeds 2 ° 0 ⁇ m, the decrease in coercive force approaches saturation. Considering eddy current loss, it is preferable to use magnetic powder having a crystal grain size of 50 to 250 ⁇ m.
  • the AC frequency is 800Hz, but the same applies to other frequencies (2000Hz or less).
  • Heating process 750 ° C x 30 minutes (nitrogen atmosphere)
  • Test density ratio (1.0T / 400Hz) (1.OT / 800Hz)
  • Magnetic powder Fe— 1% Si, Volume average particle size 80 ⁇ m
  • Silicone resin content 0.2% by mass
  • Heating process 750 ° C x 30 minutes (nitrogen atmosphere)
  • Magnetic powder Fe— 1% Si, flat particles
  • Silicone resin content 0.2% by mass
  • Heating process 750 ° C x 30 minutes (nitrogen atmosphere)
  • rOverJ means that the specific resistance value has exceeded the measurement range.
  • (*) Means annealing in an Ar atmosphere in a vacuum furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A dust core formed by press-forming a magnetic core powder produced by coating magnetic powder containing Fe as a main component with an insulating film. The dust core is characterized in that the magnetic powder contains 1.5 mass% or less of Si, the volume average particle size is 80 to 300 μm, the density ratio is 96% or more, and the dust core is used in an alternating magnetic field of a frequency of 100 to 2,000 Hz. The dust core exhibits a low iron loss and high magnetic flux density equivalent or superior to those of conventionally used magnetic steel sheets when the dust core is used at such a frequency.

Description

明細書  Specification
圧粉磁心およびその製造方法  Powder magnetic core and manufacturing method thereof
技術分野 Technical field
【0 0 0 1】  [0 0 0 1]
本発明は、 低損失で磁気特性に優れる圧粉磁心およびその製造方法に関するも のである。 背景技術  The present invention relates to a dust core having low loss and excellent magnetic properties, and a method for producing the same. Background art
【0 0 0 2】  [0 0 0 2]
変圧器 (トランス) 、 電動機 (モータ) 、 発電機、 スピーカ、 誘導加熱器、 各 種ァクチユエータ等、 我々の周囲には電磁気を利用した製品が多々ある。 これら の製品は交番磁界を利用したものが多く、 局所的に大きな交番磁界を効率的に得 るために、 通常、 磁心 (軟磁石) をその交番磁界中に設けている。  There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various types of actuators. Many of these products use an alternating magnetic field, and in order to obtain a large alternating magnetic field efficiently, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.
【0 0 0 3】  [0 0 0 3]
このような磁心は、 その性質上、 先ず、 交番磁界中で大きな磁束密度が得られ ることが求められる。 次に、 交番磁界中で使用したときに、 その周波数に応じて 生じる高周波損失 (以下、 磁心の材質に拘らず、 単に 「鉄損」 という。 ) が少な いことが求められる。 この鉄損には、 渦電流損失、 ヒステリシス損失および残留 損失があるが、 主に問題となるのは、 渦電流損失とヒステリシス損失である。 さ らに、 磁心が交番磁界に追従して素早く高磁束密度となるにはその保磁力が小さ いことも重要である。 なお、 この保磁力を低減することで、 (初期) 透磁率の向 上とヒステリシス損失の低減とを併せて図れる。  Due to the nature of such a magnetic core, it is first required that a large magnetic flux density be obtained in an alternating magnetic field. Next, when it is used in an alternating magnetic field, it is required that the high-frequency loss (hereinafter simply referred to as “iron loss”) regardless of the material of the magnetic core is reduced. This iron loss includes eddy current loss, hysteresis loss and residual loss, but the main problems are eddy current loss and hysteresis loss. It is also important that the coercive force is small in order for the magnetic core to follow the alternating magnetic field and quickly reach a high magnetic flux density. By reducing this coercive force, it is possible to improve both (initial) permeability and hysteresis loss.
【0 0 0 4】  [0 0 0 4]
ところが、 高磁束密度、 低渦電流損失および低ヒステリシス損失を同時に両立 させることは容易ではない。 単なる鉄塊は勿論、 薄いケィ素鋼板を積層したもの では、 高磁束密度が得られたとしても、 渦電流損失やヒステリシス損失が大きく なる。  However, it is not easy to simultaneously achieve high magnetic flux density, low eddy current loss, and low hysteresis loss. In addition to simple iron ingots, eddy current loss and hysteresis loss increase even if a high magnetic flux density is obtained when thin steel sheets are laminated.
【0 0 0 5】  [0 0 0 5]
最近では、 絶縁被膜で被覆した磁性粉末 (磁心用粉末) を加圧成形して得た、 高磁気特性で低損失の圧粉磁心が開発されつつある (特許文献 1、 特許文献 2) 。 この圧粉磁心の鉄損をさらに低減するために、 様々な形態や組成をもつ磁性粉 末や絶縁被膜が開発されている (特許文献 3〜 13) 。 Recently, it was obtained by pressure molding magnetic powder (magnetic core powder) coated with an insulating film. Dust cores with high magnetic properties and low loss are being developed (Patent Document 1, Patent Document 2). In order to further reduce the iron loss of the dust core, magnetic powders and insulating coatings having various forms and compositions have been developed (Patent Documents 3 to 13).
【0006】  [0006]
【特許文献 1】 特表 2000一 5 04785号公報  [Patent Document 1] Special Table 2000 1 5 04785 Publication
【特許文献 2】 特開 2003一 2 97624号公報  [Patent Document 2] Japanese Patent Laid-Open No. 2003-97624
【特許文献 3】 特開 2001一 8 521 1号公報  [Patent Document 3] JP 2001-8521 1
【特許文献 4】 特開 2003一 3 03711号公報  [Patent Document 4] Japanese Patent Laid-Open No. 2003 03 03711
【特許文献 5】 特許 2710 1 5 2号公報  [Patent Document 5] Japanese Patent No. 2710 1 5 2
【特許文献 6】 特開 2000 ― 3 0924号公報  [Patent Document 6] Japanese Patent Application Laid-Open No. 2000-3 0924
【特許文献 7】 特開平 1 1― 54 314号公報  [Patent Document 7] Japanese Patent Laid-Open No. 11-54314
【特許文献 8】 特開 2002 ― 4 31 13号公報  [Patent Document 8] Japanese Patent Application Laid-Open No. 2002-43113
【特許文献 9】 特開 2002 ― 1 41213号公報  [Patent Document 9] Japanese Patent Application Laid-Open No. 2002-1 41213
【特許文献 10 】 特公平 7— 1 5 124号公報  [Patent Document 10] Japanese Patent Publication No. 7-1 5 124
【特許文献 1 1 】 特開 2003 ― 272909号公報  [Patent Document 1 1] Japanese Unexamined Patent Publication No. 2003-272909
【特許文献 12】 特開 2003 ― 105403号公報  [Patent Document 12] Japanese Patent Application Laid-Open No. 2003-105403
【特許文献 13】 特開 200 1 ― 102207号公報 発明の開示  [Patent Document 13] Japanese Patent Laid-Open No. 2001-102207 Disclosure of Invention
【課題】  【Task】
【0007】  [0007]
ところが、 磁性粉末や絶縁被膜に関する個々の提案はあるとしても、 使用周波 数域が数 kHz以下程度の低周波数域で使用される圧粉磁心に関していえば、 全 体的な磁気特性の向上と鉄損の低減とを高次元で両立させたものはこれまで存在 しなかった。  However, even though there are individual proposals for magnetic powder and insulation coating, when it comes to dust cores used in the low frequency range where the operating frequency range is about several kHz or less, the improvement in overall magnetic properties and iron Until now, there has never been a combination of reducing loss at a high level.
【0008】  [0008]
従来は、 上記特許文献 6、 9、 11、 12、 13等にもあるように、 使用周波 数が 20〜100 kH z前後の高周波数域で用いられるリァクトル用として、 圧 粉磁心の高磁束密度化と低損失化を図るものが殆どであった。 このような高周波 数域で使用される圧粉磁心の鉄損を低減するには、 その周波数の 2乗に比例して 大きくなる渦電流損失の低減が重要とされていた。 Conventionally, as described in the above Patent Documents 6, 9, 11, 12, 13, etc., the high magnetic flux density of the powder magnetic core is used for reactors used in the high frequency range around 20 to 100 kHz. Most of them were designed to reduce the loss and loss. Such high frequency In order to reduce the iron loss of dust cores used in several regions, it was important to reduce the eddy current loss, which increases in proportion to the square of the frequency.
【0009】  [0009]
これに対して、 低周波数域で使用される圧粉磁心の鉄損を低減するには、 その 周波数に比例して大きくなるヒステリシス損失の低減が重要となる。 高周波数域 での使用を前提に開発された従来の圧粉磁心を、 そのまま低周波数域で使用され る圧粉磁心に適用しても、 好ましい特性は得られない。  On the other hand, in order to reduce the iron loss of the dust core used in the low frequency range, it is important to reduce the hysteresis loss that increases in proportion to the frequency. Even if a conventional dust core developed on the premise of use in a high frequency range is applied to a dust core used in a low frequency range as it is, preferable characteristics cannot be obtained.
【0010】  [0010]
本発明は、 このような事情に鑑みて為されたものであり、 比較的低い周波数域 で使用されることを前提に、 高磁気特性 (高磁束密度) および低損失な圧粉磁心 およびその製造方法を提供することを目的とする。  The present invention has been made in view of such circumstances, and on the premise that it is used in a relatively low frequency range, a high magnetic property (high magnetic flux density) and a low loss dust core and its manufacture It aims to provide a method.
【手段および作用効果】  [Means and effects]
【001 1】  [001 1]
本発明者はこの課題を解決すべく鋭意研究し、 試行錯誤を重ねた結果、 低周波 数域で使用される圧粉磁心の高磁束密度化およぴ低損失化を図るのに適した、 磁 性粉末の粒子形態、 組成等を新たに見出し、 本発明を完成させるに至ったもので ある。  The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, the present inventor is suitable for increasing the magnetic flux density and reducing the loss of the dust core used in the low frequency range. The inventors have newly found the particle form and composition of the magnetic powder and have completed the present invention.
【001 2】  [001 2]
(圧粉磁心)  (Dust core)
すなわち、 本発明の圧粉磁心は、 鉄 (F e) を主成分とする磁性粉末を絶縁被 膜で被覆した磁心用粉末を加圧成形してなる圧粉磁心において、  That is, the powder magnetic core of the present invention is a powder magnetic core obtained by pressure-molding a magnetic core powder in which a magnetic powder mainly composed of iron (F e) is coated with an insulating film.
前記磁性粉末は、 ケィ素 (S i) を 1. 5質量%以下含み、 体積平均粒径が 8 0〜 300 μ mであり、 該磁性粉末の真密度 ( p。) に対する該圧粉磁心の嵩密 度 (P ) の比である密度比 ( / 。:。/。) が 96%以上であり、 周波数が 10 0〜2000Hzの交番磁界中で使用されることを特徴とする。  The magnetic powder contains 1.5% by mass or less of silicon (S i), has a volume average particle size of 80 to 300 μm, and has a powder magnetic core with respect to the true density (p.) Of the magnetic powder. It is characterized by being used in an alternating magnetic field having a density ratio (/.:/.), Which is a ratio of bulk density (P), of 96% or more and a frequency of 100 to 2000 Hz.
【0013】  [0013]
本発明の圧粉磁心は、 100〜 2000Hzといった比較的低周波数域の交番 磁界中で使用した場合に、 磁気特性に優れるのみならず鉄損も非常に少ない。 本 発明の圧粉磁心がこのような優れた特性を発現する理由は必ずしも定かではない が、 現状次のよう考えられる。 The dust core of the present invention has not only excellent magnetic properties but also very low iron loss when used in an alternating magnetic field of a relatively low frequency range of 100 to 2000 Hz. The reason why the dust core of the present invention exhibits such excellent characteristics is not necessarily clear. However, the current situation is considered as follows.
【0 0 1 4】  [0 0 1 4]
先ず、 本発明の圧粉磁心を構成する磁性粉末は、 強磁性を示す F eを主成分と し、 常磁性である S iの含有量が少ない。 さらに、 圧粉磁心の密度比は 9 6 %以 上と非常に高密度である。 両者の融合によって、 本発明の圧粉磁心は優れた磁気 特性を発現するに至ったと考えられる。  First, the magnetic powder composing the powder magnetic core of the present invention is mainly composed of Fe exhibiting ferromagnetism and has a small content of Si, which is paramagnetic. Furthermore, the density ratio of the dust core is very high, 96% or more. It is considered that by the fusion of both, the dust core of the present invention has developed excellent magnetic properties.
【0 0 1 5】  [0 0 1 5]
次に、 本発明の圧粉磁心を構成する磁性粉末はその粒径が比較的大きいので、 磁性粉末の保磁力は小さくなる。 この結果、 圧粉磁心のヒステリシス損失の低減 が図られる。 例えば、 磁性粉末がアトマイズ粉の場合、 粒径が大きいと結晶粒径 も通常大きくなり、 磁化されたときの磁壁の移動が容易となり、 さらなる保磁力 の低減ひいてはヒステリシス損失の低減が図られる。  Next, since the magnetic powder constituting the dust core of the present invention has a relatively large particle size, the coercive force of the magnetic powder is reduced. As a result, the hysteresis loss of the dust core can be reduced. For example, when the magnetic powder is atomized powder, the larger the grain size, the larger the crystal grain size, which facilitates the movement of the domain wall when magnetized, further reducing the coercive force and thus reducing the hysteresis loss.
【0 0 1 6】  [0 0 1 6]
なお、 磁性粉末の粒径拡大は、 体積比抵抗値 (以下、 適宜単に 「比抵抗」 とい う。 ) を低下させ、 渦電流損失の増加要因となる。 し力 し、 本発明の圧粉磁心は 前述した低周波数域での使'用を前提としているので、 鉄損全体に占めるその影響 は小さい。 つまり、 本発明の圧粉磁心によれば、 磁性粉末の粒径を上述した範囲 内とすることで、 ヒステリシス損失が大きく低減されて、 結果的に全体として、 鉄損も十分に低減される。  Increasing the particle size of the magnetic powder lowers the volume resistivity (hereinafter simply referred to as “resistivity” as appropriate) and increases eddy current loss. However, since the dust core of the present invention is premised on the use in the low frequency range described above, its influence on the total iron loss is small. That is, according to the dust core of the present invention, by setting the particle size of the magnetic powder within the above-described range, the hysteresis loss is greatly reduced, and as a result, the iron loss is sufficiently reduced as a whole.
【0 0 1 7】  [0 0 1 7]
(圧粉磁心の製造方法)  (Production method of dust core)
本発明は、 上記圧粉磁心のみならず、 その製造方法としても把握できる。 すなわち、 本発明は、 F eを主成分とし S iが 1 . 5質量%以下であると共に 体積平均粒径が 8 0〜 3 0 0 μ mである磁性粉末を絶縁被膜で被覆した磁心用粉 末を金型に充填する充填工程と、 該金型内の磁心用粉末を加圧成形する成形工程 とからなり、 上述した本発明の圧粉磁心が得られることを特徴とする圧粉磁心の 製造方法としても良い。 図面の簡単な説明 図 1は、 磁性粉末の粒径と鉄損との関係を示すグラフである。 The present invention can be grasped not only as the dust core but also as a manufacturing method thereof. That is, the present invention provides a magnetic core powder in which a magnetic powder having Fe as a main component and having Si of 1.5% by mass or less and having a volume average particle size of 80 to 300 μm is coated with an insulating coating. A powder magnetic core comprising: a filling step of filling a powder into a mold; and a molding step of pressure-molding a powder for a magnetic core in the mold, wherein the above-described dust core of the present invention is obtained. It is good also as a manufacturing method. Brief Description of Drawings Figure 1 is a graph showing the relationship between the particle size of magnetic powder and iron loss.
図 2は、 磁性粉末の粒径と渦電流損失との関係を示すグラフである。  Figure 2 is a graph showing the relationship between the particle size of magnetic powder and eddy current loss.
図 3は、 磁性粉末の結晶粒径と保磁力との関係を示すダラフである。 発明を実施するための最良の形態  Fig. 3 is a draft showing the relationship between the crystal grain size of magnetic powder and the coercive force. BEST MODE FOR CARRYING OUT THE INVENTION
【実施形態】  Embodiment
【0018】  [0018]
次に、 実施形態を挙げ、 本発明をより詳しく説明する。 なお、 以下の実施形態 を含め、 本明細書で説明する内容は、 本発明の圧粉磁心のみならずその製造方法 にも、 適宜適用できるものであることを断っておく。  Next, the present invention will be described in more detail with reference to embodiments. It should be noted that the contents described in this specification, including the following embodiments, are applicable not only to the dust core of the present invention but also to the manufacturing method thereof.
【0019】  [0019]
(1) 磁性粉末  (1) Magnetic powder
本発明に係る磁性粉末は、 F eを主成分として S iを 1. 5質量%以下含有す る粉末からなる。 S iは粉末粒子の電気抵抗率を高める元素である。 S iを含有 した磁性粉末からなる圧粉磁心は、 その比抵抗が高く、 渦電流損失が低減する。 但し、 S i含有量が多くなると、 圧粉磁心の磁気特性 (磁束密度) は低下し易い 。 そこで、 本発明では、 磁性粉末中の S i含有量を抑制して圧粉磁心の磁束密度 を高めた。 ここで本発明の場合、 磁性粉末中の S i含有量が減少しても、 その磁 性粉末自体は絶縁被膜によつて被覆されているので、 圧粉磁心の渦電流損失が急 増することはない。 さらに、 渦電流損失は交番磁界の周波数 (f ) の 2乗 (f 2 ) に比例して増大するが、 本発明の圧粉磁心の場合、 使用周波数域が低いので、 渦電流損失自体が全体的な鉄損に占める割合はそもそも低い。 The magnetic powder according to the present invention is composed of a powder containing Fe as a main component and containing 1.5% by mass or less of Si. Si is an element that increases the electrical resistivity of the powder particles. A dust core made of magnetic powder containing Si has a high specific resistance and reduces eddy current loss. However, when the Si content increases, the magnetic properties (magnetic flux density) of the dust core are likely to decrease. Therefore, in the present invention, the Si content in the magnetic powder is suppressed to increase the magnetic flux density of the dust core. Here, in the case of the present invention, even if the Si content in the magnetic powder is reduced, the magnetic powder itself is covered with the insulating coating, so that the eddy current loss of the dust core increases rapidly. There is no. Furthermore, the eddy current loss increases in proportion to the square of the frequency (f) of the alternating magnetic field (f 2 ). However, in the case of the dust core of the present invention, the operating frequency range is low, so the eddy current loss itself is In the first place, the ratio of the total iron loss is low.
【0020】  [0020]
磁性粉末中の S i含有量は、 磁性粉末全体を 100質量%として 1. 5質量% 以下、 1. 2質量%以下、 1. 0質量%以下、 0. 8質量%さらには 0. 5質量 %であると好ましい。 圧粉磁心の磁気特性を高める観点から、 磁性粉末は純度 9 9. 5%以上、 99. 7%以上さらには 99. 8%以上の純鉄粉であると好まし い。 なお、 磁性粉末は、 S iと残部が F eと不可避不純物とからなるものであつ ても良いし、 適宜、 磁気特性向上元素または鉄損低減元素等を含有しても良い。 そのような元素として、 例えば、 アルミニウム (A 1) 、 ニッケル (N i ) 、 コ バルト (Co) 等がある。 The Si content in the magnetic powder is 1.5% by mass or less, 1.2% by mass or less, 1.0% by mass or less, 0.8% by mass, or 0.5% by mass with respect to 100% by mass of the entire magnetic powder. % Is preferred. From the viewpoint of enhancing the magnetic properties of the dust core, the magnetic powder is preferably pure iron powder with a purity of 99.5% or more, 99.7% or more, and 99.8% or more. The magnetic powder may be composed of Si, the balance being Fe and inevitable impurities, and may contain a magnetic property improving element or an iron loss reducing element as appropriate. Examples of such elements include aluminum (A 1), nickel (N i), and cobalt (Co).
【0021】  [0021]
本発明の磁性粉末は、 体積平均粒径が 80〜 300 μ mの粒子からなる。 これ により、 低周波数域で使用される圧粉磁心の渦電流損失を抑制しつつも、 ヒステ リシス損失の大幅な低減を図ることができる。 この体積平均粒径が過小ではヒス テリシス損失の低減を図ることが困難となる。 一方、 体積平均粒径が過大では、 比抵抗値が低下して渦電流損失が増大するので好ましくない。 体積平均粒径の下 限は、 100 μπι、 1 20 imさらに 1 50 μπιであると好ましい。 体積平均粒 径の上限は、 280 μηι、 250 μπιさらには 200 μπιであると好ましい。  The magnetic powder of the present invention comprises particles having a volume average particle size of 80 to 300 μm. This makes it possible to significantly reduce the hysteresis loss while suppressing the eddy current loss of the dust core used in the low frequency range. If the volume average particle size is too small, it is difficult to reduce the hysteresis loss. On the other hand, an excessive volume average particle size is not preferable because the specific resistance value decreases and eddy current loss increases. The lower limit of the volume average particle diameter is preferably 100 μπι, 120 im, and further preferably 150 μπι. The upper limit of the volume average particle diameter is preferably 280 μηι, 250 μπι, or even 200 μπι.
【0022】  [0022]
本明細書でいう体積平均粒径とは、 所定数 (Ν= 100) の構成粒子それぞれ について求めた体積粒径 (d。) の平均値 (∑ d。/N) である。 体積粒径 (d。 ) は、 構成粒子 1つあたりの質量 (m) と同じ質量をもつ中実球体の直径として 定義される。 つまり、 d。= (3m/4 π o) 1/3 である。 ここで、 p。は磁性 粉末の組成から求まる真密度である。 The volume average particle diameter referred to in this specification is an average value (∑ d./N) of volume particle diameters (d.) Obtained for each of a predetermined number (Ν = 100) of the constituent particles. The volume particle size (d.) Is defined as the diameter of a solid sphere with the same mass as the mass per constituent particle (m). D. = (3m / 4πo) 1/3 . Where p. Is the true density determined from the composition of the magnetic powder.
【0023】  [0023]
磁性粉末の粒子形状は特に問わないが、 平均厚みが 20〜 100 mさらには 20〜 50 mの略小判状をした扁平粒子からなると好適である。 扁平粒子から なる磁性粉末を使用すると、 圧粉磁心の扁平粉の長尺方向に流れる磁束に対して 渦電流の発生を抑制できるため、 渦電流損失を一層低減できるからである。  The particle shape of the magnetic powder is not particularly limited, but it is preferably composed of flat particles having an average thickness of 20 to 100 m, more preferably 20 to 50 m. This is because, when magnetic powder made of flat particles is used, eddy current generation can be suppressed with respect to the magnetic flux flowing in the longitudinal direction of the flat powder of the dust core, and eddy current loss can be further reduced.
【0024】  [0024]
扁平粒子の厚み (h。) は、 最大厚み (h と最小厚み (ha) の平均 ( (hi + h2) /2) から求まり、 平均厚みは所定数 (N= 1 00) の扁平粒子それぞ れについて求めた厚み (h。) の平均値 (∑h。ノ N) として求まる。 The thickness (h.) Of the flat particle is obtained from the average ((hi + h 2 ) / 2) of the maximum thickness (h and minimum thickness (ha), and the average thickness is a predetermined number (N = 100) of flat particles It is obtained as the average value (∑h. ノ N) of the thickness (h.) Obtained for each.
【0025】  [0025]
なお、 扁平粒子は、 例えば、 略球状をした粉末粒子を圧延、 鍛造等によって押 潰すことにより製造できる。 上記体積平均粒径をもつ粉末粒子を平均厚みが 20 〜 1 00 μ mの略小判状にした場合、 その二次元平均粒径は 80〜1 500 μηι 程度となる。 二次元平均粒径とは、 所定数 (N) の構成粒子それぞれについて長 径 (d, i) およぴ短径 (d, 2) の平均値である二次元粒径 (d, 。= (d, ι + d' 2) /2) を求め、 さらに所定数 (N) についてその平均値 (∑ d' 。ZN) を求めたものである。 長径は構成粒子の最長径であり、 短径は長径の中点を通り 長径方向に直交する方向で測定した長さである。 二次元粒径の測定面は扁平粒子 の厚み方向の直交面とする。 The flat particles can be produced, for example, by crushing substantially spherical powder particles by rolling, forging, or the like. When the powder particles having the above volume average particle size are formed into a substantially oval shape with an average thickness of 20 to 100 μm, the two-dimensional average particle size is 80 to 1 500 μηι. It will be about. The two-dimensional average particle diameter is the average value of the major axis (d, i) and minor axis (d, 2 ) for each of a predetermined number (N) of the constituent particles (d,. = ( d, ι + d ' 2 ) / 2), and the average value (∑ d' .ZN) for a given number (N). The major axis is the longest diameter of the constituent particles, and the minor axis is the length measured in the direction perpendicular to the major axis direction through the midpoint of the major axis. The measurement surface for the two-dimensional particle diameter is the plane perpendicular to the thickness direction of the flat particles.
【00 26】  [00 26]
磁性粉末は、 構成粒子の単位質量あたりの表面積である比表面積を平均した平 均比表面積が 5 X 1 0一3
Figure imgf000009_0001
以下さらには 3 X 1 0— 3m2Z g以下であると好 適である。 平均比表面積が過大になると、 構成粒子の表面を被覆する絶縁被膜の 全体量がその膜厚に対して増加し、 圧粉磁心の磁気特性の低下を招く。 その絶縁 被膜の全体量を一定にして考えると、 膜厚が相対的に薄くなる。 その結果、 圧粉 磁心の比抵抗が低下して渦電流損失の増加を招く。 いずれにしても、 平均比表面 積の増加は好ましくない。
Magnetic powder is flat Hitoshihi surface area obtained by averaging the specific surface area is the surface area per unit mass of constituent particles 5 X 1 0 one 3
Figure imgf000009_0001
In the following, it is preferable that it is 3 X 10 − 3 m 2 Z g or less. When the average specific surface area is excessive, the total amount of the insulating coating covering the surface of the constituent particles increases with respect to the film thickness, and the magnetic properties of the dust core are deteriorated. If the total amount of the insulating film is considered constant, the film thickness becomes relatively thin. As a result, the specific resistance of the dust core decreases and eddy current loss increases. In any case, an increase in the average specific surface area is not preferable.
【00 2 7】  [00 2 7]
本明細書でいう平均比表面積は、 所定数 (N= 1 00) の構成粒子について求 めた比表面積の平均値である。 比表面積は (∑ S。' ) ZNにより求まる。 ここ で、 S 0, = S/ (V · p ) =4 π r (4 π r 3 p/3) = 3 / ( p · r ) 、 r :粉末半径、 p :粉末定数である。 The average specific surface area as used herein is an average value of specific surface areas obtained for a predetermined number (N = 1100) of constituent particles. The specific surface area is determined by (∑ S. ') ZN. Here, S 0, = S / ( V · p) = 4 π r (4 π r 3 p / 3) = 3 / (p · r), r: powder radius, p: a powder constant.
【0 0 28】  [0 0 28]
磁性粉末の構成粒子の形状が球状に近い程、 その単位質量あたりの表面積は小 さくなる。 このような磁性粉末としてアトマイズ粉がある。 特に、 冷却速度の大 きな水ァトマイズ粉よりも、 冷却速度の小さい水ガスァトマイズ粉さらにはガス ァトマイズ粉の方が球状に近い粒子が得られるので好ましい。  The closer the shape of the constituent particles of the magnetic powder is to a spherical shape, the smaller the surface area per unit mass. An example of such magnetic powder is atomized powder. In particular, water gas atomized powder having a low cooling rate and gas atomized powder are more preferable than water atomized powder having a high cooling rate because particles having a nearly spherical shape can be obtained.
【00 29】  [00 29]
磁性粉末は、 構成粒子の平均結晶粒径が 50 / m以上さらには 200 X m以上 であると好適である。 構成粒子の結晶粒径が大きい程、 磁壁の移動が容易となり 保磁力が低下するので、 ヒステリシス損失の低減を図り易い。 ここでいう平均結 晶粒径は、 所定数 (N= 1 00) の構成粒子について求めた結晶粒径の平均値で ある。 各構成粒子あたりの結晶粒径は全相観察の画像解析から求めた。 The magnetic powder preferably has an average crystal grain size of the constituent particles of 50 / m or more, further 200 Xm or more. The larger the crystal grain size of the constituent particles, the easier the movement of the domain wall and the lower the coercive force, making it easier to reduce the hysteresis loss. The average crystal grain size here is an average value of crystal grain sizes obtained for a predetermined number (N = 1100) of constituent particles. is there. The crystal grain size per each constituent particle was obtained from image analysis of all phase observation.
【0 0 3 0】  [0 0 3 0]
磁性粉末の構成粒子の結晶粒径は、 結晶が成長し易いもの程大きい。 アトマイ ズ粉を例にとれば、 冷却速度の大きな水ァトマイズ粉よりも、 冷却速度の小さい 水ガスァトマイズ粉さらにはガスァトマイズ粉の方が好ましい。 上述した比表面 積および結晶粒径の双方から、 磁性粉末がガスァトマイズ粉からなると非常に好 ましい。  The crystal grain size of the constituent particles of the magnetic powder is larger as the crystal grows easily. Taking atomized powder as an example, water gas atomized powder having a low cooling rate and gas atomized powder are more preferable than water atomized powder having a large cooling rate. In view of both the specific surface area and the crystal grain size described above, it is highly preferred that the magnetic powder is made of gastomized powder.
【0 0 3 1】  [0 0 3 1]
なお、 磁性粉末がガスァトマイズ粉からなるとしても、 磁性粉末は必ずしもそ のガスアトマイズ時の形態である必要はない。 つまり、 磁性粉末は、 ガスアトマ ィズ粉を圧延等した前述の扁平粒子からなる粉末であっても良い。 ガスァトマイ ズ粉に圧延処理等を施すことで、 処理前のガスアトマイズ粉に比較して、 構成粒 子の比表面積が多少増加し得る。 しかし、 粒子表面が歪な水アトマイズ粉と比較 すれば、 ガスァトマイズ粉からなる構成粒子の比表面積は遙かに小さい。  Even if the magnetic powder is made of gas atomized powder, the magnetic powder is not necessarily in the form at the time of gas atomization. That is, the magnetic powder may be a powder composed of the above-described flat particles obtained by rolling a gas atomized powder. By subjecting the gas atomized powder to rolling or the like, the specific surface area of the constituent particles can be slightly increased compared to the gas atomized powder before the treatment. However, the specific surface area of the constituent particles made of gas atomized powder is much smaller than that of water atomized powder with a distorted particle surface.
【0 0 3 2】  [0 0 3 2]
さらに、 磁性粉末を高圧成形する場合を考えれば、 上述した理由以外にも、 ガ スァトマイズ粉のような表面形状の滑らかな粒子を使用する方が、 渦電流損失お よびヒステリシス損失のさらなる低減を図れるので好ましい。 何故なら、 磁性粉 末を加圧成形する際、 構成粒子の表面が滑らかであると、 相互に接触する粒子間 での攻撃性が低下する。 例えば、 ある粒子の突起等が隣接する他の粒子へ突刺さ り、 各粒子表面に形成されていた絶縁被膜が破壊されるといった状況が回避され る。 その結果、 本来予定した比抵抗が得易く、 圧粉磁心の渦電流損失の低減を図 り易い。  Furthermore, considering the case of high-pressure molding of magnetic powder, in addition to the reasons described above, eddy current loss and hysteresis loss can be further reduced by using smooth particles with a surface shape such as gasified powder. Therefore, it is preferable. This is because, when the magnetic powder is pressed, if the surface of the constituent particles is smooth, the aggression between the particles in contact with each other decreases. For example, it is possible to avoid a situation in which a projection or the like of a certain particle pierces another adjacent particle, and the insulating coating formed on the surface of each particle is destroyed. As a result, it is easy to obtain the originally designed specific resistance, and it is easy to reduce the eddy current loss of the dust core.
【0 0 3 3】  [0 0 3 3]
構成粒子の表面が滑らかであると、 構成粒子の一部にのみに大きな歪みや応力 が加わることも抑制されるので、 残留歪や残留応力に起因した保磁力やヒステリ シス損失の増加も少なくなる。 このような事情は、 磁性粉末が前述した扁平粒子 からなる場合でも同様である。  If the surface of the constituent particles is smooth, it is possible to suppress large strain and stress from being applied only to a part of the constituent particles, so that the increase in coercive force and hysteresis loss due to residual strain and residual stress is reduced. . Such a situation is the same even when the magnetic powder is composed of the above-described flat particles.
【0 0 3 4】 上述したァトマイズ粉の製造方法の一例を示すと、 ガスアトマイズ粉は所定組 成の溶湯流にガスを吹付けてァトマイズ化するガス噴霧ァトマイズ法により得ら れる。 水ァトマイズ粉はその溶湯流に水を吹付けてァトマイズ化する水噴霧ァト マイズ法により得られる。 [0 0 3 4] An example of the above-described method for producing atomized powder will be described. Gas atomized powder can be obtained by a gas spray atomization method in which gas is sprayed onto a molten metal stream having a predetermined composition to make a atomized powder. Water atomized powder is obtained by a water spray atomization method in which water is sprayed onto the molten metal stream to atomize it.
【0 0 3 5】  [0 0 3 5]
勿論、 磁性粉末に上述したアトマイズ粉以外の粉末を用いても良い。 例えば、 合金インゴットをボールミル等で粉砕した粉碎粉を使用しても良い。 粉砕粉を使 用する場合、 その後の熱処理 (例えば、 不活性雰囲気中 (N 2ガス中、 A rガス 中等) で 8 0 0 °C以上の加熱処理) によって結晶粒径を大きくすることも可能で あるし、 圧延処理等によって、 表面形状の比較的滑らかな扁平粒子からなる粉末 を得ることも可能である。  Of course, a powder other than the atomized powder described above may be used as the magnetic powder. For example, powdered powder obtained by grinding an alloy ingot with a ball mill or the like may be used. When pulverized powder is used, the crystal grain size can be increased by subsequent heat treatment (for example, heat treatment at 800 ° C or higher in an inert atmosphere (N 2 gas, Ar gas, etc.)) However, it is also possible to obtain a powder composed of flat particles having a relatively smooth surface shape by rolling or the like.
【0 0 3 6】  [0 0 3 6]
( 2 ) 絶縁被膜  (2) Insulation coating
磁性粉末の表面を被覆する絶縁被膜は、 圧粉磁心の比抵抗を高め、 その渦電流 損失を低減させる。 絶縁被膜が厚いほど、 圧粉磁心の比抵抗は大きくなる。 しか し、 絶縁被膜があまり厚いと、 圧粉磁心の磁束密度は低下する。 圧粉磁心の磁束 密度と比抵抗とを確保する観点から、 膜厚は、 1 0〜1 0 0 n mさらには 1 0〜 5 0 n mであると好ましい。 その存在割合を質量%でいうなら、 絶縁被膜は、 圧 粉磁心全体を 1 0 0質量%としたときに、 0 . 1〜 0 . 3質量%であると好まし い。 これを体積%に換算すると、 圧粉磁心全体を 1 0 0体積%としたときに絶縁 被膜は 1〜3体積。 /0さらには 1 . 5〜2 . 5体積%であると好ましい。 なお、 言 うまでもないことであるが、 絶縁被膜は本来、 粉末粒子の一粒一粒毎に形成され ていることが理想的である。 し力 し、 実際には、 当然に、 数個の粒子が固まった 状態でその周りに絶縁被膜が形成されていることもあり、 このような状態も本発 明の想定するところである。 The insulating coating covering the surface of the magnetic powder increases the specific resistance of the dust core and reduces its eddy current loss. The thicker the insulation film, the greater the specific resistance of the dust core. However, if the insulating coating is too thick, the magnetic flux density of the dust core will decrease. From the viewpoint of ensuring the magnetic flux density and specific resistance of the dust core, the film thickness is preferably 10 to 100 nm, more preferably 10 to 50 nm. In terms of the mass ratio, the insulating coating film is preferably 0.1 to 0.3 mass% when the entire powder magnetic core is 10 mass%. Converting this to volume%, the insulating coating is 1 to 3 volume when the entire powder magnetic core is 100 volume%. / 0 Furthermore, it is preferable that it is 1.5 to 2.5% by volume. Needless to say, it is ideal that the insulating coating is originally formed for each powder particle. However, in fact, of course, there are cases where several particles are solidified and an insulating film is formed around them, and this state is also assumed by the present invention.
【0 0 3 7】  [0 0 3 7]
絶縁被膜には、 酸化被膜、 リン酸塩被膜、 樹脂被膜 (シリコーン樹脂、 アミド 樹脂、 イミ ド樹脂、 フエノール樹脂等の被膜) がある。 本発明の絶縁被膜はいず れでも良いが、 耐熱性を考慮すると、 酸化被膜やリン酸塩被膜が好ましい。 【0038】 Insulating coatings include oxide coatings, phosphate coatings, and resin coatings (coating of silicone resin, amide resin, imide resin, phenol resin, etc.). Any of the insulating coatings of the present invention may be used, but an oxide coating or a phosphate coating is preferable in view of heat resistance. [0038]
酸化被膜には、 代表的な S i 02被膜の他、 A 1203被膜、 T i 02被膜、 Z r 02、 これらの複合酸化物系絶縁被膜 (F e S i〇3、 F eA l 24、 N i F e 2 04などの被膜) 等がある。 磁性粉末が S iを 0. 3〜1. 5質量%含有する場 合、 S i O2被膜は磁性粉末の表面酸化によっても形成され得る。 しかし、 所定 量の S i O2被膜を磁性粉末の表面に確実に設けるには、 シリコーン樹脂を用い ると良い。 In addition to the typical S i 0 2 coating, the oxide coating includes A 1 2 0 3 coating, T i 0 2 coating, Z r 0 2 , and these complex oxide insulating coatings (F e S i 0 3 , F eA l 2 0 4 , Ni F e 2 0 4 etc.). When the magnetic powder contains 0.3 to 1.5 mass% of Si, the S i O 2 coating can also be formed by surface oxidation of the magnetic powder. However, it is preferable to the provision to ensure a predetermined amount of S i O 2 film on the surface of the magnetic powder, Ru a silicone resin.
【0039】  [0039]
シリコーン樹脂は、 シロキサン結合を備えた合成樹脂である。 シリコーン樹脂 被膜は、 それ自体、 パインダゃ絶縁被膜として機能する。 し力、し、 それを高温加 熱 (700〜900°C) すると、 耐熱性に優れた S i O 2被膜に変化する。 なお 、 シリコーン樹脂の加熱は、 圧粉磁心の成形後に行うのが好ましい。 成形後に加 熱することで、 S i〇2被膜の形成と併せて、 成形時に導入された粉末成形体 ( 磁性粉末) 内の残留歪みまたは残留応力が除去され、 保磁力やヒステリシス損失 の少なレ、圧粉磁心が得られるからである。 Silicone resin is a synthetic resin having a siloxane bond. The silicone resin coating itself functions as an insulating coating. When it is heated to a high temperature (700-900 ° C), it changes to an S i O 2 coating with excellent heat resistance. The silicone resin is preferably heated after the dust core is formed. By pressurizing heat after molding, in conjunction with the formation of S I_〇 2 coating, residual strain or residual stress in the powder compact that has been introduced in the molding (magnetic powder) is removed, low-les coercivity and hysteresis loss This is because a dust core is obtained.
【0040】  [0040]
ところで、 S i O 2被膜を磁性粉末の表面に直接的にかつ安定的に形成するに は、 磁性粉末が S iを 0. 8質量%以上含有している程良い。 理由は定かではな いが、 磁性粉表面の S i原子にシリコーン樹脂が化学吸着し易いためと思われる By the way, in order to form the S i O 2 coating directly and stably on the surface of the magnetic powder, it is better that the magnetic powder contains 0.8 mass% or more of Si. The reason is not clear, but it seems that the silicone resin is easy to chemisorb to Si atoms on the surface of the magnetic powder.
【0041】 [0041]
一方、 磁性粉末中の S i含有量が少ない場合 (磁性粉末が例えば、 純鉄粉の場 合) 、 磁性粉末の表面を直接被覆した s io2被膜は、 耐久性 (経年劣化のみな らず成形中に破壌されない耐久性) 等が必ずしも十分ではない。 ここで S i量が 少ない場合とは、 具体的には、 磁性粉末全体を 100質量%としたときに3 i量 が 0. 8質量%以下さらには 0. 5質量%以下の場合である。 On the other hand, when the Si content in the magnetic powder is low (when the magnetic powder is pure iron powder, for example), the sio 2 coating that directly coats the surface of the magnetic powder has durability (not only aged deterioration) Durability not to be broken during molding) is not always sufficient. Here, the case where the amount of Si is small is specifically the case where the amount of 3 i is 0.8 mass% or less and further 0.5 mass% or less when the entire magnetic powder is 100 mass%.
【0042】  [0042]
本発明者は、 シリコーン樹脂被膜 (または S i〇2被膜) を磁性粉末の表面に 安定的に形成するために、 その下地処理として、 磁性粉末の表面にリン酸塩被膜 を設けると好ましいことを新たに見出した。 従って本発明の絶縁被膜は、 磁性粉 末中の S i量が 0 . 8 %以下の場合はリン酸塩被膜からなる第 1絶縁層と、 この 第 1絶縁層を被覆するシリコーン樹脂からなる第 2絶縁層とによつて形成されて いると好ましい。 In order to stably form a silicone resin coating (or Si02 coating) on the surface of the magnetic powder, the present inventor has used a phosphate coating on the surface of the magnetic powder as a base treatment. It was newly found that it is preferable to provide. Therefore, the insulating coating of the present invention has a first insulating layer composed of a phosphate coating and a silicone resin covering the first insulating layer when the Si amount in the magnetic powder is 0.8% or less. Preferably, it is formed of two insulating layers.
【0 0 4 3】  [0 0 4 3]
この第 1絶縁層および第 2絶縁層からなる絶縁被膜は非常に耐熱性にも優れる 。 この絶縁被膜で被覆された磁性粉末からなる圧粉磁心を、 4 0 0 °C以上、 4 5 0 °C以上さらには 5 0 0 °C以上の高温で焼鈍した場合でも、 その絶縁被膜は存在 形態を変化させ得るとしても、 完全に破壊されることない。 つまり、 その圧粉磁 心は、 焼鈍加熱後であっても十分な比抵抗を発現する。 このような絶縁被膜の耐 熱性は、 本発明のような比較的低周波数域で使用される圧粉磁心においても非常 に重要である。 圧粉磁心を焼鈍等して、 その内部に蓄積された残留歪みや残留応 力を除去し、 圧粉磁心のヒステリシス損失を低減させたとしても、 その焼鈍等の 際に、 絶縁被膜が大きく破壊されて比抵抗が急減すれば、 いくら低周波数域で使 用する圧粉磁心とはいえ、 却って鉄損が増加することにもなるからである。 従つ て、 本発明のような比較的低周波数域で使用される圧粉磁心であっても、 絶縁被 膜の耐熱性は高い程好ましい。 絶縁被膜の耐熱性が高ければ、 比抵抗の低下を抑 制しつつも、 より高温で焼鈍を行える。 これにより、 圧粉磁心の内部に蓄積され た残留歪み等が一層除去され易くなり、 ヒステリシス損失のさらなる低減を図れ るからである。  The insulating film composed of the first insulating layer and the second insulating layer is very excellent in heat resistance. Even when a powder magnetic core made of magnetic powder coated with this insulating film is annealed at a high temperature of 400 ° C. or higher, 45 ° C. or higher, or even 500 ° C. or higher, the insulating coating exists. Even if it can change its form, it will not be completely destroyed. In other words, the dust core exhibits sufficient specific resistance even after annealing. The heat resistance of such an insulating film is very important even in a dust core used in a relatively low frequency region as in the present invention. Even if the powder core is annealed to remove residual strain and residual stress accumulated inside it, and the hysteresis loss of the powder core is reduced, the insulation coating is greatly destroyed during annealing. If the specific resistance decreases rapidly, the iron loss increases even though it is a dust core used in the low frequency range. Therefore, even in the case of a dust core used in a relatively low frequency region as in the present invention, the higher the heat resistance of the insulating film, the better. If the heat resistance of the insulating coating is high, annealing can be performed at a higher temperature while suppressing a decrease in specific resistance. This is because residual strain and the like accumulated inside the dust core can be more easily removed, and hysteresis loss can be further reduced.
【0 0 4 4】  [0 0 4 4]
さらに本発明者は、 第 1絶縁層および第 2絶縁層に酸化物粒子を組合わせた、 非常に耐熱性に優れる絶縁被膜を新たに開発している。 酸化物粒子の組合わせ方 として、 次のようなものが考えられる。 一つは、 前記シリコーン樹脂中に酸化物 粒子が分散した複合絶縁層で前記第 2絶縁層を形成する場合である。 もう一方は 、 シリコーン樹脂被膜単体またはその複合絶縁層からなる第 2絶縁層上に、 酸化 物粒子から主になる第 3絶縁層をさらに設ける場合である。 但し、 いずれの場合 であっても重要なことは、 絶縁被膜の構造や形態そのものではなく、 加熱後でも 圧粉磁心の比抵抗が安定して維持され、 渦電流損失が抑制されることである。 現 実問題として、 1 0◦ ^ m前後の磁性粉末の表面を被覆する絶縁被膜の膜厚は 1 0 0 n m前後と非常に薄いので、 絶縁被膜の構造等を明確に特定すること自体も 困難である。 また、 成形直後の圧粉磁心を焼鈍加熱等したり、 それを高温雰囲気 で使用した場合、 磁性粉末を被覆する絶縁被膜の存在形態が、 当初の状態から大 きく変化することは容易に予想される。 このような点からも、 絶縁被膜の構造や 形態自体にあまり意味はなく、 結果的に十分な比抵抗が確保され得る絶縁被膜で あれば十分ということになる。 Furthermore, the present inventor has newly developed an insulating film having excellent heat resistance, in which oxide particles are combined with the first insulating layer and the second insulating layer. The following combinations of oxide particles can be considered. One is a case where the second insulating layer is formed of a composite insulating layer in which oxide particles are dispersed in the silicone resin. The other is a case where a third insulating layer mainly composed of oxide particles is further provided on the second insulating layer made of the silicone resin coating alone or a composite insulating layer thereof. However, in any case, what is important is not the structure or form of the insulating coating itself, but that the specific resistance of the dust core is stably maintained even after heating, and eddy current loss is suppressed. . Present As a matter of fact, the film thickness of the insulation film covering the surface of magnetic powder around 10 ° ^ m is very thin, around 100 nm, so it is difficult to clearly identify the structure of the insulation film. is there. In addition, when the powder magnetic core immediately after molding is annealed or used in a high-temperature atmosphere, the presence of the insulating coating covering the magnetic powder is expected to change significantly from the initial state. The From this point of view, the structure and form of the insulating film itself is not meaningful, and as a result, an insulating film that can ensure a sufficient specific resistance is sufficient.
上述した第 1絶縁層、 第 2絶縁層、 第 3絶縁層および酸化物粒子についてさら に詳細に説明する。  The first insulating layer, second insulating layer, third insulating layer, and oxide particles described above will be described in more detail.
【0 0 4 5】  [0 0 4 5]
( a ) 第 1絶縁層  (a) First insulation layer
第 1絶縁層であるリン酸塩被膜はその種類を問わない。 例えば、 第 1絶縁層は 、 特許文献 1にあるように、 所定濃度のリン酸に磁性粉末を接触させて、 磁性粉 末の表面にリン酸鉄を形成させてなるリン酸塩被膜でも良い。 また、 特許文献 6 に記載されたような M g— (F e ) — B— P— O系絶縁層でも良い。  The type of the phosphate coating that is the first insulating layer is not limited. For example, as disclosed in Patent Document 1, the first insulating layer may be a phosphate coating formed by bringing a magnetic powder into contact with a predetermined concentration of phosphoric acid to form iron phosphate on the surface of the magnetic powder. Further, an Mg- (F e) —B—P—O-based insulating layer as described in Patent Document 6 may be used.
【0 0 4 6】  [0 0 4 6]
もっとも、 本発明者はこれらのリン酸塩被膜とは異なり、 耐熱性に一層優れた リン酸塩被膜を新たに開発した。 そして、 このリン酸塩被膜を第 1絶縁層として 、 その上に前述の第 2絶縁層さらには第 3絶縁層を形成すると、 著しく耐熱性に 優れた絶縁被膜が得られることを確認している。 この第 1絶縁層は、 少なくとも リン (P ) および酸素 (O) からなる第 1元素群とシャノン (S h a n n o n , R , D ) により定義された 6配位のイオン半径が 0 . 0 7 3 n m以上である 2価 以上の陽イオンを生じ得る第 2元素とからなる。 この第 1絶縁層中には、 磁性粉 末から溶け出した F eが含まれることもある。 また、 単なるリン酸塩被膜ではな く、 ホウ素 (B ) を含むホウリン酸塩被膜 (本明細書では、 このような被膜も 「 リン酸塩被膜」 に含める。 ) はより耐熱性に優れる。  However, the present inventors have newly developed a phosphate coating that is more excellent in heat resistance, unlike these phosphate coatings. Then, it has been confirmed that when this phosphate coating is used as the first insulating layer, and the second insulating layer and further the third insulating layer are formed thereon, an insulating coating having extremely excellent heat resistance can be obtained. . This first insulating layer has a 6-coordinate ion radius of 0.07 3 nm defined by a first element group consisting of at least phosphorus (P) and oxygen (O) and Shannon (Shannon, R, D). And a second element capable of producing a cation having a valence of 2 or more. This first insulating layer may contain Fe dissolved from the magnetic powder. In addition, a borophosphate coating containing boron (B) (in this specification, such a coating is also included in the “phosphate coating”) is more excellent in heat resistance than a simple phosphate coating.
【0 0 4 7】  [0 0 4 7]
ところで、 この場合の第 1絶縁層は非晶質のリン酸塩系ガラス被膜であると考 えられる。 そこで、 ガラスを構成する網目形成体 (網目形成イオン) と網目修飾 体 (網目修飾イオン) とに関する法則であるザッカライゼン則に従って、 第 2元 素を適切に抽出、 選択すると良い。 第 1元素群からなる網目形成体中に、 イオン 半径の大きな第 2元素である網目修飾体が入って構成される非晶質のガラス状絶 縁層は、 結晶化し難く、 粘度が高まって焼結 ·凝集を生じ難くなる。 第 2元素の 陽イオンを 2価以上としたのは、 1価の陽イオン (例えば、 Na+、 K+) は、 水 と反応し易く、 長期安定性を考慮すると、 存在しない方が好ましいからである。 また、 第 2元素のイオン半径として、 シャノンのイオン半径を用いたのは、 それ が現在最も広く用いられているからである。 その中でも特に、 6配位のイオン半 径としたのは、 配位数でイオン半径が異なるため、 比較対象を明確にするためで ある。 そして、 本発明者が、 種々の元素について検討したところ、 第 2元素のィ オン半径が 0. 073 nm以上である場合に、 その被膜が優れた耐熱性を発現す ることを見いだした。 逆に、 イオン半径が 0. 073 nm未満では、 耐熱性が従 来レベルであり、 耐熱性の向上を図れない。 なお、 イオン半径は 0. 075 nm 以上、 さらには 0. 08◦ nm以上であるとより好ましい。 また、 イオン半径の 上限は取扱性等を考慮して 0. 1 70 nm以下が好ましい。 By the way, the first insulating layer in this case is considered to be an amorphous phosphate glass coating. Therefore, network formers (network-forming ions) that make up glass and network modifications The second element should be extracted and selected appropriately according to the Zacca Raisen rule, which is the law for the body (network-modified ions). An amorphous glass-like insulating layer composed of a network forming body consisting of the first element group and a network modification body, which is the second element having a large ionic radius, is difficult to crystallize, increases in viscosity, and burns. Condensation is less likely to occur. The reason why the cation of the second element is divalent or higher is that monovalent cations (eg, Na + , K + ) are easy to react with water, and it is preferable that they do not exist in consideration of long-term stability. It is. The reason why Shannon's ionic radius is used as the ionic radius of the second element is that it is currently most widely used. Among them, the 6-coordinate ion radius was chosen because the ion radius differs depending on the coordination number, so that the comparison object is clear. The present inventor examined various elements and found that when the ion radius of the second element was 0.073 nm or more, the coating exhibited excellent heat resistance. Conversely, if the ionic radius is less than 0.073 nm, the heat resistance is at a conventional level, and the heat resistance cannot be improved. The ion radius is preferably 0.075 nm or more, and more preferably 0.08 nm or more. In addition, the upper limit of the ion radius is preferably 0.170 nm or less in consideration of handling properties.
【0048】  [0048]
このような第 2元素として、 具体的には、 例えば、 アルカリ土類金属元素や希 土類元素 (R. E. ) を挙げることができる。 アルカリ土類金属元素には、 ベリ リウム (B e) 、 Mg、 C a、 S r、 バリウム (B a) 、 ラジウム (R a ) があ るが、 B eぉょぴMgは、 6配位のイオン半径が 0. 073 nm未満であるため 除かれる。 取扱性、 安全性、 好環境性等を考慮すると、 アルカリ土類金属元素か ら第 2元素としては、 C aまたは S rが好ましい。 また、 希土類元素には、 スカ ンジゥム (S c) 、 Y、 ランタノィド元素、 ァクチノィド元素があるが、 同様に 、 取扱性等を考慮して、 Υが好ましい。 その他、 第 2元素となり得る元素として 、 ランタノイド (L a〜Lu) 、 ビスマス (B i ) を挙げることができる。 これ らの各元素のイオン半径を価数と共に表 6に参考として示した。 なお、 これらの 第 2元素は、 1種の元素のみならず複数種の元素であっても良いことはいうまで もない。 こうして本発明の第 1層を構成する耐熱性に優れた絶縁被膜 (第 1絶縁 層) が得られた。 【0 0 4 9】 Specific examples of such a second element include alkaline earth metal elements and rare earth elements (RE). Alkaline earth metal elements include beryllium (B e), Mg, C a, S r, barium (B a), and radium (R a), but Be eop Mg is 6-coordinated Is excluded because the ionic radius of is less than 0.073 nm. Considering handling, safety, environmental friendliness, etc., Ca or Sr is preferable as the second element from the alkaline earth metal element. In addition, the rare earth elements include scandium (Sc), Y, lanthanide elements, and lactide elements. Similarly, in consideration of handling properties, soot is preferable. Other elements that can be the second element include lanthanoids (La to Lu) and bismuth (Bi). Table 6 shows the ionic radii of each of these elements together with their valences. Needless to say, these second elements may be not only one kind of element but also plural kinds of elements. Thus, an insulating film (first insulating layer) excellent in heat resistance constituting the first layer of the present invention was obtained. [0 0 4 9]
( b ) 第 2絶縁層  (b) Second insulating layer
第 2絶縁層は、 第 1絶縁層上に形成され、 シリコーン樹脂からなる。 この第 2 絶縁層の存在によって、 第 1絶縁層単体よりも高い耐熱性を発現する本発明の絶 縁被膜が得られた。 この優れた効果が発現される詳細なメカニズムは現状不明で あるが、 絶縁層の単なる重複によって耐熱性が向上したのではなく、 第 1絶縁層 と第 2絶縁層との相乗効果によつて絶縁被膜の耐熱性が一層向上したと考えられ る。  The second insulating layer is formed on the first insulating layer and is made of silicone resin. Due to the presence of the second insulating layer, the insulating coating of the present invention exhibiting higher heat resistance than the first insulating layer alone was obtained. Although the detailed mechanism for realizing this excellent effect is unknown at present, the heat resistance is not improved by mere duplication of the insulating layer, but the insulation is achieved by the synergistic effect of the first insulating layer and the second insulating layer. It is thought that the heat resistance of the coating was further improved.
【0 0 5 0】  [0 0 5 0]
シリコーン樹脂は、 磁性粉末全体を 1 0 0質量%として、 0 . 0 5〜0 . 8質 量%さらには 0 . 1〜0 . 3質量%の割合で含まれると好ましい。 シリコーン榭 脂が過少では絶縁被膜の耐熱性向上効果が小さく、 シリコーン樹脂が過多になる と圧粉磁心の磁束密度の低下を招き好ましくないからである。 このシリコーン樹 脂量は、 後述する酸化物粒子を含む舉合であってもほぼ同様であるが、 酸化物粒 子の有無によつてその割合を多少変動させても良い。  The silicone resin is preferably contained in a proportion of from 0.05 to 0.8 mass%, more preferably from 0.1 to 0.3 mass%, based on 100 mass% of the entire magnetic powder. This is because if the silicone resin is too small, the effect of improving the heat resistance of the insulating coating is small, and if the silicone resin is excessive, the magnetic flux density of the dust core is reduced, which is not preferable. The amount of the silicone resin is almost the same even in the case of containing the oxide particles to be described later, but the ratio may be slightly changed depending on the presence or absence of the oxide particles.
【0 0 5 1】  [0 0 5 1]
シリコーン樹脂は、 分子内に 1官能性 (M単位) 、 2官能性 (D単位) 、 3官 能性 (T単位) 、 あるいは 4官能性 (Q単位) のシロキサン単位を含有するポリ オルガノシロキサンをさす。 このシリコーン樹脂は、 シリコーンオイルゃシリコ ーンゴムなどに比べ架橋密度が高く、 硬化したものは硬いという特徴がある。 シ リコーン樹脂には、 成分がシリコーンのみから構成されるストレートシリコーン 樹脂と、 シリコーン成分と有機樹脂の共重合体であるシリコーン変成有機樹脂に 大別されるが、 本発明で使用するシリコーン樹脂はそのいずれでも良い。  Silicone resin is a polyorganosiloxane containing monofunctional (M units), bifunctional (D units), 3 functional (T units), or tetrafunctional (Q units) siloxane units in the molecule. Sure. This silicone resin is characterized by a higher crosslink density than silicone oil and silicone rubber, and is hard when cured. Silicone resins are roughly classified into straight silicone resins whose components are composed solely of silicones, and silicone-modified organic resins that are copolymers of silicone components and organic resins. Either is fine.
【0 0 5 2】  [0 0 5 2]
ストレートシリコーン樹脂は、 MQレジンと D Tレジンに大別されるがいずれ でも良い。 シリコーン変成有機樹脂には、 アルキッド変成型、 エポキシ変成型、 ポリエステル変成型、 アクリル変成型、 フエノール変成型などが挙げられるがい ずれでも良い。  Straight silicone resins can be broadly classified into MQ resin and DT resin, and either can be used. Examples of the silicone-modified organic resin include alkyd modification, epoxy modification, polyester modification, acrylic modification, and phenol modification.
【0 0 5 3】 シリコーン樹脂には、 加熱して硬化するタイプ (加熱硬化型) と、 室温におい ても硬化が進行するタイプ (室温硬化型) とあるがいずれでも良い。 加熱硬化型 シリコーン樹脂の硬化機構には、 大別して、 脱水縮合反応、 付加反応、 過酸化物 反応等によるものがあり、 室温硬化型シリコーン榭脂の硬化機構には、 脱ォキシ ム反応、 脱アルコール反応によるものがある。 本発明で使用するシリコーン樹脂 はそれらのいずれでも良い。 [0 0 5 3] There are two types of silicone resins: a type that cures by heating (heat curing type) and a type that cures even at room temperature (room temperature curing type). The curing mechanisms of heat-curing silicone resins can be broadly divided into dehydration condensation reaction, addition reaction, peroxide reaction, etc. The curing mechanisms of room temperature-curing silicone resin are deoximation reaction, dealcoholization. Some are due to reactions. Any silicone resin may be used in the present invention.
【0 0 5 4】  [0 0 5 4]
このようなシリコーン樹脂の具体例として、 例えば、 東レダウコーユングシリ コーン社製の、 SH 805、 SH 806A、 SH 840、 SH 997、 SR 620、 SR 2306、 SR 2309 、 SR 2310、 SR 2316、 DC12577、 SR2400、 SR2402、 SR2404、 SR2405、 SR2406、 SR2 410、 SR2411、 SR2416、 SR2420、 SR2107、 SR2115、 SR2145、 SH6018、 DC - 2230、 DC 3037、 QP8- 5314などがある。 また、 信越化学工業 (株) 製の、 KR251、 KR255、 KR 114A、 KR112、 KR2610B、 KR2621-1、 KR230B、 KR220、 KR285、 K295、 KR2019、 KR27 06、 KR165、 KR166、 KR169、 KR2038、 KR221、 KR155、 KR240、 KR101- 10、 KR120、 K R105、 KR271、 KR282, KR311、 KR211、 KR212、 KR216、 KR213、 KR217, KR9218, SA -4、 KR206、 ES1001N、 ES1002T、 ES1004、 KR9706、 KR5203、 KR5221などがある。 勿論、 これらの銘柄以外のシリコーン樹脂であっても良い。  Specific examples of such silicone resins include, for example, SH 805, SH 806A, SH 840, SH 997, SR 620, SR 2306, SR 2309, SR 2310, SR 2316, DC12577, manufactured by Toray Dow Co., Ltd. SR2400, SR2402, SR2404, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420, SR2107, SR2115, SR2145, SH6018, DC-2230, DC3037, QP8-5314, etc. Also, manufactured by Shin-Etsu Chemical Co., Ltd., KR251, KR255, KR 114A, KR112, KR2610B, KR2621-1, KR230B, KR220, KR285, K295, KR2019, KR27 06, KR165, KR166, KR169, KR2038, KR221, KR155 , KR240, KR101-10, KR120, K R105, KR271, KR282, KR311, KR211, KR212, KR216, KR213, KR217, KR9218, SA-4, KR206, ES1001N, ES1002T, ES1004, KR9706, KR5203, KR5221, etc. . Of course, silicone resins other than these brands may be used.
【0 0 5 5】  [0 0 5 5]
本発明で使用するシリコーン樹脂は、 溶媒に分散してコロイド状となるような 微粒子状のシリコーン樹脂でも良いし、 上記原料物質を変成したシリコーン樹脂 でも良い。 さらに、 種類、 分子量、 官能基が異なる 2種類以上のシリコーン樹脂 を、 適当な割合で混合したシリコーン樹脂を使用しても良い。  The silicone resin used in the present invention may be a finely divided silicone resin dispersed in a solvent to form a colloidal shape, or may be a silicone resin obtained by modifying the raw material. Furthermore, a silicone resin in which two or more types of silicone resins having different types, molecular weights, and functional groups are mixed at an appropriate ratio may be used.
【0 0 5 6】  [0 0 5 6]
ところで、 このようなシリコーン樹脂中に酸化物粒子が分散してなる第 2絶縁 層の場合、 前述したように、 絶縁被膜の耐熱性が一層向上する。 この理由は必ず しも定かではないが、 現状、 次のように考えられる。  By the way, in the case of the second insulating layer in which oxide particles are dispersed in such a silicone resin, as described above, the heat resistance of the insulating coating is further improved. The reason for this is not always clear, but at present it can be considered as follows.
【0 0 5 7】  [0 0 5 7]
本発明者が種々実験したところ、 シリコーン樹脂溶液に微細な酸化物粒子 (S i〇2) を添カ卩した処理液は、 シリコーン樹脂溶液単体よりも流動性が高くなる 。 この酸化物粒子が添加された処理液を使用すれば、 第 1絶縁層が形成されてい る磁性粉末の表面へ第 2絶縁層を形成し易くなつた。 このことは、 第 1絶縁層上 に形成される第 2絶縁層の均一性、 ひいては絶縁被膜の均一性に寄与したと考え られる。 ここで絶縁被膜の均一性が必要となるのは、 絶縁被膜による被覆状態が 不均一であると、 例えば、 膜厚の薄い部分が優先的に攻撃されて、 その部分で磁 性粉末の粒子同士の直接接触、 さらには焼結等を生じて、 圧粉磁心の比抵抗値が 低下するからである。 The present inventors have variously experiments, silicone resin solution into fine oxide particles (S I_〇 2) was添Ka卩treatment liquid, the fluidity becomes higher than the silicone resin solution alone . By using the treatment liquid to which the oxide particles were added, the second insulating layer was easily formed on the surface of the magnetic powder on which the first insulating layer was formed. This is considered to have contributed to the uniformity of the second insulating layer formed on the first insulating layer, and consequently the uniformity of the insulating film. Here, the uniformity of the insulation coating is necessary because, for example, if the coating state by the insulation coating is non-uniform, for example, a thin part is attacked preferentially, and particles of magnetic powder are This is because the specific resistance value of the powder magnetic core decreases due to direct contact of the powder and further sintering.
【0058】  [0058]
また、 酸化物粒子は非常に耐熱性 (高温絶縁性) に優れた粒子である。 この酸 化物粒子が磁性粉末の表面に均一に存在し、 その構成粒子間に介在して、 それら の直接接触が積極的に抑制され、 本発明の絶縁被膜の耐熱性が一層高くなつたと も考えられる。  Oxide particles are extremely excellent in heat resistance (high temperature insulation). The oxide particles are present uniformly on the surface of the magnetic powder, and the direct contact between these particles is positively suppressed, and the heat resistance of the insulating coating of the present invention is further improved. It is done.
【0059】  [0059]
この酸化物粒子を構成する酸化物は、 高い絶縁性と耐熱性を有するものであれ ば、 その種類は問わない。 このような酸化物として、 例えば、 S i 02、 A 12O 3、 Z r〇2、 Mg Oおよび複合酸化物のスピネル、 ガーネット等がある。 その入 手性、 コスト等を考慮して、 酸化物粒子が S i、 Z r、 Mgまたは A 1の 1種以 上の酸化物が好適である。 酸化物粒子は、 2種以上の金属を合金化したものの酸 化物であっても良い。 また、 コロイド状の酸化物を用いても良い。 The oxide constituting the oxide particles is not limited as long as it has high insulation and heat resistance. Examples of such oxides include Si 0 2 , A 12 O 3, Zr 0 2 , Mg 2 O, composite oxide spinel, and garnet. In consideration of its availability, cost, etc., one or more oxides of Si, Zr, Mg or A 1 are suitable for the oxide particles. The oxide particles may be an oxide obtained by alloying two or more metals. A colloidal oxide may be used.
【0060】  [0060]
酸化物粒子の平均粒径は、 100 nm以下さらには 70 nm以下が好ましい。 一方、 酸化物粒子の製造性、 入手性等を考慮して、 その粒径の下限は、 50 nm さらには 30 nmが好ましい。 特に、 磁性粉末の体積平均粒径 (D) と酸化物粒 子の粒径 (d) との粒径比 (dZD) が lZl 0〜: ίΖΐ 00000さらには 1 Z100〜: L/10000であると好ましい。  The average particle size of the oxide particles is preferably 100 nm or less, more preferably 70 nm or less. On the other hand, considering the manufacturability and availability of oxide particles, the lower limit of the particle size is preferably 50 nm or even 30 nm. In particular, the particle size ratio (dZD) between the volume average particle size (D) of the magnetic powder and the particle size (d) of the oxide particles is lZl 0 ~: ίΖΐ 00000 or even 1 Z100 ~: L / 10000 preferable.
【0061】  [0061]
シリコーン榭脂に対する酸化物粒子の混合比 (酸化物粒子 Zシリコーン樹脂) は、 重量比で 0. 1〜10さらには 0. 3〜3が好ましい。  The mixing ratio of the oxide particles to the silicone resin (oxide particles Z silicone resin) is preferably 0.1 to 10 and more preferably 0.3 to 3 by weight.
【0062】 なお、 本発明でいう酸ィヒ物粒子の平均粒径は、 顕微鏡により観察した定方向径 の個数平均粒径とする。 [0062] The average particle diameter of the acid particles referred to in the present invention is the number average particle diameter of the fixed direction diameter observed with a microscope.
【0 0 6 3】  [0 0 6 3]
( c ) 第 3絶縁層  (c) Third insulation layer
第 2絶縁層上に、 上述した酸化物粒子から主になる第 3絶縁層が形成されてい ると好適である。  It is preferable that a third insulating layer mainly composed of the above-described oxide particles is formed on the second insulating layer.
【0 0 6 4】  [0 0 6 4]
この第 3絶縁層の下層となる第 2絶縁層は、 シリコーン樹脂のみからなる絶縁 層でも良いし、 そのシリコーン樹脂中に酸化物粒子が分散した複合絶縁層でも良 レ、。 この場合に本発明の絶縁被膜の耐熱性が向上する理由は必ずしも定かではな いが、 現状、 前述した理由とほぼ同様であると考えられる。  The second insulating layer, which is the lower layer of the third insulating layer, may be an insulating layer made only of a silicone resin, or a composite insulating layer in which oxide particles are dispersed in the silicone resin. In this case, the reason why the heat resistance of the insulating film of the present invention is improved is not necessarily clear, but at present, it is considered to be almost the same as the reason described above.
酸化物粒子から主になる第 3絶縁層を第 2絶縁層上に形成する方法として、 機 械的な混合、 各種コーティング液に酸化物粒子を予め添加する方法等が考えられ る。  As a method of forming the third insulating layer mainly composed of oxide particles on the second insulating layer, mechanical mixing, a method of adding oxide particles to various coating liquids in advance, and the like can be considered.
【0 0 6 5】  [0 0 6 5]
ところで、 磁心用粉末を考えた場合、 酸化物粒子を第 2絶縁層中に混在させる か第 2絶縁層上に分散させるかを問わず、 酸化物粒子は、 磁性粉末全体を 1 0 0 質量%として、 0 . 0 5〜 0 . 5質量%さらには 0 . 0 8〜 0 . 3質量%の割合 で含まれると好ましい。 酸化物粒子が過少では絶縁被膜の耐熱性向上効果が小さ く、 酸化物粒子が過多になると圧粉磁心の磁束密度の低下を招き好ましくないか らである。 このときのシリコーン樹脂量は前述した通りである。  By the way, when considering the powder for the magnetic core, regardless of whether the oxide particles are mixed in the second insulating layer or dispersed on the second insulating layer, the oxide particles comprise 100 mass% of the entire magnetic powder. As a content of 0.05 to 0.5% by mass, further 0.08 to 0.3% by mass is preferable. If the amount of oxide particles is too small, the effect of improving the heat resistance of the insulating coating is small. The amount of silicone resin at this time is as described above.
【0 0 6 6】  [0 0 6 6]
本発明の絶縁被膜は、 被覆時に上述した第 1絶縁層おょぴ第 2絶縁層が存在す れば良い。 さらにいえば、 被覆時の段階から、 両層が渾然一体等となり全体とし て 1層の絶縁被膜を形成していても良い。 いずれにしても、 絶縁被膜は、 被覆当 初の状態を必ずしも維持している必要はない。 絶縁被膜は、 その後の加熱等によ つて第 1絶縁層および第 2絶縁層が変化、 変質または変態等したものでも良い。 そのような結果物として得られた圧粉磁心も本発明の範囲に含まれる。  The insulating coating according to the present invention may have the first insulating layer and the second insulating layer described above at the time of coating. Furthermore, from the stage of coating, both layers may be integrated together to form a single insulating film as a whole. In any case, the insulating coating does not necessarily maintain the initial state of the coating. The insulating coating may be one in which the first insulating layer and the second insulating layer are changed, altered or transformed by subsequent heating or the like. The dust core obtained as such a product is also included in the scope of the present invention.
【0 0 6 7】 なお、 上述した絶縁被膜は、 焼鈍加熱等によって高温状態下に曝される場合の みを前提としている訳ではない。 非加熱状態または室温域等で使用される場合で あっても良い。 その場合は言うまでもなく、 本発明の絶縁被膜は非常に高い絶縁 性 (高抵抗値) を安定的に発揮する。 [0 0 6 7] Note that the above-described insulating coating is not premised on the assumption that it is exposed to a high temperature state by annealing or the like. It may be used in an unheated state or a room temperature range. In that case, needless to say, the insulating coating of the present invention stably exhibits a very high insulating property (high resistance value).
【0 0 6 8】  [0 0 6 8]
( 3 ) 絶縁被膜の形成方法 (磁心用粉末の製造方法)  (3) Insulating coating formation method (Magnetic core powder manufacturing method)
絶縁被膜は、 その種類に応じた適当な方法によって、 磁性粉末の表面に形成さ れる。 例えば、 シリコーン樹脂被膜の場合であれば、 磁性粉末にシリコーン樹脂 溶液を加えて撹拌、 混練等して形成される。 これにより、 磁性粉末の表面がシリ コーン樹脂で被覆された磁心用粉末が得られる。 S i 02被膜の場合であれば、 シリコーン樹脂で被覆された磁性粉末を高温加熱等して形成される。 また、 磁性 粉末自体を適当な酸化雰囲気で酸化させることで、 その表面に酸化被膜を形成す ることもできる。 このような絶縁被膜の形成方法は、 従来から周知なところであ る。 以下では、 上述した第 1絶縁層および第 2絶縁層さらには第 3絶縁層からな る絶縁被膜の形成方法について説明する。 The insulating film is formed on the surface of the magnetic powder by an appropriate method according to the type. For example, in the case of a silicone resin coating, it is formed by adding a silicone resin solution to magnetic powder and stirring, kneading, or the like. As a result, a magnetic core powder in which the surface of the magnetic powder is coated with a silicone resin is obtained. In the case of the S i 0 2 coating, the magnetic powder coated with the silicone resin is formed by heating at a high temperature. In addition, by oxidizing the magnetic powder itself in an appropriate oxidizing atmosphere, an oxide film can be formed on the surface. Such a method for forming an insulating film is conventionally well known. In the following, a method for forming an insulating film composed of the first insulating layer, the second insulating layer, and the third insulating layer will be described.
【0 0 6 9】  [0 0 6 9]
この絶縁被膜の形成方法 (磁心用粉末の製造方法と考えても同様) は、 基本的 に第 1絶縁層形成工程と第 2絶縁層形成工程とからなる。 勿論、 絶縁被膜が第 3 絶縁層を備える場合には、 磁性粉末の第 2絶縁層上に第 3絶縁層を形成する第 3 絶縁層形成工程を備える。  This method of forming an insulating film (even if considered as a method of manufacturing a magnetic core powder) basically comprises a first insulating layer forming step and a second insulating layer forming step. Of course, when the insulating coating includes the third insulating layer, a third insulating layer forming step of forming the third insulating layer on the second insulating layer of magnetic powder is provided.
【0 0 7 0】  [0 0 7 0]
( a ) 第 1絶縁層形成工程  (a) First insulating layer formation process
第 1絶縁層形成工程は、 第 1被覆処理液を磁性粉末に接触させる接触工程と、 その後に磁性粉末を乾燥させる乾燥工程とからなる。  The first insulating layer forming step includes a contact step in which the first coating treatment liquid is brought into contact with the magnetic powder, and a drying step in which the magnetic powder is subsequently dried.
【0 0 7 1】  [0 0 7 1]
先ず、 第 1被覆処理液は、 リン酸および本発明でいう第 2元素とを含む溶液で ある。 これは、 水溶液には限らず、 エタノール、 メタノール、 イソプロピルアル コール、 アセトン、 グリセリン等の有機溶媒を用いた溶液でも良い。 いずれにし ても、 第 1被覆処理液は、 それらの溶媒中にリン酸を混合し、 アルカリ土類金属 元素や希土類元素の化合物や塩を溶解させてなる。 その他、 磁性粉末 (例えば、First, the first coating treatment liquid is a solution containing phosphoric acid and the second element referred to in the present invention. This is not limited to an aqueous solution, but may be a solution using an organic solvent such as ethanol, methanol, isopropyl alcohol, acetone, or glycerin. In any case, the first coating solution is prepared by mixing phosphoric acid in these solvents, It dissolves compounds and salts of elements and rare earth elements. Other, magnetic powder (for example,
F e粉) との濡れ性を向上させ均一な被膜を形成させるのに有効な界面活性剤や 磁性粉末 (例えば、 F e粉) の酸化を防止するための防鲭剤等をそこへ適宜添加 しても良い。 Surfactant effective for improving wettability with Fe powder and forming a uniform film, and anti-mold agent for preventing oxidation of magnetic powder (eg Fe powder) are added as appropriate. You may do it.
【0 0 7 2】  [0 0 7 2]
接触工程は、 例えば、 第 1被覆処理液を被処理材に噴霧する溶液噴霧法 (噴霧 工程) 、 第 1被覆処理液中に浸漬する溶液浸漬法 (浸漬工程) 等、 種々の方法 ( 工程) により行える。 溶液噴霧法、 溶液浸漬法は大量処理が可能であり、 工業的 にも有効な方法である。 これらの方法に限らず、 めっきの如く、 電気化学的反応 を利用して、 被処理材の表面に薄く均一な絶縁被膜を形成しても良い。 この場合 、 絶縁被膜によって被覆された被処理材の表面は電気的に絶縁されるため、 被覆 されていない表面部分 (露出している部分) 力 自然に優先的に第 1被覆処理液 と反応する。 その結果、 被処理材 (磁性粉末) の表面が順次コーティングされ、 被処理材の全面がピンホールなく均一に被覆されることとなる。  The contact process includes various methods (processes) such as a solution spraying method (spraying process) in which the first coating treatment liquid is sprayed on the material to be treated and a solution immersion method (immersion process) in which the first coating treatment liquid is immersed in the first coating treatment liquid. Can be done. The solution spraying method and the solution dipping method can be processed in large quantities and are industrially effective. In addition to these methods, a thin and uniform insulating film may be formed on the surface of the material to be processed using an electrochemical reaction such as plating. In this case, since the surface of the material to be treated coated with the insulating film is electrically insulated, the uncoated surface part (exposed part) force naturally reacts with the first coating treatment liquid preferentially. . As a result, the surface of the material to be treated (magnetic powder) is sequentially coated, and the entire surface of the material to be treated is uniformly coated without pinholes.
【0 0 7 3】  [0 0 7 3]
この接触工程で用いる第 1被覆処理液の濃度を変更することで、 形成される絶 縁被膜の膜厚を調整することが可能である。 第 1被覆処理液の濃度を濃くすると By changing the concentration of the first coating treatment liquid used in this contact step, it is possible to adjust the film thickness of the insulating film to be formed. Increasing the concentration of the first coating treatment liquid
、 膜厚の厚い絶縁被膜が得られ、 薄くすると、 膜厚の薄い絶縁被膜が得られる。 勿論、 薄い膜厚を重ねて形成し、 全体的に厚い絶縁被膜としても良い。 また、 被 処理材と第 1被覆処理液との接触時間もその膜厚に影響するとも考えられる。 し かし、 現実には、 両者の反応時間が短いこともあり、 一旦、 被処理材の表面が被 覆されると、 接触時間を長くしても、 膜厚の変化は少ない。 A thick insulating film can be obtained, and a thin insulating film can be obtained when the film is thinned. Of course, a thin insulating film may be formed as a whole by forming thin film thicknesses. The contact time between the material to be treated and the first coating treatment liquid may also affect the film thickness. However, in reality, the reaction time between the two may be short, and once the surface of the material to be treated is covered, the change in film thickness is small even if the contact time is increased.
【0 0 7 4】  [0 0 7 4]
乾燥工程は、 被処理材に付着した余分な第 1被覆処理液やその溶媒を発散させ る行程である。 この乾燥工程は、 加熱乾燥は勿論、 自然乾燥でも良い。 もっとも 、 被処理材の表面に絶縁被膜を安定的に、 素早く定着させるためには、 加熱乾燥 The drying process is a process of diverging excess first coating treatment liquid and its solvent adhering to the material to be treated. This drying step may be natural drying as well as heat drying. However, in order to stably and quickly fix the insulating film on the surface of the material to be treated, heat drying
(加熱乾燥工程) が好ましい。 加熱温度は、 8 0〜3 5 0 °C程度、 加熱時間は、 1 0〜1 8 O m i n程度が好ましい。 なお、 加熱雰囲気は、 真空脱気中や窒素中 でも良いし大気中でも良い。 【0 0 7 5】 (Heat drying step) is preferable. The heating temperature is preferably about 80 to 35 ° C., and the heating time is preferably about 10 to 18 O min. The heating atmosphere may be during vacuum degassing, nitrogen, or air. [0 0 7 5]
( b ) 第 2絶縁層形成工程  (b) Second insulating layer formation process
第 2絶縁層形成工程は、 被処理材の第 1絶縁層上にシリコーン樹脂からなる第 2絶縁層を形成する工程である。 この際、 第 2絶縁層を均一に形成するために、 シリコーン榭脂を溶剤等に溶解または分散等させた第 2被覆処理液を用いると好 適である。 このような溶剤には、 例えば、 エタノールやメタノールに代表される アルコール系溶剤、 アセトンゃメチルェチルケトンに代表されるケトン系溶剤、 ベンゼン、 トルエン、 キシレン、 フエノール、 安息香酸などに代表される芳香族 系溶剤、 リグ口イン、 ケロシンなどの石油系溶剤等がある。 特に、 シリコーン樹 脂を溶解し易い芳香族系溶剤が好ましい。 シリコーン樹脂が可溶あるいは分散可 能なら、 溶媒に水を用いても良い。 溶剤にシリコーン樹脂を溶解等させた処理液 The second insulating layer forming step is a step of forming a second insulating layer made of silicone resin on the first insulating layer of the material to be processed. At this time, in order to form the second insulating layer uniformly, it is preferable to use a second coating treatment liquid in which silicone resin is dissolved or dispersed in a solvent or the like. Examples of such solvents include alcohol solvents such as ethanol and methanol, ketone solvents such as acetone and methyl ethyl ketone, and fragrances such as benzene, toluene, xylene, phenol, and benzoic acid. Family solvents, petroleum solvents such as rigging and kerosene. In particular, an aromatic solvent that easily dissolves the silicone resin is preferable. If the silicone resin is soluble or dispersible, water may be used as a solvent. Treatment liquid in which silicone resin is dissolved in a solvent
(第 2被覆処理液) の濃度は、 施工のし易さや乾燥時間等を考慮して決定すれば 良い。 The concentration of the (second coating treatment liquid) may be determined in consideration of ease of construction and drying time.
【0 0 7 6】  [0 0 7 6]
第 2絶縁層形成工程も、 第 1絶縁層の形成された磁性粉末に第 2被覆処理液を 接触させる接触工程と、 その後にそれを乾燥させる乾燥工程とからなる点は、 上 記第 1絶縁層形成工程と同様である。 また、 接触工程おょぴ乾燥工程の内容もほ ぼ同様である。 但し、 シリコーン樹脂の溶剤に揮発性のもの (例えば、 エタノー ル等) を使用した場合は、 加熱乾燥等をさせるまでもなく、 溶剤が自然に揮発し て実質的に乾燥工程が終了することとなる。 なお、 第 2絶縁層中に酸化物粒子を 混在させる場合は、 溶剤中にシリコーン樹脂と共に酸化物粒子を添加して撹拌、 混合しておけば良い。  The second insulating layer forming step also includes the contact step of bringing the second coating treatment liquid into contact with the magnetic powder on which the first insulating layer is formed, and the subsequent drying step of drying it. This is the same as the layer forming step. The contents of the contact process and the drying process are almost the same. However, if a volatile solvent (such as ethanol) is used as the solvent for the silicone resin, the solvent will naturally volatilize and the drying process will be substantially completed, without needing to heat dry. Become. In the case where the oxide particles are mixed in the second insulating layer, the oxide particles may be added to the solvent together with the silicone resin and stirred and mixed.
【0 0 7 7】  [0 0 7 7]
( c ) 第 3絶縁層形成工程  (c) Third insulating layer formation process
第 3絶縁層形成工程は、 被処理材の第 2絶縁層上に酸化物粒子からなる第 3絶 縁層を形成する工程である。  The third insulating layer forming step is a step of forming a third insulating layer made of oxide particles on the second insulating layer of the material to be processed.
【0 0 7 8】  [0 0 7 8]
第 3絶縁層形成工程も、 第 2絶縁層の形成された磁性粉末に第 3被覆処理液を 接触させる接触工程と、 その後にそれを乾燥させる乾燥工程とからなる点は、 上 記第 1絶縁層形成工程や第 2絶縁層形成工程と同様である。 また、 接触工程およ び乾燥工程の内容も、 それらの場合とほぼ同様にできる。 The third insulating layer forming step also includes the contact step of bringing the third coating treatment liquid into contact with the magnetic powder on which the second insulating layer is formed, and the subsequent drying step of drying it. This is the same as the first insulating layer forming step and the second insulating layer forming step. The contents of the contact process and the drying process can be made almost the same as those cases.
【0 0 7 9】  [0 0 7 9]
( 4 ) 圧粉磁心の製造方法  (4) Manufacturing method of dust core
圧粉磁心の製造方法は、 上述の磁心用粉末を成形用金型 (単に 「金型」 という 。 ) に充填する充填工程と、 充填された磁心用粉末を加圧成形する成形工程とか ら基本的になる。 この成形工程は磁場中成形でも非磁場中成形でも良いが、 いず れにしても、 圧粉磁心の磁気特性に大きな影響を与える。 特にその成形圧力が、 圧粉磁心の高密度化、 およびそれに伴う圧粉磁心の高磁束密度化等に大きく影響 する。 もっとも、 その成形圧力を大きくすると、 金型の内面と磁心用粉末との間 でかじりを生じたり、 抜圧が過大となったり、 金型寿命を極端に低下させたりし 易い。 このため、 従来の成形方法では、 その成形圧力を大きくすることが現実に は困難であった。  The method for manufacturing a dust core is basically based on a filling process in which the above-described magnetic core powder is filled in a molding die (simply referred to as “mold”) and a molding process in which the filled magnetic core powder is pressure-molded. Become. This molding process may be performed in a magnetic field or in a non-magnetic field, but in any case, it greatly affects the magnetic properties of the dust core. In particular, the molding pressure greatly affects the increase in the density of the dust core and the accompanying increase in the magnetic flux density of the dust core. However, when the molding pressure is increased, galling is likely to occur between the inner surface of the mold and the magnetic core powder, the release pressure is excessive, and the mold life is extremely reduced. For this reason, in the conventional molding method, it was actually difficult to increase the molding pressure.
【0 0 8 0】  [0 0 8 0]
本発明者は、 画期的な温間高圧成形法を確立し、 それらの課題を解決済である 。 この温間高圧成形法は、 前記充填工程を高級脂肪酸系潤滑剤を内面に塗布した 金型へ磁心用粉末を充填する工程とし、 前記成形工程をその磁心用粉末と金型の 内面との間に金属石鹼皮膜が生成される温間高圧成形工程とするものである。  The present inventor has established an innovative warm high pressure molding method and has solved these problems. In this warm high-pressure molding method, the filling step is a step of filling a metal mold coated with a higher fatty acid-based lubricant with a magnetic core powder, and the molding step is performed between the magnetic core powder and the inner surface of the mold. This is a warm high pressure forming process in which a metal sarcophagus film is formed.
【0 0 8 1】  [0 0 8 1]
一例を挙げると、 磁性粉末を F eを主成分とする粉末とし、 高級脂肪酸系澗滑 剤をステアリン酸リチウムとした場合、 金型の内面に接する圧粉磁心の外表面に は、 潤滑性に優れたステアリン酸鉄からなる金属石鹼皮膜が形成される。 このス テアリン酸鉄皮膜の存在によって、 かじり等が生じず、 また、 非常に低い抜圧で 圧粉磁心が金型から取出される。 そして、 金型の長寿命化も図れる。  For example, if the magnetic powder is a powder containing Fe as a main component and the higher fatty acid lubricant is lithium stearate, the outer surface of the powder magnetic core in contact with the inner surface of the mold has lubricity. A metal sarcophagus film composed of excellent iron stearate is formed. Due to the presence of this iron stearate film, no galling or the like occurs, and the dust core is removed from the mold with a very low pressure. In addition, the tool life can be extended.
【0 0 8 2】  [0 0 8 2]
次に、 この製造方法をさらに詳細に説明する。  Next, this manufacturing method will be described in more detail.
( a ) 充填工程  (a) Filling process
充填工程に際して、 金型の内面に高級脂肪酸系潤滑剤を塗布する必要がある ( 塗布工程) 。 塗布する高級脂肪酸系潤滑剤としては、 高級脂肪酸自体の他、 高級脂肪酸の金 属塩であると好適である。 高級脂肪酸の金属塩には、 リチウム塩、 カルシウム塩 又は亜鉛塩等がある。 特に、 ステアリン酸リチウム、 ステアリン酸カルシウム、 ステアリン酸亜鉛が好ましい。 この他、 ステアリン酸バリウム、 パルミチン酸リ チウム、 ォレイン酸リチウム、 パルミチン酸カルシウム、 ォレイン酸カルシウム 等を用いることもできる。 During the filling process, it is necessary to apply a higher fatty acid lubricant to the inner surface of the mold (application process). The higher fatty acid lubricant to be applied is preferably a metal salt of a higher fatty acid in addition to the higher fatty acid itself. Examples of higher fatty acid metal salts include lithium salts, calcium salts, and zinc salts. In particular, lithium stearate, calcium stearate, and zinc stearate are preferable. In addition, barium stearate, lithium palmitate, lithium oleate, calcium palmitate, calcium oleate, and the like can also be used.
【0 0 8 3】  [0 0 8 3]
この塗布工程は、 加熱された金型内に水または水溶液に分散させた高級脂肪酸 系潤滑剤を噴霧する工程であると、 好適である。  This coating step is preferably a step of spraying a higher fatty acid-based lubricant dispersed in water or an aqueous solution into a heated mold.
【0 0 8 4】  [0 0 8 4]
高級脂肪酸系潤滑剤が水等に分散していると、 金型の内面へ高級脂肪酸系潤滑 剤を均一に噴霧することが容易となる。 さらに、 加熱された金型内にそれを嘖霧 すると、 水分が素早く蒸発して、 金型の内面へ高級脂肪酸系潤滑剤を均一に付着 させることができる。 そのときの金型の加熱温度は、 後述の成形工程の温度を考 慮する必要があるが、 例えば、 1 0 o °c以上に加熱しておけば足る。 もっとも、 高級脂肪酸系潤滑剤の均一な膜を形成するために、 その加熱温度を高級脂肪酸系 潤滑剤の融点未満にすることが好ましい。 例えば、 高級脂肪酸系潤滑剤としてス テアリン酸リチウムを用いた場合、 その加熱温度を 2 2 0 °C未満とすると良い。  When the higher fatty acid lubricant is dispersed in water or the like, it becomes easy to uniformly spray the higher fatty acid lubricant on the inner surface of the mold. Furthermore, when it is sprayed into the heated mold, the water quickly evaporates, and the higher fatty acid lubricant can be uniformly adhered to the inner surface of the mold. The heating temperature of the mold at that time needs to take into account the temperature of the molding process described later. For example, it is sufficient to heat to 10 ° C. or higher. However, in order to form a uniform film of a higher fatty acid-based lubricant, it is preferable that the heating temperature be lower than the melting point of the higher fatty acid-based lubricant. For example, when lithium stearate is used as the higher fatty acid-based lubricant, the heating temperature should be less than 220 ° C.
【0 0 8 5】  [0 0 8 5]
なお、 高級脂肪酸系潤滑剤を水等に分散させる際、 その水溶液全体の質量を 1 0 0質量%としたときに、 高級脂肪酸系潤滑剤が 0 . 1〜5質量%、 さらには、 0 . 5〜2質量%の割合で含まれるようにすると、 均一な潤滑膜が金型の内面に 形成されて好ましい。  When the higher fatty acid-based lubricant is dispersed in water or the like, the higher fatty acid-based lubricant is from 0.1 to 5% by mass, and more preferably from 0. When included in a ratio of 5 to 2% by mass, a uniform lubricating film is preferably formed on the inner surface of the mold.
【0 0 8 6】  [0 0 8 6]
また、 高級脂肪酸系潤滑剤を水等へ分散させる際、 界面活性剤をその水に添加 しておくと、 高級脂肪酸系潤滑剤の均一な分散が図れる。 そのような界面活性剤 として、 例えば、 アルキルフエノール系の界面活性剤、 ポリオキシエチレンノニ ルフエニノレエーテノレ ( E O) 6、 ポリオキシエチレンノニノレフェニルエーテノレ ( E O) 1 0、 ァユオン性非イオン型界面活性剤、 ホウ酸エステル系エマルボン T - 8 0等を用いることができる。 これらを 2種以上組合わせて使用しても良い。 例えば、 高級脂肪酸系潤滑剤としてステアリン酸リチウムを用いた場合、 ポリオ キシエチレンノニノレフエエノレエーテノレ ( E O) 6、 ポリオキシエチレンノニノレフ ェニルエーテノレ ( E O) 1 0及びホウ酸エステルエマルボン T一 8 0の 3種類の 界面活性剤を同時に用いると好ましい。 それらの 1種のみを添加する場合に較べ て複合添加した場合、 ステアリン酸リチウムの水等への分散性が一層活性化され るからである。 In addition, when a higher fatty acid lubricant is dispersed in water or the like, if a surfactant is added to the water, the higher fatty acid lubricant can be uniformly dispersed. Examples of such surfactants include alkylphenol-based surfactants, polyoxyethylene nonenophenolatenore (EO) 6, polyoxyethylene noninorephenyl etherenole (EO) 10, and cation-based nonionics. Type surfactant, borate ester Emulbon T -80, etc. can be used. Two or more of these may be used in combination. For example, when lithium stearate is used as a higher fatty acid-based lubricant, polyoxyethylene noninorephenolatenore (EO) 6, polyoxyethylene nonenolephenyletherenore (EO) 10 and borate ester emulbon T 1 8 It is preferable to use three types of surfactants at the same time. This is because the dispersion of lithium stearate in water or the like is further activated when it is added in combination as compared with the case where only one of them is added.
【0 0 8 7】  [0 0 8 7]
また、 噴霧に適した粘度の高級脂肪酸系潤滑剤の水溶液を得るために、 その水 溶液全体を 1 0 0体積%とした場合、 界面活性剤の割合を 1 . 5〜 1 5体積%と すると好ましい。  In addition, in order to obtain an aqueous solution of a higher fatty acid-based lubricant having a viscosity suitable for spraying, assuming that the entire aqueous solution is 100% by volume, the ratio of the surfactant is 1.5 to 15% by volume. preferable.
【0 0 8 8】  [0 0 8 8]
この他、 少量の消泡剤 (例えば、 シリコン系の消泡剤等) を添加しても良い。 水溶液の泡立ちが激しいと、 それを嘖霧したときに金型の内面に均一な高級脂肪 酸系潤滑剤の被膜が形成され難いからである。 消泡剤の添加割合は、 その水溶液 の全体積を 1 0 0体積。 /0としたときに、 例えば 0 . 1〜 1体積%程度であればよ い。 In addition, a small amount of antifoaming agent (for example, silicon-based antifoaming agent) may be added. This is because when the foaming of the aqueous solution is intense, it is difficult to form a uniform higher fatty acid-based lubricant film on the inner surface of the mold when it is fogged. The defoamer addition ratio is 100 volume of the total volume of the aqueous solution. / 0 and the when, for example, 0. 1 have good be about 1% by volume.
水等に分散した高級脂肪酸系潤滑剤の粒子は、 最大粒径が 3 0 μ ιη未満である と、 好適である。  The higher fatty acid-based lubricant particles dispersed in water or the like preferably have a maximum particle size of less than 30 μιη.
【0 0 8 9】  [0 0 8 9]
最大粒径が 3 0 m以上となると、 高級脂肪酸系潤滑剤の粒子が水溶液中に沈 殿し易く、 金型の内面に高級脂肪酸系潤滑剤を均一に塗布することが困難となる からである。  When the maximum particle size is 30 m or more, the particles of the higher fatty acid lubricant are likely to settle in the aqueous solution, and it becomes difficult to uniformly apply the higher fatty acid lubricant to the inner surface of the mold. .
高級脂肪酸系潤滑剤の分散した水溶液の塗布には、 例えば、 塗装用のスプレー ガンゃ静電ガン等を用いて行うことができる。  Application of the aqueous solution in which the higher fatty acid-based lubricant is dispersed can be performed using, for example, a spray gun for coating or an electrostatic gun.
【0 0 9 0】  [0 0 9 0]
なお、 本発明者が高級脂肪酸系潤滑剤の塗布量と粉末成形体の抜出圧力との関 係を実験により調べた結果、 膜厚が 0 . 5〜1 . 5 μ πι程度となるように高級脂 肪酸系潤滑剤を金型の内面に付着させると好ましいことが解った。 【0 0 9 1】 As a result of an experiment conducted by the inventor on the relationship between the application amount of the higher fatty acid-based lubricant and the extraction pressure of the powder compact, it was found that the film thickness was about 0.5 to 1.5 μπι. It has been found that it is preferable to attach a higher fatty acid-based lubricant to the inner surface of the mold. [0 0 9 1]
( b ) 成形工程  (b) Molding process
詳細は明らかではないが、 この工程で、 前述の金属石鹼皮膜がメカノケミカル 反応によって生成されると考えられる。  Although the details are not clear, it is thought that in this process, the metal sarcophagus film is formed by mechanochemical reaction.
【0 0 9 2】  [0 0 9 2]
すなわち、 その反応によって、 磁心用粉末 (特に、 絶縁被膜) と高級脂肪酸系 潤滑剤とが化学的に結合し、 金属石鹼の被膜 (例えば、 高級脂肪酸の鉄塩被膜) が磁心用粉末の成形体表面に形成される。 この金属石鹼の被膜は、 その粉末成形 体の表面に強固に結合し、 金型の内表面に付着していた高級脂肪酸系潤滑剤より も遙かに優れた潤滑性能を発揮する。 その結果、 金型の内面と粉末成形体の外面 との接触面間での摩擦力が著しく低減し、 高圧成形が可能になったと考えられる  That is, the reaction causes the magnetic core powder (especially the insulating coating) to chemically bond with the higher fatty acid-based lubricant, and the metal sarcophagus coating (for example, the higher fatty acid iron salt coating) forms the magnetic core powder. Formed on the body surface. This metal sarcophagus coating is firmly bonded to the surface of the powder compact and exhibits a lubricating performance far superior to that of higher fatty acid lubricants adhering to the inner surface of the mold. As a result, the frictional force between the contact surface between the inner surface of the mold and the outer surface of the powder compact is remarkably reduced, and high pressure molding is possible.
【0 0 9 3】 [0 0 9 3]
なお、 磁心用粉末の各粒子は絶縁被膜で被覆されているが、 絶縁被膜中に金属 石鹼の被膜形成を促進する元素 (例えば、 磁性粉末の主成分である F eや本発明 でいう第 2元素) を主成分として含有しているので、 それらを基に高級脂肪酸の 金属塩被膜 (金属石鹼被膜) が形成されると考えられる。  Each particle of the magnetic core powder is coated with an insulating coating, but an element that promotes the formation of a metal sarcophagus coating in the insulating coating (for example, Fe as the main component of the magnetic powder or the first mentioned in the present invention). 2 elements) as the main components, it is considered that a metal salt coating (metal sarcophagus coating) of higher fatty acids is formed based on them.
【0 0 9 4】  [0 0 9 4]
成形工程における 「温間」 とは、 各状況に応じた適切な加熱条件の下で成形ェ 程を行うことを意味する。 もっとも、 磁心用粉末と高級脂肪酸系潤滑剤との反応 を促進するために、 概して成形温度を 1 0 o °c以上とすると好ましい。 また、 絶 縁被膜の破壌や高級脂肪酸系潤滑剤の変質を防止するために、 概して成形温度を “Warm” in the molding process means that the molding process is performed under appropriate heating conditions according to each situation. However, in order to promote the reaction between the magnetic core powder and the higher fatty acid-based lubricant, it is generally preferable that the molding temperature is 10 ° C. or higher. Also, in order to prevent the breakdown of the insulating coating and the alteration of the higher fatty acid lubricant, the molding temperature is generally reduced.
2 0 0 °C以下とすると好ましい。 そして、 成形温度を 1 2 0〜1 8 0 °Cとすると より好適である。 It is preferable that the temperature is 200 ° C. or lower. It is more preferable that the molding temperature is 120 to 180 ° C.
【0 0 9 5】  [0 0 9 5]
成形工程における 「加圧」 の程度も、 所望する圧粉磁心の特性、 磁心用粉末、 絶縁被膜、 高級脂肪酸系潤滑剤の種類、 金型の材質や内面性状等に応じて適宜決 定されるものであるが、 この製造方法を用いると、 従来の成形圧力を超越した高 圧力下で成形可能である。 このため、 例えば、 成形圧力を 7 0 O MP a以上、 7 85MP a以上、 l O O OMP a以上、 さらには、 2000 MP aとすることも できる。 成形圧力が高圧である程、 高密度の圧粉磁心が得られる。 もっとも、 金 型の寿命や生産性を考慮して、 その成形圧力を 200 OMP a以下、 より望まし くは 1 50 OMP a以下とするのが良い。 The degree of "pressurization" in the molding process is also appropriately determined according to the desired properties of the powder magnetic core, the magnetic core powder, the insulation coating, the type of higher fatty acid lubricant, the material of the mold and the internal surface properties, etc. However, when this manufacturing method is used, molding can be performed under high pressure exceeding the conventional molding pressure. For this reason, for example, the molding pressure is 70 OMPa or more, 7 85MPa or higher, lOO OMPa or higher, or 2000MPa. The higher the molding pressure, the higher the density magnetic core. However, in consideration of the life and productivity of the mold, the molding pressure should be 200 OMPa or less, more preferably 150 OMPa or less.
【0096】  [0096]
なお、 本発明者は、 この温間高圧成形法を用いた場合、 成形圧力が約 600M P aで抜出圧力が最大となり、 それ以上ではむしろ抜出圧力が低下することを実 験により確認している。 そして、 成形圧力を 900〜200 OMP aの範囲で変 化させたときでさえ、 抜出圧力が 5MP a程度と、 非常に低い値を維持した。 こ のことからも、 本発明の製造方法の一つである温間高圧成形法によつて形成され る金属石鹼被膜が、 如何に潤滑性に優れるかが解る。 この温間高圧成形法は、 高 圧成形による高密度化が要求される圧粉磁心の製造方法として最適であることが 解る。 このような現象は、 高級脂肪酸系潤滑剤として、 ステアリン酸リチウムを 用いた場合に限らず、 ステアリン酸カルシウムゃステアリン酸亜鉛を用いた場合 でも同様に生じ得る。  In addition, the present inventor confirmed by experiments that when this warm high-pressure molding method is used, the extraction pressure becomes maximum when the molding pressure is about 600 MPa, and the extraction pressure decreases rather than that. ing. Even when the molding pressure was changed in the range of 900 to 200 OMPa, the extraction pressure remained at a very low value of about 5 MPa. This also shows how the metal sarcophagus film formed by the warm high pressure forming method, which is one of the production methods of the present invention, is excellent in lubricity. It can be seen that this warm high-pressure forming method is optimal as a method for manufacturing a dust core that requires high density by high-pressure forming. Such a phenomenon can occur not only when lithium stearate is used as the higher fatty acid-based lubricant, but also when calcium stearate or zinc stearate is used.
【0097】  [0097]
(c) 加熱工程、 焼鈍工程  (c) Heating process, annealing process
本発明の圧粉磁心の製造方法は、 さらに、 上記成形工程後に得られた粉末成形 体を加熱する加熱工程または焼鈍温度を備えると好適である。 加熱工程や焼鈍温 度の加熱温度や加熱時間は、 圧粉磁心の仕様に応じて適宜選択されば良い。 この 点で加熱工程と焼鈍温度との間に本質的な相違はないが、 両者は、 その目的が異 なる。  The method for producing a dust core according to the present invention preferably further includes a heating step or an annealing temperature for heating the powder compact obtained after the molding step. The heating temperature and heating time of the heating process and annealing temperature may be appropriately selected according to the specifications of the powder magnetic core. In this respect, there is no essential difference between the heating process and the annealing temperature, but both have different purposes.
【0098】  [0098]
加熱工程は、 絶縁被膜をシリコーン樹脂被膜とした場合に、 成形工程後に得ら れた粉末成形体を加熱して、 そのシリコーン樹脂被膜を s io2被膜とするため の工程である。 一方、 焼鈍工程は、 保磁力やヒステリシス損失の低減を目的とし て、 成形工程後に得られた粉末成形体内部に蓄積された歪み (残留歪み) や応力 (残留応力) を除去するための工程である。 もっとも、 加熱温度、 加熱時間およ ぴ加熱雰囲気を適切に選択して、 加熱工程が焼鈍温度を兼ねても良いし、 焼鈍ェ 程が加熱工程を兼ねても良い。 Heating step, when the insulating coating was a silicone resin film, by heating the Tokura powder molded body after the molding step is a step for the silicone resin coating and s io 2 coating. On the other hand, the annealing process is a process for removing the strain (residual strain) and stress (residual stress) accumulated in the powder compact obtained after the molding process for the purpose of reducing coercive force and hysteresis loss. is there. Of course, the heating process may also serve as the annealing temperature by appropriately selecting the heating temperature, heating time, and heating atmosphere. The degree may also serve as a heating step.
【0 0 9 9】  [0 0 9 9]
なお、 リン酸塩被膜からなる第 1絶縁層と第 1絶縁層を被覆するシリコーン樹 脂からなる第 2絶縁層とを備える多層構造の絶縁被膜は、 前述したように耐熱性 に著しく優れる。 この絶縁被膜を備えた粉末成形体に焼鈍工程を行うと、 渦電流 損失の低減を抑制しつつもヒステリシス損失が十分に低減されて好ましい。 この 絶縁被膜が形成される磁性粉末の組成は特に限定される訳ではないが、 前述した とおり、 磁性粉末中の S i量が 0 . 8 %以下の純鉄粉の場合に特に有効である。  Note that the insulating film having a multilayer structure including the first insulating layer made of the phosphate film and the second insulating layer made of the silicone resin covering the first insulating layer is extremely excellent in heat resistance as described above. It is preferable to perform an annealing step on the powder compact provided with this insulating film, since hysteresis loss is sufficiently reduced while suppressing reduction of eddy current loss. The composition of the magnetic powder on which the insulating coating is formed is not particularly limited, but as described above, it is particularly effective in the case of pure iron powder having an Si content of 0.8% or less.
【0 1 0 0】  [0 1 0 0]
加熱'焼鈍工程は、 3 0 0〜9 0 0 °Cさらには 5 0 0〜7 0 0 °Cで 0 . :!〜 1 0時間さらには 0 . 5〜2 . 0時間加熱するのが好ましい。 このときの雰囲気は 不活性雰囲気が好ましい。 繰り返すが、 このような加熱工程または焼鈍工程を行 うことで絶縁被膜は当初の状態から少なくとも部分的に変化し得る。 しかし、 こ のような加熱工程や焼鈍工程後の圧粉磁心であっても、 本発明の圧粉磁心である  In the heating and annealing step, it is preferable to heat at 300 to 900 ° C, more preferably 50000 to 700 ° C for 0.:! To 10 hours, and further 0.5 to 2.0 hours. . The atmosphere at this time is preferably an inert atmosphere. Again, by performing such a heating or annealing step, the insulating coating can change at least partially from its original state. However, even the dust core after such a heating step or annealing step is the dust core of the present invention.
【0 1 0 1】 [0 1 0 1]
( 5 ) 圧粉磁心  (5) Powder magnetic core
本発明の圧粉磁心は、 上述した磁心用粉末を高密度成形したものであり、 磁性 粉末の真密度 (p。) に対する、 圧粉磁心の嵩密度 (P ) の比である密度比 (P / p o ) が 9 6 %以上である。 このような高密度の圧粉磁心は非常に高い磁束密 度を発生する。 これは、 高性能モータ等に使用されていた従来の電磁鋼板と同等 以上である。 その密度比が 9 7 %以上、 9 8 %以上さらに 9 9 %以上と高くなる 程、 より高い磁束密度が得られるので好ましい。 さらに、 本発明の圧粉磁心を構 成する磁性粉末は、 含有 S i量が比較的少ない。 その分、 一般的な F e— 3 % S i等の磁性粉末を使用した圧粉磁心と比較して、 本発明の圧粉磁心はより高い磁 束密度を発揮する。 The dust core of the present invention is a high-density molding of the above-described magnetic core powder. The density ratio ( P ) is the ratio of the bulk density ( P ) of the dust core to the true density ( p .) Of the magnetic powder. / po) is 96% or more. Such a high-density powder magnetic core generates a very high magnetic flux density. This is equivalent to or better than conventional electromagnetic steel sheets used in high performance motors. The higher the density ratio is 97% or more, 98% or more, and 99% or more, it is preferable because a higher magnetic flux density can be obtained. Further, the magnetic powder constituting the dust core of the present invention has a relatively small amount of Si contained. Accordingly, the dust core of the present invention exhibits a higher magnetic flux density than a dust core using a magnetic powder such as general Fe-3% Si.
【0 1 0 2】  [0 1 0 2]
本発明では、 圧粉磁心の磁気特性をその密度比によって間接的に指標している が、 例えば、 特定強さの磁界中においたときの磁束密度で、 その圧粉磁心の磁気 特性を直接的に特定しても良い。 なお、 圧粉磁心の磁気特性を指標するものとし て透磁率があるが、 透磁率は一般的な B— H曲線からも解るように一定ではない ので、 本明細書では、 特定磁界中で生じる磁束密度により圧粉磁心の磁気特性を 評価している。 In the present invention, the magnetic properties of the dust core are indirectly indicated by the density ratio. For example, the magnetic density of the dust core is determined by the magnetic flux density when placed in a magnetic field of a specific strength. The characteristics may be specified directly. In addition, although there is magnetic permeability as an index for the magnetic characteristics of the dust core, the magnetic permeability is not constant as can be seen from a general BH curve. The magnetic properties of the dust core are evaluated by the magnetic flux density.
【0103】  [0103]
上記特定磁界は、 1〜20 k A/mから適当に選定すれば良い。 例えば、 2 k A/m、 5 k AZm、 8 k A/m、 10 k A/m、 16 k A/m、 20 k A/m 等である。 それらの磁界中に圧粉磁心を置いたときにできる磁束密度をそれぞれ 、 B2k、 B5k、 B8k、 B 10k, B16k、 B2k等と表して、 本発明の圧粉磁心を評 価できる。 本発明の圧粉磁心の場合、 例えば、 B2k≥ l. 7T、 1. 8Τ、 1 . 9Τさらには 2. 0T、 B iok≥ 1. 5Τ、 1. 6Τ、 1. 7Τさらには 1. 8 Τといった高い磁束密度を発揮する。 The specific magnetic field may be appropriately selected from 1 to 20 kA / m. For example, 2 k A / m, 5 k AZm, 8 k A / m, 10 k A / m, 16 k A / m, 20 k A / m, and the like. B 2k , B 5k , B 8k , B 10 k, B 16k , B 2 are the magnetic flux densities that can be generated when the dust core is placed in the magnetic field. The dust core of the present invention can be evaluated by expressing k and the like. In the case of the dust core of the present invention, for example, B 2 . High magnetic flux density such as k ≥ l. 7T, 1.8 Τ, 1.9 2. or even 2.0 T, B iok ≥ 1.5 Τ, 1. 6 Τ, 1. 7 Τ or even 1.8 Τ.
【0104】  [0104]
なお、 飽和磁化 Msが小さいと、 高磁場中で大きな磁束密度が得られないが、 本発明の圧粉磁心では、 例えば、 1. 6 MAZmの磁場中における飽和磁化 Ms ≥ 1. 9 Tさらには 2. 0T以上ともなり、 高磁界中でも安定した高磁束密度が 得られる。  If the saturation magnetization Ms is small, a large magnetic flux density cannot be obtained in a high magnetic field. However, in the dust core of the present invention, for example, the saturation magnetization Ms ≥1.9 T in a magnetic field of 1.6 MAZm 2. Since it is over 0T, a stable high magnetic flux density can be obtained even in a high magnetic field.
【0105】  [0105]
さらに、 圧粉磁心の磁気特性を指標するものとして保磁力がある。 その保磁力 が小さい程、 交流磁界に対する圧粉磁心の追従性が良くなり、 そのヒステリシス 損失も小さくなる。 本発明の圧粉磁心の場合、 その保磁力 b H cは 150 A/m 以下、 130 A/m以下さらには 100 AZm以下ともなり得る。 なお、 本明細 書でいう保磁力 b Heは、 最大磁場 2 kAZmでの磁化曲線から測定した値と定 義する。  Furthermore, there is a coercive force as an index of the magnetic characteristics of the dust core. The smaller the coercive force, the better the followability of the dust core to the AC magnetic field, and the smaller the hysteresis loss. In the case of the dust core of the present invention, the coercive force b H c can be 150 A / m or less, 130 A / m or less, or even 100 AZm or less. The coercive force b He referred to in this specification is defined as a value measured from a magnetization curve with a maximum magnetic field of 2 kAZm.
【0106】  [0106]
ちなみに、 磁性粉末中の S i量が増加する程、 圧粉磁心の保磁力が低下する傾 向となる。 この観点から、 本発明に係る磁性粉末の S i量は 0. 8〜1. 5質量 %が好ましい。  Incidentally, as the amount of Si in the magnetic powder increases, the coercive force of the dust core tends to decrease. From this viewpoint, the Si amount of the magnetic powder according to the present invention is preferably 0.8 to 1.5 mass%.
【0107】 次に、 圧粉磁心の電気特性 (すなわち、 比抵抗) について説明する。 比抵抗は 、 原則として形状に依存しない圧粉磁心ごとの固有値であり、 同形状の圧粉磁心 であれば比抵抗が大きいほど、 渦電流損失の低減を図れる。 比抵抗は、 絶縁被膜 の種類、 絶縁被膜の量 (膜厚) 、 焼鈍の有無等によって異なるが、 比抵抗が 50 μ Ωηι以上、 Ι Ο Ο μ Ωηι以上、 300 μ Ω m以上さらには 1000 μ Ω m以上 であれば、 十分な渦電流損失の低減を図れる。 [0107] Next, the electrical characteristics (ie, specific resistance) of the dust core will be described. The specific resistance is, in principle, an eigenvalue for each dust core that does not depend on the shape. For a dust core having the same shape, the larger the specific resistance, the lower the eddy current loss. The specific resistance varies depending on the type of insulating coating, the amount of insulating coating (film thickness), and the presence or absence of annealing, but the specific resistance is 50 μΩηι or more, Ο Ο Ο μΩηι or more, 300 μΩm or more, and 1000 μ If it is Ω m or more, eddy current loss can be sufficiently reduced.
【0108】  [0108]
なお、 圧粉磁心全体に対する絶縁被膜量によって、 圧粉磁心の比抵抗と磁束密 度との関係は変化する。 具体的には絶縁被膜量が多くなれば、 比抵抗が増加して 磁束密度が減少する。 逆に、 絶縁被膜量が少なくなれば、 比抵抗が減少して磁束 密度が増加する。 この傾向は焼鈍した圧粉磁心であっても基本的に同様である。 耐久性、 耐熱性等に優れた前述したような絶縁被膜を使用して、 その使用量を少 なくすることで、 磁気特性および電気特性の两方に優れた圧粉磁心が得られる。  Note that the relationship between the specific resistance of the dust core and the magnetic flux density varies depending on the amount of insulation coating on the entire dust core. Specifically, as the amount of insulating film increases, the specific resistance increases and the magnetic flux density decreases. Conversely, as the amount of insulating film decreases, the specific resistance decreases and the magnetic flux density increases. This tendency is basically the same even with an annealed powder magnetic core. By using the above-described insulating film excellent in durability, heat resistance, etc. and reducing the amount of use, a dust core excellent in both magnetic characteristics and electrical characteristics can be obtained.
【0109】  [0109]
圧粉磁心の機械的特性 (特に、 強度) も、 実際の使用を考えると重要である。 圧粉磁心は、 铸造品や焼結品とは異なり、 絶縁被膜で被覆された構成粒子が塑性 変形によって主に機械的に結合されているだけであり、 その強度は高くない。 但 し、 本発明の圧粉磁心は、 その密度比が 96%以上と高密度であるので、 実際上 、 十分な強度を有する。 例えば、 4点曲げ強度 σで 5 OMP a以上さらには 10 OMP a以上という高強度を発揮する。 この 4点曲げ強度 σは、 J I Sに規定さ れていないが、 圧粉体の試験方法により求めることができる。  The mechanical properties (particularly strength) of the dust core are also important when considering actual use. Unlike a forged product or a sintered product, a dust core is composed only of mechanically bonded constituent particles covered with an insulating film mainly by plastic deformation, and its strength is not high. However, since the density ratio of the dust core of the present invention is as high as 96% or more, it has practically sufficient strength. For example, it has a 4 point bending strength σ of 5 OMPa or higher, or 10 OMPa or higher. This four-point bending strength σ is not specified in JIS, but can be determined by the green compact test method.
【01 10】  [01 10]
(6) 圧粉磁心の用途  (6) Application of dust core
本発明の圧粉磁心は、 各種の電磁機器、 例えば、 モータ、 ァクチユエータ、 ト ランス、 誘導加熱器 (I H) 、 スピーカ、 リアタトル等に利用できる。 中でも、 2000 H z以下 (例えば、 100〜 2000Hz) といった低周波数域で作動 する電磁機器に使用されると好ましい。 本発明の圧粉磁心は、 そのような低周波 数域で使用された際に、 特に、 鉄損を著しく抑制しつつ高い磁気特性を発現する 。 そのような低周波数域で使用される電磁機器として、 電動機 (モータ) や発電 機がある。 すなわち、 本発明の圧粉磁心は、 電動機または発電機の界磁または電 機子を構成する鉄心であると好ましい。 特に、 低損失で高出力 (高磁束密度) が 要求される駆動用モータ用に本発明の圧粉磁心は好適である。 このような駆動用 モータは、 例えば、 ハイブリッド自動車や電気自動車等に用いられる。 本発明の 圧粉磁心の鉄損の一例を挙げておく。 使用周波数が 800Hzで磁束密度が 1. 0Tの交番磁界中で本発明の圧粉磁心を使用したとき、 その鉄損は、 55W/k g以下、 53WZk g以下さらには 38W/k g以下と小さい。 この鉄損は、 従 来の圧粉磁心よりも遙かに小さく、 モータに使用される高性能電磁鋼板 (20 J NEH 1200 (J FEスチーノレ製) ) と同等かそれ以下である。 上記鉄損の内 、 ヒステリシス損失は 37W/k g以下、 34W/k g以下さらには 32W/k g以下と十分に小さい。 勿論、 上記鉄損の内、 渦電流損失は 21 W/k g以下、 16WZk g以下、 さらには 6 W/k g以下である。 The dust core of the present invention can be used for various electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, and rear tuttles. Among them, it is preferable to be used for an electromagnetic device that operates in a low frequency range of 2000 Hz or less (for example, 100 to 2000 Hz). When used in such a low frequency range, the dust core of the present invention exhibits high magnetic properties while significantly suppressing iron loss. As an electromagnetic device used in such a low frequency range, an electric motor (motor) or power generation There is a machine. That is, the dust core of the present invention is preferably an iron core constituting a field or an armature of an electric motor or a generator. In particular, the dust core of the present invention is suitable for a drive motor that requires low loss and high output (high magnetic flux density). Such a drive motor is used in, for example, a hybrid vehicle or an electric vehicle. An example of the iron loss of the dust core of the present invention will be given. When the dust core of the present invention is used in an alternating magnetic field with an operating frequency of 800 Hz and a magnetic flux density of 1.0 T, the iron loss is as small as 55 W / kg or less, 53 WZkg or less, or 38 W / kg or less. This iron loss is much smaller than the conventional dust core, and is equivalent to or less than the high-performance electrical steel sheet (20 J NEH 1200 (manufactured by JFE Schinole)) used in motors. Of the above iron losses, the hysteresis loss is sufficiently low, 37W / kg or less, 34W / kg or less, and 32W / kg or less. Of course, of the above iron loss, the eddy current loss is 21 W / kg or less, 16 WZkg or less, and further 6 W / kg or less.
【011 1】  [011 1]
【実施例】  【Example】
実施例を挙げて、 本発明をより具体的に説明する。  The present invention will be described more specifically with reference to examples.
(第 1実施例)  (First example)
(1) 絶縁被膜の形成 (磁心用粉末の製造)  (1) Formation of insulating coating (Manufacture of magnetic core powder)
原料粉末 (磁性粉末) として、 純 F e (純度: 99. 8%、 へガネス社製 A B C 100. 30) 、 F e— l%S iおよび F e— 3%S iの組成をもつ市販のァ トマイズ粉を用意した。 単位は質量%である (以下、 同様) 。 各粉末の商品名お よぴ製造メ一力は次のとおりである。  As raw material powder (magnetic powder), commercially available with a composition of pure Fe (purity: 99.8%, ABC 100.30 from Heganes), Fe—l% S i and Fe—3 %% Si Atomized powder was prepared. The unit is mass% (hereinafter the same). The brand name and production of each powder are as follows.
【0112】  [0112]
各粉末の体積平均粒径は、 純鉄粉 80 m、 F e - 1 % S i粉末 80 μ mおよ ぴ F e— 3 % S i粉末 80 μ mであった。  The volume average particle diameter of each powder was pure iron powder 80 m, Fe-1% Si powder 80 μm, and Fe-3% Si powder 80 μm.
【0113】  [0113]
これらの各粉末にシリコーン樹脂被膜 (絶縁被膜) を次のようにコーティング した。  Each of these powders was coated with a silicone resin film (insulating film) as follows.
【0114】  [0114]
市販のシリコーン樹脂 (東レ 'ダウコーニング 'シリコーン社製、 「SR— 2 400」 ) を 5倍の有機溶媒 (トルエン) に溶解した被覆処理液を用意した。 こ の被覆処理液を上記磁性粉末に添加した後、 混合おょぴ撹拌を行い、 その後にそ れらを 1 50°Cで 2時間乾燥させた。 こうしてシリコーン樹脂被膜で表面が被 覆された磁性粉末 (磁心用粉末) が得られた。 被覆処理液の添加は、 磁性粉末 1 00質量%に対してシリコーン樹脂量が 0. 2質量%となるようにした。 なお、 このシリコーン樹脂の質量%は僅かであるので、 コーティング後の磁心用粉末 ( または圧粉磁心) 全体を 100質量%と考えても、 上記割合は殆ど変化ない (以 下同様) 。 ちなみに、 上記シリコーン樹脂は、 750°Cまで加熱すると分解し、 磁性粉末の表面に S i 02の酸化被膜 (絶縁被膜) を形成する。 Commercially available silicone resin (Toray 'Dow Corning' manufactured by Silicone, “SR-2 400 ”) was dissolved in 5 times the organic solvent (toluene) to prepare a coating treatment solution. This coating solution was added to the magnetic powder, mixed and stirred, and then dried at 150 ° C. for 2 hours. Thus, a magnetic powder (magnetic core powder) whose surface was covered with a silicone resin coating was obtained. The coating treatment solution was added so that the amount of the silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. In addition, since the mass% of the silicone resin is very small, the above ratio hardly changes even if the entire coated magnetic core powder (or powder magnetic core) is considered to be 100 mass% (the same applies hereinafter). Incidentally, the silicone resin decomposes when heated to 750 ° C., and forms a SiO 2 oxide film (insulating film) on the surface of the magnetic powder.
【01 1 5】  [01 1 5]
(2) 圧粉磁心の製造  (2) Manufacturing of dust core
各磁心用粉末に金型潤滑温間高圧成形法を適用して、 リング状 (外径: Φ 39 mmX内径 φ 3 OmmX厚さ 5mm) および板状 ( 5 mm X 10 mm X 55 mm ) の 2種の試験片をそれぞれ製作した。 このリング状試験片は磁気特性評価用で あり、 板状試験片は電気抵抗評価用である。 各試験片 (圧粉磁心) の成形に際し て、 内部潤滑剤や樹脂バインダー等は、 一切使用しなかった。  Applying the die lubrication warm high pressure molding method to each magnetic core powder, ring-shaped (outer diameter: Φ 39 mm x inner diameter φ 3 Omm x thickness 5 mm) and plate-shaped (5 mm x 10 mm x 55 mm) 2 Each type of specimen was made. This ring-shaped specimen is for magnetic property evaluation, and the plate-shaped specimen is for electrical resistance evaluation. No internal lubricant or resin binder was used in molding each specimen (dust core).
【01 16】  [01 16]
金型潤滑温間高圧成形法は、 具体的には次のようにして行った。  Specifically, the mold lubrication warm high pressure molding method was performed as follows.
【01 1 7】  [01 1 7]
(a) 各試験片形状に応じたキヤビティを有する超硬製の金型を用意した。 この 金型をバンドヒータで予め 1 50°Cに加熱しておいた。 また、 この金型の内周面 には、 予め T i Nコート処理を施し、 その表面粗さを 0. 4 Zとした。  (a) A cemented carbide mold having a cavity corresponding to each test piece shape was prepared. This mold was preheated to 150 ° C. with a band heater. In addition, the inner peripheral surface of this mold was pre-treated with TiN coating, and the surface roughness was set to 0.4 Z.
【01 18】  [01 18]
加熱した金型の内周面に、 水溶液に分散させたステアリン酸リチウムをスプレ 一ガンにて、 1 0 cm3/分程度の割合で均一に塗布した (塗布工程) 。 ここで 用いた水溶液は、 水に界面活性剤と消泡剤とを添加したものである。 界面活性剤 には、 ポリオキシエチレンノユルフェニルエーテル (EO) 6、 (EO) 10及 ぴホウ酸エステルエマルボン T一 80を用い、 それぞれを水溶液全体 (100体 積0 /0) に対して 1体積%づつ添カ卩した。 また、 消泡剤には、 FSアンチフォーム 80を用い、 水溶液全体 (100体積%) に対して 0. 2体積%添加した。 Lithium stearate dispersed in an aqueous solution was uniformly applied at a rate of about 10 cm 3 / min to the inner peripheral surface of the heated mold with a spray gun (application process). The aqueous solution used here is obtained by adding a surfactant and an antifoaming agent to water. The surface active agent include polyoxyethylene Roh loose phenyl ether (EO) 6, with respect to (EO) 10 using及Pi borate Emar Bonn T one 80, respectively entire solution (100 body product 0/0) It was added in increments of 1% by volume. In addition, for antifoaming agent, FS Antifoam Using 80, 0.2% by volume was added to the whole aqueous solution (100% by volume).
【01 19】  [01 19]
また、 ステアリン酸リチウムには、 融点が約 225°Cで、 粒崔が 20 μηιのも のを用いた。 その分散量は、 上記水溶液 100 cm3に対して 25 gとした。 そ して、 これをさらにボールミル式粉碎装置で微細化処理 (テフロンコート鋼球: 100時間) し、 得られた原液を 20倍に希釈して最終濃度 1 %の水溶液として 、 上記塗布工程に供した。 In addition, lithium stearate having a melting point of about 225 ° C and a particle size of 20 μηι was used. The amount of dispersion was 25 g with respect to 100 cm 3 of the aqueous solution. Then, this was further refined with a ball mill type powder mill (Teflon-coated steel balls: 100 hours), and the resulting stock solution was diluted 20 times to give an aqueous solution having a final concentration of 1% for the application step. did.
【0120】  [0120]
(b) ステアリン酸リチウムが内面に塗布されたその金型へ、 それと同温の 15 o°cに加熱しておいた磁心用粉末を充填した (充填工程) 。  (b) A magnetic core powder that had been heated to 15 ° C. at the same temperature was filled into the mold coated with lithium stearate on the inner surface (filling step).
【0121】  [0121]
(c) 金型を 150°Cに保持したまま、 基本的に 1568 MP aの成形圧力で、 その金型内に充填された磁心用粉末を温間加圧成形した (成形工程) 。  (c) While maintaining the mold at 150 ° C., the core powder filled in the mold was warm-pressed basically at a molding pressure of 1568 MPa (molding process).
なお、 この温間高圧成形に際して、 いずれの磁心用粉末も金型とかじり等を生 じることがなく、 5MP a程度の低レ、抜圧で粉末成形体をその金型から取出すこ とができた。  In this warm high-pressure molding, none of the powders for the magnetic core cause galling or the like, and it is possible to take out the powder compact from the mold with a low pressure of about 5 MPa and a depressurization pressure. did it.
【0122】  [0122]
(d) 得られた各粉末成形体に、 窒素雰囲気中で 750°Cx 30分間の加熱処理 (焼鈍処理) を行った (加熱工程または焼鈍工程) 。 これにより、 シリコーン榭 脂被膜が S i 02被膜になると共に粉末成形体内部に残留した歪みや応力が除去 される。 (d) Each of the obtained powder compacts was subjected to a heat treatment (annealing treatment) at 750 ° C. for 30 minutes in a nitrogen atmosphere (heating step or annealing step). Thus, distortion and stress remaining in the powder compact with a silicone榭fat coating becomes S i 0 2 coating is removed.
【0123】  [0123]
(第 2実施例)  (Second embodiment)
前述の F e— 1 % S i磁性粉末 (体積平均粒径: 80 μ m) に、 第 1実施例の 場合と同様にシリコーン樹脂被膜 (絶縁被膜) のコーティング処理を行なった。 但し、 シリコーン樹脂量は磁性粉末 100質量%に対して 0. 1質量%、 0. 2 質量%および 0. 5質量%とした。 こうして絶縁被膜量の異なる 3種の磁心用粉 末を得た。  The above-described Fe-1% Si magnetic powder (volume average particle size: 80 μm) was coated with a silicone resin film (insulating film) in the same manner as in the first example. However, the amount of the silicone resin was 0.1% by mass, 0.2% by mass and 0.5% by mass with respect to 100% by mass of the magnetic powder. In this way, three types of magnetic core powders with different amounts of insulating coating were obtained.
【0124】 得られた各磁心用粉末を用いて、 第 1実施例と同様の温間高圧成形をし、 得ら れた各粉末成形体に、 前述した加熱処理 (窒素雰囲気中で 7 5 0°Cx 3 0分間) を施した。 [0124] Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and each of the obtained powder compacts was subjected to the heat treatment described above (7500 ° Cx 3 in nitrogen atmosphere). 0 minutes).
【0 1 2 5】  [0 1 2 5]
(第 3実施例)  (Third example)
篩い分け法によって 8段階に分級した F e— 1 %S i磁性粉末を用意した。 具 体的には (a ) 4 5〜6 3 μ πα (b) 6 3〜74 μ πι、 ( c ) 7 4〜1 0 5 μ πι 、 (d) 1 0 5〜 1 5 0 μ ηι、 (e) 1 5 0〜2 1 2 μ πι、 ( f ) 2 1 2〜2 5 0 μ πι、 (g) 2 5 0〜3 0 0、 (h) 3 0 0〜3 5 5 μ πιに分級した。 これを 本発明の体積平均粒径でいうと、 それぞれ、 (a ) 5 0〜6 0 μ πι (1)) 6 5〜 7 0 μ m、 ( c ) 8 0〜1 0 0 μ πι、 (d) 1 2 0〜 1 4 0 / m、 ( e ) 1 7 0 〜: 1 9 0 μ ηι、 ( f ) 2 2 0〜24 0 μΐη、 (g) 2 7 0〜2 9 0 μπι、 (h) 3 2 0〜3 4 0 μ ιηとなる。 なお、 使用した F e _ 1 % S i磁性粉末は第 1実施 例のものと同様のァトマイズ粉である。  Fe-1% Si magnetic powder classified into 8 stages by sieving method was prepared. Specifically, (a) 4 5 ~ 6 3 μ πα (b) 6 3 ~ 74 μ πι, (c) 7 4 ~ 1 0 5 μ πι, (d) 1 0 5 ~ 1 5 0 μ ηι, (e) 1 5 0 to 2 1 2 μ πι, (f) 2 1 2 to 2 5 0 μ πι, (g) 2 5 0 to 3 0 0, (h) 3 0 0 to 3 5 5 μ πι Classified. In terms of the volume average particle diameter according to the present invention, (a) 5 0 to 60 μ πι (1)) 6 5 to 70 μm, (c) 8 0 to 100 μπι, ( d) 1 2 0 to 1 4 0 / m, (e) 1 7 0 to: 1 9 0 μ μη, (f) 2 2 0 to 24 0 μΐη, (g) 2 7 0 to 2 9 0 μπι, ( h) 3 2 0 to 3 4 0 μ ιη. The Fe 1% Si magnetic powder used was the same atomized powder as in the first example.
【0 1 2 6】  [0 1 2 6]
これら各磁性粉末に第 1実施例と同様にして、 シリコーン樹脂被膜を形成した 。 シリコーン樹脂量は磁性粉末 1 0 0質量%に対して 0. 2質量%とした。 こう して、 粒径の異なる 8種の磁心用粉末を得た。  A silicone resin film was formed on each of these magnetic powders in the same manner as in the first example. The amount of silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. In this way, eight kinds of magnetic core powders having different particle diameters were obtained.
得られた各磁心用粉末を用いて、 第 1実施例と同様の温間高圧成形をし、 得ら れた各粉末成形体に、 前述した加熱処理 (窒素雰囲気中で 7 5 0°Cx 3 0分間) を施した。  Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and each of the obtained powder compacts was subjected to the heat treatment described above (7500 ° Cx 3 in nitrogen atmosphere). 0 minutes).
【0 1 2 7】  [0 1 2 7]
(第 4実施例)  (Example 4)
篩い分け法によって 1 1段階に分級した F e— 1 %S i磁性粉末を用意した。 これらの分級は、 第 3実施例で示した 8段階の分級である。 使用した F e— 1 % S i磁性粉末は第 1実施例のものと同様のァトマイズ粉である。  F e-1% Si magnetic powder classified into 11 steps by a sieving method was prepared. These classifications are the 8-stage classifications shown in the third embodiment. The Fe-1% Si magnetic powder used is the same atomized powder as in the first example.
【0 1 2 8】  [0 1 2 8]
これらの各種粉末をそれぞれ、 小型圧延機 (DBR— 5 0 S (大東製作所製) ) で、 厚さが 0. 0 5 mmおよび 0. 1 mmになるように圧延した (扁平処理工 程) 。 こうして、 粒径または厚みの異なる略小判型をした扁平粒子を得た。 この 圧延前の分級で 8段階、 圧延後の厚みで 2段階に分れる。 よって合計で 22種の 磁性粉末を得た。 Each of these powders was rolled to a thickness of 0.05 mm and 0.1 mm with a small rolling mill (DBR-50 S (manufactured by Daito Seisakusho)). About) In this way, oblate flat particles having different particle sizes or thicknesses were obtained. The classification before rolling can be divided into 8 stages, and the thickness after rolling can be divided into 2 stages. Therefore, a total of 22 types of magnetic powder were obtained.
【0129】  [0129]
これらの各磁性粉末に第 1実施例と同様にしてシリコーン樹脂被膜を形成した 。 シリコーン樹脂量は磁性粉末 100質量%に対して 0. 2質量%とした。 得られた各磁心用粉末を用いて、 第 1実施例と同様の温間高圧成形をし、 得ら れた各粉末成形体に、 前述した加熱処理 (窒素雰囲気中で 750°Cx 30分間) を施した。  A silicone resin film was formed on each of these magnetic powders in the same manner as in the first example. The amount of silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. Using each of the obtained magnetic core powders, warm high-pressure molding similar to that of the first example was carried out, and each of the obtained powder compacts was subjected to the heat treatment described above (750 ° C x 30 minutes in a nitrogen atmosphere). Was given.
【0130】  [0130]
(第 5実施例)  (Fifth embodiment)
(1) 磁心用粉末の製造  (1) Manufacture of magnetic core powder
磁性粉末として市販されている 2種の純鉄粉を容易した。 一方は水ァトマイズ 粉 (川崎製鉄の K I P— 304 AS) であり、 他方はガスアトマイズ粉 (山陽特 殊鋼製) である。 これらの粉末は分級等を特に行わず、 入手した状態のままで使 用した。 その粒径は 100〜200μ mであった。 これを本発明の体積平均粒径 でいうと 130〜 170 μηιとなる。  Two types of pure iron powder, which are commercially available as magnetic powder, have been facilitated. One is water atomized powder (KIP-304 AS from Kawasaki Steel) and the other is gas atomized powder (manufactured by Sanyo Special Steel). These powders were not used for classification and were used as received. The particle size was 100-200 μm. This is 130 to 170 μηι in terms of the volume average particle size of the present invention.
【0131】  [0131]
( a ) 磁性粉末への第 1絶縁層のコーティング処理を次の方法で行なつた。 市販されている試薬である S r C03 (アルカリ土類金属元素の酸化物) : 1 1 gと、 ホウ酸 (H3B03) : 3 g、 リン酸 (H3P04) : ■· 19 gを、 200 m lのイオン交換水に投入し撹拌溶解してコーティング液 (第 1被覆処理液) を 得た。 これらの混合割合は、 モル比で S r : B : P= 1. 5 : 1 : 4となる。 (a) The first insulating layer was coated on the magnetic powder by the following method. Sr C0 3 (alkaline earth metal oxide): 1 1 g, boric acid (H 3 B0 3 ): 3 g, phosphoric acid (H 3 P0 4 ): ■ · 19 g was added to 200 ml of ion-exchanged water and dissolved by stirring to obtain a coating solution (first coating treatment solution). These mixing ratios are Sr: B: P = 1.5: 1: 4 in molar ratio.
【0132】  [0132]
100mlのビーカに入れた各磁性粉末 100 gの上へ、 上記コーティング液 を 2 Oml滴下した (第 1接触工程) 。 これを電気炉に入れて、 200°C、 30 m i n間、 大気中で加熱乾燥した (第 1乾燥工程) 。 こうして、 磁性粉末の表面 に第 1絶縁層 (S r— B— P— O系絶縁層、 ストロンチウムリン酸塩系のガラス 状絶縁層) を定着、 形成させた (第 1絶縁層形成工程) 。 なお、 この第 1絶縁層 の割合は、 処理前の磁性粉末全体 (100質量%) に対して、 水アトマイズ粉の 場合が 3質量%、 ガスァトマイズ粉の場合が 2質量%とした。 2 Oml of the coating solution was dropped onto 100 g of each magnetic powder in a 100 ml beaker (first contact step). This was put in an electric furnace and dried by heating in the atmosphere for 200 minutes at 200 ° C (first drying step). Thus, the first insulating layer (Sr—B—P—O type insulating layer, strontium phosphate type glassy insulating layer) was fixed and formed on the surface of the magnetic powder (first insulating layer forming step). This first insulating layer The ratio was 3% by mass for water atomized powder and 2% by mass for gas atomized powder with respect to the total magnetic powder (100% by mass) before treatment.
【01 33】  [01 33]
(b) 第 1絶縁層が形成された磁性粉末 (以下、 単に 「第 1磁性粉末」 という。 ) への第 2絶縁層のコーティング処理を次の方法で行なった。  (b) The second insulating layer was coated on the magnetic powder (hereinafter simply referred to as “first magnetic powder”) on which the first insulating layer was formed by the following method.
シリコーン樹脂溶液 (東レダウコーユング社製 SR 2400) と、 酸化物粒子 であるシリカ (S i〇2) 粒子 (アドマテックス社製、 粒径 50 nm) とを用意 した。 なお、 シリコーン樹脂溶液 (SR2400) は、 溶剤であるトルエン中に シリコーン樹脂を 50質量%の割合で溶解させたものである。 Silicone resin solution (E Redaukoyungu Co. SR 2400), silica oxide particles (S I_〇 2) particles (Admatechs Co., 50 nm particle size) were prepared and. The silicone resin solution (SR2400) is a solution in which a silicone resin is dissolved at a ratio of 50% by mass in toluene as a solvent.
【0 1 34】  [0 1 34]
第 1磁性粉末上に第 2絶縁層 (または第 3絶縁層) を次のようにして形成した シリコーン樹脂からなる第 2絶縁層の形成に際しては、 100m lのビーカに 各第 1磁性粉末 50 gを入れ、 それらの上から上記シリコーン榭脂溶液を、 シリ コーン樹脂量が表 2に示す割合となるように添カ卩した (第 2接触工程) 。 また、 シリコーン樹脂とシリカ粒子との複合絶縁層の形成に際しては、 さらに上記シリ コ一ン榭脂溶液を添カ卩した上からシリ力粒子を表 2に示す割合となるように添加 した (第 2接触工程) 。  The second insulating layer (or third insulating layer) is formed on the first magnetic powder as follows. When forming the second insulating layer made of silicone resin, 50 g of each first magnetic powder is placed in a 100 ml beaker. From above, the silicone resin solution was added so that the amount of silicone resin reached the ratio shown in Table 2 (second contact step). In addition, when forming the composite insulating layer of the silicone resin and the silica particles, the silicone resin solution was further added, and then the silicon force particles were added to the ratio shown in Table 2 (No. 1). 2 contact process).
【01 35】  [01 35]
第 1磁性粉末と種々の割合のシリコーン樹脂溶液等が添加されたそれぞれのビ 一力に、 エタノール 3 Om 1を入れて、 60°C以上の大気中で 30分間撹拌を行 い、 エタノールを完全に揮発させた (第 2接触工程) 。  Add ethanol 3 Om 1 to each of the first magnetic powder and various ratios of silicone resin solution added, and stir in the atmosphere at 60 ° C or higher for 30 minutes. (Second contact process).
【01 36】  [01 36]
こう して、 S r— B— P— O系絶縁層からなる第 1絶縁層が形成された磁性粉 末上に、 シリコーン樹脂からなる第 2絶縁層またはシリコーン樹脂おょぴシリカ 粒子からなる第 2絶縁層 (複合絶縁層) を形成した (第 2絶縁層形成工程) 。 こ うして、 第 1絶縁層および第 2絶縁層で被覆された各種の磁心用粉末を得た。  Thus, on the magnetic powder on which the first insulating layer composed of the Sr—B—P—O-based insulating layer is formed, the second insulating layer composed of the silicone resin or the second composed of the silicone resin op-silica particles. Two insulating layers (composite insulating layers) were formed (second insulating layer forming step). Thus, various magnetic core powders coated with the first insulating layer and the second insulating layer were obtained.
【01 37】  [01 37]
(2) 圧粉磁心の製造 これら各磁心用粉末を用いて、 第 1実施例と同様の温間高圧成形をした。 得ら れた粉末成形体に、 大気中で、 焼鈍温度: 500°Cまたは 600°C、 焼鈍時間: 30分の焼鈍を適宜施した。 なお、 一部の試験片は、 焼鈍温度を 650°Cとして 酸化防止雰囲気 (Arガス雰囲気) 中で焼鈍を行った。 (2) Manufacturing of dust core Using each of these magnetic core powders, warm high pressure molding similar to that of the first example was performed. The obtained powder compact was appropriately subjected to annealing in the air at an annealing temperature of 500 ° C or 600 ° C and an annealing time of 30 minutes. Some test pieces were annealed in an antioxidant atmosphere (Ar gas atmosphere) at an annealing temperature of 650 ° C.
【0138】  [0138]
(測定)  (Measurement)
(1) 板状試験片を用いて比抵抗を測定した。 比抵抗の測定は、 マイクロオーム メータ (メーカ: ヒユーレツトパカード (HP) 社、 型番: 3442 OA) を用 いて 4端子法により測定した (以下、 同様) 。  (1) The specific resistance was measured using a plate-shaped test piece. The specific resistance was measured by a four-terminal method using a micro-ohm meter (manufacturer: Hyuetsu Packard (HP), model number: 3442 OA) (hereinafter the same).
【0139】  [0139]
(2) リング状試験片および板状試験片を用いて、 それらの磁気特性および密度 を測定した。  (2) Using a ring-shaped specimen and a plate-shaped specimen, their magnetic properties and density were measured.
磁気特性の内、 静磁場特性は直流自記磁束計 (メーカ:東英工業、 型番: MO DEL-TRF) により測定した。 交流磁場特性は交流 B— Hカーブトレーサ ( メーカ :岩崎通信機 (株) 、 型番: SY— 8232) により測定した。 各表中の 交流磁場特性は、 圧粉磁心を 400Hzまたは 800Hzで 1. 0Tの磁場中に 置いたときの鉄損を測定したものである。 表中の P hはヒステリシス損失、 P e は渦電流損失、 P cは鉄損 (P e+Ph) であり、 P c mは重量比鉄損である。  Among the magnetic characteristics, the static magnetic field characteristics were measured with a DC self-recording magnetometer (manufacturer: Toei Kogyo, model number: MO DEL-TRF). The AC magnetic field characteristics were measured with an AC B-H curve tracer (manufacturer: Iwasaki Tsushinki Co., Ltd., model number: SY-8232). The AC magnetic field characteristics in each table are the measured iron loss when the dust core is placed in a magnetic field of 1.0T at 400Hz or 800Hz. Ph in the table is hysteresis loss, Pe is eddy current loss, Pc is iron loss (Pe + Ph), and Pcm is iron loss by weight.
【0140】  [0140]
また、 静磁場中の磁束密度は、 その磁界の強さを順次 2、 5、 8、 10、 16 、 20 kA/mと順次変更していったときにできる磁束密度を示したものである 。 各表中では、 それぞれ B2k、 B sk, B sk, Bi。kゝ B i 6 ks B20kと示した。 表 中の μπιは最大透磁率である。 本明細書中で保磁力 b Heは、 最大磁場 2 k A/ mでの磁化曲線から測定した値である。 なお、 密度は、 アルキメデス法により測 定した。 The magnetic flux density in a static magnetic field indicates the magnetic flux density that can be generated when the magnetic field strength is changed sequentially to 2, 5, 8, 10, 16, and 20 kA / m. In each table, B 2 k, B sk, B sk, Bi respectively. k ゝ B i 6 k s B 20k . Μπι in the table is the maximum permeability. In this specification, the coercive force b He is a value measured from a magnetization curve at a maximum magnetic field of 2 kA / m. The density was measured by the Archimedes method.
【0141】  [0141]
こうして得られた結果を表 1〜4および表 5 A、 5 Bに併せて示した。 表 1は 第 1実施例の結果を、 表 2は第 2実施例の結果を、 表 3は第 3実施例の結果を、 表 4は第 4実施例の結果を、 表 5 Aおよぴ表 5 Bは第 5実施例の結果をそれぞれ 示す。 The results thus obtained are also shown in Tables 1 to 4 and Tables 5A and 5B. Table 1 shows the results of the first example, Table 2 shows the results of the second example, Table 3 shows the results of the third example, Table 4 shows the results of the fourth example, Table 5 Table 5B shows the results of the fifth example. Show.
【0142】  [0142]
(評価)  (Evaluation)
(1) 第 1実施例  (1) First example
表 1に示す結果から分るように、 磁性粉末中の S i量が増加する程、 保磁力 b Heが低下してヒステリシス損失 Phも低下している。 また、 磁性粉末中の S i 量が増加する程、 比抵抗は増加して渦電流損失 P eも低下している。 よって、 磁 性粉末中の S i量が多い試験片ほど、 鉄損が小さくなつている。 一方、 S i量が 増加するにつれて、 磁束密度が全体的に低下している。 従って、 低鉄損と高磁束 密度とのバランスを高次元で達成する上で、 磁性粉末中に S iが 1質量%程度 ( 1. 5質量%以下) 含まれているのが良い。  As can be seen from the results shown in Table 1, as the Si content in the magnetic powder increases, the coercive force b He decreases and the hysteresis loss Ph also decreases. As the Si content in the magnetic powder increases, the specific resistance increases and the eddy current loss Pe decreases. Therefore, the iron loss decreases as the test piece with a larger amount of Si in the magnetic powder. On the other hand, the magnetic flux density decreases as the Si amount increases. Therefore, in order to achieve a high balance between low iron loss and high magnetic flux density, it is preferable that Si is contained in the magnetic powder at about 1% by mass (1.5% by mass or less).
【0143】  [0143]
なお、 磁性粉末として純鉄粉を用いた場合、 試験片の比抵抗および渦電流損失 が比較的大きいのは、 成形中や加熱中にその絶縁被膜が破壌、 分解、 消失等し易 かったからではないかと思われる。 言換えるなら、 純鉄粉の表面を被覆するシリ コーン樹脂被膜の安定性が弱かったためと思われる。  When pure iron powder is used as the magnetic powder, the specific resistance and eddy current loss of the test piece are relatively large because the insulating coating easily breaks, decomposes and disappears during molding and heating. I think that. In other words, it seems that the stability of the silicone resin coating covering the surface of pure iron powder was weak.
【0 144】  [0 144]
(2) 第 2実施例  (2) Second embodiment
表 2に示す結果から分るように、 シリコーン樹脂量が増加する程、 比抵抗は増 加して渦電流損失 P eは低下している。 このとき保磁力 bHcおよびヒステリシ ス損失 Phは、 ほぼ一定の値を示している。 結果的に、 シリコーン樹脂量が増加 する程、 鉄損は低減している。 一方、 シリコーン樹脂量が増加するにつれて、 磁 束密度が全体的に低下している。 従って、 低鉄損と高磁束密度とのバランスを高 次元で達成する上で、 シリコーン樹脂量は 0. 1〜0. 3質量%が好ましい。  As can be seen from the results shown in Table 2, as the amount of silicone resin increases, the specific resistance increases and the eddy current loss Pe decreases. At this time, the coercive force bHc and the hysteresis loss Ph are almost constant. As a result, the iron loss decreases as the amount of silicone resin increases. On the other hand, as the amount of silicone resin increases, the magnetic flux density decreases as a whole. Accordingly, in order to achieve a high balance between low iron loss and high magnetic flux density, the amount of silicone resin is preferably 0.1 to 0.3% by mass.
【0145】  [0145]
(3) 第 3実施例  (3) Third embodiment
表 3に示す結果から分るように、 磁性粉末の粒径が大きくなる程、 渦電流損失 は増加し、 ヒステリシス損失は減少した。 交流磁場 1. 0 Tで周波数が 800 H zの場合、 渦電流損失とヒステリシス損失の和である鉄損は、 磁性粉末の粒径が 80〜300 / mのときに安定的に低い値であった。 この様子を図 1に示す。 【0146】 As can be seen from the results shown in Table 3, the eddy current loss increased and the hysteresis loss decreased as the particle size of the magnetic powder increased. When the magnetic field is 1.0 T and the frequency is 800 Hz, the iron loss, which is the sum of eddy current loss and hysteresis loss, is the particle size of the magnetic powder. The value was stably low at 80 to 300 / m. This is shown in Fig. 1. [0146]
(4) 第 4実施例  (4) Fourth embodiment
表 4に示す結果から分るように、 扁平粒子 (厚さ 0. 05mm) からなる磁性 粉末を使用した場合、 渦電流損失が大きく低下した。 低下割合は、 磁性粉末の粒 径が大きい場合ほど顕著であった。 鉄損も同様の傾向を示した。 逆にいえば、 ヒ ステリシス損失自体は、 粉末の構成粒子の形状によって殆ど変化しなかったとい える。 この様子を図 1に重ねて示した。  As can be seen from the results shown in Table 4, when magnetic powder composed of flat particles (thickness 0.05 mm) was used, eddy current loss was greatly reduced. The rate of decrease was more pronounced as the particle size of the magnetic powder was larger. Iron loss showed a similar trend. Conversely, it can be said that the hysteresis loss itself hardly changed depending on the shape of the constituent particles of the powder. This is shown superimposed on Figure 1.
【0147】  [0147]
また、 粒径と渦電流損失との関係に及す、 磁性粉末の粒子形状および組成の影 響を図 2に示した。 磁性粉末が扁平粒子からなる程、 また、 その厚さが小さい程 、 渦電流損失は小さくなることが分つた。  Figure 2 shows the effect of the particle shape and composition of the magnetic powder on the relationship between particle size and eddy current loss. It was found that the eddy current loss becomes smaller as the magnetic powder is made of flat particles and the thickness is smaller.
【0148】  [0148]
(5) 第 5実施例  (5) Fifth embodiment
表 5 Aおよび表 5 Bに示す結果から分るように、 多層構造の絶縁被膜を備える 圧粉磁心の場合、 500°C焼鈍した後でも比抵抗が 100 μ Ωπι超と大きかった 。 この絶縁被膜で被覆した磁性粉末を用いれば、 その磁性粉末が純鉄粉であって も、 ヒステリシス損失のみならず渦電流損失も同時に低減できることが分った。 つまり、 低鉄損の圧粉磁心が得られることが分った。 Table 5 A and as can be seen from the results shown in Table 5 B, when the dust core including insulating film of a multilayer structure, specific resistance even after 500 ° C annealing was as large as 100 μ Ωπι greater. It was found that if magnetic powder coated with this insulating film was used, even if the magnetic powder was pure iron powder, not only hysteresis loss but also eddy current loss could be reduced at the same time. That is, it was found that a dust core with low iron loss can be obtained.
【0149】  [0149]
特に、 その絶縁被膜がシリカ粒子を含む場合の試験片の比抵抗は、 500°C焼 鈍後は勿論のこと、 600°C焼鈍後であっても十分に高い値を示した。  In particular, when the insulating coating contains silica particles, the specific resistance of the specimen showed a sufficiently high value not only after annealing at 500 ° C but also after annealing at 600 ° C.
【0150】  [0150]
交流周波数を 40 OH Zとした場合と 80 OH Zとした場合とを比較すると、 周波数が低い場合 (400Hz) の方がヒステリシス損失の影響が大きく、 焼鈍 温度上昇 (500°C→600°C) による鉄損の減少割合も大きかった。 Comparing the case where the AC frequency is 40 OH Z and 80 OH Z , when the frequency is low (400 Hz), the effect of hysteresis loss is larger, and the annealing temperature rises (500 ° C → 600 ° C) The rate of decrease in iron loss due to the was also large.
【0151】  [0151]
ガスアトマイズ粉からなる試験片は、 第 1絶縁層量が少ないにも拘らず、 水ァ トマイズ粉からなる試験片よりも比抵抗は概して大きかった。 従って、 ガスアト マイズ粉を用いれば、 絶縁被膜量を少なくしつつ、 低鉄損で高磁束密度の圧粉磁 心が得られることが分った。 The test piece made of gas atomized powder generally had a higher specific resistance than the test piece made of water atomized powder, despite the small amount of the first insulating layer. Therefore, gas at It has been found that a powder core having a low magnetic loss and a high magnetic flux density can be obtained while using a small amount of insulating coating while reducing the amount of insulating coating.
【0152】  [0152]
(6) その他  (6) Other
結晶粒径と保磁力との関係について付言しておく。 純 F e磁性粉末、 F e— l S i磁性粉末を各々 900°C、 1250°Cで熱処理を行い、 結晶粒径と保磁力の 関係を調査した。 この結果を図 3に示す。  The relationship between the crystal grain size and the coercive force will be added. Pure Fe magnetic powder and Fe-l Si magnetic powder were heat-treated at 900 ° C and 1250 ° C, respectively, and the relationship between crystal grain size and coercive force was investigated. The results are shown in Fig. 3.
【0153】  [0153]
また、 各結晶粒径は所定数 (N=100) の構成粒子について求めた結晶粒径 の平均値である。  Each crystal grain size is an average value of crystal grain sizes obtained for a predetermined number (N = 100) of constituent particles.
【0154】  [0154]
図 3から明らかなように、 結晶粒径が大きくなる程、 保磁力は小さくなつた。 従って、 結晶粒径の大きな磁性粉末 (例えば、 冷却速度の比較的遅いガスアトマ ィズ粉) を使用することで、 ヒステリシス損失を一層低減し得る。 伹し、 結晶粒 径が 2◦ 0 μ mを超えると、 保磁力の低下は飽和状態に近づく。 渦電流損失を考 慮すると、 結晶粒径が 50〜 250 μ mの磁性粉末を使用するのが好ましい。  As is clear from Fig. 3, the coercive force decreased as the crystal grain size increased. Therefore, hysteresis loss can be further reduced by using a magnetic powder having a large crystal grain size (for example, a gas atomized powder having a relatively low cooling rate). As a result, when the crystal grain size exceeds 2 ° 0 μm, the decrease in coercive force approaches saturation. Considering eddy current loss, it is preferable to use magnetic powder having a crystal grain size of 50 to 250 μm.
【0155】  [0155]
これまで交流周波数が 800Hzの場合について示したが、 それ以外の周波数 (2000Hz以下) についても同様である。 So far, the AC frequency is 800Hz, but the same applies to other frequencies (2000Hz or less).
交流磁場特性 交流磁場特性 AC magnetic field characteristics AC magnetic field characteristics
体積 比抵抗 静磁場特性  Volume resistivity Static magnetic field characteristics
試験 (1. 0T/400Hz) (1. 0T/800Hz)  Test (1.0T / 400Hz) (1.0T / 800Hz)
磁性 平均粒径 P  Magnetic mean particle size P
 Fragment
No. 粉末 bHc Pcv Phv Pev Pcm Pcv Phv Pev Pcm  No. Powder bHc Pcv Phv Pev Pcm Pcv Phv Pev Pcm
( m) (U Qm) B2k 曰 5k B8k D10k D16k BZ0k (m) (U Qm) B 2k 曰 5k B 8k D 10k D 16k B Z0k
μ m  μm
(T) (A/m) (kW/m3) (W/kg) (k /m3) (W/kg) (T) (A / m) (kW / m3) (W / kg) (k / m3) (W / kg)
1 -1 純鉄 80 5 1.00 1.50 1.63 1.67 1.80 1.90 800 200 8970 878 8170 1164 34436 1756 32680 44721 -1 Pure iron 80 5 1.00 1.50 1.63 1.67 1.80 1.90 800 200 8970 878 8170 1164 34436 1756 32680 4472
1 -2 Fe-1%S 80 1500 0.76 1.36 1.53 1.60 1.73 1.81 300 120 174 143 30 23 403 287 120 531 -2 Fe-1% S 80 1500 0.76 1.36 1.53 1.60 1.73 1.81 300 120 174 143 30 23 403 287 120 53
1 -3 Fe— 3%Si 80 2000 0.35 0.76 1.08 1.22 1.45 1.56 250 100 154 147 7 21 323 294 29 44 シリコーン樹脂量: 0.2質量%、 1 -3 Fe— 3% Si 80 2000 0.35 0.76 1.08 1.22 1.45 1.56 250 100 154 147 7 21 323 294 29 44 Silicone resin content: 0.2% by mass,
加熱工程: 750°Cx30分 (窒素雰囲気) Heating process: 750 ° C x 30 minutes (nitrogen atmosphere)
¾1¾1
【 w 1〇 磁場特性 ' 交流磁場特性 シリコーン 比抵抗 静磁場特性 交流 [W 10 Magnetic field characteristics '' AC magnetic field characteristics Silicone resistivity Static magnetic field characteristics AC
試験 密度比 (1 . 0T/400Hz) (1 . OT/800Hz)  Test density ratio (1.0T / 400Hz) (1.OT / 800Hz)
樹脂 P  Resin P
 Fragment
No. (%) bHc  No. (%) bHc
B2k B5k B8k B10k B16k B20k Pcv Phv Pev Pcm Pcv Phv Pev Pcm B 2k B 5k B 8k B 10k B 16k B 20k Pcv Phv Pev Pcm Pcv Phv Pev Pcm
(質量0 /o) (jU Q m) U m (Mass 0 / o) (jU Q m) U m
(T) (A/m) (kW/m3) (W/kg) (kW/m3) (W/kg) (T) (A / m) (kW / m3) (W / kg) (kW / m3) (W / kg)
2- 1 0.1 300 98 1.00 1.46 1.59 1.65 1.77 1.85 450 120 179 144 35 24 428 288 140 572- 1 0.1 300 98 1.00 1.46 1.59 1.65 1.77 1.85 450 120 179 144 35 24 428 288 140 57
2-2 0.2 1500 98 0.76 1.36 1.53 1.60 1.73 1.81 300 120 174 143 30 23 406 286 120 532-2 0.2 1500 98 0.76 1.36 1.53 1.60 1.73 1.81 300 120 174 143 30 23 406 286 120 53
2-3 0.5 5000 98 0.31 0.67 0.94 1.07 1.32 1.43 150 120 168 140 28 23 392 280 112 52 磁性粉末: Fe— 1 %Si、体積平均粒径 80〃 m 2-3 0.5 5000 98 0.31 0.67 0.94 1.07 1.32 1.43 150 120 168 140 28 23 392 280 112 52 Magnetic powder: Fe— 1% Si, Volume average particle size 80〃 m
加熱工程: Ί 50°Cx30分(窒素雰囲気) Heating process: Ί 50 ° C x 30 minutes (nitrogen atmosphere)
〕 ¾2] ¾2
【 1 ^〇
Figure imgf000043_0001
【1 ^ 〇
Figure imgf000043_0001
交流磁場特性 交流磁場特性 AC magnetic field characteristics AC magnetic field characteristics
体■!¾ 比抵抗 静磁場特性  Body !! ¾ Resistivity Static magnetic field characteristics
験 密度比 (1 . 0T/400Hz) ( 1 . 0T/800Hz)  Experimental density ratio (1.0T / 400Hz) (1.0T / 800Hz)
平均粒径  Average particle size
片 P  Piece P
No. (%) bHc Pcv Phv Pev Pom Pcv Phv Pev Pcm  No. (%) bHc Pcv Phv Pev Pom Pcv Phv Pev Pcm
( jU m) ( Q m) B2k B5k B8k B10k B16k B20k (jU m) (Q m) B 2k B 5k B 8k B 10k B 16k B 20k
(T) (AZm) (kW/m3) (W/kg) (kW/m3) (W/kg)(T) (AZm) (kW / m 3 ) (W / kg) (kW / m 3 ) (W / kg)
3 - 1 320-340 310 98.4 0.79 1.38 1.55 1.61 1.72 1.81 330 105 181 133 43 24 454 266 171 603-1 320 -340 310 98.4 0.79 1.38 1.55 1.61 1.72 1.81 330 105 181 133 43 24 454 266 171 60
3 -2 270~290 360 98.5 0.73 1.36 1.54 1.60 1.72 1.81 300 105 177 133 34 23 420 267 136 553 -2 270 to 290 360 98.5 0.73 1.36 1.54 1.60 1.72 1.81 300 105 177 133 34 23 420 267 136 55
3 -3 220-240 400 98.4 0.80 1.39 1.55 1.62 1.74 1.82 340 110 171 136 28 23 402 273 1 14 533 -3 220-240 400 98.4 0.80 1.39 1.55 1.62 1.74 1.82 340 110 171 136 28 23 402 273 1 14 53
3 -4 170~190 500 97.9 0.70 1.33 1.52 1.58 1.70 1.79 290 120 178 149 21 23 398 299 84 533 -4 170 ~ 190 500 97.9 0.70 1.33 1.52 1.58 1.70 1.79 290 120 178 149 21 23 398 299 84 53
3—5 120—1 0 600 98.0 0.86 1.41 1.56 1.62 1.74 1.82 360 130 186 164 15 25 399 328 58 533-5 120-1 0 600 98.0 0.86 1.41 1.56 1.62 1.74 1.82 360 130 186 164 15 25 399 328 58 53
3 -6 80~100 1500 98.2 0.76 1.35 1.53 1.60 1.72 1.81 320 160 203 182 12 27 412 364 47 54 3 -6 80 ~ 100 1500 98.2 0.76 1.35 1.53 1.60 1.72 1.81 320 160 203 182 12 27 412 364 47 54
3—7 65~70 2000 97.9 0.57 1.17 1.43 1.52 1.68 1.75 230 180 227 209 8 30 464 418 33 61 3-7 65-70 2000 97.9 0.57 1.17 1.43 1.52 1.68 1.75 230 180 227 209 8 30 464 418 33 61
3-8 50-60 3000 97.2 0.44 1.00 1.32 1.43 1.62 1J1 180 210 248 233 8 33 534 466 33 - —It— 磁性粉末: Fe— 1 %Si 3-8 50-60 3000 97.2 0.44 1.00 1.32 1.43 1.62 1J1 180 210 248 233 8 33 534 466 33-—It— Magnetic powder: Fe— 1% Si
シリコーン樹脂量 : 0. 2質量%、 Silicone resin content: 0.2% by mass,
加熱工程: 750°Cx30分 (窒素雰囲気) Heating process: 750 ° C x 30 minutes (nitrogen atmosphere)
1 1
Figure imgf000044_0001
Figure imgf000044_0001
Figure imgf000044_0002
Figure imgf000044_0002
磁性粉末: Fe— 1 %Si、扁平粒子  Magnetic powder: Fe— 1% Si, flat particles
シリコーン樹脂量 :0.2質量%、  Silicone resin content: 0.2% by mass,
加熱工程: 750°Cx30分 (窒素雰囲気)  Heating process: 750 ° C x 30 minutes (nitrogen atmosphere)
【 10 【0 1 6 0】 【 Ten [0 1 6 0]
[表 5 A]  [Table 5 A]
Figure imgf000045_0001
Figure imgf000045_0001
rOverJは、比抵抗値が測定レンジを超えたことを意味する。 ( * )は、真空炉で Ar雰囲気で焼鈍したことを意味する。
Figure imgf000046_0001
rOverJ means that the specific resistance value has exceeded the measurement range. (*) Means annealing in an Ar atmosphere in a vacuum furnace.
Figure imgf000046_0001
【0 1 6 2】[0 1 6 2]
] ]
6配位の 網目修飾体元素 イオン半径 Six-coordinate network modifier element Ion radius
(nm) ァ Mg2+ 0.0720 ル (nm) a Mg 2+ 0.0720 le
金力 Ca2+ 0.1000 属リ Gold Power Ca 2+ 0.1000 Genus
Sr2+ 0.1180 元土 Sr 2+ 0.1180 Mainland
素類 Ba2+ 0.1350 希 Sc3+ 0.0745 土 Element Ba 2+ 0.1350 Noble Sc 3+ 0.0745 Sat
γ3 + 0.0900 兀  γ3 + 0.0900 兀
La3+ 0.1032 そ La 3+ 0.1032
の Bi3+ 0.1030 他 By Bi 3+ 0.1030 other

Claims

請求の範囲 The scope of the claims
1. 鉄 (F e) を主成分とする磁性粉末を絶縁被膜で被覆した磁心用粉末を加 圧成形してなる圧粉磁心において、 1. In a powder magnetic core formed by press-molding a magnetic core powder in which a magnetic powder mainly composed of iron (F e) is coated with an insulating film,
前記磁性粉末は、 ケィ素 (S i) を 1. 5質量%以下含み、 体積平均粒径が 8 0〜300 μπιであり、  The magnetic powder contains 1.5% by mass or less of key element (S i) and has a volume average particle size of 80 to 300 μπι,
該磁性粉末の真密度 (ρ。) に対する該圧粉磁心の嵩密度 (ρ) の比である密 度比 ρ / Ρ 。 %) が 96 %以上であり、 Density ratio ρ / Ρ, which is the ratio of the bulk density (ρ) of the dust core to the true density (ρ.) Of the magnetic powder. %) Is 96% or more,
周波数が 100〜2000Hzの交番磁界中で使用されることを特徴とする圧 粉磁心。  A dust core that is used in an alternating magnetic field with a frequency of 100 to 2000 Hz.
2. 20 k A/mの磁界中で生じる磁束密度 B2kが 1. 7 T以上である請求 項 1に記載の圧粉磁心。 2. Magnetic flux density B 2 generated in a magnetic field of 20 kA / m. The dust core according to claim 1, wherein k is 1.7 T or more.
3. 前記磁性粉末は、 平均厚みが 20〜 100 μ mの略小判状をした扁平粒子 からなる請求項 1に記載の圧粉磁心。 3. The powder magnetic core according to claim 1, wherein the magnetic powder is made of flat particles having a substantially oval shape with an average thickness of 20 to 100 μm.
4. 前記磁性粉末は、 構成粒子の単位質量あたりの表面積である比表面積を平 均した平均比表面積が 5 X 10— 3m2/g以下である請求項 1に記載の圧粉磁心 4. The magnetic powder, a dust core according to claim 1, wherein the average specific surface area was leveling a specific surface area is the surface area per unit mass of constituent particles flat is less than 5 X 10- 3 m 2 / g
5. 前記磁性粉末は、 構成粒子の平均結晶粒径が 50 μ m以上である請求項 1 に記載の圧粉磁心。 5. The dust core according to claim 1, wherein the magnetic powder has an average crystal grain size of 50 μm or more.
6. 前記磁性粉末は、 ガスアトマイズ粉である請求項 1、 3、 4または 5のい ずれかに記載の圧粉磁心。 6. The dust core according to claim 1, wherein the magnetic powder is a gas atomized powder.
7. 前記絶縁被膜は、 シリコーン樹脂被膜または二酸化ケイ素 (S i 02) 被 膜である請求項 1に記載の圧粉磁心。 7. The dust core according to claim 1, wherein the insulating coating is a silicone resin coating or a silicon dioxide (S i 0 2 ) coating.
8 . 前記磁性粉末は、 S iが 0 . 8 %以下の純鉄粉であり、 8. The magnetic powder is pure iron powder having a Si of 0.8% or less,
前記絶縁被膜は、 リン酸塩被膜からなる第 1絶縁層と、 該第 1絶縁層を被覆す るシリコーン榭脂からなる第 2絶縁層と力 らなる請求項 1に記載の圧粉磁心。  2. The dust core according to claim 1, wherein the insulating film is composed of a first insulating layer made of a phosphate film, a second insulating layer made of silicone resin covering the first insulating layer, and a force.
9 . 前記第 2絶縁層は、 前記シリコーン樹脂中に酸化物粒子が分散した複合絶 縁層である請求項 8に記載の圧粉磁心。 9. The dust core according to claim 8, wherein the second insulating layer is a composite insulating layer in which oxide particles are dispersed in the silicone resin.
1 0 . さらに、 前記第 2絶縁層上に設けられ、 酸化物粒子から主になる第 3絶 縁層を有する請求項 8に記載の圧粉磁心。 10. The dust core according to claim 8, further comprising a third insulating layer provided on the second insulating layer and mainly made of oxide particles.
1 1 . 前記酸化物粒子は、 平均粒径が 1 0〜 1 0 0 n mである請求項 9または 1 0に記載の圧粉磁心。 11. The dust core according to claim 9 or 10, wherein the oxide particles have an average particle size of 10 to 100 nm.
1 2 . 前記絶縁被膜は、 前記圧粉磁心全体を 1 0 0質量%としたときに、 0 . 1〜0 . 3質量%である請求項 1に記載の圧粉磁心。 12. The dust core according to claim 1, wherein the insulating coating is 0.1 to 0.3% by mass when the entire powder magnetic core is 100% by mass.
1 3 . 保磁力が 1 5 0 A/m以下であり、 1 3. The coercive force is 1 5 0 A / m or less,
体積比抵抗値が 2 0 μ Ω πι以上である請求項 1に記載の圧粉磁心。  2. The dust core according to claim 1, wherein the volume resistivity value is 20 μΩΩπι or more.
1 4 . 電動機または発電機の界磁または電機子を構成する鉄心である請求項 1 に記載の圧粉磁心。 14. The dust core according to claim 1, which is an iron core constituting a field or armature of an electric motor or a generator.
1 5 . 前記電動機は、 ハイプリッド自動車用または電気自動車用である請求項 1 4に記載の圧粉磁心。 15. The dust core according to claim 14, wherein the electric motor is for a hybrid vehicle or an electric vehicle.
1 6 . F eを主成分とし S iが 1 . 5質量%以下であると共に体積平均粒径が 8 0〜3 0 0 /z mである磁性粉末を絶縁被膜で被覆した磁心用粉末を金型に充填 する充填工程と、 該金型内の磁心用粉末を加圧成形する成形工程とからなり、 1 6. Magnetic core powder in which die is coated with magnetic powder having Fe as a main component and having Si of 1.5% by mass or less and volume average particle diameter of 80 to 300 / zm. Filling process to fill in, A molding step of pressure molding the magnetic core powder in the mold,
請求項 1に記載の圧粉磁心が得られることを特徴とする圧粉磁心の製造方法。  A method for producing a dust core, wherein the dust core according to claim 1 is obtained.
1 7 . 前記充填工程は、 高級脂肪酸系潤滑剤を内面に塗布した前記金型へ前記 磁心用粉末を充填する工程であり、 1 7. The filling step is a step of filling the magnetic core powder into the mold in which a higher fatty acid-based lubricant is applied to the inner surface,
前記成形工程は、 該磁心用粉末と該金型の内面との間に金属石鹼被膜を生成さ せる温間高圧成形工程である請求項 1 6に記載の圧粉磁心の製造方法。  17. The method of manufacturing a dust core according to claim 16, wherein the forming step is a warm high-pressure forming step in which a metal sarcophagus film is formed between the magnetic core powder and the inner surface of the mold.
1 8 . 前記絶縁被膜は、 シリコーン樹脂被膜であり、 1 8. The insulating coating is a silicone resin coating,
さらに、 前記成形工程後に得られた粉末成形体を加熱して該シリコーン樹脂被 膜を S i 0 2被膜とする加熱工程を備える請求項 1 6に記載の圧粉磁心の製造方 法。 Furthermore, manufacturing how the dust core according to claim 1 6, comprising a heating step of the silicone resin to be film as S i 0 2 coating by heating the powder compact obtained after the molding process.
1 9 . 前記磁 1"生粉末は、 3 1が0 . 8 %以下の純鉄粉であり、 1 9. The magnetic 1 "raw powder is pure iron powder with 3 1 0.8% or less,
前記絶縁被膜は、 リン酸塩被膜からなる第 1絶縁層と該第 1絶縁層を被覆する シリコーン樹脂からなる第 2絶縁層とからなり、  The insulating coating comprises a first insulating layer made of a phosphate coating and a second insulating layer made of a silicone resin that covers the first insulating layer,
さらに、 前記成形工程後に得られた粉末成形体を焼鈍する焼鈍工程を備える請 求項 1 6に記載の圧粉磁心の製造方法。  Furthermore, the manufacturing method of the powder magnetic core of Claim 16 provided with the annealing process which anneals the powder compact obtained after the said shaping | molding process.
2 0 . 請求項 1 8または 1 9のいずれかに記載の圧粉磁心の製造方法によって 得られたことを特徴とする圧粉磁心。 20. A powder magnetic core obtained by the method for manufacturing a powder magnetic core according to any one of claims 18 and 19.
PCT/JP2005/012717 2004-07-09 2005-07-04 Dust core and its manufacturing method WO2006006545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-203969 2004-07-09
JP2004203969A JP2006024869A (en) 2004-07-09 2004-07-09 Powder magnetic core and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2006006545A1 true WO2006006545A1 (en) 2006-01-19

Family

ID=35783886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012717 WO2006006545A1 (en) 2004-07-09 2005-07-04 Dust core and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2006024869A (en)
WO (1) WO2006006545A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026984A1 (en) * 2008-09-02 2010-03-11 トヨタ自動車株式会社 Powder for powder magnetic core, powder magnetic core, and methods for producing those products
EP2062668A4 (en) * 2006-09-11 2010-06-02 Kobe Steel Ltd Iron-based soft magnetic powder for dust core, method for producing the same and dust core
WO2012124032A1 (en) * 2011-03-11 2012-09-20 株式会社神戸製鋼所 Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
JP2012248619A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Molding method of green compact
WO2013100143A1 (en) * 2011-12-28 2013-07-04 株式会社ダイヤメット Composite soft magnetic material and production method therefor
WO2013108643A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Compressed soft magnetic powder body
EP2682960A4 (en) * 2011-03-04 2015-06-24 Sumitomo Electric Industries GREENLING, MANUFACTURING METHOD FOR GREENLING, REACTOR, CONVERTER AND POWER CONVERSION DEVICE
CN105408968A (en) * 2013-08-07 2016-03-16 松下知识产权经营株式会社 Composite magnetic material, coil component using same, and power supply device
EP4447075A1 (en) * 2023-04-14 2024-10-16 Nichia Corporation Coated magnetic material and method of producing coated magnetic material

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706411B2 (en) 2005-09-21 2011-06-22 住友電気工業株式会社 Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP4654881B2 (en) * 2005-11-02 2011-03-23 住友電気工業株式会社 Dust core manufactured using soft magnetic material
JP4630251B2 (en) 2006-09-11 2011-02-09 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multiphase claw pole type motor
JP2008118840A (en) * 2006-10-12 2008-05-22 Toyota Motor Corp Electric motor stator, electric motor stator manufacturing method, and electric motor
JP2008153611A (en) * 2006-11-20 2008-07-03 Denso Corp Ignition coil and manufacturing method thereof
JP4650450B2 (en) * 2007-04-10 2011-03-16 株式会社日立製作所 Dust core, method for manufacturing dust core, and motor using the same
JP2008270539A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Dust core and manufacturing method thereof, electric motor and reactor
JP2008305823A (en) * 2007-06-05 2008-12-18 Tamura Seisakusho Co Ltd Dust core and manufacturing method therefor
US8409707B2 (en) 2007-07-26 2013-04-02 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core and dust core
JP2009032880A (en) * 2007-07-26 2009-02-12 Kobe Steel Ltd Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2009038107A (en) * 2007-07-31 2009-02-19 Diamond Electric Mfg Co Ltd Ignition coil for internal combustion engine
JP5050745B2 (en) * 2007-09-11 2012-10-17 住友電気工業株式会社 Reactor core, manufacturing method thereof, and reactor
JP5368686B2 (en) * 2007-09-11 2013-12-18 住友電気工業株式会社 Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5050747B2 (en) * 2007-09-12 2012-10-17 株式会社デンソー Stator manufacturing method for rotating electrical machine
JP5352979B2 (en) * 2007-09-20 2013-11-27 株式会社デンソー Stator for rotating electric machine and method for manufacturing the same
JP2009117484A (en) * 2007-11-02 2009-05-28 Tamura Seisakusho Co Ltd Method of manufacturing dust core and dust core
KR101594585B1 (en) 2008-03-20 2016-02-17 회가내스 아베 (피유비엘) Ferromagnetic powder composition and method for its production
JP4982439B2 (en) * 2008-06-30 2012-07-25 株式会社日立製作所 Compacted body
JP5682741B2 (en) * 2008-09-01 2015-03-11 戸田工業株式会社 SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME,
JP5734984B2 (en) 2009-09-18 2015-06-17 ホガナス アクチボラゲット Ferromagnetic powder composition and method for producing the same
US10741316B2 (en) 2010-02-18 2020-08-11 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
JP4927983B2 (en) * 2010-04-09 2012-05-09 日立化成工業株式会社 Powder magnetic core and manufacturing method thereof
CN102917818A (en) * 2010-04-09 2013-02-06 日立化成工业株式会社 Coated metal powder, powder magnetic core and method for producing same
JP2012049203A (en) * 2010-08-24 2012-03-08 Toyota Central R&D Labs Inc Powder magnetic core, powder for magnetic core and manufacturing method for the same
JP5445801B2 (en) * 2012-07-12 2014-03-19 住友電気工業株式会社 Reactor and booster circuit
JP5650702B2 (en) * 2012-10-15 2015-01-07 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
JP5732027B2 (en) * 2012-12-10 2015-06-10 住友電気工業株式会社 Compressed green body, manufacturing method of compacted body, heat treatment body and coil component
JP5929819B2 (en) * 2013-04-19 2016-06-08 Jfeスチール株式会社 Iron powder for dust core
JP6139384B2 (en) * 2013-11-13 2017-05-31 トヨタ自動車株式会社 Powder for dust core
JP6617867B2 (en) * 2015-04-10 2019-12-11 戸田工業株式会社 Soft magnetic particle powder and powder magnetic core containing the soft magnetic particle powder
JP6536381B2 (en) * 2015-11-27 2019-07-03 株式会社オートネットワーク技術研究所 Soft magnetic powder, magnetic core, method of manufacturing soft magnetic powder, and method of manufacturing magnetic core
JP6911401B2 (en) * 2017-03-09 2021-07-28 Tdk株式会社 Powder magnetic core
JP7217856B2 (en) * 2017-10-31 2023-02-06 株式会社レゾナック Manufacturing method of sintered magnetic core, green compact, and sintered magnetic core
JP7016713B2 (en) * 2018-02-05 2022-02-07 株式会社豊田中央研究所 Powder magnetic core and powder for magnetic core
JP7433808B2 (en) * 2019-08-21 2024-02-20 Dowaエレクトロニクス株式会社 Silicon oxide coated soft magnetic powder and its manufacturing method
KR102737887B1 (en) * 2020-12-04 2024-12-05 헹디안 그룹 디엠이지씨 마그네틱스 컴퍼니 리미티드 Integral simultaneous firing inductor and its manufacturing method
JP7644336B2 (en) 2021-03-19 2025-03-12 愛知製鋼株式会社 Powder for magnetic cores, its manufacturing method and powder magnetic cores
WO2022202085A1 (en) * 2021-03-24 2022-09-29 Jfeスチール株式会社 Battery-driven motor and motor-driven system
WO2023189569A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Magnetic powder and composite magnetic body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof
JPH06275452A (en) * 1993-03-19 1994-09-30 Tdk Corp Manufacture of dust core
JP2003142310A (en) * 2001-11-02 2003-05-16 Daido Steel Co Ltd Dust core having high electrical resistance and manufacturing method therefor
JP2003282316A (en) * 2002-03-20 2003-10-03 Toyota Central Res & Dev Lab Inc Insulating film, powder for magnetic core, dust core, and method for producing them
JP2003297624A (en) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron-based powder, dust core using the same, and method for producing iron-based powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof
JPH06275452A (en) * 1993-03-19 1994-09-30 Tdk Corp Manufacture of dust core
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron-based powder, dust core using the same, and method for producing iron-based powder
JP2003142310A (en) * 2001-11-02 2003-05-16 Daido Steel Co Ltd Dust core having high electrical resistance and manufacturing method therefor
JP2003282316A (en) * 2002-03-20 2003-10-03 Toyota Central Res & Dev Lab Inc Insulating film, powder for magnetic core, dust core, and method for producing them
JP2003297624A (en) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062668A4 (en) * 2006-09-11 2010-06-02 Kobe Steel Ltd Iron-based soft magnetic powder for dust core, method for producing the same and dust core
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
CN102132361B (en) * 2008-09-02 2015-03-25 丰田自动车株式会社 Powder for powder magnetic core, powder magnetic core, and methods for producing those products
CN102132361A (en) * 2008-09-02 2011-07-20 丰田自动车株式会社 Powder for powder magnetic core, powder magnetic core and their manufacturing method
WO2010026984A1 (en) * 2008-09-02 2010-03-11 トヨタ自動車株式会社 Powder for powder magnetic core, powder magnetic core, and methods for producing those products
JP5189652B2 (en) * 2008-09-02 2013-04-24 トヨタ自動車株式会社 Powder for powder magnetic core, powder magnetic core, and production method thereof
US8911866B2 (en) 2008-09-02 2014-12-16 Toyota Jidosha Kabushiki Kaisha Powder for powder magnetic core, powder magnetic core, and methods for producing those products
US9978490B2 (en) 2011-03-04 2018-05-22 Sumitomo Electric Industries, Ltd. Compact, method for producing compact
EP2682960A4 (en) * 2011-03-04 2015-06-24 Sumitomo Electric Industries GREENLING, MANUFACTURING METHOD FOR GREENLING, REACTOR, CONVERTER AND POWER CONVERSION DEVICE
WO2012124032A1 (en) * 2011-03-11 2012-09-20 株式会社神戸製鋼所 Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
CN103415899B (en) * 2011-03-11 2016-06-08 株式会社神户制钢所 The manufacture method of iron-based soft magnetic powder for dust core and this iron-based soft magnetic powder for dust core and dust core
CN103415899A (en) * 2011-03-11 2013-11-27 株式会社神户制钢所 Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
JP2012248619A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Molding method of green compact
WO2013100143A1 (en) * 2011-12-28 2013-07-04 株式会社ダイヤメット Composite soft magnetic material and production method therefor
JP2013149659A (en) * 2012-01-17 2013-08-01 Hitachi Industrial Equipment Systems Co Ltd Powder soft magnetic material
WO2013108643A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Compressed soft magnetic powder body
CN105408968A (en) * 2013-08-07 2016-03-16 松下知识产权经营株式会社 Composite magnetic material, coil component using same, and power supply device
EP4447075A1 (en) * 2023-04-14 2024-10-16 Nichia Corporation Coated magnetic material and method of producing coated magnetic material

Also Published As

Publication number Publication date
JP2006024869A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
WO2006006545A1 (en) Dust core and its manufacturing method
JP5062946B2 (en) Powder for magnetic core, powder magnetic core and method for producing them
JP4278147B2 (en) Powder for magnetic core, dust core and method for producing the same
JP4024705B2 (en) Powder magnetic core and manufacturing method thereof
CN104103403B (en) Dust core and manufacture method thereof
KR20100135830A (en) Ferromagnetic powder composition and its production method
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
WO2007077689A1 (en) Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
JP2007012994A (en) Method for producing insulating soft magnetic metal powder compact
JP2007214366A (en) Powder for powder magnetic core, powder magnetic core and production method thereof
CN105051839A (en) Powder magnetic core for reactor
JP2008172257A (en) Method for producing insulating soft magnetic metal powder compact
JP4060101B2 (en) Insulating film, magnetic core powder and powder magnetic core, and methods for producing them
JP2002343657A (en) Method of manufacturing dust core and dust core
CN102693826B (en) Powder magnetic core and manufacture method thereof
WO2013175929A1 (en) Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core
JP2019178402A (en) Soft magnetic powder
JP2007231330A (en) Metal powder for dust core and method for producing dust core
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP4849500B2 (en) Powder magnetic core and manufacturing method thereof
JP3656958B2 (en) Powder magnetic core and manufacturing method thereof
WO2006126553A1 (en) Low magnetostriction body and dust core using same
JP2009235517A (en) Metal powder for dust core and method for producing dust core
WO2021199525A1 (en) Iron-based soft magnetic powder for dust cores, dust core and method for producing same
JP2021025127A (en) Dust core and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase