[go: up one dir, main page]

WO2005114785A1 - アンテナ装置およびこれを用いたレーダ装置 - Google Patents

アンテナ装置およびこれを用いたレーダ装置 Download PDF

Info

Publication number
WO2005114785A1
WO2005114785A1 PCT/JP2005/006238 JP2005006238W WO2005114785A1 WO 2005114785 A1 WO2005114785 A1 WO 2005114785A1 JP 2005006238 W JP2005006238 W JP 2005006238W WO 2005114785 A1 WO2005114785 A1 WO 2005114785A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary radiator
antenna device
reflector
signal
reflectors
Prior art date
Application number
PCT/JP2005/006238
Other languages
English (en)
French (fr)
Inventor
Tomohiro Nagai
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112005000876T priority Critical patent/DE112005000876B4/de
Priority to JP2006513673A priority patent/JP4337876B2/ja
Publication of WO2005114785A1 publication Critical patent/WO2005114785A1/ja
Priority to US11/583,024 priority patent/US7453411B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/134Rear-feeds; Splash plate feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/18Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is movable and the reflecting device is fixed

Definitions

  • the present invention relates to an antenna device that radiates a signal while rotating a primary radiator mechanically and reflects the signal in a predetermined direction by a reflector, and a target in a beam transmission direction using the antenna device.
  • the present invention relates to a radar device for detecting a radar.
  • an on-vehicle radar device beam-forms a millimeter wave signal for detecting a target, transmits the beam in the detection direction, and reflects a signal reflected from the target (hereinafter, referred to as a “target reflected signal”). It receives and detects the target in the detection area.
  • a radar device includes a primary radiator that radiates a millimeter-wave signal from a predetermined radiation surface, and reflects a millimeter-wave signal radiated from the primary radiator in a detection direction, or an object from within the detection area.
  • a reflector that reflects the target reflection signal and guides the signal to the primary radiator.
  • the beam of the millimeter wave signal in order to detect a target within a detection area having a predetermined width, the beam of the millimeter wave signal must be scanned in a predetermined direction, for example, a horizontal direction.
  • conventional radar systems use a phased array antenna to transmit by electronically scanning the beam of the millimeter-wave signal to be transmitted, or by rotating and moving a primary radiator or reflector.
  • a mechanical scan method in which a beam of a millimeter wave signal is mechanically scanned is used.
  • a conventional radar apparatus using a mechanical scan method uses a direction perpendicular to a beam transmission direction as a rotation axis direction of a primary radiator, and a circle extending outward from the rotation axis.
  • a primary radiator is installed on the peripheral surface side, and a reflector is installed over a predetermined angular range at a position separated by a predetermined distance from a rotational axial force at which the primary radiator is installed.
  • the shape of this reflector is designed so that a millimeter wave signal is transmitted over a desired scanning range.
  • a signal radiated from the primary radiator is reflected by a reflector to form a transmission beam having directivity in a predetermined direction.
  • the radiation direction of the radio wave radiated from the primary radiator rotates, and the reflection direction changes with the reflector, and a predetermined intensity for scanning within a predetermined angle range.
  • Degree transmission beams are formed.
  • Patent Document 1 Patent No. 2693497
  • an object of the present invention is to provide a small antenna device having a plurality of directivities and a radar device including the same.
  • the present invention provides a primary radiator that emits a signal in a direction different from the rotation axis direction while rotating, reflects a signal radiated from the primary radiator, and guides the signal to a beam transmission direction of an antenna device.
  • the primary radiator is arranged in a posture in which a rotation axis direction substantially coincides with a beam transmission direction.
  • the center of the radiation direction of the signal radiated from the primary radiator has a predetermined angle with respect to the beam transmission direction of the antenna device, and is not parallel.
  • the radiated signal is reflected by the reflector, beam-formed, and propagated in the beam transmission direction.
  • the reflector since the rotation axis direction of the primary radiator and the beam transmission direction are almost parallel, the reflector should be placed at any position on the entire circumference in the external direction of the rotation axis of the primary radiator. Becomes possible.
  • the antenna device of the present invention is characterized in that the primary radiator is arranged in a posture in which the radiation direction of the primary radiator and the rotation axis direction form an angle of 30 ° or more.
  • the antenna device of the present invention is characterized by including a plurality of reflectors.
  • the antenna device of the present invention is characterized in that a plurality of reflectors are respectively formed in different shapes.
  • the antenna device of the present invention is characterized in that a plurality of reflectors are arranged in different postures with respect to the primary radiator.
  • the antenna device of the present invention is characterized by including a housing in which the primary radiator and the reflector are installed inside! / Puru.
  • each part of the antenna device is protected from external environmental forces.
  • the antenna device of the present invention is characterized in that the reflector and the housing are formed integrally.
  • the radar device of the present invention generates a signal radiated from the above-described antenna device and the primary radiator, and uses the signal and a target reflection signal guided to the primary radiator to detect a detection signal. And a detection signal generation means for generating the detection signal.
  • a radar device that has a desired beam directivity and detects a desired detection area is formed.
  • a radar device for detecting a plurality of detection regions is formed.
  • the primary radiator force The center of the radiated signal in the radiation direction has a predetermined angle with respect to the beam transmission direction of the antenna device, is not parallel, and is in the direction of the rotation axis of the primary radiator. Since the beam transmission direction is substantially parallel to the beam transmission direction, the reflector can be disposed at any position on the entire circumference in the external direction with respect to the rotation axis of the primary radiator. This facilitates disposing a plurality of reflectors having different beam directivities.
  • the position and shape of the reflector disposed to face the radiation surface of the primary radiator are changed. Easy to set. Accordingly, when a plurality of reflectors having different beam directivities are arranged, the range in which these reflectors can be installed is widened, and the arrangement of the reflectors is facilitated.
  • a beam formed by each reflector is transmitted during one rotation of the primary radiator.
  • a plurality of reflectors each having a different beam directivity it is possible to transmit a plurality of beams having different directivities during one rotation of the primary radiator.
  • the present invention by making the shapes of the plurality of reflectors different from each other, it is possible to make the directivity of a beam formed by each of the reflectors different.
  • An antenna device for transmitting a plurality of beams having different directivities by using an antenna can be configured.
  • the orientations of the plurality of reflectors with respect to the primary radiator are different from each other, so that the directivity of the beams is different. Transmission and reception are possible, and multiple directivity An antenna device for transmitting a number of beams can be configured.
  • each component of the antenna device is protected from the external environment, so that a plurality of different directivities can be provided by the above-described primary radiator. It is possible to configure an antenna device that has the effect of having and has excellent durability.
  • the reflector and the housing are formed as a body, the number of components of the antenna device is reduced. As a result, a single primary radiator has a plurality of different directivities, has the effect of being more durable, and can be manufactured easily and at low cost.
  • a radar device having desired beam directivity and detecting a desired detection area by using the above-described antenna device, it is possible to form a radar device having desired beam directivity and detecting a desired detection area.
  • a single primary radiator having a single primary radiator is provided by setting a shape and a posture of the reflector so that a plurality of reflectors of the antenna device are provided, and the directivity of the beam is also different depending on the reflected signal.
  • a radar device that detects a plurality of detection areas can be configured with only one antenna device. Accordingly, a radar device having a plurality of beam directivities, that is, a radar device capable of detecting a plurality of detection areas can be formed in a relatively small size.
  • FIG. 1 is an external view of an antenna device according to a first embodiment.
  • FIG. 2 is a side view of the antenna device according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the rotation angle of the primary radiator 1 and the directivity of the antenna device when the radiation surface of the secondary radiator 1 faces the first reflector 2 side.
  • FIG. 4 is a diagram showing a relationship between the rotation angle of the primary radiator 1 and the directivity of the antenna device when the radiation surface of the primary radiator 1 faces the second reflector 3 side.
  • FIG. 5 is a side view showing a relative positional relationship between a secondary radiator and a reflector.
  • FIG. 6 is a view showing shapes of various radiators.
  • FIG. 7 is a side view showing a schematic configuration of an antenna device according to a second embodiment.
  • FIG. 8 is a side view showing a schematic configuration of an antenna device according to a third embodiment.
  • FIG. 9 is an external view showing a schematic configuration of an antenna device according to a fourth embodiment.
  • FIG. 10 is a side view showing a schematic configuration of an antenna device according to a fifth embodiment.
  • FIG. 11 is a side view showing a schematic configuration of an antenna device according to a sixth embodiment.
  • FIG. 12 is a block diagram illustrating a schematic configuration of a radar device according to a seventh embodiment.
  • FIG. 1 is an external view of the antenna device of the present embodiment.
  • FIGS. 2A and 2B are side views of the antenna device of the present embodiment.
  • FIG. 2A shows a state where the primary radiator 1 faces the reflector 2 side
  • FIG. 2B shows a state where the primary radiator 1 faces the reflector 3 side. Indicates the facing state.
  • the dotted arrows in the figure indicate the radiation direction of the millimeter wave signal and the transmission direction of the transmission beam having the millimeter wave signal power
  • the thick solid arrow indicates the front direction of the antenna device.
  • the antenna device includes a primary radiator 1, a first reflector 2, a second reflector 3, a rotary joint 4, a waveguide 5, and a motor 6.
  • the primary radiator 1 includes a transmission section 12 formed of a cylindrical waveguide having a predetermined diameter extending in a direction parallel to the front direction of the antenna device, and a rectangular horn shape extending in a direction perpendicular to the front direction. And a radiating section 11.
  • the radiating section 11 has a rectangular horn-shaped end face having a larger opening area as a radiating face, and an end face having a smaller opening area as a connecting face to the transmission section 12.
  • the radiating section 11 is also connected to a position at a predetermined distance also at one end of the transmitting section 12.
  • the radiating unit 11 and the transmitting unit 12 are connected so that the extending direction of the radiating unit 11 and the extending direction of the transmitting unit 12 are perpendicular to each other.
  • the direction in which the radiating portion 11 of the primary radiator 1 extends becomes a direction perpendicular to the front direction of the antenna device, and the radiation surface of the primary radiator 1 becomes a surface perpendicular to the direction perpendicular to the front direction of the antenna device.
  • the center of the primary radiator 1 in the radiation direction of the radiated signal is a direction perpendicular to the front direction of the antenna device.
  • the transmission unit 12 may be formed of a coaxial line or a circular dielectric line.
  • the end of the transmitting part 12 of the primary radiator 1 on the side where the radiating part 11 is not connected is connected to the waveguide 5 whose central axis in the direction in which the transmitting part 12 extends is connected to the waveguide 5 by the rotary joint 4.
  • a motor 6 for rotating the primary radiator 1 with the center axis of the transmission unit 12 as the rotation axis A is installed at an end of the transmission unit 12 on the side to which the radiation unit 11 is connected. Te ru.
  • the primary radiator 1 emits a signal in a direction perpendicular to the front direction of the antenna device (the direction parallel to the rotation axis A) and centered on a direction corresponding to the rotation angle. That is, by rotating the primary radiator 1, it becomes possible to radiate signals in the entire circumferential direction of a plane perpendicular to the front direction of the antenna device.
  • the first reflector 2 is also a so-called offset parabolic reflector that has a shape obtained by partially cutting out a circle having a predetermined diameter and a paraboloid of rotation having a predetermined diameter, so as to obtain a predetermined directivity. It is arranged above the primary radiator 1 in a predetermined posture with respect to the primary radiator 1. Specifically, when the radiating section 11 of the primary radiator 1 is arranged vertically above the transmitting section 12, the directivity of the beam formed by the reflection of the first reflector 2 is directly in front of the antenna device. The first reflector 2 is installed in such a posture that it becomes the strongest when the angle in the front direction and the horizontal direction is 0 °.
  • the second reflector 3 has a parabolic shape in the vertical direction and a torus shape in the horizontal direction, and has a predetermined position with respect to the primary radiator 1 so as to obtain a predetermined directivity.
  • Lower side of vessel 1 Are located in Specifically, when the radiating section 11 of the primary radiator 1 is arranged vertically below the transmitting section 12, the directivity of the beam formed by the reflection of the second reflector 3 is directly in front of the antenna device ( The second reflector 3 is installed in such a manner that it becomes strongest when the angle in the front direction and the horizontal direction is 0 °).
  • the millimeter-wave signal when a millimeter-wave signal for detection is transmitted via the waveguide 5, the millimeter-wave signal is transmitted to the transmission unit 12 of the primary radiator 1, Radiation is radiated from the radiation surface with the direction perpendicular to the front direction of the antenna device as the center of the radiation direction.
  • the radiating surface of the primary radiator 1 faces the first reflector 2 side, the radiating surface of the primary radiator 1 also reflects the emitted millimeter wave signal by the first reflector 2. Since the first reflector 2 is formed in a shape that forms a beam having strong directivity over a narrow angle range in the horizontal direction in the front direction of the antenna device due to reflection, the first reflector 2 is reflected by the first reflector 2. The beam of the millimeter wave signal is transmitted to a narrow area in the front direction of the antenna.
  • the transmitted millimeter wave signal is reflected on the target and transmitted toward the antenna device.
  • This target reflection signal is reflected by the first reflector 2 and is concentrated and received on the emission surface of the primary radiator 1.
  • the target reflection signal is transmitted through the radiating section 11 and the transmitting section 12 of the primary radiator 1, guided to the waveguide 5, and output from the waveguide 5 to an external circuit.
  • the characteristic of the beam formed by the reflection of the millimeter wave signal by the first reflector 2 is determined by the relative attitude between the reflection surface of the first reflector 2 and the radiation surface of the primary radiator 1. As the primary radiator 1 rotates, the directivity changes.
  • FIG. 3 is a diagram showing a relationship between the rotation angle of the primary radiator 1 and the directivity of the antenna device when the radiation surface of the primary radiator 1 faces the first reflector 2 side.
  • the rotation angle of the primary radiator 1 that is, the relative attitude between the reflecting surface of the first reflector 2 and the radiation surface of the primary radiator 1 is different.
  • the angle shown on the horizontal axis in the figure indicates the angle formed in the horizontal direction with this direction as the reference direction, with 0 ° being the direction directly in front of the antenna device.
  • the rotation angle of the primary radiator in the figure is 0 ° when the primary radiator 1 is directed directly upward, and shows the angle formed with respect to this reference direction.
  • the frequency of the used millimeter wave signal is 76 GHz, which is used for on-vehicle radar equipment.
  • the horizontal angle of the maximum peak of the antenna gain changes.
  • a beam that scans in the horizontal direction can be formed.
  • a target with a horizontal scanning angle of ⁇ 7 ° can be detected up to a position about 150 m in the front direction.
  • the millimeter-wave signal radiated from the radiation surface of primary radiator 1 will be reflected by second reflector 3.
  • the second reflector 3 is formed by reflection so as to form a beam having a directivity of 1 ° wider in the horizontal direction than the beam by the first reflector 2 in the front direction of the antenna device. Then, the beam of the millimeter wave signal reflected by the second reflector 3 is transmitted to a wide area in the front direction of the antenna.
  • the transmitted millimeter wave signal is reflected on the target and transmitted toward the antenna device.
  • This target reflection signal is reflected by the second reflector 3 and is concentrated and received on the emission surface of the primary radiator 1.
  • the target reflection signal is transmitted through the radiating section 11 and the transmitting section 12 of the primary radiator 1, guided to the waveguide 5, and output from the waveguide 5 to an external circuit.
  • the characteristic of the beam formed by the reflection of the millimeter wave signal by the second reflector 3 is determined by the relative attitude between the reflection surface of the second reflector 3 and the radiation surface of the primary radiator 1. As the primary radiator 1 rotates, the directivity changes.
  • FIG. 4 is a diagram showing a relationship between the rotation angle of the primary radiator 1 and the directivity of the antenna device when the radiation surface of the primary radiator 1 faces the second reflector 3.
  • the rotation angle of the primary radiator 1 that is, the relative attitude between the reflecting surface of the second reflector 3 and the radiation surface of the primary radiator 1 is different.
  • the angle shown on the horizontal axis in the figure indicates the angle formed in the horizontal direction with this direction as the reference direction, with 0 ° being the direction directly in front of the antenna device.
  • the rotation angle of the primary radiator in the figure is 0 ° when the primary radiator 1 is directed downward, and indicates the angle formed with respect to this reference direction.
  • the frequency of the used millimeter wave signal is 76 GHz, which is used for on-vehicle radar equipment.
  • the horizontal angle of the maximum peak of the antenna gain changes more than in the case of the first reflector 2. This makes it possible to form a beam that scans in a wider range in the horizontal direction.
  • an antenna device having a plurality of directivities can be formed using one primary radiator.
  • a target that is far away in a narrow range including the frontal direction and a target that is closer in a wider range can be detected during one rotation of the primary radiator.
  • the force described in the case where the radiation direction of the primary radiator (the direction in which the radiation part extends) is perpendicular to the rotation axis A direction (the front direction of the antenna device) is shown in FIG.
  • the angle formed between the radial direction and the direction of the rotation axis A may be a non-acute angle having almost no angle, for example, 30 ° or more and less than 90 °.
  • Fig. 5 is a side view showing the relative positional relationship between the primary radiator and the reflector.
  • the dotted arrows in the figure indicate the radiation direction of the millimeter-wave signal and the transmission direction of the transmission beam having the millimeter-wave signal power
  • the thick solid line arrow indicates the front direction of the antenna device.
  • the shape of the reflector is formed as a paraboloid of revolution or a torus shape.
  • any shape can be used as long as desired characteristics can be obtained.
  • These reflectors can be formed by a method such as die casting, cutting ij, forging, resin plating, vapor deposition, wire knitting, printing, and the like.
  • the radiator of the primary radiator has a rectangular horn shape. Radiators of various shapes as shown in Fig. 6 may be used.
  • Fig. 6 shows the shapes of various radiators, (a) shows a circular horn radiator, (b) shows a dielectric rod type radiator, (c) a patch antenna, and (d) a slot antenna.
  • FIG. 7 is a side view showing a schematic configuration of the antenna device according to the present embodiment.
  • the dotted arrows in the figure indicate the radiation direction of the millimeter wave signal and the transmission direction of the transmission beam having the millimeter wave signal power, and the thick solid arrow indicates the front direction of the antenna device.
  • the first reflector 3 and the third reflector 7 having the same shape above and below the primary radiator 1 are point-symmetric with respect to the focal point existing in the primary radiator 1.
  • the other configuration is the same as that shown in the first embodiment.
  • the reflecting surface of the first reflector 2 faces the front of the antenna
  • the reflecting surface of the third reflector 7 faces the rear of the antenna.
  • the focal point is equal to the intersection of the center line in the direction in which the radiating section 11 of the primary radiator 1 extends and the center line in the direction in which the transmitting section 12 extends.
  • the first reflector 2 above the primary radiator 1 forms a beam in the front direction of the antenna
  • the third reflector 7 below the primary radiator 1 forms a beam in the rear direction of the antenna.
  • each reflector with respect to the primary radiator should be such that the desired antenna characteristics (directivity) can be obtained! ,.
  • the upper reflector of the primary radiator transmits the beam in the front direction
  • the lower reflector is arranged in the posture of transmitting the beam in the rear direction.
  • the upper reflector transmits the beam in the rear direction.
  • the reflector of Shimotsuku j may be placed in a position to transmit the beam in the front direction.
  • FIG. 8 is a side view showing a schematic configuration of the antenna device according to the present embodiment.
  • the figure The dotted arrow in the middle indicates the radiation direction of the millimeter wave signal and the transmission direction of the transmission beam having the millimeter wave signal power, and the thick solid arrow indicates the front direction of the antenna device.
  • the first reflector 2 is disposed above the primary radiator 1, and is positioned symmetrically below the first reflector 2 with respect to the rotation axis A of the primary radiator 1 with respect to the first reflector 2.
  • a fourth reflector 8 is arranged.
  • the first reflector 2 sets the direction of the beam formed by reflection to be obliquely downward in the front direction
  • the fourth reflector 8 sets the direction of the beam formed by reflection to be obliquely upward in the front direction.
  • Other configurations are the same as those of the antenna device shown in the first embodiment. With such a configuration, it is possible to form an antenna device that transmits a beam substantially simultaneously in the upper front direction and the lower front direction. As a result, forward detection and vertical (up / down) detection can be realized with one antenna device.
  • the first reflector 4 and the fourth reflector 8 have substantially the same shape, but reflectors having different shapes may be used for each.
  • FIG. 9 is an external view showing a schematic configuration of the antenna device according to the present embodiment.
  • the first reflector 2 is arranged above the primary radiator 1, the fourth reflector 8 is arranged below, the fifth reflector 9 is arranged on the right side, and the first reflector 2 is arranged on the left side.
  • the sixth reflector 10 is arranged, and the fifth and sixth reflectors 9, 10 have a predetermined directivity in the front direction of the antenna device.
  • the other configuration is the same as that of the antenna device shown in the first embodiment. With this configuration, the first and fourth reflectors 2 and 8 form beams that scan in the horizontal direction in the front direction of the antenna, and the fifth and sixth reflectors 9 and 10 are vertical in the front direction of the antenna. Form a beam that scans in the direction. This makes it possible to realize an antenna device that can perform horizontal scanning and vertical scanning during one rotation of the primary radiator.
  • the number of reflectors used may be more than three or four in order to obtain desired characteristics. .
  • all the reflectors are installed in a posture for forming a beam in the front direction.
  • a plurality of reflectors are used for the front and rear surfaces. And may be installed separately.
  • the reflectors located above and to the right of primary radiator 1 are used for the front, and the reflectors located below and to the left of the primary radiator are used for the back, so that one rotation of the primary radiator It is possible to realize an antenna device that enables horizontal scanning and vertical scanning in the front direction and horizontal scanning and vertical scanning in the rear direction.
  • FIG. 10 is a side view showing a schematic configuration of the antenna device according to the present embodiment.
  • the dotted arrows in the figure indicate the radiation direction of the millimeter wave signal and the transmission direction of the transmission beam having the millimeter wave signal power, and the thick solid arrow indicates the front direction of the antenna device.
  • the antenna device of the present embodiment is such that the primary radiator is arranged such that the direction of the rotation axis A of the primary radiator forms a predetermined angle with respect to the horizontal direction.
  • This is the same as the antenna device shown in the third embodiment.
  • the relative attitude between the primary radiator and the reflector that is, the degree of freedom of the layout of each component of the antenna device is improved.
  • This configuration can be applied not only to the third embodiment but also to each of the above-described embodiments.
  • FIG. 11 is a side view showing a schematic configuration of the antenna device according to the present embodiment.
  • the thick solid arrow in the figure indicates the front direction of the antenna device.
  • the antenna device includes a housing 20 containing a primary radiator 1, a first reflector 2, a second reflector 3, a rotary joint 4, a waveguide 5, and a motor 6.
  • the other configuration is the same as that of the antenna device shown in the first embodiment.
  • the housing 20 includes a side wall 21 that covers the above components in the vertical and horizontal directions, a back cover 22 that covers the back of the antenna device, and a radome 23 that covers the front of the antenna device.
  • the side wall 21 of the housing 20 is formed integrally with the first reflector 2 and the second reflector 3.
  • each component of the antenna device is protected from external environmental forces, and an antenna device having excellent durability can be configured.
  • the housing and the reflector are integrally formed, the number of components of the antenna device is reduced, so that an easy-to-manufacture and inexpensive antenna device can be configured.
  • the reflector and the housing are formed as a single body.
  • the reflector and the housing may be individually formed.
  • each component (each functional unit) of the antenna device is built in the housing.
  • Each functional unit as a radar device described later may be arranged in the housing. This makes it possible to realize a radar device having excellent durability.
  • FIG. 12 is a block diagram illustrating a schematic configuration of the radar device according to the present embodiment.
  • the radar device includes an antenna device 100, a circuit 200, a mixer 300, a coupler 400, a non-reflection terminator 401, a VCO 500, and an LNA 600.
  • the antenna device 100 the antenna device described in each of the above embodiments is used.
  • the circulator 200, the mixer 300, the coupler 400, the non-reflection terminator 401, the VCO 500, and the LNA 600 correspond to the "detection signal generating means" of the present invention.
  • the millimeter wave signal generated by VCO 500 is transmitted to antenna apparatus 100 via coupler 400 and circulator 200.
  • the antenna device 100 forms a transmission beam in the target detection area as described above, and receives the target detection signal reflected on the target.
  • the target detection signal received by the antenna device 100 is input to the mixer 300 via the circulator 200.
  • the mixer 300 inputs a part of the signal from the VCO 500 as a local signal via the coupler 400, and outputs a frequency component of a difference between the target detection signal and the local signal as an IF signal.
  • the LNA 600 amplifies this IF signal and outputs it to a subsequent detection data generation circuit (not shown).
  • a radar device including the above-described antenna device, a plurality of directional beams are formed by one primary radiator, and thus a plurality of detection areas are detected. Can be made compact.
  • components such as the circulator 200, the mixer 300, the coupler 400, the non-reflection terminator 401, the VCO 500, and the LNA 600, which constitute the radar device, are arranged in the housing of the antenna device. As a result, it is possible to realize a small-sized and highly durable radar device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 一次放射器(1)は、アンテナ装置の正面方向に平行な方向に延びる円筒形導波管で形成された伝送部(12)と、前記正面方向に垂直な方向に延びる矩形ホーン形状の放射部(11)とからなる。また、一次放射器(1)の伝送部(12)の放射部(11)が接続されていない側に端部は、伝送部(12)と延びる方向の中心軸が一致する導波管(5)にロータリージョイント(4)により回転可能に接続されている。第1リフレクタ(2)は、オフセットパラボラリフレクタからなり、所定の指向性を得るように一次放射器(1)に対して所定の姿勢で、一次放射器(1)の上方に配置されている。第2リフレクタ(3)は、垂直方向が放物線で、水平方向が円環(トーラス)形であり、所定の指向性を得るように一次放射器(1)に対して所定の姿勢で、一次放射器(1)の下側に配置されている。

Description

明 細 書
アンテナ装置およびこれを用いたレーダ装置
技術分野
[0001] この発明は、機械的に一次放射器を回転させながら信号を放射してリフレクタにより 所定方向に反射することでビーム形成を行うアンテナ装置、およびこれを用いてビー ム送信方向の物標を探知するレーダ装置に関するものである。
背景技術
[0002] 従来、車載用レーダ装置は、物標探知用のミリ波信号をビーム形成して探知方向 に送信し、物標からの反射信号 (以下、「物標反射信号」と称す。)を受信して、探知 領域の物標を探知するものである。このようなレーダ装置は、ミリ波信号を所定の放 射面から放射する一次放射器と、該一次放射器から放射されたミリ波信号を探知方 向に反射させたり、探知領域内からの物標反射信号を反射して一次放射器に導くリ フレクタと、を備えている。また、レーダ装置では、所定の幅を有する探知領域内の物 標を探知するために、ミリ波信号のビームを所定方向、例えば、水平方向に走査させ なければならない。このため、従来のレーダ装置では、フェーズドアレイアンテナを用 いて、送信するミリ波信号のビームを電気的に走査する電子スキャン方式や、一次放 射器やリフレクタを回転'移動させることで、送信するミリ波信号のビームを機械的に 走査するメカスキャン方式が用いられて 、る。
[0003] 従来のメカスキャン方式を用いたレーダ装置は、特許文献 1に示すように、ビーム送 信方向に垂直な方向を一次放射器の回転軸方向とし、この回転軸から外側に向け て円周面側に一次放射器が設置されており、さらに、一次放射器が設置された回転 軸力も所定距離離間した位置の所定角度範囲に亘りリフレクタが設置されている。こ のリフレクタの形状は、所望の走査範囲に対してミリ波信号が送信されるように設計さ れている。このようなレーダ装置では、一次放射器から放射された信号をリフレクタで 反射させることで、所定方向に指向性を有する送信ビームを形成する。そして、一次 放射器を回転軸により回転させることで、一次放射器カゝら放射される電波の放射方 向が回転し、リフレクタで反射方向が変化して所定の角度範囲内を走査する所定強 度の送信ビームが形成される。
特許文献 1:特許第 2693497号
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、特許文献 1に示したような従来のメカスキャン方式を用いたレーダ装 置のアンテナ装置では、リフレクタが一つし力設置することができないため、一つのァ ンテナ装置に対して一つ指向性し力持たせることができな力つた。このため、それぞ れに異なる複数の探知領域を探知するレーダ装置を形成するには、それぞれの探 知領域に対応した指向性を有するアンテナ装置を設置しなければならず、レーダ装 置が大型化してしまう。
[0005] したがって、この発明の目的は、複数の指向性を有する小型のアンテナ装置とこれ を備えたレーダ装置を提供することにある。
課題を解決するための手段
[0006] この発明は、回転しながら回転軸方向とは異なる方向に信号を放射する一次放射 器と、該一次放射器から放射された信号を反射してアンテナ装置のビーム送信方向 に導き、該ビーム送信方向からの物標反射信号を反射して一次放射器に導くリフレタ タとを備えたアンテナ装置において、一次放射器を、回転軸方向とビーム送信方向と が略一致する姿勢で配置したことを特徴として 、る。
[0007] この構成では、一次放射器カゝら放射される信号の放射方向の中心がアンテナ装置 のビーム送信方向に対して所定角を有し、平行ではない。この放射された信号は、リ フレクタにより反射されてビーム形成されて、ビーム送信方向に伝搬される。この際、 一次放射器の回転軸方向とビーム送信方向とが略平行であるので、リフレクタは一 次放射器の回動軸の円周面力 外部方向の全周のどの位置にも配置することが可 能となる。
[0008] また、この発明のアンテナ装置は、一次放射器を、該一次放射器の放射方向と回 転軸方向とが 30° 以上の角を成す姿勢で配置したことを特徴としている。
[0009] この構成では、一次放射器の放射方向と回転軸方向とが所定角以上を成すので、 一次放射器の放射面に対向して配置されるリフレクタの配置位置および形状が設定 しゃすい。すなわち、放射方向と回転軸方向との成す角が小さいと、一次放射器の 放射面力 放射される信号の放射方向は回転軸方向に対して平行に近づく。このた め、一次放射器を回転させても、一次放射器力もの信号の放射方向に殆ど変化がな い。一方、放射方向と回転軸方向との成す角が大きいすなわち垂直に近づくと、一 次放射器による放射方向の変化が大きくなる。この結果、後述するリフレクタを複数 備える場合に、これらのリフレクタが設置可能な範囲が広くなる。
[0010] また、この発明のアンテナ装置は、リフレクタを複数備えたことを特徴としている。
[0011] この構成では、リフレクタを複数備えることで、一次放射器の一回転中にそれぞれ のリフレクタで形成されるビームが送信される。
[0012] また、この発明のアンテナ装置は、複数のリフレクタをそれぞれに異なる形状とした ことを特徴としている。
[0013] この構成では、複数のリフレクタの形状が異なることで、一次放射器の一回転中に それぞれのリフレクタで形成されるビームの指向性を異ならせることが可能となる。
[0014] また、この発明のアンテナ装置は、複数のリフレクタを、一次放射器に対してそれぞ れに異なるような姿勢で配置したことを特徴としている。
[0015] この構成では、複数のリフレクタの姿勢が異なることで、ビームの指向性が異なり、 一次放射器の一回転中に異なるビームの送受信が可能となる。
[0016] また、この発明のアンテナ装置は、一次放射器とリフレクタとを内部に設置する筐体 を備えたことを特徴として!/ヽる。
[0017] この構成では、筐体を備えることで、アンテナ装置の各部が外部環境力も保護され る。
[0018] また、この発明のアンテナ装置は、リフレクタと筐体とを一体形成したことを特徴とし ている。
[0019] この構成では、リフレクタと筐体とがー体形成であることによりアンテナ装置の構成 要素が減少する。
[0020] また、この発明のレーダ装置は、前述のアンテナ装置と、一次放射器から放射する 信号を生成するとともに、この信号と一次放射器に導かれた物標反射信号とを用い て探知信号を生成する探知信号生成手段と、を備えたことを特徴として 、る。 [0021] この構成では、前述のアンテナ装置を用いることで、所望のビーム指向性を有して 所望の探知領域を探知するレーダ装置が形成される。特に、アンテナ装置のリフレタ タを複数備え、且つ、これらリフレタタカも反射される信号によるビームの指向性が異 なるように、リフレクタの形状および姿勢を設定することで、単一のアンテナ装置だけ で、複数の探知領域を探知するレーダ装置が形成される。
発明の効果
[0022] この発明によれば、一次放射器力 放射される信号の放射方向の中心がアンテナ 装置のビーム送信方向に対して所定角を有し、平行ではなぐ且つ、一次放射器の 回転軸方向とビーム送信方向とが略平行であるので、リフレクタは一次放射器の回 転軸の円周面力も外部方向の全周のどの位置にも配置することができる。これにより 、それぞれに異なるビーム指向性を有する複数のリフレクタを配置することが容易とな る。
[0023] また、この発明によれば、一次放射器の放射方向と回転軸方向とが所定角以上を 成すので、一次放射器の放射面に対向して配置されるリフレクタの配置位置および 形状が設定しやすい。これにより、それぞれに異なるビーム指向性を有する複数のリ フレクタを配置する場合に、これらのリフレクタの設置可能な範囲が広くなり、さらにリ フレクタの配置が容易となる。
[0024] また、この発明によれば、リフレクタを複数備えることで、一次放射器の一回転中に それぞれのリフレクタで形成されるビームが送信される。これにより、それぞれに異な るビーム指向性を有する複数のリフレクタを用いれば、一次放射器の一回転中に異 なる指向性を有する複数のビームを送信することができる。
[0025] また、この発明によれば、複数のリフレクタの形状をそれぞれ異ならせることで、そ れぞれのリフレクタで形成されるビームの指向性を異ならせることが可能となり、一つ の一次放射器を用いて指向性の異なる複数のビームを送信するアンテナ装置を構 成することができる。
[0026] また、この発明によれば、複数のリフレクタの一次放射器に対する姿勢がそれぞれ に異なることで、ビームの指向性が異なり、一次放射器の一回転中にそれぞれの指 向性のビームの送受信が可能となり、一つの一次放射器を用いて指向性の異なる複 数のビームを送信するアンテナ装置を構成することができる。
[0027] また、この発明によれば、筐体を備えることで、アンテナ装置の各構成要素が、外部 環境カゝら保護されるので、前述の一つの一次放射器で複数の異なる指向性を有する という効果を奏するとともに、耐久性に優れるアンテナ装置を構成することができる。
[0028] また、この発明によれば、リフレクタと筐体とがー体形成であることにより、アンテナ 装置の構成要素が減少する。これにより、一つの一次放射器で複数の異なる指向性 を有し、さらに耐久性に優れるという効果を奏するとともに、製造が容易で、安価なァ ンテナ装置を構成することができる。
[0029] また、この発明によれば、前述のアンテナ装置を用いることで、所望のビーム指向 性を有して所望の探知領域を探知するレーダ装置を形成することができる。特に、ァ ンテナ装置のリフレクタを複数備え、且つ、これらリフレタタカも反射される信号による ビームの指向性が異なるように、リフレクタの形状および姿勢を設定することで、単一 の一次放射器を備える単一のアンテナ装置だけで、複数の探知領域を探知するレ ーダ装置を構成することができる。これにより、複数のビーム指向性を有する、すなわ ち、複数の探知領域が探知可能なレーダ装置を比較的小型に形成することができる 図面の簡単な説明
[0030] [図 1]第 1の実施形態に係るアンテナ装置の外観図である。
[図 2]第 1の実施形態に係るアンテナ装置の側面図である。
[図 3]—次放射器 1の放射面が第 1リフレクタ 2側を向いている場合の一次放射器 1の 回転角度とアンテナ装置の指向性との関係を示す図である。
[図 4]一次放射器 1の放射面が第 2リフレクタ 3側を向いている場合の一次放射器 1の 回転角度とアンテナ装置の指向性との関係を示す図である。
[図 5]—次放射器とリフレクタの相対位置関係を示す側面図である。
[図 6]各種放射器の形状を示す図である。
[図 7]第 2の実施形態に係るアンテナ装置の概略構成を示す側面図である。
[図 8]第 3の実施形態に係るアンテナ装置の概略構成を示す側面図である。
[図 9]第 4の実施形態に係るアンテナ装置の概略構成を示す外観図である。 [図 10]第 5の実施形態に係るアンテナ装置の概略構成を示す側面図である。
[図 11]第 6の実施形態に係るアンテナ装置の概略構成を示す側面図である。
[図 12]第 7の実施形態に係るレーダ装置の概略構成を示すブロック図である。
符号の説明
[0031] 1一一次放射器
11一放射部
12—伝送部
2, 3, 7, 8, 9, 10—リフレクタ
4一ロータリージョイント
5—導波管
6—モータ
100—アンテナ装置
200—サーキユレータ
300—ミキサ
400—力プラ
401—無反射終端器
500-VCO
600-LNA
発明を実施するための最良の形態
[0032] 本発明の第 1の実施形態に係るアンテナ装置について図 1〜図 6を参照して説明 する。
[0033] 図 1は本実施形態のアンテナ装置の外観図である。
また、図 2は本実施形態のアンテナ装置の側面図であり、(a)は一次放射器 1がリフ レクタ 2側を向いた状態を示し、 (b)は一次放射器 1がリフレクタ 3側を向いた状態を 示す。なお、図中の点線矢印はミリ波信号の放射方向、およびこのミリ波信号力もな る送信ビームの送信方向を示し、太実線矢印はアンテナ装置の正面方向を示す。 図 1、図 2に示すように、アンテナ装置は、一次放射器 1、第 1リフレクタ 2、第 2リフレ クタ 3、ロータリージョイント 4、導波管 5、モータ 6を備える。 [0034] 一次放射器 1は、アンテナ装置の正面方向に平行な方向に延びる所定径の円筒 形導波管で形成された伝送部 12と、前記正面方向に垂直な方向に延びる矩形ホー ン形状の放射部 11とからなる。放射部 11は、矩形ホーン形状の開口面積の大きい 側の端面を放射面とし、開口面積の小さい側の端面を伝送部 12への接続面としてい る。そして、放射部 11は伝送部 12の一方端力も所定距離の位置に接続されている。 この際、放射部 11の延びる方向と伝送部 12の延びる方向とが垂直となるように、放 射部 11と伝送部 12とが接続されている。これにより、一次放射器 1の放射部 11の延 びる方向はアンテナ装置の正面方向に垂直な方向となり、一次放射器 1の放射面は アンテナ装置の正面方向に垂直な方向に垂直な面となる。この結果、一次放射器 1 力 放射される信号の放射方向の中心は、アンテナ装置の正面方向に垂直な方向と なる。なお、伝送部 12は、同軸線路や円形誘電体線路で構成しても構わない。
[0035] また、一次放射器 1の伝送部 12の放射部 11が接続されていない側に端部は、伝 送部 12と延びる方向の中心軸が一致する導波管 5にロータリージョイント 4により回転 可能に接続されており、伝送部 12の放射部 11が接続される側の端部には、伝送部 1 2の中心軸を回転軸 Aとして一次放射器 1を回転させるモータ 6が設置されて 、る。こ れにより、一次放射器 1は、アンテナ装置の正面方向(前記回転軸 Aに平行な方向) に対して垂直な方向で、且つ回転角度に応じた方向を中心として信号を放射する。 すなわち、一次放射器 1を回転させることで、アンテナ装置の正面方向に垂直な面の 全周方向に信号を放射することが可能となる。
[0036] 第 1リフレクタ 2は、所定の焦点距離の回転放物面力 所定の直径の円を部分的に 切り出した形状の、いわゆるオフセットパラボラリフレタタカもなり、所定の指向性を得 るように一次放射器 1に対して所定の姿勢で、一次放射器 1の上方に配置されて 、る 。具体的には、一次放射器 1の放射部 11が伝送部 12に対して鉛直上方向に配置さ れた場合に、第 1リフレクタ 2の反射により形成されるビームの指向性がアンテナ装置 の真正面 (正面方向で且つ水平方向の角度が 0° )で最も強くなるような姿勢で、第 1リフレクタ 2が設置されて 、る。
[0037] 第 2リフレクタ 3は、垂直方向が放物線で、水平方向が円環(トーラス)形であり、所 定の指向性を得るように一次放射器 1に対して所定の姿勢で、一次放射器 1の下側 に配置されている。具体的には、一次放射器 1の放射部 11が伝送部 12に対して鉛 直下方向に配置された場合に、第 2リフレクタ 3の反射により形成されるビームの指向 性がアンテナ装置の真正面 (正面方向で且つ水平方向の角度が 0° )で最も強くな るような姿勢で、第 2リフレクタ 3が設置されている。
[0038] このようなアンテナ装置では、導波管 5を介して探知用のミリ波信号が伝送されると 、ミリ波信号は一次放射器 1の伝送部 12に伝送されて、放射部 11の放射面から、ァ ンテナ装置の正面方向に垂直な方向を放射方向の中心として放射される。ここで、 一次放射器 1の放射面が第 1リフレクタ 2側を向いていれば、一次放射器 1の放射面 力も放射されたミリ波信号は、第 1リフレクタ 2により反射される。第 1リフレクタ 2は、反 射により、アンテナ装置の正面方向に、水平方向に狭い角度範囲で強い指向性を有 するビームを形成する形状に形成されているので、第 1リフレクタ 2で反射されたミリ波 信号のビームはアンテナ正面方向の狭範囲内の領域に送信される。
[0039] この第 1リフレクタ 2により形成されるビームによるアンテナ正面方向の探知領域に 物標が存在すると、送信されたミリ波信号が物標に反射して、アンテナ装置方向に伝 送される。この物標反射信号は、第 1リフレクタ 2により反射されて一次放射器 1の放 射面で集中して受信される。この物標反射信号は、一次放射器 1の放射部 11、伝送 部 12を伝送し、導波管 5に導かれ、導波管 5から外部回路に出力される。
[0040] ここで、第 1リフレクタ 2によるミリ波信号の反射で形成されるビームの特性、すなわ ち指向性は、第 1リフレクタ 2の反射面と一次放射器 1の放射面との相対姿勢により変 化するので、一次放射器 1が回転すると指向性が変化する。
[0041] 図 3は、一次放射器 1の放射面が第 1リフレクタ 2側を向いている場合の一次放射器 1の回転角度とアンテナ装置の指向性との関係を示す図であり、 (a)〜(d)では一次 放射器 1の回転角度、すなわち、第 1リフレクタ 2の反射面と一次放射器 1の放射面と の相対姿勢が異なる。なお、図の横軸に記された角度は、アンテナ装置の真正面方 向を 0° として、この方向を基準方向として水平方向に成す角を示す。また、図中の 一次放射器回転角度は一次放射器 1が真上方向を向いた場合を 0° とし、この基準 方向に対して成す角を示したものである。また、使用したミリ波信号の周波数は車載 用レーダ装置に用いられる 76GHzである。 [0042] 図 3から分力るように、一次放射器 1を回転させることにより、アンテナ利得の最大ピ ークの水平方向の角度が変化する。これにより、水平方向に走査するビームを形成 することができる。具体的には、図 3の場合、正面方向(0° 方向)のアンテナ利得が 35dBiで水平方向に ± 7° 程度まで走査が可能なアンテナ装置を形成することがで きる。これにより、正面方向に約 150mの位置までで、水平方向の走査角 ± 7° の範 囲の物標を探知することができる。
[0043] 一方、一次放射器 1の放射面が第 2リフレクタ 3側を向いていれば、一次放射器 1の 放射面から放射されたミリ波信号は、第 2リフレクタ 3により反射される。第 2リフレクタ 3 は、反射により、アンテナ装置の正面方向に、第 1リフレクタ 2によるビームよりも水平 方向に広 1ヽ角度範囲の指向性を有するビームを形成する形状に形成されて!ヽるの で、第 2リフレクタ 3で反射されたミリ波信号のビームはアンテナ正面方向の広範囲の 領域に送信される。
[0044] この第 2リフレクタ 3により形成されるビームによるアンテナ正面方向の探知領域に 物標が存在すると、送信されたミリ波信号が物標に反射して、アンテナ装置方向に伝 送される。この物標反射信号は、第 2リフレクタ 3により反射されて一次放射器 1の放 射面で集中して受信される。この物標反射信号は、一次放射器 1の放射部 11、伝送 部 12を伝送し、導波管 5に導かれ、導波管 5から外部回路に出力される。
[0045] ここで、第 2リフレクタ 3によるミリ波信号の反射で形成されるビームの特性、すなわ ち指向性は、第 2リフレクタ 3の反射面と一次放射器 1の放射面との相対姿勢により変 化するので、一次放射器 1が回転すると指向性が変化する。
[0046] 図 4は、一次放射器 1の放射面が第 2リフレクタ 3側を向いている場合の一次放射器 1の回転角度とアンテナ装置の指向性との関係を示す図であり、 (a)〜(d)では一次 放射器 1の回転角度、すなわち、第 2リフレクタ 3の反射面と一次放射器 1の放射面と の相対姿勢が異なる。なお、図の横軸に記された角度は、アンテナ装置の真正面方 向を 0° として、この方向を基準方向として水平方向に成す角を示す。また、図中の 一次放射器回転角度は一次放射器 1が真下方向を向いた場合を 0° とし、この基準 方向に対して成す角を示したものである。また、使用したミリ波信号の周波数は車載 用レーダ装置に用いられる 76GHzである。 [0047] 図 4から分力るように、一次放射器 1を回転させることにより、アンテナ利得の最大ピ ークの水平方向の角度が、第 1リフレクタ 2の場合よりも大きく変化する。これにより、 水平方向により広範囲に走査するビームを形成することができる。具体的には、図 4 の場合、正面方向(0° 方向)のアンテナ利得が 22dBiで水平方向に ±40° 程度ま で走査が可能なアンテナ装置を形成することができる。これにより、正面方向に約 40 mの位置までで、水平方向の走査角 ±40° の範囲の物標を探知することができる。
[0048] 以上のように、本実施形態の構成を用いることにより、一つの一次放射器を用いて 複数の指向性を有するアンテナ装置を形成することができる。これにより、例えば、前 述の例のように、真正面方向を含む狭い範囲で遠くの物標と、より広範囲で付近の物 標とを、一次放射器の一回転中に検知することができる。
[0049] なお、前述の説明では、一次放射器の放射方向(放射部の延びる方向)が回転軸 A方向(アンテナ装置の正面方向)に対して垂直な場合について説明した力 図 5に 示すように、放射方向と回転軸 A方向との成す角が、角度の殆どない鋭角でない角、 例えば 30° 以上で 90° 未満であってもよい。図 5は一次放射器とリフレクタの相対 位置関係を示す側面図である。なお、図中の点線矢印はミリ波信号の放射方向、お よびこのミリ波信号力もなる送信ビームの送信方向を示し、太実線矢印はアンテナ装 置の正面方向を示す。これにより、リフレクタの焦点距離、奥行き、直径の設計自由 度が増し、一次放射器およびリフレクタのレイアウト自由度が向上する。この結果、所 望のアンテナ特性を有するアンテナ装置を容易に形成することができる。
[0050] また、前述の説明では、リフレクタの形状を回転放物面やトーラス形状に形成したが 、所望の特性を得られる形状であれば前述の構成に用いることができる。このようなリ フレクタの伊 [Jとしては、
(1)所望の指向性が得られる鏡面修正されたもの
(2)トーラス形状と回転放物面とを合成したもの
(3)複数の回転放物面を合成したもの
等が考えられる。そして、これらのリフレクタは、ダイカスト、切肖 ij、鍛造、榭脂メツキや 蒸着、ワイヤ編み、印刷等の工法で形成することができる。
[0051] また、前述の説明では、一次放射器の放射部の形状を矩形ホーン形状にしたが、 図 6に示すような各種形状の放射器を用いてもょ ヽ。
図 6は各種放射器の形状を示すものであり、(a)は円形ホーン形状放射器、(b)は 誘電体ロッド型放射器、(c)パッチアンテナ、(d)スロットアンテナを示す。
このような構成の一次放射器を用いても前述の効果を奏することができる。
[0052] 次に、第 2の実施形態に係るアンテナ装置について図 7を参照して説明する。
図 7は、本実施形態に係るアンテナ装置の概略構成を示す側面図である。なお、図 中の点線矢印はミリ波信号の放射方向、およびこのミリ波信号力もなる送信ビームの 送信方向を示し、太実線矢印はアンテナ装置の正面方向を示す。
図 7に示すように、本実施形態のアンテナ装置は、一次放射器 1の上下に同形状の 第 1リフレクタ 2と第 3リフレクタ 7とが、一次放射器 1に存在する焦点に対して点対称 に配置されたものであり、他の構成は第 1の実施形態に示したものと同じである。これ により、第 1リフレクタ 2の反射面はアンテナ正面方向を向き、第 3リフレクタ 7の反射面 はアンテナ背面方向を向く。ここで、本実施形態では、前記焦点は、一次放射器 1の 放射部 11の延びる方向の中心線と伝送部 12の延びる方向の中心線との交点に等し い。このような構造とすることで、一次放射器 1の上側の第 1リフレクタ 2はアンテナ正 面方向にビームを形成し、一次放射器 1の下側の第 3リフレクタ 7はアンテナ背面方 向にビームを形成する。これにより、一次放射器 1がー回転する間に前方と後方とに ビームが形成されて、探知が可能となり、前方探知と後方探知とを一つのアンテナ装 置で実現することができる。
[0053] なお、前述の説明では、二つのリフレクタの形状を同じにした力 異なる形状のリフ レクタを用いてもよい。この場合、各リフレクタの一次放射器に対する姿勢は、所望の アンテナ特性 (指向性)が得られるようにすればよ!、。
また、前述の説明では、一次放射器の上側のリフレクタが正面方向にビームを送信 し、下側のリフレクタが背面方向にビームを送信する姿勢で配置されている力 上側 のリフレクタが背面方向にビームを送信し、下佃 jのリフレクタが正面方向にビームを送 信する姿勢に配置してもよい。
[0054] 次に、第 3の実施形態に係るアンテナ装置について図 8を参照して説明する。
図 8は本実施形態に係るアンテナ装置の概略構成を示す側面図である。なお、図 中の点線矢印はミリ波信号の放射方向、およびこのミリ波信号力もなる送信ビームの 送信方向を示し、太実線矢印はアンテナ装置の正面方向を示す。
図 8に示すアンテナ装置は、一次放射器 1の上方向に第 1リフレクタ 2が配置され、 下方向に、第 1リフレクタ 2に対して一次放射器 1の回転軸 Aを基準に線対称の位置 に、第 4リフレクタ 8が配置されたものである。そして、第 1リフレクタ 2は反射により形成 するビームの方向を正面方向の斜め下方向とし、第 4リフレクタ 8は反射により形成す るビームの方向を正面方向の斜め上方向としたものである。他の構成は、第 1の実施 形態に示したアンテナ装置と同じである。このような構成とすることで、正面上方向、 正面下方向に略同時にビームを送信するアンテナ装置を形成することができる。これ により、前方探知と垂直 (上下)探知とを一つのアンテナ装置で実現することができる
[0055] なお、前述の説明では、第 1リフレクタ 2と第 4リフレクタ 8とが略同形状であるが、そ れぞれに異なる形状のリフレクタを用いてもょ 、。
[0056] 次に、第 4の実施形態に係るアンテナ装置について図 9を参照して説明する。
図 9は本実施形態に係るアンテナ装置の概略構成を示す外観図である。 図 9に示すアンテナ装置は、一次放射器 1の上方向に第 1リフレクタ 2を配置し、下 方向に第 4リフレクタ 8を配置し、右側方に第 5リフレクタ 9を配置し、左側方に第 6リフ レクタ 10を配置したものであり、第 5、第 6リフレクタ 9, 10はアンテナ装置の正面方向 に所定の指向性を有するものである。そして、他の構成は第 1の実施形態に示したァ ンテナ装置と同じである。このような構成とすることで、第 1、第 4リフレクタ 2, 8がアン テナ正面方向で水平方向を走査するビームを形成し、第 5、第 6リフレクタ 9, 10がァ ンテナ正面方向で垂直方向に走査するビームを形成する。これにより、一次放射器 の一回転中に水平方向の走査と垂直方向の走査とが可能なアンテナ装置を実現す ることがでさる。
[0057] なお、本実施形態では、リフレクタを 4枚使用した例を示した力 リフレクタの使用枚 数は、所望の特性を得るために 3枚や 4枚を超える複数枚数であってもよ 、。
さらに、本実施形態では、全てのリフレクタが正面方向にビームを形成する姿勢で 設置されているが、第 2の実施形態に示したように、複数のリフレクタを正面用と背面 用とに分けて設置してもよい。例えば、一次放射器 1の上方と右側方とに配置された リフレクタを正面用とし、一次放射器の下方と左側方とに配置されたリフレクタを背面 用とすることで、一次放射器の一回転中に正面方向の水平走査と垂直走査、背面方 向の水平走査と垂直走査とを可能にするアンテナ装置を実現することができる。
[0058] 次に、第 5の実施形態に係るアンテナ装置について図 10を参照して説明する。
図 10は本実施形態に係るアンテナ装置の概略構成を示す側面図である。なお、図 中の点線矢印はミリ波信号の放射方向、およびこのミリ波信号力もなる送信ビームの 送信方向を示し、太実線矢印はアンテナ装置の正面方向を示す。
図 10に示すように、本実施形態のアンテナ装置は、一次放射器の回転軸 A方向が 水平方向に対して所定角を成すように一次放射器を配置したものであり、他の構成 は第 3の実施形態に示したアンテナ装置と同じである。このような構成とすることで、 一次放射器とリフレクタとの相対姿勢、すなわちアンテナ装置の各構成要素のレイァ ゥトの自由度が向上する。なお、この構成は、第 3の実施形態に限らず前述の各実施 形態に適用することができる。
[0059] 次に、第 6の実施形態に係るアンテナ装置について図 11を参照して説明する。
図 11は本実施形態に係るアンテナ装置の概略構成を示す側面図である。なお、図 中の太実線矢印はアンテナ装置の正面方向を示す。
図 11に示すように、本実施形態に係るアンテナ装置は、一次放射器 1、第 1リフレタ タ 2、第 2リフレクタ 3、ロータリージョイント 4、導波管 5、モータ 6を内蔵する筐体 20を 備えるものであり、他の構成は第 1の実施形態に示すアンテナ装置と同じである。筐 体 20は、前記各構成要素を上下方向および左右方向から覆う側壁部 21と、アンテ ナ装置の背面方向を覆う裏蓋 22と、アンテナ装置の正面方向を覆うレドーム 23とか ら構成される。そして、筐体 20の側壁部 21は第 1リフレクタ 2および第 2リフレクタ 3と 一体形成されている。
[0060] このような構成とすることで、アンテナ装置の各構成要素が外部環境力も保護され て、耐久性に優れるアンテナ装置を構成することができる。また、筐体とリフレクタとが 一体形成されているので、アンテナ装置の構成要素が減少し、製造が容易で、安価 なアンテナ装置を構成することができる。 [0061] なお、本実施形態では、リフレクタと筐体とがー体形成されたものを示したが、これ らが個々に形成されたものを組み立ててもよい。
[0062] また、本実施形態では、アンテナ装置の各構成要素 (各機能部)を筐体に内蔵した 力 後述するレーダ装置としての各機能部を筐体内に配置してもよい。これにより、耐 久性に優れるレーダ装置を実現することができる。
[0063] 次に、第 7の実施形態に係るレーダ装置について図 12を参照して説明する。
図 12は本実施形態に係るレーダ装置の概略構成を示すブロック図である。
[0064] 図 12に示すように、本実施形態のレーダ装置は、アンテナ装置 100、サーキユレ一 タ 200、ミキサ 300、カプラ 400、無反射終端器 401、 VCO500、 LNA600を備える 。そして、アンテナ装置 100には、前述の各実施形態に示したアンテナ装置を用いる 。ここで、サーキユレータ 200、ミキサ 300、カプラ 400、無反射終端器 401、 VCO50 0、 LNA600が本発明の「探知信号生成手段」に相当する。
[0065] VCO500により生成されたミリ波信号は、カプラ 400、サーキユレータ 200を介して 、アンテナ装置 100に伝送される。アンテナ装置 100は、前述のように物標探知領域 に送信ビームを形成して、物標に反射した物標探知信号を受信する。アンテナ装置 100で受信された物標探知信号は、サーキユレータ 200を介してミキサ 300に入力さ れる。ミキサ 300は、 VCO500からの信号の一部をカプラ 400を介してローカル信号 として入力し、物標探知信号とローカル信号との差の周波数成分を IF信号として出 力する。 LNA600はこの IF信号を増幅して後段の探知データ生成回路(図示せず) に出力する。
[0066] このように、前述のアンテナ装置を備えてレーダ装置を構成することで、一つの一 次放射器で複数の指向性のビームが形成されるので、複数の探知領域を探知する レーダ装置を小型に構成することができる。
[0067] また、前述の説明のように、レーダ装置を構成する、サーキユレータ 200、ミキサ 30 0、カプラ 400、無反射終端器 401、 VCO500、 LNA600等の構成要素をアンテナ 装置の筐体内に配置することで、小型で耐久性に優れるレーダ装置を実現すること ができる。

Claims

請求の範囲
[1] 回転しながら回転軸方向とは異なる方向に信号を放射する一次放射器と、該一次 放射器から放射された信号を反射してアンテナ装置のビーム送信方向に導き、該ビ ーム送信方向からの物標反射信号を反射して前記一次放射器に導くリフレクタとを 備えたアンテナ装置において、
前記一次放射器は、前記回転軸方向と前記ビーム送信方向とが略一致する姿勢 で配置されて ヽることを特徴とするアンテナ装置。
[2] 前記一次放射器は、該一次放射器の放射方向と前記回転軸方向とが 30° 以上の 角を成す姿勢で配置されて!、る請求項 1に記載のアンテナ装置。
[3] 前記リフレクタを複数備えた請求項 1または請求項 2に記載のアンテナ装置。
[4] 前記複数のリフレクタがそれぞれに異なる形状である請求項 3に記載のアンテナ装 置。
[5] 前記複数のリフレクタは、前記一次放射器に対してそれぞれに異なる姿勢で配置さ れている請求項 3または請求項 4に記載のアンテナ装置。
[6] 前記一次放射器と前記リフレクタとが内部に設置された筐体を備える請求項 1〜5 の!、ずれかに記載のアンテナ装置。
[7] 前記リフレクタと前記筐体とがー体形成されてなる請求項 6に記載のアンテナ装置
[8] 請求項 1〜7に記載のアンテナ装置と、
前記一次放射器力 放射する信号を生成するとともに、この信号と前記一次放射 器に導かれた前記物標反射信号とを用いて探知信号を生成する探知信号生成手段 と、を備えたことを特徴とするレーダ装置。
PCT/JP2005/006238 2004-05-21 2005-03-31 アンテナ装置およびこれを用いたレーダ装置 WO2005114785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005000876T DE112005000876B4 (de) 2004-05-21 2005-03-31 Antennenvorrichtung und Radarvorrichtung, die dieselbe umfasst
JP2006513673A JP4337876B2 (ja) 2004-05-21 2005-03-31 アンテナ装置およびこれを用いたレーダ装置
US11/583,024 US7453411B2 (en) 2004-05-21 2006-10-19 Antenna device and radar apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004151597 2004-05-21
JP2004-151597 2004-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/583,024 Continuation US7453411B2 (en) 2004-05-21 2006-10-19 Antenna device and radar apparatus including the same

Publications (1)

Publication Number Publication Date
WO2005114785A1 true WO2005114785A1 (ja) 2005-12-01

Family

ID=35428639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006238 WO2005114785A1 (ja) 2004-05-21 2005-03-31 アンテナ装置およびこれを用いたレーダ装置

Country Status (4)

Country Link
US (1) US7453411B2 (ja)
JP (1) JP4337876B2 (ja)
DE (1) DE112005000876B4 (ja)
WO (1) WO2005114785A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251664A (ja) * 2006-03-16 2007-09-27 Nec Corp アンテナ装置
WO2007136293A1 (en) * 2006-05-23 2007-11-29 Intel Corporation Millimeter-wave reflector antenna system and methods for communicating using millimeter-wave signals
JP2009055245A (ja) * 2007-08-24 2009-03-12 Nec Corp アンテナ装置及び水平面パターンの切替え方法
US8149178B2 (en) 2006-05-23 2012-04-03 Intel Corporation Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
US8320942B2 (en) 2006-06-13 2012-11-27 Intel Corporation Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
JP2020136712A (ja) * 2019-02-13 2020-08-31 パナソニック株式会社 アンテナ装置
WO2022044916A1 (ja) * 2020-08-31 2022-03-03 株式会社小糸製作所 車両用レーダシステム及び車両

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038365A1 (de) * 2008-07-02 2010-01-07 Adc Automotive Distance Control Systems Gmbh Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug
WO2010115418A2 (de) 2009-04-06 2010-10-14 Conti Temic Microelectronic Gmbh Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
US20110181459A1 (en) * 2010-01-28 2011-07-28 Infineon Technologies Ag Systems and methods for incident angle measurement of waves impinging on a receiver
KR101391944B1 (ko) 2013-04-05 2014-05-07 삼성탈레스 주식회사 안테나 조립체
US9093754B2 (en) * 2013-05-10 2015-07-28 Google Inc. Dynamically adjusting width of beam based on altitude
DE102015222884A1 (de) 2015-11-19 2017-05-24 Conti Temic Microelectronic Gmbh Radarsystem mit verschachtelt seriellem Senden und parallelem Empfangen
US12074372B2 (en) 2020-09-23 2024-08-27 Nokia Solutions And Networks Oy Method and apparatus for antenna with notched multi-element reflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291541A (ja) * 1993-03-30 1994-10-18 Nippon Telegr & Teleph Corp <Ntt> モジュラーアンテナ
JPH08321710A (ja) * 1995-03-17 1996-12-03 He Holdings Inc Dba Hughes Electron 走査アンテナシステム
JPH1188029A (ja) * 1997-09-08 1999-03-30 Toshiba Corp 円錐走査型アンテナ装置
JPH11303146A (ja) * 1998-04-22 1999-11-02 Shin Caterpillar Mitsubishi Ltd 遠隔無線操縦システム並びに無線移動式作業機械及び遠隔操縦装置並びに電波反射機構付きの無線装置
JP2004112660A (ja) * 2002-09-20 2004-04-08 Murata Mfg Co Ltd アンテナ装置および送受信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1303670B (ja) * 1966-04-29 1972-05-31 Rohde & Schwarz
GB1603657A (en) * 1977-09-13 1981-11-25 Marconi Co Ltd Systems for the transmission and/or reception of electromagnetic waves
FR2412961A1 (fr) * 1977-12-22 1979-07-20 Thomson Csf Systeme d'antenne a balayage conique pour radar de poursuite
JP2693497B2 (ja) * 1988-07-22 1997-12-24 株式会社東芝 機械的ビーム走査アンテナ装置
US6061033A (en) * 1997-11-06 2000-05-09 Raytheon Company Magnified beam waveguide antenna system for low gain feeds
US6396448B1 (en) * 1999-08-17 2002-05-28 Ems Technologies, Inc. Scanning directional antenna with lens and reflector assembly
EP1291965B1 (en) * 2001-03-02 2010-03-31 Mitsubishi Denki Kabushiki Kaisha Antenna
AUPR622901A0 (en) * 2001-07-09 2001-08-02 Commonwealth Scientific And Industrial Research Organisation Laser alignment apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291541A (ja) * 1993-03-30 1994-10-18 Nippon Telegr & Teleph Corp <Ntt> モジュラーアンテナ
JPH08321710A (ja) * 1995-03-17 1996-12-03 He Holdings Inc Dba Hughes Electron 走査アンテナシステム
JPH1188029A (ja) * 1997-09-08 1999-03-30 Toshiba Corp 円錐走査型アンテナ装置
JPH11303146A (ja) * 1998-04-22 1999-11-02 Shin Caterpillar Mitsubishi Ltd 遠隔無線操縦システム並びに無線移動式作業機械及び遠隔操縦装置並びに電波反射機構付きの無線装置
JP2004112660A (ja) * 2002-09-20 2004-04-08 Murata Mfg Co Ltd アンテナ装置および送受信装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251664A (ja) * 2006-03-16 2007-09-27 Nec Corp アンテナ装置
JP4622898B2 (ja) * 2006-03-16 2011-02-02 日本電気株式会社 アンテナ装置
WO2007136293A1 (en) * 2006-05-23 2007-11-29 Intel Corporation Millimeter-wave reflector antenna system and methods for communicating using millimeter-wave signals
US8149178B2 (en) 2006-05-23 2012-04-03 Intel Corporation Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
US8193994B2 (en) 2006-05-23 2012-06-05 Intel Corporation Millimeter-wave chip-lens array antenna systems for wireless networks
US8395558B2 (en) 2006-05-23 2013-03-12 Intel Corporation Millimeter-wave reflector antenna system and methods for communicating using millimeter-wave signals
US8320942B2 (en) 2006-06-13 2012-11-27 Intel Corporation Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
JP2009055245A (ja) * 2007-08-24 2009-03-12 Nec Corp アンテナ装置及び水平面パターンの切替え方法
JP2020136712A (ja) * 2019-02-13 2020-08-31 パナソニック株式会社 アンテナ装置
JP7304166B2 (ja) 2019-02-13 2023-07-06 パナソニックホールディングス株式会社 アンテナ装置
WO2022044916A1 (ja) * 2020-08-31 2022-03-03 株式会社小糸製作所 車両用レーダシステム及び車両

Also Published As

Publication number Publication date
DE112005000876T5 (de) 2007-04-26
JP4337876B2 (ja) 2009-09-30
US20070035461A1 (en) 2007-02-15
US7453411B2 (en) 2008-11-18
DE112005000876B4 (de) 2010-06-10
JPWO2005114785A1 (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
US7453411B2 (en) Antenna device and radar apparatus including the same
Menzel et al. Antenna concepts for millimeter-wave automotive radar sensors
US8810468B2 (en) Beam shaping of RF feed energy for reflector-based antennas
EP1804333B1 (en) Low profile antenna system and associated methods
US20080048922A1 (en) Integrated waveguide antenna array
CN101313435A (zh) 频率扫描天线
US20230147256A1 (en) Radar sensor, motor vehicle, and method for operating a radar sensor
US20020118140A1 (en) Antenna system
KR102439526B1 (ko) 능동위상배열 안테나와 수동형 반사판 안테나의 동시 구현을 위한 이중대역 하이브리드형 안테나
JP3468044B2 (ja) 平面アンテナ
CN109669174A (zh) 一种雷达天线系统
US7271778B1 (en) Antenna device and radar device using the same
JP2002198727A (ja) アンテナ装置
KR100240894B1 (ko) 여할제곱형 피아식별 안테나
KR100579129B1 (ko) 성형 반사판을 이용한 오프셋 하이브리드 안테나
JP4579951B2 (ja) 反射鏡アンテナ
JP2015190810A (ja) レーダ装置およびレーダ方法
WO2006075437A1 (ja) アンテナ装置,無線通信装置及びレーダ装置
JP2626839B2 (ja) 車載レーダ装置
TWI828161B (zh) 多波束天線模組
JP2003204218A (ja) アンテナ装置
JP3056309B2 (ja) マルチビームアレーアンテナ
JP2001281325A (ja) レーダ装置用アンテナ
JPH0512668B2 (ja)
JP3034262B2 (ja) 開口面アンテナ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513673

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11583024

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050008762

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11583024

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005000876

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000876

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607