[go: up one dir, main page]

WO2005106085A1 - Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres - Google Patents

Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres Download PDF

Info

Publication number
WO2005106085A1
WO2005106085A1 PCT/US2005/013908 US2005013908W WO2005106085A1 WO 2005106085 A1 WO2005106085 A1 WO 2005106085A1 US 2005013908 W US2005013908 W US 2005013908W WO 2005106085 A1 WO2005106085 A1 WO 2005106085A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
plate
fluid
nozzle
cellulose
Prior art date
Application number
PCT/US2005/013908
Other languages
English (en)
Inventor
Rongguo Zhao
Original Assignee
Biax Fiberfilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biax Fiberfilm Corporation filed Critical Biax Fiberfilm Corporation
Publication of WO2005106085A1 publication Critical patent/WO2005106085A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing

Definitions

  • This invention relates to an apparatus for performing a process for making fibrous cellulosic products from a cellulose solution and the products made thereby.
  • the apparatus has a plurality of spinning nozzles to form cellulosic filaments and a plurality of hydro jet nozzles to treat the filaments, by means of which different fibrous products can be made.
  • Cellulosic fibers are man-made fibers regenerated from a proper cellulose solution (dope) with different techniques.
  • lyocell fiber is one of the regenerated, man-made cellulose fibers. It is traditionally made by a dry-jet-wet- spinning process, where the cellulose solution of a solvent, such as N-methyl morpholine N-oxide (NMMO), is extruded through a spinnerette to form filaments. These filaments travel a short distance in air (the dry-jet), and then proceed into a coagulation bath for regeneration. An appropriate mechanical pulling force is applied to the regenerated fibers to attenuate the fiber in the "dry-jet" section.
  • NMMO N-methyl morpholine N-oxide
  • Regenerated fibers then go through a series of washing/finishing baths and drying units to form final products in the form of continuous filaments or short fibers.
  • U.S. Patent No. 6,306,334 teaches a process using spinning orifices having much larger cross-sections compared with the above referenced technologies, enabling a higher dope throughput per orifice to minimize any tendency toward orifice plugging problems.
  • examples in that patent describe a single-orifice melt blown die with air delivered from both sides of the die through parallel slots at an angle of 30 degree, it fails to teach more details of a die with multiple orifices, such as, how the orifices are arranged, and how the air is applied to extruded filaments.
  • the apparatus includes a first nozzle plate with a first set of nozzles arranged in at least one row passing through and projecting from the first nozzle plate. Together with the first nozzle plate, a polymer plate defines a solution chamber therebetween. A polymer solution is fed from the solution chamber through the first set of nozzles.
  • a second nozzle plate has a second set of nozzles passing therethrough and projecting therefrom, arranged in at least one row and adjacent to a set of holes defined by the second nozzle plate that allows the first set of nozzles to pass through the second plate.
  • the first nozzle plate and the second nozzle plate define a fluid chamber from which a fluid is fed to the second set of nozzles.
  • a third plate defines three sets of holes, the first set of holes for the first set of nozzles to pass through, the second set of holes for the second set of nozzles to pass through, and the third set of holes for a gaseous fluid to pass through.
  • a second fluid chamber is defined by the second nozzle plate and the third plate. From this second fluid chamber, a second fluid is fed to the third set of holes of the third plate.
  • a fourth plate defines a first set of holes and a second set of holes, wherein the first set of holes receives the first set of nozzles and permits a gaseous fluid to pass therethrough.
  • the second set of holes receives the second set of nozzles and permits the gaseous fluid to pass therethrough.
  • a gaseous fluid chamber is defined between the third and fourth plates from which the gaseous fluid is fed to the first and second sets of holes of the fourth plate.
  • FIG. 1 is a schematic view of an apparatus constructed according to a preferred embodiment of this invention with multiple rows of spinning nozzles, with concentric air jets, and multiple rows of hydro jet nozzles.
  • FIG. 2 is a schematic plan view of part of a first plate, of spinning nozzle openings, for use as a part of the apparatus shown in FIG. 1. ,
  • FIG. 3 is a schematic plan view of part of a second plate, of hydro-jet nozzles, for use as a part of the apparatus shown in FIG. 1.
  • FIG. 4 is a schematic plan view of a third plate, for distributing gaseous fluid, for use as a part of the apparatus shown in FIG. 1.
  • FIG. 5 is a schematic plan view of a part of a fourth plate, having the spinnerette nozzles and gaseous fluid holes for use as a part of the apparatus shown in FIG. 1.
  • FIG. 6a is a schematic plan view of a part of the fourth plate according to an alternative embodiment, having the spinnerette nozzles and gaseous fluid holes, showing another pattern of the nozzles and gaseous fluid holes.
  • FIG. 6b is a schematic plan view of a part of the fourth plate according to another alternative embodiment, having the spinnerette nozzles and gaseous fluid holes, showing yet another pattern of the nozzles and gaseous fluid holes.
  • the present invention relates to an apparatus and a process for making fibrous cellulosic products from a cellulose solution.
  • the apparatus has a plurality of spinning nozzles to form cellulosic filaments and a plurality of hydro jet nozzles to treat the filaments.
  • cellulose or any form of that term, as used herein, should be understood to include either cellulose from natural resources or a synthetic polymer blend with cellulose.
  • solvent refers to NMMO, dilute caustic soda, phosphoric acid, mixture of liquid ammonia/ammonia thiocynate and others.
  • non-solvent refers to water, alcohol (C n H 2n+ ⁇ OH, n ⁇ 10), and/or a water/alcohol mixture.
  • hydro jets should be understood as jets of solvent(s) of cellulose, non-solvents of cellulose, or mixtures of those two types of compounds.
  • the hydro-jet nozzles are positioned alongside the spinning nozzles and generally parallel to the filament streams.
  • the hydro-jets serve at least three functions, drawing the filaments, coagulating (fully or partially) the filaments, and hydro-entangling the filaments to form fibrous products.
  • the cellulose solution is extruded out through each spinning nozzle at a suitable temperature (ranging from 80 to 140°C) and an appropriate throughput.
  • the extruded filaments are attenuated quickly by high velocity hot air jets from a few hundred micrometers in diameter to a few micrometers in diameter within a short distance from the nozzle exits, to become microfibers.
  • These microfibers are further drawn, coagulated (or partially coagulated), and entangled by the hydro jets, and collected on the surface of a collector.
  • the final cellulose microfibers have an average fiber diameter ranging from 1 micrometer to 20 micrometers with a relatively broad fiber diameter distribution.
  • Spinning nozzles have an inside diameter in the range of 0.005-0.050 inch with a length/diameter (L/D) ratio in the range of 10-300.
  • L/D length/diameter
  • the resultant cellulose fibers are free of "shot", a defect in the form of a glob of polymer which is significantly large than the fiber. Fibers produced by the method of this invention sometimes possess desirable crimps.
  • the apparatus and process of the present invention are suitable to various cellulose solutions and other polymer solutions.
  • the solvent includes NMMO, dilute caustic soda, phosphoric acid, mixture of liquid ammonia/ammonia thiocynate and other compounds known to persons of ordinary skill in the art.
  • a polymer plate 2 and a first nozzle plate 8 are formed so that, when they are assembled together, a polymer chamber 3 is defined therebetween, that is, first nozzle plate 8 and polymer plate 2 are in sealed engagement together around their perimeter to form polymer chamber 3.
  • the polymer chamber 3 is formed mostly by means of a recess in polymer plate 2, the chamber could also be formed by a suitable recess in first nozzle plate 8, or by a combination of recesses in both plates.
  • First nozzle plate 8 and a second nozzle plate 13 are formed so that, when they are assembled together, a fluid chamber 6 is defined therebetween, that is, first nozzle plate 8 and second nozzle plate 13 are in sealed engagement together around their perimeters.
  • the fluid chamber 6 is formed mostly by means of a recess in first nozzle plate 8
  • the chamber could also be formed by a suitable recess in second nozzle plate 13, or by a combination of an amount of recessed space in both plates.
  • Second nozzle plate 13 and a third plate 16 are formed so that, when they are assembled together, a gaseous fluid chamber 14 is defined therebetween, that is, second nozzle plate 13 and a third plate 16 are in sealed engagement together around their perimeters.
  • the fluid chamber 14 is formed mostly by means of a recess in second nozzle plate 13, the chamber could also be formed by a suitable recess in third plate 16, or by a combination of recesses in both plates.
  • the third plate 16 and fourth plate 18 are formed so that, when they are assembled together, a gaseous fluid distribution chamber 21 is defined therebetween, that is, third plate 16 and fourth plate 18 is in sealed engagement together around their perimeters.
  • the fluid distribution chamber 21 is formed mostly by means of a recess in third plate 16, the chamber could also be formed by a suitable recess in fourth plate 18, or by a combination of recesses in both plates.
  • the invention includes a device or devices 40 for maintaining all of these the plates in assembly and alignment.
  • FIGS. 2 through 5 show the upstream surfaces of first nozzle plate 8, second nozzle plate 13, third plate 16, and fourth plate 18 respectively.
  • first nozzle plate 8 (FIGS. 1 and 2) has passing therethrough and sealed therein a multiplicity of first nozzles 5 arranged in a substantially uniform distribution on the plate 8.
  • a polymer solution stream 1 enters polymer chamber 3 under pressure and passes into nozzles 5 through nozzle entrances 28 and exits nozzles 5 as extrudate 23.
  • Second nozzle plate 13 (FIGS. 1 and 3) has passing therethrough and sealed therein a multiplicity of second nozzles 15, also arranged in a substantially uniform distribution. First nozzles 5 also pass through and are sealed into second nozzle plate
  • nozzles 5 and nozzles 15 are located and spaced substantially equidistant from each other.
  • a solution A enters fluid chamber 6 through an inlet 10 under pressure and enters nozzles 15 through nozzle openings 29. Solution A exits nozzles 15 as hydro jet 25.
  • Nozzles 5 and nozzles 15 also pass through, and are sealed in, third plate 16.
  • Third plate 16 further includes a first set of holes 28b and a second set of holes 29a (FIG. 4).
  • a gaseous fluid B enters gaseous fluid chamber 14 through inlet 12 under pressure and passes through distribution holes 17 formed for that purpose in third plate 16, and into distribution chamber 21.
  • Fourth plate 18 has jet ports 20 and 20a passing therethrough. Jet ports 20a and 20 have diameters greater than the outside diameter of nozzles 5 and 15, respectively, and nozzles 5 and 15 pass through jet ports 20a and 20 and can project beyond plate 18, as shown at FIG. 1. Nozzles 5 and 15 can also be flush with plate 18, or be slightly recessed therein.
  • Nozzles 5 and 15 must at least extend into the jet ports 20 and 20a.
  • Gaseous fluid B enters distribution chamber 21 from gaseous fluid chamber 14, as described above, and exits distribution chamber 21 through jet ports 20 and 20a to form gaseous jets 22, which surround nozzles 5 and 15.
  • the above described apparatus is well suited to forming fibers wherein the process requires the extruding of a polymeric liquid through a set of nozzles, in association with the extruding of a second liquid through a second set of nozzles and introducing the extrudate from one or both of the nozzles into a gaseous jet.
  • FIGS. 5, 6a, and 6b alternative configurations of fourth plate 18 are shown.
  • the extrudates are collected on a moving collector 27 (FIG. 1).
  • the direction of travel of the moving collector is shown by arrow 41.
  • the nozzles 5 and nozzles 15 are arranged alternatively in each column, that is, the first with solution and other with the non-solvent, respectively.
  • the nozzles in one column in the direction 41 of the collector 27 are in the pattern of 5, 15, 5, 15, 5 and the nozzles in the adjacent column are in the pattern of 15, 5, 15, 5, 15.
  • one column contains only nozzles 5 and each adjacent column contains only nozzles 15.
  • each column contains the same type of nozzles, and the columns alternate the types of nozzles.
  • the nozzles 5 and nozzles 15 are arranged alternatively in each column.
  • the extrudates from all of the nozzles 5 and 15 have jet ports 20a, and are therefore provided with gaseous jets 22 (FIG. 1).
  • the extrudates of nozzle 5 have jet ports 20a, and will therefore be attenuated by gaseous jets 22 (FIG. 1).
  • Gaseous fluid B is heated, and passes through the gaseous jets 22 at a high velocity, up to supersonic levels depending on the spinnerette geometry and the processing conditions.
  • the gaseous jets 22 escaping the openings 20a at high velocity attenuate the extrudate cellulose solution 23 from the nozzles 5 to form fine fibers 24.
  • the nozzles 5 and nozzles 15, made of high quality stainless steel have a length ranging from 0.5" to 3", and inside diameter (ID.) ranging from 0.005" to 0.050".
  • ID. inside diameter
  • nozzles 5 and nozzles 15 have a length from 1" to 2" and an I.D ranging from 0.009" to 0.020".
  • the spacing of the nozzles is between 0.025" to 1.0", and preferably between 0.030" to 0.2".
  • the length of the nozzle projecting beyond the fourth plate 18 is between -0.005" to 1", and preferably, between -0.005" to 0.300".
  • the fine fibers 24 interact with gas jets 22 and hydro-jets 25, and become further attenuated, entangled and coagulated. Fine fibers 24 are then deposited onto a perforated moving collector 27 to form a fibrous product 26, which require further treatments, such as regenerating, washing, finishing, drying, and/or other treatments.
  • the surface of the collector 27 is located a distance from the end of nozzles 5 ranging from 3 inches to 100 inches. Depending on this die-to-collector distance (DCD), the pattern of the surface of collector 27, the collector type, and other factors, the cellulosic fibrous products can be in the forms of filament, yarn, fabric, web, tube, cartridge, and other 3-dimensional products.
  • FIGS. 1 through 5 The above disclosures of the apparatus of this invention teach an apparatus that is configured to extrude an extrudate from multiple rows of nozzles to form a fiber product.
  • the configuration disclosed in FIGS. 1 through 5 is particularly useful in a process of forming cellulosic fibers wherein nozzles 15 extend beyond plate 18 further than nozzles 5.
  • Extrudate from nozzles 5 is accelerated and attenuated by gaseous jets 22 to form fine cellulosic fibers 24.
  • Non-solvent from nozzles 15 may be accelerated by gaseous jets 22 and contacts fibers 24 where it further attenuates fibers 24 and coagulates and entangles the fibers to form a fibrous product 26 as it is collected on collector 27.
  • a cellulose solution is extruded through a first multiplicity of uniformly spaced apart nozzles and upon exiting the nozzles is accelerated and attenuated by high velocity gaseous jets to form fine cellulosic fibers.
  • a coagulating solution is forced through a second multiplicity of nozzles uniformly spaced apart from each other and uniformly spaced apart from and generally parallel to the first multiplicity of nozzles and form high velocity jets so that the coagulating solution impinges upon the fine cellulosic fibers further attenuating them and causing them to coagulate, and entangle to form a product of cellulosic fibers that is collected on a moving collector and further processed for specific properties and specific applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

L'invention concerne un procédé et un appareil pour former des bandes non tissées cellulosiques microfibres à partir d'une solution cellulosique. Une solution cellulosique est extrudée par le biais d'une première pluralité de buses (5) uniformément distantes les unes des autres et, dès la sortie des buses, accélérée et atténuée par des jets gazeux à grande vitesse de manière à former de fines fibres cellulosiques. Une solution de coagulation (29) est forcée à travers une seconde pluralité de buses (15) uniformément distantes les unes des autres et uniformément distantes de la première pluralité de buses et d'ordinaire parallèles à celles-ci, qui forment des jets à grande vitesse de façon que la solution de coagulation se précipite sur les fines fibres cellulosiques, les atténuant encore, provoquant leur coagulation et les amenant à s'entremêler pour former un produit de fibres cellulosiques recueilli sur un collecteur mobile (27), puis traité en fonction de propriétés et d'applications spécifiques.
PCT/US2005/013908 2004-04-26 2005-04-22 Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres WO2005106085A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56489004P 2004-04-26 2004-04-26
US60/564,890 2004-04-26

Publications (1)

Publication Number Publication Date
WO2005106085A1 true WO2005106085A1 (fr) 2005-11-10

Family

ID=35241697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/013908 WO2005106085A1 (fr) 2004-04-26 2005-04-22 Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres

Country Status (1)

Country Link
WO (1) WO2005106085A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010940A2 (fr) * 2007-07-17 2009-01-22 The Procter & Gamble Company Procédé de réalisation de structures fibreuses
EP2108719A1 (fr) * 2008-04-11 2009-10-14 Douglas B. Brown Un appareil, procédé et réseau de buses por extruder des fibres de cellulose
US7972986B2 (en) 2007-07-17 2011-07-05 The Procter & Gamble Company Fibrous structures and methods for making same
US8029260B2 (en) 2008-04-11 2011-10-04 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Apparatus for extruding cellulose fibers
US8029259B2 (en) 2008-04-11 2011-10-04 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Array of nozzles for extruding multiple cellulose fibers
US8282877B2 (en) 2006-04-28 2012-10-09 Lenzing Aktiengesellschaft Process of making a hydroentangled product from cellulose fibers
US8303888B2 (en) 2008-04-11 2012-11-06 Reifenhauser Gmbh & Co. Kg Process of forming a non-woven cellulose web and a web produced by said process
US8921244B2 (en) 2005-08-22 2014-12-30 The Procter & Gamble Company Hydroxyl polymer fiber fibrous structures and processes for making same
WO2015116766A1 (fr) 2014-01-29 2015-08-06 Biax-Fiberfilm Bande de non-tissé à gonflant élevé, présentant une excellente recouvrance
US9334592B2 (en) 2007-11-07 2016-05-10 Lenzing Aktiengesellschaft Process for the production of a hydroentangled product comprising cellulose fibers
US9458573B2 (en) 2009-11-02 2016-10-04 The Procter & Gamble Company Fibrous structures and methods for making same
EP3144376A1 (fr) 2015-09-16 2017-03-22 Lenzing Aktiengesellschaft Utilisation d'une fibre lyocell
US9631321B2 (en) 2010-03-31 2017-04-25 The Procter & Gamble Company Absorptive fibrous structures
WO2018071928A1 (fr) 2016-10-21 2018-04-26 Lenzing Ag Procédé et dispositif de formation de bandes cellulosiques directement formées
US10024000B2 (en) 2007-07-17 2018-07-17 The Procter & Gamble Company Fibrous structures and methods for making same
WO2018136895A1 (fr) 2017-01-23 2018-07-26 Biax-Fiberfilm Corporation Toile de non tissé à gonflant élevé présentant une excellente reprise d'épaisseur
EP3385428A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec des fibres ayant une section transversale non circulaire
EP3385432A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant une très faible teneur en métaux lourds
EP3385431A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant des fibres fusionnées de façon homogène
EP3385426A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant une plus grande capacité de rétention d'eau et un faible poids de base
EP3385427A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec répartition de diamètres de fibres
EP3385425A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé présentant une meilleure capacité d'absorption d'huile
EP3385433A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec capacité de drainage de liquide sur mesure
EP3385435A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant différents ensembles de pores
EP3385434A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec des fibres fusionnées
EP3385430A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé humide optiquement transparent
EP3385429A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant des particules de diffusion de rayonnement connectés aux fibres
WO2018184051A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Matériau non tissé conçu pour être utilisé dans des structures de cœurs absorbants ayant des capacités d'acquisition/distribution intrinsèques
WO2018184045A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Bande non tissée conçue pour être utilisée en tant que milieu filtrant d'huile de cuisson à chaud
WO2018184046A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Matériau non tissé conçu pour être utilisé en tant que milieu filtrant
EP3604652A1 (fr) 2018-07-31 2020-02-05 Lenzing Aktiengesellschaft Non-tissé, utilisation du non-tissé et chiffon, toile de séchage ainsi que masque pour le visage comportant du non-tissé
US10895022B2 (en) 2009-11-02 2021-01-19 The Procter & Gamble Company Fibrous elements and fibrous structures employing same
US11414798B2 (en) 2007-07-17 2022-08-16 The Procter & Gamble Company Fibrous structures
US11932969B2 (en) 2008-01-11 2024-03-19 Lenzing Aktiengesellschaft Microfiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
US6153544A (en) * 1995-12-20 2000-11-28 Kimberly-Clark Worldwide, Inc. Flame inhibitor composition and method of application
US6511930B1 (en) * 1996-08-23 2003-01-28 Weyerhaeuser Company Lyocell fibers having variability and process for making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
US6153544A (en) * 1995-12-20 2000-11-28 Kimberly-Clark Worldwide, Inc. Flame inhibitor composition and method of application
US6511930B1 (en) * 1996-08-23 2003-01-28 Weyerhaeuser Company Lyocell fibers having variability and process for making

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921244B2 (en) 2005-08-22 2014-12-30 The Procter & Gamble Company Hydroxyl polymer fiber fibrous structures and processes for making same
US8282877B2 (en) 2006-04-28 2012-10-09 Lenzing Aktiengesellschaft Process of making a hydroentangled product from cellulose fibers
EP2957667A1 (fr) 2006-04-28 2015-12-23 Lenzing Aktiengesellschaft Produit hydrolié comprenant des fibres de cellulose
AT503625B1 (de) * 2006-04-28 2013-10-15 Chemiefaser Lenzing Ag Wasserstrahlverfestigtes produkt enthaltend cellulosische fasern
US11639581B2 (en) 2007-07-17 2023-05-02 The Procter & Gamble Company Fibrous structures and methods for making same
US11414798B2 (en) 2007-07-17 2022-08-16 The Procter & Gamble Company Fibrous structures
US10513801B2 (en) 2007-07-17 2019-12-24 The Procter & Gamble Company Process for making fibrous structures
US10858785B2 (en) 2007-07-17 2020-12-08 The Procter & Gamble Company Fibrous structures and methods for making same
US7972986B2 (en) 2007-07-17 2011-07-05 The Procter & Gamble Company Fibrous structures and methods for making same
US8852474B2 (en) 2007-07-17 2014-10-07 The Procter & Gamble Company Process for making fibrous structures
WO2009010940A2 (fr) * 2007-07-17 2009-01-22 The Procter & Gamble Company Procédé de réalisation de structures fibreuses
US11326276B2 (en) 2007-07-17 2022-05-10 The Procter & Gamble Company Process for making fibrous structures
WO2009010940A3 (fr) * 2007-07-17 2009-03-12 Procter & Gamble Procédé de réalisation de structures fibreuses
US11346056B2 (en) 2007-07-17 2022-05-31 The Procter & Gamble Company Fibrous structures and methods for making same
US11959225B2 (en) 2007-07-17 2024-04-16 The Procter & Gamble Company Fibrous structures and methods for making same
US12258684B2 (en) 2007-07-17 2025-03-25 The Procter & Gamble Company Process for making fibrous structures
US10024000B2 (en) 2007-07-17 2018-07-17 The Procter & Gamble Company Fibrous structures and methods for making same
US9926648B2 (en) 2007-07-17 2018-03-27 The Procter & Gamble Company Process for making fibrous structures
US9334592B2 (en) 2007-11-07 2016-05-10 Lenzing Aktiengesellschaft Process for the production of a hydroentangled product comprising cellulose fibers
US11932969B2 (en) 2008-01-11 2024-03-19 Lenzing Aktiengesellschaft Microfiber
US8029260B2 (en) 2008-04-11 2011-10-04 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Apparatus for extruding cellulose fibers
US8303888B2 (en) 2008-04-11 2012-11-06 Reifenhauser Gmbh & Co. Kg Process of forming a non-woven cellulose web and a web produced by said process
EP2108719A1 (fr) * 2008-04-11 2009-10-14 Douglas B. Brown Un appareil, procédé et réseau de buses por extruder des fibres de cellulose
US8029259B2 (en) 2008-04-11 2011-10-04 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Array of nozzles for extruding multiple cellulose fibers
US10895022B2 (en) 2009-11-02 2021-01-19 The Procter & Gamble Company Fibrous elements and fibrous structures employing same
US9714484B2 (en) 2009-11-02 2017-07-25 The Procter & Gamble Company Fibrous structures and methods for making same
US11618977B2 (en) 2009-11-02 2023-04-04 The Procter & Gamble Company Fibrous elements and fibrous structures employing same
US9458573B2 (en) 2009-11-02 2016-10-04 The Procter & Gamble Company Fibrous structures and methods for making same
US11680373B2 (en) 2010-03-31 2023-06-20 The Procter & Gamble Company Container for fibrous wipes
US10240297B2 (en) 2010-03-31 2019-03-26 The Procter & Gamble Company Fibrous structures and methods for making same
US9631321B2 (en) 2010-03-31 2017-04-25 The Procter & Gamble Company Absorptive fibrous structures
US10697127B2 (en) 2010-03-31 2020-06-30 The Procter & Gamble Company Fibrous structures and methods for making same
WO2015116766A1 (fr) 2014-01-29 2015-08-06 Biax-Fiberfilm Bande de non-tissé à gonflant élevé, présentant une excellente recouvrance
WO2017046044A1 (fr) 2015-09-16 2017-03-23 Lenzing Aktiengesellschaft Utilisation d'une fibre lyocell
EP3144376A1 (fr) 2015-09-16 2017-03-22 Lenzing Aktiengesellschaft Utilisation d'une fibre lyocell
WO2018071928A1 (fr) 2016-10-21 2018-04-26 Lenzing Ag Procédé et dispositif de formation de bandes cellulosiques directement formées
US11371173B2 (en) 2016-10-21 2022-06-28 Lenzing Ag Process and device for the formation of directly-formed cellulosic webs
WO2018136895A1 (fr) 2017-01-23 2018-07-26 Biax-Fiberfilm Corporation Toile de non tissé à gonflant élevé présentant une excellente reprise d'épaisseur
WO2018184051A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Matériau non tissé conçu pour être utilisé dans des structures de cœurs absorbants ayant des capacités d'acquisition/distribution intrinsèques
WO2018184932A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu en fibres de cellulose non tissées à capacité de capillarité de liquide adaptée
WO2018184938A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu en fibres de cellulose non tissées comprenant des fibres fusionnées de manière homogène
WO2018184930A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu non tissé de fibres de cellulose ayant une capacité de rétention d'eau accrue et un faible grammage
WO2018184926A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissées avec des particules de diffusion de rayonnement connectées par des fibres
WO2018184924A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissées à fibres à section transversale non circulaire
WO2018184046A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Matériau non tissé conçu pour être utilisé en tant que milieu filtrant
WO2018184927A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu non tissé en fibre de cellulose ayant une teneur en métaux lourds extrêmement faible
WO2018184925A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu en fibres de cellulose non tissées ayant une capacité d'absorption d'huile accrue
WO2018184922A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissées avec différents ensembles de pores
WO2018184045A1 (fr) 2017-04-03 2018-10-11 Lenzing Ag Bande non tissée conçue pour être utilisée en tant que milieu filtrant d'huile de cuisson à chaud
WO2018184929A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu en fibres de cellulose non tissées humide optiquement transparent
EP3385428A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec des fibres ayant une section transversale non circulaire
EP3385432A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant une très faible teneur en métaux lourds
JP2020513072A (ja) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト 繊維径分布を有する不織セルロース繊維布帛
WO2018184937A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu de fibres cellulosiques non tissées à distribution de diamètre de fibres
WO2018184941A1 (fr) 2017-04-03 2018-10-11 Lenzing Aktiengesellschaft Tissu de fibres non tissées de cellulose contenant des fibres fusionnées
EP3385429A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant des particules de diffusion de rayonnement connectés aux fibres
EP3385430A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé humide optiquement transparent
US11326283B2 (en) 2017-04-03 2022-05-10 Lenzing Aktiengesellschaft Nonwoven cellulose fiber fabric with homogeneously merged fibers
EP3385434A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec des fibres fusionnées
EP3385435A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant différents ensembles de pores
EP3385433A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec capacité de drainage de liquide sur mesure
TWI788337B (zh) * 2017-04-03 2023-01-01 奧地利商蘭仁股份有限公司 非織纖維素纖維織物,製造彼之方法和裝置,使用彼之方法,及包含彼之產品
EP3385425A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé présentant une meilleure capacité d'absorption d'huile
EP3385427A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé avec répartition de diamètres de fibres
EP3385426A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant une plus grande capacité de rétention d'eau et un faible poids de base
EP3385431A1 (fr) 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Tissu de fibres de cellulose non tissé ayant des fibres fusionnées de façon homogène
WO2020025440A1 (fr) 2018-07-31 2020-02-06 Lenzing Aktiengesellschaft Non-tissé, utilisation du non-tissé et lingette, torchon ou masque facial contenant le non-tissé
EP3604652A1 (fr) 2018-07-31 2020-02-05 Lenzing Aktiengesellschaft Non-tissé, utilisation du non-tissé et chiffon, toile de séchage ainsi que masque pour le visage comportant du non-tissé

Similar Documents

Publication Publication Date Title
WO2005106085A1 (fr) Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres
US20050056956A1 (en) Process for forming micro-fiber cellulosic nonwoven webs from a cellulose solution by melt blown technology and the products made thereby
US8029259B2 (en) Array of nozzles for extruding multiple cellulose fibers
US8303888B2 (en) Process of forming a non-woven cellulose web and a web produced by said process
KR100987743B1 (ko) 셀룰로스 필라멘트로 된 스펀본드 파브릭의 제조 방법 및장치
US20090256277A1 (en) Apparatus for extruding cellulose fibers
EP1896635B1 (fr) Procede pour la production de non-tisses
US3528129A (en) Apparatus for producing nonwoven fleeces
US20020160186A1 (en) Meltblown process with mechanical attenuation
US20080023873A1 (en) Process for Preparing a Non-Woven Cellulosic Structure and the Non-Woven Cellulosic Structure Prepared Therefrom
JP2019532194A (ja) 直接形成されるセルロース系ウェブを形成するための方法および装置
KR100431679B1 (ko) 고강도 아라미드 섬유의 제조 방법
US20040209078A1 (en) Unbleached pulp for lyocell products
KR100492069B1 (ko) 인장 응력 없이 연속 성형물을 이송하기 위한 방법 및장치
US20040207110A1 (en) Shaped article from unbleached pulp and the process
US6790527B1 (en) Lyocell fiber from unbleached pulp
EP4116469A1 (fr) Procédé de filage de cellulose alcaline
US20040206463A1 (en) Method of making a modified unbleached pulp for lyocell products
EP2108719B1 (fr) Un appareil, procédé et réseau de buses pour extruder des fibres de cellulose
JP4593865B2 (ja) 機械的細化を用いたメルトブロー法
DE102004007617A1 (de) Verfahren zur Herstellung von Vliesstoffen, Vliesstoffe und deren Verwendung
KR20130077493A (ko) 라이오셀 섬유용 방사 냉각 장치 및 이를 이용한 라이오셀 섬유의 제조 방법
GB1087212A (en) A method for manufacturing fibrous and microfibrous products
US20240309558A1 (en) Processing for spinning alkaline cellulose spin dope
EP1716278A1 (fr) Procede de production de non-tisses, non-tisse correspondant et son utilisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase