WO2005102934A2 - Water treatment plant and thermal evaporation system - Google Patents
Water treatment plant and thermal evaporation system Download PDFInfo
- Publication number
- WO2005102934A2 WO2005102934A2 PCT/DE2005/000735 DE2005000735W WO2005102934A2 WO 2005102934 A2 WO2005102934 A2 WO 2005102934A2 DE 2005000735 W DE2005000735 W DE 2005000735W WO 2005102934 A2 WO2005102934 A2 WO 2005102934A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- container
- conical
- torus
- evaporation system
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/42—Regulation; Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/30—Accessories for evaporators ; Constructional details thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
- B01D5/0066—Dome shaped condensation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the invention relates to a thermal evaporation plant (TVS) for the treatment of drinking water from sea, brackish or waste water and / or for the desalination of sea water.
- TVS thermal evaporation plant
- Known methods for desalination 'of Meerwas he are, ..' as osmosis and Umledgeösmose, based on the principle of filtering sea water over synthetic membranes, it is the pressed medium to be treated .by the 'pores of the membranes.
- the pressures required for this are up to. to 60 bar, the corresponding energy expenditure for this is therefore very large.
- Primary energy comes from regenerative forms of energy in thermal form from solar radiation, in electrical form from wind turbines and in geothermal form through the use of high ground temperatures
- Fossil energy sources in the form of gas, oil, coal, but also wood and / or other carbon-containing organic fuels can also be used.
- Control can be completely regenerative via z.
- a system according to the invention exists. a. from a torus (14) which is insulated from the outer jacket by a PU layer (6). About this
- Torus (14) is a double-walled container, which at various points on the circumference via an external ring
- Supply line (10) which has a central connection, is fed with raw water or dirty water, with guide plates on the inside of the upper conical container cover (1)
- Pipes are attached to the water flow in a certain
- the conical upper container end (1) is double-walled and thus has a second outer wall.
- Filling container (5) feeds the process area when not in use
- the process water is supplied through a large-volume filling tank (5), which is ventilated at the upper end and is connected to the process chamber at the lower end via a small pipe cross-section in order to keep the thermal load on the level sensors low and to enable replacement, maintenance and repair and to facilitate and to shift all process-relevant components from the inside to the outside.
- the condensate obtained is passed in an outgassing container (2) over large checker plates to largely volatile chemicals such as. B. to degas chlorine from the water obtained.
- a check valve establishes a connection to the outside in the event of negative pressure (e.g. when the heater is switched off) to ensure pressure equalization.
- a special heat exchanger which has a cylindrical, hollow base body in which pipes run from the end face to the end face through which pipes pass the process medium can circulate in order to be able to absorb thermal energy.
- the supply of hot heat transfer water takes place at several points at the beginning and the water discharge at the central point in the center of rotation of the cylindrical heat exchanger in order to ensure an even temperature distribution and an even heat emission to the process water.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
Wasseraufbereitungsanlage Thermisches Ve-rdύnstungsSystem Water treatment plant Thermal expansion system
Die Erfindung betrifft eine Thermische-Verdunstungs-Anlage (TVS) zur Trinkwasseraufbereitung aus Meer-, Brack-, oder Abwasser und/oder zur Entsalzung von Meerwasser. Bekannte Verfahren, zur Entsalzung' von Meerwas er sind z..' B. Osmose und Umkehrösmose, basierend auf dem Prinzip des Filtrierens von Meerwasser über synthetische Membranen, dabei wird das zu behandelnde Medium .durch die ' Poren der Membranen gepreßt. Die hierzu erforderlichen Drücke liegen bei bis . zu 60 bar, der entsprechende Energieaufwand hierfür' ist also sehr groß. Auch dürfen bei Betrachtung unter den Aspekten Wirtschaf lichkeit und. Umweltyerträglichkeit der zur Herstellung solcher Membranen notwendige Rohstoff- und Energieaufwand und die bei der Fertigung anfallenden umweltbelastenden Abfallstoffe nicht außer Acht . gelassen . werden.-..' Bei der thermischen Meerwasserentsalzung und Aufbereitung von Brack- oder Abwässern wird dem zu behandelnden Medium Energie in thermischer Form zugeführt. Hierbei geht das Medium vom flüssigen, über den siedenden in den' gasförmigen Aggregatzustand über. Erfolgt', der • Übergang vo flüssigen. in den gasförmigen Aggregatzustand bei .Temperaturen unterhalb des Siedepunktes, so spricht man von Verdunsten, wobei beim Verdunsten wesentlich' geringere . Mengen . pro Zeiteinheit in den gasförmigen Zustand . übergehen'. als beim Verdampfen. .Während das Verdunsten, an der 'Oberfläche' des Mediums stattfindet, erfolgt das Verdampfen durch Gasbildung im Inneren der Flüssigkeit. Hieraus ist. ersichtlich, daß zum Verdunsten große Oberflächen notwendig sind. Wird ein belastetes Medium so zum Verdampfen gebracht, entstehtThe invention relates to a thermal evaporation plant (TVS) for the treatment of drinking water from sea, brackish or waste water and / or for the desalination of sea water. Known methods for desalination 'of Meerwas he are, ..' as osmosis and Umkehrösmose, based on the principle of filtering sea water over synthetic membranes, it is the pressed medium to be treated .by the 'pores of the membranes. The pressures required for this are up to. to 60 bar, the corresponding energy expenditure for this is therefore very large. When considering the aspects of economic efficiency and. Do not neglect the environmental compatibility of the raw material and energy required for the manufacture of such membranes and the environmentally harmful waste materials produced during manufacture. calmly . werden.- .. 'In the thermal desalination and purification of brackish water or wastewater is supplied to the medium to be treated in thermal energy mold. Here the medium changes from the liquid to the boiling to the gaseous state. Takes place, the • transition from liquid. in the gaseous state of matter at temperatures below the boiling point, this is called evaporation, whereas evaporation is much less. Amounts . per unit of time in the gaseous state. pass over ' . than when evaporating. While evaporation takes place on the 'surface' of the medium, evaporation takes place through gas formation inside the liquid. From this is. it can be seen that large surfaces are required to evaporate. If a contaminated medium is vaporized in this way, the result is
Wasserdampfv -welcher- als < Kondensat, aufgefangen' werden kann...Water vapor - which can be 'caught' as condensate ...
Entsprechende Vorrichtungen werden Destillen genannt. Das entstehende Destillat ist bei entsprechender Verdampfungsrate reines Wasser ohne Belastungsrückstände wie z. B. Salze oder andere kontaminierende Stoffe. Bei konstantem . Druck stimmen Siede- temperatur und Kondensationstemperatur überein, d. h., daß beim Kondensieren die zum Verdampfen zugeführte Wärme in Form von Kondensationswärme wieder frei wird. Bei einem reinen Destillat sollte daher darauf geachtet werden, daß die • Verdampfung unter . Normaldruck bei maximal Siedetemperatur stattfindet. , Um eine Kontaminierung durch Kohäsion zu verhindern, sollte- ein Sieden der Oberfläche des flüssigen Mediums weitgehend unterbleiben.' Es bieten sich daher Arbeitstemperaturen von ca. 96° bis maximal 98°C an, wobei die erforderliche Energie bei der TVS bei ca. 600 - 700 W/1 kondensierten Wassers liegt. Aus o. g. Gründen der Reinheit des erforderlichen Destillats ist von höheren Temperaturen, theoretisch sind 120°C möglich, im Drucksystem abzuraten.Corresponding devices are called stills. The resulting distillate is pure water with no evaporation residues such as e.g. B. salts or other contaminants. At constant. The pressure coincides with the boiling temperature and the condensation temperature, which means that when condensing, the heat supplied for evaporation is released again in the form of heat of condensation. In the case of a pure distillate, care should therefore be taken that the • evaporation below. Normal pressure takes place at maximum boiling temperature. "To prevent contamination through cohesion, boiling of the surface of the liquid medium should be largely avoided." Working temperatures of approx. 96 ° to a maximum of 98 ° C are therefore suitable, whereby the energy required for the TVS is approx. 600 - 700 W / 1 condensed water. For the above reasons, the purity of the distillate required, higher temperatures, theoretically 120 ° C, are advisable in the printing system.
ERSATZBLATT Als Abfallprodukte, während und nach dem Verdampfungsvorgang, fallenSUBSTITUTE SHEET As waste products, during and after the evaporation process, fall
Wasser als reines Destillat zur weiteren Verwendung und in derWater as pure distillate for further use and in the
Destille abgeschiedene Feststoffe an. Weitere Abfälle und Rückstände sind vom verwendeten Primärenergieträger abhängig, der in thermischeDistill separated solids. Further waste and residues depend on the primary energy source used, which is thermal
Energie umgewandelt, den Verdampfungsprozeß hervorruft. AlsConverted energy that causes evaporation. As
Primärenergie kommen regenerative Energieformen in thermischer Form aus Sonneneinstrahlung, in elektrischer Form aus Windkrafträdern und in geothermer Form durch Ausnutzung hoher Bodentemperaturen inPrimary energy comes from regenerative forms of energy in thermal form from solar radiation, in electrical form from wind turbines and in geothermal form through the use of high ground temperatures
Betracht. Auch fossile Energieträger in Form von Gas, Öl, Kohle, aber auch Holz und/oder andere kohlenstoffhaltigen organischen Brennstoffe können Verwendung finden. Die Eigenstromversorgung von Pumpe undConsideration. Fossil energy sources in the form of gas, oil, coal, but also wood and / or other carbon-containing organic fuels can also be used. The internal power supply of the pump and
Steuerung kann regenerativ vollständig über z. B. Photovoltaik gedeckt werden. Ansonsten kann die Stromversorgung auch über die Netzspannung erfolgen.Control can be completely regenerative via z. B. Photovoltaics are covered. Otherwise, the power supply can also take place via the mains voltage.
Eine erfindungsgemäße Anlage besteht u. a. aus einem Torus (14), der zum Außenmantel durch eine PU-Schicht (6) isoliert ist. Über diesenA system according to the invention exists. a. from a torus (14) which is insulated from the outer jacket by a PU layer (6). About this
Torus (14) befindet sich ein doppelwandiger Behälter, der an verschiedenden Punkten am Umfang über eine außenliegende ringförmigeTorus (14) is a double-walled container, which at various points on the circumference via an external ring
Zuleitung (10) , die einen zentralen Anschluß besitzt, mit Rohwasser bzw. Schmutzwasser gespeist wird, wobei innen an der oberen kegelförmigen Behälterabschlußhaube (1) Leitbleche über denSupply line (10), which has a central connection, is fed with raw water or dirty water, with guide plates on the inside of the upper conical container cover (1)
Zuleitungen angebracht sind, die den Wasserstrom in eine bestimmtePipes are attached to the water flow in a certain
Richtung lenken und zur Mitte hin eine Rotationsbewegung aufzwingen.Steer the direction and force a rotational movement towards the center.
An der Oberseite der kegelförmigen Kondensatorfläche (1) sindAt the top of the conical capacitor surface (1) are
Wärmeleitbleche angebracht, die von unten her nach oben zurHeat conducting plates attached, which from the bottom up to
Kegelspitze hin verlaufen. Der kegelförmige obere Behälterabschluß (1) ist doppelwandig ausgeführt und besitzt somit eine zweite Außenwand.Run the cone tip. The conical upper container end (1) is double-walled and thus has a second outer wall.
Am oberen Ende des kegelförmigen Behälterabschlusses (1) ist eineAt the upper end of the conical container end (1) is one
Rücklaufleitung (9) für das vorgewärmte Kühlwasser angebracht, die zu einem Ventil führt, das bei Bedarf den Wasserstrom über einenReturn line (9) attached to the preheated cooling water, which leads to a valve that, if necessary, the water flow through a
Befullbehalter (5) dem Prozeßbereich zuführt, bei Nichtbedarf dasFilling container (5) feeds the process area when not in use
Kühlwasser über eine Ab asserleitung (8) zurück zur Rohwasserquelle lenkt. Die Prozeßwasserzufuhr erfolgt durch einen am oberen Ende be- und entlüfteten großvolumigen Befullbehalter (5) , der am unteren Ende über einen kleinen Rohrquerschnitt mit dem Prozeßraum verbunden ist, um die thermische Belastung für die Niveausensoren gering zu halten und Austausch, Wartung und Reparatur zu ermöglichen und zu erleichtern und alle prozeßrelevanten Bauteile aus dem Inneren nach außen zu verlagern. Das gewonnene Kondensat wird in einem Ausgasbehälter (2) über großflächige Riffelbleche geleitet, um weitgehend leichtflüchtige Chemikalien wie z. B. Chlor aus dem gewonnenem Wasser ausgasen zu lassen. Ein Rückschlagventil stellt bei Entstehung eines Unterdrucks (z. B. beim Wegschalten der Heizung) eine Verbindung nach außen her, um einen Druckausgleich zu gewährleisten. Beim Einsatz von solarthermischen regenerativen Energieerzeugungstechniken, externen Öl- oder Gasbrennervorrichtungen zum Verbrennen von Biomasse und Müll und/oder Kombinationen dieser Primärenergiequellen kommt ein spezieller Wärmetauscher zur Anwendung, der einen zylinderförmigen, hohlen Grundkörper besitzt, in dem von Stirnfläche zu Stirnfläche Rohre führen, durch die das Prozeßmedium zirkulieren kann, um dabei thermische Energie aufnehmen zu können. Die Zufuhr von heißem Wärmeträgerwasser erfolgt an mehreren Stellen am Unfang und die Wasserabfuhr an der zentralen Stelle im Rotationsmittelpunkt des zylindrischen Wärmetauschers um eine gleichmäßige Temperaturverteilung und eine gleichmäßige Wärmeabgabe an das Prozeßwasser zu gewährleisten.Directing cooling water back to the raw water source via a water pipe (8). The process water is supplied through a large-volume filling tank (5), which is ventilated at the upper end and is connected to the process chamber at the lower end via a small pipe cross-section in order to keep the thermal load on the level sensors low and to enable replacement, maintenance and repair and to facilitate and to shift all process-relevant components from the inside to the outside. The condensate obtained is passed in an outgassing container (2) over large checker plates to largely volatile chemicals such as. B. to degas chlorine from the water obtained. A check valve establishes a connection to the outside in the event of negative pressure (e.g. when the heater is switched off) to ensure pressure equalization. When using solar thermal regenerative energy generation techniques, external oil or gas burner devices for burning biomass and waste and / or combinations of these primary energy sources, a special heat exchanger is used, which has a cylindrical, hollow base body in which pipes run from the end face to the end face through which pipes pass the process medium can circulate in order to be able to absorb thermal energy. The supply of hot heat transfer water takes place at several points at the beginning and the water discharge at the central point in the center of rotation of the cylindrical heat exchanger in order to ensure an even temperature distribution and an even heat emission to the process water.
Werden mehrere Einheiten der oben beschriebenen Anlage zusammengeschaltet, so ermöglicht dies das Wegschalten einer oder mehrerer Einzelanlagen, z. B. zur Wartung oder Reinigung, ohne daß das gesammte System abgeschaltet werden muß. Das sich hieraus ergebende Konzept aus möglichst regenerativ über Kollektoren beheizten thermischen Destillen, Komponentenbauweise, Berücksichtigung der Architektur und Bauplanung in Form von Speicherbecken u. a. ermöglicht nicht nur preiswerte, sondern höchst effektive Meerwasserentsalzungsanlagen. Durch sinnvolle Auswahl der Baukomponenten und entsprechende Konstruktion und Planung ergeben sich nahezu wartungsfreie Anlagen, mit Wartungsintervallen von mehr als 6 Monaten. Je nach Konstruktion sind zu wartende Teile einer solchen Anlage Partikelschutz- bzw. Grobfilter, Funktion der Hauptpumpen, der wesentlichen Anlagenkomponenten, Füllstand der Wärmeträger der Wärmetauschsysteme, Undichtigkeiten und dergleichen mehr. Kostenintensivere Wartungen und Austausch teurer Membranen- sind nicht mehr notwendig. Aus dem dargestelltem Funktionsprinzip ergibt sich somit eine höchst effektive und sichere Anlage zur Meerwasserentsalzung, die entgegen anderen Systemen beliebig und ohne großen Aufwand erweitert werden kann. Auch bei Beschädigung einzelner Komponenten ist ein großer Anlagenkomplex in der Lage, den Betrieb aufrecht zu erhalten. Kondensator Ausgasbehälter Reinwasser Ausgang Kühlwasser Eingang Befullbehalter mit allen Steuerkomponenten PU-Isolierung Abwasser Ausgang Kühlwasser Rücklauf Kühlwasser Ablauf aus Kondensator Ringverteilung Kühlwasser Eingang Kondensator Abgasanbindung Brenner Brennerkammer mit doppelten Abgaswärmetauscher Torus ( Innerer Behälter) If several units of the system described above are interconnected, this enables the disconnection of one or more individual systems, e.g. B. for maintenance or cleaning, without having to switch off the entire system. The resulting concept of thermal stills, component construction, regenerative heating via collectors, taking into account the architecture and construction planning in the form of storage tanks, among other things, not only enables inexpensive, but highly effective seawater desalination plants. A sensible selection of the construction components and the corresponding construction and planning result in almost maintenance-free systems with maintenance intervals of more than 6 months. Depending on the design, parts of such a system to be serviced are particle protection or coarse filters, function of the main pumps, the essential system components, fill level of the heat transfer medium of the heat exchange systems, leaks and the like. More costly maintenance and replacement of expensive membranes are no longer necessary. The functional principle shown results in a highly effective and safe system for seawater desalination, which, in contrast to other systems, can be expanded as required and without great effort. Even if individual components are damaged, a large system complex is able to maintain operation. Condenser outgassing tank clean water outlet cooling water inlet filling tank with all control components PU insulation waste water outlet cooling water return cooling water outlet from condenser ring distribution cooling water inlet condenser flue gas connection burner burner chamber with double exhaust gas heat exchanger torus (inner tank)
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004019661.3 | 2004-04-22 | ||
DE102004019661 | 2004-04-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005102934A2 true WO2005102934A2 (en) | 2005-11-03 |
WO2005102934A3 WO2005102934A3 (en) | 2006-01-19 |
Family
ID=35148947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/000735 WO2005102934A2 (en) | 2004-04-22 | 2005-04-21 | Water treatment plant and thermal evaporation system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2005102934A2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3015254A1 (en) * | 1980-04-21 | 1981-10-22 | Kraftwerk Union AG, 4330 Mülheim | Solar heat powered desalination system - with inverted siphons joining transparent dome to condensate tank and sea-water supply |
IT1292278B1 (en) * | 1997-04-24 | 1999-01-29 | T I B S N C Di Griso Paolo & C | thermal purifier |
AT409791B (en) * | 1999-02-16 | 2002-11-25 | Vaillant Gmbh | HOT WATER TANK |
JP4208517B2 (en) * | 2002-08-07 | 2009-01-14 | 富士フイルム株式会社 | Polymer solution concentration method and apparatus |
DE20301711U1 (en) * | 2003-02-04 | 2003-06-26 | Windschiegel Maschinenbau, 92670 Windischeschenbach | Assembly with conical cover evaporates salt water, brackish water for condensation and recovery of drinking water |
-
2005
- 2005-04-21 WO PCT/DE2005/000735 patent/WO2005102934A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2005102934A3 (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160368785A1 (en) | Methods and systems to reduce air pollution combined with water desalination of power station's marine waste water | |
US8226800B2 (en) | Water desalination system | |
JP2014528825A5 (en) | ||
AU2010310441A1 (en) | Leverage of waste product to provide clean water | |
DE112009001305B4 (en) | Process and plant for upgrading coal | |
EP2464603B1 (en) | Method and device for desalinating sea water | |
JP2018500155A (en) | Energy efficient water purification and desalination | |
DE102006010894A1 (en) | Device for the sea water desalination by solar energy comprises solar absorber, distillation device container, inlet, outlet, condenser for condensation of water vapor resulting during the distillation, heating device, and heat exchanger | |
AU2002317163B2 (en) | Wind power plant comprising a seawater desalination system | |
Seigworth et al. | Case study: Integrating membrane processes with evaporation to achieve economical zero liquid discharge at the Doswell Combined Cycle Facility | |
JP6160864B2 (en) | Nanofiber membrane distillation equipment | |
CH712868A2 (en) | Solar desalination and decontamination plant. | |
WO2005102934A2 (en) | Water treatment plant and thermal evaporation system | |
EP2398869A2 (en) | Oil reactor vacuum pump having hydraulic gasket for catalytic oiling reactions from previously conditioned slurry-like residues and method therefor | |
DE20301711U1 (en) | Assembly with conical cover evaporates salt water, brackish water for condensation and recovery of drinking water | |
DE102004036438A1 (en) | Thermal evaporation plant producing potable water from sea-, brackish- or waste waters, includes lower toroidal section with polyurethane layer insulation | |
KR101672852B1 (en) | Desalination system by using dual source energy | |
Muthuvairavan et al. | Large-scale solar desalination system | |
KR101620099B1 (en) | Distributed desalination system by mixing solar thermal and pyrolysis gasification energy | |
DE10304410A1 (en) | Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin | |
DE102009037306A1 (en) | Method for desalination of sea water, comprises filling the sea water in a container so that an evaporation area remains in the upper end of the container and heating an air stream in heating station arranged at flow side of the container | |
CZ305017B6 (en) | Method of increasing efficiency of decontamination of water containing body organic substances by making use of solar energy | |
US3592743A (en) | Multiple re-use of water | |
MX2011003668A (en) | Water purification device and method. | |
CN112142251A (en) | A kind of garbage permeate treatment device and treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |