[go: up one dir, main page]

WO2005100495A1 - 防汚塗料組成物 - Google Patents

防汚塗料組成物 Download PDF

Info

Publication number
WO2005100495A1
WO2005100495A1 PCT/JP2005/007028 JP2005007028W WO2005100495A1 WO 2005100495 A1 WO2005100495 A1 WO 2005100495A1 JP 2005007028 W JP2005007028 W JP 2005007028W WO 2005100495 A1 WO2005100495 A1 WO 2005100495A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling point
organic solvent
antifouling
hydrophobic polymer
hydrophilic material
Prior art date
Application number
PCT/JP2005/007028
Other languages
English (en)
French (fr)
Inventor
Tarou Kuroda
Shigeharu Taira
Satoki Nakada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05728566A priority Critical patent/EP1736516A4/en
Priority to AU2005233438A priority patent/AU2005233438A1/en
Priority to US11/578,164 priority patent/US20070215004A1/en
Priority to CN200580010954XA priority patent/CN1942545B/zh
Publication of WO2005100495A1 publication Critical patent/WO2005100495A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to an antifouling paint composition which is excellent in antifouling property and can provide an antifouling coating film in which a general-purpose paint resin can be used.
  • the current situation in antifouling technology is a method of making the surface highly hydrophobic (water / oil repellency), a method of making the surface highly hydrophilic, a method of blending a photocatalyst, and a method of coating a coating film surface with a microscopic surface. It is known to use a phase-separated structure to prevent hydrophilic and hydrophobic stains from adhering.
  • JP-A-2003-160681 and JP-A-2003-161460 disclose a commercially available acrylic clear paint (a coating composition composed of acrylic resin, alkoxysilane and colloidal silica), and apply a microscopic coating. Although it is intended to develop a phase-separated structure, the colloidal silica cannot be uniformly dispersed on the surface unless the amount of the colloidal silica used is large, and the mechanical strength and denseness of the surface structure and Improvement is still needed.
  • JP-A-2003- 211569 discloses that a coating film in which hydrophilic coating areas and hydrophobic coating areas of 0.04 to L Ocm 2 are alternately arranged prevents rain streak stains.
  • the hydrophilic / hydrophobic structure in such a large area has sufficient anti-adhesion performance in the field of anti-adhesion for general-purpose articles such as outdoor articles exposed to various types of airborne contaminants. I can't achieve it!
  • WO94Z06870 pamphlet and WO096Z26254 pamphlet describe that various types of resins are mixed with an organosilicate oligomer or polymer to completely or partially hydrophilize the surface.
  • an organosilicate oligomer or polymer to completely or partially hydrophilize the surface.
  • the main antifouling property depends on the selection of paint and resin (for example, use of fluorine resin and silicone resin with excellent antifouling properties). I have.
  • the present invention comprises a hydrophilic material (A), a hydrophobic polymer for paint (B), an organic solvent (C) for the hydrophobic polymer for paint, and another organic solvent (D).
  • the other organic solvent (D) is a high-boiling organic solvent that is at least 5 ° C higher than the boiling point of the organic solvent (C) for the hydrophobic polymer for coatings, and the hydrophilic material (A) Z hydrophobic polymer (
  • the present invention relates to an antifouling coating composition in which the proportion of B) is 1Z99 to 50Z50 (% by mass).
  • the present invention also relates to an antifouling coating film obtained by curing the antifouling coating composition of the present invention and an article having the antifouling coating film.
  • boiling point is a boiling point under one atmosphere, and when the boiling point is represented by a temperature range, an intermediate value thereof is as follows.
  • FIG. 1 is a schematic diagram of an antifouling test apparatus used for an accelerated antifouling test adopted in Examples 4 to 10;
  • the antifouling coating composition of the present invention comprises an organic solvent (C) for a hydrophilic material ( ⁇ ), a hydrophobic polymer for coating ( ⁇ ), a hydrophobic polymer for coating ( ⁇ ), and another organic solvent ( (I)
  • the other organic solvent (D) is at least 5 ° C higher than the boiling point of the organic solvent (C) for the hydrophobic polymer for paints! ⁇ )
  • a composition in which the ratio of the hydrophilic material (A) to the Z hydrophobic polymer (B) is 1 / 99-50 / 50 (mass% ratio).
  • the form in which the other organic solvent (D) functions as a dispersion medium for the hydrophilic material (A) is desired.
  • the hydrophilicity of the hydrophilic material is higher than that of the hydrophobic polymer (B) for paint. Affinity with (A) It is expensive.
  • the organic solvent (C) and the organic solvent (D) may be polar organic solvents, or V may be a polar organic solvent and the other may be a non-polar organic solvent.
  • the organic solvent (C) for the hydrophobic polymer (B) for coating is a non-polar organic solvent (C1)
  • the other organic solvent (D) Is a polar organic solvent (D1) for dispersing the hydrophilic material (A).
  • One of the features of this embodiment is that the high-boiling-point polar organic solvent (D1) (eg, having a relatively high boiling point of 115 ° C. or higher! ⁇ boiling-point solvent) and the high-boiling-point polar organic solvent (D1) This also means that a non-polar organic solvent (C1) having a boiling point of 5 ° C or more is used in combination.
  • D1 high-boiling-point polar organic solvent
  • C1 non-polar organic solvent having a boiling point of 5 ° C or more is used in combination.
  • the hydrophobic polymer for coating is dissolved in the non-polar organic solvent, and a hydrophilic material is dispersed in the hydrophobic polymer solution for coating. It is considered that the particles are uniformly dispersed at a low concentration with a high boiling point polar organic solvent.
  • concentration of the hydrophilic material exceeds a certain concentration, the aggregation of the hydrophilic materials starts, and the uniform dispersion state is broken. Therefore, the hydrophilic material needs to be in a range where no such aggregation phenomenon occurs.
  • the problem is to form a coating film while maintaining a strong uniform dispersion state.
  • the boiling point of the polar organic solvent in which the hydrophilic material is uniformly dispersed is higher than that of the nonpolar organic solvent. Due to the high concentration, the non-polar organic solvent evaporates mainly during the formation and drying of the coating, the concentration of the hydrophobic polymer for coating in the coating increases, and the matrix of the coating begins to form. You. At this time, the volatile organic solvent not only has a high boiling point but also has an affinity for the hydrophilic material, so that the volatilization rate is low. As a result, it is considered that a coating film is formed while the uniformly dispersed state of the hydrophilic material is maintained.
  • the organic solvent for paint (C) is used to uniformly convert the hydrophobic polymer for paint (B). It is used to form a matrix layer by dissolving and dispersing, and has a boiling point lower than other organic solvents (D) by 5 ° C or more.
  • the specific organic solvent (C) to be used differs depending on the boiling point of the other organic solvent (D) to be used.
  • the organic solvent (C) is used. Need not be below 115 ° C.
  • the organic solvent for coating (C) may be a polar organic solvent (C2) as long as it can dissolve the hydrophobic polymer for coating (B) to form a coating film. And a non-polar organic solvent (C1).
  • nonpolar organic solvent (C1) examples include, for example, aromatic hydrocarbon solvents having a boiling point of 80 to 150 ° C. and aliphatic hydrocarbon solvents having a boiling point of 50 to 130 ° C. it can
  • aromatic hydrocarbon solvents having a boiling point of 80 to 150 ° C include benzene (boiling point 80.1 ° C), toluene (boiling point 110 ° C), xylene (boiling point 140 ° C), and ethylbenzene (boiling point 136). ° C) and styrene (boiling point: 145 ° C).
  • Examples of the aliphatic hydrocarbon solvent having a boiling point of 50 to 130 ° C include n-hexane (boiling point 65 to 69 ° C), heptane (boiling point 93 to 99 ° C), and octane (boiling point 110 to 116).
  • isooctane (boiling point 102-113 ° C), isohexane (boiling point 57-61 ° C), isobutane (boiling point 80-91 ° C), cyclohexane (boiling point 81 ° C), n-heptane ( Examples thereof include a boiling point of 98 ° C), trimethylpentane (boiling point of 99 ° C), and methylcyclohexane (boiling point of 10. These solvents may be used in combination of the same or different solvents.
  • the polar organic solvent for paint (C2) is selected from high-boiling polar organic solvents (D1) and low-boiling polar organic solvents (D2) described below.
  • the other organic solvent (D) is used for uniformly and stably dispersing the hydrophilic material in the coating composition, and for maintaining the uniform dispersion during the formation of the coating film.
  • a polar solvent is preferred, and in particular, a high-boiling polar organic solvent (D1) having a boiling point of 115 ° C or more is preferred.
  • non-polar organic solvents will not work as long as they perform the same function.
  • the non-polar organic solvent that can be used as the other organic solvent (D) include the non-polar organic solvent (C1) for the hydrophobic polymer for paint (B) from among the non-polar organic solvents (C1) described above. With a boiling point higher than 5 ° C.
  • preferred high boiling polar organic solvents (D1) have a boiling point of 115 ° C. or higher, further 150 ° C. or higher, 250 ° C. or lower, and even 210 ° C. or lower.
  • the organic solvent may be selected in consideration of the non-polar organic solvent (C1) to be combined. If the boiling point is lower than 115 ° C., it may be difficult to form a coating film while maintaining homodispersibility. On the other hand, if it is too high, it takes too much time to form a coating film, and curing tends to be inhibited.
  • an ether solvent having a boiling point of 120 to 250 ° C a high boiling alcohol solvent having a boiling point of 115 to 250 ° C, an ester solvent having a boiling point of 115 to 250 ° C, and a boiling point of 115 to 220 ° C
  • examples thereof include C ketone solvents and ester ether solvents having a boiling point of 135 to 225 ° C.
  • ether solvents having a boiling point of 120 to 250 ° C include ethylene glycol monoethyl ether (boiling point 135 ° C), ethylene glycol monobutyl ether (boiling point 170 ° C), and propylene glycol monomethyl ether (PGME; boiling point 120 ° C).
  • diethylene glycol monoethyl ether (boiling point: 200 ° C), diethylene glycol monobutyl ether (boiling point: 225 ° C), diethylene glycol getyl ether (boiling point: 189 ° C), getyl ether (boiling point: 121.4 ° C), monobutyl ether (Boiling point 171.2 ° C), mono-n-hexyl ether (boiling point 208.3 ° C), monophenyl ether (boiling point 244.7 ° C), mono-2-ethylbutyl ether (boiling point 196.8 ° C), di- Examples include butyl ether (boiling point 203 ° C), propylene glycol methyl ether (boiling point 189 ° C), terpene methyl ether (boiling point 195-225 ° C), etc. it can.
  • Examples of high-boiling alcohol solvents having a boiling point of 115 to 250 ° C include n-butanol (boiling point 117 ° C), methoxybutanol (boiling point 160 ° C), diacet alcohol (boiling point 168 ° C), and cycloalkyl.
  • Hexanol (boiling point 161 ° C), ethylene glycol (boiling point 197 ° C), propylene glycol (boiling point 188 ° C), 1,4-butanediol (boiling point 235 ° C), n-amyl alcohol (boiling point 138 ° C) C), isoamyl alcohol (boiling point 130.5 ° C), 3-methoxybutyl alcohol (boiling point 157-162 ° C), n-hexyl alcohol (boiling point 157.2 ° C), 2-methylpentanol ( Boiling point 147.5 ° C), sec hexyl alcohol (boiling point 131.8 ° C), 2-ethyl butyl alcohol (boiling point 148.9 ° C), sec heptyl alcohol (boiling point 160.4 ° C), Heptanoyl-3 (boiling point 156.2 ° C), methylcycl
  • ester solvent having a boiling point of 115 to 250 ° C examples include isoamyl formate (boiling point 124.
  • ketone solvents having a boiling point of 115 to 220 ° C. include methyl isobutyl ketone (boiling point: 116 ° C.), butyl n-butyl ketone (boiling point: 127.2 ° C.), 2.4 pentanedione (boiling point: 140 ° C.).
  • ester ether solvents having a boiling point of 135 to 225 ° C include cellosolve acetate (boiling point 135 to 160 ° C), methyl acetate solvent (boiling point 144 ° C), and ethyl acetate solvent (boiling point 156 ° C). , Methoxybutyl acetate (boiling point: 166 to 176 ° C), butyl acetate sorbate (boiling point: 188 to 195 ° C), carbitol acetate (boiling point: 204 to 225 ° C), and the like.
  • Examples of the high-boiling amide solvents include N-methyl-2-pyrrolidone (boiling point 204 ° C), N, N dimethylacetamide (boiling point 165 ° C), and N, N-dimethylformamide (boiling point 153 ° C). ) And the like.
  • these same or different solvents may be mixed and used.
  • the organic solvent (D) needs to be at least 5 ° C higher than the boiling point of the organic solvent (C).
  • this boiling point difference is based on the following criteria when two or more types of solvents are used (three or more types as a system).
  • the solvent whose amount (mass) is the largest is used as the reference solvent, and when the amount used is the same, the solvent having the highest boiling point is the reference solvent.
  • Organic solvent (C) Similarly, in the case of, the solvent with the largest amount (mass) is used as the reference solvent, and when the amount is the same, the solvent with the highest boiling point is used as the reference solvent. Therefore, in some cases, the boiling point difference of the organic solvent (D) from the reference solvent is less than or higher than 5 ° C as a part of the organic solvent (C). In some cases, an organic solvent having a boiling point difference of less than 5 ° C or lower than the reference solvent of the organic solvent (C) as a part of the organic solvent (D) exists.
  • the boiling point difference is 5 ° C or more, it may be experimentally selected depending on the type and combination of solvents, but is preferably 10 ° C or more, and more preferably 30 ° C or more.
  • the upper limit may be determined in consideration of ease of preparation of the coating composition and stability of the composition.
  • a low-boiling-point polar organic solvent (D2) having a boiling point of less than 115 ° C may be further present as a polar organic solvent.
  • This low-boiling polar organic solvent (D2) is usually blended in order to uniformly disperse the hydrophilic material when preparing a coating composition. Since (D1) is present, the uniformity of dispersion of the hydrophilic material can be maintained.
  • Such low-boiling polar organic solvents (D2) include, for example, methanol (boiling point 65 ° C), ethanol (boiling point 78 ° C), isopropanol (boiling point 82.4 ° C), and isopropyl alcohol (boiling point 82.3 ° C).
  • the organic solvent for polymer (C) if the quantity is small (less than the main organic solvent for polymer (C)), the difference in boiling point from the other organic solvent (D) is small. Less than 5 ° C or other As described above, an organic solvent (C) having a higher boiling point than that of the organic solvent (D) may be blended.
  • the specific combination of the organic solvent for polymer (C) and the other organic solvent (D) is determined by various kinds of additives such as the kind of the hydrophilic material and the hydrophobic polymer for the paint and the pigment.
  • organic solvent (C) for polymer and the other organic solvent (D) in the antifouling coating composition of the present invention are preferred! / ⁇ Specific combinations include a non-polar organic solvent (C1) and a high boiling point.
  • Polar organic solvent (D) is preferred! / ⁇ Specific combinations include a non-polar organic solvent (C1) and a high boiling point.
  • the inside of the kakko is the boiling point (° C).
  • Non-polar organic solvent (2-1) Aliphatic hydrocarbon solvent with boiling point of 50 to 130 ° C
  • the hydrophilic material (A) to be blended in the present invention may be hydrophilic fine particles or an oligomer or cooligomer of organosilicate.
  • the number average particle diameter is preferably 5 nm or more, and the upper limit is preferably 200 nm in that the adhesion of dirt can be prevented widely, and more preferably 50 nm if the number average particle diameter is 50 nm. This is preferable in that it is effective for prevention and that the transparency of the coating film is ensured. Specifically, it is selected according to the usage environment and the target substance to be attached.
  • hydrophilic fine particles silica fine particles, titanium oxide fine particles, apatite fine particles, photocatalytic functional apatite fine particles, metal (such as copper) fine particles, and the like are suitable, and two or more kinds may be used in combination.
  • colloidal silica for example, colloidal silica, fumed silica and the like are suitable.
  • colloidal silica includes, for example, methanol-dispersed liquids such as MA-ST (number average particle diameter 10 to 15 nm) and MA-ST-MS (number average particle diameter 17 to 23 nm) manufactured by Nissan Chemical Industries, Ltd .; IPA—ST (number average particle size 10-15 nm), IPA—ST—MS (17-23 nm), IPA Isopropanol dispersions such as ST-L (40-50 nm); Methylethyl ketone dispersions such as MEK-ST (number average particle diameter 10-15 nm) and MEK-ST-MS (number average particle diameter 17-23 nm); MIBK— Methyl isobutyl ketone dispersions such as ST (number average particle diameter 10 to 15 nm), propylene glycol monomethyl ether acetate dispersions such as
  • the titanium oxide fine particles may be inactive titanium oxide! However, titanium oxide having a photocatalytic function may be used. As a specific example of the former, fine particles may be used among pigments commonly used as a filter.
  • Examples of the photocatalytic functional oxide fine titanium particles include ST-0 manufactured by Ishihara Sangyo Co., Ltd.
  • titanium oxide surface treated with apatite may be used.
  • apatite By treating with apatite, the effect of adsorbing bacteria and viruses is enhanced, and the sterilization ability of the obtained coating film is improved.
  • the titanium oxide particles can be used in combination with the hydrophilic material of the present invention for the purpose of only the photocatalytic ability and sterilizing ability. (For example, more than 200 nm) or hydrophobic particles.
  • apatite fine particles are, for example, represented by the formula:
  • A is a metal atom such as Ca, Co, Ni, Cu, Al, La, Cr, Fe, Mg
  • B is P or S
  • X are fine particles of a composite metal oxide represented by a hydroxyl group or a halogen atom.
  • This apatite can also be produced with a particle size of about lOnm, and has good uniform dispersibility like the above-mentioned silica fine particles.
  • the apatite having a photocatalytic function is, for example, at least a part of the metal atom A (for example, Ca) in the complex metal oxide (for example, calcium hydroxyapatite) represented by the above formula.
  • the metal atom A for example, Ca
  • the complex metal oxide for example, calcium hydroxyapatite
  • this photocatalytic functional apatite is excellent in durability as a coating film that hardly deteriorates the base polymer. Further, particles having a particle size of about lOnm can be produced, and the uniform dispersibility is good as in the case of the silica fine particles.
  • the photocatalytic functional apatite particles it can be used in combination with the hydrophilic material of the present invention for the purpose of only the photocatalytic ability and the sterilizing ability.
  • a relatively large particle size for example, 200 nm
  • hydrophobic particles for example, a relatively large particle size (for example, 200 nm ) Or hydrophobic particles.
  • oligomer or cooligomer of onoreganosiloxane examples include a compound represented by the formula (I): R SiX described in International Publication WO94Z06870, International Publication WO096Z26254, International Publication WO97Z45502, R is
  • X is an alkoxy group or a halogen atom, and
  • p is a number satisfying 0 ⁇ p ⁇ 2).
  • organosilicate examples include tetrafunctional silicates such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and ethoxydimethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, and the like.
  • Examples of commercially available products include the methyl silicate series manufactured by Colcoat.
  • the proportion of the hydrophilic material (A) and the Z hydrophobic polymer (B) must be in the range of 1Z99 to 50Z50 (% by mass), preferably 1 ⁇ 99 to 45 ⁇ 55 (% by mass). As described above, the antifouling effect of the hydrophilic material is specifically improved in this specific content range.
  • the preferable content range may be appropriately selected depending on the type of the hydrophilic material ( ⁇ ), the type and amount of the organic solvent (D), the type of the polymer for coating ( ⁇ ), the additive used, and the like.
  • the hydrophobic polymer for paint ( ⁇ ) that forms the matrix of the coating film in the present invention depends on the hydrophilic material in consideration of the dispersibility of the hydrophilic material ( ⁇ ), the difference in contact angle with water, and the like. Among them, those having a contact angle with water of 60 degrees or more can be suitably used. In addition, although it may be oily or elastomeric, it is preferable that the crosslinkable polymer is used because of its ability to improve the mechanical properties of the coating as well as V and misalignment!
  • hydrophobic polymer for paint ( ⁇ ) a non-fluorinated hydrophobic polymer is preferable in terms of price, workability (baking conditions), handleability in preparing paint, and the like. ⁇ ⁇ ⁇ ⁇ .
  • Hydrophobic resins for paints include acrylic resins, acrylic silicone resins, fluorine resins, and silicone resins.
  • examples include corn fat, urethane fat, polyester, and polyolefin. More specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate Esters of (meth) acrylic acid such as acrylates; aromatic butyl monomers such as styrene and butyltoluene; olefins such as ethylene, propylene and butylene; tetrafluoroethylene, trifluoroethylene, bi-lidenefluoride, trichloroethylene trifluoroethylene, Homopolymers obtained by the radical polymerization reaction of fluorine-containing monomers such as perfluorooo
  • Preferred hydrophobic resins are acrylic resin, acrylic silicone resin, urethane resin and the like, which are advantageous in terms of price, availability and versatility.
  • Acrylic resin is preferably a crosslinkable acrylic resin having a functional group.
  • the hydrophobicity of the resin can be controlled by controlling the hydrophobicity of the substituent in the ester portion.
  • Acrylic silicone resin which can be cured at room temperature can be preferably exemplified as the acrylic silicone resin.
  • examples of commercially available products include Ataridec A-9540, a low glass transition point type acrylic silicone resin manufactured by Dainippon Ink and Chemicals, Inc., and Atalidek BZ-1161, a high glass transition point type acrylic silicone resin. Can be exemplified.
  • the fluororesin can be selected from conventionally known fluororesins.
  • TFE tetrafluoroethylene
  • chloroform chloroform
  • HFP hexafluoropropylene
  • These fluorine resins are preferably crosslinkable having a functional group. Examples of commercially available products include Ziffle series manufactured by Daikin Industries, Ltd., for example.
  • a functional group-containing acrylic silicone resin is particularly preferable for silica fine particles, titanium oxide fine particles, photocatalytic functional apatite fine particles, and metal fine particles.
  • the secondary polymer used for each polymer is used. It is preferable to incorporate a known curing agent.
  • the curable functional group of the crosslinkable polymer is a hydroxyl group, a carboxyl group, an epoxy group, an amino group, a methylol group, an amide group, etc., dimethyldimethoxysilane, methyltrimethoxysilane
  • Preferable examples include silane compounds such as methoxy silane, getyl ethoxy silane, ethyl triethoxy silane, tetra ethoxy silane, and condensates thereof.
  • Examples of commercially available products include Ataridec A-9585 and Ataridec FZ-523 manufactured by Dainippon Ink and Chemicals, Inc.
  • Various dispersants may be used in order to enhance the dispersibility of solid components such as hydrophilic particles.
  • a dispersant that does not exist on the surface of the hydrophilic particles after forming the coating film is used.
  • a low-molecular-weight dispersant that volatilizes when the coating film is dried is preferable.
  • a dispersant that volatilizes or decomposes during calcination can be used even if a high-molecular-weight dispersant is used.
  • additives may be blended as long as the effects of the present invention are not impaired.
  • the additives include pigments, dyes, fillers, antioxidants, leveling agents, reinforcing fibers, ultraviolet absorbers, photocatalysts, and light stabilizers.
  • the compounding amount of the other organic solvent (D) is such that the hydrophilic material can be uniformly dispersed at the above-mentioned specific concentration, and the dispersed state can be maintained during drying and curing of the coating film. It is appropriately selected depending on the type and amount of the material (A), the hydrophobic polymer for coating (B), and the organic solvent (C). However, if the amount is too small, the dispersion stability of the hydrophilic material may decrease during drying, and if the amount is too large, the drying may take too much time. Usually, the amount is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, and preferably 10,000 parts by mass or less, more preferably 2,000 parts by mass or less, based on 100 parts by mass of the hydrophilic material.
  • the compounding amount of the organic solvent (C) may be an amount capable of uniformly dissolving or dispersing the hydrophobic polymer for coatings. However, if the amount is too small, the hydrophobic polymer film is too quickly formed. In some cases, the organic solvent (D) may evaporate. If the amount is too large, it may not be possible to form a coating film while the hydrophilic material maintains uniform dispersibility. Usually, the amount is preferably at least 100 parts by mass, more preferably at least 200 parts by mass, and preferably at most 10,000 parts by mass, more preferably at most 2,000 parts by mass, per 100 parts by mass of the hydrophobic polymer for coatings.
  • the concentration of the hydrophobic polymer for coating (B) in the composition depends on the type and amount of the hydrophilic material (A), the type of the hydrophobic polymer for coating (B), the type of the organic solvent (C), and the like. It is appropriately selected depending on the amount. Usually, 2% by mass or more, more preferably 5% by mass or more is preferred, and 50% by mass or less, and further preferably 20% by mass or less.
  • composition of the present invention is prepared by mixing a dispersion (or solution) of an organic solvent (D) of a hydrophilic material with a solution (or dispersion) of an organic solvent (C) of a hydrophobic polymer for paint. This can be done by:
  • the coating method is not particularly limited, and any method may be used as long as it can form a uniform coating film, such as a brush coating method, a spray method, a dive method, and a mouth coating method.
  • a drying treatment including natural drying, a curing (crosslinking) treatment, a baking treatment and the like depending on the kind of the hydrophobic polymer for a paint can be appropriately performed as necessary.
  • the thickness of the coating film is not particularly limited. LV, preferred.
  • the upper limit is not particularly limited as long as the coating does not crack!
  • the organic solvent (C) and the organic solvent (D) volatilize while the homogeneous dispersion state of the hydrophilic material is maintained during drying, and the uniformity in the coating composition is maintained. The dispersed state is substantially maintained in the dried coating film.
  • the hydrophobic region and the hydrophilic region are uniformly dispersed, that is, a so-called microphase-separated structure is exhibited. As a result, even a relatively small amount of hydrophilic material is excellent. Antifouling properties are exhibited.
  • hydrophilic polymer As the polymer for the coating material, in which the hydrophobic polymer (B) is used as the polymer for the coating material.
  • the hydrophilic polymer may be used instead of the hydrophilic material. What is necessary is just to use a hydrophobic material. However, this combination is inferior in cost to the combination of the present invention, and that is a subject for further study.
  • conductive materials such as conductive polymers, conductive metal fillers, carbon nanotubes, and carbon nanohorns, and dispersing them on the surface of the coating
  • the antistatic effect of the coating is improved, and electrostatic adhesion is improved.
  • the surface resistance be 10 12 ⁇ or less.
  • the impact resistance of the coating film surface can be improved.
  • photodegradability can be imparted by using particles having photocatalytic ability, for example, anatase-type titanium oxide.
  • the particles having a photocatalytic function may have a relatively large particle size or may be hydrophobic.
  • the antifouling coating composition of the present invention can be applied to, for example, the following articles.
  • Plasma red blood cells, platelets, white blood cells, etc.
  • body fluids lymph, saliva
  • Medical related articles Artificial blood vessels, blood packs, artificial organs, artificial hearts, artificial lungs, lung drainage, artificial skin, percutaneous devices, urine collection packs, urinary catheters, intraocular lenses, contact lenses, artificial bones, artificial joints, artificial teeth, teeth Anti-caries (applied to teeth), toilet bowl (without urine stones) and connecting tubes.
  • Inorganic substances in water precipitated eg, crystallized. Many scales crystallize and precipitate in the form of calcium or phosphoric acid, sulfuric acid, calcium salts of silicate or silicates.
  • Heat exchange ⁇ boiler, cooling tower, etc.
  • Heat exchanger fins measures against defrost
  • roofing materials coated on tiles, etc.
  • antennas power transmission lines
  • power transmission lines prevention of cutting and destruction by snow, etc.
  • ship exterior anti-icing prevention
  • ice trays ice machines
  • refrigerators Freezers
  • Freezers rooms, cars
  • glass variable vehicles and buildings
  • outdoor telecommunications equipment variable antennas such as parabolic antennas, communication towers, communication cables, electric wires, transmission towers, etc.
  • transportation vehicles ships and ships
  • Decks such as trains, stepping on and off steps of various vehicles, external projections of vehicles such as pantographs and entrance lines, wings of aircraft, exteriors of various vehicles), buildings (exteriors such as roof tiles and tiles), Roads, sidewalks (easy to remove snow and deicing, freezing), shoe soles, tires (hard to freeze), paints to prevent salt damage, insulators (to prevent flashover), etc.
  • Indoor building materials (ceiling materials, wall materials, wallpapers, etc.), blinds, curtains, flooring materials, carpets, transparent materials (lighting covers, glass, show windows, instrument covers, glasses, goggles, etc.), mirrors (vehicles) Mirrors, home use, wash mirrors, etc.), heat exchange, air conditioners (fans, exterior, etc.) , Air conditioner ducts, air purifiers, humidifying hoses (to prevent generation of allergens such as mold and bacteria in the room), outlets, exhaust outlets, their surrounding parts, wigs, artificial hair, kitchen, range hood, clothes ( Smell, not transfer,), cosmetics (smell, not transfer,) etc.
  • Dust about 0.1 to 50 m
  • salt crystals along the coast about 0.1 to: LO / z m
  • droplets about 10 to 50 / ⁇
  • vehicle exhaust gas etc.
  • Outdoor building materials (exterior walls of buildings, exteriors of vehicles, ships, aircraft, etc.), road-related materials (guide rails, signs, signals, tunnel inner walls, lighting fixtures, signage covers, soundproof walls, overpasses, bridges, etc.) , Transparent materials (outdoor lighting covers, glass, signage covers, show windows, greenhouses, solar cell covers, solar water heater covers, instrument covers, glasses, goggles, etc.), mirrors (vehicle mirrors, road mirrors, etc.), Heat exchange ⁇ , air conditioners (fans, exterior, etc.), air conditioner ducts, humidifying hoses (prevention of allergens such as mold and bacteria in the room), air outlets, air outlets, their surroundings, inside the chimney, Surrounding parts, wigs, artificial hair, clothes for going out (smell, not transfer), cosmetics (smell, transfer), playground equipment (amusement park and park equipment).
  • Transparent materials outdoor lighting covers, glass, signage covers, show windows, greenhouses, solar cell covers, solar water heater covers, instrument covers,
  • Terminal blocks for various electric and electronic parts plugs such as magnet plugs, discharge parts such as electric precipitator diion generators, etc.
  • the antifouling paint composition of the present invention is most suitable as a paint for coating the exterior of such an air conditioner, the inside of a duct, and the like.
  • the number of times of cleaning can be greatly reduced and the number of times of cleaning can be greatly reduced.
  • composition 11 a solvent-type antifouling paint composition
  • Hydrophobic polymer for paint 1 High glass transition temperature room temperature curing type tertiary amino group-containing acrylic silicone resin (Tg90 ° C) manufactured by Dainippon Ink and Chemicals, Inc. Toluene Z isobutanol Solution: solids 44 mass%. Product name Ataridec BZ- 1161
  • Curing agent 1 Silicon based curing agent (Ataridec FZ-523, manufactured by Dainippon Ink and Chemicals, Inc.)
  • Hydrophilic material 1 Colloidal sill force (.. Nissan Chemical Co., Ltd. IPA-ST number average particle diameter 10 ⁇ 15nm silica 30-31 mass 0/0 of isopropanol dispersion)
  • the coating composition 1-1 was spray-coated on a polystyrene plate (150 mm x 80 mm x 5 mm) so that the thickness after drying was 5 / zm, and left at 60 ° C for 30 minutes to prevent corrosion.
  • Stained film sample (Sample 1-1) was prepared.
  • compositions 1-2 to 1-3 were used and blended in the amounts shown in Table 1 to prepare antifouling paint compositions (compositions 1-2 to 1-3). Stained film sample 1—2 to 1—
  • Test 1 Simple pollution test by cigarette smoke
  • Test 2 Contact angle with water
  • a coating composition for comparison (1-C1) was prepared in the same manner as in preparation of composition 11 of Example 1 except that PGME was not mixed and the same amount of isopropanol was mixed.
  • sample 1C1 a comparative antifouling coating film sample 1C1 was prepared in the same manner as in Example 1.
  • composition 21 a solvent-type antifouling paint composition
  • Hydrophobic polymer for paint 2 Low glass transition temperature room temperature curing type tertiary amino group-containing acrylic silicone resin (Tg60 ° C) manufactured by Dainippon Ink and Chemicals, Inc. Toluene Z isobutanol Solution: solids 44 mass%. Product name Ataridec A-9540
  • Hardener 2 Silicone hardener (Ataridec A—trade name, manufactured by Dainippon Ink and Chemicals, Inc.) 9585)
  • the paint composition 2-1 was spray-coated on a polystyrene plate (150 mm x 80 mm x 5 mm) so that the thickness after drying was 5 / zm, and left at 60 ° C for 30 minutes to prevent the paint composition.
  • Stained film sample (Sample 2-1) was prepared.
  • compositions 2-2 to 2-3 were prepared in the same manner as above.
  • a coating composition for comparison (2-C1) was prepared in the same manner as in the preparation of the composition 2-1 in Example 2, except that the diacet alcohol was not mixed and the same amount of isopronol was mixed. Then, a comparative antifouling coating film sample 2-C1 was prepared in the same manner as in Example 1 using this comparative composition 2-C1.
  • Example 2 an antifouling paint composition (composition 3-1-3-3) was prepared in the same manner as in Example 2 except that the amount of diacet alcohol was changed as shown in Table 3. Using the composition, an antifouling coating film sample 3-1-3-3 was prepared in the same manner as described above.
  • composition 41 a solvent-type antifouling paint composition
  • compositions 42 to 45 were prepared.
  • a test device described later was prepared and used. 10 cigarettes (mild seven made by Nippon Tobacco Co., Ltd.) generated by a smoke generator are put into a water tank for evaluation, and sufficiently stirred with a fan provided in the water tank. Then, when the smoke inside the water tank becomes homogeneous, stop the fan, put the sample fixed to the test material jig into the water tank, and measure the contamination after 10 hours.
  • the stain is evaluated by the color difference ( ⁇ b value) before and after the test using an NR-1 type color difference meter manufactured by Nippon Denshoku Industries Co., Ltd.
  • the proprietary test equipment shown in Fig. 1 is used.
  • This test device is composed of a smoke generator 1, an evaluation tank 2, and a sample jig 3.
  • the smoke generator 1 is composed of a pump 7 for sending air for burning cigarettes, a container 6 for burning cigarettes, and a dehumidifying unit 4 for dehumidifying the smoke of the cigarettes 5, and generates dry smoke.
  • the test tank 2 is made of glass having a width of 600 x a length of 300 x a height of 380mm, and is provided with a fan 8 for smoke agitation on the side surface.
  • the lid at the top of the water tank 2 is provided with an inlet for smoke 10 from the smoke generator, an opening for taking in and out the sample 9, and a thermo-hygrometer for measuring the temperature and humidity in the water tank.
  • the sample jig 3 is configured so that the sample 9 can be taken in and out of the water tank 2 and the sample 9 can be fixed at a fixed position in the water tank 2.
  • Comparative Example 3 A coating composition for comparison (4-C1) was prepared in the same manner as in the preparation of the composition 4-1 in Example 4, except that the hydrophilic material 1 (colloidal silica) was not mixed.
  • a comparative antifouling coating film sample 4-C1 was prepared in the same manner as in Example 4 using the composition 4-C1.
  • composition 42 of Example 4 a hydrophobic polymer for paint was used as a hydrophobic polymer.
  • the paint was prepared in the same manner as in Example 4 except that Ataridec A-9540 (Tg60 ° C) manufactured by Dainippon Ink and Chemicals, Inc. was used and the amount of colloidal silica was changed to the amount shown in Table 5.
  • a composition (5-Cl to 5-4) was prepared, and an antifouling coating film sample 5-C1 to 5-4 was prepared in the same manner as in Example 4 using this composition 5-Cl to 5-4. .
  • Accelerated antifouling test 2 was performed in the same manner as in Example 4 on the antifouling coating film samples 5-1 to 5-4 and 5-1. Table 5 shows the results.
  • composition 6-1 a solvent-type antifouling paint composition
  • This coating composition 6-1 was spray-coated on a polystyrene plate (150mm x 80mm x 5mm) so that the thickness after drying was 5 / zm, and left at 60 ° C for 30 minutes to prevent corrosion. Stained film sample (Sample 6-1) was prepared.
  • antifouling paint compositions compositions 6-2 to 6-4.
  • antifouling coating film samples 6-2 to 6-4 were prepared.
  • This coating composition 7-1 was spray-coated on a polystyrene plate (150mm x 80mm x 5mm) so that the thickness after drying was 5 / zm, and left at 60 ° C for 30 minutes to prevent corrosion. Dirty coating sump (Sample 7-1) was prepared.
  • composition 7-2 to 7-C2 The same components were used, and an organic solvent D and a low-boiling polar organic solvent were blended in the amounts shown in Table 7 to prepare an antifouling paint composition (composition 7-2 to 7-C2). Was prepared, and antifouling coating film samples 7-2-7-C2 were prepared in the same manner as above.
  • the paint composition 8-1 was spray-coated on a polystyrene plate (150 mm x 80 mm x 5 mm) so that the thickness after drying was 5 / zm, and left at 60 ° C for 30 minutes for prevention. Dirty coating sump (Sample 8-1) was prepared.
  • antifouling paint compositions compositions 8-2 to 8-4.
  • antifouling coating film samples 8-2 to 8-4 were prepared in the same manner as above.
  • composition 91 Using xylene (bpl40 ° C) instead of toluene as the organic solvent for polymer (C), blended in the amounts shown in Table 9 and mixed by stirring to prepare a solvent-type antifouling paint composition (Composition 91)
  • This paint composition 91 was dried on a polystyrene plate (150 mm x 80 mm x 5 mm). The sample was spray-coated so as to have a concentration of 5 / zm and left at 60 ° C for 30 minutes to prepare an antifouling coating film sample (sample 9-1).
  • composition 9-2 an antifouling paint composition was prepared by mixing the amounts of xylene and diacet alcohol at the ratios shown in Table 8, and the antifouling coating film sample was prepared in the same manner as described above. 9-2 made
  • colloidal silica which is a hydrophilic material
  • colloidal silicas 1 to 3 having different average particle sizes in the components shown in Table 10 were blended in the amounts shown in the same table, and mixed by stirring.
  • Soil paint compositions compositions 10-1 to 10-3) were prepared.
  • Colloidal silica 1 IPA-STS manufactured by Nissan Chemical Industries, Ltd. Number average particle diameter of silica 7 to 10 nm. 30-31 isopropanol dispersion of mass 0/0 Colloidal silica 2: IPA-ST manufactured by Nissan Chemical Industries, Ltd. Number average particle size of silica 10-15 nm. Isopropanol dispersions of 30-31 mass 0/0
  • Colloidal silica 3 IPA-STL manufactured by Nissan Chemical Industries, Ltd. Silica number average particle size 40-50 ⁇ m. 30-31 isopropanol dispersion of mass 0/0
  • This coating composition 10-1 to: LO-3 was spray-coated on a polystyrene plate (150 mm x 80 mm x 5 mm) so that the thickness after drying was 5 m, and the coating was performed at 60 ° C for 30 minutes. The samples were allowed to stand to prepare antifouling coating film samples (samples 10-1 to L0-3).
  • an antifouling paint composition capable of exhibiting an excellent antifouling effect even when a small amount of a hydrophilic material is used and a hydrophobic polymer for a general-purpose paint which is inexpensive is used. It comes out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)

Abstract

 塗料用ポリマーの種類によらず、しかも親水性材料の低濃度の配合で均一な防汚表面を形成し得る防汚塗料組成物を提供する。親水性材料(A)と塗料用疎水性ポリマー(B)と該塗料用疎水性ポリマー用の有機溶剤(C)と他の有機溶剤(D)とからなり、該他の有機溶剤(D)が該塗料用疎水性ポリマー用の有機溶剤(C)の沸点よりも5°C以上高い高沸点有機溶剤であり、さらに該親水性材料(A)/疎水性ポリマー(B)の割合が1/99~50/50(質量%比)である防汚塗料組成物。

Description

明 細 書
防汚塗料組成物
技術分野
[0001] 本発明は、防汚性に優れ、かつ汎用の塗料榭脂を使用できる防汚塗膜を提供する ことができる防汚塗料組成物に関する。
背景技術
[0002] 防汚技術における現在の状況は、表面を高度に疎水性 (撥水撥油性)とする方法、 表面を高度に親水化する方法、光触媒を配合する方法のほか、塗膜表面をミクロ相 分離構造とし親水性汚れも疎水性汚れも付着しな ヽようにする方法が知られて ヽる。
[0003] たとえば特開 2003— 160681号公報、特開 2003— 161460号公報には市販の アクリル系クリア塗料 (アクリル榭脂とアルコキシシランとコロイダルシリカとからなる塗 料組成物)を塗布してミクロ相分離構造を発現させようとしているが、使用するコロイ ダルシリカの量を多量にしなければコロイダルシリカを均一に表面に分散できず、表 面構造の機械的強度、緻密性と 、つた面にぉ 、てまだまだ改善が必要である。
[0004] また特開 2003— 211569号公報にはそれぞれ 0. 04〜: L Ocm2の親水性塗膜領 域と疎水性塗膜領域が交互に配置されている塗膜により雨筋汚れを防止することが 記載されているが、こうした大きな面積での親水 疎水構造では多種多様な空気中 の汚染付着性物質に曝される屋外物品などの汎用物品における付着防止の分野で は付着防止能が充分に達成できな!/、。
[0005] さらに国際公開第 WO94Z06870号パンフレット、国際公開第 W096Z26254号 パンフレットには、各種樹脂にオルガノシリケートのオリゴマーやポリマーを配合して 表面を全面または部分的に親水化することが記載されている力 オルガノシリケート を表面に均一に分布させる手段については記載されておらず、主たる防汚性は塗料 榭脂の選定 (たとえば防汚性に優れたフッ素榭脂ゃシリコーン榭脂の使用)に依存し ている。
[0006] このように、単に親水性材料を配合しただけでは、性質や形状、大きさの異なる汚 れゃ物質の付着に万遍なく対応することには限界がある。 発明の開示
[0007] 本発明は、塗料用ポリマーの種類によらず、し力ゝも親水性材料の低濃度の配合で 均一な防汚表面を形成し得る防汚塗料組成物を提供することにある。
[0008] 本発明者らは鋭意実験と考察を繰返し、使用する溶剤を特定の組合せにすること により、防汚性を発揮するためには多量の親水性材料が必要であるとの従来の常識 を覆し、意外なことに、親水性材料の含有量が低い範囲において防汚性が向上する との知見を得、さらにかかる知見に基づき適用範囲を広く検討した結果、本発明を完 成するに至った。
[0009] すなわち本発明は、親水性材料 (A)と塗料用疎水性ポリマー (B)と該塗料用疎水 性ポリマー用の有機溶剤 (C)と他の有機溶剤 (D)とからなり、該他の有機溶剤 (D) が該塗料用疎水性ポリマー用の有機溶剤 (C)の沸点よりも 5°C以上高い高沸点有機 溶剤であり、さらに該親水性材料 (A) Z疎水性ポリマー(B)の割合が 1Z99〜50Z 50 (質量%比)である防汚塗料組成物に関する。
[0010] 本発明はまた、本発明の防汚塗料組成物を硬化して得られる防汚塗膜および該防 汚塗膜を有する物品にも関する。
[0011] なお、本発明において「沸点」とは、 1気圧下における沸点であり、沸点が温度範囲 で表わされる場合はその中間値を ヽぅ。
図面の簡単な説明
[0012] [図 1]実施例 4〜10で採用した加速防汚試験に用いる防汚試験装置の概略図である 発明を実施するための最良の形態
[0013] 本発明の防汚塗料組成物は、親水性材料 (Α)と塗料用疎水性ポリマー (Β)と塗料 用疎水性ポリマー (Β)用の有機溶剤 (C)と他の有機溶剤 (D)とからなり、 (I)他の有 機溶剤 (D)が塗料用疎水性ポリマー用の有機溶剤 (C)の沸点よりも 5°C以上高!、高 沸点有機溶剤であり、さらに (Π)該親水性材料 (A) Z疎水性ポリマー (B)の割合が 1 /99-50/50 (質量%比)である組成物である。
[0014] 本発明にお ヽて、他の有機溶剤 (D)が親水性材料 (A)の分散媒として機能する形 態が望ましぐし力も塗料用疎水性ポリマー (B)よりも親水性材料 (A)との親和性が 高いことがあげられる。この条件を満たす組合せであれば、有機溶剤 (C)および有機 溶剤 (D)カ^、ずれも極性有機溶剤であってもよ 、し、 V、ずれか一方が極性有機溶剤 で他方が非極性有機溶剤であってもよいが、特に好ましい組合せとしては、塗料用 疎水性ポリマー (B)用の有機溶剤 (C)が非極性有機溶剤 (C1)であり、かつ前記他 の有機溶剤 (D)が親水性材料 (A)の分散用の極性有機溶剤 (D1)である組合せで ある。
[0015] この実施形態の特徴の 1つは、高沸点極性有機溶剤 (D1) (たとえば沸点が 115°C 以上と比較的高!ヽ沸点の溶剤)とその高沸点極性有機溶剤 (D1)よりも沸点が 5°C以 上低い非極性有機溶剤 (C1)とを併用することにある。
[0016] その併用 (組合せ)のとき、特に親水性材料 (A)の低濃度範囲で防汚作用が有効 である理由は必ずしも明らかではないが、つぎの機構であると推察される。
[0017] これらの特定の有機溶剤が存在している塗料組成物では、塗料用疎水性ポリマー が非極性有機溶剤に溶解して 、る塗料用疎水性ポリマー溶液中に、親水性材料が 分散媒として高沸点極性有機溶剤を伴って低濃度で均一に分散しているものと考え られる。親水性材料がある濃度を超えると親水性材料同士の凝集が始まり、均一分 散状態が壊れるので、親水性材料はそうした凝集現象が生じな!/ヽ範囲とする必要が ある。
[0018] 問題は、力かる均一分散状態を保ったまま塗膜を形成することであるが、本発明で は親水性材料を均一分散させている極性有機溶剤の沸点が非極性有機溶剤よりも 高いため、塗膜を形成して乾燥する間に、まず、非極性有機溶剤が主として揮散して いき、塗膜中の塗料用疎水性ポリマー濃度が上昇し、塗膜のマトリックスを形成し始 める。このとき、極性有機溶剤は沸点が高いだけではなく親水性材料と親和性をもつ ているため、揮散速度が遅い。その結果、親水性材料の均一分散状態を保ったまま 、塗膜を形成していくものと考えられる。
[0019] 親水性材料が多量に配合されて 、る場合、たとえば最密充填の状況であれば、本 発明の溶剤の組合せは不要であるが、その分、塗膜の機械的強度や付着性などが 低下するほか、コスト的にも不利になる。
[0020] 本発明において、塗料用の有機溶剤 (C)は、塗料用疎水性ポリマー (B)を均一に 溶解分散させてマトリックス層を形成するために使用され、沸点が他の有機溶剤 (D) よりも 5°C以上低いものである。しかし、使用する他の有機溶剤(D)の沸点によって、 具体的に使用する有機溶剤 (C)は異なり、高 ヽ沸点の他の有機溶剤 (D)を使用す る場合は有機溶剤 (C)の沸点が 115°C以下である必要はない。
[0021] また、前記のように塗料用有機溶剤 (C)は塗料用疎水性ポリマー (B)を溶解して塗 膜を形成させ得る溶剤であれば極性有機溶剤 (C2)でもかまわな 、が、非極性有機 溶剤(C1)であることが好ましい。
[0022] 非極性有機溶剤 (C1)の好ま 、具体例としては、たとえば沸点 80〜150°Cの芳 香族炭化水素系溶剤、沸点 50〜130°Cの脂肪族炭化水素系溶剤などが例示できる
[0023] 沸点 80〜150°Cの芳香族炭化水素系溶剤としては、たとえばベンゼン (沸点 80. 1 °C)、トルエン(沸点 110°C)、キシレン(沸点 140°C)、ェチルベンゼン(沸点 136°C) 、スチレン (沸点 145°C)などが例示できる。
[0024] 沸点 50〜130°Cの脂肪族炭化水素系溶剤としては、たとえば n—へキサン (沸点 6 5〜69°C)、ヘプタン(沸点 93〜99°C)、オクタン(沸点 110〜116°C)、イソオクタン( 沸点 102〜113°C)、イソへキサン(沸点 57〜61°C)、イソブタン(沸点 80〜91°C)、 シクロへキサン(沸点 81°C)、 n—ヘプタン(沸点 98°C)、トリメチルペンタン(沸点 99 °C)、メチルシクロへキサン (沸点 10 などが例示できる。これらは同種または異種 の溶剤を混合して使用してもよい。
[0025] また、極性の塗料用有機溶剤 (C2)としては、後述する高沸点極性有機溶剤 (D1) や低沸点極性有機溶剤 (D2)から選択される。
[0026] 本発明において、他の有機溶剤 (D)は、塗料組成物中に親水性材料を均一に安 定して分散させるために、またさらに塗膜の形成時にその均一分散を維持するため に使用され、この観点から、極性溶剤が好ましぐ特に沸点が 115°C以上である高沸 点極性有機溶剤 (D1)が好ましい。しかし、同等の機能を奏するものであれば非極性 有機溶剤であっても力まわない。そうした他の有機溶剤 (D)として使用し得る非極性 有機溶剤としては、前記の非極性有機溶剤 (C1)などのうちから塗料用疎水性ポリマ 一 (B)用の非極性有機溶剤 (C1)よりも沸点が 5°C以上高 、ものが例示できる。 [0027] 本発明において、好ましい高沸点極性有機溶剤 (D1)としては、沸点が 115°C以上 、さらには 150°C以上、また 250°C以下、さらには 210°C以下である高沸点極性有機 溶剤から、組み合わせる非極性有機溶剤 (C1)を考慮して選択すればよい。沸点が 115°Cよりも低 、と均質分散性を保ったまま塗膜を形成し難くなることがある。一方、 高くなりすぎると塗膜の形成に時間が掛カりすぎたり、硬化阻害を起こしたりする傾向 にある。
[0028] 具体例としては、たとえば沸点 120〜250°Cのエーテル系溶剤、沸点 115〜250 °Cの高沸点アルコール系溶剤、沸点 115〜250°Cのエステル系溶剤、沸点 115〜2 20°Cのケトン系溶剤、沸点 135〜225°Cのエステルエーテル系溶剤などが例示でき る。
[0029] 沸点 120〜250°Cのエーテル系溶剤としては、たとえばエチレングリコールモノエ チルエーテル(沸点 135°C)、エチレングリコールモノブチルエーテル(沸点 170°C) 、プロピレングリコールモノメチルエーテル(PGME。沸点 120°C)、ジエチレングリコ ールモノェチルエーテル(沸点 200°C)、ジエチレングリコールモノブチルエーテル( 沸点 225°C)、ジエチレングリコールジェチルエーテル(沸点 189°C)、ジェチルエー テル(沸点 121. 4°C)、モノブチルエーテル(沸点 171. 2°C)、モノ n—へキシルエー テル(沸点 208. 3°C)、モノフエ-ルエーテル(沸点 244. 7°C)、モノ 2 ェチルブ チルエーテル(沸点 196. 8°C)、ジブチルエーテル(沸点 203°C)、プロピレングリコ ールメチルエーテル(沸点 189°C)、テルペンメチルエーテル(沸点 195〜225°C)な どが例示できる。
[0030] 沸点 115〜250°Cの高沸点アルコール系溶剤としては、たとえば n—ブタノール( 沸点 117°C)、メトキシブタノール(沸点 160°C)、ジァセトアルコール(沸点 168°C)、 シクロへキサノール(沸点 161°C)、エチレングリコール(沸点 197°C)、プロピレングリ コール(沸点 188°C)、 1, 4 ブタンジオール(沸点 235°C)、、 n—ァミルアルコール (沸点 138°C)、イソァミルアルコール(沸点 130. 5°C)、 3—メトキシブチルアルコー ル(沸点 157〜162°C)、 n—へキシルアルコール(沸点 157. 2°C)、 2—メチルペン タノール(沸点 147. 5°C)、 sec へキシルアルコール(沸点 131. 8°C)、 2 ェチル ブチルアルコール(沸点 148. 9°C)、 sec へプチルアルコール(沸点 160. 4°C)、 ヘプタノ一ルー 3 (沸点 156. 2°C)、メチルシクロへキサノール(沸点 174°C)、 sec— ォクチルアルコール(沸点 178. 6°C)、 n—ォクチルアルコール(沸点 195〜235°C) 、 2—ェチルへキシルアルコール(沸点 183. 5°C)、フエノール(沸点 182°C)、 2, 3 —ブチレングリコール(沸点 182°C)、 1, 2—プロピレングリコール(沸点 188. 2°C)、 o—タレゾール(沸点 190.6°C)、 3, 3, 5—トリメチルシクロへキサノール(沸点 198°C )、エチレングリコール(沸点 197. 2°C)、 2—メチルー 2, 4—ペンタンジオール(沸点 197〜198. 5°C)、ペンタジオール(沸点 199°C)、 m—タレゾール(沸点 202. 2°C) 、 p—タレゾール(沸点 202. 3。C)、フエ-ルメチルカルビノール(203. 9。C)、 1, 3— ブチレングリコール(204〜207. 5°C)、ベンジルアルコール(205°C)、ノ -ルアルコ ール(沸点 213. 5°C)、へキサンジオール(沸点 220. 8°C)、ヘプタンジオール(沸 点 224. 9°C)、 n—デカノール(沸点 229〜233°C)、 sec—ゥンデジルアルコール( 沸点 225. 4°C)、トリメチルノ-ルアルコール(沸点 225. 2°C)、ジプロピレングリコー ル(沸点 231. 8°C)、 2—ェチルー 1, 3へキサンジオール(沸点 244°C)、ジエチレン グリコール (沸点 245°C)などが例示できる。
沸点 115〜250°Cのエステル系溶剤としては、たとえば蟻酸イソアミル (沸点 124.
2°C)、酢酸ェチル(沸点 120〜127°C)、酢酸 n—ブチル(沸点 126°C)、ジェチルカ ーボネート(沸点 126. 8°C)、酢酸 sec—ァミル(沸点 123〜145°C)、プロピオン酸 ブチル(沸点 130〜 145°C)、酢酸アミル混合物(沸点 115°C〜 156°C)、酢酸ェチレ ングリコールモノメチルエーテル(沸点 144. 5°C)、乳酸メチル(沸点 144. 8°C)、ァ クリル酸 n—ブチル(沸点 145°C)、酢酸メチルァミル(沸点 146. 3°C)、酢酸 n—アミ ル(沸点 147. 6°C)、乳酸ェチル(沸点 154°C)、酢酸エチレングリコールモノェチル エーテル(沸点 156. 4°C)、プロピオン酸イソアミル(沸点 150〜160°C)、酢酸 2— ェチルブチル(沸点 162. 4°C)、酢酸ブチル(沸点 160〜165°C)、酢酸イソアミル( 沸点 160〜180°C)、酢酸 3—メトキシブチル(沸点 164〜174°C)、ァセト酢酸メチル (沸点 171. 7°C)、酢酸シクロへキシル (沸点 170〜180°C)、ジ蟻酸ダリコール (沸 点 177. 1°C)、ァセト酢酸ェチル (沸点 180. 7°C)、シユウ酸ジメチル(沸点 180〜1 90°C)、酢酸メチルシクロへキシル(オルト:沸点 182°C)、乳酸ブチル(沸点 188°C) 、酢酸メチルシクロへキシル (メタ:沸点 188°C)、ジ酢酸グリコール(沸点 190. 5°C)、 フマル酸ジメチル(沸点 192°C)、酢酸ノ-ル(沸点 192. 4°C)、酢酸 2 ェチルへキ シル(沸点 198. 6°C)、酢酸ジエチレングリコールモノメチルエーテル(沸点 209. 1 °C)、酢酸べンジル(沸点 216°C)、酢酸ジエチレングリコールモノェチルエーテル( 沸点 217. 7°C)、マレイン酸ジェチル(222〜225°C)、ホウ酸トリブチル(沸点 231 °C)、シユウ酸ジブチル(沸点 240〜255°C)、酢酸メトキシグリコール(沸点 244°C)、 酢酸ジエチレングリコールモノブチルエーテル(沸点 246. 4°C)などが例示できる。
[0032] 沸点 115〜220°Cのケトン系溶剤としては、たとえばメチルイソブチルケトン (沸点 1 16°C)、ブチル n—ブチルケトン(沸点 127. 2°C)、 2. 4 ペンタンジオン(沸点 140 . 5°C)、ェチルブチルケトン(沸点 147. 8°C)、メチル n—アミルケトン(沸点 150. 6 °C)、シクロへキサノン(沸点 156°C)、メチルシクロへキサノン(沸点 169. 0〜170. 5 °C)、ジイソプチルケトン(沸点 168°C)、ジアセトンアルコール(沸点 166〜169. 1°C )、メチルへキシルケトン(沸点 174°C)、フェンチオン(沸点 191°C)、ァセトニルァセト ン(沸点 192. 2°C)、ァセトフ ノン(沸点 201. 7°C)、イソホロン(沸点 215. 2°C)な どが例示できる。
[0033] 沸点 135〜225°Cのエステルエーテル系溶剤としては、たとえば酢酸セロソルブ( 沸点 135〜160°C)、酢酸メチルセ口ソルブ(沸点 144°C)、酢酸ェチルセ口ソルブ( 沸点 156°C)、酢酸メトキシブチル(沸点 166〜176°C)、酢酸ブチルセ口ソルブ(沸 点 188〜195°C)、酢酸カービトール(沸点 204〜225°C)などが例示できる。
[0034] 高沸点のアミド系溶剤としては、たとえば N—メチル 2 ピロリドン (沸点 204°C)、 N, N ジメチルァセトアミド(沸点 165°C)、 N, N—ジメチルホルムアミド(沸点 153 °C)などが例示できる。
[0035] 高沸点極性有機溶剤としては、これらの同種または異種の溶剤を混合して使用し てもよい。
[0036] 有機溶剤 (D)は有機溶剤 (C)の沸点よりも 5°C以上高 、ことが必要である。ただし、 この沸点差は、いずれかの溶剤を 2種以上(系としては 3種類以上)使用する場合は 、つぎの基準とする。
[0037] すなわち、有機溶剤 (D)の場合は、使用量 (質量)の最も多い溶剤を基準溶剤とし 、使用量が同じである場合は最も沸点の高い溶剤を基準溶剤とする。有機溶剤 (C) の場合も同様に、使用量 (質量)の最も多い溶剤を基準溶剤とし、使用量が同じであ る場合は最も沸点の高い溶剤を基準溶剤とする。したがって、場合によっては、一部 の有機溶剤 (C)として有機溶剤 (D)の基準溶剤との沸点差が 5°C未満またはそれよ りも高 、沸点の有機溶剤が存在して 、る場合や、一部の有機溶剤 (D)として有機溶 剤 (C)の基準溶剤との沸点差が 5°C未満またはそれよりも低い沸点の有機溶剤が存 在している場合もある。
[0038] 沸点差は 5°C以上であれば溶剤の種類や組合せによって実験的に選定すればよ いが、好ましくは 10°C以上、さらには 30°C以上である。沸点差が大きくなればなるほ ど親水性材料がより低濃度で、均一分散性を保ったまま塗膜を形成できるようになる 。上限は、塗料組成物の調製の容易さや組成物の安定性を考慮して決定すればよ い。
[0039] 本発明の好ましい実施形態において、さらに極性有機溶剤として、沸点が 115°C未 満の低沸点極性有機溶剤 (D2)を存在させてもょ ヽ。この低沸点極性有機溶剤 (D2 )は、通常、塗料組成物を調製する際に親水性材料を均一に分散させるために配合 されており、塗布後は速やかに揮散しても高沸点極性有機溶剤 (D1)が存在するの で、親水性材料の分散の均一性は維持できる。
[0040] そうした低沸点極性有機溶剤 (D2)としては、たとえばメタノール (沸点 65°C)、エタ ノール(沸点 78°C)、イソプロパノール(沸点 82. 4°C)、イソプロピルアルコール(沸点 82. 3°C)、ァリルアルコール(沸点 97. 1°C)、プロピルアルコール(沸点 97. 2°C)、 イソブタノール(沸点 107°C)、 sec—ブタノール(沸点 99. 5°C)、 tーブタノール(沸点 82. 4°C)などの低沸点アルコール類;アセトン(沸点 56°C)、メチルェチルケトン(沸 点 79. 6°C)、ジェチルケトン(沸点 102°C)、メチル n—プロピルケトン(沸点 103°C) などのケトン類;蟻酸メチル (沸点 32°C)、蟻酸ェチル (沸点 54. 3°C)、酢酸ェチル( 沸点 77°C)、蟻酸プロピル (沸点 81°C)、蟻酸ブチル (沸点 106. 6°C)、酢酸イソブ チル (沸点 110〜 119°C)などのエステル類などが例示できる。さらには水(沸点 100 °C)なども不可避的に、あるいは少量含まれて 、てもよ!/、。
[0041] また、ポリマー用有機溶剤 (C)としても、量的に少量 (主たるポリマー用有機溶剤 (C )よりも少な 、量)であれば、他の有機溶剤 (D)との沸点差が 5°C未満または他の有 機溶剤 (D)よりも高 ヽ沸点の有機溶剤 (C)を配合してもよ ヽことは前述のとおりであ る。
[0042] 具体的なポリマー用有機溶剤 (C)と他の有機溶剤 (D)の組合せは、親水性材料お よび塗料用疎水性ポリマーの種類や顔料などの各種添加剤によって決定される。
[0043] 本発明の防汚塗料組成物におけるポリマー用有機溶剤 (C)と他の有機溶剤 (D)の 好まし!/ヽ具体的な組合せとしては、非極性有機溶剤 (C1)と高沸点極性有機溶剤 (D
1)があげられる。それらの組合せの具体例を例示するが、本発明はこれらの例に限 定されるものではない。なお、カツコ内は沸点 (°C)である。
[0044] (組合せ例 1)
(1— 1)非極性有機溶剤 (C1)
沸点 80〜150°Cの芳香族炭化水素系溶剤
(1— 2)高沸点極性有機溶剤 (D1)
沸点 120〜250°Cのエーテル系溶剤および Zまたは沸点 115〜250°Cの高沸点 アルコール系溶剤
(1— 3)他の溶剤 (任意)
沸点が 115°C未満の低沸点極性有機溶剤 (D2)
[0045] より具体的には、
(組合せ例 la)
(1— la)非極性有機溶剤
トルエン(110)
(1 2a)高沸点極性有機溶剤
ジァセトアルコール(168)、プロピレングリコールモノメチルエーテル(120)など (1 3a)他の溶剤
イソプロパノール(82. 4)など
(組合せ例 lb)
(1— lb)非極性有機溶剤
キシレン(140)
(1 2b)高沸点極性有機溶剤 ジァセトァノレコーノレ ( 168)など
(1 3b)他の溶剤
プロピレングリコールモノメチルエーテル(120)、イソプロパノール(82. 4)など (組合せ例 lc)
(1— lc)非極性有機溶剤
トルエン(110)
(1 2c)高沸点極性有機溶剤
プロピレングリコールモノメチルエーテル(120)など
(1 3c)他の溶剤
イソプロパノール(82. 4)、メタノール(65)、エタノール(78)など
(組合せ例 Id)
(1— Id)非極性有機溶剤
トルエン(110)
(1 2d)高沸点極性有機溶剤
プロピレングリコールモノメチルエーテル(120)など
(1 3d)他の溶剤
イソプロパノール(82. 4)、メタノール (65)、エタノール (78)、 n—へキサン(65 9)など
(組合せ例 le)
(1— le)非極性有機溶剤
ベンゼン(80. 1)
(1 2e)高沸点極性有機溶剤
プロピレングリコールモノメチルエーテル(120)など
(1 3e)他の溶剤
イソプロパノール(82. 4)、メタノール(65)、エタノール(78)など
があげられる。
(組合せ例 2)
(2—1)非極性有機溶剤 (C1) 沸点 50〜130°Cの脂肪族炭化水素系溶剤
(2- 2)高沸点極性有機溶剤 (D1)
沸点 120〜250°Cのエーテル系溶剤および Zまたは沸点 115〜250°Cの高沸点 アルコール系溶剤など
(2— 3)他の溶剤 (任意)
沸点が 115°C未満の低沸点極性有機溶剤 (D2)
[0047] より具体的には、
(組合せ例 2a)
(2— la)非極性有機溶剤
メチルシクロへキサン(101)
(2— 2a)高沸点極性有機溶剤
プロピレングリコールモノメチルエーテル(120)など
(2— 3a)他の溶剤
イソプロパノール(82. 4)、メタノール(65)、エタノール(78)など
があげられる。
[0048] つぎに本発明にお ヽて配合する親水性材料 (A)は、親水性微粒子であっても、ォ ルガノシリケートのオリゴマーまたはコオリゴマーであってもよい。
[0049] 親水性微粒子の場合、数平均粒子径が 5nm以上であるのが幅広く汚れの付着を 防止できる点で好ましぐ上限は 200nm、さらには 50nmであることが細菌や生物類 の付着の防止に効果的である点および塗膜の透明性を確保する点で好ましい。具 体的には使用環境や対象となる付着物質によって選択される。
[0050] そうした親水性微粒子としては、シリカ微粒子、酸化チタン微粒子、アパタイト微粒 子、光触媒機能性アパタイト微粒子、金属 (銅など)微粒子などが好適であり、 2種以 上を併用してもよい。
[0051] シリカ微粒子としては、たとえばコロイダルシリカ、ヒュームドシリカなどが好適である 。市販のコロイダルシリカとしては、たとえば日産化学 (株)製の MA—ST (数平均粒 子径 10〜15nm)、 MA— ST— MS (数平均粒子径 17〜23nm)などのメタノール分 散液; IPA—ST (数平均粒子径 10〜15nm)、 IPA—ST—MS (17〜23nm)、 IPA ST— L (40〜50nm)などのイソプロパノール分散液; MEK— ST (数平均粒子径 10〜 15nm)、 MEK— ST— MS (数平均粒子径 17〜 23nm)などのメチルェチルケ トン分散液; MIBK— ST (数平均粒子径 10〜 15nm)などのメチルイソブチルケトン 分散液、 PM A— ST (数平均粒子径 10〜 15nm)などのプロピレングリコールモノメ チルエーテルアセテート分散液、 DMAC— ST (数平均粒子径 10〜15nm)などの ジメチルァセトアミド分散液があげられる。
[0052] 酸ィ匕チタン微粒子は不活性な酸ィ匕チタンであってもよ!/ヽし、光触媒機能を有する酸 化チタンであってもよい。前者の具体例としては、顔料ゃフイラ一として通常使用され ているもののうち、微粒子状のものが使用できる。
[0053] 光触媒機能性の酸ィ匕チタン微粒子としては、たとえば、石原産業 (株)製の ST—0
1、 ST— 21、そのカロェ品 ST— K01、 ST— Κ03、水分散タイプ STS— 01、 STS— 0
2、 STS— 21、堺ィ匕学工業 (株)製の SSP— 25、 SSP— 20、 SSP— M、 CSB、 CSB — M、塗料タイプの LACT1— 01、 LACTI— 03— A、ティカ (株)製の光触媒用酸化 チタンコーティング液 TKS— 201、 TKS— 202、 TKC— 301、 TKC— 302、 TKC — 303、 TKC— 304、 TKC— 305、 TKC— 351、 TKC— 352、光触媒用酸ィ匕チタ ンゾル TKS— 201、 TKS— 202、 TKS— 203、 TKS— 251、アジテックス(株)製の PTA、 TO、 ΤΡΧなどをあげることができる。ただし、これらの酸ィ匕チタン以外であつ ても使用可能である。
[0054] その他、酸ィ匕チタンは、アパタイトで表面処理したものを使用してもよい。アパタイト で処理することにより、細菌やウィルスを吸着する効果が高まり、得られた塗膜の殺菌 能力が向上する。
[0055] なお、光触媒能を有する酸化チタン粒子の場合は、その光触媒能や殺菌能のみを 目的として、本発明における親水性材料と併用することもでき、その場合は比較的大 きな粒径 (たとえば 200nmを超える)のものでもよく、また疎水性の粒子であってもよ い。
[0056] アパタイト微粒子は、たとえば式:
A (BO ) X
x y z s
(式中、 Aは Ca、 Co、 Ni、 Cu、 Al、 La、 Cr、 Fe、 Mgなどの金属原子、 Bは Pまたは S 、 Xは水酸基またはハロゲン原子)で表される複合金属酸ィ匕物の微粒子である。この アパタイトは、粒径も lOnm程度のものも製造でき、上記シリカ微粒子と同様に均一 分散性が良好である。
[0057] 光触媒機能を有するアパタイトは、たとえば上記式で示される複合金属酸ィ匕物 (た とえばカルシウムヒドロキシアパタイトなど)中の金属原子 A (たとえば Caなど)の少な くとも一部が T源子などの光触媒能を付与し得る原子で置換されたものであり、特開 2000— 327315号公報、特開 2003— 175338号公報、特開 2003— 334883号公 報などに詳しく開示されて!、る。
[0058] この光触媒機能性アパタイトは他の光触媒材料とは異なり、基材ポリマーを劣化さ せることが少なぐ塗膜としての耐久性にも優れている。さらに、粒径も lOnm程度の ものも製造でき、上記シリカ微粒子と同様に均一分散性が良好である。
[0059] なお、光触媒機能性アパタイト粒子の場合は、その光触媒能や殺菌能のみを目的 として、本発明における親水性材料と併用することもでき、その場合は比較的大きな 粒径 (たとえば 200nmを超える)のものでもよく、また疎水性の粒子であってもよい。
[0060] オノレガノシロキサンのオリゴマーまたはコオリゴマーとしては、たとえば国際公開第 WO94Z06870号パンフレットや国際公開第 W096Z26254号パンフレット、国際 公開 WO97Z45502号パンフレットに記載されている式(I): R SiX (式中、 Rは
P (4-p)/2 水素原子または 1種もしくは 2種以上の有機基、好ましくはアルキル基、より好ましくは 炭素数 1〜18の非置換アルキル基、最も好ましくは炭素数 3〜18のアルキル基、ま たはァリール基、好ましくはフエニル基; Xはアルコキシ基またはハロゲン原子であり、 pは 0<p< 2を満足する数である)で表されるオルガノシリケートの 1種または 2種以 上の加水分解重縮合物(シリコーンオリゴマーまたはコオリゴマー)が例示できる。
[0061] オルガノシリケートの具体例としては、たとえばテトラメトキシシラン、テトラエトキシシ ラン、テトラプロボキシシラン、テトラブトキシシラン、ジェトキシジメトキシシランなどの 4官能シリケート;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロルシ ラン、メチルトリブロムシラン、メチルトリイソプロポキシシラン、メチルトリ t—ブトキシシ ラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリクロルシラン、ェチ ルトリブロムシラン、ェチルトリイソプロポキシシラン、ェチルトリ t—ブトキシシラン、 n— プロピルトリメトキシシラン、 n—プロピルトリエトキシシラン、 n—プロピルトリクロルシラ ン、 n—プロピルトリブロムシラン、 n—プロピルトリイソプロポキシシラン、 n—プロビルト リ t—ブトキシシラン、 n—へキシルトリメトキシシラン、 n—へキシルトリエトキシシラン、 n キシルトリクロルシラン、 n キシルトリブロムシラン、 n キシルトリイソプロ ポキシシラン、 n キシルトリ t—ブトキシシラン、 n—デシノレトリメトキシシラン、 n- デシルトリエトキシシラン、 n—デシルトリクロルシラン、 n—デシルトリブロムシラン、 n デシルトリイソプロポキシシラン、 n—デシルトリ t—ブトキシシラン、 n—オタタトリメト キシシラン、 n—オタタトリエトキシシラン、 n—オタタトリクロルシラン、 n—オタタトリブ口 ムシラン、 n—ォクタトリイソプロポキシシラン、 n—ォクタトリ t—ブトキシシラン、フエ二 ルトリメトキシシラン、フエニルトリエトキシシラン、フエニルトリクロルシラン、フエニルトリ ブロムシラン、フエニルトリイソプロポキシシラン、フエニル t—ブトキシシラン、ジメチル ジクロルシラン、ジメチルジブ口ムシラン、ジメチルジメトキシシラン、ジメチルジェトキ シシラン、ジフエニルジクロルシラン、ジフエニルジブ口ムシラン、ジフエ二ルジメトキシ シラン、ジフエ二ルジェトキシシラン、フエニルメチルジクロルシラン、フエニルメチルジ ブロムシラン、フエ二ルメチルジメトキシシラン、フエ二ルメチルジェトキシシラン、ビニ ルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリェトキ シシラン、ビュルトリイソプロポキシシラン、ビュルトリ t—ブトキシシラン、トリフルォロプ 口ピルトリクロルシラン、トリフルォロプロピルトリブロムシラン、トリフルォロプロピルトリ メトキシシラン、トリフルォロプロピルトリエトキシシラン、トリフルォロプロピルトリイソプ ロポキシシラン、トリフルォロプロピルトリ t ブトキシシラン、 γ—グリシドキシプロピル メチノレジメトキシシラン、 γ—グリシドキシプロピノレメチノレジェトキシシラン、 γ—グリシ ドキシプロピルトリメトキシシラン、 Ίーグリシドキシプロピノレトリエトキシシラン、 Ύーグ リシドキシプロピルトリイソプロポキシシラン、 γ—グリシドキシプロピルトリ t—ブトキシ ピルメチルジェトキシシラン、 γ—メタアタリロキシプロピルトリメトキシシラン、 γ—メタ アタリロキシプロピルトリエトキシシラン、 Ί—メタアタリロキシプロピルトリイソプロポキ シシラン、 γ メタアタリロキシプロピルトリ t—ブトキシシラン、 γ—ァミノプロピルメチ ルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシラン、 γ—ァミノプロピルトリ メトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルトリイソプロボ キシシラン、 γ—ァミノプロピルトリ t—ブトキシシラン、 γ メルカプトプロピルメチル ジメトキシシラン、 メルカプトプロピルメチルジェトキシシラン、 γ メルカプトプロ ピルトリメトキシシラン、 γ—メルカプトプロピルトリエトキシシラン、 γ—メルカプトプロ ピルトリイソプロポキシシラン、 γ メルカプトプロピルトリ t ブトキシシラン、 j8 (3、 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 13一(3、 4 エポキシシクロへ キシル)ェチルトリエトキシシランなどの 2〜3官能性シリケートなどが例示できる。
[0062] 市販品としては、たとえばコルコート社製のメチルシリケ一トシリーズなどが例示でき る。
[0063] 親水性材料 (A) Z疎水性ポリマー(B)の割合は 1Z99〜50Z50 (質量%比)、好 ましくは 1Ζ99〜45Ζ55 (質量%比)の範囲にする必要がある。上記のとおり、親水 性材料がこの特定の含有量の範囲で特異的に防汚効果が向上する。好ましい含有 量範囲は、親水性材料 (Α)の種類、有機溶剤 (D)の種類や量、塗料用ポリマー (Β) の種類や使用する添加剤などによって適宜選定すればよいが、親水性微粒子の場 合は、通常 5Ζ95 (質量%比)以上、さらには 10Ζ90 (質量%比)以上、特に 15Z8 5以上が好ましぐまた 30Ζ70 (質量%比)以下、さらには 25Ζ75 (質量%比)以下 が好ましい。一方、シリケート (コ)オリゴマーの場合は 5Ζ95 (質量%比)以下でも効 果を奏する場合があり、 1/99 (質量%比)以上で 30Ζ70 (質量%比)以下の範囲で 選定することが望ましい。
[0064] 本発明で塗膜のマトリックスを形成する塗料用疎水性ポリマー (Β)は、親水性材料 ( Α)の分散性、対水接触角の差などを考慮して親水性材料に応じて適宜選択すれば よぐなかでも対水接触角が 60度以上のものが好適に採用できる。また、榭脂性でも エラストマ一性でもよ 、が、 V、ずれも塗膜の機械的物性を向上できる点力も架橋性ポ リマーであることが好まし!/、。
[0065] 塗料用疎水性ポリマー(Β)としては、非フッ素系の疎水性ポリマーであることが価格 、施工性 (焼付け条件)や、塗料調製時の取扱い性などの点で好ましいが、フッ素系 のポリマーであってもよ ヽ。
[0066] 塗料用疎水性榭脂としては、アクリル榭脂、アクリルシリコン榭脂、フッ素榭脂、シリ コーン榭脂、ウレタン榭脂、ポリエステル、ポリオレフインなどがあげられる。具体的に は、たとえばメチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピル (メタ)アタリ レート、ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ステアリル( メタ)アタリレートなどの(メタ)アクリル酸のエステル;スチレン、ビュルトルエンなどの 芳香族ビュルモノマー;エチレン、プロピレン、ブチレンなどのォレフィン;テトラフル ォロエチレン、トリフルォロエチレン、ビ-リデンフルオライド、トリクロ口トリフルォロェ チレン、パーフルォロォクチルェチル (メタ)アタリレートなどのフッ素含有モノマー;ビ -ルシランモノマー;ブタジエン;塩化ビュルなどの疎水性モノマーを単独でラジカル 重合反応して得られるホモポリマー、該疎水性モノマー同士またはそれらと共重合可 能な他のエチレン性不飽和モノマーとのコポリマーなどが好適なものとしてあげられ る。
[0067] 好適な疎水性榭脂としては、アクリル榭脂、アクリルシリコン榭脂、ウレタン榭脂など 力 価格の点や入手容易性、汎用性の点で有利である。
[0068] アクリル榭脂としては官能基を有する架橋性のアクリル榭脂が好ましぐ榭脂の疎水 性はエステル部分の置換基の疎水性を制御することでコントロールすることができる。
[0069] またアクリルシリコン榭脂としては、なかでも室温硬化性のアクリルシリコン榭脂が好 ましく例示できる。市販品としては、たとえば大日本インキ化学工業 (株)製の低ガラス 転移点型のアクリルシリコン榭脂であるアタリデック A— 9540、高ガラス転移点型の アクリルシリコン榭脂であるアタリデック BZ— 1161などが例示できる。
[0070] フッ素榭脂としては、従来公知のフッ素榭脂の中から選択できるが、耐候性、塗料 ィ匕、溶剤溶解性などに有利なことから、テトラフルォロエチレン (TFE)、クロ口トリフル ォロエチレン(CTFE)、へキサフルォロプロピレン(HFP)を主体とする共重合体が 好ましい。これらのフッ素榭脂は官能基を有する架橋性のものが好ましい。市販品と しては、たとえばダイキン工業 (株)製のゼッフルシリーズなどが例示できる。
[0071] 親水性材料との関係では、たとえばシリカ微粒子や酸ィ匕チタン微粒子、光触媒機 能性アパタイト微粒子、金属微粒子に対しては、官能基含有アクリルシリコン系榭脂 などが特に好ましい。
[0072] 架橋性の疎水性ポリマーを使用する場合は、それぞれのポリマーに使用される従 来公知の硬化剤を配合することが好ま 、。
[0073] 硬化剤としては、たとえば架橋性ポリマーの硬化性官能基が水酸基、カルボキシル 基、エポキシ基、アミノ基、メチロール基、アミド基などの場合は、ジメチルジメトキシシ ラン、メチルトリメトキシシラン、テトラメトキシシラン、ジェチルジェトキシシラン、ェチル トリエトキシシラン、テトラエトキシシランやこれらの縮合物などのシラン化合物などが 好ましくあげられる。市販品としては、たとえば大日本インキ化学工業 (株)製のアタリ デック A— 9585やアタリデック FZ— 523などが例示できる。
[0074] また、親水性粒子など固形分の分散性を高めるために各種の分散剤を使用しても よい。ただし、分散剤は塗膜を形成した後には親水性粒子表面に存在しなくなるもの を使用する。たとえば、塗膜の乾燥時に揮散する低分子量の分散剤が好ましいが、 塗膜を焼成する場合は高分子量の分散剤であっても焼成時に揮散または分解する 分散剤も使用可能である。
[0075] さらに必要に応じて、本発明の効果を損なわない範囲で各種添加剤を配合してもよ い。添加剤としては、たとえば顔料、染料、フィラー、酸化防止剤、レべリング剤、強化 用繊維、紫外線吸収剤、光触媒、光安定剤などがあげられる。
[0076] 他の有機溶剤 (D)の配合量は、親水性材料を上記特定濃度で均一に分散でき、 かつ塗膜の乾燥、硬化の間にその分散状態を維持できる量であり、親水性材料 (A) 、塗料用疎水性ポリマー (B)、有機溶剤 (C)の種類や量によって適宜選定される。た だし、少なすぎると乾燥時に親水性材料の分散安定性が低下することがあり、また多 すぎると乾燥に時間が掛カりすぎることがある。通常、親水性材料 100質量部に対し 、 50質量部以上、さらには 100質量部以上が好ましぐまた 10, 000質量部以下、さ らには 2, 000質量部以下が好ましい。
[0077] 有機溶剤 (C)の配合量は、塗料用疎水性ポリマーを均一に溶解または分散させる ことができる量であればよ!、が、少なすぎると疎水性ポリマーの膜ィ匕が早すぎて有機 溶剤 (D)が揮散しに《なることがあり、また多すぎると親水性材料が均一分散性を 保ったまま、塗膜を形成できなくなることがある。通常、塗料用疎水性ポリマー 100質 量部に対し、 100質量部以上、さらには 200質量部以上が好ましぐまた 10, 000質 量部以下、さらには 2, 000質量部以下が好ましい。 [0078] 塗料用疎水性ポリマー(B)の組成物中の濃度は、親水性材料 (A)の種類や量、塗 料用疎水性ポリマー (B)の種類、有機溶剤 (C)の種類や量によって適宜選定される 。通常、 2質量%以上、さらには 5質量%以上が好ましぐまた 50質量%以下、さらに は 20質量%以下が好まし 、。
[0079] 本発明の組成物の調製は、塗料用疎水性ポリマーの有機溶剤 (C)溶液 (または分 散液)に親水性材料の有機溶剤 (D)分散液 (または溶液)を混合することにより行うこ とがでさる。
[0080] 塗装方法は特に限定されず、たとえば刷毛塗り法、スプレー法、デイツビング法、口 ールコート法などの均一塗膜が形成できる方法であればよい。
[0081] 塗装後の処理としては、自然乾燥を含む乾燥処理、塗料用疎水性ポリマーの種類 によっては硬化 (架橋)処理、焼成処理などを、適宜必要に応じて行うことができる。
[0082] 塗膜の膜厚は特に制限はないが、 200nm以上、さらには 500nm以上、特に 5 μ m 以上とすることが塗膜強度および適切な防汚性を有する塗膜が形成できる点で好ま LV、。上限は塗膜にヒビゃ割れが生じなければ特に限定されな!、。
[0083] 本発明にお 、ては、乾燥時に親水性材料の均一分散状態が維持されながら、有 機溶剤 (C)および有機溶剤 (D)が揮散して ヽき、塗料組成物中の均一分散状態が 乾燥後の塗膜に実質的に維持される。
[0084] 塗膜表面またはその近傍では疎水性領域と親水性領域が均一に分散している状 態、いわゆるミクロ相分離構造を呈しており、その結果、比較的少量の親水性材料で も優れた防汚性が発揮される。
[0085] なお、以上の説明においては塗料用ポリマーとして疎水性ポリマー(B)を用いてい る力 塗料用ポリマーとして親水性ポリマーを使用することも可能であり、その場合は 親水性材料に代えて疎水性材料を使用すればよい。しかし、この組合せは価格の面 で本発明の組合せに劣るため、その点がこれからの検討課題である。
[0086] 本発明の防汚塗料組成物の基本組成について、これまでに詳細かつ具体的に説 明したが、本発明の塗料組成物にさらに各種の機能、性質を付与してもよい。ただし 、添加剤が本発明における親水性材料および疎水性ポリマーに相当する場合は、そ れらの添加剤も本発明の要件を満たす必要がある。 [0087] (帯電防止機能)
導電性の材料、たとえば導電性ポリマー、導電性金属フィラー、カーボンナノチュー ブ、カーボンナノホーンなどを配合し、塗膜表面に分散させることにより、塗膜の帯電 防止作用を向上させ、静電気的な付着性物質の付着をさらに防止できる。
[0088] こうした優れた帯電防止効果を得るには、表面抵抗値を 1012 Ω以下にすることが望 ましい。
[0089] (抗菌防黴機能)
Ag、 Zn、 Cuなどの抗菌防黴作用を有する金属を親水性粒子として採用するかま たは併用することにより、塗膜表面に付着防止に加えて抗菌防黴機能を付与するこ とがでさる。
[0090] (耐衝撃性)
ゴム成分を配合するか、熱可塑性エラストマ一を配合することにより、塗膜表面の耐 衝撃性を向上させることができる。
[0091] (光分解性)
本発明における親水性材料とは別に、光触媒能を有する粒子、たとえばアナター ゼ型酸ィ匕チタンなどを併用することにより、光分解性を付与できる。この場合、光触媒 能を有する粒子は、比較的大きな粒径のものであってもよいし、疎水性のものであつ てもよい。
[0092] 本発明の防汚塗料組成物は、たとえばつぎに示す物品に適用することができる。
[0093] (1)人体や生物に接する環境で使用される物品:
(1 - 1)人体に接する環境で使用される物品:
(付着性物質の種類)
各種の血液成分 (血漿、赤血球、血小板、白血球など)、各種体液(リンパ液、唾液
、涙、汗、糞尿など)、脂肪、皮膚断片など。
[0094] 以下に示す抗血栓材料、抗蛋白質付着材料、脂肪,脂質付着防止材料,尿石付 着防止材料など、日用品などとしても有用である。
[0095] (具体的物品例)
医用関連物品: 人工血管、血液パック、人工臓器、人工心臓、人工肺、肺ドレナージ、人工皮膚、 経皮デバイス、採尿パック、導尿カテーテル、眼内レンズ、コンタクトレンズ、人工骨、 人工関節、人工歯、歯の虫歯防止剤 (歯に塗布する)、便器 (尿石が付かない)およ びその接続チューブなど。
[0096] 日用品:
寝具類 (布団、ベッド、シーツ)、タオル、手袋 (垢がつきにくい)、整髪用器具 (くし、 はさみ、バリカン、髭剃り、ドライア)、洗面用具 (歯ブラシ、風呂桶、浴室マット、浴室 用椅子)など。
[0097] (1 - 2)生物が付着しやす 、環境で使用される物品:
(付着性物質の種類)
藻、黴、各種細菌など。
[0098] (具体的物品例)
船底材料、船底塗料、艦艇用ドッグ、外壁材料、水周り (浴室、シンク、浴槽など)の 材料、タイル、水槽、用水路、循環水利用設備 (水道など水配管全般)、水中建造物 (ダム、港、堤防など)、運河、熱交換器、エアコンのドレインパン、ドレインホース、ド レインポンプ、フィルタ一類、排水口、排水経路、食料品工場 (乳製品製造ライン、タ ンク、配管など)、食品貯蔵庫 (冷凍室、冷蔵庫)、食品加工器具 (ミキサー、ジューサ 一、製麵機、炊飯器など)、食器収納器、食器洗浄器、食器乾燥器、飲料のサーバ 一(ビールやジュースのサーバー、冷水器)、ショーケース、キッチンカウンター、水筒 類、貯水槽、プール,コップ、ストロー、食器類 (コップ、ポットや急須類では茶渋も付 力ないので好適)、調理用具 (まな板、スポンジ、包丁)、体重計、靴、靴下 (水虫防止 )、洗濯機、乾燥機、缶切など。
[0099] (2)結晶が成長しやすい環境で使用される物品:
(2— 1)ワックスゃスラッジが付着しやす 、環境で使用される物品:
(付着性物質の種類)
冷凍機油中のスラッジ (各種の油や鉱物油の劣化物)、各種油中のワックス (たとえ ば n—パラフィンなど)成分など。
[0100] (具体的物品例) フィルター、冷凍機の減圧部 (キヤピラリー、各種減圧弁など)など。
[0101] (2— 2)スケールが付着しやすい環境で使用される物品:
(付着性物質の種類)
水中の無機物質が析出 (たとえば結晶化)したもの。多くのスケールは炭酸やリン酸 、硫酸、ケィ酸のカルシウム塩またはシリケートの形で結晶化し析出する。
[0102] (具体的物品例)
熱交^^、ボイラー、クーリングタワーなど。
[0103] (2— 3)着氷が生じやすい環境で使用される物品:
(付着性物質の種類)
水滴、水、氷、雪など。
[0104] (具体的物品例)
熱交換器のフィン (デフロスト対策)、屋根材(瓦などにコーティング)、アンテナ、送 電線 (雪などによる切断や破壊防止)、船舶外装 (着氷防止)、製氷皿、製氷機、冷蔵 庫、冷凍庫 (室、車)、ガラス (各種車両、建造物)、屋外電気通信機関係 (パラボラァ ンテナなどの各種アンテナ、通信用鉄塔、通信ケーブル、電線、送電用鉄塔など)、 輸送車両関係(船舶や列車などのデッキ、各種車両の乗降ステップ、パンタグラフ、ト 口リー線などの車両の外部突出物、航空機の翼、各種車両の外装)、建築物関係 (屋 根瓦、タイルなどのエクステリア類)、道路、歩道 (凍結しにくぐ除雪や除氷も容易)、 靴底、タイヤ (凍結しにくい)、塩害防止塗料、碍子 (フラッシュオーバーの防止)など
[0105] (3)空気に曝される環境で使用される物品:
(3- 1)主として屋内で使用される物品:
(付着性物質の種類)
油煙、煙草の煙ゃャ二など。
[0106] (具体的物品例)
屋内用建材 (天井材、壁材、壁紙など)、ブラインド、カーテン、床材、カーペット、透 明部材 (照明カバー、ガラス、ショーウインドー、計器類のカバー、眼鏡、ゴーグルな ど)、鏡 (車両用ミラー、家庭用、洗面鏡など)、熱交翻、空調機 (ファン、外装など) 、空調機のダクト、空気清浄機、加湿ホース(室内への黴、細菌などのアレルゲン発 生防止)、吹き出し口、排気口、それらの周囲部分、かつら、人工毛髪、キッチン、レ ンジフード、服 (臭 、が移らな 、)、化粧品 (臭 、が移らな 、)など。
[0107] (3— 2)主として屋外で使用される物品:
(付着性物質の種類)
ダスト(約 0. 1〜50 m)、海岸沿いの食塩結晶(約 0. 1〜: LO /z m)、液滴 (約 10 〜50 /ζ πι)、自動車の排気ガスなど。
[0108] (具体的物品例)
屋外用建材 (建築物の外壁、車両や船舶、航空機などの外装)、道路関連部材 (ガ 一ドレール、標識、信号、トンネル内壁、照明器具、看板のカバー類、防音壁、高架 、橋など)、透明部材 (屋外照明カバー、ガラス、看板のカバー、ショーウインドー、温 室、太陽電池カバー、太陽熱温水器カバー、計器類のカバー、眼鏡、ゴーグルなど) 、鏡 (車両用ミラー、道路鏡など)、熱交^^、空調機 (ファン、外装など)、空調機の ダクト、加湿ホース(室内への黴、細菌などのアレルゲン発生防止)、吹き出し口、排 気口、それらの周囲部分、煙突内部、その周囲部分、かつら、人工毛髪、外出用服( 臭 、が移らな 、)、化粧品 (臭 、が移らな 、)、遊具 (遊園地や公園の器具類)など。
[0109] (4)電気絶縁性が要求される環境で使用される物品:
(付着性物質の種類)
各種導電性の物質、たとえばカーボンや炭化物などのほか、付着した物質に水分 が含浸され、導電性になったもの。
[0110] (具体的物品例)
各種電気電子部品の端子台、マグネットプラグなどのプラグ類、電気集塵機ゃィォ ン発生器などの放電部など。
[0111] (5)張り紙などの貼付けがなされる環境で使用される物品:
(具体的物品例)
屋内と屋外の各種壁、各種遊具、トンネル、電柱、電話ボックスなど。
[0112] 以上に例示した各種の物品のうちでも、空気の流れる場所や部分に汚れは他所よ りも付着しやすぐ黒ずんでいる状態はよく見かけるところである。そうした場所に設置 される機器の代表例は空調機、特に屋内用空調機や空気清浄機であり、その表面 汚染 (特に油煙、煙草の煙ゃャ二、室内の微粉ゃ埃など)防止は長年の課題であつ た。たとえば、屋内用空調機は一般に月に 2〜3回は表面をクリーニングする必要が あるほど汚れがたまりやす 、。
[0113] 本発明の防汚塗料組成物はこうした空調機の外装やダクトの内側などに塗装する 塗料として最適であり、本発明の塗膜を表面に有する空調機や空気清浄機では変 色が抑えられると共にクリーニングの回数を大きく減らすことができる。
実施例
[0114] つぎに実施例をあげて本発明を具体的に説明するが、本発明はこれらの実施例の みに限定されるものではない。
[0115] 実施例 1
つぎの成分を表 1に示す配合で攪拌混合して溶剤型の防汚塗料組成物 (組成物 1 1)を調製した。
[0116] (配合)
塗料用疎水性ポリマー 1:大日本インキ化学工業 (株)製の高ガラス転移点型の室温 硬化型 3級ァミノ基含有アクリルシリコン榭脂 (Tg90°C)のトルエン Zイソブタノール 溶液:固形分 44質量%。商品名アタリデック BZ— 1161
硬化剤 1:シリコン系硬化剤(大日本インキ化学工業 (株)製の商品名アタリデック FZ - 523)
親水性材料 1:コロイダルシル力 (日産化学 (株)製の IPA— ST。シリカの数平均粒子 径 10〜15nm。 30〜31質量0 /0のイソプロパノール分散液)
[0117] この塗料組成物 1—1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 1 - 1)を作製した。
[0118] また、使用する各成分は同じものを用い、表 1に示す量で配合して防汚塗料組成 物 (組成物 1— 2〜1— 3)を調製し、上記と同様にして防汚塗膜サンプル 1— 2〜1—
3を作製した。
[0119] これらの防汚塗膜サンプルについて、つぎの簡易防汚試験 1を行った。結果を表 1 に示す。
[0120] (簡易防汚試験 1)
試験 1:煙草の煙による簡易汚染試験
サンプルおよびブランク (未処理ポリスチレン板)を 3日間屋内雰囲気に放置した後 、密閉容器 (容積 30リットル)中に縦置きに入れ、容器内で紙卷タバコ(日本たばこ産 業 (株)製のマイルドセブン) 1本を完全に燃焼させる。燃焼後 3時間放置し、サンプル およびブランクの試験開始前との色差( Δ E)を光度計(日本電色工業 (株)製のカラ 一メータ Z2000を用い、 JIS Z8722に準拠して表面の反射率力も調べる。同様にし て屋内雰囲気に 6日間、 28日間および 50日間放置したサンプルおよびブランクにつ いて、上記タバコ燃焼試験を行ない、試験開始前との色差(Δ Ε)を調べる。
[0121] 試験 2 :対水接触角
上記試験 1において、対水接触角計を使用して 3日後、 6日後、 28日後および 50 日後の対水接触角を調べる。
[0122] 比較例 1
実施例 1の組成物 1 1の調製において、 PGMEを混合せず、同量のイソプロパノ ールを混合したほかは同様にして比較用の塗料組成物(1— C1)を調製し、この比較 用サンプル 1 C 1を用 、実施例 1と同様にして比較用防汚塗膜サンプル 1 C 1を 作製した。
[0123] この比較用防汚塗膜サンプル 1 C1について、実施例 1と同様にして簡易防汚試 験 1を行った。結果を表 1に示す。
[0124] [表 1]
Figure imgf000026_0001
[0125] 実施例 2
つぎの成分を表 2に示す配合で攪拌混合して溶剤型の防汚塗料組成物 (組成物 2 1)を調製した。
[0126] (配合)
塗料用疎水性ポリマー 2:大日本インキ化学工業 (株)製の低ガラス転移点型の室温 硬化型 3級ァミノ基含有アクリルシリコン榭脂 (Tg60°C)のトルエン Zイソブタノール 溶液:固形分 44質量%。商品名アタリデック A— 9540
硬化剤 2:シリコン系硬化剤(大日本インキ化学工業 (株)製の商品名アタリデック A— 9585)
親水性材料 1
[0127] この塗料組成物 2— 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 2 - 1)を作製した。
[0128] また、使用する各成分は同じものを用い、表 2に示す量で配合して防汚塗料組成 物 (組成物2— 2〜2— 3)を調製し、これらの組成物を用い上記と同様にして防汚塗 膜サンプル 2— 2〜2— 3を作製した。
[0129] これらの防汚塗膜サンプルについて、実施例 1と同様にし簡易防汚試験 1を行った
。結果を表 2に示す。
[0130] 比較例 2
実施例 2の組成物 2— 1の調製において、ジァセトアルコールを混合せず、同量の イソプロノ V—ルを混合したほかは同様にして比較用の塗料組成物(2— C1)を調製 し、この比較用組成物 2— C 1を用 、実施例 1と同様にして比較用防汚塗膜サンプル 2— C1を作製した。
[0131] この比較用防汚塗膜サンプル 2— C1について、実施例 1と同様にして簡易防汚試 験 1を行った。結果を表 2に示す。
[0132] [表 2]
Figure imgf000028_0001
[0133] 実施例 3
実施例 2において、ジァセトアルコールの配合量を表 3のとおりに変更したほかは実 施例 2と同様に防汚塗料組成物 (組成物 3— 1 3— 3)を調製し、これらの組成物を 用い上記と同様にして防汚塗膜サンプル 3— 1 3— 3を作製した。
[0134] これらの防汚塗膜サンプルについて、実施例 1と同様にし簡易防汚試験 1を行った 。結果を表 3に示す。
[0135] [表 3]
Figure imgf000029_0001
[0136] 実施例 4
親水性材料の量の影響を調べるため、表 4に示す成分を同表に示す量で配合し攪 拌混合して溶剤型の防汚塗料組成物 (組成物 4 1)を調製した。
[0137] この塗料組成物 4 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 4 - 1)を作製した。
[0138] また、使用する各成分は同じものを用い、表 4に示す量で配合して防汚塗料組成 物 (組成物 4 2〜4 5)を調製し、上記と同様にして防汚塗膜サンプル 4 2〜4 5を作製した。
[0139] これらの防汚塗膜サンプルにつ 、て、湿度の影響を除!、たつぎの加速防汚試験 2 を行った。結果を表 4に示す。
[0140] (加速防汚試験 2)
試験方法:
試験はまず、後述する試験装置を作製して用いた。煙発生装置で発生させた市販 煙草(日本たばこ株式会社製のマイルドセブン) 10本分の煙を評価用水槽に入れ、 水槽内に備えたファンで充分に攪拌する。ついで水槽内部の煙が均質になった時点 でファンを止め、試験材料用治具に固定したサンプルを水槽に入れ、 10時間経過後 の汚れを測定する。
[0141] 汚れの測定は、日本電色工業 (株)製の NR— 1型色差計を使用し、試験前後の色 差 ( Δ b値)により汚れを評価する。
[0142] 試験装置:
図 1に示す独自開発による試験装置を用いる。この試験装置は、煙発生装置 1、評 価用水槽 2、サンプル用冶具 3より構成されている。
[0143] 煙発生装置 1は、煙草燃焼用の空気を送るポンプ 7、煙草燃焼用の容器 6、煙草 5 の煙を除湿する除湿ユニット 4からなり、乾燥した煙を発生する。
[0144] 試験用水槽 2は、幅 600 X長さ 300 X高さ 380mmのガラス製であり、側面に煙攪 拌用のファン 8が設けられている。また、水槽 2上部の蓋には煙発生装置からの煙 10 の注入口と、サンプル 9を出し入れする開口部、水槽内の温湿度測定用の温湿度計 が設けられている。
[0145] サンプル用冶具 3は、水槽 2にサンプル 9を出し入れすると共に、水槽 2中の定位置 にサンプル 9を固定できるよう構成されて 、る。
[0146] 比較例 3 実施例 4の組成物 4— 1の調製において、親水性材料 1 (コロイダルシリカ)を混合し な力つたほかは同様にして比較用の塗料組成物 (4— C1)を調製し、この比較用組 成物 4— C1を用い実施例 4と同様にして比較用防汚塗膜サンプル 4— C1を作製し た。
[0147] この比較用防汚塗膜サンプル 4 C1について、実施例 4と同様にして加速防汚試 験 2を行った。結果を表 4に示す。
[0148] [表 4]
Figure imgf000032_0001
実施例 5
実施例 4の組成物 4 2の調製にぉ 、て、疎水性ポリマーとして塗料用疎水性ポリ
2 (大日本インキ化学工業 (株)製のアタリデック A— 9540 (Tg60°C) )を用い、ま たコロイダルシリカの混合量を表 5に示す量としたほかは実施例 4と同様にして塗料 組成物(5— Cl〜5— 4)を調製し、この組成物 5— Cl〜5— 4を用い実施例 4と同様 にして防汚塗膜サンプル 5— C 1〜5— 4を作製した。
[0150] この防汚塗膜サンプル5— 1〜5—4ぉょび5—じ1にっぃて、実施例 4と同様にして 加速防汚試験 2を行った。結果を表 5に示す。
[0151] [表 5]
Figure imgf000034_0001
実施例 6
有機溶剤 Cと Dの量の影響を調べるため、表 6に示す成分を同表に示す量で配合 し攪拌混合して溶剤型の防汚塗料組成物 (組成物 6— 1)を調製した。 [0153] この塗料組成物 6— 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 6 - 1)を作製した。
[0154] また、使用する各成分は同じものを用い、有機溶剤 Cと有機溶剤 Dを表 6に示す量 で配合して防汚塗料組成物 (組成物 6— 2〜6—4)を調製し、上記と同様にして防汚 塗膜サンプル 6— 2〜6— 4を作製した。
[0155] これらの防汚塗膜サンプルについて、実施例 4と同様にして加速防汚試験 2を行つ た。結果を表 6に示す。
[0156] [表 6]
Figure imgf000036_0001
[0157] 実施例 7
他の有機溶剤 Dの種類の影響を調べるため、表 7に示す成分を同表に示す量で配 合し攪拌混合して溶剤型の防汚塗料組成物 (組成物 7— 1)を調製した。
[0158] この塗料組成物 7— 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 7 - 1)を作製した。
[0159] また、使用する各成分は同じものを用い、有機溶剤 Dおよび低沸点極性有機溶剤 を表 7に示す量で配合して防汚塗料組成物 (組成物 7— 2〜7— C2)を調製し、上記 と同様にして防汚塗膜サンプル 7— 2〜7— C2を作製した。
[0160] これらの防汚塗膜サンプルについて、実施例 4と同様にして加速防汚試験 2を行つ た。結果を表 7に示す。
[0161] [表 7]
Figure imgf000038_0001
[0162] 実施例 8
他の有機溶剤 Dの組合せと配合量の影響を調べるため、表 8に示す成分を同表に 示す量で配合し攪拌混合して溶剤型の防汚塗料組成物 (組成物 8— 1)を調製した。
[0163] この塗料組成物 8— 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 8 - 1)を作製した。
[0164] また、使用する各成分は同じものを用い、 2種類の有機溶剤 Dを表 8に示す割合で 配合して防汚塗料組成物 (組成物 8— 2〜8— 4)を調製し、上記と同様にして防汚塗 膜サンプル 8 - 2〜8— 4を作製した。
[0165] これらの防汚塗膜サンプルについて、実施例 4と同様にして加速防汚試験 2を行つ た。結果を表 8に示す。
[0166] [表 8]
1 oo
Figure imgf000040_0001
実施例 9
ポリマー用有機溶剤(C)として、トルエンに代えてキシレン (bpl40°C)を用い、表 9 に示す量で配合し攪拌混合して溶剤型の防汚塗料組成物 (組成物 9 1)を調製した この塗料組成物 9 1をポリスチレン板(150mm X 80mm X 5mm)に乾燥後の厚 さが 5 /z mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗膜サンプ ル (サンプル 9 - 1)を作製した。
[0169] また、キシレンとジァセトアルコールの量を表 8に示す割合で配合して防汚塗料組 成物 (組成物 9— 2)を調製し、上記と同様にして防汚塗膜サンプル 9 - 2を作製した
[0170] これらの防汚塗膜サンプルについて、実施例 4と同様にして加速防汚試験 2を行つ た。結果を表 9に示す。
[0171] [表 9]
Figure imgf000042_0001
[0172] 実施例 10
親水性材料であるコロイダルシリカの粒子径の影響を調べるため、表 10に示す成 分において平均粒子径の異なるコロイダルシリカ 1〜3を同表に示す量で配合し攪拌 混合して溶剤型の防汚塗料組成物 (組成物 10— 1〜 10— 3)を調製した。
[0173] コロイダルシリカ 1 :日産化学 (株)製の IPA— STS。シリカの数平均粒子径 7〜10n m。 30〜31質量0 /0のイソプロパノール分散液 コロイダルシリカ 2 :日産化学 (株)製の IPA— ST。シリカの数平均粒子径 10〜15nm 。 30〜 31質量0 /0のイソプロパノール分散液
コロイダルシリカ 3 :日産化学 (株)製の IPA— STL。シリカの数平均粒子径 40〜 50η m。 30〜31質量0 /0のイソプロパノール分散液
[0174] この塗料組成物 10— 1〜: LO— 3をポリスチレン板 ( 150mm X 80mm X 5mm)に乾 燥後の厚さが 5 mとなるようにスプレー塗装し、 60°Cにて 30分間放置して、防汚塗 膜サンプル (サンプル 10— 1〜: L0— 3)を作製した。
[0175] これらの防汚塗膜サンプルについて、実施例 4と同様にして加速防汚試験 2を行つ た。結果を表 10に示す。
[0176] [表 10]
Figure imgf000044_0001
産業上の利用可能性
本発明によれば、従来に比べて少量の親水性材料でしかも安価な汎用の塗料用 疎水性ポリマーを使用しても、優れた防汚効果を奏し得る防汚塗料組成物を提供す ることがでさる。

Claims

請求の範囲
[I] 親水性材料 (A)と塗料用疎水性ポリマー (B)と該塗料用疎水性ポリマー用の有機 溶剤 (C)と他の有機溶剤 (D)とからなり、該他の有機溶剤 (D)が該塗料用疎水性ポ リマー用の有機溶剤 (C)の沸点よりも 5°C以上高い高沸点有機溶剤であり、さらに該 親水性材料 (A) Z疎水性ポリマー(B)の割合が 1Z99〜50Z50 (質量%比)である 防汚塗料組成物。
[2] 前記塗料用疎水性ポリマー用の有機溶剤 (C)が非極性有機溶剤 (C1)であり、か つ前記他の有機溶剤 (D)が親水性材料用の極性有機溶剤 (D1)であり、該極性有 機溶剤 (D1)が該非極性有機溶剤 (C1)の沸点よりも 5°C以上高!ヽ高沸点極性有機 溶剤である請求の範囲第 1項記載の防汚塗料組成物。
[3] 前記親水性材料 (A) Z疎水性ポリマー (B)の割合が 1Z99〜30Z70 (質量%比) である請求の範囲第 1項または第 2項記載の防汚塗料組成物。
[4] 前記極性有機溶剤 (D1)が 115°C以上の高沸点極性有機溶剤である請求の範囲 第 2項または第 3項記載の防汚塗料組成物。
[5] さらに沸点が 115°C未満の低沸点極性有機溶剤 (D2)を含む請求の範囲第 4項記 載の防汚塗料組成物。
[6] 前記親水性材料 (A)が、親水性微粒子である請求の範囲第 1項〜第 5項の 、ずれ かに記載の防汚塗料組成物。
[7] 前記親水性材料 (A)力 オルガノシリケートのオリゴマーまたはコオリゴマーである 請求の範囲第 1項〜第 5項のいずれかに記載の防汚塗料組成物。
[8] 前記親水性微粒子がシリカ微粒子、酸化チタン微粒子、アパタイト微粒子、光触媒 能を有するアパタイトおよび Zまたは金属微粒子である請求の範囲第 6項記載の防 汚塗料組成物。
[9] 前記塗料用疎水性ポリマー (B)が架橋性ポリマーである請求の範囲第 1項〜第 8 項の 、ずれかに記載の防汚塗料組成物。
[10] 前記塗料用疎水性ポリマー(B)が非フッ素系の疎水性ポリマーである請求の範囲 第 1項〜第 9項のいずれかに記載の防汚塗料組成物。
[II] 請求の範囲第 1項〜第 10項のいずれかに記載の防汚塗料組成物を硬化して得ら れる防汚塗膜。
塗膜表面で親水性材料 (A)と塗料用疎水性ポリマー (B)がミクロ相分離構造を形 成している請求の範囲第 11項記載の防汚塗膜。
請求の範囲第 11項または第 12項記載の防汚塗膜を有する物品。
PCT/JP2005/007028 2004-04-12 2005-04-11 防汚塗料組成物 WO2005100495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05728566A EP1736516A4 (en) 2004-04-12 2005-04-11 ANTIFOULINGLACK
AU2005233438A AU2005233438A1 (en) 2004-04-12 2005-04-11 Antifouling coating composition
US11/578,164 US20070215004A1 (en) 2004-04-12 2005-04-11 Stain-Proofing Coating Composition
CN200580010954XA CN1942545B (zh) 2004-04-12 2005-04-11 防污涂料组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004116752 2004-04-12
JP2004-116752 2004-04-12

Publications (1)

Publication Number Publication Date
WO2005100495A1 true WO2005100495A1 (ja) 2005-10-27

Family

ID=35149984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007028 WO2005100495A1 (ja) 2004-04-12 2005-04-11 防汚塗料組成物

Country Status (5)

Country Link
US (1) US20070215004A1 (ja)
EP (1) EP1736516A4 (ja)
CN (1) CN1942545B (ja)
AU (1) AU2005233438A1 (ja)
WO (1) WO2005100495A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126521A1 (ja) * 2005-05-25 2006-11-30 Daikin Industries, Ltd. 防汚塗膜の構造
JP2007146040A (ja) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd 可視光反応型光触媒を含む溶剤型塗料およびそれを用いた積層構造体および冷凍装置
JP2007146041A (ja) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd 可視光反応型光触媒を含む溶剤型塗料およびそれを用いた積層構造体および冷凍装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846154B2 (en) 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
US7716850B2 (en) * 2006-05-03 2010-05-18 Georgia-Pacific Consumer Products Lp Energy-efficient yankee dryer hood system
US8039055B2 (en) 2006-07-20 2011-10-18 Cortana Corporation Method to increase the efficiency of polymer drag reduction for marine and industrial applications
US8431216B2 (en) 2007-05-05 2013-04-30 Lg Display Co., Ltd. Optical film for a display device and method of fabricating the same
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
DK2231791T3 (da) * 2008-01-02 2013-09-08 Cortana Corp Fremgangsmåde til at øge nyttevirkningen af polymerstrømningsmodstandsreduktion til marine og industrielle anvendelser
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
TWI464186B (zh) * 2008-09-19 2014-12-11 Toyo Tanso Co A method for producing hydrophilized microparticles, and a hydrophilic microparticle obtained by the method
WO2010042668A1 (en) 2008-10-07 2010-04-15 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US7858685B2 (en) * 2009-05-21 2010-12-28 Robert L. Barry Solvent-based surface coating
MX343584B (es) 2009-11-04 2016-11-10 Ssw Holding Co Inc Superficies de equipos de coccion que tienen una estructura para la contencion de derrames y metodos de fabricarlas.
CA2796305A1 (en) 2010-03-15 2011-09-22 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
KR101786951B1 (ko) * 2010-04-23 2017-10-19 삼성전자주식회사 초발수 코팅 조성물, 상기 조성물의 경화물을 포함하는 초발수 코팅층, 및 상기 초발수 코팅층을 포함하는 열교환기
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
US9333454B2 (en) 2011-01-21 2016-05-10 International Business Machines Corporation Silicone-based chemical filter and silicone-based chemical bath for removing sulfur contaminants
MX2013009609A (es) 2011-02-21 2013-09-16 Ross Technology Corp Revestimiento suoerhidrofobos y oleofobos con sistemas aglutinantes con bajo contenido de compuestos organicos volatiles.
US8900491B2 (en) 2011-05-06 2014-12-02 International Business Machines Corporation Flame retardant filler
US9186641B2 (en) 2011-08-05 2015-11-17 International Business Machines Corporation Microcapsules adapted to rupture in a magnetic field to enable easy removal of one substrate from another for enhanced reworkability
CN102408807B (zh) * 2011-09-14 2013-07-17 武汉理工大学 高性能仿生防污复合涂料及其合成方法
US20130067646A1 (en) * 2011-09-15 2013-03-21 John Arthur MCEWAN Waterless Urinal
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
EP2791255B1 (en) 2011-12-15 2017-11-01 Ross Technology Corporation Composition and coating for superhydrophobic performance
US20150011675A1 (en) * 2012-02-28 2015-01-08 Kaneka Corporation Coating composition and coating film obtained from coating composition
US9716055B2 (en) 2012-06-13 2017-07-25 International Business Machines Corporation Thermal interface material (TIM) with thermally conductive integrated release layer
CA2878189C (en) 2012-06-25 2021-07-13 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
US9771656B2 (en) 2012-08-28 2017-09-26 Ut-Battelle, Llc Superhydrophobic films and methods for making superhydrophobic films
CN103881494A (zh) * 2012-12-24 2014-06-25 深圳市嘉达高科产业发展有限公司 一种金属防腐防污涂料
CN104705903B (zh) * 2013-12-11 2017-01-11 北京天恒盛通科技发展有限公司 具有防止迸溅泥水的鞋底及其制备方法
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
US9840639B2 (en) 2014-03-27 2017-12-12 Innosense Llc Hydrophilic anti-fog coatings
JP6717373B2 (ja) * 2016-04-13 2020-07-01 ダイキン工業株式会社 超撥液性被膜及び超撥液性硬化性被膜形成用組成物
KR102338212B1 (ko) * 2016-04-28 2021-12-10 스미또모 가가꾸 가부시키가이샤 조성물
US20180051185A1 (en) * 2016-08-17 2018-02-22 Dante Manarolla Pigmented Epoxy Tile and a Method to Fabricate
WO2019204757A1 (en) * 2018-04-19 2019-10-24 Ecobond Lbp, Llc Pollutant mitigating coating compositions and methods for the mitigation of pollutants
EP3878916A4 (en) * 2018-11-09 2022-08-24 Nitto Denko Corporation MATERIAL AND FILM COATING
US11254838B2 (en) 2019-03-29 2022-02-22 Ppg Industries Ohio, Inc. Single component hydrophobic coating
CN112452241A (zh) * 2020-10-27 2021-03-09 昆山协盛电子有限公司 水泵喷涂用调漆工艺
CN112514826B (zh) * 2020-12-16 2023-07-21 真木农业设备(安徽)有限公司 一种鸡舍饮水和自动喷淋装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132051A (ja) * 1982-01-30 1983-08-06 Dainippon Ink & Chem Inc 熱硬化型ウレタンエマルジヨン塗料
JPS5966465A (ja) * 1982-09-16 1984-04-14 ソルヴアイ・エ・コンパニ−・ソシエテ・アノニム ポリ弗化ビニリデンをベ−スとするクリヤラツカ−及び金属表面の塗装法
JPH01115966A (ja) * 1987-10-29 1989-05-09 Japan Synthetic Rubber Co Ltd コーティング用組成物
JPH05140477A (ja) * 1991-11-15 1993-06-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05271607A (ja) * 1992-03-23 1993-10-19 Kanegafuchi Chem Ind Co Ltd 熱硬化性上塗塗料組成物
JPH0790200A (ja) * 1993-09-27 1995-04-04 Dainippon Ink & Chem Inc 防汚塗料用樹脂組成物
JPH11228903A (ja) * 1998-02-12 1999-08-24 Kanegafuchi Chem Ind Co Ltd 塗料用硬化性組成物及び被塗物
JPH11333992A (ja) * 1998-05-25 1999-12-07 Daikin Ind Ltd 耐汚染付着性の良好な内外装用の構築材
JP2001131485A (ja) * 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd 透明導電性膜形成用塗料及び透明導電性膜
JP2002020675A (ja) * 2000-07-04 2002-01-23 Daikin Ind Ltd 硬化性フッ素樹脂塗料組成物
WO2003006565A1 (fr) * 2001-06-15 2003-01-23 Daikin Industries, Ltd. Composition de revetement de fluororesine, film de revetement et objet revetu
JP2003277689A (ja) * 2002-03-26 2003-10-02 Sumitomo Chem Co Ltd 塗料組成物及びそれを被覆してなる基材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910970D0 (en) * 1989-05-12 1989-06-28 Int Paint Plc Antifouling coatings
JP4868636B2 (ja) * 2000-08-08 2012-02-01 日本曹達株式会社 光触媒を担持してなる構造体
JP2005154520A (ja) * 2003-11-21 2005-06-16 Daikin Ind Ltd 非付着性表面構造
JP2005171068A (ja) * 2003-12-10 2005-06-30 Daikin Ind Ltd 非付着性表面構造

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132051A (ja) * 1982-01-30 1983-08-06 Dainippon Ink & Chem Inc 熱硬化型ウレタンエマルジヨン塗料
JPS5966465A (ja) * 1982-09-16 1984-04-14 ソルヴアイ・エ・コンパニ−・ソシエテ・アノニム ポリ弗化ビニリデンをベ−スとするクリヤラツカ−及び金属表面の塗装法
JPH01115966A (ja) * 1987-10-29 1989-05-09 Japan Synthetic Rubber Co Ltd コーティング用組成物
JPH05140477A (ja) * 1991-11-15 1993-06-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH05271607A (ja) * 1992-03-23 1993-10-19 Kanegafuchi Chem Ind Co Ltd 熱硬化性上塗塗料組成物
JPH0790200A (ja) * 1993-09-27 1995-04-04 Dainippon Ink & Chem Inc 防汚塗料用樹脂組成物
JPH11228903A (ja) * 1998-02-12 1999-08-24 Kanegafuchi Chem Ind Co Ltd 塗料用硬化性組成物及び被塗物
JPH11333992A (ja) * 1998-05-25 1999-12-07 Daikin Ind Ltd 耐汚染付着性の良好な内外装用の構築材
JP2001131485A (ja) * 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd 透明導電性膜形成用塗料及び透明導電性膜
JP2002020675A (ja) * 2000-07-04 2002-01-23 Daikin Ind Ltd 硬化性フッ素樹脂塗料組成物
WO2003006565A1 (fr) * 2001-06-15 2003-01-23 Daikin Industries, Ltd. Composition de revetement de fluororesine, film de revetement et objet revetu
JP2003277689A (ja) * 2002-03-26 2003-10-02 Sumitomo Chem Co Ltd 塗料組成物及びそれを被覆してなる基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736516A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126521A1 (ja) * 2005-05-25 2006-11-30 Daikin Industries, Ltd. 防汚塗膜の構造
JP2007146040A (ja) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd 可視光反応型光触媒を含む溶剤型塗料およびそれを用いた積層構造体および冷凍装置
JP2007146041A (ja) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd 可視光反応型光触媒を含む溶剤型塗料およびそれを用いた積層構造体および冷凍装置

Also Published As

Publication number Publication date
CN1942545B (zh) 2010-12-01
AU2005233438A1 (en) 2005-10-27
EP1736516A1 (en) 2006-12-27
US20070215004A1 (en) 2007-09-20
CN1942545A (zh) 2007-04-04
EP1736516A4 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2005100495A1 (ja) 防汚塗料組成物
WO2006126521A1 (ja) 防汚塗膜の構造
CN1312240C (zh) 具有生物膜抑制涂层的基体
WO2014077205A1 (ja) 防汚塗料組成物、防汚塗膜、防汚基材、および防汚塗料組成物の貯蔵安定性の改善方法
KR102289110B1 (ko) 방오 도료 조성물, 방오 도막, 방오 도막 부착 기재 및 그의 제조방법, 및 방오방법
JP6735380B2 (ja) 混合組成物
JP2017201010A (ja) 皮膜
JP7420477B2 (ja) 混合組成物
US20030109633A1 (en) Coating process and silicon-containing liquid composition
JP6309626B2 (ja) 防汚塗料組成物
WO2003027202A1 (fr) Composition de cire hydrophilisante
JP2005154520A (ja) 非付着性表面構造
JP2005171068A (ja) 非付着性表面構造
WO2017188333A1 (ja) 化合物、及び化合物を含む組成物
JP4100410B2 (ja) 防汚塗料組成物
JP2006083383A (ja) 防汚塗料組成物
WO2001081474A1 (fr) Composition anti-salissure a base de silicone
JP5581266B2 (ja) 塗料及び空気調和機
CN114075406A (zh) 包含基于聚硅氧烷的可固化组合物的制剂的用途
JP6487159B2 (ja) 防汚塗料組成物、防汚膜、防汚膜の製造方法および防汚基材
WO2019189791A1 (ja) 混合組成物
JP2005139403A (ja) 光触媒作用を備えた塗料および塗料用添加剤
JP2005054118A (ja) 非付着性多重表面構造
WO2024195656A1 (ja) 防汚塗料組成物
JP2005171100A (ja) ミクロ相分離構造形成剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11578164

Country of ref document: US

Ref document number: 2005728566

Country of ref document: EP

Ref document number: 2007215004

Country of ref document: US

Ref document number: 200580010954.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005233438

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005233438

Country of ref document: AU

Date of ref document: 20050411

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005233438

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005728566

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578164

Country of ref document: US